Static cylindrically symmetric spacetimes
NASA Astrophysics Data System (ADS)
Fjällborg, Mikael
2007-05-01
We prove the existence of static solutions to the cylindrically symmetric Einstein Vlasov system, and we show that the matter cylinder has finite extension in two of the three spatial dimensions. The same results are also proved for a quite general class of equations of state for perfect fluids coupled to the Einstein equations, extending the class of equations of state considered by Bicak et al (2004 Class. Quantum Grav.21 1583). We also obtain this result for the Vlasov Poisson system.
Cylindrically symmetric electrohydrodynamic patterning.
Deshpande, Paru; Pease, Leonard F; Chen, Lei; Chou, Stephen Y; Russel, William B
2004-10-01
Cylindrically symmetric structures such as concentric rings and rosettes arise out of thin polymeric films subjected to strong electric fields. Experiments that formed concentric rings and theory capable of explaining these and other cylindrical structures are presented. These rings represent an additional member of a class of structures, including pillars and holes, formed by electrohydrodynamic patterning of thin films, occasionally referred to as lithographically induced self-assembly. Fabrication of a set of concentric rings begins by spin coating a thin poly(methyl methacrylate) film onto a silicon wafer. A mask is superimposed parallel to the film leaving a similarly thin air gap. Electric fields, acting in opposition to surface tension, destabilize the free interface when raised above the glass transition temperature. Central pillars nucleate under small cylindrical protrusions patterned on the mask. Rings then emerge sequentially, with larger systems having as many as 10 fully formed rings. Ring-to-ring spacings and annular widths, typically on the order of a micron, are approximately constant within a concentric cluster. The formation rate is proportional to the viscosity and, consequently, has the expected Williams-Landel-Ferry dependence on temperature. In light of these developments we have undertaken a linear stability analysis in cylindrical coordinates to describe these rings and ringlike structures. The salient feature of this analysis is the use of perturbations that incorporate their radial dependence in terms of Bessel functions as opposed to the traditional sinusoids of Cartesian coordinates. The theory predicts approximately constant ring-to-ring spacings, constant annular widths, and growth rates that agree with experiment. A secondary instability is observed at higher temperatures, which causes the rings to segment into arcs or pillar arrays. The cylindrical theory may be generalized to describe hexagonal pillar/hole packing, gratings, and
Cylindrically symmetric wormholes
Kuhfittig, Peter K.F.
2005-05-15
This paper discusses traversable wormholes that differ slightly but significantly from those of the Morris-Thorne type under the assumption of cylindrical symmetry. The throat is a piecewise smooth cylindrical surface resulting in a shape function that is not differentiable at some value. It is proposed that the regular derivative be replaced by a one-sided derivative at this value. The resulting wormhole geometry satisfies the weak energy condition.
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Conformal cylindrically symmetric spacetimes in modified gravity
NASA Astrophysics Data System (ADS)
Türkog˜lu, Murat Metehan; Dog˜ru, Melis Ulu
2015-11-01
We investigate cylindrically symmetric spacetimes in the context of f(R) gravity. We firstly attain conformal symmetry of the cylindrically symmetric spacetime. We obtain solutions to use features of the conformal symmetry, field equations and their solutions for cylindrically symmetric spacetime filled with various cosmic matters such as vacuum state, perfect fluid, anisotropic fluid, massive scalar field and their combinations. With the vacuum state solutions, we show that source of the spacetime curvature is considered as Casimir effect. Casimir force for given spacetime is found using Wald’s axiomatic analysis. We expose that the Casimir force for Boulware, Hartle-Hawking and Unruh vacuum states could have attractive, repulsive and ineffective features. In the perfect fluid state, we show that matter form of the perfect fluid in given spacetime must only be dark energy. Also, we offer that potential of massive and massless scalar field are developed as an exact solution from the modified field equations. All solutions of field equations for vacuum case, perfect fluid and scalar field give a special f(R) function convenient to Λ-CDM model. In addition to these solutions, we introduce conformal cylindrical symmetric solutions in the cases of different f(R) models. Finally, geometrical and physical results of the solutions are discussed.
Static, cylindrically symmetric strings in general relativity with cosmological constant
Linet, B.
1986-07-01
The static, cylindrically symmetric solutions to Einstein's equations with a cosmological term describing cosmic strings are determined. The discussion depends on the sign of the cosmological constant.
Incorrectness of the usual gyrokinetic treatment in cylindrically symmetric systems
Linsker, R.
1980-07-01
It is shown that the usual gyrokinetic theory does not consistently retain all terms of leading order in the expansion parameter epsilon = gyroradius/equilibrium scale length. This is illustrated for cylindrically symmetric systems by comparing the perturbed distribution function calculated by the gyrokinetic method with that obtained by explicitly integrating the Vlasov equation over the unperturbed orbit. The integral equation used in some recent treatments of drift waves in sheared-slab geometry is shown to be incorrect. The correct calculation of the ion density perturbation for a collisionless ..beta.. = 0 plasma with cylindrical symmetry is presented.
Cylindrically symmetric Fresnel lens for high concentration photovoltaic
NASA Astrophysics Data System (ADS)
Hung, Yu-Ting; Su, Guo-Dung
2009-08-01
High concentration photovoltaic (HCPV) utilizes point-focus cost-effective plastic Fresnel lens. And a millimeter-sized Ill-V compound multi-junction solar cell is placed underneath focusing optics which can achieve cell efficiency potential of up to 40.7 %. The advantage of HCPV makes less solar cell area and higher efficiency; however, the acceptance angle of HCPV is about +/-1°, which is very small and the mechanical tracking of the sun is necessary. In order to reduce the power consumption and the angle tracking error of tracking systems, a light collector model with larger acceptance angle is designed with ZEMAXÂ®. In this model, the original radially symmetric Fresnel lens of HCPV is replaced by cylindrically symmetric Fresnel lens and a parabolic reflective surface. Light is collected in two dimensions separately. And a couple of lenses and a light pipe are added before the solar cell chip in order to collect more light when sun light deviates from incident angle of 00. An acceptance angle of +/-10° is achieved with GCR 400.
Parallel algorithms for 2-D cylindrical transport equations of Eigenvalue problem
Wei, J.; Yang, S.
2013-07-01
In this paper, aimed at the neutron transport equations of eigenvalue problem under 2-D cylindrical geometry on unstructured grid, the discrete scheme of Sn discrete ordinate and discontinuous finite is built, and the parallel computation for the scheme is realized on MPI systems. Numerical experiments indicate that the designed parallel algorithm can reach perfect speedup, it has good practicality and scalability. (authors)
A cylindrically symmetric "micro-Mott" electron polarimeter.
Clayburn, N B; Brunkow, E; Burtwistle, S J; Rutherford, G H; Gay, T J
2016-05-01
A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff, or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device's maximum efficiency, I/Io, defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10(-4) at 20 keV. The figure-of-merit of the device, η, is defined as Seff (2)IIo and equals 9.0 ± 1.6 × 10(-6). Potential sources of false asymmetries due to detector electronic asymmetry and beam misalignment have been investigated. The new polarimeter's performance is compared to published results for similar compact retarding-field Mott polarimeters, and it is concluded that this device has a relatively large Seff and low efficiency. SIMION(®) electron trajectory simulations and Sherman function calculations are presented to explain the differences in performance between this device and previous designs. This design has an Seff that is insensitive to spatial beam fluctuations and, for an energy loss window >0.5 keV, negligible background due to spurious ion and X-ray production at the target. PMID:27250409
A cylindrically symmetric "micro-Mott" electron polarimeter
NASA Astrophysics Data System (ADS)
Clayburn, N. B.; Brunkow, E.; Burtwistle, S. J.; Rutherford, G. H.; Gay, T. J.
2016-05-01
A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff, or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device's maximum efficiency, I/Io, defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10-4 at 20 keV. The figure-of-merit of the device, η, is defined as Seff2I/Io and equals 9.0 ± 1.6 × 10-6. Potential sources of false asymmetries due to detector electronic asymmetry and beam misalignment have been investigated. The new polarimeter's performance is compared to published results for similar compact retarding-field Mott polarimeters, and it is concluded that this device has a relatively large Seff and low efficiency. SIMION® electron trajectory simulations and Sherman function calculations are presented to explain the differences in performance between this device and previous designs. This design has an Seff that is insensitive to spatial beam fluctuations and, for an energy loss window >0.5 keV, negligible background due to spurious ion and X-ray production at the target.
Quantum-Carnot engine for particle confined to 2D symmetric potential well
Belfaqih, Idrus Husin Sutantyo, Trengginas Eka Putra Prayitno, T. B.; Sulaksono, Anto
2015-09-30
Carnot model of heat engine is the most efficient cycle consisting of isothermal and adiabatic processes which are reversible. Although ideal gas usually used as a working fluid in the Carnot engine, Bender used quantum particle confined in 1D potential well as a working fluid. In this paper, by following Bender we generalize the situation to 2D symmetric potential well. The efficiency is express as the ratio of the initial length of the system to the final length of the compressed system. The result then is shown that for the same ratio, 2D potential well is more efficient than 1D potential well.
Mitri, F G
2015-09-01
The optical theorem for plane waves is recognized as one of the fundamental theorems in optical, acoustical and quantum wave scattering theory as it relates the extinction cross-section to the forward scattering complex amplitude function. Here, the optical theorem is extended and generalized in a cylindrical coordinates system for the case of 2D beams of arbitrary character as opposed to plane waves of infinite extent. The case of scalar monochromatic acoustical wavefronts is considered, and generalized analytical expressions for the extinction, absorption and scattering cross-sections are derived and extended in the framework of the scalar resonance scattering theory. The analysis reveals the presence of an interference scattering cross-section term describing the interaction between the diffracted Franz waves with the resonance elastic waves. The extended optical theorem in cylindrical coordinates is applicable to any object of arbitrary geometry in 2D located arbitrarily in the beam's path. Related investigations in optics, acoustics and quantum mechanics will benefit from this analysis in the context of wave scattering theory and other phenomena closely connected to it, such as the multiple scattering by a cloud of particles, as well as the resulting radiation force and torque. PMID:25773968
Coupling 2-D cylindrical and 3-D x-y-z transport computations
Abu-Shumays, I.K.; Yehnert, C.E.; Pitcairn, T.N.
1998-06-30
This paper describes a new two-dimensional (2-D) cylindrical geometry to three-dimensional (3-D) rectangular x-y-z splice option for multi-dimensional discrete ordinates solutions to the neutron (photon) transport equation. Of particular interest are the simple transformations developed and applied in order to carry out the required spatial and angular interpolations. The spatial interpolations are linear and equivalent to those applied elsewhere. The angular interpolations are based on a high order spherical harmonics representation of the angular flux. Advantages of the current angular interpolations over previous work are discussed. An application to an intricate streaming problem is provided to demonstrate the advantages of the new method for efficient and accurate prediction of particle behavior in complex geometries.
Investigation of flow rate in a quasi-2D hopper with two symmetric outlets
NASA Astrophysics Data System (ADS)
Zhang, Xuezhi; Zhang, Sheng; Yang, Guanghui; Lin, Ping; Tian, Yuan; Wan, Jiang-Feng; Yang, Lei
2016-03-01
In this study the flow rate in a quasi-2D hopper with two symmetric outlets was investigated numerically. When two outlets merge into one, the flow rate is obviously bigger than that with a large enough distance between them. To explain the influence of the interaction between these two outlets, it was found that the velocity field above one outlet will be affected by the neighboring outlet by reducing the stagnant zone. With increasing distance, this interaction becomes weaker. Finally the formula of flow rate considering various outlet sizes and distances is fitted to the simulation data.
Role of 2-D periodic symmetrical nanostructures in improving efficiency of thin film solar cells
NASA Astrophysics Data System (ADS)
Zhang, Wei; Jiang, Liyong; Li, Xiangyin
2016-01-01
We systematically investigated several different nanostructures in crystalline silicon (c-Si) thin film solar cells and then proposed a brand-new structure with two dimensional (2-D) periodic dielectric cylinders on the top and annular metal columns on bottom surface to enhance the optical harvesting. The periodic symmetrical nanostructures affect the solar cell efficiency due to the grating diffraction effect of dielectric columns and surface plasmon polaritons (SPPs) effect induced by metal nanostructures at the dielectric-metal interface. About 52.1% more optical absorption and 33.3% more power conversion efficiency are obtained, and the maximum short current reaches to 33.24 mA/cm2.
Ion pump using cylindrically symmetric spindle magnetic field
NASA Astrophysics Data System (ADS)
Rashid, M. H.
2012-11-01
For all accelerators and many research and industries, excellent vacuum conditions are required and the highest possible pumping rates are necessary. For most applications the standard ion sputtering pump (ISP) meets these requirements and is optimal for financial point of view also. The physical principle of the ISP is well known and many companies manufacture variety of ISP. Most of them use dipole magnetic field produced by permanent magnet and electric dipole field between the electrodes in which tenuous plasma is created because of interaction of between the relatively fast electrons slow residual gas atoms. Performance of an ISP depends basically on the electron cloud density in between the titanium electrodes but in the available present configurations no consideration has been given to electron confinement which needs a mirror magnetic field. If this is incorporated it will make a robust ISP surely; furthermore, the requirement of constant feeding of high voltage to electrodes for supplying sufficient number of electrons will be reduced too. A study has been performed to create sufficient rotationally symmetric spindle magnetic field (SMF) with inherent presence of magnetic mirror effect to electron motion to confine them for longer time for enhancing the density of electron cloud between the electrodes. It will lessen the electric power feeding the electrodes and lengthen their life-time. Construction of further compact and robust ISP is envisaged herein. The field simulation using the commercially available permanent magnet together with simulation of electron motion in such field will be presented and discussed in the paper.
Hawking Radiation from the Cylindrical Symmetric Black Hole via Covariant Anomaly
NASA Astrophysics Data System (ADS)
Zeng, Xiao-Xiong; Yang, Shu-Zheng
2008-12-01
Hawking radiation from the cylindrical symmetric black hole, which is asymptotically anti-de Sitter not only in the transverse direction but also in the string or membrane direction, is discussed from the anomaly point of view. We implement the covariant anomaly cancellation method, the more refined formalism that was proposed by Banerjee and Kulkarni recently than the initial work of Robinson et al., to discuss the near-horizon gauge and gravitational anomalies. Our result shows that Hawking radiation from the cylindrical configurations with horizons also can be reproduced by the anomaly cancellation method.
Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory
Delice, Oezguer
2006-12-15
The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.
NASA Astrophysics Data System (ADS)
Eckstein, Johannes; Lei, Wang; Becker, Jonathan; Jun, Gao; Ott, Peter
2006-04-01
In this paper a distance measurement sensor is introduced, equipped with two integrated optical systems, the first one for rotationally symmetric triangulation and the second one for imaging the object while using only one 2D detector for both purposes. Rotationally symmetric triangulation, introduced in [1], eliminates some disadvantages of classical triangulation sensors, especially at steps or strong curvatures of the object, wherefore the measurement result depends not any longer on the angular orientation of the sensor. This is achieved by imaging the scattered light from an illuminated object point to a centered and sharp ring on a low cost area detector. The diameter of the ring is proportional to the distance of the object. The optical system consists of two off axis aspheric reflecting surfaces. This system allows for integrating a second optical system in order to capture images of the object at the same 2D detector. A mock-up was realized for the first time which consists of the reflecting optics for triangulation manufactured by diamond turning. A commercially available appropriate small lens system for imaging was mechanically integrated in the reflecting optics. Alternatively, some designs of retrofocus lens system for larger field of views were investigated. The optical designs allow overlying the image of the object and the ring for distance measurement in the same plane. In this plane a CCD detector is mounted, centered to the optical axis for both channels. A fast algorithm for the evaluation of the ring is implemented. The characteristics, i.e. the ring diameter versus object distance shows very linear behavior. For illumination of the object point for distance measurement, the beam of a red laser diode system is reflected by a wavelength bandpath filter on the axis of the optical system in. Additionally, the surface of the object is illuminated by LED's in the green spectrum. The LED's are located on the outside rim of the reflecting optics. The
A 2D analytical cylindrical gate tunnel FET (CG-TFET) model: impact of shortest tunneling distance
NASA Astrophysics Data System (ADS)
Dash, S.; Mishra, G. P.
2015-09-01
A 2D analytical tunnel field-effect transistor (FET) potential model with cylindrical gate (CG-TFET) based on the solution of Laplace’s equation is proposed. The band-to-band tunneling (BTBT) current is derived by the help of lateral electric field and the shortest tunneling distance. However, the analysis is extended to obtain the subthreshold swing (SS) and transfer characteristics of the device. The dependency of drain current, SS and transconductance on gate voltage and shortest tunneling distance is discussed. Also, the effect of scaling the gate oxide thickness and the cylindrical body diameter on the electrical parameters of the device is analyzed.
