Science.gov

Sample records for 2c8 substrate binding

  1. Determinants of Cytochrome P450 2C8 Substrate Binding: Structures of Complexes With Montelukast, Troglitazone, Felodipine And 9-CIS-Retinoic Acid

    SciTech Connect

    Schoch, G.A.; Yano, J.K.; Dansette, P.M.; Stout, C.D.; Johnson, E.F.

    2009-05-27

    Although a crystal structure and a pharmacophore model are available for cytochrome P450 2C8, the role of protein flexibility and specific ligand-protein interactions that govern substrate binding are poorly understood. X-ray crystal structures of P450 2C8 complexed with montelukast (2.8 {angstrom}), troglitazone (2.7 {angstrom}), felodipine (2.3 {angstrom}), and 9-cis-retinoic acid (2.6 {angstrom}) were determined to examine ligand-protein interactions for these chemically diverse compounds. Montelukast is a relatively large anionic inhibitor that exhibits a tripartite structure and complements the size and shape of the active-site cavity. The inhibitor troglitazone occupies the upper portion of the active-site cavity, leaving a substantial part of the cavity unoccupied. The smaller neutral felodipine molecule is sequestered with its dichlorophenyl group positioned close to the heme iron, and water molecules fill the distal portion of the cavity. The structure of the 9-cis-retinoic acid complex reveals that two substrate molecules bind simultaneously in the active site of P450 2C8. A second molecule of 9-cis-retinoic acid is located above the proximal molecule and can restrain the position of the latter for more efficient oxygenation. Solution binding studies do not discriminate between cooperative and noncooperative models for multiple substrate binding. The complexes with structurally distinct ligands further demonstrate the conformational adaptability of active site-constituting residues, especially Arg-241, that can reorient in the active-site cavity to stabilize a negatively charged functional group and define two spatially distinct binding sites for anionic moieties of substrates.

  2. Human CYP2C8: structure, substrate specificity, inhibitor selectivity, inducers and polymorphisms.

    PubMed

    Lai, Xin-Sheng; Yang, Li-Ping; Li, Xiao-Tian; Liu, Jun-Ping; Zhou, Zhi-Wei; Zhou, Shu-Feng

    2009-11-01

    Human CYP2C8 is a key member of the CYP2C family and metabolizes more than 60 clinical drugs. A number of active site residues in CYP2C8 have been identified based on homology modeling and site-directed mutagenesis studies. In the structure of CYP2C8, the large active site cavity exhibits a trifurcated topology that approximates a T or Y shape, which is consistent with the finding that CYP2C8 can efficiently oxidize relatively large substrates such as paclitaxel and cerivastatin. The active site cavity of CYP2C8 contains at least 48 amino acid residues and many of them are important for substrate binding. The structures of CYP2C8 in complex with distinct ligands have revealed that the enzyme can bind divergent substrates and inhibitors without extensive conformational changes. CYP2C8 is a major catalyst in the metabolism of paclitaxel, amodiaquine, troglitazone, amiodarone, verapamil and ibuprofen, with a secondary role in the biotransformation of cerivastatin and fluvastatin. CYP2C8 also metabolises endogenous compounds such as retinoids and arachidonic acid. Many drugs are inhibitors of CYP2C8 and inhibition of this enzyme may result in clinical drug interactions. The pregnane X receptor, constitutive androstane receptor, and glucocorticoid receptor are likely to involve the regulation of CYP2C8. A number of genetic mutations in the CYP2C8 gene have been identified in humans and some of them have functional impact on the clearance of drugs. Further studies are needed to delineate the role of CYP2C8 in drug development and clinical practice. PMID:20214592

  3. Evaluation of CYP2C8 inhibition in vitro: utility of montelukast as a selective CYP2C8 probe substrate.

    PubMed

    VandenBrink, Brooke M; Foti, Robert S; Rock, Dan A; Wienkers, Larry C; Wahlstrom, Jan L

    2011-09-01

    Understanding the potential for cytochrome P450 (P450)-mediated drug-drug interactions is a critical step in the drug discovery process. Although in vitro studies with CYP3A4, CYP2C9, and CYP2C19 have suggested the presence of multiple binding regions within the P450 active site based on probe substrate-dependent inhibition profiles, similar studies have not been performed with CYP2C8. The ability to understand CYP2C8 probe substrate sensitivity will enable appropriate in vitro and in vivo probe selection. To characterize the potential for probe substrate-dependent inhibition with CYP2C8, the inhibition potency of 22 known inhibitors of CYP2C8 were measured in vitro using four clinically relevant CYP2C8 probe substrates (montelukast, paclitaxel, repaglinide, and rosiglitazone) and amodiaquine. Repaglinide exhibited the highest sensitivity to inhibition in vitro. In vitro phenotyping indicated that montelukast is an appropriate probe for CYP2C8 inhibition studies. The in vivo sensitivities of the CYP2C8 probe substrates cerivastatin, fluvastatin, montelukast, pioglitazone, and rosiglitazone were determined in relation to repaglinide on the basis of clinical drug-drug interaction (DDI) data. Repaglinide exhibited the highest sensitivity in vivo, followed by cerivastatin, montelukast, and pioglitazone. Finally, the magnitude of in vivo CYP2C8 DDI caused by gemfibrozil-1-O-β-glucuronide was predicted. Comparisons of the predictions with clinical data coupled with the potential liabilities of other CYP2C8 probes suggest that montelukast is an appropriate CYP2C8 probe substrate to use for the in vivo situation. PMID:21697463

  4. Drug metabolism by CYP2C8.3 is determined by substrate dependent interactions with cytochrome P450 reductase and cytochrome b5.

    PubMed

    Kaspera, Rüdiger; Naraharisetti, Suresh B; Evangelista, Eric A; Marciante, Kristin D; Psaty, Bruce M; Totah, Rheem A

    2011-09-15

    Genetic polymorphisms in CYP2C8 can influence the metabolism of important therapeutic agents and cause interindividual variation in drug response and toxicity. The significance of the variant CYP2C8*3 has been controversial with reports of higher in vivo but lower in vitro activity compared to CYP2C8*1. In this study, the contribution of the redox partners cytochrome P450 reductase (CPR) and cytochrome b5 to the substrate dependent activity of CYP2C8.3 (R139K, K399R) was investigated in human liver microsomes (HLMs) and Escherichia coli expressed recombinant CYP2C8 proteins using amodiaquine, paclitaxel, rosiglitazone and cerivastatin as probe substrates. For recombinant CYP2C8.3, clearance values were two- to five-fold higher compared to CYP2C8.1. CYP2C8.3's higher k(cat) seems to be dominated by a higher, but substrate specific affinity, towards cytochrome b5 and CPR (K(D) and K(m,red)) which resulted in increased reaction coupling. A stronger binding affinity of ligands to CYP2C8.3, based on a two site binding model, in conjunction with a five fold increase in amplitude of heme spin change during binding of ligands and redox partners could potentially contribute to a higher k(cat). In HLMs, carriers of the CYP2C8*1/*3 genotype were as active as CYP2C8*1/*1 towards the CYP2C8 specific reaction amodiaquine N-deethylation. Large excess of cytochrome b5 compared to CYP2C8 in recombinant systems and HLMs inhibited metabolic clearance, diminishing the difference in k(cat) between the two enzymes, and may provide an explanation for the discrepancy to in vivo data. In silico studies illustrate the genetic differences between wild type and variant on the molecular level. PMID:21726541

  5. Identification of putative substrates for cynomolgus monkey cytochrome P450 2C8 by substrate depletion assays with 22 human P450 substrates and inhibitors.

    PubMed

    Hosaka, Shinya; Murayama, Norie; Satsukawa, Masahiro; Uehara, Shotaro; Shimizu, Makiko; Iwasaki, Kazuhide; Iwano, Shunsuke; Uno, Yasuhiro; Yamazaki, Hiroshi

    2016-07-01

    Cynomolgus monkeys are widely used in drug developmental stages as non-human primate models. Previous studies used 89 compounds to investigate species differences associated with cytochrome P450 (P450 or CYP) function that reported monkey specific CYP2C76 cleared 19 chemicals, and homologous CYP2C9 and CYP2C19 metabolized 17 and 30 human CYP2C9 and/or CYP2C19 substrates/inhibitors, respectively. In the present study, 22 compounds selected from viewpoints of global drug interaction guidances and guidelines were further evaluated to seek potential substrates for monkey CYP2C8, which is highly homologous to human CYP2C8 (92%). Amodiaquine, montelukast, quercetin and rosiglitazone, known as substrates or competitive inhibitors of human CYP2C8, were metabolically depleted by recombinant monkey CYP2C8 at relatively high rates. Taken together with our reported findings of the slow eliminations of amodiaquine and montelukast by monkey CYP2C9, CYP2C19 and CYP2C76, the present results suggest that these at least four chemicals may be good marker substrates for monkey CYP2C8. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26581561

  6. Targeting of Splice Variants of Human Cytochrome P450 2C8 (CYP2C8) to Mitochondria and Their Role in Arachidonic Acid Metabolism and Respiratory Dysfunction*

    PubMed Central

    Bajpai, Prachi; Srinivasan, Satish; Ghosh, Jyotirmoy; Nagy, Leslie D.; Wei, Shouzou; Guengerich, F. Peter; Avadhani, Narayan G.

    2014-01-01

    In this study, we found that the full-length CYP2C8 (WT CYP2C8) and N-terminal truncated splice variant 3 (∼44-kDa mass) are localized in mitochondria in addition to the endoplasmic reticulum. Analysis of human livers showed that the mitochondrial levels of these two forms varied markedly. Molecular modeling based on the x-ray crystal structure coordinates of CYP2D6 and CYP2C8 showed that despite lacking the N-terminal 102 residues variant 3 possessed nearly complete substrate binding and heme binding pockets. Stable expression of cDNAs in HepG2 cells showed that the WT protein is mostly targeted to the endoplasmic reticulum and at low levels to mitochondria, whereas variant 3 is primarily targeted to mitochondria and at low levels to the endoplasmic reticulum. Enzyme reconstitution experiments showed that both microsomal and mitochondrial WT CYP2C8 efficiently catalyzed paclitaxel 6-hydroxylation. However, mitochondrial variant 3 was unable to catalyze this reaction possibly because of its inability to stabilize the large 854-Da substrate. Conversely, mitochondrial variant 3 catalyzed the metabolism of arachidonic acid into 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid when reconstituted with adrenodoxin and adrenodoxin reductase. HepG2 cells stably expressing variant 3 generated higher levels of reactive oxygen species and showed a higher level of mitochondrial respiratory dysfunction. This study suggests that mitochondrially targeted variant 3 CYP2C8 may contribute to oxidative stress in various tissues. PMID:25160618

  7. Peroxisome proliferator-activated receptor alpha, PPARα, directly regulates transcription of cytochrome P450 CYP2C8

    PubMed Central

    Thomas, Maria; Winter, Stefan; Klumpp, Britta; Turpeinen, Miia; Klein, Kathrin; Schwab, Matthias; Zanger, Ulrich M.

    2015-01-01

    The cytochrome P450, CYP2C8, metabolizes more than 60 clinically used drugs as well as endogenous substances including retinoic acid and arachidonic acid. However, predictive factors for interindividual variability in the efficacy and toxicity of CYP2C8 drug substrates are essentially lacking. Recently we demonstrated that peroxisome proliferator-activated receptor alpha (PPARα), a nuclear receptor primarily involved in control of lipid and energy homeostasis directly regulates the transcription of CYP3A4. Here we investigated the potential regulation of CYP2C8 by PPARα. Two linked intronic SNPs in PPARα (rs4253728, rs4823613) previously associated with hepatic CYP3A4 status showed significant association with CYP2C8 protein level in human liver samples (N = 150). Furthermore, siRNA-mediated knock-down of PPARα in HepaRG human hepatocyte cells resulted in up to ∼60 and ∼50% downregulation of CYP2C8 mRNA and activity, while treatment with the PPARα agonist WY14,643 lead to an induction by >150 and >100%, respectively. Using chromatin immunoprecipitation scanning assay we identified a specific upstream gene region that is occupied in vivo by PPARα. Electromobility shift assay demonstrated direct binding of PPARα to a DR-1 motif located at positions –2762/–2775 bp upstream of the CYP2C8 transcription start site. We further validated the functional activity of this element using luciferase reporter gene assays in HuH7 cells. Moreover, based on our previous studies we demonstrated that WNT/β-catenin acts as a functional inhibitor of PPARα-mediated inducibility of CYP2C8 expression. In conclusion, our data suggest direct involvement of PPARα in both constitutive and inducible regulation of CYP2C8 expression in human liver, which is further modulated by WNT/β-catenin pathway. PPARA gene polymorphism could have a modest influence on CYP2C8 phenotype. PMID:26582990

  8. Role of Cytochrome P450 2C8 in Drug Metabolism and Interactions.

    PubMed

    Backman, Janne T; Filppula, Anne M; Niemi, Mikko; Neuvonen, Pertti J

    2016-01-01

    During the last 10-15 years, cytochrome P450 (CYP) 2C8 has emerged as an important drug-metabolizing enzyme. CYP2C8 is highly expressed in human liver and is known to metabolize more than 100 drugs. CYP2C8 substrate drugs include amodiaquine, cerivastatin, dasabuvir, enzalutamide, imatinib, loperamide, montelukast, paclitaxel, pioglitazone, repaglinide, and rosiglitazone, and the number is increasing. Similarly, many drugs have been identified as CYP2C8 inhibitors or inducers. In vivo, already a small dose of gemfibrozil, i.e., 10% of its therapeutic dose, is a strong, irreversible inhibitor of CYP2C8. Interestingly, recent findings indicate that the acyl-β-glucuronides of gemfibrozil and clopidogrel cause metabolism-dependent inactivation of CYP2C8, leading to a strong potential for drug interactions. Also several other glucuronide metabolites interact with CYP2C8 as substrates or inhibitors, suggesting that an interplay between CYP2C8 and glucuronides is common. Lack of fully selective and safe probe substrates, inhibitors, and inducers challenges execution and interpretation of drug-drug interaction studies in humans. Apart from drug-drug interactions, some CYP2C8 genetic variants are associated with altered CYP2C8 activity and exhibit significant interethnic frequency differences. Herein, we review the current knowledge on substrates, inhibitors, inducers, and pharmacogenetics of CYP2C8, as well as its role in clinically relevant drug interactions. In addition, implications for selection of CYP2C8 marker and perpetrator drugs to investigate CYP2C8-mediated drug metabolism and interactions in preclinical and clinical studies are discussed. PMID:26721703

  9. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-12-31

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  10. Molecular design of substrate binding sites

    SciTech Connect

    Shelnutt, J.A.; Hobbs, J.D.

    1991-01-01

    Computer-aided molecular design methods were used to tailor binding sites for small substrate molecules, including CO{sub 2} and methane. The goal is to design a cavity, adjacent to a catalytic metal center, into which the substrate will selectively bind through only non-bonding interactions with the groups lining the binding pocket. Porphyrins are used as a basic molecular structure, with various substituents added to construct the binding pocket. The conformations of these highly-substituted porphyrins are predicted using molecular mechanics calculations with a force field that gives accurate predictions for metalloporhyrins. Dynamics and energy-minimization calculations of substrate molecules bound to the cavity indicate high substrate binding affinity. The size, shape and charge-distribution of groups surrounding the cavity provide molecular selectivity. Specifically, calculated binding energies of methane, benzene, dichloromethane, CO{sub 2} and chloroform vary by about 10 kcal/mol for metal octaethyl-tetraphenylporphyrins (OETPPs) with chloroform, dichloromethane, and CO{sub 2} having the lowest. Significantly, a solvent molecule is found in the cavity in the X-ray structures of Co- and CuOETPP crystals obtained from dichloromethane. 5 refs., 3 figs., 3 tabs.

  11. CYP2C8 Is a Novel Target of Peroxisome Proliferator-Activated Receptor α in Human Liver.

    PubMed

    Makia, Ngome L; Goldstein, Joyce A

    2016-01-01

    Human cytochrome P450 (CYP) 2C enzymes metabolize ∼30% of clinically prescribed drugs and various environmental chemicals. CYP2C8, an important member of this subfamily, metabolizes the anticancer drug paclitaxel, certain antidiabetic drugs, and endogenous substrates, including arachidonic acid, to physiologically active epoxyeicosatrienoic acids. Previous studies from our laboratory showed that microRNA 107 (miR107) and microRNA 103 downregulate CYP2C8 post-transcriptionally. miR107 is located in intron 5 of the pantothenate kinase 1 (PANK1) gene. p53 has been reported to coregulate the induction of PANK1 and miR107. Here, we examine the possible downregulation of CYP2C8 by drugs capable of inducing miR107. Hypolipidemic drugs, such as bezafibrate, known activators of the peroxisome proliferator-activated receptor α (PPARα), induce both the PANK1 gene and miR107 (∼2.5-fold) in primary human hepatocytes. Surprisingly, CYP2C8 mRNA and protein levels were induced by bezafibrate. CYP2C8 promoter activity was increased by ectopic expression of PPARα in HepG2 cells, with a further increase after bezafibrate (∼18-fold), 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (∼10-fold) treatment, or the antidiabetic drug rosiglitazone, all known PPAR activators. Promoter sequence analyses, deletion studies, mutagenesis studies, and electrophoretic mobility shift assays identified a PPARα response element located at position -2109 base pair relative to the translation start site of CYP2C8. Chromatin immunopreciptation assay analysis confirmed recruitment of PPARα to this PPARα response element after bezafibrate treatment of human hepatocytes. Thus, we show for the first time that CYP2C8 is transcriptionally regulated by PPARα, suggesting the potential for drug-drug interactions due to upregulation of CYP2C8 by PPAR activators. PMID:26467040

  12. CYP2C8 Is a Novel Target of Peroxisome Proliferator-Activated Receptor α in Human Liver

    PubMed Central

    Makia, Ngome L.

    2016-01-01

    Human cytochrome P450 (CYP) 2C enzymes metabolize ∼30% of clinically prescribed drugs and various environmental chemicals. CYP2C8, an important member of this subfamily, metabolizes the anticancer drug paclitaxel, certain antidiabetic drugs, and endogenous substrates, including arachidonic acid, to physiologically active epoxyeicosatrienoic acids. Previous studies from our laboratory showed that microRNA 107 (miR107) and microRNA 103 downregulate CYP2C8 post-transcriptionally. miR107 is located in intron 5 of the pantothenate kinase 1 (PANK1) gene. p53 has been reported to coregulate the induction of PANK1 and miR107. Here, we examine the possible downregulation of CYP2C8 by drugs capable of inducing miR107. Hypolipidemic drugs, such as bezafibrate, known activators of the peroxisome proliferator-activated receptor α (PPARα), induce both the PANK1 gene and miR107 (∼2.5-fold) in primary human hepatocytes. Surprisingly, CYP2C8 mRNA and protein levels were induced by bezafibrate. CYP2C8 promoter activity was increased by ectopic expression of PPARα in HepG2 cells, with a further increase after bezafibrate (∼18-fold), 4-chloro-6-(2,3-xylidino)-2-pyrimidinylthio acetic acid (∼10-fold) treatment, or the antidiabetic drug rosiglitazone, all known PPAR activators. Promoter sequence analyses, deletion studies, mutagenesis studies, and electrophoretic mobility shift assays identified a PPARα response element located at position −2109 base pair relative to the translation start site of CYP2C8. Chromatin immunopreciptation assay analysis confirmed recruitment of PPARα to this PPARα response element after bezafibrate treatment of human hepatocytes. Thus, we show for the first time that CYP2C8 is transcriptionally regulated by PPARα, suggesting the potential for drug-drug interactions due to upregulation of CYP2C8 by PPAR activators. PMID:26467040

  13. The effect of the cytochrome P450 CYP2C8 polymorphism on the disposition of (R)-ibuprofen enantiomer in healthy subjects

    PubMed Central

    Martínez, Carmen; García-Martín, Elena; Blanco, Gerardo; Gamito, Francisco J G; Ladero, José M; Agúndez, José A G

    2005-01-01

    Aims To study the effect of CYP2C8*3, the most common CYP2C8 variant allele on the dis-position of (R)-ibuprofen and the association of CYP2C8*3 with variant CYP2C9 alleles. Methods Three hundred and fifty-five randomly selected Spanish Caucasians were screened for the common CYP2C8 and CYP2C9 mutations. The pharmacokinetics of (R)-ibuprofen were studied in 25 individuals grouped into different CYP2C8 genotypes. Results The allele frequency of CYP2C8*3 (0.17) was found to be higher than that reported for other Caucasian populations (P = 0.0001). The frequencies of CYP2C9*2 and CYP2C9*3 were 0.19 (0.16–0.21) and 0.10 (0.08–0.12), respectively. An association between CYP2C8*3 and CYP2C9*2 alleles was observed, occurring together at a frequency 2.4-fold higher than expected for a random association of alleles (P = 0.0001). The presence of the CYP2C8*3 allele was found to influence the pharmacokinetics of (R)-ibuprofen in a gene–dose effect manner. Thus, after administration of 400 mg ibuprofen, the plasma half-life (95% confidence intervals) for individuals with genotypes CYP2C8*1/*1, CYP2C8*1/*3 and CYP2C8*3/*3, was 2.0 h (1.8–2.2), 4.2 h (1.9–6.5; P < 0.05) and 9.0 h (7.8–10.2; P < 0.002), respectively. A statistically significant trend with respect to the number of variant CYP2C8*3 alleles was also observed for the area under the concentration-time curve (P < 0.025), and drug clearance (P < 0.03). Conclusion Polymorphism of the CYP2C8 gene was found to be common, with nearly 30% of the population studied carrying the variant CYP2C8*3 allele. The presence of the latter caused a significant effect on the disposition of (R)-ibuprofen. This suggests that a substantial proportion of Caucasian subjects may show alterations in the disposition of drugs that are CYP2C8 substrates. PMID:15606441

  14. Cooperative substrate binding by a diguanylate cyclase.

    PubMed

    Oliveira, Maycon C; Teixeira, Raphael D; Andrade, Maxuel O; Pinheiro, Glaucia M S; Ramos, Carlos H I; Farah, Chuck S

    2015-01-30

    XAC0610, from Xanthomonas citri subsp. citri, is a large multi-domain protein containing one GAF (cGMP-specific phosphodiesterases, adenylyl cyclases and FhlA) domain, four PAS (Per-Arnt-Sim) domains and one GGDEF domain. This protein has a demonstrable in vivo and in vitro diguanylate cyclase (DGC) activity that leads to the production of cyclic di-GMP (c-di-GMP), a ubiquitous bacterial signaling molecule. Analysis of a XacΔ0610 knockout strain revealed that XAC0610 plays a role in the regulation of Xac motility and resistance to H2O2. Site-directed mutagenesis of a conserved DGC lysine residue (Lys759 in XAC0610) resulted in a severe reduction in XAC0610 DGC activity. Furthermore, experimental and in silico analyses suggest that XAC0610 is not subject to allosteric product inhibition, a common regulatory mechanism for DGC activity control. Instead, steady-state kinetics of XAC0610 DGC activity revealed a positive cooperative effect of the GTP substrate with a dissociation constant for the binding of the first GTP molecule (K1) approximately 5× greater than the dissociation constant for the binding of the second GTP molecule (K2). We present a general kinetics scheme that should be used when analyzing DGC kinetics data and propose that cooperative GTP binding could be a common, though up to now overlooked, feature of these enzymes that may in some cases offer a physiologically relevant mechanism for regulation of DGC activity in vivo. PMID:25463434

  15. Analysis of the Functional Polymorphism in the Cytochrome P450 CYP2C8 Gene rs11572080 with Regard to Colorectal Cancer Risk

    PubMed Central

    Ladero, José M.; Agúndez, José A. G.; Martínez, Carmen; Amo, Gemma; Ayuso, Pedro; García-Martín, Elena

    2012-01-01

    In addition to the known effects on drug metabolism and response, functional polymorphisms of genes coding for xenobiotic-metabolizing enzymes (XME) play a role in cancer. Genes coding for XME act as low-penetrance genes and confer modest but consistent and significant risks for a variety of cancers related to the interaction of environmental and genetic factors. Consistent evidence supports a role for polymorphisms of the cytochrome P450 CYP2C9 gene as a protecting factor for colorectal cancer susceptibility. It has been shown that CYP2C8 and CYP2C9 overlap in substrate specificity. Because CYP2C8 has the common functional polymorphisms rs11572080 and rs10509681 (CYP2C8*3), it could be speculated that part of the findings attributed to CYP2C9 polymorphisms may actually be related to the presence of polymorphisms in the CYP2C8 gene. Nevertheless, little attention has been paid to the role of the CYP2C8 polymorphism in colorectal cancer. We analyzed the influence of the CYP2C8*3 allele in the risk of developing colorectal cancer in genomic DNA from 153 individuals suffering colorectal cancer and from 298 age- and gender-matched control subjects. Our findings do not support any effect of the CYP2C8*3 allele (OR for carriers of functional CYP2C8 alleles = 0.50 (95% CI = 0.16–1.59; p = 0.233). The absence of a relative risk related to CYP2C8*3 did not vary depending on the tumor site. We conclude that the risk of developing colorectal cancer does not seem to be related to the commonest functional genetic variation in the CYP2C8 gene. PMID:23420707

  16. Genetic Polymorphisms of CYP2C8 in the Czech Republic

    PubMed Central

    Buzkova, Helena; Matouskova, Olga; Perlik, Frantisek

    2012-01-01

    Aim: CYP2C8 represents 7% of the hepatic cytochrome system and metabolizes around 5% of drugs in phase I processes. It also plays a significant role in metabolism of endogenous compounds. More than 20 single-nucleotide polymorphisms (SNPs) have been noted, mainly in exons 3, 5, and 8. The most studied SNPs may lead to decreased enzyme activity and may have impact on drug metabolism. Variant alleles are called CYP2C8*2 (I269F), CYP2C8*3 (R139K, K399R), and CYP2C8*4(I264M). Our aim was to investigate the frequency of major functional SNPs among the Czech population. Material and methods: DNA was isolated from whole blood of 161 healthy, young, and unrelated subjects (94 men and 67 women, aged from 23 to 28 years). The genotypes of polymorphic positions CYP2C8*2, CYP2C8*3 (G416A, A1196G), and CYP2C8*4 were determined by polymerase chain reaction–restriction fragment length polymorphism. Results and conclusion: Observed allele frequencies were 10.9%, 5.9%, and 0.3% for the alleles CYP2C8*3, CYP2C8*4, and CYP2C8*2, respectively. Both CYP2C8*3 (G416A, A1196G) alleles have been found in complete linkage disequilibrium. The allele distribution complies well with Hardy–Weinberg equilibrium. Allele frequencies of functionally important CYP2C8 variants in the Czech population are similar to that of other Caucasian populations. PMID:22313047

  17. Glucuronidation converts clopidogrel to a strong time-dependent inhibitor of CYP2C8: a phase II metabolite as a perpetrator of drug-drug interactions.

    PubMed

    Tornio, A; Filppula, A M; Kailari, O; Neuvonen, M; Nyrönen, T H; Tapaninen, T; Neuvonen, P J; Niemi, M; Backman, J T

    2014-10-01

    Cerivastatin and repaglinide are substrates of cytochrome P450 (CYP)2C8, CYP3A4, and organic anion-transporting polypeptide (OATP)1B1. A recent study revealed an increased risk of rhabdomyolysis in patients using cerivastatin with clopidogrel, warranting further studies on clopidogrel interactions. In healthy volunteers, repaglinide area under the concentration-time curve (AUC(0-∞)) was increased 5.1-fold by a 300-mg loading dose of clopidogrel and 3.9-fold by continued administration of 75 mg clopidogrel daily. In vitro, we identified clopidogrel acyl-β-D-glucuronide as a potent time-dependent inhibitor of CYP2C8. A physiologically based pharmacokinetic model indicated that inactivation of CYP2C8 by clopidogrel acyl-β-D-glucuronide leads to uninterrupted 60-85% inhibition of CYP2C8 during daily clopidogrel treatment. Computational modeling resulted in docking of clopidogrel acyl-β-D-glucuronide at the CYP2C8 active site with its thiophene moiety close to heme. The results indicate that clopidogrel is a strong CYP2C8 inhibitor via its acyl-β-D-glucuronide and imply that glucuronide metabolites should be considered potential inhibitors of CYP enzymes. PMID:24971633

  18. Bonding in Complexes of Bis(pentalene)dititanium, Ti2(C8H6)2

    PubMed Central

    2015-01-01

    Bonding in the bis(pentalene)dititanium “double-sandwich” species Ti2Pn2 (Pn = C8H6) and its interaction with other fragments have been investigated by density functional calculations and fragment analysis. Ti2Pn2 with C2v symmetry has two metal–metal bonds and a low-lying metal-based empty orbital, all three frontier orbitals having a1 symmetry. The latter may be regarded as being derived by symmetric combinations of the classic three frontier orbitals of two bent bis(cyclopentadienyl) metal fragments. Electrochemical studies on Ti2Pn†2 (Pn† = 1,4-{SiiPr3}2C8H4) revealed a one-electron oxidation, and the formally mixed-valence Ti(II)–Ti(III) cationic complex [Ti2Pn†2][B(C6F5)4] has been structurally characterized. Theory indicates an S = 1/2 ground-state electronic configuration for the latter, which was confirmed by EPR spectroscopy and SQUID magnetometry. Carbon dioxide binds symmetrically to Ti2Pn2, preserving the C2v symmetry, as does carbon disulfide. The dominant interaction in Ti2Pn2CO2 is σ donation into the LUMO of bent CO2, and donation from the O atoms to Ti2Pn2 is minimal, whereas in Ti2Pn2CS2 there is significant interaction with the S atoms. The bridging O atom in the mono(oxo) species Ti2Pn2O, however, employs all three O 2p orbitals in binding and competes strongly with Pn, leading to weaker binding of the carbocyclic ligand, and the sulfur analogue Ti2Pn2S behaves similarly. Ti2Pn2 is also capable of binding one, two, or three molecules of carbon monoxide. The bonding demands of a single CO molecule are incompatible with symmetric binding, and an asymmetric structure is found. The dicarbonyl adduct Ti2Pn2(CO)2 has Cs symmetry with the Ti2Pn2 unit acting as two MCp2 fragments. Synthetic studies showed that in the presence of excess CO the tricarbonyl complex Ti2Pn†2(CO)3 is formed, which optimizes to an asymmetric structure with one semibridging and two terminal CO ligands. Low-temperature 13C NMR spectroscopy revealed a rapid

  19. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase

    PubMed Central

    Lee, Chi Chung; Fay, Aaron W.; Weng, Tsu-Chien; Krest, Courtney M.; Hedman, Britt; Hodgson, Keith O.; Hu, Yilin; Ribbe, Markus W.

    2015-01-01

    Biocatalysis by nitrogenase, particularly the reduction of N2 and CO by this enzyme, has tremendous significance in environment- and energy-related areas. Elucidation of the detailed mechanism of nitrogenase has been hampered by the inability to trap substrates or intermediates in a well-defined state. Here, we report the capture of substrate CO on the resting-state vanadium-nitrogenase in a catalytically competent conformation. The close resemblance of this active CO-bound conformation to the recently described structure of CO-inhibited molybdenum-nitrogenase points to the mechanistic relevance of sulfur displacement to the activation of iron sites in the cofactor for CO binding. Moreover, the ability of vanadium-nitrogenase to bind substrate in the resting-state uncouples substrate binding from subsequent turnover, providing a platform for generation of defined intermediate(s) of both CO and N2 reduction. PMID:26515097

  20. The binding of substrate analogs to phosphotriesterase.

    PubMed

    Benning, M M; Hong, S B; Raushel, F M; Holden, H M

    2000-09-29

    Phosphotriesterase (PTE) from Pseudomonas diminuta catalyzes the detoxification of organophosphates such as the widely utilized insecticide paraoxon and the chemical warfare agent sarin. The three-dimensional structure of the enzyme is known from high resolution x-ray crystallographic analyses. Each subunit of the homodimer folds into a so-called TIM barrel, with eight strands of parallel beta-sheet. The two zinc ions required for activity are positioned at the C-terminal portion of the beta-barrel. Here, we describe the three-dimensional structure of PTE complexed with the inhibitor diisopropyl methyl phosphonate, which serves as a mimic for sarin. Additionally, the structure of the enzyme complexed with triethyl phosphate is also presented. In the case of the PTE-diisopropyl methyl phosphonate complex, the phosphoryl oxygen of the inhibitor coordinates to the more solvent-exposed zinc ion (2.5 A), thereby lending support to the presumed catalytic mechanism involving metal coordination of the substrate. In the PTE-triethyl phosphate complex, the phosphoryl oxygen of the inhibitor is positioned at 3.4 A from the more solvent-exposed zinc ion. The two structures described in this report provide additional molecular understanding for the ability of this remarkable enzyme to hydrolyze such a wide range of organophosphorus substrates. PMID:10871616

  1. Substrate binding accelerates the conformational transitions and substrate dissociation in multidrug efflux transporter AcrB

    PubMed Central

    Wang, Beibei; Weng, Jingwei; Wang, Wenning

    2015-01-01

    The tripartite efflux pump assembly AcrAB-TolC is the major multidrug resistance transporter in E. coli. The inner membrane transporter AcrB is a homotrimer, energized by the proton movement down the transmembrane electrochemical gradient. The asymmetric crystal structures of AcrB with three monomers in distinct conformational states [access (A), binding (B) and extrusion (E)] support a functional rotating mechanism, in which each monomer of AcrB cycles among the three states in a concerted way. However, the relationship between the conformational changes during functional rotation and drug translocation has not been totally understood. Here, we explored the conformational changes of the AcrB homotrimer during the ABE to BEA transition in different substrate-binding states using targeted MD simulations. It was found that the dissociation of substrate from the distal binding pocket of B monomer is closely related to the concerted conformational changes in the translocation pathway, especially the side chain reorientation of Phe628 and Tyr327. A second substrate binding at the proximal binding pocket of A monomer evidently accelerates the conformational transitions as well as substrate dissociation in B monomer. The acceleration effect of the multi-substrate binding mode provides a molecular explanation for the positive cooperativity observed in the kinetic studies of substrate efflux and deepens our understanding of the functional rotating mechanism of AcrB. PMID:25918513

  2. The Role of CYP2C8 and CYP2C9 Genotypes in Losartan-Dependent Inhibition of Paclitaxel Metabolism in Human Liver Microsomes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2016-06-01

    The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. PMID:26551762

  3. A potential therapeutic effect of CYP2C8 overexpression on anti-TNF-α activity

    PubMed Central

    LIU, WANJUN; WANG, BEI; DING, HU; WANG, DAO WEN; ZENG, HESONG

    2014-01-01

    Epoxyeicosatrienoic acids (EETs) are generated from arachidonic acid catalysed by cytochrome P450 (CYP) epoxygenases. In addition to regulating vascular tone EETs may alleviate inflammation and ROS. The present study was conducted to determine whether CYP2C8 gene overexpression was able to increase the level of EETs, and subsequently prevent TNF-α induced inflammation and reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs) and macrophages. Peroxisome proliferator-activated receptor γ (PPARγ) activation, nuclear factor-κB (NF-κB) activation, endothelial nitric oxide synthase (eNOS) activation, gp-91 activation, and inflammatory cytokine expression were detected by western blot analysis or enzyme-linked immunosorbent assay. Intracellular reactive oxygen species (ROS) was measured by flow cytometry, while the migration of vascular smooth muscle cells (VSMCs) was detected by Transwell assay. pCMV-mediated CYP2C8 overexpression and its metabolites, EETs, markedly suppressed TNF-α induced inflammatory cytokines IL-6 and MCP-1 expression via the activation of NF-κB and degradation of IκBα. Moreover, pretreatment with 11,12-EET significantly blocked TNF-α-induced ROS production. CYP2C8-derived EETs also effectively alleviated the migration of VSMCs and improved the function of endothelial cells through the upregulation of eNOS, which was significantly decreased under the stimulation of TNF-α. Furthermore, these protective effects observed were mediated by PPARγ activation. To the best of our knowledge, the results of the present study demonstrated for the first time that CYP2C8-derived EETs exerted antivascular inflammatory and anti-oxidative effects, at least in part, through the activation of PPARγ. Thus, the CYP2C8 gene may be useful in the prevention and treatment of vascular inflammatory diseases. PMID:25017038

  4. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    DOE PAGESBeta

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of themore » substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  5. Molecular Dynamics Investigation of the Substrate Binding Mechanism in Carboxylesterase

    SciTech Connect

    Chen, Qi; Luan, Zheng-Jiao; Cheng, Xiaolin; Xu, Jian-He

    2015-02-25

    A recombinant carboxylesterase, cloned from Pseudomonas putida and designated as rPPE, is capable of catalyzing the bioresolution of racemic 2-acetoxy-2-(2 -chlorophenyl)acetate (rac-AcO-CPA) with excellent (S)-enantioselectivity. Semi-rational design of the enzyme showed that the W187H variant could increase the activity by ~100-fold compared to the wild type (WT) enzyme. In this study, we performed all-atom molecular dynamics (MD) simulations of both apo-rPPE and rPPE in complex with (S)-AcO-CPA to gain insights into the origin of the increased catalysis in the W187H mutant. Moreover, our results show differential binding of (S)-AcO-CPA in the WT and W187H enzymes, especially the interactions of the substrate with the two active site residues Ser159 and His286. The replacement of Trp187 by His leads to considerable structural rearrangement in the active site of W187H. Unlike in the WT rPPE, the cap domain in the W187 mutant shows an open conformation in the simulations of both apo and substrate-bound enzymes. This open conformation exposes the catalytic triad to the solvent through a water accessible channel, which may facilitate the entry of the substrate and/or the exit of the product. Binding free energy calculations confirmed that the substrate binds more strongly in W187H than in WT. Based on these computational results, furthermore, we predicted that the mutations W187Y and D287G might also be able to increase the substrate binding, thus improve the enzyme s catalytic efficiency. Experimental binding and kinetic assays on W187Y and D287G show improved catalytic efficiency over WT, but not W187H. Contrary to our prediction, W187Y shows slightly decreased substrate binding coupled with a 100 fold increase in turn-over rate, while in D287G the substrate binding is 8 times stronger but with a slightly reduced turn-over rate. Finally, our work provides important molecular-level insights into the binding of the (S)-AcO-CPA substrate to carboxylesterase r

  6. Structural Basis of Fatty Acid Substrate Binding to Cyclooxygenase-2*

    PubMed Central

    Vecchio, Alex J.; Simmons, Danielle M.; Malkowski, Michael G.

    2010-01-01

    The cyclooxygenases (COX-1 and COX-2) are membrane-associated heme-containing homodimers that generate prostaglandin H2 from arachidonic acid (AA). Although AA is the preferred substrate, other fatty acids are oxygenated by these enzymes with varying efficiencies. We determined the crystal structures of AA, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) bound to Co3+-protoporphyrin IX-reconstituted murine COX-2 to 2.1, 2.4, and 2.65 Å, respectively. AA, EPA, and docosahexaenoic acid bind in different conformations in each monomer constituting the homodimer in their respective structures such that one monomer exhibits nonproductive binding and the other productive binding of the substrate in the cyclooxygenase channel. The interactions identified between protein and substrate when bound to COX-1 are conserved in our COX-2 structures, with the only notable difference being the lack of interaction of the carboxylate of AA and EPA with the side chain of Arg-120. Leu-531 exhibits a different side chain conformation when the nonproductive and productive binding modes of AA are compared. Unlike COX-1, mutating this residue to Ala, Phe, Pro, or Thr did not result in a significant loss of activity or substrate binding affinity. Determination of the L531F:AA crystal structure resulted in AA binding in the same global conformation in each monomer. We speculate that the mobility of the Leu-531 side chain increases the volume available at the opening of the cyclooxygenase channel and contributes to the observed ability of COX-2 to oxygenate a broad spectrum of fatty acid and fatty ester substrates. PMID:20463020

  7. Molecular dynamics investigations of regioselectivity of anionic/aromatic substrates by a family of enzymes: a case study of diclofenac binding in CYP2C isoforms.