A calculation model for primary intensity distributions from cylindrically symmetric x-ray lenses
NASA Astrophysics Data System (ADS)
Hristov, Dimitre; Maltz, Jonathan
2008-02-01
A calculation model for the quantitative prediction of primary intensity fluence distributions obtained by the Bragg diffraction focusing of kilovoltage radiation by cylindrical x-ray lenses is presented. The mathematical formalism describes primary intensity distributions from cylindrically-symmetric x-ray lenses, with a planar isotropic radiation source located in a plane perpendicular to the lens axis. The presence of attenuating medium inserted between the lens and the lens focus is accounted for by energy-dependent attenuation. The influence of radiation scattered within the media is ignored. Intensity patterns are modeled under the assumption that photons that are not interacting with the lens are blocked out at any point of interest. The main characteristics of the proposed calculation procedure are that (i) the application of vector formalism allows universal treatment of all cylindrical lenses without the need of explicit geometric constructs; (ii) intensity distributions resulting from x-ray diffraction are described by a 3D generalization of the mosaic spread concept; (iii) the calculation model can be immediately coupled to x-ray diffraction simulation packages such as XOP and Shadow. Numerical simulations based on this model are to facilitate the design of focused orthovoltage treatment (FOT) systems employing cylindrical x-ray lenses, by providing insight about the influence of the x-ray source and lens parameters on quantities of dosimetric interest to radiation therapy.
A cylindrical shell with an axial crack under skew-symmetric loading.
NASA Technical Reports Server (NTRS)
Yuceoglu, U.; Erdogan, F.
1973-01-01
The skew-symmetric problem for a cylindrical shell containing an axial crack is considered. It is assumed that the material has a special orthotropy - namely, that the shear modulus may be evaluated from the measured Young's moduli and Poisson ratios and is not an independent material constant. The problem is solved within the confines of an eighth-order linearized shallow shell theory. As numerical examples, the torsion of an isotropic cylinder and that of a specially orthotropic cylinder (titanium) are considered. The membrane and bending components of the stress intensity factor are calculated and are given as functions of a dimensionless shell parameter. In the torsion problem for the axially cracked cylinder the bending effects appear to be much more significant than that found for the circumferentially cracked cylindrical shell. Also, as the shell parameter increases, unlike the results found in the pressurized shell, the bending stresses around crack ends do not change sign.
Analytic treatment of complete geodesics in a static cylindrically symmetric conformal spacetime
NASA Astrophysics Data System (ADS)
Hoseini, Bahareh; Saffari, Reza; Soroushfar, Saheb; Grunau, Saskia; Kunz, Jutta
2016-08-01
We consider the motion of test particles and light rays in a static cylindrically symmetric conformal spacetime given by Said et al. [Phys. Rev. D 85, 104054 (2012)]. We derive the equations of motion and present their analytical solutions in terms of the Weierstrass ℘ function and the Kleinian σ function. Using parametric diagrams and effective potentials, we analyze the possible orbits and characterize them in terms of the energy and the angular momentum of the test particles. Finally, we show some examples of orbits.
Cylindrically symmetric models of gravitational collapse to black holes: A short review
NASA Astrophysics Data System (ADS)
Mena, Filipe C.
2015-07-01
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
NASA Technical Reports Server (NTRS)
Carper, D. M.; Johnson, E. R.; Hyer, M. W.
1983-01-01
Equations are developed which govern the deflection response of long cylindrical panels subjected to a line load. The line load is directed toward the center of curvature of the panel, is located at an arbitrary point along the arc length of the panel, and is included at an arbitrary angle relative to the radial direction. Only the geometrically linear problem is considered and the spatial dependence in the problem is reduced to one independent variable, specifically, the arc length along the panel. The problem is thus solvable in closed form. Both symmetrically laminated and the less common unsymmetrically laminated simply supported panels are studied. The unsymmetrically laminated case was considered because the natural shape of an unsymmetric laminate is cylindrical. Results are presented which show the influence of the location and inclination of the line load on panel deflection. Shallow and deep panels are considered. Both the symmetric and unsymmetric panels exhibit similar behavior, the unsymmetric configurations being less stiff. Limited experimental results are presented.
A study on symmetrization of 2D ACAR positron annihilation data
NASA Astrophysics Data System (ADS)
Smedskjaer, L. C.; Legnini, D. G.
1990-07-01
The important problem of symmetrization of two-dimensional angular correlation positron annihilation data is discussed in detail. Interest in this problem is motivated by the potential for a substantial improvement of the data quality. The artefacts present in our Anger cameras have been studied experimentally, and form the basis for a quantitative discussion of the symmetrization operation. The main conclusion is that symmetrization of the two-dimensional angular correlation spectra is allowed, if the symmetry center can be defined. It is argued that the center can be defined if the instrumental artefacts are small. Finally, it is shown that it is unlikely that the instrumental artefacts interfere constructively during the symmetrization operation.
Effects of CDTT model on the dynamical instability of cylindrically symmetric collapsing stars
Kausar, Hafiza Rizwana
2013-01-01
We assume cylindrically symmetric stars which begin collapsing by dissipating energy in the form of heat flux. We wish to study the effects of Carroll-Duvvuri-Trodden-Turner (CDTT) model, f(R) = R+σμ{sup 4}/R, on the range of dynamical instability. For this purpose, perturbation scheme is applied to all the metric functions, material functions and f(R) model to obtain the full set of dynamical equation which control the evolution of the physical variables at the surface of a star. It is found that instability limit involves adiabatic index Γ which depends on the density profile and immense terms of perturbed CDTT model. In addition, model is constrained by some requirement, e.g. positivity of physical quantities. We also reduce our results asymptotically as μ→0, being the GR results in both the Newtonian and post Newtonian regimes.
NASA Astrophysics Data System (ADS)
McLaughlin, J. A.
2016-03-01
The propagation of magnetoacoustic waves in the neighbourhood of a 2D null point is investigated for both β=0 and β ≠ 0 plasmas. Previous work has shown that the Alfvén speed, here v A ∝ r, plays a vital role in such systems and so a natural choice is to switch to polar coordinates. For β=0 plasma, we derive an analytical solution for the behaviour of the fast magnetoacoustic wave in terms of the Klein-Gordon equation. We also solve the system with a semi-analytical WKB approximation which shows that the β=0 wave focuses on the null and contracts around it but, due to exponential decay, never reaches the null in a finite time. For the β ≠ 0 plasma, we solve the system numerically and find the behaviour to be similar to that of the β=0 system at large radii, but completely different close to the null. We show that for an initially cylindrically-symmetric fast magnetoacoustic wave perturbation, there is a decrease in wave speed along the separatrices and so the perturbation starts to take on a quasi-diamond shape; with the corners located along the separatrices. This is due to the growth in pressure gradients that reach a maximum along the separatrices, which in turn reduces the acceleration of the fast wave along the separatrices leading to a deformation of the wave morphology.
2D HYDRA Calculations of Magneto-Rayleigh-Taylor Growth and Feedthrough in Cylindrical Liners
NASA Astrophysics Data System (ADS)
Weis, Matthew; Zhang, Peng; Lau, Y. Y.; Gilgenbach, Ronald; Peterson, Kyle; Hess, Mark
2014-10-01
Cylindrical liner implosions are susceptible to the magneto-Rayleigh-Taylor instability (MRT), along with the azimuthal current-carrying modes (sausage, kink, etc). ``Feedthrough'' of these instabilities has a strong influence on the integrity of the liner/fuel interface in the magnetized liner inertial fusion concept (MagLIF). The linearized ideal MHD equations can be solved to quantify these effects, including the presence of an effective gravity and an axial magnetic field. We investigate the potential of this field to mitigate feedthrough, due to MRT growth from various initial surface finishes (seeded, rough), throughout the implosion using our analytic results and the LLNL code, HYDRA. We will present both low and high convergence cases. Lastly, we illustrate the effect shock compression can have on feedthrough in seeded liners for various fill gases (cold and pre-heated) and magnetic field configurations. M. R. Weis was supported by the Sandia National Laboratories.
NASA Astrophysics Data System (ADS)
Apruzese, J. P.; Giuliani, J. L.; Hansen, S. B.
2012-09-01
In modeling optically thick, high energy density plasmas (HEDP), radiation transport is of comparable importance to atomic physics, hydrodynamics, and other transport processes. Radiation transport theory is the framework for calculating radiation output based on atomic kinetics, and is thus critical to designing and diagnosing experiments in which radiation production is significant. Starting in the 1960s, the astrophysics community established benchmarks for computational radiation transport, based on a parameterized two-level-atom, and mostly applicable to media with very high optical depths and low collisional quenching of radiative transitions. The purpose of the work reported here is to establish a similar computational radiation transport benchmark that is more relevant to a laboratory HEDP environment. Our model consists of 8 levels of mostly K-shell Al ions, ranging from the ground state of Li-like Al to its bare nucleus. Rates connecting the levels are given by well-known, readily reproducible analytic prescriptions. The results presented consist of level populations as a function of position within the cylindrical medium, and emitted line profiles. For the plasma conditions considered, the magnitudes and spatial variations of the populations are a sensitive indicator of the accuracy of the radiation transport model, and are critical in calculating experimentally relevant quantities such as radiative powers and line ratios.
Radiative transfer in cylindrical threads with incident radiation. II. 2D azimuth-dependent case
NASA Astrophysics Data System (ADS)
Gouttebroze, P.
2005-05-01
A method is proposed for the solution of NLTE radiative transfer equations in long cylinders with an external incident radiation that varies with direction. This method is designed principally for the modelling of elongated structures imbedded in the solar corona (loops, prominence threads). The radiative transfer problem under consideration is a 2D one, since the source functions and absorption coefficients vary with both distance to axis and azimuth. The method is based on the general principles of finite-differences and accelerated Λ-iteration. A Fourier series is used for interpolation in azimuth. The method is applied to a line emitted by a two-level atom with complete frequency redistribution. Convergence properties of the method and influence of the inclination angle on the source function are discussed.
Statistical abstraction of high-fidelity CO2 pressure histories in 2-D, uniform, cylindrical domains
Letellier, Bruce C; Sanzo, Dean L; Pawar, Rajesh J
2010-01-01
parameters while retaining acceptable accuracy in the key predicted qu antities. Essentially, numerical calculations can be used as data for an exploratory trend analysis just as one might regress predictive equations against laboratory measurements to determine unknown parameter values. Statistical correlations are derived here to reproduce radial overpressure as a function of time and position for CO{sub 2} injected along the centerline of cylindrical geologic domains. FEHM was used to compute two-phase pressure histories in a suite of simulations that varied (1) initial pressure, (2) vertical reservoir thickness, (3) domain radius, (4) uniform permeability, and (5) mass injection rate. The simulations include both a 50-yr injection phase and a 50-yr relaxation phase. The correlations are based on a two-step fitting paradigm that first captures the shape of an entire radial pressure profile for a given time and input condition, and then correlates the shape parameters as generalized power products of 6 dimensionless parameters. Estimated overpressures are accurate within a factor of 1.25 compared to the suite of simulated values. The correlations can be used to evaluate rapidly local temporal overpressure for any continuous values within the defined space of input parameters. Inversion of the pressure correlation is also demonstrated to determine the maximum injection rate corresponding to an assumed limiting fracture pressure.
NASA Astrophysics Data System (ADS)
Erices, Cristián; Martínez, Cristián
2015-08-01
The general stationary cylindrically symmetric solution of Einstein-massless scalar field system with a nonpositive cosmological constant is presented. It is shown that the general solution is characterized by four integration constants. Two of these essential parameters have a local meaning and characterize the gravitational field strength. The other two have a topological origin, as they define an improper coordinate transformation that provides the stationary solution from the static one. The Petrov scheme is considered to explore the effects of the scalar field on the algebraic classification of the solutions. In general, these spacetimes are of type I. However, the presence of the scalar field allows us to find a nonvacuum type O solution and a wider family of type D spacetimes, in comparison with the vacuum case. The mass and angular momentum of the solution are computed using the Regge-Teitelboim method in the case of a negative cosmological constant. In absence of a cosmological constant, the curvature singularities in the vacuum solutions can be removed by including a phantom scalar field, yielding nontrivial locally homogeneous spacetimes. These spacetimes are of particular interest, as they have all their curvature invariants constant.
Cylindrically symmetric wormholes WhCRe : The motion of test particles
NASA Astrophysics Data System (ADS)
Aminova, Asya V.; Brill, Dieter R.; Chumarov, Pavel I.; Shemakhin, Aleksandr Yu.
2016-07-01
We study the radial and nonradial motion of massive test particles and photons in a three-parameter family of cylindrically symmetric wormholes WhCRe generated by the electromagnetic, dilaton, and scalar fields, with particular attention paid to the extent to which the wormhole is traversable. The wormholes are not asymptotically flat and contain a curvature singularity at one end of the wormhole. In the case of nonradial motion with conserved energy and angular momentum along a hypersurface z =const ("planar orbits") we show that, as in the Kerr and Schwarzschild geometries, we should distinguish between orbits with impact parameters greater or less than a certain critical value Dc, which corresponds to the unstable circular orbit of radius uc. For D2>Dc2 there are two kinds of orbits: orbits of the first kind arrive from infinity and turn around at the orbit's minimum radial coordinate u ("pericenter") greater than uc, whereas orbits of the second kind turn around at maximum radial coordinate u ("apocenter") less than uc and terminate at the singularity at u =-∞ . For D =Dc orbits of the first and second kinds merge and both orbits spiral an infinite number of times toward the unstable circular orbit u =uc. For D2
On the Effectiveness of Wastewater Cylindrical Reactors: an Analysis Through Steiner Symmetrization
NASA Astrophysics Data System (ADS)
Díaz, J. I.; Gómez-Castro, D.
2016-03-01
The mathematical analysis of the shape of chemical reactors is studied in this paper through the research of the optimization of its effectiveness η such as introduced by R. Aris around 1960. Although our main motivation is the consideration of reactors specially designed for the treatment of wastewaters our results are relevant also in more general frameworks. We simplify the modeling by assuming a single chemical reaction with a monotone kinetics leading to a parabolic equation with a non-necessarily differentiable function. In fact we consider here the case of a single, non-reversible catalysis reaction of chemical order q, 00). We assume the chemical reactor of cylindrical shape Ω =G× (0,H) with G and open regular set of {R}2 not necessarily symmetric. We show that among all the sections G with prescribed area the ball is the set of lowest effectiveness η (t,G). The proof uses the notions of Steiner rearrangement. Finally, we show that if the height H is small enough then the effectiveness can be made as close to 1 as desired.
NASA Astrophysics Data System (ADS)
Ma, John Z. G.; St.-Maurice, J.-P.
2015-06-01
By applying a backward mapping technique, we solve the Boltzmann equation to investigate the effects of ion-neutral collisions on the ion velocity distribution and related transport properties in cylindrically symmetric, uniformly charged auroral ionosphere. Such a charge geometry introduces a radial electric field which increases linearly with distance from the axis of symmetry. In order to obtain complete analytical solutions for gaining physical insights into more complicated problems, we have substituted a relaxation collision model for the Boltzmann collision integral in the Boltzmann equation. Our calculations show that collisions drive the velocity distribution to a "horseshoe" shape after a few collision times. This feature extends to all radial positions as long as the electric field keeps increasing linearly versus radius. If the electric field is introduced suddenly, there is a transition from the collision-free pulsating Maxwellian distributions obtained in previous work (Ma and St.-Maurice, J. Geophys. Res., 113:A05312, 2008) to the "horseshoe" shapes on a time scale of within the few collision times. We also show how the transport properties evolve in a similar fashion, from oscillating to a non-oscillating features over the same time interval.
Zhou, Hui; Wuest, James D
2013-06-18
Linear D2h-symmetric bisisophthalic acids 1 and 2 and related substances have well-defined flattened structures, high affinities for graphite, and strong abilities to engage in specific intermolecular interactions. Their adsorption produces characteristic nanopatterns that reveal how 2D molecular organization can be controlled by reliable interadsorbate interactions such as hydrogen bonds when properly oriented by molecular geometry. In addition, the behavior of these compounds shows how large-scale organization can be obstructed by programming molecules to associate strongly according to competing motifs that have similar stability and can coexist smoothly without creating significant defects. Analogous new bisisophthalic acids 3a and 4a have similar associative properties, and their unique C2h-symmetric crankshaft geometry gives them the added ability to probe the poorly understood effect of chirality on molecular organization. Their adsorption shows how nanopatterns composed predictably of a single enantiomer can be obtained by depositing molecules that can respect established rules of association only by accepting neighbors of the same configuration. In addition, an analysis of the adsorption of crankshaft compounds 3a and 4a and their derivatives by STM reveals directly on the molecular level how kinetics and thermodynamics compete to control the crystallization of chiral compounds. In such ways, detailed studies of the adsorption of properly designed compounds on surfaces are proving to be a powerful way to discover and test rules that broadly govern molecular organization in both 2D and 3D. PMID:23092394
NASA Astrophysics Data System (ADS)
Penotti, Fabio E.; Cooper, David L.
2015-07-01
We examine the symmetry properties of spin-coupled (or full generalised valence bond) wavefunctions for C2H2 and N2. The symmetry-separated (σ,π) and bent-bond (ω) solutions are totally symmetric only in the D4h and D3h subgroups of D∞h, respectively. Two fairly different strategies are explored for imposing full cylindrical symmetry, with one of them (small nonorthogonal configuration interaction calculations involving rotated versions of the wavefunction) turning out to be somewhat preferable on energetic grounds to the other one (application of additional spin constraints to a single spatial configuration). It is also shown that mixing together the cylindrically symmetric symmetry-separated and bent-bond spin-coupled models leads to relatively small energy improvements unless the valence orbitals in each type of configuration are reoptimised.
NASA Astrophysics Data System (ADS)
Yong, Heng; Zhai, ChuanLei; Jiang, Song; Song, Peng; Dai, ZhenSheng; Gu, JianFa
2016-01-01
In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed cells. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A number of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.
Ellsworth, J. L. Falabella, S.; Tang, V.; Schmidt, A.; Guethlein, G.; Hawkins, S.; Rusnak, B.
2014-01-15
We have designed and built a Dense Plasma Focus (DPF) Z-pinch device using a kJ-level capacitor bank and a hollow anode, and fueled by a cylindrically symmetric gas puff. Using this device, we have measured peak deuteron beam energies of up to 400 keV at 0.8 kJ capacitor bank energy and pinch lengths of ∼6 mm, indicating accelerating fields greater than 50 MV/m. Neutron yields of on the order of 10{sup 7} per shot were measured during deuterium operation. The cylindrical gas puff system permitted simultaneous operation of DPF with a radiofrequency quadrupole accelerator for beam-into-plasma experiments. This paper describes the machine design, the diagnostic systems, and our first results.
NASA Astrophysics Data System (ADS)
Nguyen, Lu Trong Khiem
2016-07-01
A finite difference formula based on the predictor-corrector technique is presented to integrate the cylindrically and spherically symmetric sine-Gordon equations numerically. Based on various numerical observations, one property of the waves of kink type is conjectured and used to explain their returning effect. Several numerical experiments are carried out and they are in excellent agreement with the existing results. In addition, the corresponding modulation solution for the two-dimensional ring-shaped kink is extended to that in three-dimension. Both numerical and theoretical aspects are utilized to verify the reliability of the proposed numerical scheme and thus the analytical modulation solutions.
NASA Astrophysics Data System (ADS)
Ma, John Zhen Guo; Ma, John Zhen Guo; St-Maurice, Jean-Pierre
Because of the strong ambient magnetic field, particularly at ionospheric altitudes, the auroral regions are flush with cylindrical structures covering an impressive range of scales which include lower hybrid cavities on decameter scales, auroral rays on km scales and vortices on tens to hundreds of km scales. In addition, a plethora of in-situ magnetic field and electric field observations and groundbased radar observations strongly suggests that very large parallel current densities are triggered in the upper ionosphere. These observations and just simple geometric considerations have motivated us to study the ion velocity distributions that would accompany strong perpendicular electric fields in a cylindrically symmetric geometry. The applications of the work have to do with the transport coefficients in such regions as well as with local instrumental observations of distribution functions with particle detectors. We have evolved a kinetic theoretical framework in which we have obtained analytical solutions for a number of important limits. We have also developed a semi-numerical method by which to obtain the ion velocity distribution under more general conditions for which analytical solutions are not possible. Our presentation will focus strongly on collision-free results, which stem from the following assumptions: (1) a perpendicular electric field is introduced initially on a time scale that is fast compared to the local ion gyrofrequency (but slow compared to electron plasma and gyrofrequencies); (2) the ion collision frequency is much smaller than the ion gyrofrequency, so that we can calculate meaningful collisionfree solutions. We will present analytical solutions for the distribution functions and their velocity moments inside regions for which the electric field can be assumed to increase linearly with distance from the axis of the cylindrical region, this for a number of initial cylindrically symmetric density distributions. We will also present our
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Aboudi, Jacob
2000-01-01
The objective of this two-year project was to develop and deliver to the NASA-Glenn Research Center a two-dimensional higher-order theory, and related computer codes, for the analysis and design of cylindrical functionally graded materials/structural components for use in advanced aircraft engines (e.g., combustor linings, rotor disks, heat shields, brisk blades). To satisfy this objective, two-dimensional version of the higher-order theory, HOTCFGM-2D, and four computer codes based on this theory, for the analysis and design of structural components functionally graded in the radial and circumferential directions were developed in the cylindrical coordinate system r-Theta-z. This version of the higher-order theory is a significant generalization of the one-dimensional theory, HOTCFGM-1D, developed during the FY97 for the analysis and design of cylindrical structural components with radially graded microstructures. The generalized theory is applicable to thin multi-phased composite shells/cylinders subjected to steady-state thermomechanical, transient thermal and inertial loading applied uniformly along the axial direction such that the overall deformation is characterized by a constant average axial strain. The reinforcement phases are uniformly distributed in the axial direction, and arbitrarily distributed in the radial and circumferential direction, thereby allowing functional grading of the internal reinforcement in the r-Theta plane. The four computer codes fgmc3dq.cylindrical.f, fgmp3dq.cylindrical.f, fgmgvips3dq.cylindrical.f, and fgmc3dq.cylindrical.transient.f are research-oriented codes for investigating the effect of functionally graded architectures, as well as the properties of the multi-phase reinforcement, in thin shells subjected to thermomechanical and inertial loading, on the internal temperature, stress and (inelastic) strain fields. The reinforcement distribution in the radial and circumferential directions is specified by the user. The thermal
Höhne, Christian; Prager, Jens; Gravenkamp, Hauke
2015-12-01
In this paper, a method to determine the complex dispersion relations of axially symmetric guided waves in cylindrical structures is presented as an alternative to the currently established numerical procedures. The method is based on a spectral decomposition into eigenfunctions of the Laplace operator on the cross-section of the waveguide. This translates the calculation of real or complex wave numbers at a given frequency into solving an eigenvalue problem. Cylindrical rods and plates are treated as the asymptotic cases of cylindrical structures and used to generalize the method to the case of hollow cylinders. The presented method is superior to direct root-finding algorithms in the sense that no initial guess values are needed to determine the complex wave numbers and that neither starting at low frequencies nor subsequent mode tracking is required. The results obtained with this method are shown to be reasonably close to those calculated by other means and an estimate for the achievable accuracy is given. PMID:26126952
Bailey, T S; Adams, M L; Chang, J H
2008-10-01
We present a new spatial discretization of the discrete-ordinates transport equation in two-dimensional cylindrical (RZ) geometry for arbitrary polygonal meshes. This discretization is a discontinuous finite element method that utilizes the piecewise linear basis functions developed by Stone and Adams. We describe an asymptotic analysis that shows this method to be accurate for many problems in the thick diffusion limit on arbitrary polygons, allowing this method to be applied to radiative transfer problems with these types of meshes. We also present numerical results for multiple problems on quadrilateral grids and compare these results to the well-known bi-linear discontinuous finite element method.
NASA Astrophysics Data System (ADS)
Tiberi, Gianluigi; Costagli, Mauro; Stara, Riccardo; Cosottini, Mirco; Tropp, James; Tosetti, Michela
2013-05-01
We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1+ fields. Comparisons are provided with experimental data obtained at 7.0 T. The procedure permits us to clearly separate the solution to single line source problem (which we call the primordial solution) and the composite solution (i.e. full coil, i.e. the summations of primordial solutions according to the resonator drive configuration). The capability of separating the primordial solution and the composite one is fundamental for a thorough analysis of the phenomena of dielectric resonance, and of standing wave and multi-source interference. We show that dielectric resonance can be identified only by looking at the electromagnetic field from a single line source.
Tiberi, Gianluigi; Costagli, Mauro; Stara, Riccardo; Cosottini, Mirco; Tropp, James; Tosetti, Michela
2013-05-01
We present an analytical method for the analysis of Radio Frequency (RF) volume coils for Magnetic Resonance Imaging (MRI), using a 2-D full wave solution with loading by multilayered cylinders. This allows the characterization of radio-frequency E, H, B1, B1(+) fields. Comparisons are provided with experimental data obtained at 7.0 T. The procedure permits us to clearly separate the solution to single line source problem (which we call the primordial solution) and the composite solution (i.e. full coil, i.e. the summations of primordial solutions according to the resonator drive configuration). The capability of separating the primordial solution and the composite one is fundamental for a thorough analysis of the phenomena of dielectric resonance, and of standing wave and multi-source interference. We show that dielectric resonance can be identified only by looking at the electromagnetic field from a single line source. PMID:23548562
Wu, Zi Liang; Kurokawa, Takayuki; Liang, Songmiao; Furukawa, Hidemitsu; Gong, Jian Ping
2010-07-28
A hydrogel with cylindrically symmetric structure at macroscopic scale has been developed by polymerization of a cationic monomer in the presence of a small amount of semi-rigid polyanion poly(2,2'-disulfonyl-4,4'-benzidine terephthalamide) (PBDT) in a cylinder glass tube. The polyion complex radially aligns in the outer region of the synthesized cylinder gel. On the other hand, it orients in concentric and axial directions in the inner region. To the authors' knowledge, this is the first report of such millimeter-scale ordered structure developed in a polymeric hydrogel. We elucidate that homeotropic alignment on the glass wall is energetically favorable for the semi-rigid polyion complex, resulting in the radial orientation in the outer region. In the inner region, the oriented structures result from the monomer difffusion (due to the heterogeneous polymerization) that induces PBDT orientation perpendicular to the diffusion direction. The structured gels showing sensitive response of birefringence to external force are expected to find applications in optical sensors. PMID:20590113
NASA Astrophysics Data System (ADS)
Tornabene, Francesco; Viola, Erasmo; Inman, Daniel J.
2009-12-01
This paper focuses on the dynamic behavior of functionally graded conical, cylindrical shells and annular plates. The last two structures are obtained as special cases of the conical shell formulation. The first-order shear deformation theory (FSDT) is used to analyze the above moderately thick structural elements. The treatment is developed within the theory of linear elasticity, when materials are assumed to be isotropic and inhomogeneous through the thickness direction. The two-constituent functionally graded shell consists of ceramic and metal that are graded through the thickness, from one surface of the shell to the other. Two different power-law distributions are considered for the ceramic volume fraction. The homogeneous isotropic material is inferred as a special case of functionally graded materials (FGM). The governing equations of motion, expressed as functions of five kinematic parameters, are discretized by means of the generalized differential quadrature (GDQ) method. The discretization of the system leads to a standard linear eigenvalue problem, where two independent variables are involved without using the Fourier modal expansion methodology. For the homogeneous isotropic special case, numerical solutions are compared with the ones obtained using commercial programs such as Abaqus, Ansys, Nastran, Straus, Pro/Mechanica. Very good agreement is observed. Furthermore, the convergence rate of natural frequencies is shown to be very fast and the stability of the numerical methodology is very good. Different typologies of non-uniform grid point distributions are considered. Finally, for the functionally graded material case numerical results illustrate the influence of the power-law exponent and of the power-law distribution choice on the mechanical behavior of shell structures.
NASA Astrophysics Data System (ADS)
Richardson, Robert R.; Zhao, Shi; Howey, David A.
2016-09-01
Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)
Hangel, Gilbert; Strasser, Bernhard; Považan, Michal; Gruber, Stephan; Chmelík, Marek; Gajdošík, Martin; Trattnig, Siegfried; Bogner, Wolfgang
2015-11-01
This work presents a new approach for high-resolution MRSI of the brain at 7 T in clinically feasible measurement times. Two major problems of MRSI are the long scan times for large matrix sizes and the possible spectral contamination by the transcranial lipid signal. We propose a combination of free induction decay (FID)-MRSI with a short acquisition delay and acceleration via in-plane two-dimensional generalised autocalibrating partially parallel acquisition (2D-GRAPPA) with adiabatic double inversion recovery (IR)-based lipid suppression to allow robust high-resolution MRSI. We performed Bloch simulations to evaluate the magnetisation pathways of lipids and metabolites, and compared the results with phantom measurements. Acceleration factors in the range 2-25 were tested in a phantom. Five volunteers were scanned to verify the value of our MRSI method in vivo. GRAPPA artefacts that cause fold-in of transcranial lipids were suppressed via double IR, with a non-selective symmetric frequency sweep. The use of long, low-power inversion pulses (100 ms) reduced specific absorption rate requirements. The symmetric frequency sweep over both pulses provided good lipid suppression (>90%), in addition to a reduced loss in metabolite signal-to-noise ratio (SNR), compared with conventional IR suppression (52-70%). The metabolic mapping over the whole brain slice was not limited to a rectangular region of interest. 2D-GRAPPA provided acceleration up to a factor of nine for in vivo FID-MRSI without a substantial increase in g-factors (<1.1). A 64 × 64 matrix can be acquired with a common repetition time of ~1.3 s in only 8 min without lipid artefacts caused by acceleration. Overall, we present a fast and robust MRSI method, using combined double IR fat suppression and 2D-GRAPPA acceleration, which may be used in (pre)clinical studies of the brain at 7 T. PMID:26370781
Hoffman, E.L.; Ammerman, D.J.
1995-04-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.
NASA Astrophysics Data System (ADS)
Ye, Xia; Zhang, Jianwen
2016-08-01
This paper concerns the asymptotic behavior of the solution to an initial-boundary value problem of the cylindrically symmetric Navier–Stokes equations with large data for compressible heat-conducting ideal fluids, as the shear viscosity μ goes to zero. A suitable corrector function (the so-called boundary-layer type function) is constructed to eliminate the disparity of boundary values. As by-products, the convergence rates of the derivatives in L 2 are obtained and the boundary-layer thickness (BL-thickness) of the value O≤ft({μα}\\right) with α \\in ≤ft(0,1/2\\right) is shown by an alternative method, compared with the results proved in Jiang and Zhang (2009 SIAM J. Math. Anal. 41 237–68) and Qin et al (2015 Arch. Ration. Mech. Anal. 216 1049–86).
Bronnikov, K. A.; Lemos, Jose P. S.
2009-05-15
It is shown that the existence of static, cylindrically symmetric wormholes does not require violation of the weak or null energy conditions near the throat, and cylindrically symmetric wormhole geometries can appear with less exotic sources than wormholes whose throats have a spherical topology. Examples of exact wormhole solutions are given with scalar, spinor and electromagnetic fields as sources, and these fields are not necessarily phantom. In particular, there are wormhole solutions for a massless, minimally coupled scalar field in the presence of a negative cosmological constant, and for an azimuthal Maxwell electromagnetic field. All these solutions are not asymptotically flat. A no-go theorem is proved, according to which a flat (or string) asymptotic behavior on both sides of a cylindrical wormhole throat is impossible if the energy density of matter is everywhere nonnegative.
Hoffman, E.L.; Ammerman, D.J.
1993-08-01
A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several finite element simulations of the event. The purpose of the study is to compare the performance of the various analysis codes and element types with respect to a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry.
Zhao, Jiacheng; Lu, Hongxu; Xiao, Pu; Stenzel, Martina H
2016-07-01
While the shape effect of nanoparticles on cellular uptake has been frequently studied, no consistent conclusions are available currently. The controversy mainly focuses on the cellular uptake of elongated (i.e., filaments or rod-like micelles) as compared to spherical (i.e., micelles and vesicles) nanoparticles. So far, there is no clear trend that proposes the superiority of spherical or nonspherical nanoparticles with conflicting reports available in the literature. One of the reasons is that these few reports available deal with nanoparticles of different shapes, surface chemistries, stabilities, and aspects ratios. Here, we investigated the effect of the aspect ratio of cylindrical micelles on the cellular uptake by breast cancer cell lines MCF-7 and MDA-MB-231. Cylindrical micelles, also coined rod-like micelles, of various length were prepared using fructose-based block copolymers poly(1-O-methacryloyl-β-d-fructopyranose)-b-poly(methyl methacrylate). The critical water content, temperature, and stirring rate that trigger the morphological transition from spheres to rods of various aspect ratios were identified, allowing the generation of different kinetically trapping morphologies. High shear force as they are found with high stirring rates was observed to inhibit the formation of long rods. Rod-like micelles with length of 500-2000 nm were subsequently investigated toward their ability to translocate in breast cancer cells and penetrate into MCF-7 multicellular spheroid models. It was found that shorter rods were taken up at a higher rate than longer rods. PMID:27286273
Symmetrizing the symmetrization postulate
NASA Astrophysics Data System (ADS)
York, Michael
2000-11-01
Reasonable requirements of (a) physical invariance under particle permutation and (b) physical completeness of state descriptions [1], enable us to deduce a Symmetric Permutation Rule(SPR): that by taking care with our state descriptions, it is always possible to construct state vectors (or wave functions) that are purely symmetric under pure permutation for all particles, regardless of type distinguishability or spin. The conventional exchange antisymmetry for two identical half-integer spin particles is shown to be due to a subtle interdependence in the individual state descriptions arising from an inherent geometrical asymmetry. For three or more such particles, however, antisymmetrization of the state vector for all pairs simultaneously is shown to be impossible and the SPR makes observably different predictions, although the usual pairwise exclusion rules are maintained. The usual caveat of fermion antisymmetrization—that composite integer spin particles (with fermionic constituents) behave only approximately like bosons—is no longer necessary.