    PubMed

    Cui, Ying-Lu; Xu, Fang; Wu, Rongling

    2016-06-29

    The CYP2C subfamily is of particular importance in the metabolism of drugs, food toxins, and procarcinogens. Like other P450 subfamilies, 2C enzymes share a high sequence identity, but significantly contribute in different ways to hepatic capacity to metabolize drugs. They often metabolize the same substrate to more than one product with different catalytic sites. Because it is challenging to characterize experimentally, much still remains unknown about the reason for why the substrate regioselectivity of these closely related subfamily members is different. Here, we have investigated the structural features of CYP2C8, CYP2C9, and CYP2C19 bound with their shared substrate diclofenac to elucidate the underlying molecular mechanism for the substrate regioselectivity of CYP2C subfamily enzymes. The obtained results demonstrate how a sequence divergence for the active site residues causes heterogeneous variations in the secondary structures and in major tunnel selections, and further affects the shape and chemical properties of the substrate-binding site. Structural analysis and free energy calculations showed that the most important determinants of regioselectivity among the CYP2C isoforms are the geometrical features of the active sites, as well as the hydrogen bonds and the hydrophobic interactions, mainly presenting as the various locations of Arg108 and substitutions of Phe205 for Ile205 in CYP2C8. The MM-GB/SA calculations combined with PMF results accord well with the experimental KM values, bridging the gap between the theory and the experimentally observed results of binding affinity differences. The present study provides important insights into the structure-function relationships of CYP2C subfamily enzymes, the knowledge of ligand binding characteristics and key residue contributions could guide future experimental and computational work on the synthesis of drugs with better pharmacokinetic properties so that CYP interactions could be avoided. PMID:27302079

  8. Effects of Angiotensin II Receptor Blockers on Metabolism of Arachidonic Acid via CYP2C8.

    PubMed

    Senda, Asuna; Mukai, Yuji; Toda, Takaki; Hayakawa, Toru; Yamashita, Miki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2015-01-01

    Arachidonic acid (AA) is metabolized to epoxyeicosatrienoic acids (EETs) via cytochrome enzymes such as CYP 2C9, 2C8 and 2J2. EETs play a role in cardioprotection and regulation of blood pressure. Recently, adverse reactions such as sudden heart attack and fatal myocardial infarction were reported among patients taking angiotensin II receptor blockers (ARBs). As some ARBs have affinity for these CYP enzymes, metabolic inhibition of AA by ARBs is a possible cause for the increase in cardiovascular events. In this study, we quantitatively investigated the inhibitory effects of ARBs on the formation of EETs and further metabolites, dihydroxyeicosatrienoic acids (DHETs), from AA via CYP2C8. In incubations with recombinant CYP2C8 in vitro, the inhibitory effects were compared by measuring EETs and DHETs by HPLC-MS/MS. Inhibition of AA metabolism by ARBs was detected in a concentration-dependent manner with IC50 values of losartan (42.7 µM), telmisartan (49.5 µM), irbesartan (55.6 µM), olmesartan (66.2 µM), candesartan (108 µM), and valsartan (279 µM). Losartan, telmisartan and irbesartan, which reportedly accumulate in the liver and kidneys, have stronger inhibitory effects than other ARBs. The lower concentration of EETs leads to less protective action on the cardiovascular system and a higher incidence of adverse effects such as sudden heart attack and myocardial infarction in patients taking ARBs. PMID:26632190

  9. An additional substrate binding site in a bacterial phenylalanine hydroxylase

    PubMed Central

    Ronau, Judith A.; Paul, Lake N.; Fuchs, Julian E.; Corn, Isaac R.; Wagner, Kyle T.; Liedl, Klaus R.; Abu-Omar, Mahdi M.; Das, Chittaranjan

    2014-01-01

    Phenylalanine hydroxylase (PAH) is a non-heme iron enzyme that catalyzes phenylalanine oxidation to tyrosine, a reaction that must be kept under tight regulatory control. Mammalian PAH features a regulatory domain where binding of the substrate leads to allosteric activation of the enzyme. However, existence of PAH regulation in evolutionarily distant organisms, such as certain bacteria in which it occurs, has so far been underappreciated. In an attempt to crystallographically characterize substrate binding by PAH from Chromobacterium violaceum (cPAH), a single-domain monomeric enzyme, electron density for phenylalanine was observed at a distal site, 15.7Å from the active site. Isothermal titration calorimetry (ITC) experiments revealed a dissociation constant of 24 ± 1.1 µM for phenylalanine. Under the same conditions, no detectable binding was observed in ITC for alanine, tyrosine, or isoleucine, indicating the distal site may be selective for phenylalanine. Point mutations of residues in the distal site that contact phenylalanine (F258A, Y155A, T254A) lead to impaired binding, consistent with the presence of distal site binding in solution. Kinetic analysis reveals that the distal site mutants suffer a discernible loss in their catalytic activity. However, x-ray structures of Y155A and F258A, two of the mutants showing more noticeable defect in their activity, show no discernible change in their active site structure, suggesting that the effect of distal binding may transpire through protein dynamics in solution. PMID:23860686

  10. Ligand Binding and Substrate Discrimination by UDP-Galactopyranose Mutase

    SciTech Connect

    Gruber, Todd D.; Borrok, M. Jack; Westler, William M.; Forest, Katrina T.; Kiessling, Laura L.

    2009-07-31

    Galactofuranose (Galf) residues are present in cell wall glycoconjugates of numerous pathogenic microbes. Uridine 5{prime}-diphosphate (UDP) Galf, the biosynthetic precursor of Galf-containing glycoconjugates, is produced from UDP-galactopyranose (UDP-Galp) by the flavoenzyme UDP-galactopyranose mutase (UGM). The gene encoding UGM (glf) is essential for the viability of pathogens, including Mycobacterium tuberculosis, and this finding underscores the need to understand how UGM functions. Considerable effort has been devoted to elucidating the catalytic mechanism of UGM, but progress has been hindered by a lack of structural data for an enzyme-substrate complex. Such data could reveal not only substrate binding interactions but how UGM can act preferentially on two very different substrates, UDP-Galp and UDP-Galf, yet avoid other structurally related UDP sugars present in the cell. Herein, we describe the first structure of a UGM-ligand complex, which provides insight into the catalytic mechanism and molecular basis for substrate selectivity. The structure of UGM from Klebsiella pneumoniae bound to the substrate analog UDP-glucose (UDP-Glc) was solved by X-ray crystallographic methods and refined to 2.5 {angstrom} resolution. The ligand is proximal to the cofactor, a finding that is consistent with a proposed mechanism in which the reduced flavin engages in covalent catalysis. Despite this proximity, the glucose ring of the substrate analog is positioned such that it disfavors covalent catalysis. This orientation is consistent with data indicating that UDP-Glc is not a substrate for UGM. The relative binding orientations of UDP-Galp and UDP-Glc were compared using saturation transfer difference NMR. The results indicate that the uridine moiety occupies a similar location in both ligand complexes, and this relevant binding mode is defined by our structural data. In contrast, the orientations of the glucose and galactose sugar moieties differ. To understand the

  11. Structural basis of substrate discrimination and integrin binding by autotaxin

    SciTech Connect

    Hausmann, Jens; Kamtekar, Satwik; Christodoulou, Evangelos; Day, Jacqueline E.; Wu, Tao; Fulkerson, Zachary; Albers, Harald M.H.G.; van Meeteren, Laurens A.; Houben, Anna J.S.; van Zeijl, Leonie; Jansen, Silvia; Andries, Maria; Hall, Troii; Pegg, Lyle E.; Benson, Timothy E.; Kasiem, Mobien; Harlos, Karl; Vander Kooi, Craig W.; Smyth, Susan S.; Ovaa, Huib; Bollen, Mathieu; Morris, Andrew J.; Moolenaar, Wouter H.; Perrakis, Anastassis

    2013-09-25

    Autotaxin (ATX, also known as ectonucleotide pyrophosphatase/phosphodiesterase-2, ENPP2) is a secreted lysophospholipase D that generates the lipid mediator lysophosphatidic acid (LPA), a mitogen and chemoattractant for many cell types. ATX-LPA signaling is involved in various pathologies including tumor progression and inflammation. However, the molecular basis of substrate recognition and catalysis by ATX and the mechanism by which it interacts with target cells are unclear. Here, we present the crystal structure of ATX, alone and in complex with a small-molecule inhibitor. We have identified a hydrophobic lipid-binding pocket and mapped key residues for catalysis and selection between nucleotide and phospholipid substrates. We have shown that ATX interacts with cell-surface integrins through its N-terminal somatomedin B-like domains, using an atypical mechanism. Our results define determinants of substrate discrimination by the ENPP family, suggest how ATX promotes localized LPA signaling and suggest new approaches for targeting ATX with small-molecule therapeutic agents.

  12. ABC transporters: one, two or four extracytoplasmic substrate-binding sites?

    PubMed Central

    van der Heide, Tiemen; Poolman, Bert

    2002-01-01

    Two families of ATP-binding cassette (ABC) transporters in which one or two extracytoplasmic substrate-binding domains are fused to either the N- or C-terminus of the translocator protein have been detected. This suggests that two, or even four, substrate-binding sites may function in the ABC transporter complex. This domain organization in ABC transporters, widely represented among microorganisms, raises new possibilities for how the substrate-binding protein(s) (SBPs) might interact with the translocator. One appealing hypothesis is that multiple substrate-binding sites in proximity to the entry site of the translocation pore enhance the transport capacity. We also discuss the implications of multiple substrate-binding sites in close proximity to the translocator in terms of broadened substrate specificity and possible cooperative interactions between SBPs and the translocator. PMID:12370206

  13. Identification of a Second Substrate-binding Site in Solute-Sodium Symporters*

    PubMed Central

    Li, Zheng; Lee, Ashley S. E.; Bracher, Susanne; Jung, Heinrich; Paz, Aviv; Kumar, Jay P.; Abramson, Jeff; Quick, Matthias; Shi, Lei

    2015-01-01

    The structure of the sodium/galactose transporter (vSGLT), a solute-sodium symporter (SSS) from Vibrio parahaemolyticus, shares a common structural fold with LeuT of the neurotransmitter-sodium symporter family. Structural alignments between LeuT and vSGLT reveal that the crystallographically identified galactose-binding site in vSGLT is located in a more extracellular location relative to the central substrate-binding site (S1) in LeuT. Our computational analyses suggest the existence of an additional galactose-binding site in vSGLT that aligns to the S1 site of LeuT. Radiolabeled galactose saturation binding experiments indicate that, like LeuT, vSGLT can simultaneously bind two substrate molecules under equilibrium conditions. Mutating key residues in the individual substrate-binding sites reduced the molar substrate-to-protein binding stoichiometry to ∼1. In addition, the related and more experimentally tractable SSS member PutP (the Na+/proline transporter) also exhibits a binding stoichiometry of 2. Targeting residues in the proposed sites with mutations results in the reduction of the binding stoichiometry and is accompanied by severely impaired translocation of proline. Our data suggest that substrate transport by SSS members requires both substrate-binding sites, thereby implying that SSSs and neurotransmitter-sodium symporters share common mechanistic elements in substrate transport. PMID:25398883

  14. Synergistic substrate binding determines the stoichiometry of transport of a prokaryotic H+:Cl− exchanger

    PubMed Central

    Picollo, Alessandra; Xu, Yanyan; Johner, Niklaus; Bernèche, Simon; Accardi, Alessio

    2012-01-01

    Active exchangers dissipate the gradient of one substrate to accumulate nutrients, export xenobiotics and maintain cellular homeostasis. Mechanistic studies suggested that all exchangers share two fundamental properties: substrate binding is antagonistic and coupling is maintained by preventing shuttling of the empty transporter. The CLC Cl−: H+ exchangers control the homeostasis of cellular compartments in most living organisms but their transport mechanism remains unclear. We show that substrate binding to CLC-ec1 is synergistic rather than antagonistic: chloride binding induces protonation of a critical glutamate. The simultaneous binding of H+ and Cl− gives rise to a fully-loaded state incompatible with conventional mechanisms. Mutations in the Cl− transport pathway identically alter the stoichiometries of Cl−: H+ exchange and binding. We propose that the thermodynamics of synergistic substrate binding determine the stoichiometry of transport rather than the kinetics of conformational changes and ion binding. PMID:22484316

  15. Inhibitory effect of six herbal extracts on CYP2C8 enzyme activity in human liver microsomes.

    PubMed

    Albassam, Ahmed A; Mohamed, Mohamed-Eslam F; Frye, Reginald F

    2015-05-01

    1. Herbal supplements widely used in the US were screened for the potential to inhibit CYP2C8 activity in human liver microsomes. The herbal extracts screened were garlic, echinacea, saw palmetto, valerian, black cohosh and cranberry. N-desethylamodiaquine (DEAQ) and hydroxypioglitazone metabolite formation were used as indices of CYP2C8 activity. 2. All herbal extracts showed inhibition of CYP2C8 activity for at least one of three concentrations tested. A volume per dose index (VDI) was calculated to determine the volume in which a dose should be diluted to obtain IC50 equivalent concentration. Cranberry and saw palmetto had a VDI value > 5.0 l per dose unit, suggesting a potential for interaction. 3. Inhibition curves were constructed and the IC50 (mean ± SE) values were 24.7 ± 2.7 μg/ml for cranberry and 15.4 ± 1.7 μg/ml for saw palmetto. 4. The results suggest a potential for cranberry or saw palmetto extracts to inhibit CYP2C8 activity. Clinical studies are needed to evaluate the significance of this interaction. PMID:25430798

  16. Cytochrome P450 2C8*2 allele in Botswana: Human genetic diversity and public health implications.

    PubMed

    Motshoge, Thato; Tawe, Leabaneng; Muthoga, Charles Waithaka; Allotey, Joel; Romano, Rita; Quaye, Isaac; Paganotti, Giacomo Maria

    2016-05-01

    Human cytochrome P450 2C8 is a highly polymorphic gene and shows variation according to ethnicity. The CYP2C8*2 is a slow drug metabolism allele and shows 10-24% frequency in Black populations. The objective of this study was to assess the prevalence of CYP2C8*2 allele in Botswana among the San (or Bushmen) and the Bantu ethnic groups. For that purpose we recruited 544 children of the two ethnicities in three districts of Botswana from primary schools, collected blood samples, extracted DNA and genotyped them through PCR-based restriction fragment length polymorphism analysis. The results demonstrated that in the San the prevalence of the CYP2C8*2 allele is significantly higher than among the Bantu-related ethnic groups (17.5% and 8.5% for San and Bantu, respectively; P=0.00002). These findings support the evidence of a different genetic background of the San with respect to Bantu-related populations, and highlight a possible higher risk of longer drug clearance or poor level of activation of pro-drugs among the San group. PMID:26836270

  17. Co-Factor Binding Confers Substrate Specificity to Xylose Reductase from Debaryomyces hansenii

    PubMed Central

    Singh, Appu Kumar; Mondal, Alok K.; Kumaran, S.

    2012-01-01

    Binding of substrates into the active site, often through complementarity of shapes and charges, is central to the specificity of an enzyme. In many cases, substrate binding induces conformational changes in the active site, promoting specific interactions between them. In contrast, non-substrates either fail to bind or do not induce the requisite conformational changes upon binding and thus no catalysis occurs. In principle, both lock and key and induced-fit binding can provide specific interactions between the substrate and the enzyme. In this study, we present an interesting case where cofactor binding pre-tunes the active site geometry to recognize only the cognate substrates. We illustrate this principle by studying the substrate binding and kinetic properties of Xylose Reductase from Debaryomyces hansenii (DhXR), an AKR family enzyme which catalyzes the reduction of carbonyl substrates using NADPH as co-factor. DhXR reduces D-xylose with increased specificity and shows no activity towards “non-substrate” sugars like L-rhamnose. Interestingly, apo-DhXR binds to D-xylose and L-rhamnose with similar affinity (Kd∼5.0–10.0 mM). Crystal structure of apo-DhXR-rhamnose complex shows that L-rhamnose is bound to the active site cavity. L-rhamnose does not bind to holo-DhXR complex and thus, it cannot competitively inhibit D-xylose binding and catalysis even at 4–5 fold molar excess. Comparison of Kd values with Km values reveals that increased specificity for D-xylose is achieved at the cost of moderately reduced affinity. The present work reveals a latent regulatory role for cofactor binding which was previously unknown and suggests that cofactor induced conformational changes may increase the complimentarity between D-xylose and active site similar to specificity achieved through induced-fit mechanism. PMID:23049810

  18. Molecular Docking Simulations Provide Insights in the Substrate Binding Sites and Possible Substrates of the ABCC6 Transporter

    PubMed Central

    De Paepe, Anne; Vanakker, Olivier M.

    2014-01-01

    The human ATP-binding cassette family C member 6 (ABCC6) gene encodes an ABC transporter protein (ABCC6), primarily expressed in liver and kidney. Mutations in the ABCC6 gene cause pseudoxanthoma elasticum (PXE), an autosomal recessive connective tissue disease characterized by ectopic mineralization of the elastic fibers. The pathophysiology underlying PXE is incompletely understood, which can at least partly be explained by the undetermined nature of the ABCC6 substrates as well as the unknown substrate recognition and binding sites. Several compounds, including anionic glutathione conjugates (N-ethylmaleimide; NEM-GS) and leukotriene C4 (LTC4) were shown to be modestly transported in vitro; conversely, vitamin K3 (VK3) was demonstrated not to be transported by ABCC6. To predict the possible substrate binding pockets of the ABCC6 transporter, we generated a 3D homology model of ABCC6 in both open and closed conformation, qualified for molecular docking and virtual screening approaches. By docking 10 reported in vitro substrates in our ABCC6 3D homology models, we were able to predict the substrate binding residues of ABCC6. Further, virtual screening of 4651 metabolites from the Human Serum Metabolome Database against our open conformation model disclosed possible substrates for ABCC6, which are mostly lipid and biliary secretion compounds, some of which are found to be involved in mineralization. Docking of these possible substrates in the closed conformation model also showed high affinity. Virtual screening expands this possibility to explore more compounds that can interact with ABCC6, and may aid in understanding the mechanisms leading to PXE. PMID:25062064

  19. Coupling Substrate and Ion Binding to Extracellular Gate of a Sodium-Dependent Aspartate Transporter

    SciTech Connect

    Boudker,O.; Ryan, R.; Yernool, D.; Shimamoto, K.; Gouaux, E.

    2007-01-01

    Secondary transporters are integral membrane proteins that catalyze the movement of substrate molecules across the lipid bilayer by coupling substrate transport to one or more ion gradients, thereby providing a mechanism for the concentrative uptake of substrates. Here we describe crystallographic and thermodynamic studies of Glt{sub Ph}, a sodium (Na{sup +})-coupled aspartate transporter, defining sites for aspartate, two sodium ions and D,L-threo-{beta}-benzyloxyaspartate, an inhibitor. We further show that helical hairpin 2 is the extracellular gate that controls access of substrate and ions to the internal binding sites. At least two sodium ions bind in close proximity to the substrate and these sodium-binding sites, together with the sodium-binding sites in another sodium-coupled transporter, LeuT, define an unwound {alpha}-helix as the central element of the ion-binding motif, a motif well suited to the binding of sodium and to participation in conformational changes that accompany ion binding and unbinding during the transport cycle.

  20. Solid-binding Proteins for Modification of Inorganic Substrates

    NASA Astrophysics Data System (ADS)

    Coyle, Brandon Laurence

    Robust and simple strategies to directly functionalize graphene- and diamond-based nanostructures with proteins are of considerable interest for biologically driven manufacturing, biosensing and bioimaging. In this work, we identify a new set of carbon binding peptides that vary in overall hydrophobicity and charge, and engineer two of these sequences (Car9 and Car15) within the framework of various proteins to exploit their binding ability. In addition, we conducted a detailed analysis of the mechanisms that underpin the interaction of the fusion proteins with carbon and silicon surfaces. Through these insights, we were able to develop proteins suitable for dispersing graphene flakes and carbon nanotubes in aqueous solutions, while retaining protein activity. Additionally, our investigation into the mechanisms of adhesion for our carbon binding peptides inspired a cheap, disposable protein purification system that is more than 10x cheaper than commonly used His-tag protein purification. Our results emphasize the importance of understanding both bulk and molecular recognition events when exploiting the adhesive properties of solid-binding peptides and proteins in technological applications.

  1. Structural Analysis of Substrate and Effector Binding in Mycobacterium tuberculosis D-3-Phosphoglycerate Dehydrogenase

    SciTech Connect

    Dey, Sanghamitra; Burton, Rodney L.; Grant, Gregory A.; Sacchettini, James C.

    2008-08-20

    The crystal structure of Mycobacterium tuberculosis D-3-phosphoglycerate dehydrogenase has been solved with bound effector, L-serine, and substrate, hydroxypyruvic acid phosphate, at resolutions of 2.7 and 2.4 {angstrom}, respectively. The subunits display the same extreme asymmetry as seen in the apo-structure and provide insight into the mode of serine binding and closure of the active site. Mutagenesis studies confirm the identity of the main residues involved in serine binding and suggest that the poly glycine stretch in the loop that contains the locus for the 160{sup o} rotation that leads to subunit asymmetry may have a larger role in folding than in catalysis. The lack of electron density for the cofactor, NADH, in any of the crystals examined led us to study binding by stopped flow kinetic analysis. The kinetic data suggest that productive NADH binding, that would support catalytic turnover, is dependent on the presence of substrate. This observation, along with the binding of substrate in the active site, but in an unproductive conformation, suggests a possible mechanism where initial binding of substrate leads to enhanced interaction with cofactor accompanied by a rearrangement of catalytically critical residue side chains. Furthermore, comparison to the structure of a truncated form of human D-3-phosphoglycerate dehydrogenase with cofactor and a substrate analog, provides insight into the conformational changes that occur during catalysis.

  2. Deconstructing the DGAT1 Enzyme: Membrane Interactions at Substrate Binding Sites

    PubMed Central

    Lopes, Jose L. S.; Beltramini, Leila M.; Wallace, Bonnie A.; Araujo, Ana P. U.

    2015-01-01

    Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates. PMID:25719207

  3. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis.

    PubMed

    Gao, Dahai; Chundawat, Shishir P S; Sethi, Anurag; Balan, Venkatesh; Gnanakaran, S; Dale, Bruce E

    2013-07-01

    Substrate binding is typically one of the rate-limiting steps preceding enzyme catalytic action during homogeneous reactions. However, interfacial-based enzyme catalysis on insoluble crystalline substrates, like cellulose, has additional bottlenecks of individual biopolymer chain decrystallization from the substrate interface followed by its processive depolymerization to soluble sugars. This additional decrystallization step has ramifications on the role of enzyme-substrate binding and its relationship to overall catalytic efficiency. We found that altering the crystalline structure of cellulose from its native allomorph I(β) to III(I) results in 40-50% lower binding partition coefficient for fungal cellulases, but surprisingly, it enhanced hydrolytic activity on the latter allomorph. We developed a comprehensive kinetic model for processive cellulases acting on insoluble substrates to explain this anomalous finding. Our model predicts that a reduction in the effective binding affinity to the substrate coupled with an increase in the decrystallization procession rate of individual cellulose chains from the substrate surface into the enzyme active site can reproduce our anomalous experimental findings. PMID:23784776

  4. Substrate binding and specificity of rhomboid intramembrane protease revealed by substrate–peptide complex structures

    PubMed Central

    Zoll, Sebastian; Stanchev, Stancho; Began, Jakub; Škerle, Jan; Lepšík, Martin; Peclinovská, Lucie; Majer, Pavel; Strisovsky, Kvido

    2014-01-01

    The mechanisms of intramembrane proteases are incompletely understood due to the lack of structural data on substrate complexes. To gain insight into substrate binding by rhomboid proteases, we have synthesised a series of novel peptidyl-chloromethylketone (CMK) inhibitors and analysed their interactions with Escherichia coli rhomboid GlpG enzymologically and structurally. We show that peptidyl-CMKs derived from the natural rhomboid substrate TatA from bacterium Providencia stuartii bind GlpG in a substrate-like manner, and their co-crystal structures with GlpG reveal the S1 to S4 subsites of the protease. The S1 subsite is prominent and merges into the ‘water retention site’, suggesting intimate interplay between substrate binding, specificity and catalysis. Unexpectedly, the S4 subsite is plastically formed by residues of the L1 loop, an important but hitherto enigmatic feature of the rhomboid fold. We propose that the homologous region of members of the wider rhomboid-like protein superfamily may have similar substrate or client-protein binding function. Finally, using molecular dynamics, we generate a model of the Michaelis complex of the substrate bound in the active site of GlpG. PMID:25216680

  5. Substrate binding properties of potato tuber ADP-glucose pyrophosphorylase as determined by isothermal titration calorimetry.

    PubMed

    Cakir, Bilal; Tuncel, Aytug; Green, Abigail R; Koper, Kaan; Hwang, Seon-Kap; Okita, Thomas W; Kang, ChulHee

    2015-06-01

    Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism. PMID:25953126

  6. Substrate Binding and Catalytic Mechanism of Human Choline Acetyltransferase

    SciTech Connect

    Kim,A.; Rylett, J.; Shilton, B.

    2006-01-01

    Choline acetyltransferase (ChAT) catalyzes the synthesis of the neurotransmitter acetylcholine from choline and acetyl-CoA, and its presence is a defining feature of cholinergic neurons. We report the structure of human ChAT to a resolution of 2.2 {angstrom} along with structures for binary complexes of ChAT with choline, CoA, and a nonhydrolyzable acetyl-CoA analogue, S-(2-oxopropyl)-CoA. The ChAT-choline complex shows which features of choline are important for binding and explains how modifications of the choline trimethylammonium group can be tolerated by the enzyme. A detailed model of the ternary Michaelis complex fully supports the direct transfer of the acetyl group from acetyl-CoA to choline through a mechanism similar to that seen in the serine hydrolases for the formation of an acyl-enzyme intermediate. Domain movements accompany CoA binding, and a surface loop, which is disordered in the unliganded enzyme, becomes localized and binds directly to the phosphates of CoA, stabilizing the complex. Interactions between this surface loop and CoA may function to lower the K{sub M} for CoA and could be important for phosphorylation-dependent regulation of ChAT activity.

  7. Substrate Binding Tunes Conformational Flexibility and Kinetic Stability of an Amino Acid Antiporter*

    PubMed Central

    Bippes, Christian A.; Zeltina, Antra; Casagrande, Fabio; Ratera, Merce; Palacin, Manuel; Muller, Daniel J.; Fotiadis, Dimitrios

    2009-01-01

    We used single molecule dynamic force spectroscopy to unfold individual serine/threonine antiporters SteT from Bacillus subtilis. The unfolding force patterns revealed interactions and energy barriers that stabilized structural segments of SteT. Substrate binding did not establish strong localized interactions but appeared to be facilitated by the formation of weak interactions with several structural segments. Upon substrate binding, all energy barriers of the antiporter changed thereby describing the transition from brittle mechanical properties of SteT in the unbound state to structurally flexible conformations in the substrate-bound state. The lifetime of the unbound state was much shorter than that of the substrate-bound state. This leads to the conclusion that the unbound state of SteT shows a reduced conformational flexibility to facilitate specific substrate binding and a reduced kinetic stability to enable rapid switching to the bound state. In contrast, the bound state of SteT showed an increased conformational flexibility and kinetic stability such as required to enable transport of substrate across the cell membrane. This result supports the working model of antiporters in which alternate substrate access from one to the other membrane surface occurs in the substrate-bound state. PMID:19419962

  8. CYP2J2 and CYP2C8 polymorphisms and coronary heart disease risk: the Atherosclerosis Risk in Communities (ARIC) study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The cytochromes P450 epoxygenases CYP2J2 and CYP2C8 synthesize epoxyeicosatrienoic acids, which regulate endothelial function. We sought to determine if genetic variation in CYP2J2 and CYP2C8 was associated with coronary heart disease risk. We genotyped 2065 Atherosclerosis Risk in Communities stud...

  9. Progress on binding CO{sub 2} in mineral substrates

    SciTech Connect

    Lackner, K.S.; Butt, D.P.; Wendt, C.H.

    1996-10-01

    Based on current estimates of reserves, coal could satisfy even a very much increased world energy demand for centuries, if only the emission of CO{sub 2} disposal that is based on combining CO{sub 2} chemically with abundant raw materials to form stable carbonate minerals. A major advantage of this method is that the resulting waste product is thermodynamically stable and environmentally neutral. It is therefore possible to store large quantities permanently with minimal environmental impact and without the danger of an accidental release of CO{sub 2} which has proven fatal in quantities far smaller than contemplated here. The raw materials to bind CO{sub 2} exist in nature in large quantities. They are readily accessible and far exceed what would be required to bind all CO{sub 2} that could possibly be generated by burning the entire fossil fuel reserves. In this paper the authors outline a specific process that they are currently investigating. The initial rough cost estimate of about 3{cents}/kWh is encouraging. The availability of a CO{sub 2} fixation technology would serve as insurance in case global warming, or the perception of global warming, would cause severe restrictions on CO{sub 2} emissions. If the increased energy demand of a growing world population is to be satisfied from coal, the implementation of such a technology would be unavoidable.

  10. Identifying Sequential Substrate Binding at the Single-Molecule Level by Enzyme Mechanical Stabilization

    PubMed Central

    Rivas-Pardo, Jaime Andrés; Alegre-Cebollada, Jorge; Ramírez-Sarmiento, César A.; Fernandez, Julio M.; Guixé, Victoria

    2015-01-01

    Enzyme-substrate binding is a dynamic process intimately coupled to protein structural changes, which in turn changes the unfolding energy landscape. By the use of single molecule force spectroscopy (SMFS), we characterize the open-to-closed conformational transition experienced by the hyperthermophilic ADP-dependent glucokinase from Thermococcus litoralis triggered by the sequential binding of substrates. In the absence of substrates, the mechanical unfolding of TlGK shows an intermediate I, which is stabilized in the presence of Mg·ADP-, the first substrate to bind to the enzyme. However, in the presence of this substrate, an additional unfolding event is observed, intermediate-1*. Finally, in the presence of both substrates, the unfolding force of intermediates-1 and -1*, increases as a consequence of the domain closure. These results show that SMFS could be used as a powerful experimental tool to investigate binding mechanisms of different enzymes with more than one ligand, expanding the repertoire of protocols traditionally used in enzymology. PMID:25840594

  11. Structural Determinants for Substrate Binding and Catalysis in Triphosphate Tunnel Metalloenzymes*

    PubMed Central

    Martinez, Jacobo; Truffault, Vincent; Hothorn, Michael

    2015-01-01

    Triphosphate tunnel metalloenzymes (TTMs) are present in all kingdoms of life and catalyze diverse enzymatic reactions such as mRNA capping, the cyclization of adenosine triphosphate, the hydrolysis of thiamine triphosphate, and the synthesis and breakdown of inorganic polyphosphates. TTMs have an unusual tunnel domain fold that harbors substrate- and metal co-factor binding sites. It is presently poorly understood how TTMs specifically sense different triphosphate-containing substrates and how catalysis occurs in the tunnel center. Here we describe substrate-bound structures of inorganic polyphosphatases from Arabidopsis and Escherichia coli, which reveal an unorthodox yet conserved mode of triphosphate and metal co-factor binding. We identify two metal binding sites in these enzymes, with one co-factor involved in substrate coordination and the other in catalysis. Structural comparisons with a substrate- and product-bound mammalian thiamine triphosphatase and with previously reported structures of mRNA capping enzymes, adenylate cyclases, and polyphosphate polymerases suggest that directionality of substrate binding defines TTM catalytic activity. Our work provides insight into the evolution and functional diversification of an ancient enzyme family. PMID:26221030

  12. Freeze-drying of enzymes in case of water-binding and non-water-binding substrates.

    PubMed

    Pisano, Roberto; Rasetto, Valeria; Barresi, Antonello A; Kuntz, Florent; Aoude-Werner, Dalal; Rey, Louis

    2013-11-01

    Enzymes typically have a critical instability, which dominates both formulation and process development. In this paper, the ability to preserve the enzyme activity during freeze-drying was investigated for both water-binding and non-water-binding substrates. For this purpose, acid phosphatase was used as model protein. In addition, a procedure for the fast development of a freeze-drying cycle is shown. For the secondary drying part, the effect of processing temperature and time on enzyme activity was investigated. The enzyme activity decreased continuously during secondary drying, with a dramatic drop associated with processing temperatures higher than 293 K. Besides product temperature, the residual moisture level and water mobility are also important. As the residual moisture level and water mobility depend on the product formulation, the stabilizing effect against the enzyme deactivation was studied for a number of formulations which contain different additives, that is, sucrose, lactose, mannitol, and poly-vinylpyrrolidone, with a dramatic activity loss associated with crystallizing excipients. This study also confirmed that not all water-binding substrates can successfully protect the enzyme against deactivation. In fact, water-binding substrates containing reducing sugars (lactose) showed the highest loss of activity. PMID:23500114

  13. DNA sequencing using polymerase substrate-binding kinetics

    PubMed Central

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  14. DNA sequencing using polymerase substrate-binding kinetics.

    PubMed

    Previte, Michael John Robert; Zhou, Chunhong; Kellinger, Matthew; Pantoja, Rigo; Chen, Cheng-Yao; Shi, Jin; Wang, BeiBei; Kia, Amirali; Etchin, Sergey; Vieceli, John; Nikoomanzar, Ali; Bomati, Erin; Gloeckner, Christian; Ronaghi, Mostafa; He, Molly Min

    2015-01-01

    Next-generation sequencing (NGS) has transformed genomic research by decreasing the cost of sequencing. However, whole-genome sequencing is still costly and complex for diagnostics purposes. In the clinical space, targeted sequencing has the advantage of allowing researchers to focus on specific genes of interest. Routine clinical use of targeted NGS mandates inexpensive instruments, fast turnaround time and an integrated and robust workflow. Here we demonstrate a version of the Sequencing by Synthesis (SBS) chemistry that potentially can become a preferred targeted sequencing method in the clinical space. This sequencing chemistry uses natural nucleotides and is based on real-time recording of the differential polymerase/DNA-binding kinetics in the presence of correct or mismatch nucleotides. This ensemble SBS chemistry has been implemented on an existing Illumina sequencing platform with integrated cluster amplification. We discuss the advantages of this sequencing chemistry for targeted sequencing as well as its limitations for other applications. PMID:25612848

  15. Oligosaccharide and substrate binding in the starch debranching enzyme barley limit dextrinase.

    PubMed

    Møller, Marie S; Windahl, Michael S; Sim, Lyann; Bøjstrup, Marie; Abou Hachem, Maher; Hindsgaul, Ole; Palcic, Monica; Svensson, Birte; Henriksen, Anette

    2015-03-27

    Complete hydrolytic degradation of starch requires hydrolysis of both the α-1,4- and α-1,6-glucosidic bonds in amylopectin. Limit dextrinase (LD) is the only endogenous barley enzyme capable of hydrolyzing the α-1,6-glucosidic bond during seed germination, and impaired LD activity inevitably reduces the maltose and glucose yields from starch degradation. Crystal structures of barley LD and active-site mutants with natural substrates, products and substrate analogues were sought to better understand the facets of LD-substrate interactions that confine high activity of LD to branched maltooligosaccharides. For the first time, an intact α-1,6-glucosidically linked substrate spanning the active site of a LD or pullulanase has been trapped and characterized by crystallography. The crystal structure reveals both the branch and main-chain binding sites and is used to suggest a mechanism for nucleophilicity enhancement in the active site. The substrate, product and analogue complexes were further used to outline substrate binding subsites and substrate binding restraints and to suggest a mechanism for avoidance of dual α-1,6- and α-1,4-hydrolytic activity likely to be a biological necessity during starch synthesis. PMID:25562209

  16. Mechanism of Substrate and Inhibitor Binding of Rhodobacter Capsulatus Xanthine Dehydrogenase

    SciTech Connect

    Dietzel, U.; Kuper, J; Doebbler, J; Schulte, A; Truglio, J; Leimkuhler, S; Kisker, C

    2009-01-01

    Rhodobacter capsulatus xanthine dehydrogenase (XDH) is an (ae)2 heterotetrameric cytoplasmic enzyme that resembles eukaryotic xanthine oxidoreductases in respect to both amino acid sequence and structural fold. To obtain a detailed understanding of the mechanism of substrate and inhibitor binding at the active site, we solved crystal structures of R. capsulatus XDH in the presence of its substrates hypoxanthine, xanthine, and the inhibitor pterin-6-aldehyde using either the inactive desulfo form of the enzyme or an active site mutant (EB232Q) to prevent substrate turnover. The hypoxanthine- and xanthine-bound structures reveal the orientation of both substrates at the active site and show the importance of residue GluB-232 for substrate positioning. The oxygen atom at the C-6 position of both substrates is oriented toward ArgB-310 in the active site. Thus the substrates bind in an orientation opposite to the one seen in the structure of the reduced enzyme with the inhibitor oxypurinol. The tightness of the substrates in the active site suggests that the intermediate products must exit the binding pocket to allow first the attack of the C-2, followed by oxidation of the C-8 atom to form the final product uric acid. Structural studies of pterin-6-aldehyde, a potent inhibitor of R. capsulatus XDH, contribute further to the understanding of the relative positioning of inhibitors and substrates in the binding pocket. Steady state kinetics reveal a competitive inhibition pattern with a Ki of 103.57 {+-} 18.96 nm for pterin-6-aldehyde.

  17. Characterization of substrate binding of the WW domains in human WWP2 protein.

    PubMed

    Jiang, Jiahong; Wang, Nan; Jiang, Yafei; Tan, Hongwei; Zheng, Jimin; Chen, Guangju; Jia, Zongchao

    2015-07-01

    WW domains harbor substrates containing proline-rich motifs, but the substrate specificity and binding mechanism remain elusive for those WW domains less amenable for structural studies, such as human WWP2 (hWWP2). Herein we have employed multiple techniques to investigate the second WW domain (WW2) in hWWP2. Our results show that hWWP2 is a specialized E3 for PPxY motif-containing substrates only and does not recognize other amino acids and phospho-residues. The strongest binding affinity of WW2, and the incompatibility between each WW domain, imply a novel relationship, and our SPR experiment reveals a dynamic binding mode in Class-I WW domains for the first time. The results from alanine-scanning mutagenesis and modeling further point to functionally conserved residues in WW2. PMID:25999310

  18. X-ray Crystallographic Studies of Substrate Binding to Aristolochene Synthase Suggest a Metal Ion Binding Sequence for Catalysis

    SciTech Connect

    Shishova,E.; Yu, F.; Miller, D.; Faraldos, J.; Zhao, Y.; Coates, R.; Allemann, R.; Cane, D.; Christianson, D.

    2008-01-01

    The universal sesquiterpene precursor, farnesyl diphosphate (FPP), is cyclized in an Mg2+-dependent reaction catalyzed by the tetrameric aristolochene synthase from Aspergillus terreus to form the bicyclic hydrocarbon aristolochene and a pyrophosphate anion (PPi) coproduct. The 2.1- Angstroms resolution crystal structure determined from crystals soaked with FPP reveals the binding of intact FPP to monomers A-C, and the binding of PPi and Mg2+B to monomer D. The 1.89- Angstroms resolution structure of the complex with 2-fluorofarnesyl diphosphate (2F-FPP) reveals 2F-FPP binding to all subunits of the tetramer, with Mg2+Baccompanying the binding of this analogue only in monomer D. All monomers adopt open activesite conformations in these complexes, but slight structural changes in monomers C and D of each complex reflect the very initial stages of a conformational transition to the closed state. Finally, the 2.4- Angstroms resolution structure of the complex with 12,13-difluorofarnesyl diphosphate (DF-FPP) reveals the binding of intact DF-FPP to monomers A-C in the open conformation and the binding of PPi, Mg2+B, and Mg2+C to monomer D in a predominantly closed conformation. Taken together, these structures provide 12 independent 'snapshots' of substrate or product complexes that suggest a possible sequence for metal ion binding and conformational changes required for catalysis.

  19. Computational method for relative binding energies of enzyme-substrate complexes.

    PubMed

    Zhang, T; Koshland, D E

    1996-02-01

    A computational method for estimating the relative binding free energies of enzyme-substrate complexes is described that combines electrostatic and solvation models and X-ray crystallographic data. The polar contribution is evaluated by the Poisson-Boltzman equation. The nonpolar contribution is evaluated by solvent transfer data and surface area calculations. This algorithm was used to calculate the relative binding energies of 63 pairs of nine different mutant proteins with seven different substituted R-malate substrates of Escherichia coli isocitrate dehydrogenase. Comparison of calculated values with the experimentally observed values shows a high degree of correlation. PMID:8745413

  20. Selectivity of substrate binding and ionization of 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase.

    PubMed

    Luanloet, Thikumporn; Sucharitakul, Jeerus; Chaiyen, Pimchai

    2015-08-01

    2-Methyl-3-hydroxypyridine-5-carboxylic acid (MHPC) oxygenase (EC 1.14.12.4) from Pseudomonas sp. MA-1 is a flavin-dependent monooxygenase that catalyzes a hydroxylation and aromatic ring cleavage reaction. The functional roles of two residues, Tyr223 and Tyr82, located ~ 5 Å away from MHPC, were characterized using site-directed mutagenesis, along with ligand binding, product analysis and transient kinetic experiments. Mutation of Tyr223 resulted in enzyme variants that were impaired in their hydroxylation activity and had Kd values for substrate binding 5-10-fold greater than the wild-type enzyme. Because this residue is adjacent to the water molecule that is located next to the 3-hydroxy group of MHPC, the results indicate that the interaction between Tyr223, H2 O and the 3-hydroxyl group of MHPC are important for substrate binding and hydroxylation. By contrast, the Kd for substrate binding of Tyr82His and Tyr82Phe variants were similar to that of the wild-type enzyme. However, only ~ 40-50% of the substrate was hydroxylated in the reactions of both variants, whereas most of the substrate was hydroxylated in the wild-type enzyme reaction. In free solution, MHPC or 5-hydroxynicotinic acid exists in a mixture of monoanionic and tripolar ionic forms, whereas only the tripolar ionic form binds to the wild-type enzyme. The binding of tripolar ionic MHPC would allow efficient hydroxylation through an electrophilic aromatic substitution mechanism. For the Tyr82His and Tyr82Phe variants, both forms of substrates can bind to the enzymes, indicating that the mutation at Tyr82 abolished the selectivity of the enzyme towards the tripolar ionic form. Transient kinetic studies indicated that the hydroxylation rate constants of both Tyr82 variants are approximately two- to 2.5-fold higher than that of the wild-type enzyme. Altogether, our findings suggest that Tyr82 is important for the binding selectivity of MHPC oxygenase towards the tripolar ionic species, whereas the

  1. Spinophilin directs Protein Phosphatase 1 specificity by blocking substrate binding sites

    PubMed Central

    Ragusa, Michael J.; Dancheck, Barbara; Critton, David A.; Nairn, Angus C.; Page, Rebecca; Peti, Wolfgang

    2010-01-01

    The serine/threonine Protein Phosphatase 1 (PP1) dephosphorylates hundreds of key biological targets. PP1 associates with ≥200 regulatory proteins to form highly specific holoenzymes. These regulatory proteins target PP1 to its point of action within the cell and prime its enzymatic specificity for particular substrates. However, how they direct PP1’s specificity is not understood. Here we show that spinophilin, a neuronal PP1 regulator, is entirely unstructured in its unbound form and binds PP1, through a folding-upon-binding mechanism, in an elongated fashion, blocking one of PP1’s three putative substrate binding sites, without altering its active site. This mode of binding is sufficient for spinophilin to restrict PP1’s activity toward a model substrate in vitro, without affecting its ability to dephosphorylate its neuronal substrate GluR1. Thus, our work provides the molecular basis for the ability of spinophilin to dictate PP1 substrate specificity. PMID:20305656

  2. Insight into determinants of substrate binding and transport in a multidrug efflux protein

    PubMed Central

    Alegre, Kamela O.; Paul, Stephanie; Labarbuta, Paola; Law, Christopher J.