Cylindrical Implosion Experiments using Laser Direct Drive
NASA Astrophysics Data System (ADS)
Tubbs, David
1998-11-01
Development of high-gain targets for the National Ignition Facility relies considerably on computational modeling, and it is important that our codes are validated against relevant experimental data in convergent geometry.(W. J. Krauser et al., Phys. Plasmas 3, 2084 (1996); D. C. Wilson et al., Phys. Plasmas 5, 1953 (1998)) In collaboration with the University of Rochester, we have begun a campaign of hydrodynamic instability experiments in cylindrical geometry using direct drive,(D. L. Tubbs et al., submitted to Laser and Particle Beams (1998); C. W. Barnes et al., submitted to Rev. Sci. Instrm. (1998)) building on our success in indirect drive.( W. W. Hsing et al., Phys. Plasmas 5, 1832 (1997); W. W. Hsing and N. M. Hoffman, Phys. Rev. Lett., 3876 (1997)) Cylindrical targets facilitate direct diagnostic access to the convergent, hydrodynamic flow. The energy advantage of direct drive and its excellent target-illumination symmetry (achieved at OMEGA through use of Distributed Phase Plates and SSD) permit more energetic implosions, larger target scale (hence greater diagnostic resolution), longer acceleration timescales, and higher convergence than were possible using indirect drive. We estimate that specific laser energy delivered to the target for direct drive at OMEGA is roughly 4 times that achieved for indirect drive at Nova. Our first experiments (January 1998) yield excellent data for the first highly symmetrical direct-drive implosions, with which we benchmark zeroth-order hydrodynamic simulations. Two-dimensional (2-D) LASNEX calculations, using as-shot laser power histories and no further physics adjustments, match measured target-implosion data within theoretical and experimental errors. In addition, 2-D LASNEX simulations of single-mode (m=28, azimuthally symmetric) perturbation growth agree well with data obtained during our first week of experiments. For 1.5-micron initial perturbation amplitude, we observe Rayleigh-Taylor growth factors of order 10
Loads for pulsed power cylindrical implosion experiments
Anderson, W.E.; Armijo, E.V.; Barthell, B.L.; Bartos, J.J.; Bush, H.; Foreman, L.R.; Garcia, F.P.; Gobby, P.L.; Gomez, V.M.; Gurule, V.A.
1994-07-01
Pulse power can be used to generate high energy density conditions in convergent hollow cylindrical geometry through the use of appropriate electrode configuration and cylindrical loads. Cylindrically symmetric experiments are conducted with the Pegasus-H inductive store, capacitor energized pulse power facility at Los Alamos using both precision machined cylindrical liner loads and low mass vapor deposited cylindrical foil loads. The liner experiments investigate solid density hydrodynamic topics. Foil loads vaporize from Joule heating to generate an imploding cylindrical plasma which can be used to simulate some fluxes associated with fusion energy processes. Similar experiments are conducted with {open_quotes}Procyon{close_quotes} inductive store pulse power assemblies energized by explosively driven magnetic flux compression.
Cylindrical solutions in braneworld gravity
Khoeini-Moghaddam, S.; Nouri-Zonoz, M.
2005-09-15
In this article we investigate exact cylindrically symmetric solutions to the modified Einstein field equations in the braneworld gravity scenarios. It is shown that for the special choice of the equation of state 2U+P=0 for the dark energy and dark pressure, the solutions found could be considered formally as solutions of the Einstein-Maxwell equations in 4-D general relativity.
Crack problems in cylindrical and spherical shells
NASA Technical Reports Server (NTRS)
Erdogan, F.
1976-01-01
Standard plate or shell theories were used as a starting point to study the fracture problems in thin-walled cylindrical and spherical shells, assuming that the plane of the crack is perpendicular to the surface of the sheet. Since recent studies have shown that local shell curvatures may have a rather considerable effect on the stress intensity factor, the crack problem was considered in conjunction with a shell rather than a plate theory. The material was assumed to be isotropic and homogeneous, so that approximate solutions may be obtained by approximating the local shell crack geometry with an ideal shell which has a solution, namely a spherical shell with a meridional crack, a cylindrical shell with a circumferential crack, or a cylindrical shell with an axial crack. A method of solution for the specially orthotropic shells containing a crack was described; symmetric and skew-symmetric problems are considered in cylindrical shells with an axial crack.
Ramond, P. . Dept. of Physics)
1993-01-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
Ramond, P.
1993-04-01
The Wolfenstein parametrization is extended to the quark masses in the deep ultraviolet, and an algorithm to derive symmetric textures which are compatible with existing data is developed. It is found that there are only five such textures.
NASA Astrophysics Data System (ADS)
Honeycutt, T. E.; Roberts, T. G.
1986-05-01
Brass retainer rings are currently fastened to artillery shells by spinning each shell at a high rate and then jamming the ring on it so that it is fastened or welded by friction between the two objects. This is an energy-inefficient process which heats and weakens more material than is desirable. The shell spinning at a high rate is also potentially dangerous. A laser welder is provided that generates output energy focused on a circular or cylindrical shape for simultaneously welding around a 360 degs circumference without unnecessarily heating large amounts of material. The welder may be used to fasten cylindrical shaped objects, gears and shafts together, which is difficult to do by conventional means. The welder may also be used to fasten one cylinder to another. To accomplish the welding, a laser has an unstable optical cavity arranged with its feedback mirror centered to generate a circular output beam having an obscuration in the center. A circularly-symmetric, off-axis concave mirror focuses the output beam onto the objects being fastened and away from the center line or axis of the circular beam.
Energy Science and Technology Software Center (ESTSC)
1999-04-29
The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to sendmore » data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.« less
Hall, Thomas E.
1999-04-29
The CS system is designed to provide a very fast imaging system in order to search for weapons on persons in an airport environment. The Cylindrical Scanner moves a vertical transceiver array rapidly around a person standing stationary. The software can be segmented in to three specific tasks. The first task is data acquisition and scanner control. At the operator's request, this task commands the scanner to move and the radar transceiver array to send data to the computer system in a known and well-ordered manner. The array is moved over the complete aperture in 10 to 12 seconds. At the completion of the array movement the second software task automatically reconstructs the high-resolution image from the radar data utilizing the integrated DSP boards. The third task displays the resulting images, as they become available, to the computer screen for user review and analysis.
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Cylindrical magnets and ideal solenoids
NASA Astrophysics Data System (ADS)
Derby, Norman; Olbert, Stanislaw
2010-03-01
Both wire-wound solenoids and cylindrical magnets can be approximated as ideal azimuthally symmetric solenoids. We present an exact solution for the magnetic field of an ideal solenoid in an easy to use form. The field is expressed in terms of a single function that can be rapidly computed by means of a compact efficient algorithm, which can be coded as an add-in function to a spreadsheet, making field calculations accessible to introductory students. These expressions are not only accurate but are also as fast as most approximate expressions. We demonstrate their utility by simulating the dropping of a cylindrical magnet through a nonmagnetic conducting tube and comparing the calculation with data obtained from experiments suitable for an undergraduate laboratory.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Miniaturized symmetrization optics for junction laser
NASA Technical Reports Server (NTRS)
Hammer, Jacob M. (Inventor); Kaiser, Charlie J. (Inventor); Neil, Clyde C. (Inventor)
1982-01-01
Miniaturized optics comprising transverse and lateral cylindrical lenses composed of millimeter-sized rods with diameters, indices-of-refraction and spacing such that substantially all the light emitted as an asymmetrical beam from the emitting junction of the laser is collected and translated to a symmetrical beam.
Shearfree cylindrical gravitational collapse
Di Prisco, A.; Herrera, L.; MacCallum, M. A. H.; Santos, N. O.
2009-09-15
We consider diagonal cylindrically symmetric metrics, with an interior representing a general nonrotating fluid with anisotropic pressures. An exterior vacuum Einstein-Rosen spacetime is matched to this using Darmois matching conditions. We show that the matching conditions can be explicitly solved for the boundary values of metric components and their derivatives, either for the interior or exterior. Specializing to shearfree interiors, a static exterior can only be matched to a static interior, and the evolution in the nonstatic case is found to be given in general by an elliptic function of time. For a collapsing shearfree isotropic fluid, only a Robertson-Walker dust interior is possible, and we show that all such cases were included in Cocke's discussion. For these metrics, Nolan and Nolan have shown that the matching breaks down before collapse is complete, and Tod and Mena have shown that the spacetime is not asymptotically flat in the sense of Berger, Chrusciel, and Moncrief. The issues about energy that then arise are revisited, and it is shown that the exterior is not in an intrinsic gravitational or superenergy radiative state at the boundary.
Image registration under symmetric conditions: novel approach
NASA Astrophysics Data System (ADS)
Duraisamy, Prakash; Yousef, Amr; Buckles, Bill; Jackson, Steve
2015-03-01
Registering the 2D images is one of the important pre-processing steps in many computer vision applications like 3D reconstruction, building panoramic images. Contemporary registration algorithm like SIFT (Scale Invariant Feature transform) was not quite success in registering the images under symmetric conditions and under poor illuminations using DoF (Difference of Gaussian) features. In this paper, we introduced a novel approach for registering the images under symmetric conditions.
Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem
NASA Astrophysics Data System (ADS)
Natanzon, Sergey M.
2016-01-01
We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.
Computer simulation of schlieren images of rotationally symmetric plasma systems: a simple method.
Noll, R; Haas, C R; Weikl, B; Herziger, G
1986-03-01
Schlieren techniques are commonly used methods for quantitative analysis of cylindrical or spherical index of refraction profiles. Many schlieren objects, however, are characterized by more complex geometries, so we have investigated the more general case of noncylindrical, rotationally symmetric distributions of index of refraction n(r,z). Assuming straight ray paths in the schlieren object we have calculated 2-D beam deviation profiles. It is shown that experimental schlieren images of the noncylindrical plasma generated by a plasma focus device can be simulated with these deviation profiles. The computer simulation allows a quantitative analysis of these schlieren images, which yields, for example, the plasma parameters, electron density, and electron density gradients. PMID:18231249
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Symmetric Novikov superalgebras
Ayadi, Imen; Benayadi, Saied
2010-02-15
We study Novikov superalgebras with nondegenerate associative supersymmetric bilinear forms which are called symmetric Novikov superalgebras. We show that Novikov symmetric superalgebras are associative superalgebras with additional condition. Several examples of symmetric Novikov superalgebras are included, in particular, examples of symmetric Novikov superalgebras which are not 2-nilpotent. Finally, we introduce some notions of double extensions in order to give inductive descriptions of symmetric Novikov superalgebras.
Development of the Cylindrical Wire Electrical Discharge Machining Process.
McSpadden, SB
2002-01-22
Results of applying the wire Electrical Discharge Machining (EDM) process to generate precise cylindrical forms on hard, difficult-to-machine materials are presented. A precise, flexible, and corrosion-resistant underwater rotary spindle was designed and added to a conventional two-axis wire EDM machine to enable the generation of free-form cylindrical geometries. A detailed spindle error analysis identifies the major source of error at different frequency. The mathematical model for the material removal of cylindrical wire EDM process is derived. Experiments were conducted to explore the maximum material removal rate for cylindrical and 2D wire EDM of carbide and brass work-materials. Compared to the 2D wire EDM, higher maximum material removal rates may be achieved in the cylindrical wire EDM. This study also investigates the surface integrity and roundness of parts created by the cylindrical wire EDM process. For carbide parts, an arithmetic average surface roughness and roundness as low as 0.68 and 1.7 {micro}m, respectively, can be achieved. Surfaces of the cylindrical EDM parts were examined using Scanning Electron Microscopy (SEM) to identify the craters, sub-surface recast layers and heat-affected zones under various process parameters. This study has demonstrated that the cylindrical wire EDM process parameters can be adjusted to achieve either high material removal rate or good surface integrity.
Static Solutions of Einstein's Equations with Cylindrical Symmetry
ERIC Educational Resources Information Center
Trendafilova, C. S.; Fulling, S. A.
2011-01-01
In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…
Double focusing ion mass spectrometer of cylindrical symmetry
NASA Technical Reports Server (NTRS)
Coplan, M. A.; Moore, J. H.; Hoffman, R. A.
1984-01-01
A mass spectrometer consisting of an electric sector followed by a magnetic sector is described. The geometry is a cylindrically symmetric generalization of the Mattauch-Herzog spectrometer (1934). With its large annular entrance aperture and a position-sensitive detector, the instrument provides a large geometric factor and 100-percent duty factor, making it appropriate for spacecraft experiments.
On 2D bisection method for double eigenvalue problems
Ji, X.
1996-06-01
The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Leung, Ka-Ngo
2009-12-29
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2008-04-22
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Leung, Ka-Ngo
2005-06-14
A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.
Tamm plasmon polaritons in multilayered cylindrical structures
NASA Astrophysics Data System (ADS)
Little, C. E.; Anufriev, R.; Iorsh, I.; Kaliteevski, M. A.; Abram, R. A.; Brand, S.
2012-12-01
It is shown that cylindrical Bragg reflector structures with either a metal core, a metal cladding, or both can support Tamm plasmon polaritons (TPPs) that can propagate axially along the interface between the metallic layer and the adjacent dielectric. A transfer matrix formalism for cylindrical multilayered structures is used in association with cavity phase matching considerations to design structures that support Tamm plasmon polaritons at specified frequencies, and to explore the field distributions and the dispersion relations of the excitations. The cylindrical TPPs can exist in both the TE and TM polarizations for the special cases of modes with either azimuthal isotropy or zero axial propagation constant and also as hybrid cylindrical modes when neither of those conditions applies. In the cases considered the TPPs have low effective masses and low group velocities. Also, when there is both metallic core and cladding, near degenerate modes localized at each metallic interface can couple to produce symmetric and antisymmetric combinations whose frequency difference is in the terahertz regime.
2 1/2 -D compressible reconnection model
NASA Astrophysics Data System (ADS)
Skender, M.; Vršnak, B.
The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.
Quantum Cylindrical Waves and Parametrized Field Theory
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
In this article, we review some illustrative results in the study of two related toy models for quantum gravity, namely cylindrical waves (which are cylindrically symmetric gravitational fields)and parametrized field theory (which is just free scalar field theory on a flat space-time in generally covariant disguise). In the former, we focus on the phenomenon of unexpected large quantum gravity effects in regions of weak classical gravitational fields and on an analysis of causality in a quantum geometry. In the latter, we focus on Dirac quantization, argue that this is related to the unitary implementability of free scalar field evolution along curved foliations of the flat space-time and review the relevant results for unitary implementability.
Esch, Ann van; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P.
2007-10-15
For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of
Van Esch, Ann; Clermont, Christian; Devillers, Magali; Iori, Mauro; Huyskens, Dominique P
2007-10-01
For routine pretreatment verification of innovative treatment techniques such as (intensity modulated) dynamic arc therapy and helical TomoTherapy, an on-line and reliable method would be highly desirable. The present solution proposed by TomoTherapy, Inc. (Madison, WI) relies on film dosimetry in combination with up to two simultaneous ion chamber point dose measurements. A new method is proposed using a 2D ion chamber array (Seven29, PTW, Freiburg, Germany) inserted in a dedicated octagonal phantom, called Octavius. The octagonal shape allows easy positioning for measurements in multiple planes. The directional dependence of the response of the detector was primarily investigated on a dual energy (6 and 18 MV) Clinac 21EX (Varian Medical Systems, Palo Alto, CA) as no fixed angle incidences can be calculated in the Hi-Art TPS of TomoTherapy. The array was irradiated from different gantry angles and with different arc deliveries, and the dose distributions at the level of the detector were calculated with the AAA (Analytical Anisotropic Algorithm) photon dose calculation algorithm implemented in Eclipse (Varian). For validation on the 6 MV TomoTherapy unit, rotational treatments were generated, and dose distributions were calculated with the Hi-Art TPS. Multiple cylindrical ion chamber measurements were used to cross-check the dose calculation and dose delivery in Octavius in the absence of the 2D array. To compensate for the directional dependence of the 2D array, additional prototypes of Octavius were manufactured with built-in cylindrically symmetric compensation cavities. When using the Octavius phantom with a 2 cm compensation cavity, measurements with an accuracy comparable to that of single ion chambers can be achieved. The complete Octavius solution for quality assurance of rotational treatments consists of: The 2D array, two octagonal phantoms (with and without compensation layer), an insert for nine cylindrical ion chambers, and a set of inserts of
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
Microfabricated cylindrical ion trap
Blain, Matthew G.
2005-03-22
A microscale cylindrical ion trap, having an inner radius of order one micron, can be fabricated using surface micromachining techniques and materials known to the integrated circuits manufacturing and microelectromechanical systems industries. Micromachining methods enable batch fabrication, reduced manufacturing costs, dimensional and positional precision, and monolithic integration of massive arrays of ion traps with microscale ion generation and detection devices. Massive arraying enables the microscale cylindrical ion trap to retain the resolution, sensitivity, and mass range advantages necessary for high chemical selectivity. The microscale CIT has a reduced ion mean free path, allowing operation at higher pressures with less expensive and less bulky vacuum pumping system, and with lower battery power than conventional- and miniature-sized ion traps. The reduced electrode voltage enables integration of the microscale cylindrical ion trap with on-chip integrated circuit-based rf operation and detection electronics (i.e., cell phone electronics). Therefore, the full performance advantages of microscale cylindrical ion traps can be realized in truly field portable, handheld microanalysis systems.
ERIC Educational Resources Information Center
Jones, Dustin L.
2009-01-01
The author describes an activity where prospective mathematics teachers made hypotheses about the dimensions of a fair cylindrical die and conducted experiments with different cylinders. He also provides a model that estimates the probability that a cylinder would land on the lateral surface, depending on the height and diameter of the cylinder.…
Energy Science and Technology Software Center (ESTSC)
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
2-D wavelet with position controlled resolution
NASA Astrophysics Data System (ADS)
Walczak, Andrzej; Puzio, Leszek
2005-09-01
Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.
Stabilization Mechanisms and Burning Rates of Cylindrical Burner Flames
NASA Technical Reports Server (NTRS)
Eng, J. A.; Law, C. K.; Zhu, D. L.
1994-01-01
A study is conducted of the structure and response of curved (but unstretched), cylindrically-symmetric 1D premixed flames from a cylindrical porous burner. The study has employed (1) activation-energy asymptotics with one-step reaction constant and constant properties; (2) a numerical computation which encompassed detailed chemistry and transport behavior, and (3) drop-tower microgravity tests. Attention was given to the relative importance of heat loss vs. flow divergence as the dominant mechanism for flame stabilization; the results show that, with increasing flow discharge rate, the dominant flame stabilization mechanism changes from heat loss to flow divergence.
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
Cylindrically polarized nondiffracting optical pulses
NASA Astrophysics Data System (ADS)
Ornigotti, Marco; Conti, Claudio; Szameit, Alexander
2016-07-01
We extend the concept of radially and azimuthally polarized optical beams to the polychromatic domain by introducing cylindrically polarized nondiffracting optical pulses. In particular, we discuss in detail the case of cylindrically polarized X-waves, both in the paraxial and nonparaxial regime. The explicit expressions for the electric and magnetic fields of cylindrically polarized X-waves are also reported.
Conformal approach to cylindrical DLA
NASA Astrophysics Data System (ADS)
Taloni, A.; Caglioti, E.; Loreto, V.; Pietronero, L.
2006-09-01
We extend the conformal mapping approach elaborated for the radial diffusion limited aggregation model (DLA) to cylindrical geometry. We introduce in particular a complex function which allows a cylindrical cluster to be grown using as an intermediate step a radial aggregate. The aggregate grown exhibits the same self-affine features as the original cylindrical DLA. The specific choice of the transformation allows us to study the relationship between the radial and the cylindrical geometry. In particular the cylindrical aggregate can be seen as a radial aggregate with particles of size increasing with the radius. On the other hand, the radial aggregate can be seen as a cylindrical aggregate with particles of size decreasing with the height. This framework, which shifts the point of view from the geometry to the size of the particles, can open the way to more quantitative studies on the relationship between radial and cylindrical DLA.
Panprasitwech, Oranit; Laohakosol, Vichian; Chaichana, Tuangrat
2010-11-11
Explicit formulae for continued fractions with symmetric patterns in their partial quotients are constructed in the field of formal power series. Similar to the work of Cohn in 1996, which generalized the so-called folding lemma to {kappa}-fold symmetry, the notion of {kappa}-duplicating symmetric continued fractions is investigated using a modification of the 1995 technique due to Clemens, Merrill and Roeder.
Lorenz-Mie theory for 2D scattering and resonance calculations
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dubé, Louis J.
2015-10-01
This PhD tutorial is concerned with a description of the two-dimensional generalized Lorenz-Mie theory (2D-GLMT), a well-established numerical method used to compute the interaction of light with arrays of cylindrical scatterers. This theory is based on the method of separation of variables and the application of an addition theorem for cylindrical functions. The purpose of this tutorial is to assemble the practical tools necessary to implement the 2D-GLMT method for the computation of scattering by passive scatterers or of resonances in optically active media. The first part contains a derivation of the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell’s equations. Optically active media are included in 2D-GLMT using a recent stationary formulation of the Maxwell-Bloch equations called steady-state ab initio laser theory (SALT), which introduces new classes of solutions useful for resonance computations. Following these preliminaries, a detailed description of 2D-GLMT is presented. The emphasis is placed on the derivation of beam-shape coefficients for scattering computations, as well as the computation of resonant modes using a combination of 2D-GLMT and SALT. The final section contains several numerical examples illustrating the full potential of 2D-GLMT for scattering and resonance computations. These examples, drawn from the literature, include the design of integrated polarization filters and the computation of optical modes of photonic crystal cavities and random lasers.
2d PDE Linear Asymmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Casperson, Lee W.
1976-02-24
The properties of an improved class of lasers is presented. In one configuration of these lasers the radiation propagates radially within the amplifying medium, resulting in high fields and symmetric illumination at the resonator axis. Thus there is a strong focusing of energy at the axis of the resonator. In a second configuration the radiation propagates back and forth in a tubular region of space.
Effects of electromagnetic field on the dynamical instability of cylindrical collapse
Sharif, M.; Azam, M. E-mail: azammath@gmail.com
2012-02-01
The objective of this paper is to discuss the dynamical instability in the context of Newtonian and post Newtonian regimes. For this purpose, we consider non-viscous heat conducting charged isotropic fluid as a collapsing matter with cylindrical symmetry. Darmois junction conditions are formulated. The perturbation scheme is applied to investigate the influence of dissipation and electromagnetic field on the dynamical instability. We conclude that the adiabatic index Γ has smaller value for such a fluid in cylindrically symmetric than isotropic sphere.
Naked singularity resolution in cylindrical collapse
Kurita, Yasunari; Nakao, Ken-ichi
2006-03-15
In this paper, we study the gravitational collapse of null dust in cylindrically symmetric spacetime. The naked singularity necessarily forms at the symmetry axis. We consider the situation in which null dust is emitted again from the naked singularity formed by the collapsed null dust and investigate the backreaction by this emission for the naked singularity. We show a very peculiar but physically important case in which the same amount of null dust as that of the collapsed one is emitted from the naked singularity as soon as the ingoing null dust hits the symmetry axis and forms the naked singularity. In this case, although this naked singularity satisfies the strong curvature condition by Krolak (limiting focusing condition), geodesics which hit the singularity can be extended uniquely across the singularity. Therefore, we may say that the collapsing null dust passes through the singularity formed by itself and then leaves for infinity. Finally, the singularity completely disappears and the flat spacetime remains.
Measurement of cylindrical parts
NASA Astrophysics Data System (ADS)
Knight, Paul Douglas, Jr.
The form of cylindrical parts has been traditionally evaluated using stylus-based mechanical instruments. The Tropel Corporation has developed a grazing incidence interferometer (GII) for the measurement of cylindrical parts. The repeatability of this instrument due to various instrument uncertainties was measured. Differing instrument configurations that produce the same systematic error were determined to produce a zonal calibration method for determining systematic error over the full range of the instrument, given knowledge of the error in a single zone. The effect of the aperture stop on the response of the imaging system to axially sinusoidal artifacts was simulated. Diamond-turned axially sinusoidal artifacts, with amplitude of order1 um and spatial wavelength of order10 mm, were measured to test the axial response of the interferometer. The modulation transfer function of the instrument's imaging system, measured using a knife edge test, predicts the response observed with the sinusoidal artifacts. A diffraction analysis predicts that the measured axial form is modified by a second order envelope function with phase that varies with the relative position of the imaging system focal plane and part position. A compensation method is proposed for this effect. A comparison of roundness measurements by both a traditional stylus-based instrument and the GII was performed demonstrating that the roundness measurements of the two instruments are equivalent when the measurements are properly corrected for the differing effects of surface finish.
Cup Cylindrical Waveguide Antenna
NASA Technical Reports Server (NTRS)
Acosta, Roberto J.; Darby, William G.; Kory, Carol L.; Lambert, Kevin M.; Breen, Daniel P.
2008-01-01
The cup cylindrical waveguide antenna (CCWA) is a short backfire microwave antenna capable of simultaneously supporting the transmission or reception of two distinct signals having opposite circular polarizations. Short backfire antennas are widely used in mobile/satellite communications, tracking, telemetry, and wireless local area networks because of their compactness and excellent radiation characteristics. A typical prior short backfire antenna contains a half-wavelength dipole excitation element for linear polarization or crossed half-wavelength dipole elements for circular polarization. In order to achieve simultaneous dual circular polarization, it would be necessary to integrate, into the antenna feed structure, a network of hybrid components, which would introduce significant losses. The CCWA embodies an alternate approach that entails relatively low losses and affords the additional advantage of compactness. The CCWA includes a circular cylindrical cup, a circular disk subreflector, and a circular waveguide that serves as the excitation element. The components that make it possible to obtain simultaneous dual circular polarization are integrated into the circular waveguide. These components are a sixpost polarizer and an orthomode transducer (OMT) with two orthogonal coaxial ports. The overall length of the OMT and polarizer (for the nominal middle design frequency of 2.25 GHz) is about 11 in. (approximately equal to 28 cm), whereas the length of a commercially available OMT and polarizer for the same frequency is about 32 in. (approximately equal to 81 cm).
Integrability and symmetric spaces
Ferreira, L.A.
1989-01-01
It is shown that a sufficient condition for a model describing the motion of a particle on a coset space to possess a Fundamental Poisson bracket Relation, and consequently charges in involution, is that it must be a symmetric space. The conditions, a Hamiltonian, or any functions of the canonical variables, has to satisfy in order to commute with these charges, are studied. It is show that, for the case of the noncompact symmetric spaces, these conditions lead to an algebraic structure which lays an important role in the construction of conserved quantities.
Braids, shuffles and symmetrizers
NASA Astrophysics Data System (ADS)
Isaev, A. P.; Ogievetsky, O. V.
2009-07-01
Multiplicative analogues of the shuffle elements of the braid group rings are introduced; in local representations they give rise to certain graded associative algebras (b-shuffle algebras). For the Hecke and BMW algebras, the (anti)-symmetrizers have simple expressions in terms of the multiplicative shuffles. The (anti)-symmetrizers can be expressed in terms of the highest multiplicative 1-shuffles (for the Hecke and BMW algebras) and in terms of the highest additive 1-shuffles (for the Hecke algebras). The spectra and multiplicities of eigenvalues of the operators of the multiplication by the multiplicative and additive 1-shuffles are examined. Dedicated to the memory of Aleosha Zamolodchikov.
Cylindrical geometry hall thruster
Raitses, Yevgeny; Fisch, Nathaniel J.
2002-01-01
An apparatus and method for thrusting plasma, utilizing a Hall thruster with a cylindrical geometry, wherein ions are accelerated in substantially the axial direction. The apparatus is suitable for operation at low power. It employs small size thruster components, including a ceramic channel, with the center pole piece of the conventional annular design thruster eliminated or greatly reduced. Efficient operation is accomplished through magnetic fields with a substantial radial component. The propellant gas is ionized at an optimal location in the thruster. A further improvement is accomplished by segmented electrodes, which produce localized voltage drops within the thruster at optimally prescribed locations. The apparatus differs from a conventional Hall thruster, which has an annular geometry, not well suited to scaling to small size, because the small size for an annular design has a great deal of surface area relative to the volume.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Amore, Paolo; Fernández, Francisco M.; Garcia, Javier; Gutierrez, German
2014-04-15
We study both analytically and numerically the spectrum of inhomogeneous strings with PT-symmetric density. We discuss an exactly solvable model of PT-symmetric string which is isospectral to the uniform string; for more general strings, we calculate exactly the sum rules Z(p)≡∑{sub n=1}{sup ∞}1/E{sub n}{sup p}, with p=1,2,… and find explicit expressions which can be used to obtain bounds on the lowest eigenvalue. A detailed numerical calculation is carried out for two non-solvable models depending on a parameter, obtaining precise estimates of the critical values where pair of real eigenvalues become complex. -- Highlights: •PT-symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken. •We study PT-symmetric strings with complex density. •They exhibit regions of unbroken PT symmetry. •We calculate the critical parameters at the boundaries of those regions. •There are exact real sum rules for some particular complex densities.
Souza Dutra, A. de; Santos, V. G. C. S. dos; Amaro de Faria, A. C. Jr.
2007-06-15
Some kinks for non-Hermitian quantum field theories in 1+1 dimensions are constructed. A class of models where the soliton energies are stable and real are found. Although these kinks are not Hermitian, they are symmetric under PT transformations.
Stage Cylindrical Immersive Display
NASA Technical Reports Server (NTRS)
Abramyan, Lucy; Norris, Jeffrey S.; Powell, Mark W.; Mittman, David S.; Shams, Khawaja S.
2011-01-01
Panoramic images with a wide field of view intend to provide a better understanding of an environment by placing objects of the environment on one seamless image. However, understanding the sizes and relative positions of the objects in a panorama is not intuitive and prone to errors because the field of view is unnatural to human perception. Scientists are often faced with the difficult task of interpreting the sizes and relative positions of objects in an environment when viewing an image of the environment on computer monitors or prints. A panorama can display an object that appears to be to the right of the viewer when it is, in fact, behind the viewer. This misinterpretation can be very costly, especially when the environment is remote and/or only accessible by unmanned vehicles. A 270 cylindrical display has been developed that surrounds the viewer with carefully calibrated panoramic imagery that correctly engages their natural kinesthetic senses and provides a more accurate awareness of the environment. The cylindrical immersive display offers a more natural window to the environment than a standard cubic CAVE (Cave Automatic Virtual Environment), and the geometry allows multiple collocated users to simultaneously view data and share important decision-making tasks. A CAVE is an immersive virtual reality environment that allows one or more users to absorb themselves in a virtual environment. A common CAVE setup is a room-sized cube where the cube sides act as projection planes. By nature, all cubic CAVEs face a problem with edge matching at edges and corners of the display. Modern immersive displays have found ways to minimize seams by creating very tight edges, and rely on the user to ignore the seam. One significant deficiency of flat-walled CAVEs is that the sense of orientation and perspective within the scene is broken across adjacent walls. On any single wall, parallel lines properly converge at their vanishing point as they should, and the sense of
Plane symmetric thin-shell wormholes: Solutions and stability
Lemos, Jose P. S.; Lobo, Francisco S. N.
2008-08-15
Using the cut-and-paste procedure, we construct static and dynamic, plane symmetric wormholes by surgically grafting together two spacetimes of plane symmetric vacuum solutions with a negative cosmological constant. These plane symmetric wormholes can be interpreted as domain walls connecting different universes, having planar topology, and upon compactification of one or two coordinates, cylindrical topology or toroidal topology, respectively. A stability analysis is carried out for the dynamic case by taking into account specific equations of state, and a linearized stability analysis around static solutions is also explored. It is found that thin-shell wormholes made of a dark energy fluid or of a cosmological constant fluid are stable, while thin-shell wormholes made of phantom energy are unstable.
3D versus 2D domain wall interaction in ideal and rough nanowires
NASA Astrophysics Data System (ADS)
Pivano, A.; Dolocan, Voicu O.