    2016-01-01

    Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that ‘aromatic clamps’ formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such ‘clamps’ may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins. PMID:26961153

  3. Insight into determinants of substrate binding and transport in a multidrug efflux protein.

    PubMed

    Alegre, Kamela O; Paul, Stephanie; Labarbuta, Paola; Law, Christopher J

    2016-01-01

    Multidrug resistance arising from the activity of integral membrane transporter proteins presents a global public health threat. In bacteria such as Escherichia coli, transporter proteins belonging to the major facilitator superfamily make a considerable contribution to multidrug resistance by catalysing efflux of myriad structurally and chemically different antimicrobial compounds. Despite their clinical relevance, questions pertaining to mechanistic details of how these promiscuous proteins function remain outstanding, and the role(s) played by individual amino acid residues in recognition, binding and subsequent transport of different antimicrobial substrates by multidrug efflux members of the major facilitator superfamily requires illumination. Using in silico homology modelling, molecular docking and mutagenesis studies in combination with substrate binding and transport assays, we identified several amino acid residues that play important roles in antimicrobial substrate recognition, binding and transport by Escherichia coli MdtM, a representative multidrug efflux protein of the major facilitator superfamily. Furthermore, our studies suggested that 'aromatic clamps' formed by tyrosine and phenylalanine residues located within the substrate binding pocket of MdtM may be important for antimicrobial substrate recognition and transport by the protein. Such 'clamps' may be a structurally and functionally important feature of all major facilitator multidrug efflux proteins. PMID:26961153

  4. Structural insights into the substrate-binding mechanism for a novel chitosanase.

    PubMed

    Lyu, Qianqian; Wang, Song; Xu, Wenhua; Han, Baoqin; Liu, Wanshun; Jones, David N M; Liu, Weizhi

    2014-07-15

    Chitosanase is able to specifically cleave β-1,4-glycosidic bond linkages in chitosan to produce a chito-oligomer product, which has found a variety of applications in many areas, including functional food and cancer therapy. Although several structures for chitosanase have been determined, the substrate-binding mechanism for this enzyme has not been fully elucidated because of the lack of a high-resolution structure of the chitosanase-substrate complex. In the present study we show the crystal structure of a novel chitosanase OU01 from Microbacterium sp. in complex with its substrate hexa-glucosamine (GlcN)6, which belongs to the GH46 (glycoside hydrolyase 46) family in the Carbohydrate Active Enzymes database (http://www.cazy.org/). This structure allows precise determination of the substrate-binding mechanism for the first time. The chitosanase-(GlcN)6 complex structure demonstrates that, from the -2 to +1 position of the (GlcN)6 substrate, the pyranose rings form extensive interactions with the chitosanase-binding cleft. Several residues (Ser27, Tyr37, Arg45, Thr58, Asp60, His203 and Asp235) in the binding cleft are found to form important interactions required to bind the substrate. Site-directed mutagenesis of these residues showed that mutations of Y37F and H203A abolish catalytic activity. In contrast, the mutations T58A and D235A only lead to a moderate loss of catalytic activity, whereas the S27A mutation retains ~80% of the enzymatic activity. In combination with previous mutagenesis studies, these results suggest that the -2, -1 and +1 subsites play a dominant role in substrate binding and catalysis. DSF (differential scanning fluorimetry) assays confirmed that these mutations had no significant effect on protein stability. Taken together, we present the first mechanistic interpretation for the substrate (GlcN)6 binding to chitosanase, which is critical for the design of novel chitosanase used for biomass conversion. PMID:24766439

  5. Tentative Identification of the Second Substrate Binding Site in Arabidopsis Phytochelatin Synthase

    PubMed Central

    Chia, Ju-Chen; Yang, Chien-Chih; Sui, Yu-Ting; Lin, Shin-Yu; Juang, Rong-Huay

    2013-01-01

    Phytochelatin synthase (PCS) uses the substrates glutathione (GSH, γGlu-Cys-Gly) and a cadmium (Cd)-bound GSH (Cd∙GS2) to produce the shortest phytochelatin product (PC2, (γGlu-Cys)2-Gly) through a ping-pong mechanism. The binding of the 2 substrates to the active site, particularly the second substrate binding site, is not well-understood. In this study, we generated a structural model of the catalytic domain of Arabidopsis AtPCS1 (residues 12–218) by using the crystal structure of the γGlu-Cys acyl-enzyme complex of the PCS of the cyanobacterium Nostoc (NsPCS) as a template. The modeled AtPCS1 revealed a cavity in proximity to the first substrate binding site, consisting of 3 loops containing several conserved amino acids including Arg152, Lys185, and Tyr55. Substitutions of these amino acids (R152K, K185R, or double mutation) resulted in the abrogation of enzyme activity, indicating that the arrangement of these 2 positive charges is crucial for the binding of the second substrate. Recombinant AtPCS1s with mutations at Tyr55 showed lower catalytic activities because of reduced affinity (3-fold for Y55W) for the Cd∙GS2, further suggesting the role of the cation-π interaction in recognition of the second substrate. Our study results indicate the mechanism for second substrate recognition in PCS. The integrated catalytic mechanism of PCS is further discussed. PMID:24340051

  6. Regulation of Structural Dynamics within a Signal Recognition Particle Promotes Binding of Protein Targeting Substrates*

    PubMed Central

    Gao, Feng; Kight, Alicia D.; Henderson, Rory; Jayanthi, Srinivas; Patel, Parth; Murchison, Marissa; Sharma, Priyanka; Goforth, Robyn L.; Kumar, Thallapuranam Krishnaswamy Suresh; Henry, Ralph L.; Heyes, Colin D.

    2015-01-01

    Protein targeting is critical in all living organisms and involves a signal recognition particle (SRP), an SRP receptor, and a translocase. In co-translational targeting, interactions among these proteins are mediated by the ribosome. In chloroplasts, the light-harvesting chlorophyll-binding protein (LHCP) in the thylakoid membrane is targeted post-translationally without a ribosome. A multidomain chloroplast-specific subunit of the SRP, cpSRP43, is proposed to take on the role of coordinating the sequence of targeting events. Here, we demonstrate that cpSRP43 exhibits significant interdomain dynamics that are reduced upon binding its SRP binding partner, cpSRP54. We showed that the affinity of cpSRP43 for the binding motif of LHCP (L18) increases when cpSRP43 is complexed to the binding motif of cpSRP54 (cpSRP54pep). These results support the conclusion that substrate binding to the chloroplast SRP is modulated by protein structural dynamics in which a major role of cpSRP54 is to improve substrate binding efficiency to the cpSRP. PMID:25918165

  7. Nucleosome Binding Alters the Substrate Bonding Environment of Histone H3 Lysine 36 Methyltransferase NSD2.

    PubMed

    Poulin, Myles B; Schneck, Jessica L; Matico, Rosalie E; Hou, Wangfang; McDevitt, Patrick J; Holbert, Marc; Schramm, Vern L

    2016-06-01

    Nuclear receptor-binding SET domain protein 2 (NSD2) is a histone H3 lysine 36 (H3K36)-specific methyltransferase enzyme that is overexpressed in a number of cancers, including multiple myeloma. NSD2 binds to S-adenosyl-l-methionine (SAM) and nucleosome substrates to catalyze the transfer of a methyl group from SAM to the ε-amino group of histone H3K36. Equilibrium binding isotope effects and density functional theory calculations indicate that the SAM methyl group is sterically constrained in complex with NSD2, and that this steric constraint is released upon nucleosome binding. Together, these results show that nucleosome binding to NSD2 induces a significant change in the chemical environment of enzyme-bound SAM. PMID:27183271

  8. Insights into Substrate and Metal Binding from the Crystal Structure of Cyanobacterial Aldehyde Deformylating Oxygenase with Substrate Bound

    PubMed Central

    2015-01-01

    The nonheme diiron enzyme cyanobacterial aldehyde deformylating oxygenase, cADO, catalyzes the highly unusual deformylation of aliphatic aldehydes to alkanes and formate. We have determined crystal structures for the enzyme with a long-chain water-soluble aldehyde and medium-chain carboxylic acid bound to the active site. These structures delineate a hydrophobic channel that connects the solvent with the deeply buried active site and reveal a mode of substrate binding that is different from previously determined structures with long-chain fatty acids bound. The structures also identify a water channel leading to the active site that could facilitate the entry of protons required in the reaction. NMR studies examining 1-[13C]-octanal binding to cADO indicate that the enzyme binds the aldehyde form rather than the hydrated form. Lastly, the fortuitous cocrystallization of the metal-free form of the protein with aldehyde bound has revealed protein conformation changes that are involved in binding iron. PMID:25222710

  9. Acceptor substrate binding revealed by crystal structure of human glucosamine-6-phosphate N-acetyltransferase 1.

    PubMed

    Wang, Juan; Liu, Xiang; Liang, Yu-He; Li, Lan-Fen; Su, Xiao-Dong

    2008-09-01

    Glucosamine-6-phosphate (GlcN6P) N-acetyltransferase 1 (GNA1) is a key enzyme in the pathway toward biosynthesis of UDP-N-acetylglucosamine, an important donor substrate for N-linked glycosylation. GNA1 catalyzes the formation of N-acetylglucosamine-6-phosphate (GlcNAc6P) from acetyl-CoA (AcCoA) and the acceptor substrate GlcN6P. Here, we report crystal structures of human GNA1, including apo GNA1, the GNA1-GlcN6P complex and an E156A mutant. Our work showed that GlcN6P binds to GNA1 without the help of AcCoA binding. Structural analyses and mutagenesis studies have shed lights on the charge distribution in the GlcN6P binding pocket, and an important role for Glu156 in the substrate binding. Hence, these findings have broadened our knowledge of structural features required for the substrate affinity of GNA1. PMID:18675810

  10. Molecular docking characterizes substrate-binding sites and efflux modulation mechanisms within P-glycoprotein.

    PubMed

    Ferreira, Ricardo J; Ferreira, Maria-José U; dos Santos, Daniel J V A

    2013-07-22

    P-Glycoprotein (Pgp) is one of the best characterized ABC transporters, often involved in the multidrug-resistance phenotype overexpressed by several cancer cell lines. Experimental studies contributed to important knowledge concerning substrate polyspecificity, efflux mechanism, and drug-binding sites. This information is, however, scattered through different perspectives, not existing a unifying model for the knowledge available for this transporter. Using a previously refined structure of murine Pgp, three putative drug-binding sites were hereby characterized by means of molecular docking. The modulator site (M-site) is characterized by cross interactions between both Pgp halves herein defined for the first time, having an important role in impairing conformational changes leading to substrate efflux. Two other binding sites, located next to the inner leaflet of the lipid bilayer, were identified as the substrate-binding H and R sites by matching docking and experimental results. A new classification model with the ability to discriminate substrates from modulators is also proposed, integrating a vast number of theoretical and experimental data. PMID:23802684

  11. Discovery of a sensitive, selective, and tight binding fluorogenic substrate of bovine plasma amine oxidase

    PubMed Central

    Ling, Ke-Qing; Sayre, Lawrence M.

    2008-01-01

    We report a novel fluorogenic substrate of bovine plasma amine oxidase (BPAO), namely (2-(6-(aminomethyl)naphthalen-2-yloxy)ethyl)trimethylammonium (ANETA), which displays extremely tight binding to BPAO (Km 183±14 nM), and yet is metabolized fairly quickly (kcat 0.690±0.010 s−1), with the aldehyde turnover product (2-(6-formylnaphthalen-2-yloxy)ethyl)trimethylammonium serving as a real time reporting fluorophore of the enzyme activity. This allowed for the development of a fluorometric non-coupled assay that is two orders of magnitude more sensitive than the spectrophotometric benzylamine assay. The discovery of ANETA involved elaboration of the lead compound 6-methoxy-2-naphthalenemethaneamine by structure-based design, which recognized the ancillary cation binding site of BPAO as the most significant structural features controlling binding affinity. Structure-based design further ensured a high level of selectivity: ANETA is a good substrate of BPAO, but is not a substrate of either porcine kidney diamine oxidase (pkDAO) or rat liver monoamine oxidase (MAO-B). ANETA represents the first highly sensitive, selective, and tight binding fluorogenic substrate of a copper amine oxidase that is able to respond directly to the enzyme activity in real time. PMID:19053593

  12. Enhancement of binding kinetics on affinity substrates by laser point heating induced transport.

    PubMed

    Wang, Bu; Cheng, Xuanhong

    2016-03-01

    Enhancing the time response and detection limit of affinity-binding based biosensors is an area of active research. For diffusion limited reactions, introducing active mass transport is an effective strategy to reduce the equilibration time and improve surface binding. Here, a laser is focused on the ceiling of a microchamber to generate point heating, which introduces natural advection and thermophoresis to promote mass transport to the reactive floor. We first used the COMSOL simulation to study how the kinetics of ligand binding is influenced by the optothermal effect. Afterwards, binding of biotinylated nanoparticles to NeutrAvidin-treated substrates is quantitatively measured with and without laser heating. It is discovered that laser induced point heating reduces the reaction half-life locally, and the reduction improves with the natural advection velocity. In addition, non-uniform ligand binding on the substrate is induced by the laser with predictable binding patterns. This optothermal strategy holds promise to improve the time-response and sensitivity of biosensors and microarrays. PMID:26898559

  13. Substrate Binding and Active Site Residues in RNases E and G

    PubMed Central

    Garrey, Stephen M.; Blech, Michaela; Riffell, Jenna L.; Hankins, Janet S.; Stickney, Leigh M.; Diver, Melinda; Hsu, Ying-Han Roger; Kunanithy, Vitharani; Mackie, George A.

    2009-01-01

    The paralogous endoribonucleases, RNase E and RNase G, play major roles in intracellular RNA metabolism in Escherichia coli and related organisms. To assay the relative importance of the principal RNA binding sites identified by crystallographic analysis, we introduced mutations into the 5′-sensor, the S1 domain, and the Mg+2/Mn+2 binding sites. The effect of such mutations has been measured by assays of activity on several substrates as well as by an assay of RNA binding. RNase E R169Q and the equivalent mutation in RNase G (R171Q) exhibit the strongest reductions in both activity (the kcat decrease ∼40- to 100-fold) and RNA binding consistent with a key role for the 5′-sensor. Our analysis also supports a model in which the binding of substrate results in an increase in catalytic efficiency. Although the phosphate sensor plays a key role in vitro, it is unexpectedly dispensable in vivo. A strain expressing only RNase E R169Q as the sole source of RNase E activity is viable, exhibits a modest reduction in doubling time and colony size, and accumulates immature 5 S rRNA. Our results point to the importance of alternative RNA binding sites in RNase E and to alternative pathways of RNA recognition. PMID:19778900

  14. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry.

    PubMed

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects. Graphical Abstract ᅟ. PMID:27112153

  15. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-04-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  16. Substrate and Substrate-Mimetic Chaperone Binding Sites in Human α-Galactosidase A Revealed by Affinity-Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Moise, Adrian; Maeser, Stefan; Rawer, Stephan; Eggers, Frederike; Murphy, Mary; Bornheim, Jeff; Przybylski, Michael

    2016-06-01

    Fabry disease (FD) is a rare metabolic disorder of a group of lysosomal storage diseases, caused by deficiency or reduced activity of the enzyme α-galactosidase. Human α-galactosidase A (hαGAL) hydrolyses the terminal α-galactosyl moiety from glycosphingolipids, predominantly globotriaosylceramide (Gb3). Enzyme deficiency leads to incomplete or blocked breakdown and progressive accumulation of Gb3, with detrimental effects on normal organ functions. FD is successfully treated by enzyme replacement therapy (ERT) with purified recombinant hαGAL. An emerging treatment strategy, pharmacologic chaperone therapy (PCT), employs small molecules that can increase and/or reconstitute the activity of lysosomal enzyme trafficking by stabilizing misfolded isoforms. One such chaperone, 1-deoxygalactonojirimycin (DGJ), is a structural galactose analogue currently validated in clinical trials. DGJ is an active-site-chaperone that binds at the same or similar location as galactose; however, the molecular determination of chaperone binding sites in lysosomal enzymes represents a considerable challenge. Here we report the identification of the galactose and DGJ binding sites in recombinant α-galactosidase through a new affinity-mass spectrometry-based approach that employs selective proteolytic digestion of the enzyme-galactose or -inhibitor complex. Binding site peptides identified by mass spectrometry, [39-49], [83-100], and [141-168], contain the essential ligand-contacting amino acids, in agreement with the known X-ray crystal structures. The inhibitory effect of DGJ on galactose recognition was directly characterized through competitive binding experiments and mass spectrometry. The methods successfully employed in this study should have high potential for the characterization of (mutated) enzyme-substrate and -chaperone interactions, and for identifying chaperones without inhibitory effects.

  17. Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.

    PubMed

    Taabazuing, Cornelius Y; Fermann, Justin; Garman, Scott; Knapp, Michael J

    2016-01-19

    The Fe(2+)/α-ketoglutarate (αKG)-dependent oxygenases use molecular oxygen to conduct a wide variety of reactions with important biological implications, such as DNA base excision repair, histone demethylation, and the cellular hypoxia response. These enzymes follow a sequential mechanism in which O2 binds and reacts after the primary substrate binds, making those structural factors that promote productive O2 binding central to their chemistry. A large challenge in this field is to identify strategies that engender productive turnover. Factor inhibiting HIF (FIH) is a Fe(2+)/αKG-dependent oxygenase that forms part of the O2 sensing machinery in human cells by hydroxylating the C-terminal transactivation domain (CTAD) found within the HIF-1α protein. The structure of FIH was determined with the O2 analogue NO bound to Fe, offering the first direct insight into the gas binding geometry in this enzyme. Through a combination of density functional theory calculations, {FeNO}(7) electron paramagnetic resonance spectroscopy, and ultraviolet-visible absorption spectroscopy, we demonstrate that CTAD binding stimulates O2 reactivity by altering the orientation of the bound gas molecule. Although unliganded FIH binds NO with moderate affinity, the bound gas can adopt either of two orientations with similar stability; upon CTAD binding, NO adopts a single preferred orientation that is appropriate for supporting oxidative decarboxylation. Combined with other studies of related enzymes, our data suggest that substrate-induced reorientation of bound O2 is the mechanism utilized by the αKG oxygenases to tightly couple O2 activation to substrate hydroxylation. PMID:26727884

  18. Structural analysis reveals the substrate-binding mechanism for the expanded substrate specificity of mutant meso-diaminopimelate dehydrogenase.

    PubMed

    Liu, Weidong; Guo, Rey-Ting; Chen, Xi; Li, Zhe; Gao, Xiuzhen; Huang, Chun-Hsiang; Wu, Qiaqing; Feng, Jinhui; Zhu, Dunming

    2015-04-13

    A meso-diaminopimelate dehydrogenase (DAPDH) from Clostridium tetani E88 (CtDAPDH) was found to have low activity toward the D-amino acids other than its native substrate. Site-directed mutagenesis similar to that carried out on the residues mutated by Vedha-Peters et al. resulted in a mutant enzyme with highly improved catalytic ability for the synthesis of D-amino acids. The crystal structures of the CtDAPDH mutant in apo form and in complex with meso-diaminopimelate (meso-DAP), D-leucine (D-leu), and 4-methyl-2-oxopentanoic acid (MOPA) were solved. meso-DAP was found in an area outside the catalytic cavity; this suggested a possible two-step substrate-binding mechanism for meso-DAP. D-leu and MOPA each bound both to Leu154 and to Gly155 in the open form of CtDAPDH, and structural analysis revealed the molecular basis for the expanded substrate specificity of the mutant meso-diaminopimelate dehydrogenases. PMID:25754803

  19. An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin.

    PubMed

    Karpowich, Nathan K; Song, Jinmei; Wang, Da-Neng

    2016-07-31

    ECF transporters are a family of active membrane transporters for essential micronutrients, such as vitamins and trace metals. Found exclusively in archaea and bacteria, these transporters are composed of four subunits: an integral membrane substrate-binding subunit (EcfS), a transmembrane coupling subunit (EcfT), and two ATP-binding cassette ATPases (EcfA and EcfA'). We have characterized the structural basis of substrate binding by the EcfS subunit for riboflavin from Thermotoga maritima, TmRibU. TmRibU binds riboflavin with high affinity, and the protein-substrate complex is exceptionally stable in solution. The crystal structure of riboflavin-bound TmRibU reveals an electronegative binding pocket at the extracellular surface in which the substrate is completely buried. Analysis of the intermolecular contacts indicates that nearly every available substrate hydrogen bond is satisfied. A conserved aromatic residue at the extracellular end of TM5, Tyr130, caps the binding site to generate a substrate-bound, occluded state, and non-conservative mutation of Tyr130 reduces the stability of this conformation. Using a novel fluorescence binding assay, we find that an aromatic residue at this position is essential for high-affinity substrate binding. Comparison with other S subunit structures suggests that TM5 and Loop5-6 contain a dynamic, conserved motif that plays a key role in gating substrate entry and release by S subunits of ECF transporters. PMID:27312125

  20. Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.

    PubMed

    Ingram-Smith, Cheryl; Woods, Barrett I; Smith, Kerry S

    2006-09-26

    AMP-forming acetyl-CoA synthetase [ACS; acetate:CoA ligase (AMP-forming), EC 6.2.1.1] catalyzes the activation of acetate to acetyl-CoA in a two-step reaction. This enzyme is a member of the adenylate-forming enzyme superfamily that includes firefly luciferase, nonribosomal peptide synthetases, and acyl- and aryl-CoA synthetases/ligases. Although the structures of several superfamily members demonstrate that these enzymes have a similar fold and domain structure, the low sequence conservation and diversity of the substrates utilized have limited the utility of these structures in understanding substrate binding in more distantly related enzymes in this superfamily. The crystal structures of the Salmonella enterica ACS and Saccharomyces cerevisiae ACS1 have allowed a directed approach to investigating substrate binding and catalysis in ACS. In the S. enterica ACS structure, the propyl group of adenosine 5'-propylphosphate, which mimics the acyl-adenylate intermediate, lies in a hydrophobic pocket. Modeling of the Methanothermobacter thermautotrophicus Z245 ACS (MT-ACS1) on the S. cerevisiae ACS structure showed similar active site architecture, and alignment of the amino acid sequences of proven ACSs indicates that the four residues that compose the putative acetate binding pocket are well conserved. These four residues, Ile312, Thr313, Val388, and Trp416 of MT-ACS1, were targeted for alteration, and our results support that they do indeed form the acetate binding pocket and that alterations at these positions significantly alter the enzyme's affinity for acetate as well as the range of acyl substrates that can be utilized. In particular, Trp416 appears to be the primary determinant for acyl chain length that can be accommodated in the binding site. PMID:16981708

  1. Rpn1 provides adjacent receptor sites for substrate binding and deubiquitination by the proteasome

    PubMed Central

    Shi, Yuan; Chen, Xiang; Elsasser, Suzanne; Stocks, Bradley B.; Tian, Geng; Lee, Byung-Hoon; Shi, Yanhong; Zhang, Naixia; de Poot, Stefanie A. H.; Tuebing, Fabian; Sun, Shuangwu; Vannoy, Jacob; Tarasov, Sergey G.; Engen, John R.; Finley, Daniel; Walters, Kylie J.

    2016-01-01

    Structured Abstract INTRODUCTION The ubiquitin-proteasome system comprises hundreds of distinct pathways of degradation, which converge at the step of ubiquitin recognition by the proteasome. Five proteasomal ubiquitin receptors have been identified, two that are intrinsic to the proteasome (Rpn10 and Rpn13) and three reversibly associated proteasomal ubiquitin receptors (Rad23, Dsk2, and Ddi1). RATIONALE We found that the five known proteasomal ubiquitin receptors of yeast are collectively nonessential for ubiquitin recognition by the proteasome. We therefore screened for additional ubiquitin receptors in the proteasome and identified subunit Rpn1 as a candidate. We used nuclear magnetic resonance (NMR) spectroscopy to characterize the structure of the binding site within Rpn1, which we term the T1 site. Mutational analysis of this site showed its functional importance within the context of intact proteasomes. T1 binds both ubiquitin and ubiquitin-like (UBL) proteins, in particular the substrate-delivering shuttle factor Rad23. A second site within the Rpn1 toroid, T2, recognizes the UBL domain of deubiquitinating enzyme Ubp6, as determined by hydrogen-deuterium exchange mass spectrometry analysis and validated by amino acid substitution and functional assays. The Rpn1 toroid thus serves a critical scaffolding role within the proteasome, helping to assemble multiple proteasome cofactors as well as substrates. RESULTS Our results indicate that proteasome subunit Rpn1 can recognize both ubiquitin and UBL domains of substrate shuttling factors that themselves bind ubiquitin and function as reversibly-associated proteasomal ubiquitin receptors. Recognition is mediated by the T1 site within the Rpn1 toroid, which supports proteasome function in vivo. We found that the capacity of T1 to recognize both ubiquitin and UBL proteins was shared with Rpn10 and Rpn13. The surprising multiplicity of ubiquitin-recognition domains within the proteasome may promote enhanced

  2. Binding and Channeling of Alternative Substrates in the Enzyme DmpFG: a Molecular Dynamics Study

    PubMed Central

    Smith, Natalie E.; Vrielink, Alice; Attwood, Paul V.; Corry, Ben

    2014-01-01

    DmpFG is a bifunctional enzyme comprised of an aldolase subunit, DmpG, and a dehydrogenase subunit, DmpF. The aldehyde intermediate produced by the aldolase is channeled directly through a buried molecular channel in the protein structure from the aldolase to the dehydrogenase active site. In this study, we have investigated the binding of a series of progressively larger substrates to the aldolase, DmpG, using molecular dynamics. All substrates investigated are easily accommodated within the active site, binding with free energy values comparable to the physiological substrate 4-hydroxy-2-ketovalerate. Subsequently, umbrella sampling was utilized to obtain free energy surfaces for the aldehyde intermediates (which would be generated from the aldolase reaction on each of these substrates) to move through the channel to the dehydrogenase DmpF. Small substrates were channeled with limited barriers in an energetically feasible process. We show that the barriers preventing bulky intermediates such as benzaldehyde from moving through the wild-type protein can be removed by selective mutation of channel-lining residues, demonstrating the potential for tailoring this enzyme to allow its use for the synthesis of specific chemical products. Furthermore, positions of transient escape routes in this flexible channel were determined. PMID:24739167

  3. Roles of the anaphase-promoting complex/cyclosome and of its activator Cdc20 in functional substrate binding

    PubMed Central

    Eytan, Esther; Moshe, Yakir; Braunstein, Ilana; Hershko, Avram

    2006-01-01

    The anaphase-promoting complex/cyclosome (APC/C) is a multisubunit ubiquitin-protein ligase that targets for degradation cell-cycle regulatory proteins during exit from mitosis and in the G1 phase of the cell cycle. The activity of APC/C in mitosis and in G1 requires interaction with the activator proteins Cdc20 and Cdh1, respectively. Substrates of APC/C–Cdc20 contain a recognition motif called the “destruction box” (D-box). The mode of the action of APC/C activators and their possible role in substrate binding remain poorly understood. Several investigators suggested that Cdc20 and Cdh1 mediate substrate recognition, whereas others proposed that substrates bind to APC/C or to APC/C–activator complexes. All these studies used binding assays, which do not necessarily indicate that substrate binding is functional and leads to product formation. In the present investigation we examined this problem by an “isotope-trapping” approach that directly demonstrates productive substrate binding. With this method we found that the simultaneous presence of both APC/C and Cdc20 is required for functional substrate binding. By contrast, with conventional binding assays we found that either Cdc20 or APC/C can bind substrate by itself, but only at low affinity and relaxed selectivity for D-box. Our results are consistent with models in which interaction of substrate with specific binding sites on both APC/C and Cdc20 is involved in selective and productive substrate binding. PMID:16455800

  4. Substrate recognition and specificity of double-stranded RNA binding proteins.

    PubMed

    Vuković, Lela; Koh, Hye Ran; Myong, Sua; Schulten, Klaus

    2014-06-01

    Recognition of double-stranded (ds) RNA is an important part of many cellular pathways, including RNA silencing, viral recognition, RNA editing, processing, and transport. dsRNA recognition is often achieved by dsRNA binding domains (dsRBDs). We use atomistic molecular dynamics simulations to examine the binding interface of the transactivation response RNA binding protein (TRBP) dsRBDs to dsRNA substrates. Our results explain the exclusive selectivity of dsRBDs toward dsRNA and against DNA-RNA hybrid and dsDNA duplexes. We also provide corresponding experimental evidence. The dsRNA duplex is recognized by dsRBDs through the A-form of three duplex grooves and by the chemical properties of RNA bases, which have 2'-hydroxyl groups on their sugar rings. Our simulations show that TRBP dsRBD discriminates dsRNA- from DNA-containing duplexes primarily through interactions at two duplex grooves. The simulations also reveal that the conformation of the DNA-RNA duplex can be altered by dsRBD proteins, resulting in a weak binding of dsRBDs to DNA-RNA hybrids. Our study reveals the structural and molecular basis of protein-RNA interaction that gives rise to the observed substrate specificity of dsRNA binding proteins. PMID:24801449

  5. Structural domains in NADPH: Protochlorophyllide oxidoreductases involved in catalysis and substrate binding. Final report

    SciTech Connect

    Timko, Michael P.

    1999-09-24

    Until recently little direct information was available about specific structural determinants within the light-dependent NADPH: protochlorophyllide oxidoreductases (PORs) required for substrate and cofactor binding, catalytic activity, and thylakoid membrane localization. Based on our previous DOE-funded studies, during the past year we brought to fruition a number of ongoing experiments, initiated several new avenues of investigations, and overall have made considerable progress towards establishing the basic structural parameters governing POR function. Our studies to date have defined residues and domains involved in substrate and cofactor binding and catalysis, and elaborated on the mechanism for membrane localization of POR in developing plastids. Our results and their significance, as well as our work in progress, are detailed.

  6. Carboxy-Terminus Recruitment Induced by Substrate Binding in Eukaryotic Fructose Bis-phosphate Aldolases

    SciTech Connect

    Lafrance-Vanasse,J.; Sygusch, J.

    2007-01-01

    The crystal structures of Leishmania mexicana fructose-1,6-bis(phosphate) aldolase in complex with substrate and competitive inhibitor, mannitol-1,6-bis(phosphate), were solved to 2.2 {angstrom} resolution. Crystallographic analysis revealed a Schiff base intermediate trapped in the native structure complexed with substrate while the inhibitor was trapped in a conformation mimicking the carbinolamine intermediate. Binding modes corroborated previous structures reported for rabbit muscle aldolase. Amino acid substitution of Gly-312 to Ala, adjacent to the P{sub 1}-phosphate binding site and unique to trypanosomatids, did not perturb ligand binding in the active site. Ligand attachment ordered amino acid residues 359-367 of the C-terminal region (353-373) that was disordered beyond Asp-358 in the unbound structure, revealing a novel recruitment mechanism of this region by aldolases. C-Terminal peptide ordering is triggered by P{sub 1}-phosphate binding that induces conformational changes whereby C-terminal Leu-364 contacts P{sub 1}-phosphate binding residue Arg-313. C-Terminal region capture synergizes additional interactions with subunit surface residues, not perturbed by P1-phosphate binding, and stabilizes C-terminal attachment. Amino acid residues that participate in the capturing interaction are conserved among class I aldolases, indicating a general recruitment mechanism whereby C-terminal capture facilitates active site interactions in subsequent catalytic steps. Recruitment accelerates the enzymatic reaction by using binding energy to reduce configurational entropy during catalysis thereby localizing the conserved C-terminus tyrosine, which mediates proton transfer, proximal to the active site enamine.

  7. Carboxy-terminus recruitment induced by substrate binding in eukaryotic fructose bis-phosphate aldolases.

    PubMed

    Lafrance-Vanasse, Julien; Sygusch, Jurgen

    2007-08-21

    The crystal structures of Leishmania mexicana fructose-1,6-bis(phosphate) aldolase in complex with substrate and competitive inhibitor, mannitol-1,6-bis(phosphate), were solved to 2.2 A resolution. Crystallographic analysis revealed a Schiff base intermediate trapped in the native structure complexed with substrate while the inhibitor was trapped in a conformation mimicking the carbinolamine intermediate. Binding modes corroborated previous structures reported for rabbit muscle aldolase. Amino acid substitution of Gly-312 to Ala, adjacent to the P1-phosphate binding site and unique to trypanosomatids, did not perturb ligand binding in the active site. Ligand attachment ordered amino acid residues 359-367 of the C-terminal region (353-373) that was disordered beyond Asp-358 in the unbound structure, revealing a novel recruitment mechanism of this region by aldolases. C-Terminal peptide ordering is triggered by P1-phosphate binding that induces conformational changes whereby C-terminal Leu-364 contacts P1-phosphate binding residue Arg-313. C-Terminal region capture synergizes additional interactions with subunit surface residues, not perturbed by P1-phosphate binding, and stabilizes C-terminal attachment. Amino acid residues that participate in the capturing interaction are conserved among class I aldolases, indicating a general recruitment mechanism whereby C-terminal capture facilitates active site interactions in subsequent catalytic steps. Recruitment accelerates the enzymatic reaction by using binding energy to reduce configurational entropy during catalysis thereby localizing the conserved C-terminus tyrosine, which mediates proton transfer, proximal to the active site enamine. PMID:17661446

  8. Structural analysis of substrate binding by the TatBC component of the twin-arginine protein transport system.

    PubMed

    Tarry, Michael J; Schäfer, Eva; Chen, Shuyun; Buchanan, Grant; Greene, Nicholas P; Lea, Susan M; Palmer, Tracy; Saibil, Helen R; Berks, Ben C

    2009-08-11

    The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. In Escherichia coli substrate proteins initially bind to the integral membrane TatBC complex which then recruits the protein TatA to effect translocation. Overproduction of TatBC and the substrate protein SufI in the absence of TatA led to the accumulation of TatBC-SufI complexes that could be purified using an affinity tag on the substrate. Three-dimensional structures of the TatBC-SufI complexes and unliganded TatBC were obtained by single-particle electron microscopy and random conical tilt reconstruction. Comparison of the structures shows that substrate molecules bind on the periphery of the TatBC complex and that substrate binding causes a significant reduction in diameter of the TatBC part of the complex. Although the TatBC complex contains multiple copies of the signal peptide-binding TatC protomer, purified TatBC-SufI complexes contain only 1 or 2 SufI molecules. Where 2 substrates are present in the TatBC-SufI complex, they are bound at adjacent sites. These observations imply that only certain TatC protomers within the complex interact with substrate or that there is a negative cooperativity of substrate binding. Similar TatBC-substrate complexes can be generated by an alternative in vitro reconstitution method and using a different substrate protein. PMID:19666509

  9. Analysis of substrate specificity and cyclin Y binding of PCTAIRE-1 kinase

    PubMed Central

    Shehata, Saifeldin N.; Hunter, Roger W.; Ohta, Eriko; Peggie, Mark W.; Lou, Hua Jane; Sicheri, Frank; Zeqiraj, Elton; Turk, Benjamin E.; Sakamoto, Kei

    2012-01-01

    PCTAIRE-1 (cyclin-dependent kinase [CDK] 16) is a highly conserved serine/threonine kinase that belongs to the CDK family of protein kinases. Little is known regarding PCTAIRE-1 regulation and function and no robust assay exists to assess PCTAIRE-1 activity mainly due to a lack of information regarding its preferred consensus motif and the lack of bona fide substrates. We used positional scanning peptide library technology and identified the substrate-specificity requirements of PCTAIRE-1 and subsequently elaborated a peptide substrate termed PCTAIRE-tide. Recombinant PCTAIRE-1 displayed vastly improved enzyme kinetics on PCTAIRE-tide compared to a widely used generic CDK substrate peptide. PCTAIRE-tide also greatly improved detection of endogenous PCTAIRE-1 activity. Similar to other CDKs, PCTAIRE-1 requires a proline residue immediately C-terminal to the phosphoacceptor site (+ 1) for optimal activity. PCTAIRE-1 has a unique preference for a basic residue at + 4, but not at + 3 position (a key characteristic for CDKs). We also demonstrate that PCTAIRE-1 binds to a novel cyclin family member, cyclin Y, which increased PCTAIRE-1 activity towards PCTAIRE-tide > 100-fold. We hypothesised that cyclin Y binds and activates PCTAIRE-1 in a way similar to which cyclin A2 binds and activates CDK2. Point mutants of cyclin Y predicted to disrupt PCTAIRE-1-cyclin Y binding severely prevented complex formation and activation of PCTAIRE-1. We have identified PCTAIRE-tide as a powerful tool to study the regulation of PCTAIRE-1. Our understanding of the molecular interaction between PCTAIRE-1 and cyclin Y further facilitates future investigation of the functions of PCTAIRE-1 kinase. PMID:22796189

  10. Binding of the substrate UDP-glucuronic acid induces conformational changes in the xanthan gum glucuronosyltransferase.

    PubMed

    Salinas, S R; Petruk, A A; Brukman, N G; Bianco, M I; Jacobs, M; Marti, M A; Ielpi, L

    2016-06-01

    GumK is a membrane-associated glucuronosyltransferase of Xanthomonas campestris that is involved in xanthan gum biosynthesis. GumK belongs to the inverting GT-B superfamily and catalyzes the transfer of a glucuronic acid (GlcA) residue from uridine diphosphate (UDP)-GlcA (UDP-GlcA) to a lipid-PP-trisaccharide embedded in the membrane of the bacteria. The structure of GumK was previously described in its apo- and UDP-bound forms, with no significant conformational differences being observed. Here, we study the behavior of GumK toward its donor substrate UDP-GlcA. Turbidity measurements revealed that the interaction of GumK with UDP-GlcA produces aggregation of protein molecules under specific conditions. Moreover, limited proteolysis assays demonstrated protection of enzymatic digestion when UDP-GlcA is present, and this protection is promoted by substrate binding. Circular dichroism spectroscopy also revealed changes in the GumK tertiary structure after UDP-GlcA addition. According to the obtained emission fluorescence results, we suggest the possibility of exposure of hydrophobic residues upon UDP-GlcA binding. We present in silico-built models of GumK complexed with UDP-GlcA as well as its analogs UDP-glucose and UDP-galacturonic acid. Through molecular dynamics simulations, we also show that a relative movement between the domains appears to be specific and to be triggered by UDP-GlcA. The results presented here strongly suggest that GumK undergoes a conformational change upon donor substrate binding, likely bringing the two Rossmann fold domains closer together and triggering a change in the N-terminal domain, with consequent generation of the acceptor substrate binding site. PMID:27099353

  11. Substrate and Transition State Binding in Alkaline Phosphatase Analyzed by Computation of Oxygen Isotope Effects.

    PubMed

    Roston, Daniel; Cui, Qiang

    2016-09-14

    Enzymes are powerful catalysts, and a thorough understanding of the sources of their catalytic power will facilitate many medical and industrial applications. Here we have studied the catalytic mechanism of alkaline phosphatase (AP), which is one of the most catalytically proficient enzymes known. We have used quantum mechanics calculations and hybrid quantum mechanics/molecular mechanics (QM/MM) simulations to model a variety of isotope effects relevant to the reaction of AP. We have calculated equilibrium isotope effects (EIEs), binding isotope effects (BIEs), and kinetic isotope effects (KIEs) for a range of phosphate mono- and diester substrates. The results agree well with experimental values, but the model for the reaction's transition state (TS) differs from the original interpretation of those experiments. Our model indicates that isotope effects on binding make important contributions to measured KIEs on V/K, which complicated interpretation of the measured values. Our results provide a detailed interpretation of the measured isotope effects and make predictions that can test the proposed model. The model indicates that the substrate is deformed in the ground state (GS) of the reaction and partially resembles the TS. The highly preorganized active site preferentially binds conformations that resemble the TS and not the GS, which induces the substrate to adapt to the enzyme, rather than the other way around-as with classic "induced fit" models. The preferential stabilization of the TS over the GS is what lowers the barrier to the chemical step. PMID:27541005

  12. Binding of mouse immunoglobulin G to polylysine-coated glass substrate for immunodiagnosis

    NASA Astrophysics Data System (ADS)

    Vashist, Sandeep Kumar; Tewari, Rupinder; Bajpai, Ram Prakash; Bharadwaj, Lalit Mohan; Raiteri, Roberto

    2006-12-01

    We report a method for immobilizing mouse immunoglobulin G (IgG) on polylysine-coated glass substrate for immunodiagnostic applications. Mouse IgG molecules were immobilized on polylysine-coated glass substrate employing 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and protein A. The amino groups of the polylysine-coated glass slide were cross linked to the carboxyl groups of protein A employing EDC crosslinker. Protein A was employed as it binds to the constant Fc region of antibodies keeping their antigen binding sites on the variable F ab region free to bind to antigens. The qualitative analysis of surface immobilized mouse IgG was done by fluorescent microscopy employing fluorescein isothiocyanate (FITC) labeled mouse IgG molecules. The immobilization densities of protein A and mouse IgG were determined by 3, 3', 4, 4'-tetramethyl benzidine (TMB) substrate assay employing horse radish peroxidise labelled molecules and were found to be 130 +/- 17 ng/cm2 and 596 +/- 31 ng/cm2 respectively. The biomolecular coatings analyzed by atomic force microscopy (AFM) were found to be uniform.

  13. Oligosaccharyltransferase subunits bind polypeptide substrate to locally enhance N-glycosylation.

    PubMed

    Jamaluddin, M Fairuz B; Bailey, Ulla-Maja; Schulz, Benjamin L

    2014-12-01

    Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification. PMID:25118247

  14. Oligosaccharyltransferase Subunits Bind Polypeptide Substrate to Locally Enhance N-glycosylation*

    PubMed Central

    Jamaluddin, M. Fairuz B.; Bailey, Ulla-Maja; Schulz, Benjamin L.

    2014-01-01

    Oligosaccharyltransferase is a multiprotein complex that catalyzes asparagine-linked glycosylation of diverse proteins. Using yeast genetics and glycoproteomics, we found that transient interactions between nascent polypeptide and Ost3p/Ost6p, homologous subunits of oligosaccharyltransferase, were able to modulate glycosylation efficiency in a site-specific manner in vivo. These interactions were driven by hydrophobic and electrostatic complementarity between amino acids in the peptide-binding groove of Ost3p/Ost6p and the sequestered stretch of substrate polypeptide. Based on this dependence, we used in vivo scanning mutagenesis and in vitro biochemistry to map the precise interactions that affect site-specific glycosylation efficiency. We conclude that transient binding of substrate polypeptide by Ost3p/Ost6p increases glycosylation efficiency at asparagines proximal and C-terminal to sequestered sequences. We detail a novel mode of interaction between translocating nascent polypeptide and oligosaccharyltransferase in which binding to Ost3p/Ost6p segregates a short flexible loop of glycosylation-competent polypeptide substrate that is delivered to the oligosaccharyltransferase active site for efficient modification. PMID:25118247

  15. Mannitol-1-phosphate dehydrogenase of Escherichia coli. Chemical properties and binding of substrates.

    PubMed Central

    Chase, T

    1986-01-01

    Mannitol-1-phosphate dehydrogenase was purified to homogeneity, and some chemical and physical properties were examined. The isoelectric point is 4.19. Amino acid analysis and polyacrylamide-gel electrophoresis in presence of SDS indicate a subunit Mr of about 22,000, whereas gel filtration and electrophoresis of the native enzyme indicate an Mr of 45,000. Thus the enzyme is a dimer. Amino acid analysis showed cysteine, tyrosine, histidine and tryptophan to be present in low quantities, one, three, four and four residues per subunit respectively. The zinc content is not significant to activity. The enzyme is inactivated (greater than 99%) by reaction of 5,5'-dithiobis-(2-nitrobenzoate) with the single thiol group; the inactivation rate depends hyperbolically on reagent concentration, indicating non-covalent binding of the reagent before covalent modification. The pH-dependence indicated a pKa greater than 10.5 for the thiol group. Coenzymes (NAD+ and NADH) at saturating concentrations protect completely against reaction with 5,5'-dithiobis-(2-nitrobenzoate), and substrates (mannitol 1-phosphate, fructose 6-phosphate) protect strongly but not completely. These results suggest that the thiol group is near the catalytic site, and indicate that substrates as well as coenzymes bind to free enzyme. Dissociation constants were determined from these protective effects: 0.6 +/- 0.1 microM for NADH, 0.2 +/- 0.03 mM for NAD+, 9 +/- 3 microM for mannitol 1-phosphate, 0.06 +/- 0.03 mM for fructose 6-phosphate. The binding order for reaction thus may be random for mannitol 1-phosphate oxidation, though ordered for fructose 6-phosphate reduction. Coenzyme and substrate binding in the E X NADH-mannitol 1-phosphate complex is weaker than in the binary complexes, though in the E X NADH+-fructose 6-phosphate complex binding is stronger. PMID:3545182

  16. The Use of Nucleosome Substrates Improves Binding of SAM Analogs to SETD8.

    PubMed

    Strelow, John M; Xiao, Min; Cavitt, Rachel N; Fite, Nathan C; Margolis, Brandon J; Park, Kyu-Jin

    2016-09-01

    SETD8 is the methyltransferase responsible for monomethylation of lysine at position 20 of the N-terminus of histone H4 (H4K20). This activity has been implicated in both DNA damage and cell cycle progression. Existing biochemical assays have utilized truncated enzymes containing the SET domain of SETD8 and peptide substrates. In this report, we present the development of a mechanistically balanced biochemical assay using full-length SETD8 and a recombinant nucleosome substrate. This improves the binding of SAM, SAH, and sinefungin by up to 10,000-fold. A small collection of inhibitors structurally related to SAM were screened and 40 compounds were identified that only inhibit SETD8 when a nucleosome substrate is used. PMID:27369108

  17. Investigation into the nature of substrate binding to the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase

    SciTech Connect

    Warren, M.J.; Jordan, P.M.

    1988-12-13

    The formation of the dipyrromethane cofactor of Escherichia coli porphobilinogen deaminase was shown to depend on the presence of 5-aminolevulinic acid. A hemA/sup -/ mutant formed inactive deaminase when grown in the absence of 5-aminolevulinic acid since this strain was unable to biosynthesize the dipyrromethane cofactor. The mutant formed normal levels of deaminase, however, when grown in the presence of 5-aminolevulinic acid. Porphobilinogen, the substrate, interacts with the free ..cap alpha..-position of the dipyrromethane cofactor to give stable enzyme-intermediate complexes. Experiments with regiospecifically labeled intermediate complexes have shown that, in the absence of further substrate molecules, the complexes are interconvertible by the exchange of the terminal pyrrole ring of each complex. The formation of enzyme-intermediate complexes is accompanied by the exposure of a cysteine residue, suggesting that substantial conformational changes occur on binding substrate. Specific labeling of the dipyrromethane cofactor by growth of the E. coli in the presence of 5-amino(5-/sup 14/C)levulinic acid has confirmed that the cofactor is not subject to catalytic turnover. Experiments with the ..cap alpha..-substituted substrate analogue ..cap alpha..-bromoporphobilinogen have provided further evidence that the cofactor is responsible for the covalent binding of the substrate at the catalytic site. On the basis of these cummulative findings, it has been possible to construct a mechanistic scheme for the deaminase reaction involving a single catalytic site which is able to catalyze the addition or removal of either NH/sub 3/ or H/sub 2/O. The role of the cofactor both as a primer and as a means for regulating the number of substrates bound in each catalytic cycle is discussed.

  18. Understanding the molecular basis of substrate binding specificity of PTB domains

    PubMed Central

    Sain, Neetu; Tiwari, Garima; Mohanty, Debasisa

    2016-01-01

    Protein-protein interactions mediated by phosphotyrosine binding (PTB) domains play a crucial role in various cellular processes. In order to understand the structural basis of substrate recognition by PTB domains, multiple explicit solvent atomistic simulations of 100ns duration have been carried out on 6 PTB-peptide complexes with known binding affinities. MM/PBSA binding energy values calculated from these MD trajectories and residue based statistical pair potential score show good correlation with the experimental dissociation constants. Our analysis also shows that the modeled structures of PTB domains can be used to develop less compute intensive residue level statistical pair potential based approaches for predicting interaction partners of PTB domains. PMID:27526776

  19. Cytochrome P450 2C8 ω3-Long-Chain Polyunsaturated Fatty Acid Metabolites Increase Mouse Retinal Pathologic Neovascularization—Brief Report

    PubMed Central

    Shao, Zhuo; Fu, Zhongjie; Stahl, Andreas; Joyal, Jean-Sébastien; Hatton, Colman; Juan, Aimee; Hurst, Christian; Evans, Lucy; Cui, Zhenghao; Pei, Dorothy; Gong, Yan; Xu, Dan; Tian, Katherine; Bogardus, Hannah; Edin, Matthew L.; Lih, Fred; Sapieha, Przemyslaw; Chen, Jing; Panigrahy, Dipak; Hellstrom, Ann; Zeldin, Darryl C.; Smith, Lois E.H.

    2014-01-01

    Objective Regulation of angiogenesis is critical for many diseases. Specifically, pathological retinal neovascularization, a major cause of blindness, is suppressed with dietary ω3-long-chain polyunsaturated fatty acids (ω3LCPUFAs) through antiangiogenic metabolites of cyclooxygenase and lipoxygenase. Cytochrome P450 epoxygenases (CYP2C8) also metabolize LCPUFAs, producing bioactive epoxides, which are inactivated by soluble epoxide hydrolase (sEH) to transdihydrodiols. The effect of these enzymes and their metabolites on neovascularization is unknown. Approach and Results The mouse model of oxygen-induced retinopathy was used to investigate retinal neovascularization. We found that CYP2C (localized in wild-type monocytes/macrophages) is upregulated in oxygen-induced retinopathy, whereas sEH is suppressed, resulting in an increased retinal epoxide:diol ratio. With a ω3LCPUFA-enriched diet, retinal neovascularization increases in Tie2-driven human-CYP2C8–overexpressing mice (Tie2-CYP2C8-Tg), associated with increased plasma 19,20-epoxydocosapentaenoic acid and retinal epoxide:diol ratio. 19,20-Epoxydocosapentaenoic acids and the epoxide:diol ratio are decreased with overexpression of sEH (Tie2-sEH-Tg). Overexpression of CYP2C8 or sEH in mice does not change normal retinal vascular development compared with their wild-type littermate controls. The proangiogenic role in retina of CYP2C8 with both ω3LCPUFA and ω6LCPUFA and antiangiogenic role of sEH in ω3LCPUFA metabolism were corroborated in aortic ring assays. Conclusions Our results suggest that CYP2C ω3LCPUFA metabolites promote retinal pathological angiogenesis. CYP2C8 is part of a novel lipid metabolic pathway influencing retinal neovascularization. PMID:24458713

  20. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes.

    PubMed

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-09-01

    Although one of an enzyme's hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. It is known that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. Here we report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination. PMID:26244568

  1. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    DOE PAGESBeta

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involvingmore » the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.« less

  2. Substrate-Assisted Catalysis in the Reaction Catalyzed by Salicylic Acid Binding Protein 2 (SABP2), a Potential Mechanism of Substrate Discrimination for Some Promiscuous Enzymes

    SciTech Connect

    Yao, Jianzhuang; Guo, Haobo; Chaiprasongsuk, Minta; Zhao, Nan; Chen, Feng; Yang, Xiaohan; Guo, Hong

    2015-08-05

    Although one of an enzyme’s hallmarks is the high specificity for their natural substrates, substrate promiscuity has been reported more frequently. We know that promiscuous enzymes generally show different catalytic efficiencies to different substrates, but our understanding of the origin of such differences is still lacking. We report the results of quantum mechanical/molecular mechanical simulations and an experimental study of salicylic acid binding protein 2 (SABP2). SABP2 has promiscuous esterase activity toward a series of substrates but shows a high activity toward its natural substrate, methyl salicylate (MeSA). Finally, our results demonstrate that this enzyme may use substrate-assisted catalysis involving the hydroxyl group from MeSA to enhance the activity and achieve substrate discrimination.

  3. The divalent metal ion in the active site of uteroferrin modulates substrate binding and catalysis

    PubMed Central

    Mitić, Nataša; Hadler, Kieran S.; Gahan, Lawrence R; Hengge, Alvan C.; Schenk, Gerhard

    2010-01-01

    The purple acid phosphatases (PAP) are binuclear metallohydrolases that catalyze the hydrolysis of a broad range of phosphomonoester substrates. The mode of substrate binding during catalysis and the identity of the nucleophile is subject to debate. Here, we used native Fe3+-Fe2+ pig PAP (uteroferrin; Uf) and its Fe3+-Mn2+ derivative to investigate the effect of metal ion substitution on the mechanism of catalysis. Replacement of the Fe2+ by Mn2+ lowers the reactivity of Uf. However, using stopped-flow measurements it could be shown that this replacement facilitates approximately a ten-fold faster reaction between both substrate and inorganic phosphate with the chromophoric Fe3+ site. These data also indicate that in both metal forms of Uf, phenyl phosphate hydrolysis occurs faster than formation of a μ-1,3 phosphate complex. The slower rate of interaction between substrate and the Fe3+ site relative to catalysis suggests that the substrate is hydrolyzed while coordinated only to the divalent metal ion. The likely nucleophile is a water molecule in the second coordination sphere, activated by a hydroxide terminally coordinated to Fe3+. The faster rates of interaction with the Fe3+ site in the Fe3+-Mn2+ derivative than the native Fe3+-Fe2+ form are likely mediated via a hydrogen bond network connecting the first and second coordination spheres, and illustrate how the selection of metal ions may be important in fine-tuning the function of this enzyme. PMID:20433174

  4. Conformational Changes in Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase upon Substrate Binding

    PubMed Central

    Baños-Sanz, José Ignacio; Sanz-Aparicio, Julia; Whitfield, Hayley; Hamilton, Chris; Brearley, Charles A.; González, Beatriz

    2012-01-01

    Inositol 1,3,4,5,6-pentakisphosphate 2-kinase (IP5 2-K) catalyzes the synthesis of inositol 1,2,3,4,5,6-hexakisphosphate from ATP and IP5. Inositol 1,2,3,4,5,6-hexakisphosphate is implicated in crucial processes such as mRNA export, DNA editing, and phosphorus storage in plants. We previously solved the first structure of an IP5 2-K, which shed light on aspects of substrate recognition. However, failure of IP5 2-K to crystallize in the absence of inositide prompted us to study putative conformational changes upon substrate binding. We have made mutations to residues on a region of the protein that produces a clasp over the active site. A W129A mutant allowed us to capture IP5 2-K in its different conformations by crystallography. Thus, the IP5 2-K apo-form structure displays an open conformation, whereas the nucleotide-bound form shows a half-closed conformation, in contrast to the inositide-bound form obtained previously in a closed conformation. Both nucleotide and inositide binding produce large conformational changes that can be understood as two rigid domain movements, although local changes were also observed. Changes in intrinsic fluorescence upon nucleotide and inositide binding are in agreement with the crystallographic findings. Our work suggests that the clasp might be involved in enzyme kinetics, with the N-terminal lobe being essential for inositide binding and subsequent conformational changes. We also show how IP5 2-K discriminates between inositol 1,3,4,5-tetrakisphosphate and 3,4,5,6-tetrakisphosphate enantiomers and that substrate preference can be manipulated by Arg130 mutation. Altogether, these results provide a framework for rational design of specific inhibitors with potential applications as biological tools for in vivo studies, which could assist in the identification of novel roles for IP5 2-K in mammals. PMID:22745128

  5. Structural Basis for Substrate Binding and the Catalytic Mechanism of Type III Pantothenate Kinase

    SciTech Connect

    Yang, Kun; Strauss, Erick; Huerta, Carlos; Zhang, Hong

    2008-07-15

    Pantothenate kinase (PanK) catalyzes the first step of the universal five-step coenzyme A (CoA) biosynthetic pathway. The recently characterized type III PanK (PanK-III, encoded by the coaX gene) is distinct in sequence, structure and enzymatic properties from both the long-known bacterial type I PanK (PanK-I, exemplified by the Escherichia coli CoaA protein) and the predominantly eukaryotic type II PanK (PanK-II). PanK-III enzymes have an unusually high K{sub m} for ATP, are resistant to feedback inhibition by CoA, and are unable to utilize the N-alkylpantothenamide family of pantothenate analogues as alternative substrates, thus making type III PanK ineffective in generating CoA analogues as antimetabolites in vivo. Previously, we reported the crystal structure of the PanK-III from Thermotoga maritima and identified it as a member of the 'acetate and sugar kinase/heat shock protein 70/actin' (ASKHA) superfamily. Here we report the crystal structures of the same PanK-III in complex with one of its substrates (pantothenate), its product (phosphopantothenate) as well as a ternary complex structure of PanK-III with pantothenate and ADP. These results are combined with isothermal titration calorimetry experiments to present a detailed structural and thermodynamic characterization of the interactions between PanK-III and its substrates ATP and pantothenate. Comparison of substrate binding and catalytic sites of PanK-III with that of eukaryotic PanK-II revealed drastic differences in the binding modes for both ATP and pantothenate substrates, and suggests that these differences may be exploited in the development of new inhibitors specifically targeting PanK-III.

  6. Planar substrate-binding site dictates the specificity of ECF-type nickel/cobalt transporters

    PubMed Central

    Yu, You; Zhou, Mingze; Kirsch, Franziska; Xu, Congqiao; Zhang, Li; Wang, Yu; Jiang, Zheng; Wang, Na; Li, Jun; Eitinger, Thomas; Yang, Maojun

    2014-01-01

    The energy-coupling factor (ECF) transporters are multi-subunit protein complexes that mediate uptake of transition-metal ions and vitamins in about 50% of the prokaryotes, including bacteria and archaea. Biological and structural studies have been focused on ECF transporters for vitamins, but the molecular mechanism by which ECF systems transport metal ions from the environment remains unknown. Here we report the first crystal structure of a NikM, TtNikM2, the substrate-binding component (S component) of an ECF-type nickel transporter from Thermoanaerobacter tengcongensis. In contrast to the structures of the vitamin-specific S proteins with six transmembrane segments (TSs), TtNikM2 possesses an additional TS at its N-terminal region, resulting in an extracellular N-terminus. The highly conserved N-terminal loop inserts into the center of TtNikM2 and occludes a region corresponding to the substrate-binding sites of the vitamin-specific S components. Nickel binds to NikM via its coordination to four nitrogen atoms, which are derived from Met1, His2 and His67 residues. These nitrogen atoms form an approximately square-planar geometry, similar to that of the metal ion-binding sites in the amino-terminal Cu2+- and Ni2+-binding (ATCUN) motif. Replacements of residues in NikM contributing to nickel coordination compromised the Ni-transport activity. Furthermore, systematic quantum chemical investigation indicated that this geometry enables NikM to also selectively recognize Co2+. Indeed, the structure of TtNikM2 containing a bound Co2+ ion has almost no conformational change compared to the structure that contains a nickel ion. Together, our data reveal an evolutionarily conserved mechanism underlying the metal selectivity of EcfS proteins, and provide insights into the ion-translocation process mediated by ECF transporters. PMID:24366337

  7. Finding the right RNA: identification of cellular mRNA substrates for RNA-binding proteins.

    PubMed Central

    Trifillis, P; Day, N; Kiledjian, M

    1999-01-01

    Defects in RNA-binding proteins have been implicated in human genetic disorders. However, efforts in understanding the functions of these proteins have been hampered by the inability to obtain their mRNA substrates. To identify cognate cellular mRNAs associated with an RNA-binding protein, we devised a strategy termed isolation of specific nucleic acids associated with proteins (SNAAP). The SNAAP technique allows isolation and subsequent identification of these mRNAs. To assess the validity of this approach, we utilized cellular mRNA and protein from K562 cells and alphaCP1, a protein implicated in a-globin mRNA stability, as a model system. Immobilization of an RNA-binding protein with the glutathione-S-transferase (GST) domain enables isolation of mRNA within an mRNP context and the identity of the bound mRNAs is determined by the differential display assay. The specificity of protein-RNA interactions was considerably enhanced when the interactions were carried out in the presence of cellular extract rather than purified components. Two of the mRNAs specifically bound by alphaCP1 were mRNAs encoding the transmembrane receptor protein, TAPA-1, and the mitochondrial cytochrome c oxidase subunit II enzyme, coxII. A specific poly(C)-sensitive complex formed on the TAPA-1 and coxII 3' UTRs consistent with the binding of aCP1. Furthermore, direct binding of purified alphaCP proteins to these 3' UTRs was demonstrated and the binding sites determined. These results support the feasibility of the SNAAP technique and suggest a broad applicability for the approach in identifying mRNA targets for clinically relevant RNA-binding proteins that will provide insights into their possible functions. PMID:10445881

  8. Effect of buffer conditions on CYP2C8-mediated paclitaxel 6α-hydroxylation and CYP3A4-mediated triazolam α- and 4-hydroxylation by human liver microsomes.

    PubMed

    Kudo, Toshiyuki; Ozaki, Yuya; Kusano, Tomomi; Hotta, Eri; Oya, Yuka; Komatsu, Seina; Goda, Hitomi; Ito, Kiyomi

    2016-01-01

    1. Buffer conditions in in vitro metabolism studies using human liver microsomes (HLM) have been reported to affect the metabolic activities of several cytochrome P450 (CYP) isozymes in different ways, although there are no reports about the dependence of CYP2C8 activity on buffer conditions. 2. The present study investigated the effect of buffer components (phosphate or Tris-HCl) and their concentration (10-200 mM) on the CYP2C8 and CYP3A4 activities of HLM, using paclitaxel and triazolam, respectively, as marker substrates. 3. The Km (or S50) and Vmax values for both paclitaxel 6α-hydroxylation and triazolam α- and 4-hydroxylation, estimated by fitting analyses based on the Michaelis-Menten or Hill equation, greatly depended on the buffer components and their concentration. 4. The CLint values in phosphate buffer were 1.2-3.0-fold (paclitaxel) or 3.1-6.4-fold (triazolam) higher than in Tris-HCl buffer at 50-100 mM. These values also depended on the buffer concentration, with a maximum 2.3-fold difference observed between 50 and 100 mM which are both commonly used in drug metabolism studies. 5. These findings suggest the necessity for optimization of the buffer conditions in the quantitative evaluation of metabolic clearances, such as in vitro-in vivo extrapolation and also estimating the contribution of a particular enzyme in drug metabolism. PMID:26290405

  9. Evacetrapib: in vitro and clinical disposition, metabolism, excretion, and assessment of drug interaction potential with strong CYP3A and CYP2C8 inhibitors.

    PubMed

    Cannady, Ellen A; Wang, Ming-Dauh; Friedrich, Stuart; Rehmel, Jessica L F; Yi, Ping; Small, David S; Zhang, Wei; Suico, Jeffrey G

    2015-10-01

    Evacetrapib is an investigational cholesteryl ester transfer protein inhibitor (CETPi) for reduction of risk of major adverse cardiovascular events in patients with high-risk vascular disease. Understanding evacetrapib disposition, metabolism, and the potential for drug-drug interactions (DDI) may help guide prescribing recommendations. In vitro, evacetrapib metabolism was investigated with a panel of human recombinant cytochromes P450 (CYP). The disposition, metabolism, and excretion of evacetrapib following a single 100-mg oral dose of (14)C-evacetrapib were determined in healthy subjects, and the pharmacokinetics of evacetrapib were evaluated in the presence of strong CYP3A or CYP2C8 inhibitors. In vitro, CYP3A was responsible for about 90% of evacetrapib's CYP-associated clearance, while CYP2C8 accounted for about 10%. In the clinical disposition study, only evacetrapib and two minor metabolites circulated in plasma. Evacetrapib metabolism was extensive. A mean of 93.1% and 2.30% of the dose was excreted in feces and urine, respectively. In clinical DDI studies, the ratios of geometric least squares means for evacetrapib with/without the CYP3A inhibitor ketoconazole were 2.37 for area under the curve (AUC)(0-∞) and 1.94 for C max. There was no significant difference in evacetrapib AUC(0-τ) or C max with/without the CYP2C8 inhibitor gemfibrozil, with ratios of 0.996 and 1.02, respectively. Although in vitro results indicated that both CYP3A and CYP2C8 metabolized evacetrapib, clinical studies confirmed that evacetrapib is primarily metabolized by CYP3A. However, given the modest increase in evacetrapib exposure and robust clinical safety profile to date, there is a low likelihood of clinically relevant DDI with concomitant use of strong CYP3A or CYP2C8 inhibitors. PMID:26516590

  10. Evacetrapib: in vitro and clinical disposition, metabolism, excretion, and assessment of drug interaction potential with strong CYP3A and CYP2C8 inhibitors

    PubMed Central

    Cannady, Ellen A; Wang, Ming-Dauh; Friedrich, Stuart; Rehmel, Jessica L F; Yi, Ping; Small, David S; Zhang, Wei; Suico, Jeffrey G

    2015-01-01

    Evacetrapib is an investigational cholesteryl ester transfer protein inhibitor (CETPi) for reduction of risk of major adverse cardiovascular events in patients with high-risk vascular disease. Understanding evacetrapib disposition, metabolism, and the potential for drug–drug interactions (DDI) may help guide prescribing recommendations. In vitro, evacetrapib metabolism was investigated with a panel of human recombinant cytochromes P450 (CYP). The disposition, metabolism, and excretion of evacetrapib following a single 100-mg oral dose of 14C-evacetrapib were determined in healthy subjects, and the pharmacokinetics of evacetrapib were evaluated in the presence of strong CYP3A or CYP2C8 inhibitors. In vitro, CYP3A was responsible for about 90% of evacetrapib's CYP-associated clearance, while CYP2C8 accounted for about 10%. In the clinical disposition study, only evacetrapib and two minor metabolites circulated in plasma. Evacetrapib metabolism was extensive. A mean of 93.1% and 2.30% of the dose was excreted in feces and urine, respectively. In clinical DDI studies, the ratios of geometric least squares means for evacetrapib with/without the CYP3A inhibitor ketoconazole were 2.37 for area under the curve (AUC)(0–∞) and 1.94 for Cmax. There was no significant difference in evacetrapib AUC(0–τ) or Cmax with/without the CYP2C8 inhibitor gemfibrozil, with ratios of 0.996 and 1.02, respectively. Although in vitro results indicated that both CYP3A and CYP2C8 metabolized evacetrapib, clinical studies confirmed that evacetrapib is primarily metabolized by CYP3A. However, given the modest increase in evacetrapib exposure and robust clinical safety profile to date, there is a low likelihood of clinically relevant DDI with concomitant use of strong CYP3A or CYP2C8 inhibitors. PMID:26516590

  11. Processivity, substrate binding, and mechanism of cellulose hydrolysis by Thermobifida fusca Cel9A.

    PubMed

    Li, Yongchao; Irwin, Diana C; Wilson, David B

    2007-05-01

    Thermobifida fusca Cel9A-90 is a processive endoglucanase consisting of a family 9 catalytic domain (CD), a family 3c cellulose binding module (CBM3c), a fibronectin III-like domain, and a family 2 CBM. This enzyme has the highest activity of any individual T. fusca enzyme on crystalline substrates, particularly bacterial cellulose (BC). Mutations were introduced into the CD or the CBM3c of Cel9A-68 using site-directed mutagenesis. The mutant enzymes were expressed in Escherichia coli; purified; and tested for activity on four substrates, ligand binding, and processivity. The results show that H125 and Y206 play an important role in activity by forming a hydrogen bonding network with the catalytic base, D58; another important supporting residue, D55; and Glc(-1) O1. R378, a residue interacting with Glc(+1), plays an important role in processivity. Several enzymes with mutations in the subsites Glc(-2) to Glc(-4) had less than 15% activity on BC and markedly reduced processivity. Mutant enzymes with severalfold-higher activity on carboxymethyl cellulose (CMC) were found in the subsites from Glc(-2) to Glc(-4). The CBM3c mutant enzymes, Y520A, R557A/E559A, and R563A, had decreased activity on BC but had wild-type or improved processivity. Mutation of D513, a conserved residue at the end of the CBM, increased activity on crystalline cellulose. Previous work showed that deletion of the CBM3c abolished crystalline activity and processivity. This study shows that it is residues in the catalytic cleft that control processivity while the CBM3c is important for loose binding of the enzyme to the crystalline cellulose substrate. PMID:17369336

  12. The role of propionates in substrate binding to heme oxygenase from Neisseria meningitidis; A NMR study†

    PubMed Central

    Peng, Dungeng; Ma, Li-Hua; Smith, Kevin M.; Zhang, Xuhong; Sato, Michihiko; La Mar, Gerd N.

    2012-01-01

    Heme oxygenase, HO, cleaves hemin into biliverdin, iron and CO. For mammalian HOs, both native hemin propionates are required for substrate binding and activity. The HO from the pathogenic bacterium Neisseria meningitidis, NmHO, possesses a crystallographically undetected C-terminal fragment that by solution 1H NMR is found to fold and interact with the active site. One of the substrate propionates has been proposed to form a salt bridge to the C-terminus rather than to the conventional buried cationic side chain in other HOs. Moreover, the C-terminal dipeptide Arg208His209 cleaves spontaneously over ~24 hours at a rate dependent on substituent size. 2D 1H NMR of NmHO azide complexes with hemins with selectively deleted or rearranged propionates all bind to NmHO with a structurally conserved active site as reflected in optical spectra and NMR NOESY cross peak and hyperfine shift patterns. In contrast to mammalian HOs, NmHO requires only a single propionate interacting with the buried terminus of Lys16 to exhibit full activity and tolerates the existence of a propionate at the exposed 8-position. The structure of the C-terminus is qualitatively retained upon deletion of the 7-propionate but a dramatic change in the 7-propionate carboxylate 13C chemical shift upon C-terminal cleavage confirms its role in the interaction with the C-terminus. The stronger hydrophobic contacts between pyrroles A and B with NmHO contribute more substantially to the substrate binding free energy than in mammalian HOs, “liberating” one propionate to stabilize the C-terminus. The functional implications of the C-terminus in product release are discussed. PMID:22913621

  13. Reductive dehalogenation by cytochrome P450CAM: Substrate binding and catalysis

    SciTech Connect

    Li, S.; Wackett, L.P. )

    1993-09-14

    Biological reductive dehalogenation reactions are important in environmental detoxification of organohalides. Only scarce information is available on the enzymology underlying these reactions. Cytochrome P450CAM with a known X-ray structure and well-studied oxygenase reaction cycle, has been studied for its ability to reduce carbon-halogen bonds under anaerobic conditions. The reductive reactions functioned with NADH and the physiological electron-transfer proteins or by using artificial electron donors to reduce cytochrome P450CAM. Halogenated methane and ethane substrates were transformed by a two-electron reduction and subsequent protonation, beta-elimination, or alpha-elimination to yield alkanes, alkene, or carbene-derived products, respectively. Halogenated substrates bound to the camphor binding site as indicated by saturable changes in the Fe(III)-heme spin state upon substrate addition. Hexachloromethane was bound with a dissociation constant (KD) of 0.7 microM and caused > 95% shift from low- to high-spin iron. Ethanes bearing fewer chlorine substituents were bound with increasing dissociation constants and gave lesser degrees of iron spin-state change. Camphor competitively inhibited hexachloroethane reduction with an inhibitor constant (KI) similar to the dissociation constant for camphor (KI = KD = 0.9 microM). Rate determinations with pentachloroethane indicated a 100-fold higher enzyme V/K compared to the second-order rate constant for hematin free in solution. These studies on substrate binding and catalysis will help reveal how biological systems enzymatically reduce carbon-halogen bonds in the environment.

  14. Control of glycolytic enzyme binding: effect of changing enzyme substrate concentrations on in vivo enzyme distributions.

    PubMed

    Brooks, S P; Storey, K B

    1993-05-12

    The effect of changing concentrations of glycolytic intermediates on the binding of phosphofructokinase, aldolase and pyruvate kinase to cellular particulate matter was investigated. Concentrations of glycolytic intermediates were altered by adding 2 mM iodoacetic acid (IAA) to an incubation medium containing tissues isolated from the channelled whelk Busycon canaliculatum. Iodoacetic acid inhibited glyceraldehyde 3-phosphate dehydrogenase activity causing a 100-400 fold increase in the concentration of fructose 1,6-bisphosphate as well as 3-20 fold increases in glucose 6-phosphate, fructose 6-phosphate, and dihydroxyacetone phosphate levels depending on the experimental protocol. Cellular pH values were not statistically different in the presence of IAA. Measurement of enzyme binding to particulate matter showed that the binding of phosphofructokinase, aldolase and pyruvate kinase was unaffected by iodoacetic acid under any experimental condition. These results show that changes in the tissue concentrations of enzyme substrates and products do not regulate enzyme binding to particulate matter in the cell. PMID:8350861

  15. Substrate Binding Mode and its Implication on Drug Design for Botulinum Neurotoxin A

    SciTech Connect

    Kumaran, D.; Rawat, R; Ahmed, A; Swaminathan, S

    2008-01-01

    The seven antigenically distinct serotypes of Clostridium botulinum neurotoxins, the causative agents of botulism, block the neurotransmitter release by specifically cleaving one of the three SNARE proteins and induce flaccid paralysis. The Centers for Disease Control and Prevention (CDC) has declared them as Category A biowarfare agents. The most potent among them, botulinum neurotoxin type A (BoNT/A), cleaves its substrate synaptosome-associated protein of 25 kDa (SNAP-25). An efficient drug for botulism can be developed only with the knowledge of interactions between the substrate and enzyme at the active site. Here, we report the crystal structures of the catalytic domain of BoNT/A with its uncleavable SNAP-25 peptide 197QRATKM202 and its variant 197RRATKM202 to 1.5 A and 1.6 A, respectively. This is the first time the structure of an uncleavable substrate bound to an active botulinum neurotoxin is reported and it has helped in unequivocally defining S1 to S5? sites. These substrate peptides make interactions with the enzyme predominantly by the residues from 160, 200, 250 and 370 loops. Most notably, the amino nitrogen and carbonyl oxygen of P1 residue (Gln197) chelate the zinc ion and replace the nucleophilic water. The P1?-Arg198, occupies the S1? site formed by Arg363, Thr220, Asp370, Thr215, Ile161, Phe163 and Phe194. The S2? subsite is formed by Arg363, Asn368 and Asp370, while S3? subsite is formed by Tyr251, Leu256, Val258, Tyr366, Phe369 and Asn388. P4?-Lys201 makes hydrogen bond with Gln162. P5?-Met202 binds in the hydrophobic pocket formed by the residues from the 250 and 200 loop. Knowledge of interactions between the enzyme and substrate peptide from these complex structures should form the basis for design of potent inhibitors for this neurotoxin.

  16. Squeezing at entrance of proton transport pathway in proton-translocating pyrophosphatase upon substrate binding.

    PubMed

    Huang, Yun-Tzu; Liu, Tseng-Huang; Lin, Shih-Ming; Chen, Yen-Wei; Pan, Yih-Jiuan; Lee, Ching-Hung; Sun, Yuh-Ju; Tseng, Fan-Gang; Pan, Rong-Long

    2013-07-01

    Homodimeric proton-translocating pyrophosphatase (H(+)-PPase; EC 3.6.1.1) is indispensable for many organisms in maintaining organellar pH homeostasis. This unique proton pump couples the hydrolysis of PPi to proton translocation across the membrane. H(+)-PPase consists of 14-16 relatively hydrophobic transmembrane domains presumably for proton translocation and hydrophilic loops primarily embedding a catalytic site. Several highly conserved polar residues located at or near the entrance of the transport pathway in H(+)-PPase are essential for proton pumping activity. In this investigation single molecule FRET was employed to dissect the action at the pathway entrance in homodimeric Clostridium tetani H(+)-PPase upon ligand binding. The presence of the substrate analog, imidodiphosphate mediated two sites at the pathway entrance moving toward each other. Moreover, single molecule FRET analyses after the mutation at the first proton-carrying residue (Arg-169) demonstrated that conformational changes at the entrance are conceivably essential for the initial step of H(+)-PPase proton translocation. A working model is accordingly proposed to illustrate the squeeze at the entrance of the transport pathway in H(+)-PPase upon substrate binding. PMID:23720778

  17. Substrate Binding Promotes Formation of the Skp1-Cul1-Fbxl3 (SCFFbxl3) Protein Complex*

    PubMed Central

    Yumimoto, Kanae; Muneoka, Tetsuya; Tsuboi, Tomohiro; Nakayama, Keiichi I.

    2013-01-01

    The Skp1–Cul1–F-box protein (SCF) complex is one of the most well characterized types of ubiquitin ligase (E3), with the E3 activity of the complex being regulated in part at the level of complex formation. Fbxl3 is an F-box protein that is responsible for the ubiquitylation and consequent degradation of cryptochromes (Crys) and thus regulates oscillation of the circadian clock. Here we show that formation of the SCFFbxl3 complex is regulated by substrate binding in vivo. Fbxl3 did not associate with Skp1 and Cul1 to a substantial extent in transfected mammalian cells. Unexpectedly, however, formation of the SCFFbxl3 complex was markedly promoted by forced expression of its substrate Cry1 in these cells. A mutant form of Fbxl3 that does not bind to Cry1 was unable to form an SCF complex, suggesting that interaction of Cry1 with Fbxl3 is essential for formation of SCFFbxl3. In contrast, recombinant Fbxl3 associated with recombinant Skp1 and Cul1 in vitro even in the absence of recombinant Cry1. Domain-swap analysis revealed that the COOH-terminal leucine-rich repeat domain of Fbxl3 attenuates the interaction of Skp1, suggesting that a yet unknown protein associated with the COOH-terminal domain of Fbxl3 and inhibited SCF complex formation. Our results thus provide important insight into the regulation of both SCF ubiquitin ligase activity and circadian rhythmicity. PMID:24085301

  18. Quantitative Correlation of Conformational Binding Enthalpy with Substrate Specificity of Serine Proteases

    PubMed Central

    2015-01-01

    Members of the same protease family show different substrate specificity, even if they share identical folds, depending on the physiological processes they are part of. Here, we investigate the key factors for subpocket and global specificity of factor Xa, elastase, and granzyme B which despite all being serine proteases and sharing the chymotrypsin-fold show distinct substrate specificity profiles. We determined subpocket interaction potentials with GRID for static X-ray structures and an in silico generated ensemble of conformations. Subpocket interaction potentials determined for static X-ray structures turned out to be insufficient to explain serine protease specificity for all subpockets. Therefore, we generated conformational ensembles using molecular dynamics simulations. We identified representative binding site conformations using distance-based hierarchical agglomerative clustering and determined subpocket interaction potentials for each representative conformation of the binding site. Considering the differences in subpocket interaction potentials for these representative conformations as well as their abundance allowed us to quantitatively explain subpocket specificity for the nonprime side for all three example proteases on a molecular level. The methods to identify key regions determining subpocket specificity introduced in this study are directly applicable to other serine proteases, and the results provide starting points for new strategies in rational drug design. PMID:26709959

  19. Structural basis of substrate binding in WsaF, a rhamnosyltransferase from Geobacillus stearothermophilus.

    PubMed

    Steiner, Kerstin; Hagelueken, Gregor; Messner, Paul; Schäffer, Christina; Naismith, James H

    2010-03-26

    Carbohydrate polymers are medically and industrially important. The S-layer of many Gram-positive organisms comprises protein and carbohydrate polymers and forms an almost paracrystalline array on the cell surface. Not only is this array important for the bacteria but it has potential application in the manufacture of commercially important polysaccharides and glycoconjugates as well. The S-layer glycoprotein glycan from Geobacillus stearothermophilus NRS 2004/3a is mainly composed of repeating units of three rhamnose sugars linked by alpha-1,3-, alpha-1,2-, and beta-1,2-linkages. The formation of the beta-1,2-linkage is catalysed by the enzyme WsaF. The rational use of this system is hampered by the fact that WsaF and other enzymes in the pathway share very little homology to other enzymes. We report the structural and biochemical characterisation of WsaF, the first such rhamnosyltransferase to be characterised. Structural work was aided by the surface entropy reduction method. The enzyme has two domains, the N-terminal domain, which binds the acceptor (the growing rhamnan chain), and the C-terminal domain, which binds the substrate (dTDP-beta-l-rhamnose). The structure of WsaF bound to dTDP and dTDP-beta-l-rhamnose coupled to biochemical analysis identifies the residues that underlie catalysis and substrate recognition. We have constructed and tested by site-directed mutagenesis a model for acceptor recognition. PMID:20097205

  20. Structural studies of lysyl-tRNA synthetase: conformational changes induced by substrate binding.

    PubMed

    Onesti, S; Desogus, G; Brevet, A; Chen, J; Plateau, P; Blanquet, S; Brick, P

    2000-10-24

    Lysyl-tRNA synthetase is a member of the class II aminoacyl-tRNA synthetases and catalyses the specific aminoacylation of tRNA(Lys). The crystal structure of the constitutive lysyl-tRNA synthetase (LysS) from Escherichia coli has been determined to 2.7 A resolution in the unliganded form and in a complex with the lysine substrate. A comparison between the unliganded and lysine-bound structures reveals major conformational changes upon lysine binding. The lysine substrate is involved in a network of hydrogen bonds. Two of these interactions, one between the alpha-amino group and the carbonyl oxygen of Gly 216 and the other between the carboxylate group and the side chain of Arg 262, trigger a subtle and complicated reorganization of the active site, involving the ordering of two loops (residues 215-217 and 444-455), a change in conformation of residues 393-409, and a rotation of a 4-helix bundle domain (located between motif 2 and 3) by 10 degrees. The result of these changes is a closing up of the active site upon lysine binding. PMID:11041850

  1. Enzyme-Substrate Binding Kinetics Indicate That Photolyase Recognizes an Extrahelical Cyclobutane Thymidine Dimer.

    PubMed

    Schelvis, Johannes P M; Zhu, Xuling; Gindt, Yvonne M

    2015-10-13

    Escherichia coli DNA photolyase is a DNA-repair enzyme that repairs cyclobutane pyrimidine dimers (CPDs) that are formed on DNA upon exposure of cells to ultraviolet light. The light-driven electron-transfer mechanism by which photolyase catalyzes the CPD monomerization after the enzyme-substrate complex has formed has been studied extensively. However, much less is understood about how photolyase recognizes CPDs on DNA. It has been clearly established that photolyase, like many other DNA-repair proteins, requires flipping of the CPD site into an extrahelical position. Photolyase is unique in that it requires the two dimerized pyrimidine bases to flip rather than just a single damaged base. In this paper, we perform direct measurements of photolyase binding to CPD-containing undecamer DNA that has been labeled with a fluorophore. We find that the association constant of ∼2 × 10(6) M(-1) is independent of the location of the CPD on the undecamer DNA. The binding kinetics of photolyase are best described by two rate constants. The slower rate constant is ∼10(4) M(-1) s(-1) and is most likely due to steric interference of the fluorophore during the binding process. The faster rate constant is on the order of 2.5 × 10(5) M(-1) s(-1) and reflects the binding of photolyase to the CPD on the DNA. This result indicates that photolyase finds and binds to a CPD lesion 100-4000 times slower than other DNA-repair proteins. In light of the existing literature, we propose a mechanism in which photolyase recognizes a CPD that is flipped into an extrahelical position via a three-dimensional search. PMID:26393415

  2. A Conserved Surface Loop in Type I Dehydroquinate Dehydratases Positions an Active Site Arginine and Functions in Substrate Binding

    SciTech Connect

    Light, Samuel H.; Minasov, George; Shuvalova, Ludmilla; Peterson, Scott N.; Caffrey, Michael; Anderson, Wayne F.; Lavie, Arnon

    2012-04-18

    Dehydroquinate dehydratase (DHQD) catalyzes the third step in the biosynthetic shikimate pathway. We present three crystal structures of the Salmonella enterica type I DHQD that address the functionality of a surface loop that is observed to close over the active site following substrate binding. Two wild-type structures with differing loop conformations and kinetic and structural studies of a mutant provide evidence of both direct and indirect mechanisms of involvement of the loop in substrate binding. In addition to allowing amino acid side chains to establish a direct interaction with the substrate, closure of the loop necessitates a conformational change of a key active site arginine, which in turn positions the substrate productively. The absence of DHQD in humans and its essentiality in many pathogenic bacteria make the enzyme a target for the development of nontoxic antimicrobials. The structures and ligand binding insights presented here may inform the design of novel type I DHQD inhibiting molecules.