2015-11-01
The interaction between transverse magnetic domain walls (TDWs) in planar (2D) and cylindrical (3D) nanowires is examined using micromagnetic simulations. We show that in perfect and surface deformed wires the free TDWs behave differently, as the 3D TDWs combine into metastable states with average lifetimes of 300 ns depending on roughness, while the 2D TDWs do not due to 2D shape anisotropy. When the 2D and 3D TDWs are pinned at artificial constrictions, they behave similarly as they interact mainly through the dipolar field. This magnetostatic interaction is well described by the point charge model with multipole expansion. In surface deformed wires with artificial constrictions, the interaction becomes more complex as the depinning field decreases and dynamical pinning can lead to local resonances. This can strongly influence the control of TDWs in DW-based devices.
New optical cylindrical microresonators
NASA Astrophysics Data System (ADS)
Gun'ko, Yurii K.; Balakrishnan, Sivakumar; McCarthy, Joseph E.; Rakovich, Yuri P.; Donegan, John F.; Perova, Tatiana S.; Melnikov, Vasily
2007-10-01
In this paper we describe a novel technique for the fabrication of aluminosilicate microfibres and microtubes which are shown to act as optical cylindrical microresonators. The alumosilicate microfibres and microtubes were fabricated by using vacuum-assisted wetting and filtration of silica gel through a microchannel glass matrix. The microfibres and microtubes were studied using Scanning Electron Microscopy (SEM), micro-photoluminescence spectroscopy and fluorescence lifetime imaging confocal microscopy. In the emission spectra of the micro-resonators we find very narrow periodic peaks corresponding to the whispering gallery modes of two orthogonal polarizations with quality factors up to 3200. A strong enhancement in photoluminescence decay rates at high excitation power demonstrates the occurrence of amplified spontaneous emission from a single microtube. These microtubes show a large evanescent field extending many microns beyond the tube radius. Potential applications for these novel microresonators will be in the area of optical microsensors for a single molecule detection of biological and chemical species, including anti-terrorism and defense sectors.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Rome, J.A.; Harris, J.H.
1984-01-01
A fusion reactor device is provided in which the magnetic fields for plasma confinement in a toroidal configuration is produced by a plurality of symmetrical modular coils arranged to form a symmetric modular torsatron referred to as a symmotron. Each of the identical modular coils is helically deformed and comprise one field period of the torsatron. Helical segments of each coil are connected by means of toroidally directed windbacks which may also provide part of the vertical field required for positioning the plasma. The stray fields of the windback segments may be compensated by toroidal coils. A variety of magnetic confinement flux surface configurations may be produced by proper modulation of the winding pitch of the helical segments of the coils, as in a conventional torsatron, winding the helix on a noncircular cross section and varying the poloidal and radial location of the windbacks and the compensating toroidal ring coils.
Cracked shells under skew-symmetric loading
NASA Technical Reports Server (NTRS)
Lelale, F.
1982-01-01
A shell containing a through crack in one of the principal planes of curvature and under general skew-symmetric loading is considered. By employing a Reissner type shell theory which takes into account the effect of transverse shear strains, all boundary conditions on the crack surfaces are satisfied separately. Consequently, unlike those obtained from the classical shell theory, the angular distributions of the stress components around the crack tips are shown to be identical to the distributions obtained from the plane and antiplane elasticity solutions. Extensive results are given for axially and circumferentially cracked cylindrical shells, spherical shells, and toroidal shells under uniform inplane shearing, out of plane shearing, and torsion. The effect of orthotropy on the results is also studied.
Multiple symmetric lipomatosis.
Lee, M S; Lee, M H; Hur, K B
1988-12-01
Multiple symmetric lipomatosis (MSL) is an extremely uncommon disorder. In the medical literatures about 200 cases have been reported. MSL is not associated with other generalized lipomatous disorders, nor are these patient to be necessarily obese. The cause of MSL is unknown. The disorder usually occurs in middle-aged males and there is frequently a history of alcoholism. Some instances of familial occurrence have been reported, but the majority of cases are sporadic. Two cases of MSL are presented. PMID:3267365
2-D simulation of a waveguide free electron laser having a helical undulator
Kim, S.K.; Lee, B.C.; Jeong, Y.U.
1995-12-31
We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.
Normalized ion distribution function in expanding sheaths of 2D grid electrodes
NASA Astrophysics Data System (ADS)
Yi, Changho; Namkung, Won; Cho, Moohyun
2016-04-01
Ion distributions in expanding collisionless sheaths of two-dimensional (2D) grid electrodes were studied by using XOOPIC (particle-in-cell) simulations when short pulses of negative high-voltage were applied to electrodes immersed in plasmas. 2D grid electrodes consist of a periodic array of cylindrical electrodes, and the opening ratio of the grid electrodes is defined by the ratio of the spacing between cylindrical electrodes to the periodic length of the grid electrodes. In this paper, we introduce a normalized ion distribution function in normalized coordinates, and it is shown by simulation that the normalized ion distribution function depends only on the opening ratio of the grid electrodes. When the opening ratio of the grid electrodes is fixed, the ion distribution in expanding sheaths can be easily found in various conditions using only a single run of a PIC simulation, and the computation time can be significantly reduced.
Cylindrical Projection of Jupiter
NASA Technical Reports Server (NTRS)
1979-01-01
This computer generated map of Jupiter was made from 10 color images of Jupiter taken Feb. 1, 1979, by Voyager 1, during a single, 10 hour rotation of the planet. Computers at Jet Propulsion Laboratory's Image Processing Lab then turned the photos into this cylindrical projection. Such a projection is invaluable as an instantaneous view of the entire planet. Along the northern edge of the north equatorial belt (NEB) are four dark brown, oblong regions believed by some scientists to be openings in the more colorful upper cloud decks, allowing the darker clouds beneath to be seen. The broad equatorial zone (EZ) is dominated by a series of plumes, possibly regions of intense convective activity, encircling the entire planet. In the southern hemisphere the Great Red Spot is located at about 75 degrees longitude. South of the Great Red Spot in the south temperate zone (STeZ) three large white ovals, seen from Earth-based observatories for the past few decades, are located at 5 degrees, 85 degrees and 170 degrees longitude. Resolution in this map is 375 miles (600 kilometers). Since Jupiter's atmospheric features drift around the planet, longitude is based on the orientation of the planet's magnetic field. Symbols at right edge of photo denote major atmospheric features (dark belts and light zones): NTeZ - north temperate zone; NTrZ - north tropical zone; NEB - north equatorial belt; EZ - equatorial zone; SEB - south equatorial belt; STrZ - south tropical zone; and STeZ - south temperate zone. Voyager belt; EZ - equatorial zone; SEB - south tropical zone; Voyager is managed for NASA's Office of Space Science by Jet Propulsion Laboratory.
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fi
2007-07-24
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation. __________________________________________________
Optimization of Cylindrical Hall Thrusters
Yevgeny Raitses, Artem Smirnov, Erik Granstedt, and Nathaniel J. Fisch
2007-11-27
The cylindrical Hall thruster features high ionization efficiency, quiet operation, and ion acceleration in a large volume-to-surface ratio channel with performance comparable with the state-of-the-art annular Hall thrusters. These characteristics were demonstrated in low and medium power ranges. Optimization of miniaturized cylindrical thrusters led to performance improvements in the 50-200W input power range, including plume narrowing, increased thruster efficiency, reliable discharge initiation, and stable operation.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
2-D soft x-ray arrays in the EAST.
Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong
2016-06-01
A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities. PMID:27370451
2-D soft x-ray arrays in the EAST
NASA Astrophysics Data System (ADS)
Chen, Kaiyun; Xu, Liqing; Hu, Liqun; Duan, Yanmin; Li, Xueqin; Yuan, Yi; Mao, Songtao; Sheng, Xiuli; Zhao, Jinlong
2016-06-01
A high spatial and temporal resolution soft x-ray (SXR) imaging diagnostic has been installed in EAST for the study of magnetohydrodynamics activities and core high-Z impurity transport. Up to 122 lines of sight view the poloidal plasma from three directions (two up-down symmetrical horizontal arrays and one vertical array), which renders the diagnostic able to provide detailed tomographic reconstructions under various conditions. Fourier-Bessel method based on flux coordinates was employed for 2-D SXR tomographic reconstruction. Examples of several events measured by SXR diagnostic in EAST are shown, namely the crash patterns of sawtooth, periodical burst of edge localized modes, and the transport of high-Z intrinsic impurities.
Magnetically induced cylindrical stress waves in a thermoelastic conductor
NASA Technical Reports Server (NTRS)
Chian, C. T.; Moon, F. C.
1981-01-01
The problem of stress wave generation in a linear thermoelastic solid by a pulsed magnetic field is investigated both analytically and experimentally for a cylindrically symmetric conducting solid. A dynamic response analysis is developed to correlate magnetic, thermal, and stress fields in the solid with the time history of the electric current. In the experiment, a transient magnetic field was applied normal to a large conducting plate with a circular hole. Initially the field was confined to the interior of the circular hole. The field was generated by discharging a large capacitor bank through a solenoidal coil. The plane-stress cylindrical stress waves are 1-D in nature. The relative effects of the magnetic body force and thermoelastic stresses, both generated by the electromagnetic field, are assessed.
Generating a cylindrical vector beam interferometrically for ellipsometric measurement
NASA Astrophysics Data System (ADS)
Chen, Jing-Heng; Chang, Ruey-Shyan; Han, Chien-Yuan
2016-02-01
Cylindrical vector beams have been widely used in material processing, lithography, optical trapping and manipulating. However, few works discussed their application in polarization metrology. A cylindrical vector beam generated by a concrete interferometer setup is employed to determine the ellipsometric parameters of thin films, which was discussed in this work. A TEM01 mode beam was applied as the light source impinging into a modified Michelson interferometer with contiguous optical elements. The mode of light beam was transformed and the polarization states were coordinated with the optical configuration that made the output beam a doughnut-shaped axially symmetric polarized beam. In addition, the output beam plays the same role as rotating polarization element configuration of an ellipsometer. However, the polarization modulation was in spatial domain instead of temporal domain. By making use of this configuration, ellipsometric parameters of thin films were deduced and the results were very close to theoretical values.
Liquid inflow to a baffled cylindrical tank during weightlessness
NASA Technical Reports Server (NTRS)
Staskus, J. V.
1972-01-01
An experimental investigation was conducted in which the behavior of liquid inflow to a cylindrical tank containing inlet baffles was observed during weightlessness. A single tank radius (2 cm), inlet radius (0.2 cm), and liquid (ethanol)were used. The inlet end of the tank was hemispherical with a 30 deg convergent inlet. All the baffle configurations tested were cylindrically symmetric and mounted coaxially with the tank within the hemispherical end. Both stable and unstable inflow behavior were observed using each baffle. It was found that, depending on which of the baffles was used, the critical inflow velocity at which a transition to unstable inflow began was from 2.5 to 12 times greater than the corresponding velocity in an unbaffled tank.
A 2.5D Computational Method to Simulate Cylindrical Fluidized Beds
Li, Tingwen; Benyahia, Sofiane; Dietiker, Jeff; Musser, Jordan; Sun, Xin
2015-02-17
In this paper, the limitations of axisymmetric and Cartesian two-dimensional (2D) simulations of cylindrical gas-solid fluidized beds are discussed. A new method has been proposed to carry out pseudo-two-dimensional (2.5D) simulations of a cylindrical fluidized bed by appropriately combining computational domains of Cartesian 2D and axisymmetric simulations. The proposed method was implemented in the open-source code MFIX and applied to the simulation of a lab-scale bubbling fluidized bed with necessary sensitivity study. After a careful grid study to ensure the numerical results are grid independent, detailed comparisons of the flow hydrodynamics were presented against axisymmetric and Cartesian 2D simulations. Furthermore, the 2.5D simulation results have been compared to the three-dimensional (3D) simulation for evaluation. This new approach yields better agreement with the 3D simulation results than with axisymmetric and Cartesian 2D simulations.
Load Tests on a Stiffened Circular Cylindrical Shell
NASA Technical Reports Server (NTRS)
Schapitz, E; Krumling, G
1938-01-01
The present report describes tests in which the stress distribution may be determined in a stiffened circular cylindrical shell loaded longitudinally at four symmetrically situated points. As being of particular importance are the cases investigated of groups of bending and arching or convexing forces, respectively. From the stress measurements on the longitudinal stiffeners, the shear stresses and the bulkhead ring stresses in the skin could be evaluated. These measurements showed that the "simple shear field" used in theoretical computations in which all normal stresses in the skin are neglected, must be extended by the addition of the transverse or circumferential stresses if the bulkhead rings are not riveted to the skin.
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The
Converging cylindrical shocks in ideal magnetohydrodynamics
NASA Astrophysics Data System (ADS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=sqrt{μ _0/p_0} I/(2 π ) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Symmetrization for redundant channels
NASA Technical Reports Server (NTRS)
Tulplue, Bhalchandra R. (Inventor); Collins, Robert E. (Inventor)
1988-01-01
A plurality of redundant channels in a system each contain a global image of all the configuration data bases in each of the channels in the system. Each global image is updated periodically from each of the other channels via cross channel data links. The global images of the local configuration data bases in each channel are separately symmetrized using a voting process to generate a system signal configuration data base which is not written into by any other routine and is available for indicating the status of the system within each channel. Equalization may be imposed on a suspect signal and a number of chances for that signal to heal itself are provided before excluding it from future votes. Reconfiguration is accomplished upon detecting a channel which is deemed invalid. A reset function is provided which permits an externally generated reset signal to permit a previously excluded channel to be reincluded within the system. The updating of global images and/or the symmetrization process may be accomplished at substantially the same time within a synchronized time frame common to all channels.
3D surface configuration modulates 2D symmetry detection.
Chen, Chien-Chung; Sio, Lok-Teng
2015-02-01
We investigated whether three-dimensional (3D) information in a scene can affect symmetry detection. The stimuli were random dot patterns with 15% dot density. We measured the coherence threshold, or the proportion of dots that were the mirror reflection of the other dots in the other half of the image about a central vertical axis, at 75% accuracy with a 2AFC paradigm under various 3D configurations produced by the disparity between the left and right eye images. The results showed that symmetry detection was difficult when the corresponding dots across the symmetry axis were on different frontoparallel or inclined planes. However, this effect was not due to a difference in distance, as the observers could detect symmetry on a slanted surface, where the depth of the two sides of the symmetric axis was different. The threshold was reduced for a hinge configuration where the join of two slanted surfaces coincided with the axis of symmetry. Our result suggests that the detection of two-dimensional (2D) symmetry patterns is subject to the 3D configuration of the scene; and that coplanarity across the symmetry axis and consistency between the 2D pattern and 3D structure are important factors for symmetry detection. PMID:25536469
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2-d Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
Progress in 2D photonic crystal Fano resonance photonics
NASA Astrophysics Data System (ADS)
Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui
2014-01-01
In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Cylindrical acoustic levitator/concentrator
Kaduchak, Gregory; Sinha, Dipen N.
2002-01-01
A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-old symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Symmetric Waveguide Orthomode Junctions
NASA Technical Reports Server (NTRS)
Wollack, E. J.; Grammer, W.
2003-01-01
Imaging applications at millimeter and submillimeter wavelengths demand precise characterization of the amplitude, spectrum, and polarization of the electromagnetic radiation. The use of a waveguide orthomode transducer (OMT) can help achieve these goals by increasing spectral coverage and sensitivity while reducing exit aperture size, optical spill, instrumental polarization offsets, and lending itself to integration in focal plane arrays. For these reasons, four-fold symmetric OMTs are favored over a traditional quasi-optical wire grid for focal plane imaging arrays from a systems perspective. The design, fabrication, and test of OMTs realized with conventional split-block techniques for millimeter wave-bands are described. The design provides a return loss is -20 dB over a full waveguide band (40% bandwidth), and the cross-polarization and isolation are greater than -40 dB for tolerances readily achievable in practice. Prototype examples realized in WR10.0 and WR3.7 wavebands will be considered in detail.
Optimal symmetric flight studies
NASA Technical Reports Server (NTRS)
Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.
1985-01-01
Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.
Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements
Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.
2010-01-01
A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250
Driven microswimmers on a 2D substrate: A stochastic towed sled model
NASA Astrophysics Data System (ADS)
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-14
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.
2000-01-01
An acoustic source inside of a 2-D jet excites an instability wave in the shear layer resulting in sound radiating away from the shear layer. Solve the linearized Euler equations to predict the sound radiation outside of the jet. The jet static pressure is assumed to be constant. The jet flow is parallel and symmetric about the x-axis. Use a symmetry boundary condition along the x-axis.
Design of 2D Porous Coordination Polymers Based on Metallacrown Units.
Atzeri, Corrado; Marchiò, Luciano; Chow, Chun Y; Kampf, Jeff W; Pecoraro, Vincent L; Tegoni, Matteo
2016-05-01
A 12-metallacrown-4 (MC) complex was designed and employed as the building block in the synthesis of coordination polymers, one of which is the first permanently porous MC architecture. The connection of the four-fold symmetric MC subunits by Cu(II) nodes led to the formation of 2D layers of metallacrowns. Channels are present in the crystalline architecture, which exhibits permanent porosity manifested in N2 and CO2 uptake capacity. PMID:26951956
Spinor Condensates on a Cylindrical Surface in Synthetic Gauge Fields.
Ho, Tin-Lun; Huang, Biao
2015-10-01
We show that by modifying the setup of the recent experiment that creates a "Dirac string" one can engineer a quasi-2D spinor Bose-Einstein condensate on a cylindrical surface, with a synthetic magnetic field normal to the surface. Because of the muticonnectivity of the surface, there are two types of vortices (called A and B) with the same vorticity. This is very different from the planar case, which only has one kind of vortex for fixed circulation. As the strength of the synthetic gauge field increases, the ground states will form a necklace of alternating AB vortices surrounding the lateral midpoint of the cylinder, and will split into two A and B necklaces at higher synthetic gauge fields. The fact that even the basic vortex structure of a Bose-Einstein condensate is altered in a cylindrical surface implies that richer phenomena are in store for quantum gases in other curved surfaces. PMID:26550734
Rotating cylindrical wormholes and energy conditions
NASA Astrophysics Data System (ADS)
Bronnikov, K. A.; Krechet, V. G.
2016-01-01
We seek wormholes among rotating cylindrically symmetric configurations in general relativity. Exact wormhole solutions are presented with such sources of gravity as a massless scalar field, a cosmological constant, and a scalar field with an exponential potential. However, none of these solutions are asymptotically flat, which excludes the existence of wormhole entrances as local objects in our Universe. To overcome this difficulty, we try to build configurations with flat asymptotic regions using the cut-and-paste procedure: on both sides of the throat, a wormhole solution is matched to a properly chosen region of flat space-time at some surfaces Σ- and Σ+. It is shown, however, that if the source of gravity in the throat region is a scalar field with an arbitrary potential, then one or both thin shells appearing on Σ- and Σ+ inevitably violate the null energy condition. Thus, although rotating wormhole solutions are easily found without exotic matter, such matter is still necessary for obtaining asymptotic flatness.
Efficient method for analyzing multiple circular cylindrical nanoparticles on a substrate
NASA Astrophysics Data System (ADS)
Lu, Xun; Lu, Ya Yan
2016-05-01
Due to the existing nanofabrication techniques, many metallic or dielectric nanoparticles are cylindrical objects with top and bottom surfaces parallel to a substrate and side boundaries perpendicular to the substrate. In this paper, we develop a relatively simple and efficient semi-analytic method for analyzing the scattering of light by a set of circular cylindrical objects (of finite height) on a layered background. The method relies on expanding the field in one-dimensional modes in layered regions where the material properties change with one spatial variable only, to establish a linear system on the boundaries separating the layered regions. Although the ‘expansion coefficients’ are two-dimensional (2D) functions, they satisfy scalar 2D Helmholtz equations which have analytic solutions due to the special geometry. The method is used to analyze dielectric and metallic circular cylindrical nanoparticles on a substrate or in free space.
Telescoping cylindrical piezoelectric fiber composite actuator assemblies
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)
2010-01-01
A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
JKR adhesion in cylindrical contacts
NASA Astrophysics Data System (ADS)
Sundaram, Narayan; Farris, T. N.; Chandrasekar, S.
2012-01-01
Planar JKR adhesive solutions use the half-plane assumption and do not permit calculation of indenter approach or visualization of adhesive force-displacement curves unless the contact is periodic. By considering a conforming cylindrical contact and using an arc crack analogy, we obtain closed-form indenter approach and load-contact size relations for a planar adhesive problem. The contact pressure distribution is also obtained in closed-form. The solutions reduce to known cases in both the adhesion-free and small-contact solution ( Barquins, 1988) limits. The cylindrical system shows two distinct regimes of adhesive behavior; in particular, contact sizes exceeding the critical (maximum) size seen in adhesionless contacts are possible. The effects of contact confinement on adhesive behavior are investigated. Some special cases are considered, including contact with an initial neat-fit and the detachment of a rubbery cylinder from a rigid cradle. A comparison of the cylindrical solution with the half-plane adhesive solution is carried out, and it indicates that the latter typically underestimates the adherence force. The cylindrical adhesive system is novel in that it possesses stable contact states that may not be attained even on applying an infinite load in the absence of adhesion.
Optics Demonstrations Using Cylindrical Lenses
ERIC Educational Resources Information Center
Ivanov, Dragia; Nikolov, Stefan
2015-01-01
In this paper we consider the main properties of cylindrical lenses and propose several demonstrational experiments that can be performed with them. Specifically we use simple glasses full of water to demonstrate some basic geometrical optics principles and phenomena. We also present some less standard experiments that can be performed with such…
Vibration of perforated cylindrical shells
NASA Astrophysics Data System (ADS)
Cousseau, Peter L.
For a credible design of an inertial confinement fusion (ICF) target chamber, the vibration characteristics of the chamber must be completely understood. Target chambers are usually cylindrical or spherical in shape and contain hundreds of perforations (called ports) to allow access to the inside of the chamber. The fusion reaction within the chamber creates a uniform impulsive loading, which the chamber walls must be designed to contain. Also prior to an implosion, a delicate alignment process of the drivers and diagnostics takes place. The vibration of the chamber from rotating machinery, e.g., vacuum pumps, and ambient sources must be completely understood and accounted for during these alignment procedures. This dissertation examines the vibration characteristics of perforated cylindrical shells. Because the target chambers' thickness-to-radius ratio is small, such chambers can be modeled as thin shells. Included in the text is a literature review of perforated plates and shells and examples of the use of perforated structures in constructed and proposed ICF target chambers. The natural frequencies and corresponding mode shapes of perforated and unperforated cylindrical shells are studied analytically, numerically (via finite elements) and experimentally. Conclusions and comparisons between the different solution methods are made for both the perforated and unperforated cases. In addition, the dynamic response of perforated cylindrical shells to an axisymmetric impulsive loading has been identified. A demonstration showing how the convolution integral can be used to determine the response of a cylinder to a non-impulsive loading is presented.
Excitation of symmetric surface wavesby electron tubular beams
NASA Astrophysics Data System (ADS)
Akimov, Yu A.; Olefir, V. P.; Azarenkov, N. A.
2006-08-01
The nonlinear theory of symmetric surface wave excitation by a low-density electron tubular beam in a cylindrical plasma-vacuum-metal waveguide is presented. A set of nonlinear equations is derived that describes the time evolution of the plasma-beam interaction. The influence of the beam and waveguide structure parameters on the saturation amplitude and excitation efficiency of the surface wave is investigated both numerically and analytically. Thermalization of the electron beam in the wave-fields is studied as well.
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D-Crystal-Based Functional Inks.
Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia
2016-08-01
The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554
Conformally symmetric traversable wormholes
Boehmer, Christian G.; Harko, Tiberiu; Lobo, Francisco S. N.
2007-10-15
Exact solutions of traversable wormholes are found under the assumption of spherical symmetry and the existence of a nonstatic conformal symmetry, which presents a more systematic approach in searching for exact wormhole solutions. In this work, a wide variety of solutions are deduced by considering choices for the form function, a specific linear equation of state relating the energy density and the pressure anisotropy, and various phantom wormhole geometries are explored. A large class of solutions impose that the spatial distribution of the exotic matter is restricted to the throat neighborhood, with a cutoff of the stress-energy tensor at a finite junction interface, although asymptotically flat exact solutions are also found. Using the 'volume integral quantifier', it is found that the conformally symmetric phantom wormhole geometries may, in principle, be constructed by infinitesimally small amounts of averaged null energy condition violating matter. Considering the tidal acceleration traversability conditions for the phantom wormhole geometry, specific wormhole dimensions and the traversal velocity are also deduced.
Determining the axis orientation of cylindrical magnetic flux rope
NASA Astrophysics Data System (ADS)
Rong, Zhaojin; Wan, Weixing; Shen, Chao; Zhang, Tielong; Lui, Anthony; Wang, Yuming; Dunlop, malcolm; Zhang, Yongcun; Zong, Qiugang
2013-04-01
We develop a new simple method for inferring the orientation of a magnetic flux rope, which is assumed to be a time-independent cylindrically symmetric structure via the direct single-point analysis of magnetic field structure. The model tests demonstrate that, for the cylindrical flux rope regardless of whether it is force-free or not, the method can consistently yield the axis orientation of the flux rope with higher accuracy and stability than the minimum variance analysis of the magnetic field and the Grad-Shafranov reconstruction technique. Moreover, the radial distance to the axis center and the current density can also be estimated consistently. Application to two actual flux transfer events observed by the four satellites of the Cluster mission demonstrates that the method is more appropriate to be used for the inner part of flux rope, which might be closer to the cylindrical structure, showing good agreement with the results obtained from the optimal Grad-Shafranov reconstruction and the least squares technique of Faraday's law, but fails to produce such agreement for the outer satellite that grazes the flux rope. Therefore, the method must be used with caution.
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-01
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
Achromatic axially symmetric wave plate.
Wakayama, Toshitaka; Komaki, Kazuki; Otani, Yukitoshi; Yoshizawa, Toru
2012-12-31
An achromatic axially symmetric wave plate (AAS-WP) is proposed that is based on Fresnel reflections. The wave plate does not introduce spatial dispersion. It provides retardation in the wavelength domain with an axially symmetric azimuthal angle. The optical configuration, a numerical simulation, and the optical properties of the AAS-WP are described. It is composed of PMMA. A pair of them is manufactured on a lathe. In the numerical simulation, the achromatic angle is estimated and is used to design the devices. They generate an axially symmetric polarized beam. The birefringence distribution is measured in order to evaluate the AAS-WPs. PMID:23388751
2D kinematic signatures of boxy/peanut bulges
NASA Astrophysics Data System (ADS)
Iannuzzi, Francesca; Athanassoula, E.
2015-07-01
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.
GRIPPING DEVICE FOR CYLINDRICAL OBJECTS
Pilger, J.P.
1964-01-21
A gripping device is designed for fragile cylindrical objects such as for drawing thin-walled tubes. The gripping is done by multiple jaw members held in position by two sets of slots, one defined by keystone-shaped extensions of the outer shell of the device and the other in a movable sleeve held slidably by the extensions. Forward movement oi the sleeve advances the jaws, thereby exerting a controlled, radial pressure on the object being gripped. (AEC)
Dynamics of tilted cylindrical geometry
NASA Astrophysics Data System (ADS)
Sharif, M.; Sadiq, Sobia
2016-09-01
In this paper, we study the dynamics of tilted cylindrical model with imperfect matter distribution. We formulate the field equations and develop relations between tilted and non-tilted variables. We evaluate kinematical as well as dynamical quantities and discuss the inhomogeneity factor. We also obtain the Raychaudhuri equation to study evolution of expansion scalar. The solutions of field equations are also investigated for static cylinder under isotropy and conformally flat condition. Finally, we analyze some thermoinertial aspects of the system.
Cylindrical solutions in mimetic gravity
NASA Astrophysics Data System (ADS)
Momeni, Davood; Myrzakulov, Kairat; Myrzakulov, Ratbay; Raza, Muhammad
2016-06-01
This paper is devoted to investigate cylindrical solutions in mimetic gravity. The explicit forms of the metric of this theory, namely mimetic-Kasner (say) have been obtained. In this study we have noticed that the Kasner's family of exact solutions needs to be reconsidered under this type of modified gravity. A no-go theorem is proposed for the exact solutions in the presence of a cosmological constant.
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Cylindrical Piezoelectric Fiber Composite Actuators
NASA Technical Reports Server (NTRS)
Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.
2008-01-01
The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.
NASA Astrophysics Data System (ADS)
Kimura, Yusuke
2015-07-01
It has been understood that correlation functions of multi-trace operators in SYM can be neatly computed using the group algebra of symmetric groups or walled Brauer algebras. On the other hand, such algebras have been known to construct 2D topological field theories (TFTs). After reviewing the construction of 2D TFTs based on symmetric groups, we construct 2D TFTs based on walled Brauer algebras. In the construction, the introduction of a dual basis manifests a similarity between the two theories. We next construct a class of 2D field theories whose physical operators have the same symmetry as multi-trace operators constructed from some matrices. Such field theories correspond to non-commutative Frobenius algebras. A matrix structure arises as a consequence of the noncommutativity. Correlation functions of the Gaussian complex multi-matrix models can be translated into correlation functions of the two-dimensional field theories.
A Novel Automated Method for Analyzing Cylindrical Computed Tomography Data
NASA Technical Reports Server (NTRS)
Roth, D. J.; Burke, E. R.; Rauser, R. W.; Martin, R. E.
2011-01-01
A novel software method is presented that is applicable for analyzing cylindrical and partially cylindrical objects inspected using computed tomography. This method involves unwrapping and re-slicing data so that the CT data from the cylindrical object can be viewed as a series of 2-D sheets in the vertical direction in addition to volume rendering and normal plane views provided by traditional CT software. The method is based on interior and exterior surface edge detection and under proper conditions, is FULLY AUTOMATED and requires no input from the user except the correct voxel dimension from the CT scan. The software is available from NASA in 32- and 64-bit versions that can be applied to gigabyte-sized data sets, processing data either in random access memory or primarily on the computer hard drive. Please inquire with the presenting author if further interested. This software differentiates itself in total from other possible re-slicing software solutions due to complete automation and advanced processing and analysis capabilities.
Symmetric Composite Laminate Stress Analysis
NASA Technical Reports Server (NTRS)
Wang, T.; Smolinski, K. F.; Gellin, S.
1985-01-01
It is demonstrated that COSMIC/NASTRAN may be used to analyze plate and shell structures made of symmetric composite laminates. Although general composite laminates cannot be analyzed using NASTRAN, the theoretical development presented herein indicates that the integrated constitutive laws of a symmetric composite laminate resemble those of a homogeneous anisotropic plate, which can be analyzed using NASTRAN. A detailed analysis procedure is presented, as well as an illustrative example.
Static & Dynamic Response of 2D Solids
Energy Science and Technology Software Center (ESTSC)
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Stochastic Inversion of 2D Magnetotelluric Data
Energy Science and Technology Software Center (ESTSC)
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
Energy Science and Technology Software Center (ESTSC)
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
Layer Engineering of 2D Semiconductor Junctions.
He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel
2016-07-01
A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D materials: Graphene and others
NASA Astrophysics Data System (ADS)
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
Snapshot 2D tomography via coded aperture x-ray scatter imaging
MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.
2015-01-01
This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254
2D Colloidal Wigner crystals in confined geometries
NASA Astrophysics Data System (ADS)
Higler, Ruben; Sprakel, Joris
2015-03-01
Crystallization of bulk systems has been widely studied using colloids as a model system. However, study into colloidal crystallization in confined geometries has been sparse and little is known about the effects of strong confinement on the dynamics of colloidal crystal. In our research we prepare 2D crystals from charged colloids in an apolar solvent to study crystal dynamics, formation, and structure in circular confinements. These confining geometries are made using softlithography techniques from SU-8. In order to broaden the parameter space we can reach in experiments we employ brownian dynamics simulations to supplement our experimental results. Using single-particle tracking we have subpixel resolution positional information of every particle in the system. We study the vibrational modes of our confined crystals and find well defined modes unique to confined systems, such as a radially symmetric compression (or breathing) mode, a collective rotation mode, and distinct resonance modes. Furthermore, due to the circular nature of our constrictions, defectless crystals are impossible, we find, for sufficiently high area fractions, that the defects order at well defined points at the edge. The effect of this ``defect-localization'' has a clear influence on the vibrational modes.
Tomosynthesis imaging with 2D scanning trajectories
NASA Astrophysics Data System (ADS)
Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
2011-03-01
Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462
Profiles of liquid drops at the bottom of cylindrical fibers standing on flat substrates.
Du, Jinmei; Michielsen, Stephen; Lee, Hoon Joo
2012-01-10
Based on Carroll's derivation that describes a symmetric liquid drop sitting on an infinite cylindrical fiber and the shape of the drop, we have extended the derivation to describe a drop located at the bottom of cylindrical fibers standing on flat substrates. According to our derivation, the shape of the drop forms a bell as predicted by Carroll but is cut off by the flat substrate. This theoretical prediction was verified experimentally using water, ethylene glycol, and Kaydol drops on glass, nylon and polypropylene cylindrical fibers, and on polytetrafluoroethylene (PTFE) and polyester (PET) flat substrates. We found that only four parameters are required to obtain agreement between the theoretical shape and the observed shape: the drop volume, the fiber radius, the liquid-fiber contact angle, and liquid-flat substrate contact angle. PMID:22066897
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
Analysis results from the Los Alamos 2D/3D program
Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.