  3. Mechanistic Insights from the Binding of Substrate and Carbocation Intermediate Analogues to Aristolochene Synthase

    PubMed Central

    Chen, Mengbin; Al-lami, Naeemah; Janvier, Marine; D'Antonio, Edward L.; Faraldos, Juan A.; Cane, David E.; Allemann, Rudolf K.; Christianson, David W.

    2013-01-01

    Aristolochene synthase, a metal-dependent sesquiterpene cyclase from Aspergillus terreus, catalyzes the ionization-dependent cyclization of farnesyl diphosphate (FPP) to form the bicyclic eremophilane (+)-aristolochene with perfect structural and stereochemical precision. Here, we report the X-ray crystal structure of aristolochene synthase complexed with three Mg2+ ions and the unreactive substrate analogue farnesyl-S-thiolodiphosphate (FSPP), showing that the substrate diphosphate group is anchored by metal coordination and hydrogen bond interactions identical to those previously observed in the complex with three Mg2+ ions and inorganic pyrophosphate (PPi). Moreover, the binding conformation of FSPP directly mimics that expected for productively bound FPP, with the exception of the precise alignment of the C-S bond with regard to the C10-C11 π system that would be required for C1-C10 bond formation in the first step of catalysis. We also report crystal structures of aristolochene synthase complexed with Mg2+3-PPi and ammonium or iminium analogues of bicyclic carbocation intermediates proposed for the natural cyclization cascade. Various binding orientations are observed for these bicyclic analogues, and these orientations appear to be driven by favorable electrostatic interactions between the positively charged ammonium group of the analogue and the negatively charged PPi anion. Surprisingly, the active site is sufficiently flexible to accommodate analogues with partially or completely incorrect stereochemistry. Although this permissiveness in binding is unanticipated, based on the stereochemical precision of catalysis that leads exclusively to the (+)-aristolochene stereoisomer, it suggests the ability of the active site to enable controlled reorientation of intermediates during the cyclization cascade. Taken together, these structures illuminate important aspects of the catalytic mechanism. PMID:23905850

  4. Structures of 5-Methylthioribose Kinase Reveal Substrate Specificity and Unusual Mode of Nucleotide Binding

    SciTech Connect

    Ku,S.; Yip, P.; Cornell, K.; Riscoe, M.; Behr, J.; Guillerm, G.; Howell, P.

    2007-01-01

    The methionine salvage pathway is ubiquitous in all organisms, but metabolic variations exist between bacteria and mammals. 5-Methylthioribose (MTR) kinase is a key enzyme in methionine salvage in bacteria and the absence of a mammalian homolog suggests that it is a good target for the design of novel antibiotics. The structures of the apo-form of Bacillus subtilis MTR kinase, as well as its ADP, ADP-PO4, AMPPCP, and AMPPCP-MTR complexes have been determined. MTR kinase has a bilobal eukaryotic protein kinase fold but exhibits a number of unique features. The protein lacks the DFG motif typically found at the beginning of the activation loop and instead coordinates magnesium via a DXE motif (Asp{sup 250}-Glu{sup 252}). In addition, the glycine-rich loop of the protein, analogous to the 'Gly triad' in protein kinases, does not interact extensively with the nucleotide. The MTR substrate-binding site consists of Asp{sup 233} of the catalytic HGD motif, a novel twin arginine motif (Arg{sup 340}/Arg{sup 341}), and a semi-conserved W-loop, which appears to regulate MTR binding specificity. No lobe closure is observed for MTR kinase upon substrate binding. This is probably because the enzyme lacks the lobe closure/inducing interactions between the C-lobe of the protein and the ribosyl moiety of the nucleotide that are typically responsible for lobe closure in protein kinases. The current structures suggest that MTR kinase has a dissociative mechanism.

  5. Calculation of substrate binding affinities for a bacterial GH78 rhamnosidase through molecular dynamics simulations

    PubMed Central

    Grandits, Melanie; Michlmayr, Herbert; Sygmund, Christoph; Oostenbrink, Chris

    2013-01-01

    Ram2 from Pediococcus acidilactici is a rhamnosidase from the glycoside hydrolase family 78. It shows remarkable selectivity for rutinose rather than para-nitrophenyl-alpha-l-rhamnopyranoside (p-NPR). Molecular dynamics simulations were performed using a homology model of this enzyme, in complex with both substrates. Free energy calculations lead to predicted binding affinities of −34.4 and −30.6 kJ mol−1 respectively, agreeing well with an experimentally estimated relative free energy of 5.4 kJ mol−1. Further, the most relevant binding poses could be determined. While p-NPR preferably orients its rhamnose moiety toward the active site, rutinose interacts most strongly with its glucose moiety. A detailed hydrogen bond analysis confirms previously implicated residues in the active site (Asp217, Asp222, Trp226, Asp229 and Glu488) and quantifies the importance of individual residues for the binding. The most important amino acids are Asp229 and Phe339 which are involved in many interactions during the simulations. While Phe339 was observed in more simulations, Asp229 was involved in more persistent interactions (forming an average of at least 2 hydrogen bonds during the simulation). These analyses directly suggest mutations that could be used in a further experimental characterization of the enzyme. This study shows once more the strength of computer simulations to rationalize and guide experiments at an atomic level. PMID:23914137

  6. A Substrate-induced Biotin Binding Pocket in the Carboxyltransferase Domain of Pyruvate Carboxylase*

    PubMed Central

    Lietzan, Adam D.; St. Maurice, Martin

    2013-01-01

    Biotin-dependent enzymes catalyze carboxyl transfer reactions by efficiently coordinating multiple reactions between spatially distinct active sites. Pyruvate carboxylase (PC), a multifunctional biotin-dependent enzyme, catalyzes the bicarbonate- and MgATP-dependent carboxylation of pyruvate to oxaloacetate, an important anaplerotic reaction in mammalian tissues. To complete the overall reaction, the tethered biotin prosthetic group must first gain access to the biotin carboxylase domain and become carboxylated and then translocate to the carboxyltransferase domain, where the carboxyl group is transferred from biotin to pyruvate. Here, we report structural and kinetic evidence for the formation of a substrate-induced biotin binding pocket in the carboxyltransferase domain of PC from Rhizobium etli. Structures of the carboxyltransferase domain reveal that R. etli PC occupies a symmetrical conformation in the absence of the biotin carboxylase domain and that the carboxyltransferase domain active site is conformationally rearranged upon pyruvate binding. This conformational change is stabilized by the interaction of the conserved residues Asp590 and Tyr628 and results in the formation of the biotin binding pocket. Site-directed mutations at these residues reduce the rate of biotin-dependent reactions but have no effect on the rate of biotin-independent oxaloacetate decarboxylation. Given the conservation with carboxyltransferase domains in oxaloacetate decarboxylase and transcarboxylase, the structure-based mechanism described for PC may be applicable to the larger family of biotin-dependent enzymes. PMID:23698000

  7. Specificity Profiling of Dual Specificity Phosphatase Vaccinia VH1-related (VHR) Reveals Two Distinct Substrate Binding Modes*

    PubMed Central

    Luechapanichkul, Rinrada; Chen, Xianwen; Taha, Hashem A.; Vyas, Shubham; Guan, Xiaoyan; Freitas, Michael A.; Hadad, Christopher M.; Pei, Dehua

    2013-01-01

    Vaccinia VH1-related (VHR) is a dual specificity phosphatase that consists of only a single catalytic domain. Although several protein substrates have been identified for VHR, the elements that control the in vivo substrate specificity of this enzyme remain unclear. In this work, the in vitro substrate specificity of VHR was systematically profiled by screening combinatorial peptide libraries. VHR exhibits more stringent substrate specificity than classical protein-tyrosine phosphatases and recognizes two distinct classes of Tyr(P) peptides. The class I substrates are similar to the Tyr(P) motifs derived from the VHR protein substrates, having sequences of (D/E/φ)(D/S/N/T/E)(P/I/M/S/A/V)pY(G/A/S/Q) or (D/E/φ)(T/S)(D/E)pY(G/A/S/Q) (where φ is a hydrophobic amino acid and pY is phosphotyrosine). The class II substrates have the consensus sequence of (V/A)P(I/L/M/V/F)X1–6pY (where X is any amino acid) with V/A preferably at the N terminus of the peptide. Site-directed mutagenesis and molecular modeling studies suggest that the class II peptides bind to VHR in an opposite orientation relative to the canonical binding mode of the class I substrates. In this alternative binding mode, the Tyr(P) side chain binds to the active site pocket, but the N terminus of the peptide interacts with the carboxylate side chain of Asp164, which normally interacts with the Tyr(P) + 3 residue of a class I substrate. Proteins containing the class II motifs are efficient VHR substrates in vitro, suggesting that VHR may act on a novel class of yet unidentified Tyr(P) proteins in vivo. PMID:23322772

  8. Structural modelling of substrate binding and inhibition in penicillin V acylase from Pectobacterium atrosepticum.

    PubMed

    Avinash, V S; Panigrahi, Priyabrata; Suresh, C G; Pundle, Archana V; Ramasamy, Sureshkumar

    2013-08-01

    Penicillin V acylases (PVAs) and bile salt hydrolases (BSHs) have considerable sequence and structural similarity; however, they vary significantly in their substrate specificity. We have identified a PVA from a Gram-negative organism, Pectobacterium atrosepticum (PaPVA) that turned out to be a remote homolog of the PVAs and BSHs reported earlier. Even though the active site residues were conserved in PaPVA it showed high specificity towards penV and interestingly the penV acylase activity was inhibited by bile salts. Comparative modelling and docking studies were carried out to understand the structural differences of the binding site that confer this characteristic property. We show that PaPVA exhibits significant differences in structure, which are in contrast to those of known PVAs and such enzymes from Gram-negative bacteria require further investigation. PMID:23850621

  9. N5-CAIR mutase: role of a CO2 binding site and substrate movement in catalysis.

    PubMed

    Hoskins, Aaron A; Morar, Mariya; Kappock, T Joseph; Mathews, Irimpan I; Zaugg, Judith B; Barder, Timothy E; Peng, Paul; Okamoto, Akimitsu; Ealick, Steven E; Stubbe, JoAnne

    2007-03-13

    N5-Carboxyaminoimidazole ribonucleotide mutase (N5-CAIR mutase or PurE) from Escherichia coli catalyzes the reversible interconversion of N5-CAIR to carboxyaminoimidazole ribonucleotide (CAIR) with direct CO2 transfer. Site-directed mutagenesis, a pH-rate profile, DFT calculations, and X-ray crystallography together provide new insight into the mechanism of this unusual transformation. These studies suggest that a conserved, protonated histidine (His45) plays an essential role in catalysis. The importance of proton transfers is supported by DFT calculations on CAIR and N5-CAIR analogues in which the ribose 5'-phosphate is replaced with a methyl group. The calculations suggest that the nonaromatic tautomer of CAIR (isoCAIR) is only 3.1 kcal/mol higher in energy than its aromatic counterpart, implicating this species as a potential intermediate in the PurE-catalyzed reaction. A structure of wild-type PurE cocrystallized with 4-nitroaminoimidazole ribonucleotide (NO2-AIR, a CAIR analogue) and structures of H45N and H45Q PurEs soaked with CAIR have been determined and provide the first insight into the binding of an intact PurE substrate. A comparison of 19 available structures of PurE and PurE mutants in apo and nucleotide-bound forms reveals a common, buried carboxylate or CO2 binding site for CAIR and N5-CAIR in a hydrophobic pocket in which the carboxylate or CO2 interacts with backbone amides. This work has led to a mechanistic proposal in which the carboxylate orients the substrate for proton transfer from His45 to N5-CAIR to form an enzyme-bound aminoimidazole ribonucleotide (AIR) and CO2 intermediate. Subsequent movement of the aminoimidazole moiety of AIR reorients it for addition of CO2 at C4 to generate isoCAIR. His45 is now in a position to remove a C4 proton to produce CAIR. PMID:17298082

  10. Biochemical and Crystallographic Analysis of Substrate Binding and Conformational Changes in Acetyl-CoA Synthetase

    SciTech Connect

    Reger,A.; Carney, J.; Gulick, A.

    2007-01-01

    The adenylate-forming enzymes, including acyl-CoA synthetases, the adenylation domains of non-ribosomal peptide synthetases (NRPS), and firefly luciferase, perform two half-reactions in a ping-pong mechanism. We have proposed a domain alternation mechanism for these enzymes whereby, upon completion of the initial adenylation reaction, the C-terminal domain of these enzymes undergoes a 140{sup o} rotation to perform the second thioester-forming half-reaction. Structural and kinetic data of mutant enzymes support this hypothesis. We present here mutations to Salmonella enterica acetyl-CoA synthetase (Acs) and test the ability of the enzymes to catalyze the complete reaction and the adenylation half-reaction. Substitution of Lys609 with alanine results in an enzyme that is unable to catalyze the adenylate reaction, while the Gly524 to leucine substitution is unable to catalyze the complete reaction yet catalyzes the adenylation half-reaction with activity comparable to the wild-type enzyme. The positions of these two residues, which are located on the mobile C-terminal domain, strongly support the domain alternation hypothesis. We also present steady-state kinetic data of putative substrate-binding residues and demonstrate that no single residue plays a dominant role in dictating CoA binding. We have also created two mutations in the active site to alter the acyl substrate specificity. Finally, the crystallographic structures of wild-type Acs and mutants R194A, R584A, R584E, K609A, and V386A are presented to support the biochemical analysis.

  11. Isolation of ubiquitinated substrates by tandem affinity purification of E3 ligase-polyubiquitin-binding domain fusions (ligase traps).

    PubMed

    Mark, Kevin G; Loveless, Theresa B; Toczyski, David P

    2016-02-01

    Ubiquitination is an essential protein modification that influences eukaryotic processes ranging from substrate degradation to nonproteolytic pathway alterations, including DNA repair and endocytosis. Previous attempts to analyze substrates via physical association with their respective ubiquitin ligases have had some success. However, because of the transient nature of enzyme-substrate interactions and rapid protein degradation, detection of substrates remains a challenge. Ligase trapping is an affinity purification approach in which ubiquitin ligases are fused to a polyubiquitin-binding domain, which allows the isolation of ubiquitinated substrates. Immunoprecipitation is first used to enrich for proteins that are bound to the ligase trap. Subsequently, affinity purification is used under denaturing conditions to capture proteins conjugated with hexahistidine-tagged ubiquitin. By using this protocol, ubiquitinated substrates that are specific for a given ligase can be isolated for mass spectrometry or western blot analysis. After cells have been collected, the described protocol can be completed in 2-3 d. PMID:26766115

  12. Multiple substrate-binding sites are retained in cytochrome P450 3A4 mutants with decreased cooperativity

    PubMed Central

    Fernando, Harshica; Rumfeldt, Jessica A. O.; Davydova, Nadezhda Y.; Halpert, James R.; Davydov, Dmitri R.

    2010-01-01

    1. The basis of decreased cooperativity in substrate binding in the cytochrome P450 3A4 mutants F213W, F304W and L211F/D214E was studied with fluorescence resonance energy transfer (FRET) and absorbance spectroscopy. 2. Whereas in the wild type enzyme the absorbance changes reflecting the interactions with 1-pyrenebutanol exhibit a Hill coefficient (nH) around 1.7 (S50 = 11.7 μM), the mutants showed no cooperativity (nH ≤ 1.1) with unchanged S50 values. 3. Contrary to the premise that the mutants lack one of the two binding sites, the mutants exhibited at least two substrate binding events. The high affinity interaction is characterized by a dissociation constant (KD) ≤ 1.0 μM, whereas the KD of the second binding has the same magnitude as the S50. 4. Theoretical analysis of a two-step binding model suggests that nH values may vary from 1.1 to 2.2 depending on the amplitude of the spin shift caused by the first binding event. 5. Alteration of cooperativity in the mutants is caused by a partial displacement of the “spin-shifting” step. Whereas in the wild type the spin shift occurs in the ternary complex only, the mutants exhibit some spin shift upon binding of the first substrate molecule. PMID:21143007

  13. Multiple transport-active binding sites are available for a single substrate on human P-glycoprotein (ABCB1).

    PubMed

    Chufan, Eduardo E; Kapoor, Khyati; Sim, Hong-May; Singh, Satyakam; Talele, Tanaji T; Durell, Stewart R; Ambudkar, Suresh V

    2013-01-01

    P-glycoprotein (Pgp, ABCB1) is an ATP-Binding Cassette (ABC) transporter that is associated with the development of multidrug resistance in cancer cells. Pgp transports a variety of chemically dissimilar amphipathic compounds using the energy from ATP hydrolysis. In the present study, to elucidate the binding sites on Pgp for substrates and modulators, we employed site-directed mutagenesis, cell- and membrane-based assays, molecular modeling and docking. We generated single, double and triple mutants with substitutions of the Y307, F343, Q725, F728, F978 and V982 residues at the proposed drug-binding site with cys in a cysless Pgp, and expressed them in insect and mammalian cells using a baculovirus expression system. All the mutant proteins were expressed at the cell surface to the same extent as the cysless wild-type Pgp. With substitution of three residues of the pocket (Y307, Q725 and V982) with cysteine in a cysless Pgp, QZ59S-SSS, cyclosporine A, tariquidar, valinomycin and FSBA lose the ability to inhibit the labeling of Pgp with a transport substrate, [(125)I]-Iodoarylazidoprazosin, indicating these drugs cannot bind at their primary binding sites. However, the drugs can modulate the ATP hydrolysis of the mutant Pgps, demonstrating that they bind at secondary sites. In addition, the transport of six fluorescent substrates in HeLa cells expressing triple mutant (Y307C/Q725C/V982C) Pgp is also not significantly altered, showing that substrates bound at secondary sites are still transported. The homology modeling of human Pgp and substrate and modulator docking studies support the biochemical and transport data. In aggregate, our results demonstrate that a large flexible pocket in the Pgp transmembrane domains is able to bind chemically diverse compounds. When residues of the primary drug-binding site are mutated, substrates and modulators bind to secondary sites on the transporter and more than one transport-active binding site is available for each

  14. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.

    PubMed

    Geronimo, Inacrist; Denning, Catherine A; Rogers, W Eric; Othman, Thaer; Huxford, Tom; Heidary, David K; Glazer, Edith C; Payne, Christina M

    2016-06-28

    Cytochrome P450BM3 is a heme-containing enzyme from Bacillus megaterium that exhibits high monooxygenase activity and has a self-sufficient electron transfer system in the full-length enzyme. Its potential synthetic applications drive protein engineering efforts to produce variants capable of oxidizing nonnative substrates such as pharmaceuticals and aromatic pollutants. However, promiscuous P450BM3 mutants often exhibit lower stability, thereby hindering their industrial application. This study demonstrated that the heme domain R47L/F87V/L188Q/E267V/F81I pentuple mutant (PM) is destabilized because of the disruption of hydrophobic contacts and salt bridge interactions. This was directly observed from crystal structures of PM in the presence and absence of ligands (palmitic acid and metyrapone). The instability of the tertiary structure and heme environment of substrate-free PM was confirmed by pulse proteolysis and circular dichroism, respectively. Binding of the inhibitor, metyrapone, significantly stabilized PM, but the presence of the native substrate, palmitic acid, had no effect. On the basis of high-temperature molecular dynamics simulations, the lid domain, β-sheet 1, and Cys ligand loop (a β-bulge segment connected to the heme) are the most labile regions and, thus, potential sites for stabilizing mutations. Possible approaches to stabilization include improvement of hydrophobic packing interactions in the lid domain and introduction of new salt bridges into β-sheet 1 and the heme region. An understanding of the molecular factors behind the loss of stability of P450BM3 variants therefore expedites site-directed mutagenesis studies aimed at developing thermostability. PMID:27267136

  15. Structures of Two Coronavirus Main Proteases: Implications for Substrate Binding and Antiviral Drug Design

    SciTech Connect

    Xue, Xiaoyu; Yu, Hongwei; Yang, Haitao; Xue, Fei; Wu, Zhixin; Shen, Wei; Li, Jun; Zhou, Zhe; Ding, Yi; Zhao, Qi; Zhang, Xuejun C.; Liao, Ming; Bartlam, Mark; Rao, Zihe

    2008-07-21

    Coronaviruses (CoVs) can infect humans and multiple species of animals, causing a wide spectrum of diseases. The coronavirus main protease (M{sup pro}), which plays a pivotal role in viral gene expression and replication through the proteolytic processing of replicase polyproteins, is an attractive target for anti-CoV drug design. In this study, the crystal structures of infectious bronchitis virus (IBV) MP{sup pro} and a severe acute respiratory syndrome CoV (SARS-CoV) M{sup pro} mutant (H41A), in complex with an N-terminal autocleavage substrate, were individually determined to elucidate the structural flexibility and substrate binding of M{sup pro}. A monomeric form of IBV M{sup pro} was identified for the first time in CoV M{sup pro} structures. A comparison of these two structures to other available M{sup pro} structures provides new insights for the design of substrate-based inhibitors targeting CoV M{sup pro}s. Furthermore, a Michael acceptor inhibitor (named N3) was cocrystallized with IBV M{sup pro} and was found to demonstrate in vitro inactivation of IBV M{sup pro} and potent antiviral activity against IBV in chicken embryos. This provides a feasible animal model for designing wide-spectrum inhibitors against CoV-associated diseases. The structure-based optimization of N3 has yielded two more efficacious lead compounds, N27 and H16, with potent inhibition against SARS-CoV M{sup pro}.

  16. Autoproteolytic activation of ThnT results in structural reorganization necessary for substrate binding and catalysis

    PubMed Central

    Buller, Andrew R; Labonte, Jason W; Freeman, Michael F; Wright, Nathan T; Schildbach, Joel F; Townsend, Craig A

    2012-01-01

    cis-Autoproteolysis is a post-translational modification necessary for the function of ThnT, an enzyme involved in the biosynthesis of the β-lactam antibiotic thienamycin. This modification generates an N-terminal threonine nucleophile that is used to hydrolyze the pantetheinyl moiety of its natural substrate. We determined the crystal structure of autoactivated ThnT to 1.8 Å through X-ray crystallography. Comparison to a mutationally inactivated precursor structure revealed several large conformational rearrangements near the active site. To probe the relevance of these transitions, we designed a pantetheine-like chloromethyl ketone (CMK) inactivator and co-crystallized it with ThnT. Although this class of inhibitor has been in use for several decades, the mode of inactivation had not been determined for an enzyme that uses an N-terminal nucleophile. The co-crystal structure revealed the CMK bound to the N-terminal nucleophile of ThnT through an ether linkage and analysis suggests inactivation through a direct displacement mechanism. More importantly, this inactivated complex shows three regions of ThnT that are critical to the formation of the substrate binding pocket undergo rearrangement upon autoproteolysis. Comparison of ThnT with other autoproteolytic enzymes of disparate evolutionary lineage revealed a high degree similarity within the pro-enzyme active site, reflecting shared chemical constraints. However, after autoproteolysis many enzymes, like ThnT, are observed to rearrange to accommodate their specific substrate. We propose this is a general phenomenon, whereby autoprocessing systems with shared chemistry may possess similar structural features that dissipate upon rearrangement into a mature state. PMID:22706025

  17. Utilization of Substrate Intrinsic Binding Energy for Conformational Change and Catalytic Function in Phosphoenolpyruvate Carboxykinase.

    PubMed

    Johnson, Troy A; Mcleod, Matthew J; Holyoak, Todd

    2016-01-26

    Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states. The mechanism by which these disorder-order transitions are coupled to the ligation state of the active site however is not fully understood. To further investigate the mechanisms by which the mobility of the active site loops is coupled to enzymatic function and the transitioning of the enzyme between the two conformational states, we have conducted structural and functional studies of point mutants of E89. E89 is a proposed key member of the interaction network of mobile elements as it resides in the R-loop region of the enzyme active site. These new data demonstrate the importance of the R-loop in coordinating interactions between substrates at the OAA/PEP binding site and the mobile R- and Ω-loop domains. In turn, the studies more generally demonstrate the mechanisms by which the intrinsic ligand binding energy can be utilized in catalysis to drive unfavorable conformational changes, changes that are subsequently required for both optimal catalytic activity and fidelity. PMID:26709450

  18. Decoding Structural Properties of a Partially Unfolded Protein Substrate: En Route to Chaperone Binding

    PubMed Central

    Nagpal, Suhani; Tiwari, Satyam; Mapa, Koyeli; Thukral, Lipi

    2015-01-01

    Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates. PMID:26394388

  19. The nature of amino acid 482 of human ABCG2 affects substrate transport and ATP hydrolysis but not substrate binding

    PubMed Central

    Ejendal, Karin F.K.; Diop, Ndeye Khady; Schweiger, Linda C.; Hrycyna, Christine A.

    2006-01-01

    Several members of the ATP-binding cassette (ABC) transporter superfamily, including P-glycoprotein and the half-transporter ABCG2, can confer multidrug resistance to cancer cells in culture by functioning as ATP-dependent efflux pumps. ABCG2 variants harboring a mutation at arginine 482 have been cloned from several drug-resistant cell lines, and these variants differ in their substrate transport phenotype. In this study, we changed the wild-type arginine 482 in human ABCG2 to each one of the 19 other standard amino acids and expressed each one transiently in HeLa cells. Using the 5D3 antibody that recognizes a cell surface epitope of ABCG2, we observed that all the mutants were expressed at the cell surface. However, the mutant ABCG2 proteins differed markedly in transport activity. All of the variants were capable of transporting one or more of the substrates used in this study, with the exception of the R482K mutant, which is completely devoid of transport ability. Six of the mutants (R482G, R482H, R482K, R482P, R482T, and R482Y) and the wild-type protein (R482wt) were selected for studies of basal and stimulated ATPase activity and photoaffinity labeling with the substrate analog [125I]iodoarylazidoprazosin. Whereas these seven ABCG2 variants differed markedly in ATPase activity, all were able to specifically bind the substrate analog [125I]iodoarylazidoprazosin. These data suggest that residue 482 plays an important role in substrate transport and ATP turnover, but that the nature of this amino acid may not be important for substrate recognition and binding. PMID:16815914

  20. The interplay of processivity, substrate inhibition and a secondary substrate binding site of an insect exo-beta-1,3-glucanase.

    PubMed

    Genta, Fernando A; Dumont, Alexandra F; Marana, Sandro R; Terra, Walter R; Ferreira, Clélia

    2007-09-01

    Abracris flavolineata midgut contains a processive exo-beta-glucanase (ALAM) with lytic activity against Saccharomyces cerevisiae, which was purified (yield, 18%; enrichment, 37 fold; specific activity, 1.89 U/mg). ALAM hydrolyses fungal cells or callose from the diet. ALAM (45 kDa; pI 5.5; pH optimum 6) major products with 0.6 mM laminarin as substrate are beta-glucose (61%) and laminaribiose (39%). Kinetic data obtained with laminaridextrins and methylumbelliferyl glucoside suggest that ALAM has an active site with at least six subsites. The best fitting of kinetic data to theoretical curves is obtained using a model where one laminarin molecule binds first to a high-affinity accessory site, causing active site exposure, followed by the transference of the substrate to the active site. The two-binding-site model is supported by results from chemical modifications of amino acid residues and by ALAM action in MUbetaGlu plus laminarin. Low laminarin concentrations increase the modification of His, Tyr and Asp or Glu residues and MUbetaGlu hydrolysis, whereas high concentrations abolish modification and inhibit MUbetaGlu hydrolysis. Our data indicate that processivity results from consecutive transferences of substrate between accessory and active site and that substrate inhibition arises when both sites are occupied by substrate molecules abolishing processivity. PMID:17720633

  1. Substrate binding to cytochrome P450-2J2 in Nanodiscs detected by nanoplasmonic Lycurgus cup arrays.

    PubMed

    Plucinski, Lisa; Ranjan Gartia, Manas; Arnold, William R; Ameen, Abid; Chang, Te-Wei; Hsiao, Austin; Logan Liu, Gang; Das, Aditi

    2016-01-15

    Cytochrome P450s are the primary enzymes involved in phase I drug metabolism. They are an important target for early drug discovery research. However, high-throughput drug screening of P450s is limited by poor protein stability and lack of consistent measurement of binding events. Here we present the detection of substrate binding to cytochrome P450-2J2 (CYP2J2), the predominant P450 in the human heart, using a combination of Nanodisc technology and a nanohole plasmonic sensor called nanoplasmonic Lycurgus cup array (nanoLCA). The Nanodisc, a nanoscale membrane bilayer disc, is used to stabilize the protein on the metallic plasmonic surface. Absorption spectroscopy of seven different substrates binding to CYP2J2 in solution showed that they are all type I, resulting in shifting of the protein bands to lower wavelengths (blue shift). Detection on the nanoLCA sensor also showed spectral blue shifts of CYP2J2 following substrate binding. Finite Difference Time Domain (FDTD) electromagnetic simulation suggested that the blue shift on the nanoLCA is because of the hybridization of plasmon polariton Bloch wave and the electronic resonance of the heme group of CYP2J2. We found the plasmonic properties of the nanoLCA sensor to be highly reproducible, which allowed comparisons among the different substrates at different concentrations. Further, due to the unique spectral properties of the nanoLCA sensor, including the transmission of a single color, we were able to perform colorimetric detection of the binding events. These results indicate that a resonance plasmonic sensing mechanism can be used to distinguish between different substrates of the same binding type at different concentrations binding to P450s and that the nanoLCA sensor has the potential to provide consistent high-throughput measurements of this system. PMID:26334592

  2. Microfluidic Channels on Nanopatterned Substrates: Monitoring Protein Binding to Lipid Bilayers with Surface-Enhanced Raman Spectroscopy

    PubMed Central

    Banerjee, Amrita; Perez-Castillejos, R.; Hahn, D.; Smirnov, Alex I.; Grebel, H.

    2013-01-01

    We used Surface Enhanced Raman Spectroscopy (SERS) to detect binding events between streptavidin and biotinylated lipid bilayers. The binding events took place at the surface between microfluidic channels and anodized aluminum oxide (AAO) with the latter serving as substrates. The bilayers were incorporated in the substrate pores. It was revealed that non-bound molecules were easily washed away and that large suspended cells (Salmonella enterica) are less likely to interfere with the monitoring process: when focusing to the lower surface of the channel, one may resolve mostly the bound molecules. PMID:24932024

  3. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions

    PubMed Central

    Aachmann, Finn L.; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G. H.; Vaaje-Kolstad, Gustav

    2012-01-01

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu2+ (Kd = 55 nM; from isothermal titration calorimetry) and higher preference for Cu1+ (Kd ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu2+ of 275 mV using a thermodynamic cycle). Strong binding of Cu1+ was also reflected in a reduction in the pKa values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a 2H/1H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  4. NMR structure of a lytic polysaccharide monooxygenase provides insight into copper binding, protein dynamics, and substrate interactions.

    PubMed

    Aachmann, Finn L; Sørlie, Morten; Skjåk-Bræk, Gudmund; Eijsink, Vincent G H; Vaaje-Kolstad, Gustav

    2012-11-13

    Lytic polysaccharide monooxygenases currently classified as carbohydrate binding module family 33 (CBM33) and glycoside hydrolase family 61 (GH61) are likely to play important roles in future biorefining. However, the molecular basis of their unprecedented catalytic activity remains largely unknown. We have used NMR techniques and isothermal titration calorimetry to address structural and functional aspects of CBP21, a chitin-active CBM33. NMR structural and relaxation studies showed that CBP21 is a compact and rigid molecule, and the only exception is the catalytic metal binding site. NMR data further showed that His28 and His114 in the catalytic center bind a variety of divalent metal ions with a clear preference for Cu(2+) (K(d) = 55 nM; from isothermal titration calorimetry) and higher preference for Cu(1+) (K(d) ∼ 1 nM; from the experimentally determined redox potential for CBP21-Cu(2+) of 275 mV using a thermodynamic cycle). Strong binding of Cu(1+) was also reflected in a reduction in the pK(a) values of the histidines by 3.6 and 2.2 pH units, respectively. Cyanide, a mimic of molecular oxygen, was found to bind to the metal ion only. These data support a model where copper is reduced on the enzyme by an externally provided electron and followed by oxygen binding and activation by internal electron transfer. Interactions of CBP21 with a crystalline substrate were mapped in a (2)H/(1)H exchange experiment, which showed that substrate binding involves an extended planar binding surface, including the metal binding site. Such a planar catalytic surface seems well-suited to interact with crystalline substrates. PMID:23112164

  5. Structural basis for high substrate-binding affinity and enantioselectivity of 3-quinuclidinone reductase AtQR

    SciTech Connect

    Hou, Feng; Miyakawa, Takuya; Kataoka, Michihiko; Takeshita, Daijiro; Kumashiro, Shoko; Uzura, Atsuko; Urano, Nobuyuki; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-04-18

    Highlights: • Crystal structure of AtQR has been determined at 1.72 Å. • NADH binding induces the formation of substrate binding site. • AtQR possesses a conserved hydrophobic wall for stereospecific binding of substrate. • Additional Glu197 residue is critical to the high binding affinity. - Abstract: (R)-3-Quinuclidinol, a useful compound for the synthesis of various pharmaceuticals, can be enantioselectively produced from 3-quinuclidinone by 3-quinuclidinone reductase. Recently, a novel NADH-dependent 3-quinuclidionone reductase (AtQR) was isolated from Agrobacterium tumefaciens, and showed much higher substrate-binding affinity (>100 fold) than the reported 3-quinuclidionone reductase (RrQR) from Rhodotorula rubra. Here, we report the crystal structure of AtQR at 1.72 Å. Three NADH-bound protomers and one NADH-free protomer form a tetrameric structure in an asymmetric unit of crystals. NADH not only acts as a proton donor, but also contributes to the stability of the α7 helix. This helix is a unique and functionally significant part of AtQR and is related to form a deep catalytic cavity. AtQR has all three catalytic residues of the short-chain dehydrogenases/reductases family and the hydrophobic wall for the enantioselective reduction of 3-quinuclidinone as well as RrQR. An additional residue on the α7 helix, Glu197, exists near the active site of AtQR. This acidic residue is considered to form a direct interaction with the amine part of 3-quinuclidinone, which contributes to substrate orientation and enhancement of substrate-binding affinity. Mutational analyses also support that Glu197 is an indispensable residue for the activity.

  6. The primary substrate binding site in the b' domain of ERp57 is adapted for endoplasmic reticulum lectin association.

    PubMed

    Russell, Sarah J; Ruddock, Lloyd W; Salo, Kirsi E H; Oliver, Jason D; Roebuck, Quentin P; Llewellyn, David H; Roderick, H Llewelyn; Koivunen, Peppi; Myllyharju, Johanna; High, Stephen

    2004-04-30

    ERp57 is a member of the protein disulfide isomerase (PDI) family that is located in the endoplasmic reticulum (ER) and characterized by its specificity for glycoproteins. Substrate selection by ERp57 is dependent upon its formation of discrete complexes with two ER resident lectins, soluble calreticulin and membrane-bound calnexin. It is these two lectins that directly associate with glycoproteins bearing correctly trimmed oligosaccharide side chains. Thus, ERp57 is presented with a preselected set of substrates upon which it can act, and the specific binding of calreticulin and calnexin to ERp57 is pivotal to the functions of the resulting complexes. To gain further insights into the formation of these ERp57-ER lectin complexes, we have investigated the regions of ERp57 that are specifically required for its binding to calreticulin. Using a quantitative pull-down assay to investigate the binding of ERp57/PDI chimeras to calreticulin, we define the b and b' domains of ERp57 as the minimal elements that are sufficient for complex formation. This analysis further identifies a novel role for the distinctive C-terminal extension of ERp57 in reconstituting complex formation to wild type levels. Using our understanding of substrate binding to the b' domain of PDI as a paradigm, we show that alterations to specific residues in the b' domain of ERp57 dramatically reduce or completely abolish its binding to calreticulin. On the basis of these data, we propose a model where the region of ERp57 equivalent to the primary substrate binding site of archetypal PDI is occupied by calreticulin and suggest that the ER lectins act as adaptor molecules that define the substrate specificity of ERp57. PMID:14871899

  7. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions.

    PubMed

    Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H A M; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N H

    2016-03-01

    Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound-often by multiple non-covalent interactions-in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis. PMID:26892553

  8. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding.

    PubMed

    Fischer, Marcus; Hopkins, Adam P; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G; Hubbard, Roderick E; Thomas, Gavin H

    2015-11-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  9. Tripartite ATP-independent Periplasmic (TRAP) Transporters Use an Arginine-mediated Selectivity Filter for High Affinity Substrate Binding*

    PubMed Central

    Fischer, Marcus; Hopkins, Adam P.; Severi, Emmanuele; Hawkhead, Judith; Bawdon, Daniel; Watts, Andrew G.; Hubbard, Roderick E.; Thomas, Gavin H.

    2015-01-01

    Tripartite ATP-independent periplasmic (TRAP) transporters are secondary transporters that have evolved an obligate dependence on a substrate-binding protein (SBP) to confer unidirectional transport. Different members of the DctP family of TRAP SBPs have binding sites that recognize a diverse range of organic acid ligands but appear to only share a common electrostatic interaction between a conserved arginine and a carboxylate group in the ligand. We investigated the significance of this interaction using the sialic acid-specific SBP, SiaP, from the Haemophilus influenzae virulence-related SiaPQM TRAP transporter. Using in vitro, in vivo, and structural methods applied to SiaP, we demonstrate that the coordination of the acidic ligand moiety of sialic acid by the conserved arginine (Arg-147) is essential for the function of the transporter as a high affinity scavenging system. However, at high substrate concentrations, the transporter can function in the absence of Arg-147 suggesting that this bi-molecular interaction is not involved in further stages of the transport cycle. As well as being required for high affinity binding, we also demonstrate that the Arg-147 is a strong selectivity filter for carboxylate-containing substrates in TRAP transporters by engineering the SBP to recognize a non-carboxylate-containing substrate, sialylamide, through water-mediated interactions. Together, these data provide biochemical and structural support that TRAP transporters function predominantly as high affinity transporters for carboxylate-containing substrates. PMID:26342690

  10. Crystal structures of a family 8 polysaccharide lyase reveal open and highly occluded substrate-binding cleft conformations.

    PubMed

    Elmabrouk, Zainab H; Vincent, Florence; Zhang, Meng; Smith, Nicola L; Turkenburg, Johan P; Charnock, Simon J; Black, Gary W; Taylor, Edward J

    2011-03-01

    Bacterial enzymatic degradation of glycosaminoglycans such as hyaluronan and chondroitin is facilitated by polysaccharide lyases. Family 8 polysaccharide lyase (PL8) enzymes contain at least two domains: one predominantly composed of α-helices, the α-domain, and another predominantly composed of β-sheets, the β-domain. Simulation flexibility analyses indicate that processive exolytic cleavage of hyaluronan, by PL8 hyaluronate lyases, is likely to involve an interdomain shift, resulting in the opening/closing of the substrate-binding cleft between the α- and β-domains, facilitating substrate translocation. Here, the Streptomyces coelicolor A3(2) PL8 enzyme was recombinantly expressed in and purified from Escherichia coli and biochemically characterized as a hyaluronate lyase. By using X-ray crystallography its structure was solved in complex with hyaluronan and chondroitin disaccharides. These findings show key catalytic interactions made by the different substrates, and on comparison with all other PL8 structures reveals that the substrate-binding cleft of the S. coelicolor enzyme is highly occluded. A third structure of the enzyme, harboring a mutation of the catalytic tyrosine, created via site-directed mutagenesis, interestingly revealed an interdomain shift that resulted in the opening of the substrate-binding cleft. These results add further support to the proposed processive mechanism of action of PL8 hyaluronate lyases and may indicate that the mechanism of action is likely to be universally used by PL8 hyaluronate lyases. PMID:21287626

  11. Self-assembled nanospheres with multiple endohedral binding sites pre-organize catalysts and substrates for highly efficient reactions

    NASA Astrophysics Data System (ADS)

    Wang, Qi-Qiang; Gonell, Sergio; Leenders, Stefan H. A. M.; Dürr, Maximilian; Ivanović-Burmazović, Ivana; Reek, Joost N. H.

    2016-03-01

    Tuning reagent and catalyst concentrations is crucial in the development of efficient catalytic transformations. In enzyme-catalysed reactions the substrate is bound—often by multiple non-covalent interactions—in a well-defined pocket close to the active site of the enzyme; this pre-organization facilitates highly efficient transformations. Here we report an artificial system that co-encapsulates multiple catalysts and substrates within the confined space defined by an M12L24 nanosphere that contains 24 endohedral guanidinium-binding sites. Cooperative binding means that sulfonate guests are bound much more strongly than carboxylates. This difference has been used to fix gold-based catalysts firmly, with the remaining binding sites left to pre-organize substrates. This strategy was applied to a Au(I)-catalysed cyclization of acetylenic acid to enol lactone in which the pre-organization resulted in much higher reaction rates. We also found that the encapsulated sulfonate-containing Au(I) catalysts did not convert neutral (acid) substrates, and so could have potential in the development of substrate-selective catalysis and base-triggered on/off switching of catalysis.

  12. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    SciTech Connect

    Uhle, M.E.; Chin, Y.P.; Aiken, G.R.; McKnight, D.M.

    1999-08-15

    Two ortho- (2,2{prime},5 and 2,2{prime}5,6{prime}) and a non-ortho- (3,3{prime},4,4{prime}) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1{prime} carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate`s higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.

  13. Alternative substrates reveal catalytic cycle and key binding events in the reaction catalysed by anthranilate phosphoribosyltransferase from Mycobacterium tuberculosis.

    PubMed

    Cookson, Tammie V M; Castell, Alina; Bulloch, Esther M M; Evans, Genevieve L; Short, Francesca L; Baker, Edward N; Lott, J Shaun; Parker, Emily J

    2014-07-01

    AnPRT (anthranilate phosphoribosyltransferase), required for the biosynthesis of tryptophan, is essential for the virulence of Mycobacterium tuberculosis (Mtb). AnPRT catalyses the Mg2+-dependent transfer of a phosphoribosyl group from PRPP (5'-phosphoribosyl-1'-pyrophosphate) to anthranilate to form PRA (5'-phosphoribosyl anthranilate). Mtb-AnPRT was shown to catalyse a sequential reaction and significant substrate inhibition by anthranilate was observed. Antimycobacterial fluoroanthranilates and methyl-substituted analogues were shown to act as alternative substrates for Mtb-AnPRT, producing the corresponding substituted PRA products. Structures of the enzyme complexed with anthranilate analogues reveal two distinct binding sites for anthranilate. One site is located over 8 Å (1 Å=0.1 nm) from PRPP at the entrance to a tunnel leading to the active site, whereas in the second, inner, site anthranilate is adjacent to PRPP, in a catalytically relevant position. Soaking the analogues for variable periods of time provides evidence for anthranilate located at transient positions during transfer from the outer site to the inner catalytic site. PRPP and Mg2+ binding have been shown to be associated with the rearrangement of two flexible loops, which is required to complete the inner anthranilate-binding site. It is proposed that anthranilate first binds to the outer site, providing an unusual mechanism for substrate capture and efficient transfer to the catalytic site following the binding of PRPP. PMID:24712732

  14. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins

    PubMed Central

    Piao, Lianhua; Nakakido, Makoto; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-01-01

    We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation. PMID:26988914

  15. Automethylation of SUV39H2, an oncogenic histone lysine methyltransferase, regulates its binding affinity to substrate proteins.

    PubMed

    Piao, Lianhua; Nakakido, Makoto; Suzuki, Takehiro; Dohmae, Naoshi; Nakamura, Yusuke; Hamamoto, Ryuji

    2016-04-19

    We previously reported that the histone lysine methyltransferase SUV39H2, which is overexpressed in various types of human cancer, plays a critical role in the DNA repair after double strand breakage, and possesses oncogenic activity. Although its biological significance in tumorigenesis has been elucidated, the regulatory mechanism of SUV39H2 activity through post-translational modification is not well known. In this study, we demonstrate in vitro and in vivo automethylation of SUV39H2 at lysine 392. Automethylation of SUV39H2 led to impairment of its binding affinity to substrate proteins such as histone H3 and LSD1. Furthermore, we observed that hyper-automethylated SUV39H2 reduced methylation activities to substrates through affecting the binding affinity to substrate proteins. Our finding unveils a novel autoregulatory mechanism of SUV39H2 through lysine automethylation. PMID:26988914

  16. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle.

    PubMed

    Banerjee, Rupa; Jayaraj, Gopal Gunanathan; Peter, Joshua Jebakumar; Kumar, Vignesh; Mapa, Koyeli

    2016-08-01

    DnaK or Hsp70 of Escherichia coli is a master regulator of the bacterial proteostasis network. Allosteric communication between the two functional domains of DnaK, the N-terminal nucleotide-binding domain (NBD) and the C-terminal substrate- or peptide-binding domain (SBD) regulate its activity. X-ray crystallography and NMR studies have provided snapshots of distinct conformations of Hsp70 proteins in various physiological states; however, the conformational heterogeneity and dynamics of allostery-driven Hsp70 activity remains underexplored. In this work, we employed single-molecule Förster resonance energy transfer (sm-FRET) measurements to capture distinct intradomain conformational states of a region within the DnaK-SBD known as the lid. Our data conclusively demonstrate prominent conformational heterogeneity of the DnaK lid in ADP-bound states; in contrast, the ATP-bound open conformations are homogeneous. Interestingly, a nonhydrolysable ATP analogue, AMP-PNP, imparts heterogeneity to the lid conformations mimicking the ADP-bound state. The cochaperone DnaJ confers ADP-like heterogeneous lid conformations to DnaK, although the presence of the cochaperone accelerates the substrate-binding rate by a hitherto unknown mechanism. Irrespective of the presence of DnaJ, binding of a peptide substrate to the DnaK-SBD leads to prominent lid closure. Lid closure is only partial upon binding to molten globule-like authentic cellular substrates, probably to accommodate non-native substrate proteins of varied structures. PMID:27248857

  17. Addition of a carbohydrate-binding module enhances cellulase penetration into cellulose substrates

    PubMed Central

    2013-01-01

    Introduction Cellulases are of great interest for application in biomass degradation, yet the molecular details of the mode of action of glycoside hydrolases during degradation of insoluble cellulose remain elusive. To further improve these enzymes for application at industrial conditions, it is critical to gain a better understanding of not only the details of the degradation process, but also the function of accessory modules. Method We fused a carbohydrate-binding module (CBM) from family 2a to two thermophilic endoglucanases. We then applied neutron reflectometry to determine the mechanism of the resulting enhancements. Results Catalytic activity of the chimeric enzymes was enhanced up to three fold on insoluble cellulose substrates as compared to wild type. Importantly, we demonstrate that the wild type enzymes affect primarily the surface properties of an amorphous cellulose film, while the chimeras containing a CBM alter the bulk properties of the amorphous film. Conclusion Our findings suggest that the CBM improves the efficiency of these cellulases by enabling digestion within the bulk of the film. PMID:23819686

  18. Binding of polychlorinated biphenyls to aquatic humic substances: The role of substrate and sorbate properties on partitioning

    USGS Publications Warehouse

    Uhle, M.E.; Chin, Y.-P.; Aiken, G.R.; McKnight, Diane M.

    1999-01-01

    Two ortho- (2,2',5 and 2,2',5,6') and a non-ortho- (3,3',4,4') substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho- substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1' carbon bond, thereby making the molecule less able to interact effectively with the fulvic acid substrate relative to its non-ortho-substituted congeners. Finally, binding of all three PCBs to the Great Dismal Swamp fulvic acid was significantly higher than for the Pony Lake sample. This observation is attributable to the former substrate's higher degree of aromaticity and polarizability, which can potentially interact more favorably with the PCBs through an increase in van der Waals type interactions.Two ortho- (2,2???,5 and 2,2???,5,6???) and a non-ortho- (3,3???,4,4???) substituted polychlorinated biphenyl (PCB) congeners were used to study the effects of sorbate structure in binding processes to two lacustrine fulvic acids. Binding constants were determined by solubility enhancement of the solutes by the fulvic acids. The binding of the ortho-trichlorobiphenyl was significantly less than the non-ortho-substituted tetrachlorobiphenyl to both fulvic acids. Surprisingly, the measured ortho-trichlorobiphenyl binding constant to both fulvic acids was approximately the same as the ortho-substituted tetrachlorobiphenyl. The effect of the chlorines in the ortho position inhibits free rotation around the 1,1??? carbon bond, thereby making the molecule less able to interact

  19. Structure and function of Plasmodium falciparum malate dehydrogenase: role of critical amino acids in co-substrate binding pocket.

    PubMed

    Pradhan, Anupam; Tripathi, Abhai K; Desai, Prashant V; Mukherjee, Prasenjit K; Avery, Mitchell A; Walker, Larry A; Tekwani, Babu L

    2009-01-01

    The malaria parasite thrives on anaerobic fermentation of glucose for energy. Earlier studies from our laboratory have demonstrated that a cytosolic malate dehydrogenase (PfMDH) with striking similarity to lactate dehydrogenase (PfLDH) might complement PfLDH function in Plasmodium falciparum. The N-terminal glycine motif, which forms a characteristic Rossman dinucleotide-binding fold in the co-substrate binding pocket, differentiates PfMDH (GlyXGlyXXGly) from other eukaryotic and prokaryotic malate dehydrogenases (GlyXXGlyXXGly). The amino acids lining the co-substrate binding pocket are completely conserved in MDHs from different species of human, primate and rodent malaria parasites. Based on this knowledge and conserved domains among prokaryotic and eukaryotic MDH, the role of critical amino acids lining the co-substrate binding pocket was analyzed in catalytic functions of PfMDH using site-directed mutagenesis. Insertion of Ala at the 9th or 10th position, which converts the N-terminal GlyXGlyXXGly motif (characteristic of malarial MDH and LDH) to GlyXXGlyXXGly (as in bacterial and eukaryotic MDH), uncoupled regulation of the enzyme through substrate inhibition. The dinucleotide fold GlyXGlyXXGly motif seems not to be responsible for the distinct affinity of PfMDH to 3-acetylpyridine-adenine dinucleotide (APAD, a synthetic analog of NAD), since Ala9 and Ala10 insertion mutants still utilized APADH. The Gln11Met mutation, which converts the signature glycine motif in PfMDH to that of PfLDH, did not change the enzyme function. However, the Gln11Gly mutant showed approximately a 5-fold increase in catalytic activity, and higher susceptibility to inhibition with gossypol. Asn119 and His174 participate in binding of both co-substrate and substrate. The Asn119Gly mutant exhibited approximately a 3-fold decrease in catalytic efficiency, while mutation of His174 to Asn or Ala resulted in an inactive enzyme. These studies provide critical insights into the co-substrate

  20. Hsp70 Oligomerization Is Mediated by an Interaction between the Interdomain Linker and the Substrate-Binding Domain

    PubMed Central

    Aprile, Francesco A.; Dhulesia, Anne; Stengel, Florian; Roodveldt, Cintia; Benesch, Justin L. P.; Tortora, Paolo; Robinson, Carol V.; Salvatella, Xavier; Dobson, Christopher M.; Cremades, Nunilo

    2013-01-01

    Oligomerization in the heat shock protein (Hsp) 70 family has been extensively documented both in vitro and in vivo, although the mechanism, the identity of the specific protein regions involved and the physiological relevance of this process are still unclear. We have studied the oligomeric properties of a series of human Hsp70 variants by means of nanoelectrospray ionization mass spectrometry, optical spectroscopy and quantitative size exclusion chromatography. Our results show that Hsp70 oligomerization takes place through a specific interaction between the interdomain linker of one molecule and the substrate-binding domain of a different molecule, generating dimers and higher-order oligomers. We have found that substrate binding shifts the oligomerization equilibrium towards the accumulation of functional monomeric protein, probably by sequestering the helical lid sub-domain needed to stabilize the chaperone: substrate complex. Taken together, these findings suggest a possible role of chaperone oligomerization as a mechanism for regulating the availability of the active monomeric form of the chaperone and for the control of substrate binding and release. PMID:23840795

  1. Structural Comparison, Substrate Specificity, and Inhibitor Binding of AGPase Small Subunit from Monocot and Dicot: Present Insight and Future Potential

    PubMed Central

    Choudhury, Manabendra D.; Modi, Mahendra K.

    2014-01-01

    ADP-glucose pyrophosphorylase (AGPase) is the first rate limiting enzyme of starch biosynthesis pathway and has been exploited as the target for greater starch yield in several plants. The structure-function analysis and substrate binding specificity of AGPase have provided enormous potential for understanding the role of specific amino acid or motifs responsible for allosteric regulation and catalytic mechanisms, which facilitate the engineering of AGPases. We report the three-dimensional structure, substrate, and inhibitor binding specificity of AGPase small subunit from different monocot and dicot crop plants. Both monocot and dicot subunits were found to exploit similar interactions with the substrate and inhibitor molecule as in the case of their closest homologue potato tuber AGPase small subunit. Comparative sequence and structural analysis followed by molecular docking and electrostatic surface potential analysis reveal that rearrangements of secondary structure elements, substrate, and inhibitor binding residues are strongly conserved and follow common folding pattern and orientation within monocot and dicot displaying a similar mode of allosteric regulation and catalytic mechanism. The results from this study along with site-directed mutagenesis complemented by molecular dynamics simulation will shed more light on increasing the starch content of crop plants to ensure the food security worldwide. PMID:25276800

  2. Substrate Binding Mode and Molecular Basis of a Specificity Switch in Oxalate Decarboxylase

    PubMed Central

    2016-01-01

    mediate the formation of Mn(III) for catalysis upon substrate binding. PMID:27014926

  3. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity.

    PubMed

    Murashko, Oleg N; Kaberdin, Vladimir R; Lin-Chao, Sue

    2012-05-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane-protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E-membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1-499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (K(d)) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the "large" domain (amino acids 1-400, consisting of the RNase H, S1, 5'-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E-membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  4. Membrane binding of Escherichia coli RNase E catalytic domain stabilizes protein structure and increases RNA substrate affinity

    PubMed Central

    Murashko, Oleg N.; Kaberdin, Vladimir R.; Lin-Chao, Sue

    2012-01-01

    RNase E plays an essential role in RNA processing and decay and tethers to the cytoplasmic membrane in Escherichia coli; however, the function of this membrane–protein interaction has remained unclear. Here, we establish a mechanistic role for the RNase E–membrane interaction. The reconstituted highly conserved N-terminal fragment of RNase E (NRne, residues 1–499) binds specifically to anionic phospholipids through electrostatic interactions. The membrane-binding specificity of NRne was confirmed using circular dichroism difference spectroscopy; the dissociation constant (Kd) for NRne binding to anionic liposomes was 298 nM. E. coli RNase G and RNase E/G homologs from phylogenetically distant Aquifex aeolicus, Haemophilus influenzae Rd, and Synechocystis sp. were found to be membrane-binding proteins. Electrostatic potentials of NRne and its homologs were found to be conserved, highly positive, and spread over a large surface area encompassing four putative membrane-binding regions identified in the “large” domain (amino acids 1–400, consisting of the RNase H, S1, 5′-sensor, and DNase I subdomains) of E. coli NRne. In vitro cleavage assay using liposome-free and liposome-bound NRne and RNA substrates BR13 and GGG-RNAI showed that NRne membrane binding altered its enzymatic activity. Circular dichroism spectroscopy showed no obvious thermotropic structural changes in membrane-bound NRne between 10 and 60 °C, and membrane-bound NRne retained its normal cleavage activity after cooling. Thus, NRne membrane binding induced changes in secondary protein structure and enzymatic activation by stabilizing the protein-folding state and increasing its binding affinity for its substrate. Our results demonstrate that RNase E–membrane interaction enhances the rate of RNA processing and decay. PMID:22509045

  5. Drug resistance against HCV NS3/4A inhibitors is defined by the balance of substrate recognition versus inhibitor binding

    PubMed Central

    Romano, Keith P.; Ali, Akbar; Royer, William E.; Schiffer, Celia A.

    2010-01-01

    Hepatitis C virus infects an estimated 180 million people worldwide, prompting enormous efforts to develop inhibitors targeting the essential NS3/4A protease. Resistance against the most promising protease inhibitors, telaprevir, boceprevir, and ITMN-191, has emerged in clinical trials. In this study, crystal structures of the NS3/4A protease domain reveal that viral substrates bind to the protease active site in a conserved manner defining a consensus volume, or substrate envelope. Mutations that confer the most severe resistance in the clinic occur where the inhibitors protrude from the substrate envelope, as these changes selectively weaken inhibitor binding without compromising the binding of substrates. These findings suggest a general model for predicting the susceptibility of protease inhibitors to resistance: drugs designed to fit within the substrate envelope will be less susceptible to resistance, as mutations affecting inhibitor binding would simultaneously interfere with the recognition of viral substrates. PMID:21084633

  6. Structures of LeuT in bicelles define conformation and substrate binding in a membrane-like context

    SciTech Connect

    Wang, Hui; Elferich, Johannes; Gouaux, Eric

    2012-02-13

    Neurotransmitter sodium symporters (NSSs) catalyze the uptake of neurotransmitters into cells, terminating neurotransmission at chemical synapses. Consistent with the role of NSSs in the central nervous system, they are implicated in multiple diseases and disorders. LeuT, from Aquifex aeolicus, is a prokaryotic ortholog of the NSS family and has contributed to our understanding of the structure, mechanism and pharmacology of NSSs. At present, however, the functional state of LeuT in crystals grown in the presence of n-octyl-{beta}-D-glucopyranoside ({beta}-OG) and the number of substrate binding sites are controversial issues. Here we present crystal structures of LeuT grown in DMPC-CHAPSO bicelles and demonstrate that the conformations of LeuT-substrate complexes in lipid bicelles and in {beta}-OG detergent micelles are nearly identical. Furthermore, using crystals grown in bicelles and the substrate leucine or the substrate analog selenomethionine, we find only a single substrate molecule in the primary binding site.

  7. Identical phosphatase mechanisms achieved through distinct modes of binding phosphoprotein substrate

    SciTech Connect

    Pazy, Y.; Motaleb, M.A.; Guarnieri, M.T.; Charon, N.W.; Zhao, R.; Silversmith, R.E.

    2010-04-05

    Two-component signal transduction systems are widespread in prokaryotes and control numerous cellular processes. Extensive investigation of sensor kinase and response regulator proteins from many two-component systems has established conserved sequence, structural, and mechanistic features within each family. In contrast, the phosphatases which catalyze hydrolysis of the response regulator phosphoryl group to terminate signal transduction are poorly understood. Here we present structural and functional characterization of a representative of the CheC/CheX/FliY phosphatase family. The X-ray crystal structure of Borrelia burgdorferi CheX complexed with its CheY3 substrate and the phosphoryl analogue BeF{sub 3}{sup -} reveals a binding orientation between a response regulator and an auxiliary protein different from that shared by every previously characterized example. The surface of CheY3 containing the phosphoryl group interacts directly with a long helix of CheX which bears the conserved (E - X{sub 2} - N) motif. Conserved CheX residues Glu96 and Asn99, separated by a single helical turn, insert into the CheY3 active site. Structural and functional data indicate that CheX Asn99 and CheY3 Thr81 orient a water molecule for hydrolytic attack. The catalytic residues of the CheX-CheY3 complex are virtually superimposable on those of the Escherichia coli CheZ phosphatase complexed with CheY, even though the active site helices of CheX and CheZ are oriented nearly perpendicular to one other. Thus, evolution has found two structural solutions to achieve the same catalytic mechanism through different helical spacing and side chain lengths of the conserved acid/amide residues in CheX and CheZ.

  8. Local entropy difference upon a substrate binding of a psychrophilic α-amylase and a mesophilic homologue

    NASA Astrophysics Data System (ADS)

    Kosugi, Takahiro; Hayashi, Shigehiko

    2011-01-01

    Psychrophilic α-amylase from the antarctic bacterium pseudoalteromonashaloplanktis (AHA) and its mesophilic homologue, porcine pancreatic α-amylase (PPA) are theoretically investigated with molecular dynamics (MD) simulations. We carried out 240-ns MD simulations for four systems, AHA and PPA with/without the bound substrate, and examined protein conformational entropy changes upon the substrate binding. We developed an analysis that decomposes the entropy changes into contributions of individual amino acids, and successfully identified protein regions responsible for the entropy changes. The results provide a molecular insight into the structural flexibilities of those enzymes related to the temperature dependences of the enzymatic activity.

  9. EVIDENCE FOR BIDENTATE SUBSTRATE BINDING AS THE BASIS FOR THE K48 LINKAGE SPECIFICITY OF OTUBAIN 1

    PubMed Central

    Wang, Tao; Yin, Luming; Cooper, Eric M.; Lai, Ming-Yih; Dickey, Seth; Pickart, Cecile M.; Fushman, David; Wilkinson, Keith D.; Cohen, Robert E.; Wolberger, Cynthia

    2009-01-01

    Otubain 1 belongs to the ovarian tumor (OTU) domain class of cysteine protease deubiquitinating enzymes. We show here that human otubain 1 (hOtu1) is highly linkage-specific, cleaving Lys48 (K48)-linked polyubiquitin but not K63-, K29-, K6-, or K11-linked polyubiquitin, or linear α-linked polyubiquitin. Cleavage is not limited to either end of a polyubiquitin chain, and both free and substrate-linked polyubiquitin are disassembled. Intriguingly, cleavage of K48-diubiquitin by hOtu1 can be inhibited by diubiquitins of various linkage types, as well as by monoubiquitin. NMR studies and activity assays suggest that both the proximal and distal units of K48-diubiquitin bind to hOtu1. Reaction of Cys23 with ubiquitin-vinylsulfone identified a ubiquitin binding site that is distinct from the active site, which includes Cys91. Occupancy of the active site is needed to enable tight binding to the second site. We propose that distinct binding sites for the ubiquitins on either side of the scissile bond allow hOtu1 to discriminate among different isopeptide linkages in polyubiquitin substrates. Bidentate binding may be a general strategy used to achieve linkage-specific deubiquitination. PMID:19211026

  10. Deciphering the Arginine-Binding Preferences at the Substrate-Binding Groove of Ser/Thr Kinases by Computational Surface Mapping

    PubMed Central

    Ben-Shimon, Avraham; Niv, Masha Y.

    2011-01-01

    Protein kinases are key signaling enzymes that catalyze the transfer of γ-phosphate from an ATP molecule to a phospho-accepting residue in the substrate. Unraveling the molecular features that govern the preference of kinases for particular residues flanking the phosphoacceptor is important for understanding kinase specificities toward their substrates and for designing substrate-like peptidic inhibitors. We applied ANCHORSmap, a new fragment-based computational approach for mapping amino acid side chains on protein surfaces, to predict and characterize the preference of kinases toward Arginine binding. We focus on positions P−2 and P−5, commonly occupied by Arginine (Arg) in substrates of basophilic Ser/Thr kinases. The method accurately identified all the P−2/P−5 Arg binding sites previously determined by X-ray crystallography and produced Arg preferences that corresponded to those experimentally found by peptide arrays. The predicted Arg-binding positions and their associated pockets were analyzed in terms of shape, physicochemical properties, amino acid composition, and in-silico mutagenesis, providing structural rationalization for previously unexplained trends in kinase preferences toward Arg moieties. This methodology sheds light on several kinases that were described in the literature as having non-trivial preferences for Arg, and provides some surprising departures from the prevailing views regarding residues that determine kinase specificity toward Arg. In particular, we found that the preference for a P−5 Arg is not necessarily governed by the 170/230 acidic pair, as was previously assumed, but by several different pairs of acidic residues, selected from positions 133, 169, and 230 (PKA numbering). The acidic residue at position 230 serves as a pivotal element in recognizing Arg from both the P−2 and P−5 positions. PMID:22125489

  11. Crystal Structure of 12-Lipoxygenase Catalytic-Domain-Inhibitor Complex Identifies a Substrate-Binding Channel for Catalysis

    SciTech Connect

    Xu, Shu; Mueser, Timothy C.; Marnett, Lawrence J.; Funk, Jr., Max O.

    2014-10-02

    Lipoxygenases are critical enzymes in the biosynthesis of families of bioactive lipids including compounds with important roles in the initiation and resolution of inflammation and in associated diseases such as diabetes, cardiovascular disease, and cancer. Crystals diffracting to high resolution (1.9 {angstrom}) were obtained for a complex between the catalytic domain of leukocyte 12-lipoxygenase and the isoform-specific inhibitor, 4-(2-oxapentadeca-4-yne)phenylpropanoic acid (OPP). In the three-dimensional structure of the complex, the inhibitor occupied a new U-shaped channel open at one end to the surface of the protein and extending past the redox-active iron site that is essential for catalysis. In models, the channel accommodated arachidonic acid, defining the binding site for the substrate of the catalyzed reaction. There was a void adjacent to the OPP binding site connecting to the surface of the enzyme and providing a plausible access channel for the other substrate, oxygen.

  12. Subunit composition and in vivo substrate-binding characteristics of Escherichia coli Tat protein complexes expressed at native levels.

    PubMed

    McDevitt, Christopher A; Buchanan, Grant; Sargent, Frank; Palmer, Tracy; Berks, Ben C

    2006-12-01

    The Tat system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Substrates are targeted to the Tat pathway by signal peptides containing a pair of consecutive arginine residues. The membrane proteins TatA, TatB and TatC are the essential components of this pathway in Escherichia coli. The complexes that these proteins form at native levels of expression have been investigated by the use of affinity tag-coding sequences fused to chromosomal tat genes. Distinct TatA and TatBC complexes were identified using size-exclusion chromatography and shown to have apparent molecular masses of approximately 700 and 500 kDa, respectively. Following in vivo expression, the Tat substrate protein SufI was found to copurify with the TatBC, but not the TatA, complex. This binding required the SufI signal peptide. Substitution of the twin-arginine residues in the SufI signal peptide by either twin lysine or twin alanine residues abolished export. However, both variant SufI proteins still copurified with the TatBC complex. These data show that the twin-arginine residues of the Tat consensus motif are not essential for binding of precursor to the TatBC complex but are required for the successful entry of the precursor into the transport cycle. The effect on substrate binding of single amino acid substitutions in TatC that affect Tat transport were studied using TatC variants Phe94Ala, Glu103Ala, Glu103Arg and Asp211Ala. Only variant Glu103Arg showed reduced copurification of SufI with TatBC. The transport defects associated with the other TatC variants do not, therefore, arise from an inability to bind substrate proteins. PMID:17212781

  13. The role of substrate specificity and metal binding in defining the activity and structure of an intracellular subtilisin.

    PubMed

    Gamble, Michael; Künze, Georg; Brancale, Andrea; Wilson, Keith S; Jones, D Dafydd

    2012-01-01

    The dimeric intracellular subtilisin proteases (ISPs) found throughout Gram-positive bacteria are a structurally distinct class of the subtilase family. Unlike the vast majority of subtilisin-like proteases, the ISPs function exclusively within the cell, contributing the majority of observed cellular proteolytic activity. Given that they are active within the cell, little is known about substrate specificity and the role of stress signals such as divalent metal ions in modulating ISP function. We demonstrate that both play roles in defining the proteolytic activity of Bacillus clausii ISP and propose the molecular basis of their effects. Enzyme kinetics reveal that one particular synthetic tetrapeptide substrate, Phe-Ala-Ala-Phe-pNA, is hydrolysed with a catalytic efficiency ∼100-fold higher than any other tested. Heat-denatured whole proteins were found to be better substrates for ISP than the native forms. Substrate binding simulations suggest that the S1, S2 and S4 sites form defined binding pockets. The deep S1 cavity and wide S4 site are fully occupied by the hydrophobic aromatic side-chains of Phe. Divalent metal ions, probably Ca(2+), are proposed to be important for ISP activity through structural changes. The presence of >0.01 mM EDTA inactivates ISP, with CD and SEC suggesting that the protein becomes less structured and potentially monomeric. Removal of Ca(2+) at sites close to the dimer interface and the S1 pocket are thought to be responsible for the effect. These studies provide a new insight into the potential physiological function of ISPs, by reconciling substrate specificity and divalent metal binding to associate ISP with the unfolded protein response under stress conditions. PMID:23650602

  14. Kinetics and binding of the thymine-DNA mismatch glycosylase, Mig-Mth, with mismatch-containing DNA substrates.

    PubMed

    Begley, Thomas J; Haas, Brian J; Morales, Juan C; Kool, Eric T; Cunningham, Richard P

    2003-01-01

    We have examined the removal of thymine residues from T-G mismatches in DNA by the thymine-DNA mismatch glycosylase from Methanobacterium thermoautrophicum (Mig-Mth), within the context of the base excision repair (BER) pathway, to investigate why this glycosylase has such low activity in vitro. Using single-turnover kinetics and steady-state kinetics, we calculated the catalytic and product dissociation rate constants for Mig-Mth, and determined that Mig-Mth is inhibited by product apyrimidinic (AP) sites in DNA. Electrophoretic mobility shift assays (EMSA) provide evidence that the specificity of product binding is dependent upon the base opposite the AP site. The binding of Mig-Mth to DNA containing the non-cleavable substrate analogue difluorotoluene (F) was also analyzed to determine the effect of the opposite base on Mig-Mth binding specificity for substrate-like duplex DNA. The results of these experiments support the idea that opposite strand interactions play roles in determining substrate specificity. Endonuclease IV, which cleaves AP sites in the next step of the BER pathway, was used to analyze the effect of product removal on the overall rate of thymine hydrolysis by Mig-Mth. Our results support the hypothesis that endonuclease IV increases the apparent activity of Mig-Mth significantly under steady-state conditions by preventing reassociation of enzyme to product. PMID:12509271

  15. Membranes serve as allosteric activators of phospholipase A2, enabling it to extract, bind, and hydrolyze phospholipid substrates

    PubMed Central

    Mouchlis, Varnavas D.; Bucher, Denis; McCammon, J. Andrew; Dennis, Edward A.

    2015-01-01

    Defining the molecular details and consequences of the association of water-soluble proteins with membranes is fundamental to understanding protein–lipid interactions and membrane functioning. Phospholipase A2 (PLA2) enzymes, which catalyze the hydrolysis of phospholipid substrates that compose the membrane bilayers, provide the ideal system for studying protein–lipid interactions. Our study focuses on understanding the catalytic cycle of two different human PLA2s: the cytosolic Group IVA cPLA2 and calcium-independent Group VIA iPLA2. Computer-aided techniques guided by deuterium exchange mass spectrometry data, were used to create structural complexes of each enzyme with a single phospholipid substrate molecule, whereas the substrate extraction process was studied using steered molecular dynamics simulations. Molecular dynamic simulations of the enzyme–substrate–membrane systems revealed important information about the mechanisms by which these enzymes associate with the membrane and then extract and bind their phospholipid substrate. Our data support the hypothesis that the membrane acts as an allosteric ligand that binds at the allosteric site of the enzyme’s interfacial surface, shifting its conformation from a closed (inactive) state in water to an open (active) state at the membrane interface. PMID:25624474

  16. The use of isomeric testosterone dimers to explore allosteric effects in substrate binding to cytochrome P450 CYP3A4.

    PubMed

    Denisov, Ilia G; Mak, Piotr J; Grinkova, Yelena V; Bastien, Dominic; Bérubé, Gervais; Sligar, Stephen G; Kincaid, James R

    2016-05-01

    Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug-drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV-VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4. PMID:26774838

  17. Substrate adaptabilities of Thermotogae mannan binding proteins as a function of their evolutionary histories.

    PubMed

    Boucher, Nathalie; Noll, Kenneth M

    2016-09-01

    The Thermotogae possess a large number of ATP-binding cassette (ABC) transporters, including two mannan binding proteins, ManD and CelE (previously called ManE). We show that a gene encoding an ancestor of these was acquired by the Thermotogae from the archaea followed by gene duplication. To address the functional evolution of these proteins as a consequence of their evolutionary histories, we measured the binding affinities of ManD and CelE orthologs from representative Thermotogae. Both proteins bind cellobiose, cellotriose, cellotetraose, β-1,4-mannotriose, and β-1,4-mannotetraose. The CelE orthologs additionally bind β-1,4-mannobiose, laminaribiose, laminaritriose and sophorose while the ManD orthologs additionally only weakly bind β-1,4-mannobiose. The CelE orthologs have higher unfolding temperatures than the ManD orthologs. An examination of codon sites under positive selection revealed that many of these encode residues located near or in the binding site, suggesting that the proteins experienced selective pressures in regions that might have changed their functions. The gene arrangement, phylogeny, binding properties, and putative regulatory networks suggest that the ancestral mannan binding protein was a CelE ortholog which gave rise to the ManD orthologs. This study provides a window on how one class of proteins adapted to new functions and temperatures to fit the physiologies of their new hosts. PMID:27457081

  18. Observed trends in ambient concentrations of C 2-C 8 hydrocarbons in the United Kingdom over the period from 1993 to 2004

    NASA Astrophysics Data System (ADS)

    Dollard, G. J.; Dumitrean, P.; Telling, S.; Dixon, J.; Derwent, R. G.

    Hourly measurements of up to 26 C 2-C 8 hydrocarbons have been made at eight urban background sites, three urban-industrial sites, a kerbside and a rural site in the UK from 1993 onwards up until the end of December 2004. Average annual mean benzene and 1,3-butadiene concentrations at urban background locations have declined at about -20% per year and the observed declines have exactly mimicked the inferred declines in benzene and 1,3-butadiene emissions over the same period. Ninety-day rolling mean concentrations of ethylene, propylene, n- and i-butane, n- and i-pentane, isoprene and propane at urban and rural sites have also declined steadily by between -10% and -30% per year. Rolling mean concentrations of acetylene, 2- and 3-methylpentane, n-hexane, n-heptane, cis- and trans-but-2-ene, cis- and trans-pent-2-ene, toluene, ethylbenzene and o-, m- and p-xylene at a roadside location in London have all declined at between -14% and -21% per year. These declines demonstrate that motor vehicle exhaust catalysts and evaporative canisters have effectively and efficiently controlled vehicular emissions of hydrocarbons in the UK. Urban ethane concentrations arising largely from natural gas leakage have remained largely unchanged over this same period.

  19. CYP2C8-mediated interaction between repaglinide and steviol acyl glucuronide: In vitro investigations using rat and human matrices and in vivo pharmacokinetic evaluation in rats.

    PubMed

    Xu, Yunting; Zhou, Dandan; Wang, Yedong; Li, Jiajun; Wang, Meiyu; Lu, Jia; Zhang, Hongjian

    2016-08-01

    CYP2C8 is involved in the metabolic clearance of several important drugs and recent reports have shown that acyl glucuronides of gemfibrozil and clopidogrel are potent time-dependent inhibitors of CYP2C8 activity. In the present study, the inhibitory effect of steviol acyl glucuronide (SVAG), a circulating metabolite formed after the ingestion of rebaudioside A, was investigated using in vitro and in vivo systems. Results indicated that SVAG was a reversible but not a time-dependent inhibitor of CYP2C8-mediated paclitaxel 6α-hydroxylation. SVAG was also capable of inhibiting CYP2C8-mediated repaglinide 3'-hydroxylation in human liver microsomes and recombinant human CYP2C8, with Ki values of 15.8 μM and 11.6 μM, respectively. In contrast, SVAG did not exhibit inhibitory effect on CYP2C8 activity in rat liver microsomes. In addition, co-administration of rebaudioside A with repaglinide in rats did not lead to AUC and Cmax changes of repaglinide. Although mathematic prediction using a simplified mechanistic model revealed a moderate interaction potential between repaglinide and SVAG, cautions should be given to patients with hypoglycemia if repaglinide and rebaudioside A are used in combination for the blood sugar control. PMID:27259818

  20. Dynamics and structural changes induced by ATP and/or substrate binding in the inward-facing conformation state of P-glycoprotein

    NASA Astrophysics Data System (ADS)

    Watanabe, Yurika; Hsu, Wei-Lin; Chiba, Shuntaro; Hayashi, Tomohiko; Furuta, Tadaomi; Sakurai, Minoru

    2013-02-01

    P-glycoprotein (P-gp) is a multidrug transporter that catalyzes the transport of a substrate. To elucidate the underlying mechanism of this type of substrate transport, we performed molecular dynamics (MD) simulations using the X-ray crystal structure of P-gp, which has an inward-facing conformation. Our simulations indicated that the dimerization of the nucleotide binding domains (NBDs) is driven by the binding of ATP to the NBDs and/or the binding of the substrate to a cavity in the transmembrane domains (TMDs). Based on these results, we discuss a role of ATP in the allosteric communication that occurs between the NBDs and the TMDs.

  1. Unidirectional Binding of Clostridial Collagenase to Triple Helical Substrates*S⃞

    PubMed Central

    Philominathan, Sagaya Theresa Leena; Koide, Takaki; Hamada, Kentaro; Yasui, Hiroyuki; Seifert, Soenke; Matsushita, Osamu; Sakon, Joshua

    2009-01-01

    Histotoxic clostridia produce collagenases responsible for extensive tissue destruction in gas gangrene. The C-terminal collagen-binding domain (CBD) of these enzymes is the minimal segment required to bind to collagen fibril. Collagen binding efficiency of CBD is more pronounced in the presence of Ca2+. We have shown that CBD can be functional to anchor growth factors in local tissue. A 1H-15N HSQC NMR titration study with three different tropocollagen analogues ((POG)10)3, ((GPOG)7PRG)3, and (GPRG(POG)7C-carbamidomethyl)3, mapped a saddle-like binding cleft on CBD. NMR titrations with three nitroxide spin-labeled analogues of collagenous peptide, (PROXYL-G(POG)7PRG)3, (PROXYL-G(POG)7)3, and (GPRG(POG)7C-PROXYL)3 (where PROXYL represents 2,2,5,5-tetramethyl-l-pyrrolidinyloxy), unambiguously demonstrated unidirectional binding of CBD to the tropocollagen analogues. Small angle x-ray scattering data revealed that CBD binds closer to a terminus for each of the five different tropocollagen analogues, which in conjunction with NMR titration studies, implies a binding mode where CBD binds to the C terminus of the triple helix. PMID:19208618

  2. A Potential Substrate Binding Conformation of β-Lactams and Insight into the Broad Spectrum of NDM-1 Activity

    PubMed Central

    Yuan, Qinghui; He, Lin

    2012-01-01

    New Delhi metallo-β-lactamase 1 (NDM-1) is a key enzyme that the pathogen Klebsiella pneumonia uses to hydrolyze almost all β-lactam antibiotics. It is currently unclear why NDM-1 has a broad spectrum of activity. Docking of the representatives of the β-lactam families into the active site of NDM-1 is reported here. All the β-lactams naturally fit the NDM-1 pocket, implying that NDM-1 can accommodate the substrates without dramatic conformation changes. The docking reveals two major binding modes of the β-lactams, which we tentatively name the S (substrate) and I (inhibitor) conformers. In the S conformers of all the β-lactams, the amide oxygen and the carboxylic group conservatively interact with two zinc ions, while the substitutions on the fused rings show dramatic differences in their conformations and positions. Since the bridging hydroxide ion/water in the S conformer is at the position for the nucleophilic attack, the S conformation may simulate the true binding of a substrate to NDM-1. The I conformer either blocks or displaces the bridging hydroxide ion/water, such as in the case of aztreonam, and is thus inhibitory. The docking also suggests that substitutions on the β-lactam ring are required for β-lactams to bind in the S conformation, and therefore, small β-lactams such as clavulanic acid would be inhibitors of NDM-1. Finally, our docking shows that moxalactam uses its tyrosyl-carboxylic group to compete with the S conformer and would thus be a poor substrate of NDM-1. PMID:22825119

  3. Tight-binding model study of substrate induced pseudo-spin polarization and magnetism in mono-layer graphene

    NASA Astrophysics Data System (ADS)

    Sahu, Sivabrata; Rout, G. C.

    2016-06-01

    We present here a tight-binding model study of generation of magnetism and pseudo-spin polarization in monolayer graphene arising due to substrate, impurity and Coulomb correlation effects. The model Hamiltonian contains the first-, second- and third-nearest-neighbor hopping integrals for π electrons of graphene besides substrate induced gap, impurity interactions and Coulomb correlation of electrons. The Hubbard type Coulomb interactions present in both the sub-lattices A and B are treated within the mean-field approximation. The electronic Green's functions are calculated by using Zubarev's technique and hence the electron occupancies of both sub-lattices are calculated for up and down spins separately. These four temperature dependent occupancies are calculated numerically and self-consistently. Then we have calculated the temperature dependent pseudo-spin polarization, ferromagnetic and anti-ferromagnetic magnetizations. We observe that there exists pseudo-spin polarization for lower Coulomb energy, u < 2.2t1 and pseudo-spin polarization is enhanced with substrate induced gap and impurity effect. For larger Coulomb energy u > 2.5t1, there exists pseudo-spin polarization (p); while ferromagnetic (m) and antiferromagnetic (pm) magnetizations exhibit oscillatory behavior. With increase of the substrate induced gap, the ferromagnetic and antiferromagnetic transition temperatures are enhanced with increase of the substrate induced gap; while polarization (p) is enhanced in magnitude only.

  4. Crystal Structures and Molecular Dynamics Simulations of Thermophilic Malate Dehydrogenase Reveal Critical Loop Motion for Co-Substrate Binding

    PubMed Central

    Luo, Huei-Ru; Wu, Szu-Pei; Hsu, Chun-Hua

    2013-01-01

    Malate dehydrogenase (MDH) catalyzes the conversion of oxaloacetate and malate by using the NAD/NADH coenzyme system. The system is used as a conjugate for enzyme immunoassays of a wide variety of compounds, such as illegal drugs, drugs used in therapeutic applications and hormones. We elucidated the biochemical and structural features of MDH from Thermus thermophilus (TtMDH) for use in various biotechnological applications. The biochemical characterization of recombinant TtMDH revealed greatly increased activity above 60°C and specific activity of about 2,600 U/mg with optimal temperature of 90°C. Analysis of crystal structures of apo and NAD-bound forms of TtMDH revealed a slight movement of the binding loop and few structural elements around the co-substrate binding packet in the presence of NAD. The overall structures did not change much and retained all related positions, which agrees with the CD analyses. Further molecular dynamics (MD) simulation at higher temperatures were used to reconstruct structures from the crystal structure of TtMDH. Interestingly, at the simulated structure of 353 K, a large change occurred around the active site such that with increasing temperature, a mobile loop was closed to co-substrate binding region. From biochemical characterization, structural comparison and MD simulations, the thermal-induced conformational change of the co-substrate binding loop of TtMDH may contribute to the essential movement of the enzyme for admitting NAD and may benefit the enzyme's activity. PMID:24386145

  5. Unveiling substrate RNA binding to H/ACA RNPs: one side fits all

    PubMed Central

    Li, Hong

    2008-01-01

    The H/ACA RNP pseudouridylases function on a large number of extraordinarily complex RNA substrates including pre-ribosomal and small nuclear RNAs. Recent structural data show that H/ACA RNPs capture their RNA substrates via a simple one-sided attachment model. However, the precise placement of each RNA substrate into the active site of the catalytic subunit relies on the essential functions of the RNP proteins. The specific roles of each HACA RNP protein are being elucidated by a combination of structural and biochemical studies. PMID:18178425

  6. Electrogenic Steps Associated with Substrate Binding to the Neuronal Glutamate Transporter EAAC1.

    PubMed

    Tanui, Rose; Tao, Zhen; Silverstein, Nechama; Kanner, Baruch; Grewer, Christof

    2016-05-27

    Glutamate transporters actively take up glutamate into the cell, driven by the co-transport of sodium ions down their transmembrane concentration gradient. It was proposed that glutamate binds to its binding site and is subsequently transported across the membrane in the negatively charged form. With the glutamate binding site being located partially within the membrane domain, the possibility has to be considered that glutamate binding is dependent on the transmembrane potential and, thus, is electrogenic. Experiments presented in this report test this possibility. Rapid application of glutamate to the wild-type glutamate transporter subtype EAAC1 (excitatory amino acid carrier 1) through photo-release from caged glutamate generated a transient inward current, as expected for the electrogenic inward movement of co-transported Na(+) In contrast, glutamate application to a transporter with the mutation A334E induced transient outward current, consistent with movement of negatively charged glutamate into its binding site within the dielectric of the membrane. These results are in agreement with electrostatic calculations, predicting a valence for glutamate binding of -0.27. Control experiments further validate and rule out other possible explanations for the transient outward current. Electrogenic glutamate binding can be isolated in the mutant glutamate transporter because reactions, such as glutamate translocation and/or Na(+) binding to the glutamate-bound state, are inhibited by the A334E substitution. Electrogenic glutamate binding has to be considered together with other voltage-dependent partial reactions to cooperatively determine the voltage dependence of steady-state glutamate uptake and glutamate buffering at the synapse. PMID:27044739

  7. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation*

    PubMed Central

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-01-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu406 is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  8. Importance of the Extracellular Loop 4 in the Human Serotonin Transporter for Inhibitor Binding and Substrate Translocation.

    PubMed

    Rannversson, Hafsteinn; Wilson, Pamela; Kristensen, Kristina Birch; Sinning, Steffen; Kristensen, Anders Skov; Strømgaard, Kristian; Andersen, Jacob

    2015-06-01

    The serotonin transporter (SERT) terminates serotonergic neurotransmission by performing reuptake of released serotonin, and SERT is the primary target for antidepressants. SERT mediates the reuptake of serotonin through an alternating access mechanism, implying that a central substrate site is connected to both sides of the membrane by permeation pathways, of which only one is accessible at a time. The coordinated conformational changes in SERT associated with substrate translocation are not fully understood. Here, we have identified a Leu to Glu mutation at position 406 (L406E) in the extracellular loop 4 (EL4) of human SERT, which induced a remarkable gain-of-potency (up to >40-fold) for a range of SERT inhibitors. The effects were highly specific for L406E relative to six other mutations in the same position, including the closely related L406D mutation, showing that the effects induced by L406E are not simply charge-related effects. Leu(406) is located >10 Å from the central inhibitor binding site indicating that the mutation affects inhibitor binding in an indirect manner. We found that L406E decreased accessibility to a residue in the cytoplasmic pathway. The shift in equilibrium to favor a more outward-facing conformation of SERT can explain the reduced turnover rate and increased association rate of inhibitor binding we found for L406E. Together, our findings show that EL4 allosterically can modulate inhibitor binding within the central binding site, and substantiates that EL4 has an important role in controlling the conformational equilibrium of human SERT. PMID:25903124

  9. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.

    PubMed

    Islam, Mohammad Mainul; Goto, Masaru; Miyahara, Ikuko; Ikushiro, Hiroko; Hirotsu, Ken; Hayashi, Hideyuki

    2005-06-14

    The mechanism for the reaction of aspartate aminotransferase with the C4 substrate, l-aspartate, has been well established. The binding of the C4 substrate induces conformational change in the enzyme from the open to the closed form, and the entire reaction proceeds in the closed form of the enzyme. On the contrary, little is known about the reaction with the C5 substrate, l-glutamate. In this study, we analyzed the pH-dependent binding of 2-methyl-l-glutamate to the enzyme and showed that the interaction between the amino group of 2-methyl-l-glutamate and the pyridoxal 5'-phosphate aldimine is weak compared to that between 2-methyl-l-aspartate and the aldimine. The structures of the Michaelis complexes of the enzyme with l-aspartate and l-glutamate were modeled on the basis of the maleate and glutarate complex structures of the enzyme. The result showed that l-glutamate binds to the open form of the enzyme in an extended conformation, and its alpha-amino group points in the opposite direction of the aldimine, while that of l-aspartate is close to the aldimine. These models explain the observations for 2-methyl-l-glutamate and 2-methyl-l-aspartate. The crystal structures of the complexes of aspartate aminotransferase with phosphopyridoxyl derivatives of l-glutamate, d-glutamate, and 2-methyl-l-glutamate were solved as the models for the external aldimine and ketimine complexes of l-glutamate. All the structures were in the closed form, and the two carboxylate groups and the arginine residues binding them are superimposable on the external aldimine complex with 2-methyl-l-aspartate. Taking these facts altogether, it was strongly suggested that the binding of l-glutamate to aspartate aminotransferase to form the Michaelis complex does not induce a conformational change in the enzyme, and that the conformational change to the closed form occurs during the transaldimination step. The hydrophobic residues of the entrance of the active site, including Tyr70, are

  10. Structure of conjugated polyketone reductase from Candida parapsilosis IFO 0708 reveals conformational changes for substrate recognition upon NADPH binding.

    PubMed

    Qin, Hui-Min; Yamamura, Akihiro; Miyakawa, Takuya; Kataoka, Michihiko; Nagai, Takahiro; Kitamura, Nahoko; Urano, Nobuyuki; Maruoka, Shintaro; Ohtsuka, Jun; Nagata, Koji; Shimizu, Sakayu; Tanokura, Masaru

    2014-01-01

    Conjugated polyketone reductase C2 (CPR-C2) from Candida parapsilosis IFO 0708, identified as a nicotinamide adenine dinucleotide phosphate (NADPH)-dependent ketopantoyl lactone reductase, belongs to the aldo-keto reductase superfamily. This enzyme reduces ketopantoyl lactone to D-pantoyl lactone in a strictly stereospecific manner. To elucidate the structural basis of the substrate specificity, we determined the crystal structures of the apo CPR-C2 and CPR-C2/NADPH complex at 1.70 and 1.80 Å resolutions, respectively. CPR-C2 adopted a triose-phosphate isomerase barrel fold at the core of the structure. Binding with the cofactor NADPH induced conformational changes in which Thr27 and Lys28 moved 15 and 5.0 Å, respectively, in the close vicinity of the adenosine 2'-phosphate group of NADPH to form hydrogen bonds. Based on the comparison of the CPR-C2/NADPH structure with 3-α-hydroxysteroid dehydrogenase and mutation analyses, we constructed substrate binding models with ketopantoyl lactone, which provided insight into the substrate specificity by the cofactor-induced structure. The results will be useful for the rational design of CPR-C2 mutants targeted for use in the industrial manufacture of ketopantoyl lactone. PMID:23828603

  11. Substrate Pathways in the Nitrogenase MoFe Protein by Experimental Identification of Small Molecule Binding Sites

    PubMed Central

    2016-01-01

    In the nitrogenase molybdenum-iron (MoFe) protein, we have identified five potential substrate access pathways from the protein surface to the FeMo-cofactor (the active site) or the P-cluster using experimental structures of Xe pressurized into MoFe protein crystals from Azotobacter vinelandii and Clostridium pasteurianum. Additionally, all published structures of the MoFe protein, including those from Klebsiella pneumoniae, were analyzed for the presence of nonwater, small molecules bound to the protein interior. Each pathway is based on identification of plausible routes from buried small molecule binding sites to both the protein surface and a metallocluster. Of these five pathways, two have been previously suggested as substrate access pathways. While the small molecule binding sites are not conserved among the three species of MoFe protein, residues lining the pathways are generally conserved, indicating that the proposed pathways may be accessible in all three species. These observations imply that there is unlikely a unique pathway utilized for substrate access from the protein surface to the active site; however, there may be preferred pathways such as those described here. PMID:25710326

  12. Rational design of a carboxylic esterase RhEst1 based on computational analysis of substrate binding.

    PubMed

    Chen, Qi; Luan, Zheng-Jiao; Yu, Hui-Lei; Cheng, Xiaolin; Xu, Jian-He

    2015-11-01

    A new carboxylic esterase RhEst1 which catalyzes the hydrolysis of (S)-(+)-2,2-dimethylcyclopropanecarboxylate (S-DmCpCe), the key chiral building block of cilastatin, was identified and subsequently crystallized in our previous work. Mutant RhEst1A147I/V148F/G254A was found to show a 5-fold increase in the catalytic activity. In this work, molecular dynamic simulations were performed to elucidate the molecular determinant of the enzyme activity. Our simulations show that the substrate binds much more strongly in the A147I/V148F/G254A mutant than in wild type, with more hydrogen bonds formed between the substrate and the catalytic triad and the oxyanion hole. The OH group of the catalytic residue Ser101 in the mutant is better positioned to initiate the nucleophilic attack on S-DmCpCe. Interestingly, the "170-179" loop which is involved in shaping the catalytic sites and facilitating the product release shows remarkable dynamic differences in the two systems. Based on the simulation results, six residues were identified as potential "hot-spots" for further experimental testing. Consequently, the G126S and R133L mutants show higher catalytic efficiency as compared with the wild type. This work provides molecular-level insights into the substrate binding mechanism of carboxylic esterase RhEst1, facilitating future experimental efforts toward developing more efficient RhEst1 variants for industrial applications. PMID:26556053

  13. The effector domain of myristoylated alanine-rich C kinase substrate binds strongly to phosphatidylinositol 4,5-bisphosphate.

    PubMed

    Wang, J; Arbuzova, A; Hangyás-Mihályné, G; McLaughlin, S

    2001-02-16

    Both the myristoylated alanine-rich protein kinase C substrate protein (MARCKS) and a peptide corresponding to its basic effector domain, MARCKS-(151-175), inhibit phosphoinositide-specific phospholipase C (PLC)-catalyzed hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP(2)) in vesicles (Glaser, M., Wanaski, S., Buser, C. A., Boguslavsky, V., Rashidzada, W., Morris, A., Rebecchi, M., Scarlata, S. F., Runnels, L. W., Prestwich, G. D., Chen, J., Aderem, A., Ahn, J., and McLaughlin, S. (1996) J. Biol. Chem. 271, 26187-26193). We report here that adding 10-100 nm MARCKS-(151-175) to a subphase containing either PLC-delta or -beta inhibits hydrolysis of PIP(2) in a monolayer and that this inhibition is due to the strong binding of the peptide to PIP(2). Two direct binding measurements, based on centrifugation and fluorescence, show that approximately 10 nm PIP(2), in the form of vesicles containing 0.01%, 0.1%, or 1% PIP(2), binds 50% of MARCKS-(151-175). Both electrophoretic mobility measurements and competition experiments suggest that MARCKS-(151-175) forms an electroneutral complex with approximately 4 PIP(2). MARCKS-(151-175) binds equally well to PI(4,5)P(2) and PI(3,4)P(2). Local electrostatic interactions of PIP(2) with MARCKS-(151-175) contribute to the binding energy because increasing the salt concentration from 100 to 500 mm decreases the binding 100-fold. We hypothesize that the effector domain of MARCKS can bind a significant fraction of the PIP(2) in the plasma membrane, and release the bound PIP(2) upon interaction with Ca(2+)/calmodulin or phosphorylation by protein kinase C. PMID:11053422

  14. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin*

    PubMed Central

    Bjerregaard, Henriette; Severinsen, Kasper; Said, Saida; Wiborg, Ove; Sinning, Steffen

    2015-01-01

    Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT. PMID:25614630

  15. Substrate Binding Protein SBP2 of a Putative ABC Transporter as a Novel Vaccine Antigen of Moraxella catarrhalis

    PubMed Central

    Otsuka, Taketo; Kirkham, Charmaine; Johnson, Antoinette; Jones, Megan M.

    2014-01-01

    Moraxella catarrhalis is a common respiratory tract pathogen that causes otitis media in children and infections in adults with chronic obstructive pulmonary disease. Since the introduction of the pneumococcal conjugate vaccines with/without protein D of nontypeable Haemophilus influenzae, M. catarrhalis has become a high-priority pathogen in otitis media. For the development of antibacterial vaccines and therapies, substrate binding proteins of ATP-binding cassette transporters are important targets. In this study, we identified and characterized a substrate binding protein, SBP2, of M. catarrhalis. Among 30 clinical isolates tested, the sbp2 gene sequence was highly conserved. In 2 different analyses (whole-cell enzyme-linked immunosorbent assay and flow cytometry), polyclonal antibodies raised to recombinant SBP2 demonstrated that SBP2 expresses epitopes on the bacterial surface of the wild type but not the sbp2 mutant. Mice immunized with recombinant SBP2 showed significantly enhanced clearance of M. catarrhalis from the lung compared to that in the control group at both 25-μg and 50-μg doses (P < 0.001). We conclude that SBP2 is a novel, attractive candidate as a vaccine antigen against M. catarrhalis. PMID:24914218

  16. Molecular dynamics of Mycobacterium tuberculosis KasA: implications for inhibitor and substrate binding and consequences for drug design.

    PubMed

    Schaefer, Benjamin; Kisker, Caroline; Sotriffer, Christoph A

    2011-11-01

    Inhibition of the production of fatty acids as essential components of the mycobacterial cell wall has been an established way of fighting tuberculosis for decades. However, increasing resistances and an outdated medical treatment call for the validation of new targets involved in this crucial pathway. In this regard, the β-ketoacyl ACP synthase KasA is a promising enzyme. In this study, three molecular dynamics simulations based on the wildtype crystal structures of inhibitor bound and unbound KasA were performed in order to investigate the flexibility and conformational space of this target. We present an exhaustive analysis of the binding-site flexibility and representative pocket conformations that may serve as new starting points for structure-based drug design. We also revealed a mechanism which may account for the comparatively low binding affinity of thiolactomycin. Furthermore, we examined the behavior of water molecules within the binding pocket and provide recommendations how to handle them in the drug design process. Finally, we analyzed the dynamics of a channel that accommodates the long-chain fatty acid substrates and, thereby, propose a mechanism of substrate access to this channel and how products are most likely released. PMID:22076471

  17. Uptake, distribution, and formation of hemoglobin and DNA adducts after inhalation of C2-C8 1-alkenes (olefins) in the rat.

    PubMed

    Eide, I; Hagemann, R; Zahlsen, K; Tareke, E; Törnqvist, M; Kumar, R; Vodicka, P; Hemminki, K

    1995-07-01

    Absorption, distribution, elimination and hemoglobin and DNA adduct formation were studied in the rat after inhalation of individual C2-C8 1-alkenes (olefins) at 300 p.p.m., 12 h a day for 3 consecutive days. The concentrations of olefins were measured in blood, lung, brain, liver, kidney and perirenal fat immediately after each exposure and 12 h after the third exposure. DNA adducts were determined by 32P-postlabeling in liver, and lymphocytes sampled immediately after the last exposure. Hemoglobin adducts were determined by GC/MS and GC/MS/MS in erythrocytes sampled immediately after the last exposure. Concentrations of 1-alkenes in blood and organs reached a steady-state level after the first 12 h exposure, and the concentrations 12 h after the last exposure were generally low, except in fat tissue. Concentrations of 1-alkenes in blood and the different tissues increased with increasing number of carbon atoms. In contrast, levels of hemoglobin and DNA adducts decreased with increasing number of carbon atoms. The decrease was most pronounced from C2 to C3. The decrease through the whole homologous series from ethene to 1-octene was most pronounced for hemoglobin adducts followed by the DNA adducts in the lymphocytes. All 1-alkenes caused formation of detectable levels of hemoglobin and DNA adducts, although the levels of hemoglobin adducts after C4-C8 exposure were low. The project illustrates important aspects of the use of biomarkers. The structure-activity approach gives possibilities for extrapolation within the homologous series. PMID:7614695

  18. Design of molecularly imprinted conducting polymer protein-sensing films via substrate-dopant binding.

    PubMed

    Komarova, Elena; Aldissi, Matt; Bogomolova, Anastasia

    2015-02-21

    Addressing the challenge of protein biosensing using molecularly imprinted polymers (MIP), we have developed and tested a novel approach to creating sensing conducive polymer films imprinted with a protein substrate, ricin toxin chain A (RTA). Our approach for creating MIP protein sensing films is based on a concept of substrate-guided dopant immobilization with subsequent conducting polymer film formation. In this proof-of-concept work we have tested three macromolecular dopants with strong protein affinity, Ponceau S, Coomassie BB R250 and ι-Carrageenan. The films were formed using sequential interactions of the substrate, dopant and pyrrole, followed by electrochemical polymerization. The films were formed on gold array electrodes allowing for extensive data acquisition. The thickness of the films was optimized to allow for efficient substrate extraction, which was removed by a combination of protease and detergent treatment. The MIP films were tested for substrate rebinding using electrochemical impedance spectroscopy (EIS). The presence of macromolecular dopants was essential for MIP film specificity. Out of three dopants tested, RTA-imprinted polypyrrole films doped with Coomassie BB performed with highest specificity towards detection of RTA with a level of detection (LOD) of 0.1 ng ml(-1). PMID:25574520

  19. The Crystal Structure of Escherichia coli Spermidine Synthase SpeE Reveals a Unique Substrate-binding Pocket

    SciTech Connect

    Zhou, X.; Chua, T; Tkaczuk, K; Bujnicki, J; Sivaraman, J

    2010-01-01

    Polyamines are essential in all branches of life. Biosynthesis of spermidine, one of the most ubiquitous polyamines, is catalyzed by spermidine synthase (SpeE). Although the function of this enzyme from Escherichia coli has been thoroughly characterized, its structural details remain unknown. Here, we report the crystal structure of E. coli SpeE and study its interaction with the ligands by isothermal titration calorimetry and computational modelling. SpeE consists of two domains - a small N-terminal {beta}-strand domain, and a C-terminal catalytic domain that adopts a canonical methyltransferase (MTase) Rossmann fold. The protein forms a dimer in the crystal and in solution. Structural comparison of E. coli SpeE to its homologs reveals that it has a large and unique substrate-binding cleft that may account for its lower amine substrate specificity.

  20. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators

    PubMed Central

    Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J.; Pines, Jonathon

    2016-01-01

    The APC/C is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the Spindle Assembly Checkpoint (SAC). How the APC/C recognises its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in Cyclin A, BUBR1, BUB1 and Acm1, and show that it binds to the APC/C co-activator CDC20. The ABBA motif in Cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  1. HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants.

    PubMed

    Altman, Michael D; Ali, Akbar; Reddy, G S Kiran Kumar; Nalam, Madhavi N L; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X; Gilson, Michael K; Schiffer, Celia A; Rana, Tariq M; Tidor, Bruce

    2008-05-14

    The acquisition of drug-resistant mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from a Ki of 30-50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6-13-fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors: robust binders (maximum affinity loss of 14-16-fold), moderate binders (35-80-fold), and susceptible binders (greater than 100-fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  2. HIV-1 Protease Inhibitors from Inverse Design in the Substrate Envelope Exhibit Subnanomolar Binding to Drug-Resistant Variants

    PubMed Central

    Altman, Michael D.; Ali, Akbar; Reddy, G. S. Kiran Kumar; Nalam, Madhavi N. L.; Anjum, Saima Ghafoor; Cao, Hong; Chellappan, Sripriya; Kairys, Visvaldas; Fernandes, Miguel X.; Gilson, Michael K.; Schiffer, Celia A.; Rana, Tariq M.; Tidor, Bruce

    2010-01-01

    The acquisition of drug-resistance mutations by infectious pathogens remains a pressing health concern, and the development of strategies to combat this threat is a priority. Here we have applied a general strategy, inverse design using the substrate envelope, to develop inhibitors of HIV-1 protease. Structure-based computation was used to design inhibitors predicted to stay within a consensus substrate volume in the binding site. Two rounds of design, synthesis, experimental testing, and structural analysis were carried out, resulting in a total of 51 compounds. Improvements in design methodology led to a roughly 1000-fold affinity enhancement to a wild-type protease for the best binders, from Ki of 30–50 nM in round one to below 100 pM in round two. Crystal structures of a subset of complexes revealed a binding mode similar to each design that respected the substrate envelope in nearly all cases. All four best binders from round one exhibited broad specificity against a clinically relevant panel of drug-resistant HIV-1 protease variants, losing no more than 6–13 fold affinity relative to wild type. Testing a subset of second-round compounds against the panel of resistant variants revealed three classes of inhibitors — robust binders (maximum affinity loss of 14–16 fold), moderate binders (35–80 fold), and susceptible binders (greater than 100 fold). Although for especially high-affinity inhibitors additional factors may also be important, overall, these results suggest that designing inhibitors using the substrate envelope may be a useful strategy in the development of therapeutics with low susceptibility to resistance. PMID:18412349

  3. Characterization of a variety of standard collagen substrates: ultrastructure, uniformity, and capacity to bind and promote growth of neurons

    SciTech Connect

    Iversen, P.L.; Partlow, L.M.; Stensaas, L.J.; Moatamed, F.

    1981-06-01

    Collagen substrates were characterized after preparation by the four methods most commonly used for tissue culture (saline precipitation, exposure to ammonium hydroxide vapor, exposure to ultraviolet light, and air drying). Although roughly equivalent percentages of collagen were precipitated by each technique (87 to 97%), marked differences were found in surface uniformity and ultrastructure. Substrates were quite uniform if precipitated by exposure to ammonium hydroxide or ultraviolet light, of intermediate uniformity if saline precipitated, and not at all uniform if air dried. Scanning electron microscopy revealed that (a) ammonium hydroxide and saline precipitation primarily resulted in formation of collagen fibrils, (b) air drying produced a small number of fibrils plus a large amount of amorphous material, and (c) exposure to ultraviolet light only resulted in the formation of globular, nonfibrillar collagen aggregates. The capacity of collagen substrates to bind and grow neurons differed markedly with the method of preparation and the amount of collagen plated per unit area. Quantifications of binding and growth of both cerebral and sympathetic neurons revealed that these are separate measures of the biocompatibility of a surface and that growth was uniformly inferior on globular collagen that had been precipitated by ultraviolet light. Long-term (greater than or equal to 2 wk) growth of sympathetic neurons was optimal on thick beds of saline-precipitated collagen, whereas short-term growth was best on thin layers of either saline or ammonium hydroxide-precipitated collagen. Cerebral neurons bound and grew optimally on thick collagen beds after both short- and long-term culture. In addition, cerebral neurons were found to be more dependent on the method of precipitation of the thin collagen substrates than were sympathetic neurons.

  4. Involvement of individual subsites and secondary substrate binding sites in multiple attack on amylose by barley alpha-amylase.

    PubMed

    Kramhøft, Birte; Bak-Jensen, Kristian Sass; Mori, Haruhide; Juge, Nathalie; Nøhr, Jane; Svensson, Birte

    2005-02-15

    Barley alpha-amylase 1 (AMY1) hydrolyzed amylose with a degree of multiple attack (DMA) of 1.9; that is, on average, 2.9 glycoside bonds are cleaved per productive enzyme-substrate encounter. Six AMY1 mutants, spanning the substrate binding cleft from subsites -6 to +4, and a fusion protein, AMY1-SBD, of AMY1 and the starch binding domain (SBD) of Aspergillus niger glucoamylase were also analyzed. DMA of the subsite -6 mutant Y105A and AMY1-SBD increased to 3.3 and 3.0, respectively. M53E, M298S, and T212W at subsites -2, +1/+2, and +4, respectively, and the double mutant Y105A/T212W had decreased DMA of 1.0-1.4. C95A (subsite -5) had a DMA similar to that of wild type. Maltoheptaose (G7) was always the major initial oligosaccharide product. Wild-type and the subsite mutants released G6 at 27-40%, G8 at 60-70%, G9 at 39-48%, and G10 at 33-44% of the G7 rate, whereas AMY1-SBD more efficiently produced G8, G9, and G10 at rates similar to, 66%, and 60% of G7, respectively. In contrast, the shorter products appeared with large individual differences: G1, 0-15%; G2, 8-43%; G3, 0-22%; and G4, 0-11% of the G7 rate. G5 was always a minor product. Multiple attack thus involves both longer translocation of substrate in the binding cleft upon the initial cleavage to produce G6-G10, essentially independent of subsite mutations, and short-distance moves resulting in individually very different rates of release of G1-G4. Accordingly, the degree of multiple attack as well as the profile of products can be manipulated by structural changes in the active site or by introduction of extra substrate binding sites. PMID:15697208

  5. Specificity of anion-binding in the substrate-pocket ofbacteriorhodopsin

    SciTech Connect

    Facciotti, Marc T.; Cheung, Vincent S.; Lunde, Christopher S.; Rouhani, Shahab; Baliga, Nitin S.; Glaeser, Robert M.

    2003-08-30

    The structure of the D85S mutant of bacteriorhodopsin with a nitrate anion bound in the Schiff-base binding site, and the structure of the anion-free protein have been obtained in the same crystal form. Together with the previously solved structures of this anion pump, in both the anion-free state and bromide-bound state, these new structures provide insight into how this mutant of bacteriorhodopsin is able to bind a variety of different anions in the same binding pocket. The structural analysis reveals that the main structural change that accommodates different anions is the repositioning of the polar side-chain of S85. On the basis of these x-ray crystal structures, the prediction is then made that the D85S/D212N double mutant might bind similar anions and do so over a broader pH range than does the single mutant. Experimental comparison of the dissociation constants, K{sub d}, for a variety of anions confirms this prediction and demonstrates, in addition, that the binding affinity is dramatically improved by the D212N substitution.

  6. Identification of target messenger RNA substrates for the murine deleted in azoospermia-like RNA-binding protein.

    PubMed

    Jiao, Xinfu; Trifillis, Panayiota; Kiledjian, Megerditch

    2002-02-01

    The murine autosomal deleted in azoospermia-like protein (mDAZL) is a germ cell-restricted RNA-binding protein essential for sperm production. Homozygous disruption of the mDAZL gene results in the absence of germ cells beyond the spermatogonial stage. Progress into the function of DAZL in spermatogenesis has been hampered without identification of the cognate mRNA substrates that it binds to and regulates. Using the isolation of specific nucleic acids associated with proteins (SNAAP) technique recently developed in our lab, we identified mRNAs from testis that were specifically bound by mDAZL. One mRNA encoded the Tpx-1 protein, a testicular cell adhesion protein essential for the progression of spermatogenesis. A 26-nucleotide region necessary and sufficient to bind mDAZL was found within additional mRNAs isolated by the screen. These included mRNA encoding Pam, a protein associated with myc; GRSF1, an mRNA-binding protein involved in translation activation, and TRF2, a TATA box-binding protein-like protein involved in transcriptional regulation. Each mRNA containing the mDAZL binding site was specifically bound by mDAZL. A similar sequence is also present in the Cdc25A mRNA, a threonine/tyrosine phosphatase involved in cell cycle progression. The mDAZL and Cdc25A homologues are functionally linked in Drosophila and are necessary for spermatogenesis. Our demonstration that Tpx-1 and Cdc25A mRNAs are bound by mDAZL suggests that mDAZL regulates a subset of mRNAs necessary for germ cell development and cell cycle progression. Understanding how mDAZL regulates the target mRNAs will provide new insights into spermatogenesis, strategies for therapeutic intervention in azoospermic patients, and novel approaches for male contraception. PMID:11804965

  7. Potent inhibition of mandelate racemase by a fluorinated substrate-product analogue with a novel binding mode.

    PubMed

    Nagar, Mitesh; Lietzan, Adam D; St Maurice, Martin; Bearne, Stephen L

    2014-02-25

    Mandelate racemase (MR) from Pseudomonas putida catalyzes the Mg(2+)-dependent 1,1-proton transfer that interconverts the enantiomers of mandelate. Because trifluorolactate is also a substrate of MR, we anticipated that replacing the phenyl rings of the competitive, substrate-product analogue inhibitor benzilate (Ki = 0.7 mM) with trifluoromethyl groups might furnish an inhibitor. Surprisingly, the substrate-product analogue 3,3,3-trifluoro-2-hydroxy-2-(trifluoromethyl)propanoate (TFHTP) was a potent competitive inhibitor [Ki = 27 ± 4 μM; cf. Km = 1.2 mM for both (R)-mandelate and (R)-trifluorolactate]. To understand the origins of this high binding affinity, we determined the X-ray crystal structure of the MR-TFHTP complex to 1.68 Å resolution. Rather than chelating the active site Mg(2+) with its glycolate moiety, like other ground state analogues, TFHTP exhibited a novel binding mode with the two trifluoromethyl groups closely packed against the 20s loop and the carboxylate bridging the two active site Brønsted acid-base catalysts Lys 166 and His 297. Recognizing that positioning a carboxylate between the Brønsted acid-base catalysts could yield an inhibitor, we showed that tartronate was a competitive inhibitor of MR (Ki = 1.8 ± 0.1 mM). The X-ray crystal structure of the MR-tartronate complex (1.80 Å resolution) revealed that the glycolate moiety of tartronate chelated the Mg(2+) and that the carboxylate bridged Lys 166 and His 297. Models of tartronate in monomers A and B of the crystal structure mimicked the binding orientations of (S)-mandelate and that anticipated for (R)-mandelate, respectively. For the latter monomer, the 20s loop appeared to be disordered, as it also did in the X-ray structure of the MR triple mutant (C92S/C264S/K166C) complexed with benzilate, which was determined to 1.89 Å resolution. These observations indicate that the 20s loop likely undergoes a significant conformational change upon binding (R)-mandelate. In general, our

  8. The proline-rich N-terminal sequence of calcineurin Abeta determines substrate binding.

    PubMed

    Kilka, Susann; Erdmann, Frank; Migdoll, Alexander; Fischer, Gunter; Weiwad, Matthias

    2009-03-10

    Three different genes of catalytic subunit A of the Ca(2+)-dependent serine/threonine protein phosphatase calcineurin (CaN) are encoded in the human genome forming heterodimers with regulatory subunit B. Even though physiological roles of CaN have been investigated extensively, less is known about the specific functions of the different catalytic isoforms. In this study, all human CaN holoenzymes containing either the alpha, beta, or gamma isoform of the catalytic subunit (CaN alpha, beta, or gamma, respectively) were expressed for the first time. Comparative kinetic analysis of the dephosphorylation of five specific CaN substrates provided evidence that the distinct isoforms of the catalytic subunit confer substrate specificities to the holoenzymes. CaN alpha dephosphorylates the transcription factor Elk-1 with 7- and 2-fold higher catalytic efficiencies than the beta and gamma isoforms, respectively. CaN gamma exhibits the highest k(cat)/K(m) value for DARPP-32, whereas the catalytic efficiencies for the dephosphorylation of NFAT and RII peptide were 3- and 5-fold lower, respectively, when compared with the other isoforms. Elk-1 and NFAT reporter gene activity measurements revealed even more pronounced substrate preferences of CaNA isoforms. Moreover, kinetic analysis demonstrated that CaN beta exhibits for all tested protein substrates the lowest K(m) values. Enzymatic characterization of the CaN beta(P14G/P18G) variant as well as the N-terminal truncated form CaN beta(22-524) revealed that the proline-rich sequence of CaN beta is involved in substrate recognition. CaN beta(22-524) exhibits an at least 4-fold decreased substrate affinity and a 5-fold increased turnover number. Since this study demonstrates that all CaN isoforms display the same cytoplasmic subcellular distribution and are expressed in each tested cell line, differences in substrate specificities may determine specific physiological functions of the distinct isoforms. PMID:19154138

  9. Identification of the High-affinity Substrate-binding Site of the Multidrug and Toxic Compound Extrusion (MATE) Family Transporter from Pseudomonas stutzeri.

    PubMed

    Nie, Laiyin; Grell, Ernst; Malviya, Viveka Nand; Xie, Hao; Wang, Jingkang; Michel, Hartmut

    2016-07-22

    Multidrug and toxic compound extrusion (MATE) transporters exist in all three domains of life. They confer multidrug resistance by utilizing H(+) or Na(+) electrochemical gradients to extrude various drugs across the cell membranes. The substrate binding and the transport mechanism of MATE transporters is a fundamental process but so far not fully understood. Here we report a detailed substrate binding study of NorM_PS, a representative MATE transporter from Pseudomonas stutzeri Our results indicate that NorM_PS is a proton-dependent multidrug efflux transporter. Detailed binding studies between NorM_PS and 4',6-diamidino-2-phenylindole (DAPI) were performed by isothermal titration calorimetry (ITC), differential scanning calorimetry (DSC), and spectrofluorometry. Two exothermic binding events were observed from ITC data, and the high-affinity event was directly correlated with the extrusion of DAPI. The affinities are about 1 μm and 0.1 mm for the high and low affinity binding, respectively. Based on our homology model of NorM_PS, variants with mutations of amino acids that are potentially involved in substrate binding, were constructed. By carrying out the functional characterization of these variants, the critical amino acid residues (Glu-257 and Asp-373) for high-affinity DAPI binding were determined. Taken together, our results suggest a new substrate-binding site for MATE transporters. PMID:27235402

  10. Structural and biochemical analyses reveal how ornithine acetyl transferase binds acidic and basic amino acid substrates.

    PubMed

    Iqbal, Aman; Clifton, Ian J; Chowdhury, Rasheduzzaman; Ivison, David; Domene, Carmen; Schofield, Christopher J

    2011-09-21

    Structural and biochemical analyses reveal how ornithine acetyl-transferases catalyse the reversible transfer of an acetyl-group from a basic (ornithine) to an acidic (glutamate) amino acid by employing a common mechanism involving an acetyl-enzyme intermediate but using different side chain binding modes. PMID:21796301

  11. [Detection and characterization of an additional site for binding of substrate and its analogs by inorganic pyrophosphatase].

    PubMed

    Bakuleva, N P; Kostenko, E B; Baĭkov, A A; Avaeva, S M

    1981-05-01

    Phosphate, pyrophosphate, imidodiphosphate, EDTA and tripolyphosphate increase the rate constant for dissociation of the inorganic pyrophosphatase-substrate intermediate formed after cessation of the reaction by fluoride. The effect is enhanced in the given order 19-fold, the dependence of this effect on ligand concentration being hyperbolic. The values of the dissociation constants of the enzyme-ligand complexes lie within the concentration range of 0.16-1.0 mM. At high concentrations of Na2+ added simultaneously with the ligands this effect is decreased. The value of tau 1/2 for Pi binding to the enzyme-substrate compound is 0.15 min. The data obtained suggest that pyrophosphatase contains an anion ligand binding site, differing from that of the active one. This site does not affect the hydrolytic function of pyrophosphatase, as can be evidenced from the fact that Pi (9.5 mM) does not change the rate of enzymatic cleavage of PPi. PMID:6117332

  12. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity

    PubMed Central

    Maddock, Danielle J.; Patrick, Wayne M.; Gerth, Monica L.

    2015-01-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2′-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary–secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2′-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme–cofactor interactions. PMID:26034298

  13. A study of substrate specificity for a CTD phosphatase, SCP1, by proteomic screening of binding partners.

    PubMed

    Kim, Young Jun; Bahk, Young Yil

    2014-05-30

    RNA polymerase II carboxyl-terminal domain (RNAPII CTD) phosphatases are a newly emerging family of phosphatases. Recently a CTD-specific phosphatase, small CTD phosphatase 1 (SCP1), has shown to act as an evolutionarily conserved transcriptional corepressor for inhibiting neuronal gene transcription in non-neuronal cells. In this study, using the established NIH/3T3 and HEK293T cells, which are expressing human SCP1 proteins under the tight control of expression by doxycycline, a proteomic screening was conducted to identify the binding partners for SCP1. Although the present findings provide the possibility for new avenues to provide to a better understanding of cellular physiology of SCP1, now these proteomic and some immunological approaches for SCP1 interactome might not represent the accurate physiological relevance in vivo. In this presentation, we focus the substrate specificity to delineate an appearance of the dephosphorylation reaction catalyzed by SCP1 phosphatase. We compared the phosphorylated sequences of the immunologically confirmed binding partners with SCP1 searched in HPRD. We found the similar sequences from CdcA3 and validated the efficiency of enzymatic catalysis for synthetic phosphopeptides the recombinant SCP1. This approach led to the identification of several interacting partners with SCP1. We suggest that CdcA3 could be an enzymatic substrate for SCP1 and that SCP1 might have the relationship with cell cycle regulation through enzymatic activity against CdcA3. PMID:24769477

  14. Molecular modeling and docking of novel laccase from multiple serotype of Yersinia enterocolitica suggests differential and multiple substrate binding.

    PubMed

    Singh, Deepti; Sharma, Krishna Kant; Dhar, Mahesh Shanker; Virdi, Jugsharan Singh

    2014-06-20

    Multi-copper oxidases (MCOs) are widely distributed in bacteria, where they are responsible for metal homeostasis, acquisition and oxidation. Using specific primers, yacK coding for MCO was amplified from different serotypes of Yersinia enterocolitica biovar 1A. Homology modeling of the protein followed by docking with five well-known substrates for different MCO's (viz., 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid [ABTS], syringaldazine, L-tyrosine, ammonium ferrous sulfate and guaiacol), lignin monomers (Coniferyl alcohol, p-coumaryl alcohol and sinapyl alcohol) and two inhibitors i.e., kojic acid and N-hydroxyglycine was done. The docking gave maximum GoldScore i.e., 91.93 and 72.64 with ammonium ferrous sulfate and ABTS, respectively. Similarly, docking with ICM gave -82.10 and -83.61 docking score, confirming the protein to be true laccase with ferroxidase activity. Further, validation with ammonium ferrous sulfate as substrate gave laccase activity of 0.36Units/L/min. Guaiacol, L-tyrosine, and lignin monomers showed good binding affinity with protein models with GoldScores of 35.89, 41.82, 40.41, 41.12 and 43.10, respectively. The sequence study of all the cloned Yack genes showed serotype specific clade in dendrogram. There was distinct discrimination in the ligand binding affinity of Y. enterocolitica laccase, among strains of same clonal groups, suggesting it as a tool for phylogenetic studies. PMID:24832734

  15. Substitutions at the cofactor phosphate-binding site of a clostridial alcohol dehydrogenase lead to unexpected changes in substrate specificity.

    PubMed

    Maddock, Danielle J; Patrick, Wayne M; Gerth, Monica L

    2015-08-01

    Changing the cofactor specificity of an enzyme from nicotinamide adenine dinucleotide 2'-phosphate (NADPH) to the more abundant NADH is a common strategy for increasing overall enzyme efficiency in microbial metabolic engineering. The aim of this study was to switch the cofactor specificity of the primary-secondary alcohol dehydrogenase from Clostridium autoethanogenum, a bacterium with considerable promise for the bio-manufacturing of fuels and other petrochemicals, from strictly NADPH-dependent to NADH-dependent. We used insights from a homology model to build a site-saturation library focussed on residue S199, the position deemed most likely to disrupt binding of the 2'-phosphate of NADPH. Although the CaADH(S199X) library did not yield any NADH-dependent enzymes, it did reveal that substitutions at the cofactor phosphate-binding site can cause unanticipated changes in the substrate specificity of the enzyme. Using consensus-guided site-directed mutagenesis, we were able to create an enzyme that was stringently NADH-dependent, albeit with a concomitant reduction in activity. This study highlights the role that distal residues play in substrate specificity and the complexity of enzyme-cofactor interactions. PMID:26034298

  16. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport

    SciTech Connect

    Kim, E.J.; Zhen, R.G.; Rea, P.A. )

    1994-06-21

    The membrane bounding the vacuole of plant cells contains two electrogenic proton pumps. These are the vacuolar H[sup +]-ATPase (EC 3.6.1.3), an enzyme common to all eukaryotes, and a vacuolar H[sup +]-translocating pyrophosphatase (EC 3.6.1.1), which is ubiquitous in plants but otherwise known in only a few phototrophic bacteria. Although the substrate-binding subunit of the vacuolar H[sup +]-pyrophosphatase has been identified and purified and cDNAs encoding it have been isolated and characterized, the minimal unit competent in pyrophosphate (PPi)-energized H[sup +] translocation is not known. Here the authors address this question and show that heterologous expression of the cDNA (AVP) encoding the substrate-binding subunit of the vacuolar H[sup +]-pyrophosphatase from the vascular plant Arabidopsis thaliana in the yeast Saccharomyces cerevisiae results in the production of vacuolarly localized functional enzyme active in PPi-dependent H[sup +] translocation. Since the heterologously expressed pump is indistinguishable from the native plant enzyme with respect to PPi hydrolysis, H[sub +] translocation, activation by potassium, and selective inhibition by calcium and 1,1-diphosphonates, it is concluded that all of the known catalytic functions of the enzyme map to the one subunit encoded by AVP.

  17. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding.

    PubMed

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  18. Heterologous expression of plant vacuolar pyrophosphatase in yeast demonstrates sufficiency of the substrate-binding subunit for proton transport.

    PubMed Central

    Kim, E J; Zhen, R G; Rea, P A

    1994-01-01

    The membrane bounding the vacuole of plant cells contains two electrogenic proton pumps. These are the vacuolar H(+)-ATPase (EC 3.6.1.3), an enzyme common to all eukaryotes, and a vacuolar H(+)-translocating pyrophosphatase (EC 3.6.1.1), which is ubiquitous in plants but otherwise known in only a few phototrophic bacteria. Although the substrate-binding subunit of the vacuolar H(+)-pyrophosphatase has been identified and purified and cDNAs encoding it have been isolated and characterized, the minimal unit competent in pyrophosphate (PPi)-energized H+ translocation is not known. Here we address this question and show that heterologous expression of the cDNA (AVP) encoding the substrate-binding subunit of the vacuolar H(+)-pyrophosphatase from the vascular plant Arabidopsis thaliana in the yeast Saccharomyces cerevisiae results in the production of vacuolarly localized functional enzyme active in PPi-dependent H+ translocation. Since the heterologously expressed pump is indistinguishable from the native plant enzyme with respect to PPi hydrolysis, H+ translocation, activation by potassium, and selective inhibition by calcium and 1,1-diphosphonates, it is concluded that all of the known catalytic functions of the enzyme map to the one subunit encoded by AVP. Images PMID:8016125

  19. Crystal structure of tyrosine decarboxylase and identification of key residues involved in conformational swing and substrate binding

    PubMed Central

    Zhu, Haixia; Xu, Guochao; Zhang, Kai; Kong, Xudong; Han, Ruizhi; Zhou, Jiahai; Ni, Ye

    2016-01-01

    Tyrosine decarboxylase (TDC) is a pyridoxal 5-phosphate (PLP)-dependent enzyme and is mainly responsible for the synthesis of tyramine, an important biogenic amine. In this study, the crystal structures of the apo and holo forms of Lactobacillus brevis TDC (LbTDC) were determined. The LbTDC displays only 25% sequence identity with the only reported TDC structure. Site-directed mutagenesis of the conformationally flexible sites and catalytic center was performed to investigate the potential catalytic mechanism. It was found that H241 in the active site plays an important role in PLP binding because it has different conformations in the apo and holo structures of LbTDC. After binding to PLP, H241 rotated to the position adjacent to the PLP pyridine ring. Alanine scanning mutagenesis revealed several crucial regions that determine the substrate specificity and catalytic activity. Among the mutants, the S586A variant displayed increased catalytic efficiency and substrate affinity, which is attributed to decreased steric hindrance and increased hydrophobicity, as verified by the saturation mutagenesis at S586. Our results provide structural information about the residues important for the protein engineering of TDC to improve catalytic efficiency in the green manufacturing of tyramine. PMID:27292129

  20. A novel cyclophilin from parasitic and free-living nematodes with a unique substrate- and drug-binding domain.

    PubMed

    Ma, Dong; Nelson, Laura S; LeCoz, Krystel; Poole, Catherine; Carlow, Clotilde K S

    2002-04-26

    A highly diversified member of the cyclophilin family of peptidyl-prolyl cis-trans isomerases has been isolated from the human parasite Onchocerca volvulus (OvCYP-16). This 25-kDa cyclophilin shares 43-46% similarity to other filarial cyclophilins but does not belong to any of the groups previously defined in invertebrates or vertebrates. A homolog was also isolated from Caenorhabditis elegans (CeCYP-16). Both recombinant O. volvulus and C. elegans cyclophilins were found to possess an enzyme activity with similar substrate preference and insensitivity to cyclosporin A. They represent novel cyclophilins with important differences in the composition of the drug-binding site in particular, namely, a Glu(124) (C. elegans) or Asp(123) (O. volvulus) residue present in a critical position. Site-directed mutagenesis studies and kinetic characterization demonstrated that the single residue dictates the degree of binding to substrate and cyclosporin A. CeCYP-16::GFP-expressing lines were generated with expression in the anterior and posterior distal portions of the intestine, in all larval stages and adults. An exception was found in the dauer stage, where fluorescence was observed in both the cell bodies and processes of the ventral chord motor neurons but was absent from the intestine. These studies highlight the extensive diversification of cyclophilins in an important human parasite and a closely related model organism. PMID:11847225

  1. Identification of carboxylic acid residues in glucoamylase G2 from Aspergillus niger that participate in catalysis and substrate binding.

    PubMed

    Svensson, B; Clarke, A J; Svendsen, I; Møller, H

    1990-02-22

    Functionally important carboxyl groups in glucoamylase G2 from Aspergillus niger were identified using a differential labelling approach which involved modification of the acarbose-inhibited enzyme with 1-ethyl-3-(4-azonia-4,4-dimethylpentyl)carbodiimide (EAC) and inactivation by [3H]EAC following removal of acarbose. Subsequent sequence localization of the substituted acidic residues was facilitated by specific phenylthiohydantoins. The acid cluster Asp176, Glu179 and Glu180 reacted exclusively with [3H]EAC, while Asp112, Asp153, Glu259 and Glu389 had incorporated both [3H]EAC and EAC. It is conceivable that one or two of the [3H]EAC-labelled side chains act in catalysis while the other fully protected residue(s) participates in substrate binding probably together with the partially protected ones. Twelve carboxyl groups that reacted with EAC in the enzyme-acarbose complex were also identified. Asp176, Glu179 and Glu180 are all invariant in fungal glucoamylases. Glu180 was tentatively identified as a catalytic group on the basis of sequence alignments to catalytic regions in isomaltase and alpha-amylase. The partially radiolabelled Asp112 corresponds in Taka-amylase A to Tyr75 situated in a substrate binding loop at a distance from the site of cleavage. A possible correlation between carbodiimide modification of an essential carboxyl group and its role in the glucoamylase catalysis is discussed. PMID:2108020

  2. An allosteric model for control of pore opening by substrate binding in the EutL microcompartment shell protein

    PubMed Central

    Thompson, Michael C; Cascio, Duilio; Leibly, David J; Yeates, Todd O

    2015-01-01

    The ethanolamine utilization (Eut) microcompartment is a protein-based metabolic organelle that is strongly associated with pathogenesis in bacteria that inhabit the human gut. The exterior shell of this elaborate protein complex is composed from a few thousand copies of BMC-domain shell proteins, which form a semi-permeable diffusion barrier that provides the interior enzymes with substrates and cofactors while simultaneously retaining metabolic intermediates. The ability of this protein shell to regulate passage of substrate and cofactor molecules is critical for microcompartment function, but the details of how this diffusion barrier can allow the passage of large cofactors while still retaining small intermediates remain unclear. Previous work has revealed two conformations of the EutL shell protein, providing substantial evidence for a gated pore that might allow the passage of large cofactors. Here we report structural and biophysical evidence to show that ethanolamine, the substrate of the Eut microcompartment, acts as a negative allosteric regulator of EutL pore opening. Specifically, a series of X-ray crystal structures of EutL from Clostridium perfringens, along with equilibrium binding studies, reveal that ethanolamine binds to EutL at a site that exists in the closed-pore conformation and which is incompatible with opening of the large pore for cofactor transport. The allosteric mechanism we propose is consistent with the cofactor requirements of the Eut microcompartment, leading to a new model for EutL function. Furthermore, our results suggest the possibility of redox modulation of the allosteric mechanism, opening potentially new lines of investigation. PMID:25752492

  3. The studies on substrate, product and inhibitor binding to a wild-type and neuronopathic form of human acid-beta-glucosidase.

    PubMed

    Zubrzycki, Igor Z; Borcz, Agnieszka; Wiacek, Magdalena; Hagner, Wojciech

    2007-11-01

    Gaucher disease is a lysosomal storage disorder caused by deficiency of human acid beta-glucosidase. Recent x-ray structural elucidation of the enzyme alone and in the presence of its inhibitor was done, which provided an excellent template for further studies on the binding of substrate, product and inhibitor. To draw correlations between the clinical manifestation of the disease driven by point mutations, L444P and L444R, and the placement and function of putative S-binding sites, the presented theoretical studies were undertaken, which comprised of molecular dynamics and molecular docking methods. The obtained results indicate the D443 and D445 residues as extremely important for physiological functionality of an enzyme. They also show, although indirectly, that binding of the substrate is influenced by an interplay of E235 and E334 residues, constituting putative substrate binding site, and the region flanked by D435 and D445 residues. PMID:17713797

  4. Crystal structures of α-dioxygenase from Oryza sativa: insights into substrate binding and activation by hydrogen peroxide.

    PubMed

    Zhu, Guangyu; Koszelak-Rosenblum, Mary; Malkowski, Michael G

    2013-10-01

    α-Dioxygenases (α-DOX) are heme-containing enzymes found predominantly in plants and fungi, where they generate oxylipins in response to pathogen attack. α-DOX oxygenate a variety of 14-20 carbon fatty acids containing up to three unsaturated bonds through stereoselective removal of the pro-R hydrogen from the α-carbon by a tyrosyl radical generated via the oxidation of the heme moiety by hydrogen peroxide (H2 O2 ). We determined the X-ray crystal structures of wild type α-DOX from Oryza sativa, the wild type enzyme in complex with H2 O2 , and the catalytically inactive Y379F mutant in complex with the fatty acid palmitic acid (PA). PA binds within the active site cleft of α-DOX such that the carboxylate forms ionic interactions with His-311 and Arg-559. Thr-316 aids in the positioning of carbon-2 for hydrogen abstraction. Twenty-five of the twenty eight contacts made between PA and residues lining the active site occur within the carboxylate and first eight carbons, indicating that interactions within this region of the substrate are responsible for governing selectivity. Comparison of the wild type and H2 O2 structures provides insight into enzyme activation. The binding of H2 O2 at the distal face of the heme displaces residues His-157, Asp-158, and Trp-159 ≈ 2.5 Å from their positions in the wild type structure. As a result, the Oδ2 atom of Asp-158 interacts with the Ca atom in the calcium binding loop, the side chains of Trp-159 and Trp-213 reorient, and the guanidinium group of Arg-559 is repositioned near Tyr-379, poised to interact with the carboxylate group of the substrate. PMID:23934749

  5. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase

    PubMed Central

    Broussard, Tyler C.; Pakhomova, Svetlana; Neau, David B.; Bonnot, Ross; Waldrop, Grover L.

    2015-01-01

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1′-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1′-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO2 from the carboxyphosphate intermediate to biotin. PMID:26020841

  6. Structural Analysis of Substrate, Reaction Intermediate, and Product Binding in Haemophilus influenzae Biotin Carboxylase.

    PubMed

    Broussard, Tyler C; Pakhomova, Svetlana; Neau, David B; Bonnot, Ross; Waldrop, Grover L

    2015-06-23

    Acetyl-CoA carboxylase catalyzes the first and regulated step in fatty acid synthesis. In most Gram-negative and Gram-positive bacteria, the enzyme is composed of three proteins: biotin carboxylase, a biotin carboxyl carrier protein (BCCP), and carboxyltransferase. The reaction mechanism involves two half-reactions with biotin carboxylase catalyzing the ATP-dependent carboxylation of biotin-BCCP in the first reaction. In the second reaction, carboxyltransferase catalyzes the transfer of the carboxyl group from biotin-BCCP to acetyl-CoA to form malonyl-CoA. In this report, high-resolution crystal structures of biotin carboxylase from Haemophilus influenzae were determined with bicarbonate, the ATP analogue AMPPCP; the carboxyphosphate intermediate analogues, phosphonoacetamide and phosphonoformate; the products ADP and phosphate; and the carboxybiotin analogue N1'-methoxycarbonyl biotin methyl ester. The structures have a common theme in that bicarbonate, phosphate, and the methyl ester of the carboxyl group of N1'-methoxycarbonyl biotin methyl ester all bound in the same pocket in the active site of biotin carboxylase and as such utilize the same set of amino acids for binding. This finding suggests a catalytic mechanism for biotin carboxylase in which the binding pocket that binds tetrahedral phosphate also accommodates and stabilizes a tetrahedral dianionic transition state resulting from direct transfer of CO₂ from the carboxyphosphate intermediate to biotin. PMID:26020841

  7. Crystal structure of the branching enzyme I (BEI) from Oryza sativa L with implications for catalysis and substrate binding.

    PubMed

    Noguchi, Junji; Chaen, Kimiko; Vu, Nhuan Thi; Akasaka, Taiki; Shimada, Hiroaki; Nakashima, Takashi; Nishi, Aiko; Satoh, Hikaru; Omori, Toshiro; Kakuta, Yoshimitsu; Kimura, Makoto

    2011-08-01

    Starch-branching enzyme catalyzes the cleavage of α-1, 4-linkages and the subsequent transfer of α-1,4 glucan to form an α-1,6 branch point in amylopectin. Sequence analysis of the rice-branching enzyme I (BEI) indicated a modular structure in which the central α-amylase domain is flanked on each side by the N-terminal carbohydrate-binding module 48 and the α-amylase C-domain. We determined the crystal structure of BEI at a resolution of 1.9 Å by molecular replacement using the Escherichia coli glycogen BE as a search model. Despite three modular structures, BEI is roughly ellipsoidal in shape with two globular domains that form a prominent groove which is proposed to serve as the α-polyglucan-binding site. Amino acid residues Asp344 and Glu399, which are postulated to play an essential role in catalysis as a nucleophile and a general acid/base, respectively, are located at a central cleft in the groove. Moreover, structural comparison revealed that in BEI, extended loop structures cause a narrowing of the substrate-binding site, whereas shortened loop structures make a larger space at the corresponding subsite in the Klebsiella pneumoniae pullulanase. This structural difference might be attributed to distinct catalytic reactions, transglycosylation and hydrolysis, respectively, by BEI and pullulanase. PMID:21493662

  8. Defining CYP3A4 structural responses to substrate binding. Raman spectroscopic studies of a nanodisc-incorporated mammalian Cytochrome P450

    PubMed Central

    Mak, Piotr J.; Denisov, Ilia G.; Grinkova, Yelena V.; Sligar, Stephen G.; Kincaid, James R.

    2011-01-01

    Resonance Raman (RR) spectroscopy is used to help define active site structural responses of nanodisc-incorporated CYP3A4 to the binding of three substrates; bromocriptine (BC), erythromycin (ERY) and testosterone (TST). We demonstrate that nanodisc-incorporated assemblies reveal much more well-defined active site RR spectroscopic responses compared to those normally obtained with the conventional, detergent-stabilized, sampling strategies. While, ERY and BC are known to bind to CYP3A4 with a 1:1 stoichiometry, only the BC induces a substantial conversion from low- to high-spin state, as clearly manifested in the RR spectra acquired herein. The third substrate, TST, displays significant homotropic interactions within CYP3A4, the active site binding up to 3 molecules of this substrate, with the functional properties varying in response to binding of individual substrate molecules. While such behavior seemingly suggests the possibility that each substrate binding event induces functionally important heme structural changes, up to this time spectroscopic evidence for such structural changes has not been available. The current RR spectroscopic studies show clearly that accommodation of different size substrates, and different loading of TST, do not significantly affect the structure of the substrate-bound ferric heme. However, it is here demonstrated that the nature and number of bound substrates do have an extraordinary influence on the conformation of bound exogenous ligands, such as CO or dioxygen and its reduced forms, implying an effective mechanism whereby substrate structure can impact reactivity of intermediates so as to influence function, as reflected in the diverse reactivity of this drug metabolizing cytochrome. PMID:21207936

  9. The RNA-binding protein RNP29 is an unusual Toc159 transport substrate.

    PubMed

    Grimmer, Julia; Rödiger, Anja; Hoehenwarter, Wolfgang; Helm, Stefan; Baginsky, Sacha

    2014-01-01

    The precursors of RNP29 and Ferredoxin (Fd2) were previously identified in the cytosol of ppi2 plant cells with their N-terminal amino acid acetylated. Here, we explore whether precursor accumulation in ppi2 is characteristic for Toc159 client proteins, by characterizing the import properties of the RNP29 precursor in comparison to Fd2 and other Toc159-dependent or independent substrates. We find specific accumulation of the RNP29 precursor in ppi2 but not in wild type or ppi1 protoplasts. With the exception of Lhcb4, precursor accumulation is also detected with all other tested constructs in ppi2. However, RNP29 is clearly different from the other proteins because only precursor but almost no mature protein is detectable in protoplast extracts. Co-transformation of RNP29 with Toc159 complements its plastid import, supporting the hypothesis that RNP29 is a Toc159-dependent substrate. Exchange of the second amino acid in the RNP29 transit peptide to Glu or Asn prevents methionine excision but not N-terminal acetylation, suggesting that different N-acetyltransferases may act on chloroplast precursor proteins in vivo. All different RNP29 constructs are efficiently imported into wild type but not into ppi2 plastids, arguing for a minor impact of the N-terminal amino acid on the import process. PMID:24982663

  10. Structure and substrate ion binding in the sodium/proton antiporter PaNhaP

    PubMed Central

    Wöhlert, David; Kühlbrandt, Werner; Yildiz, Özkan

    2014-01-01

    Sodium/proton antiporters maintain intracellular pH and sodium levels. Detailed structures of antiporters with bound substrate ions are essential for understanding how they work. We have resolved the substrate ion in the dimeric, electroneutral sodium/proton antiporter PaNhaP from Pyrococcus abyssi at 3.2 Å, and have determined its structure in two different conformations at pH 8 and pH 4. The ion is coordinated by three acidic sidechains, a water molecule, a serine and a main-chain carbonyl in the unwound stretch of trans-membrane helix 5 at the deepest point of a negatively charged cytoplasmic funnel. A second narrow polar channel may facilitate proton uptake from the cytoplasm. Transport activity of PaNhaP is cooperative at pH 6 but not at pH 5. Cooperativity is due to pH-dependent allosteric coupling of protomers through two histidines at the dimer interface. Combined with comprehensive transport studies, the structures of PaNhaP offer unique new insights into the transport mechanism of sodium/proton antiporters. DOI: http://dx.doi.org/10.7554/eLife.03579.001 PMID:25426802

  11. Mutations within the mepA operator affect binding of the MepR regulatory protein and its induction by MepA substrates in Staphylococcus aureus.

    PubMed

    Schindler, Bryan D; Seo, Susan M; Birukou, Ivan; Brennan, Richard G; Kaatz, Glenn W

    2015-03-01

    The expression of mepA, encoding the Staphylococcus aureus MepA multidrug efflux protein, is repressed by the MarR homologue MepR. Repression occurs through binding of two MepR dimers to an operator with two homologous and closely approximated pseudopalindromic binding sites (site 1 [S1] and site 2 [S2]). MepR binding is impeded in the presence of pentamidine, a MepA substrate. The effects of various mepA operator mutations on MepR binding were determined using electrophoretic mobility shift assays and isothermal titration calorimetry, and an in vivo confirmation of the effects observed was established for a fully palindromic operator mutant. Altering the S1-S2 spacing by 1 to 4 bp severely impaired S2 binding, likely due to a physical collision between adjacent MepR dimers. Extension of the spacing to 9 bp eliminated the S1 binding-mediated DNA allostery required for efficient S2 binding, consistent with positive cooperative binding of MepR dimers. Binding of a single dimer to S1 was maintained when S2 was disrupted, whereas disruption of S1 eliminated any significant binding to S2, also consistent with positive cooperativity. Palindromization of binding sites, especially S2, enhanced MepR affinity for the mepA operator and reduced MepA substrate-mediated MepR induction. As a result, the on-off equilibrium between MepR and its binding sites was shifted toward the on state, resulting in less free MepR being available for interaction with inducing ligand. The selective pressure(s) under which mepA expression is advantageous likely contributed to the accumulation of mutations in the mepA operator, resulting in the current sequence from which MepR is readily induced by MepA substrates. PMID:25583977

  12. A Unique Chitinase with Dual Active Sites and Triple Substrate Binding Sites from the Hyperthermophilic Archaeon Pyrococcus kodakaraensis KOD1

    PubMed Central

    Tanaka, Takeshi; Fujiwara, Shinsuke; Nishikori, Shingo; Fukui, Toshiaki; Takagi, Masahiro; Imanaka, Tadayuki

    1999-01-01

    We have found that the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1 produces an extracellular chitinase. The gene encoding the chitinase (chiA) was cloned and sequenced. The chiA gene was found to be composed of 3,645 nucleotides, encoding a protein (1,215 amino acids) with a molecular mass of 134,259 Da, which is the largest among known chitinases. Sequence analysis indicates that ChiA is divided into two distinct regions with respective active sites. The N-terminal and C-terminal regions show sequence similarity with chitinase A1 from Bacillus circulans WL-12 and chitinase from Streptomyces erythraeus (ATCC 11635), respectively. Furthermore, ChiA possesses unique chitin binding domains (CBDs) (CBD1, CBD2, and CBD3) which show sequence similarity with cellulose binding domains of various cellulases. CBD1 was classified into the group of family V type cellulose binding domains. In contrast, CBD2 and CBD3 were classified into that of the family II type. chiA was expressed in Escherichia coli cells, and the recombinant protein was purified to homogeneity. The optimal temperature and pH for chitinase activity were found to be 85°C and 5.0, respectively. Results of thin-layer chromatography analysis and activity measurements with fluorescent substrates suggest that the enzyme is an endo-type enzyme which produces a chitobiose as a major end product. Various deletion mutants were constructed, and analyses of their enzyme characteristics revealed that both the N-terminal and C-terminal halves are independently functional as chitinases and that CBDs play an important role in insoluble chitin binding and hydrolysis. Deletion mutants which contain the C-terminal half showed higher thermostability than did N-terminal-half mutants and wild-type ChiA. PMID:10583986

  13. Binding of MARCKS (myristoylated alanine-rich C kinase substrate)-related protein (MRP) to vesicular phospholipid membranes.

    PubMed Central

    Vergères, G; Ramsden, J J

    1998-01-01

    The myristoylated alanine-rich C kinase substrate (MARCKS) protein family has two known members, MARCKS itself and MARCKS-related protein (MRP, also called MacMARCKS or F52). They are essential for brain development and are believed to regulate the structure of the actin cytoskeleton at the plasma membrane. Hence membrane binding is central to their function. MARCKS has been quite extensively characterized; MRP much less so. Despite the fact that MRP is only two thirds the size of MARCKS, it has hitherto been assumed that the two proteins have similar properties. Here we make a detailed study, including the effects of myristoylation, lipid composition, calmodulin and phosphorylation of the binding of MRP to phospholipid vesicles. We show that both the N-terminal myristoyl moiety and the central effector domain mediate binding. MRP behaves like MARCKS in the presence of neutral phospholipids. In contrast to MARCKS, however, the incorporation of 20% of negatively-charged phospholipids only marginally increases the affinity of myristoylated MRP. Co-operativity between the myristoyl moiety and the effector domain of MRP is weak and the protein has a significantly lower affinity for these vesicles compared with MARCKS. Furthermore, calmodulin or phosphorylation of the effector domain by the catalytic subunit of protein kinase C do not significantly decrease the binding of myristoylated MRP to negatively-charged phospholipid vesicles. Our results show that the mechanisms regulating the interactions of MARCKS and MRP with phospholipid vesicles are, at least quantitatively, different. In agreement with cellular studies, we therefore propose that MARCKS and MRP have different subcellular localization and, consequently, different functions. PMID:9461483

  14. Unique Peptide Substrate Binding Properties of 110-kDa Heat-shock Protein (Hsp110) Determine Its Distinct Chaperone Activity*

    PubMed Central

    Xu, Xinping; Sarbeng, Evans Boateng; Vorvis, Christina; Kumar, Divya Prasanna; Zhou, Lei; Liu, Qinglian

    2012-01-01

    The molecular chaperone 70-kDa heat-shock proteins (Hsp70s) play essential roles in maintaining protein homeostasis. Hsp110, an Hsp70 homolog, is highly efficient in preventing protein aggregation but lacks the hallmark folding activity seen in Hsp70s. To understand the mechanistic differences between these two chaperones, we first characterized the distinct peptide substrate binding properties of Hsp110s. In contrast to Hsp70s, Hsp110s prefer aromatic residues in their substrates, and the substrate binding and release exhibit remarkably fast kinetics. Sequence and structure comparison revealed significant differences in the two peptide-binding loops: the length and properties are switched. When we swapped these two loops in an Hsp70, the peptide binding properties of this mutant Hsp70 were converted to Hsp110-like, and more impressively, it functionally behaved like an Hsp110. Thus, the peptide substrate binding properties implemented in the peptide-binding loops may determine the chaperone activity differences between Hsp70s and Hsp110s. PMID:22157767

  15. Structural Basis of Substrate-Binding Specificity of Human Arylamine N-acetyltransferases

    SciTech Connect

    Wu,H.; Dombrovsky, L.; Tempel, W.; Martin, F.; Loppnau, P.; Goodfellow, G.; Grant, D.; Plotnikov, A.

    2007-01-01

    The human arylamine N-acetyltransferases NAT1 and NAT2 play an important role in the biotransformation of a plethora of aromatic amine and hydrazine drugs. They are also able to participate in the bioactivation of several known carcinogens. Each of these enzymes is genetically variable in human populations, and polymorphisms in NAT genes have been associated with various cancers. Here we have solved the high resolution crystal structures of human NAT1 and NAT2, including NAT1 in complex with the irreversible inhibitor 2-bromoacetanilide, a NAT1 active site mutant, and NAT2 in complex with CoA, and have refined them to 1.7-, 1.8-, and 1.9- Angstroms resolution, respectively. The crystal structures reveal novel structural features unique to human NATs and provide insights into the structural basis of the substrate specificity and genetic polymorphism of these enzymes.

  16. The effect of the carbohydrate binding module on substrate degradation by the human chitotriosidase.

    PubMed

    Stockinger, Linn Wilhelmsen; Eide, Kristine Bistrup; Dybvik, Anette Israelsen; Sletta, Håvard; Vårum, Kjell Morten; Eijsink, Vincent G H; Tøndervik, Anne; Sørlie, Morten

    2015-10-01

    Human chitotriosidase (HCHT) is one of two active glycoside hydrolase family 18 chitinases produced by humans. The enzyme is associated with several diseases and is thought to play a role in the anti-parasite responses of the innate immune system. HCHT occurs in two isoforms, one 50 kDa (HCHT50) and one 39 kDa variant (HCHT39). Common for both isoforms is a catalytic domain with the (β/α)8 TIM barrel fold. HCHT50 has an additional linker-region, followed by a C-terminal carbohydrate-binding module (CBM) classified as CBM family 14 in the CAZy database. To gain further insight into enzyme functionality and especially the effect of the CBM, we expressed both isoforms and compared their catalytic properties on chitin and high molecular weight chitosans. HCHT50 degrades chitin faster than HCHT39 and much more efficiently. Interestingly, both HCHT50 and HCHT39 show biphasic kinetics on chitosan degradation where HCHT50 is faster initially and HCHT39 is faster in the second phase. Moreover, HCHT50 produces distinctly different oligomer distributions than HCHT39. This is likely due to increased transglycosylation activity for HCHT50 due the CBM extending the positive subsites binding surface and therefore promoting transglycosylation. Finally, studies with both chitin and chitosan showed that both isoforms have a similarly low degree of processivity. Combining functional and structural features of the two isoforms, it seems that HCHT combines features of exo-processive and endo-nonprocessive chitinases with the somewhat unusual CBM14 to reach a high degree of efficiency, in line with its alleged physiological task of being a "complete" chitinolytic machinery by itself. PMID:26116146

  17. Catalytically-active complex of HIV-1 integrase with a viral DNA substrate binds anti-integrase drugs.

    PubMed

    Alian, Akram; Griner, Sarah L; Chiang, Vicki; Tsiang, Manuel; Jones, Gregg; Birkus, Gabriel; Geleziunas, Romas; Leavitt, Andrew D; Stroud, Robert M

    2009-05-19

    HIV-1 integration into the host cell genome is a multistep process catalyzed by the virally-encoded integrase (IN) protein. In view of the difficulty of obtaining a stable DNA-bound IN at high concentration as required for structure determination, we selected IN-DNA complexes that form disulfide linkages between 5'-thiolated DNA and several single mutations to cysteine around the catalytic site of IN. Mild reducing conditions allowed for selection of the most thermodynamically-stable disulfide-linked species. The most stable complexes induce tetramer formation of IN, as happens during the physiological integration reaction, and are able to catalyze the strand transfer step of retroviral integration. One of these complexes also binds strand-transfer inhibitors of HIV antiviral drugs, making it uniquely valuable among the mutants of this set for understanding portions of the integration reaction. This novel complex may help define substrate interactions and delineate the mechanism of action of known integration inhibitors. PMID:19416821

  18. Binding-induced folding of prokaryotic ubiquitin-like protein on the mycobacterium proteasomal ATPase targets substrates for degradation

    SciTech Connect

    Wang, T.; Li, H.; Darwin, K. H.

    2010-11-01

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  19. Binding-induced Folding of Prokaryotic Ubiquitin-like Protein on the Mycobacterium Proteasomal ATPase Targets Substrates for Degradation

    SciTech Connect

    T Wang; K Heran Darwin; H Li

    2011-12-31

    Mycobacterium tuberculosis uses a proteasome system that is analogous to the eukaryotic ubiquitin-proteasome pathway and is required for pathogenesis. However, the bacterial analog of ubiquitin, prokaryotic ubiquitin-like protein (Pup), is an intrinsically disordered protein that bears little sequence or structural resemblance to the highly structured ubiquitin. Thus, it was unknown how pupylated proteins were recruited to the proteasome. Here, we show that the Mycobacterium proteasomal ATPase (Mpa) has three pairs of tentacle-like coiled coils that recognize Pup. Mpa bound unstructured Pup through hydrophobic interactions and a network of hydrogen bonds, leading to the formation of an {alpha}-helix in Pup. Our work describes a binding-induced folding recognition mechanism in the Pup-proteasome system that differs mechanistically from substrate recognition in the ubiquitin-proteasome system. This key difference between the prokaryotic and eukaryotic systems could be exploited for the development of a small molecule-based treatment for tuberculosis.

  20. A long-standing mystery solved: the formation of 3-hydroxydesloratadine is catalyzed by CYP2C8 but prior glucuronidation of desloratadine by UDP-glucuronosyltransferase 2B10 is an obligatory requirement.

    PubMed

    Kazmi, Faraz; Barbara, Joanna E; Yerino, Phyllis; Parkinson, Andrew

    2015-04-01

    Desloratadine (Clarinex), the major active metabolite of loratadine (Claritin), is a nonsedating long-lasting antihistamine that is widely used for the treatment of allergic rhinitis and chronic idiopathic urticaria. For over 20 years, it has remained a mystery as to which enzymes are responsible for the formation of 3-hydroxydesloratadine, the major active human metabolite, largely due to the inability of any in vitro system tested thus far to generate this metabolite. In this study, we demonstrated that cryopreserved human hepatocytes (CHHs) form 3-hydroxydesloratadine and its corresponding O-glucuronide. CHHs catalyzed the formation of 3-hydroxydesloratadine with a Km of 1.6 μM and a Vmax of 1.3 pmol/min per million cells. Chemical inhibition of cytochrome P450 (P450) enzymes in CHHs demonstrated that gemfibrozil glucuronide (CYP2C8 inhibitor) and 1-aminobenzotriazole (general P450 inhibitor) inhibited 3-hydroxydesloratadine formation by 91% and 98%, respectively. Other inhibitors of CYP2C8 (gemfibrozil, montelukast, clopidogrel glucuronide, repaglinide, and cerivastatin) also caused extensive inhibition of 3-hydroxydesloratadine formation (73%-100%). Assessment of desloratadine, amodiaquine, and paclitaxel metabolism by a panel of individual CHHs demonstrated that CYP2C8 marker activity robustly correlated with 3-hydroxydesloratadine formation (r(2) of 0.70-0.90). Detailed mechanistic studies with sonicated or saponin-treated CHHs, human liver microsomes, and S9 fractions showed that both NADPH and UDP-glucuronic acid are required for 3-hydroxydesloratadine formation, and studies with recombinant UDP-glucuronosyltransferase (UGT) and P450 enzymes implicated the specific involvement of UGT2B10 in addition to CYP2C8. Overall, our results demonstrate for the first time that desloratadine glucuronidation by UGT2B10 followed by CYP2C8 oxidation and a deconjugation event are responsible for the formation of 3-hydroxydesloratadine. PMID:25595597

  1. Modulation of Heme/Substrate Binding Cleft of Neuronal Nitric-oxide Synthase (nNOS) Regulates Binding of Hsp90 and Hsp70 Proteins and nNOS Ubiquitination*

    PubMed Central

    Peng, Hwei-Ming; Morishima, Yoshihiro; Pratt, William B.; Osawa, Yoichi

    2012-01-01

    Like other nitric-oxide synthase (NOS) enzymes, neuronal NOS (nNOS) turnover and activity are regulated by the Hsp90/Hsp70-based chaperone machinery, which regulates signaling proteins by modulating ligand binding clefts (Pratt, W. B., Morishima, Y., and Osawa, Y. (2008) J. Biol. Chem. 283, 22885–22889). We have previously shown that nNOS turnover is due to Hsp70/CHIP-dependent ubiquitination and proteasomal degradation. In this work, we use an intracellular cross-linking approach to study both chaperone binding and nNOS ubiquitination in intact HEK293 cells. Treatment of cells with NG-nitro-l-arginine, a slowly reversible competitive inhibitor that stabilizes nNOS, decreases both nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP. Treatment with the calcium ionophore A23187, which increases Ca2+-calmodulin binding to nNOS, increases nNOS ubiquitination and binding of Hsp90, Hsp70, and CHIP in a manner that is specific for changes in the heme/substrate binding cleft. Both Hsp90 and Hsp70 are bound to the expressed nNOS oxygenase domain, which contains the heme/substrate binding cleft, but not to the reductase domain, and binding is increased to an expressed fragment containing both the oxygenase domain and the calmodulin binding site. Overexpression of Hsp70 promotes nNOS ubiquitination and decreases nNOS protein, and overexpression of Hsp90 inhibits nNOS ubiquitination and increases nNOS protein, showing the opposing effects of the two chaperones as they participate in nNOS quality control in the cell. These observations support the notion that changes in the state of the heme/substrate binding cleft affect chaperone binding and thus nNOS ubiquitination. PMID:22128174

  2. The ABBA motif binds APC/C activators and is shared by APC/C substrates and regulators.

    PubMed

    Di Fiore, Barbara; Davey, Norman E; Hagting, Anja; Izawa, Daisuke; Mansfeld, Jörg; Gibson, Toby J; Pines, Jonathon

    2015-02-01

    The anaphase-promoting complex or cyclosome (APC/C) is the ubiquitin ligase that regulates mitosis by targeting specific proteins for degradation at specific times under the control of the spindle assembly checkpoint (SAC). How the APC/C recognizes its different substrates is a key problem in the control of cell division. Here, we have identified the ABBA motif in cyclin A, BUBR1, BUB1, and Acm1, and we show that it binds to the APC/C coactivator CDC20. The ABBA motif in cyclin A is required for its proper degradation in prometaphase through competing with BUBR1 for the same site on CDC20. Moreover, the ABBA motifs in BUBR1 and BUB1 are necessary for the SAC to work at full strength and to recruit CDC20 to kinetochores. Thus, we have identified a conserved motif integral to the proper control of mitosis that connects APC/C substrate recognition with the SAC. PMID:25669885

  3. Design, synthesis, and biological evaluation of substrate-competitive inhibitors of C-terminal Binding Protein (CtBP).

    PubMed

    Korwar, Sudha; Morris, Benjamin L; Parikh, Hardik I; Coover, Robert A; Doughty, Tyler W; Love, Ian M; Hilbert, Brendan J; Royer, William E; Kellogg, Glen E; Grossman, Steven R; Ellis, Keith C

    2016-06-15

    C-terminal Binding Protein (CtBP) is a transcriptional co-regulator that downregulates the expression of many tumor-suppressor genes. Utilizing a crystal structure of CtBP with its substrate 4-methylthio-2-oxobutyric acid (MTOB) and NAD(+) as a guide, we have designed, synthesized, and tested a series of small molecule inhibitors of CtBP. From our first round of compounds, we identified 2-(hydroxyimino)-3-phenylpropanoic acid as a potent CtBP inhibitor (IC50=0.24μM). A structure-activity relationship study of this compound further identified the 4-chloro- (IC50=0.18μM) and 3-chloro- (IC50=0.17μM) analogues as additional potent CtBP inhibitors. Evaluation of the hydroxyimine analogues in a short-term cell growth/viability assay showed that the 4-chloro- and 3-chloro-analogues are 2-fold and 4-fold more potent, respectively, than the MTOB control. A functional cellular assay using a CtBP-specific transcriptional readout revealed that the 4-chloro- and 3-chloro-hydroxyimine analogues were able to block CtBP transcriptional repression activity. This data suggests that substrate-competitive inhibition of CtBP dehydrogenase activity is a potential mechanism to reactivate tumor-suppressor gene expression as a therapeutic strategy for cancer. PMID:27156192

  4. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.

    PubMed

    Fredslund, Folmer; Hachem, Maher Abou; Larsen, René Jonsgaard; Sørensen, Pernille Gerd; Coutinho, Pedro M; Lo Leggio, Leila; Svensson, Birte

    2011-09-23

    Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36. PMID:21827767

  5. An atomistic view of Hsp70 allosteric crosstalk: from the nucleotide to the substrate binding domain and back

    PubMed Central

    Chiappori, Federica; Merelli, Ivan; Milanesi, Luciano; Colombo, Giorgio; Morra, Giulia

    2016-01-01

    The Hsp70 is an allosterically regulated family of molecular chaperones. They consist of two structural domains, NBD and SBD, connected by a flexible linker. ATP hydrolysis at the NBD modulates substrate recognition at the SBD, while peptide binding at the SBD enhances ATP hydrolysis. In this study we apply Molecular Dynamics (MD) to elucidate the molecular determinants underlying the allosteric communication from the NBD to the SBD and back. We observe that local structural and dynamical modulation can be coupled to large-scale rearrangements, and that different combinations of ligands at NBD and SBD differently affect the SBD domain mobility. Substituting ADP with ATP in the NBD induces specific structural changes involving the linker and the two NBD lobes. Also, a SBD-bound peptide drives the linker docking by increasing the local dynamical coordination of its C-terminal end: a partially docked DnaK structure is achieved by combining ATP in the NBD and peptide in the SBD. We propose that the MD-based analysis of the inter domain dynamics and structure modulation could be used as a tool to computationally predict the allosteric behaviour and functional response of Hsp70 upon introducing mutations or binding small molecules, with potential applications for drug discovery. PMID:27025773

  6. Methionine sulfoxide reductase: chemistry, substrate binding, recycling process and oxidase activity.

    PubMed

    Boschi-Muller, Sandrine; Branlant, Guy

    2014-12-01

    Three classes of methionine sulfoxide reductases are known: MsrA and MsrB which are implicated stereo-selectively in the repair of protein oxidized on their methionine residues; and fRMsr, discovered more recently, which binds and reduces selectively free L-Met-R-O. It is now well established that the chemical mechanism of the reductase step passes through formation of a sulfenic acid intermediate. The oxidized catalytic cysteine can then be recycled by either Trx when a recycling cysteine is operative or a reductant like glutathione in the absence of recycling cysteine which is the case for 30% of the MsrBs. Recently, it was shown that a subclass of MsrAs with two recycling cysteines displays an oxidase activity. This reverse activity needs the accumulation of the sulfenic acid intermediate. The present review focuses on recent insights into the catalytic mechanism of action of the Msrs based on kinetic studies, theoretical chemistry investigations and new structural data. Major attention is placed on how the sulfenic acid intermediate can be formed and the oxidized catalytic cysteine returns back to its reduced form. PMID:25108804

  7. Changes in Dynamics upon Oligomerization Regulate Substrate Binding and Allostery in Amino Acid Kinase Family Members

    PubMed Central

    Marcos, Enrique; Crehuet, Ramon; Bahar, Ivet

    2011-01-01

    Oligomerization is a functional requirement for many proteins. The interfacial interactions and the overall packing geometry of the individual monomers are viewed as important determinants of the thermodynamic stability and allosteric regulation of oligomers. The present study focuses on the role of the interfacial interactions and overall contact topology in the dynamic features acquired in the oligomeric state. To this aim, the collective dynamics of enzymes belonging to the amino acid kinase family both in dimeric and hexameric forms are examined by means of an elastic network model, and the softest collective motions (i.e., lowest frequency or global modes of motions) favored by the overall architecture are analyzed. Notably, the lowest-frequency modes accessible to the individual subunits in the absence of multimerization are conserved to a large extent in the oligomer, suggesting that the oligomer takes advantage of the intrinsic dynamics of the individual monomers. At the same time, oligomerization stiffens the interfacial regions of the monomers and confers new cooperative modes that exploit the rigid-body translational and rotational degrees of freedom of the intact monomers. The present study sheds light on the mechanism of cooperative inhibition of hexameric N-acetyl-L-glutamate kinase by arginine and on the allosteric regulation of UMP kinases. It also highlights the significance of the particular quaternary design in selectively determining the oligomer dynamics congruent with required ligand-binding and allosteric activities. PMID:21980279

  8. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D A; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward's, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  9. An Effective Approach for Clustering InhA Molecular Dynamics Trajectory Using Substrate-Binding Cavity Features

    PubMed Central

    Ruiz, Duncan D. A.; Norberto de Souza, Osmar

    2015-01-01

    Protein receptor conformations, obtained from molecular dynamics (MD) simulations, have become a promising treatment of its explicit flexibility in molecular docking experiments applied to drug discovery and development. However, incorporating the entire ensemble of MD conformations in docking experiments to screen large candidate compound libraries is currently an unfeasible task. Clustering algorithms have been widely used as a means to reduce such ensembles to a manageable size. Most studies investigate different algorithms using pairwise Root-Mean Square Deviation (RMSD) values for all, or part of the MD conformations. Nevertheless, the RMSD only may not be the most appropriate gauge to cluster conformations when the target receptor has a plastic active site, since they are influenced by changes that occur on other parts of the structure. Hence, we have applied two partitioning methods (k-means and k-medoids) and four agglomerative hierarchical methods (Complete linkage, Ward’s, Unweighted Pair Group Method and Weighted Pair Group Method) to analyze and compare the quality of partitions between a data set composed of properties from an enzyme receptor substrate-binding cavity and two data sets created using different RMSD approaches. Ensembles of representative MD conformations were generated by selecting a medoid of each group from all partitions analyzed. We investigated the performance of our new method for evaluating binding conformation of drug candidates to the InhA enzyme, which were performed by cross-docking experiments between a 20 ns MD trajectory and 20 different ligands. Statistical analyses showed that the novel ensemble, which is represented by only 0.48% of the MD conformations, was able to reproduce 75% of all dynamic behaviors within the binding cavity for the docking experiments performed. Moreover, this new approach not only outperforms the other two RMSD-clustering solutions, but it also shows to be a promising strategy to distill

  10. Mutational analysis of the zinc- and substrate-binding sites in the CphA metallo-beta-lactamase from Aeromonas hydrophila.

    PubMed

    Bebrone, Carine; Anne, Christine; Kerff, Frédéric; Garau, Gianpiero; De Vriendt, Kris; Lantin, Raphaël; Devreese, Bart; Van Beeumen, Jozef; Dideberg, Otto; Frère, Jean-Marie; Galleni, Moreno

    2008-08-15

    The subclass B2 CphA (Carbapenemase hydrolysing Aeromonas) beta-lactamase from Aeromonas hydrophila is a Zn(2+)-containing enzyme that specifically hydrolyses carbapenems. In an effort to evaluate residues potentially involved in metal binding and/or catalysis (His(118), Asp(120), His(196) and His(263)) and in substrate specificity (Val(67), Thr(157), Lys(224) and Lys(226)), site-directed mutants of CphA were generated and characterized. Our results confirm that the first zinc ion is in interaction with Asp(120) and His(263), and thus is located in the 'cysteine' zinc-binding site. His(118) and His(196) residues seem to be interacting with the second zinc ion, as their replacement by alanine residues has a negative effect on the affinity for this second metal ion. Val(67) plays a significant role in the binding of biapenem and benzylpenicillin. The properties of a mutant with a five residue (LFKHV) insertion just after Val(67) also reveals the importance of this region for substrate binding. This latter mutant has a higher affinity for the second zinc ion than wild-type CphA. The T157A mutant exhibits a significantly modified activity spectrum. Analysis of the K224Q and N116H/N220G/K224Q mutants suggests a significant role for Lys(224) in the binding of substrate. Lys(226) is not essential for the binding and hydrolysis of substrates. Thus the present paper helps to elucidate the position of the second zinc ion, which was controversial, and to identify residues important for substrate binding. PMID:18498253