1987-01-01
Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.
2D/3D Program work summary report, [January 1988--December 1992
Damerell, P. S.; Simons, J. W.
1993-06-01
The 2D/3D Program was carried out by Germany, Japan and the United States to investigate the thermal-hydraulics of a PWR large-break LOCA. A contributory approach was utilized in which each country contributed significant effort to the program and all three countries shared the research results. Germany constructed and operated the Upper Plenum Test Facility (UPTF), and Japan constructed and operated the Cylindrical Core Test Facility (CCTF) and the Slab Core Test Facility (SCTF). The US contribution consisted of provision of advanced instrumentation to each of the three test facilities, and assessment of the TRAC computer code against the test results. Evaluations of the test results were carried out in all three countries. This report summarizes the 2D/3D Program in terms of the contributing efforts of the participants.
Nanoparticle plasmonics for 2D-photovoltaics: mechanisms, optimization, and limits.
Hägglund, Carl; Kasemo, Bengt
2009-07-01
Plasmonic nanostructures placed within or near photovoltaic (PV) layers are of high current interest for improving thin film solar cells. We demonstrate, by electrodynamics calculations, the feasibility of a new class of essentially two dimensional (2D) solar cells based on the very large optical cross sections of plasmonic nanoparticles. Conditions for inducing absorption in extremely thin PV layers via plasmon near-fields, are optimized in 2D-arrays of (i) core-shell particles, and (ii) plasmonic particles on planar layers. At the plasmon resonance, a pronounced optimum is found for the extinction coefficient of the PV material. We also characterize the influence of the dielectric environment, PV layer thickness and nanoparticle shape, size and spatial distribution. The response of the system is close to that of a 2D effective medium layer, and subject to a 50% absorption limit when the dielectric environment around the 2D layer is symmetric. In this case, a plasmon induced absorption of about 40% is demonstrated in PV layers as thin as 10 nm, using silver nanoparticle arrays of only 1 nm effective thickness. In an asymmetric environment, the useful absorption may be increased significantly for the same layer thicknesses. These new types of essentially 2D solar cells are concluded to have a large potential for reducing solar electricity costs. PMID:19582109
Traveling wave device for combining or splitting symmetric and asymmetric waves
Möbius, Arnold; Ives, Robert Lawrence
2005-07-19
A traveling wave device for the combining or splitting of symmetric and asymmetric traveling wave energy includes a feed waveguide for traveling wave energy, the feed waveguide having an input port and a launching port, a reflector for coupling wave energy between the feed waveguide and a final waveguide for the collection and transport of wave energy to or from the reflector. The power combiner has a launching port for symmetrical waves which includes a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which includes a sawtooth rotated about a central axis.
ERIC Educational Resources Information Center
de Brito, P. E.; Nazareno, H. N.
2007-01-01
In the present work we treat the problem of a particle in a uniform magnetic field along the symmetric gauge, so chosen since the wavefunctions present the required cylindrical symmetry. It is our understanding that by means of this work we can make a contribution to the teaching of the present subject, as well as encourage students to use…
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Supercooling Water in Cylindrical Capsules
NASA Astrophysics Data System (ADS)
Guzman, J. J. Milón; Braga, S. L.
2005-11-01
An experimental apparatus was developed to investigate the supercooling phenomenon of water inside cylindrical capsules used for a cold storage process. The coolant is a water-alcohol mixture controlled by a constant temperature bath (CTB). Temperatures varying with time are measured inside and outside the capsule. Cylinders with an internal diameter and thickness of 45 and 1.5 mm, respectively, were made from four different materials: acrylic, PVC, brass, and aluminum. The supercooling period of the water and the nucleation temperature were investigated for different coolant temperatures. The supercooling and nucleation probabilities are shown as a function of the coolant temperature for the four different materials.
Multi-stable cylindrical lattices
NASA Astrophysics Data System (ADS)
Pirrera, Alberto; Lachenal, Xavier; Daynes, Stephen; Weaver, Paul M.; Chenchiah, Isaac V.
2013-11-01
We present a cylindrical lattice structure that mimics the behaviour of the virus bacteriophage T4 in having two (or more) stable states which differ in their radii and length. While the virus achieves bistability through molecular mechanisms we use composite materials to exploit the interplay between pre-stress, material properties and structural geometry. We demonstrate (computationally) that multi-stability is a robust phenomenon. We also show (analytically) that it is possible to choose the design variables so that the energy is independent of the radius, thus resulting in every state of the structure being stable.
Interparticle Attraction in 2D Complex Plasmas
NASA Astrophysics Data System (ADS)
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
A scalable 2-D parallel sparse solver
Kothari, S.C.; Mitra, S.
1995-12-01
Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Investigation of HE driven cylindrical liner
Tan, Tai-Ho
1995-03-01
We developed a technique that can compress most materials to densities much higher than their original values and shock them hard enough to undergo phase changes to various partially ionized states. The process involves using high explosives to drive a thin cylindrical liner so that it will progressively implode and converge along the axis at very high velocity. The device is simple yet versatile. Its configuration is ideally suited as a compact laboratory for the investigation of the behavior of dense media under extreme conditions. Code simulations show that liners made from most metals can be successfully imploded to converge on axis, producing over 10 MB pressure. For example, a 2D hydrocode calculation predicts that in a simple configuration where a hollow core PBX-9501 explosive cylinder is corner initiated to drive a thin seamless 304 SS tubing, the final convergence velocity can exceed 1 cm/[Ls to produce a 15 MB pressure at impact as the density increases to 19.5 g/cc. The temperature from shock heating rises rapidly above 8 eV, and the result is a combination of radiation and plasma emissions. We have carried out several experiments with a wide array of diagnostics to investigate the implosion dynamics and final state interaction phenomena, and the results are compared with the code predictions. Radiographs of the liner implosion strongly indicate that the hydrodynamic processes are well behaved and calculable. Temperature measurement from the optical radiation is generally consistent with the code prediction. The velocity of the plasma front is measured by using optical pins and fast framing photography, and is found to lie between 11--17 cm/{mu}s. Fast framing photographs were taken with the aid of self luminous light to observe the evacuated chamber inside the imploding liner. The experimental results and their comparison with the calculation are discussed.
Models of cylindrical bubble pulsation
Ilinskii, Yurii A.; Zabolotskaya, Evgenia A.; Hay, Todd A.; Hamilton, Mark F.
2012-01-01
Three models are considered for describing the dynamics of a pulsating cylindrical bubble. A linear solution is derived for a cylindrical bubble in an infinite compressible liquid. The solution accounts for losses due to viscosity, heat conduction, and acoustic radiation. It reveals that radiation is the dominant loss mechanism, and that it is 22 times greater than for a spherical bubble of the same radius. The predicted resonance frequency provides a basis of comparison for limiting forms of other models. The second model considered is a commonly used equation in Rayleigh-Plesset form that requires an incompressible liquid to be finite in extent in order for bubble pulsation to occur. The radial extent of the liquid becomes a fitting parameter, and it is found that considerably different values of the parameter are required for modeling inertial motion versus acoustical oscillations. The third model was developed by V. K. Kedrinskii [Hydrodynamics of Explosion (Springer, New York, 2005), pp. 23–26] in the form of the Gilmore equation for compressible liquids of infinite extent. While the correct resonance frequency and loss factor are not recovered from this model in the linear approximation, it provides reasonable agreement with observations of inertial motion. PMID:22978863
Immersive Input Display Device (I2D2) for tactical information viewing
NASA Astrophysics Data System (ADS)
Tremper, David E.; Burnett, Kevin P.; Malloy, Andrew R.; Wert, Robert
2006-05-01
Daylight readability of hand-held displays has been an ongoing issue for both commercial and military applications. In an effort to reduce the effects of ambient light on the readability of military displays, the Naval Research Laboratory (NRL) began investigating and developing advanced hand-held displays. Analysis and research of display technologies with consideration for vulnerability to environmental conditions resulted in the complete design and fabrication of the hand-held Immersive Input Display Device (I2D2) monocular. The I2D2 combines an Organic Light Emitting Diode (OLED) SVGA+ micro-display developed by eMagin Corporation with an optics configuration inside a cylindrical housing. A rubber pressure-eyecup allows view ability only when the eyecup is depressed, eliminating light from both entering and leaving the device. This feature allows the I2D2 to be used during the day, while not allowing ambient light to affect the readability. It simultaneously controls light leakage, effectively eliminating the illumination, and thus preserving the tactical position, of the user in the dark. This paper will examine the characteristics and introduce the design of the I2D2.
Extension and application of the Preissmann slot model to 2D transient mixed flows
NASA Astrophysics Data System (ADS)
Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo
2015-08-01
This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
Holographic measurement of wave propagation in axi-symmetric shells
NASA Technical Reports Server (NTRS)
Evensen, D. A.; Aprahamian, R.; Jacoby, J. L.
1972-01-01
The report deals with the use of pulsed, double-exposure holographic interferometry to record the propagation of transverse waves in thin-walled axi-symmetric shells. The report is subdivided into sections dealing with: (1) wave propagation in circular cylindrical shells, (2) wave propagation past cut-outs and stiffeners, and (3) wave propagation in conical shells. Several interferograms are presented herein which show the waves reflecting from the shell boundaries, from cut-outs, and from stiffening rings. The initial response of the shell was nearly axi-symmetric in all cases, but nonsymmetric modes soon appeared in the radial response. This result suggests that the axi-symmetric response of the shell may be dynamically unstable, and thus may preferentially excite certain circumferential harmonics through parametric excitation. Attempts were made throughout to correlate the experimental data with analysis. For the most part, good agreement between theory and experiment was obtained. Occasional differences were attributed primarily to simplifying assumptions used in the analysis. From the standpoint of engineering applications, it is clear that pulsed laser holography can be used to obtain quantitative engineering data. Areas of dynamic stress concentration, stress concentration factors, local anomalies, etc., can be readily determined by holography.
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Photocurrent spectroscopy of 2D materials
NASA Astrophysics Data System (ADS)
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Looking for symmetric Bell inequalities
NASA Astrophysics Data System (ADS)
Bancal, Jean-Daniel; Gisin, Nicolas; Pironio, Stefano
2010-09-01
Finding all Bell inequalities for a given number of parties, measurement settings and measurement outcomes is in general a computationally hard task. We show that all Bell inequalities which are symmetric under the exchange of parties can be found by examining a symmetrized polytope which is simpler than the full Bell polytope. As an illustration of our method, we generate 238 885 new Bell inequalities and 1085 new Svetlichny inequalities. We find, in particular, facet inequalities for Bell experiments involving two parties and two measurement settings that are not of the Collins-Gisin-Linden-Massar-Popescu type.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
E. M. SYMBALISTY
2001-07-01
The recent interest in high altitude discharges known as red sprites, blue jets, and elves has stimulated the modeling of transient atmospheric electricity. The modeling of these high altitude discharges require an initiating cloud-to-ground or intracloud lightning event in order to pre-condition the electric field between the cloud tops and the ionosphere. In this short paper we describe a finite difference time domain (FDTD) numerical solution of Maxwell's equations based on the Yee (Yee 1966) algorithm coupled with a uniaxial perfectly matched layer (PML, Berenger 1994) boundary treatment. The PML theory has advanced considerably since its original formulation in cartesian coordinates for lossless media, and is computationally efficient to implement. Another boundary treatment possibility for our sources that produce radiative and electrostatic fields, which we do not consider here, is a multipole expansion in the time domain for the electromagnetic fields.
Propagation Mechanism of Cylindrical Cellular Detonation
NASA Astrophysics Data System (ADS)
Han, Wen-Hu; Wang, Cheng; Ning, Jian-Guo
2012-10-01
We investigate the evolution of cylindrical cellular detonation with different instabilities. The numerical results show that with decreasing initial temperature, detonation becomes more unstable and the cells of the cylindrical detonation tend to be irregular. For stable detonation, a divergence of cylindrical detonation cells is formed eventually due to detonation instability resulting from a curved detonation front. For mildly unstable detonation, local overdriven detonation occurs. The detonation cell diverges and its size decreases. For highly unstable detonation, locally driven detonation is more obvious and the front is highly wrinkled. As a result, the diverging cylindrical detonation cell becomes highly irregular.
2D and 3D ordered arrays of Co magnetic nanowires
NASA Astrophysics Data System (ADS)
Garcia, J.; Prida, V. M.; Vega, V.; Rosa, W. O.; Caballero-Flores, R.; Iglesias, L.; Hernando, B.
2015-06-01
Cobalt nanowire arrays spatially distributed in 2D and 3D arrangements have been performed by pulsed electrodeposition into the pores of planar and cylindrical nanoporous anodic alumina membranes, respectively. Morphological characterization points out the good filling factor reached by electroplated Co nanowires in both kinds of alumina membranes exhibiting hexagonally self-ordered porous structures. Co nanowires grown in both kinds of alumina templates exhibit the same crystalline phases. DC magnetometry and First Order Reversal Curve (FORC) analysis were carried out in order to determine the overall magnetic behavior for both nanowire array geometries. It is found that when the Co nanowires of two kinds of arrays are perpendicularly magnetized, both hysteresis loops are identical, suggesting that neither the intrinsic magnetic behavior of the nanowires nor the collective one depend on the arrays geometry. FORC analysis performed along the radial direction of the Co nanowire arrays embedded in the cylindrical alumina template reveals that the contribution of each nanowire to the magnetization reversal process involves its specific orientation with respect to the applied field direction. Furthermore, the comparison between the magnetic properties for both kinds of Co nanowire arrays allows discussing about the effect of the cylindrical geometry of the template on the magnetostatic interaction among nanowires.
Free Vibration Analysis of Cylindrical Tanks Partially Filled with Liquid
NASA Astrophysics Data System (ADS)
Gonçalves, P. B.; Ramos, N. R. S. S.
1996-08-01
A simple but effective modal solution based on the underlying ideas of the hierarchical finite element method is presented for evaluating the free vibration characteristics of vertical, thin, circular, cylindrical shells, partially or completely filled with liquid and subjected to any variationally consistent set of boundary conditions on the lower and upper boundaries. Effects of static liquid pressure, in-plane inertias and liquid free surface motions are taken into account. The solution of the shell problem is obtained through a procedure in which Sander's shell equations are transformed into a new system of first order ordinary differential equations which are solved by the Galerkin error-minimization procedure. The system variables are those quantities which appear in the boundary conditions on a rotationally symmetric edge of a cylindrical shell. The liquid is taken as non-viscous and incompressible, and the coupling between the deformable shell and this medium is taken into account. The solution for the liquid velocity potential is assumed as a sum of two sets of linear combinations of suitable harmonic functions which satisfy Laplace equation and the relevant boundary conditions. This procedure leads to a determinantal equation for the determination of the shell and liquid natural frequencies and the associated mode shapes. Application of the method to a few selected cases and comparisons of the numerical results with those obtained by other theories and from experiments are found to be good and demonstrate the effectiveness and accuracy of the present methodology.
NASA Astrophysics Data System (ADS)
Liu, Y. Z.; Hao, Y. X.; Zhang, W.; Chen, J.; Li, S. B.
2015-07-01
The nonlinear vibration of a simply supported FGM cylindrical shell with small initial geometric imperfection under complex loads is studied. The effects of radial harmonic excitation, compressive in-plane force combined with supersonic aerodynamic and thermal loads are considered. The small initial geometric imperfection of the cylindrical shell is characterized in the form of the sine-type trigonometric functions. The effective material properties of this FGM cylindrical shell are graded in the radial direction according to a simple power law in terms of the volume fractions. Based on Reddy's third-order shear deformation theory, von Karman-type nonlinear kinematics and Hamilton's principle, the nonlinear partial differential equation that controls the shell dynamics is derived. Both axial symmetric and driven modes of the cylindrical shell deflection pattern are included. Furthermore, the equations of motion can be reduced into a set of coupled nonlinear ordinary differential equations by applying Galerkin's method. In the study of the nonlinear dynamics responses of small initial geometric imperfect FGM cylindrical shell under complex loads, the 4th order Runge-Kutta method is used to obtain time history, phase portraits, bifurcation diagrams and Poincare maps with different parameters. The effects of external loads, geometric imperfections and volume fractions on the nonlinear dynamics of the system are discussed.
A new analytical threshold voltage model of cylindrical gate tunnel FET (CG-TFET)
NASA Astrophysics Data System (ADS)
Dash, S.; Mishra, G. P.
2015-10-01
The cylindrical gate tunnel FET (CG-TFET) is one of the potential candidates for future nano-technology, as it exhibit greater scaling capability and low subthreshold swing (SS) as compared to conventional MOSFET. In this paper, a new analytical approach is proposed to extract the gate dependent threshold voltage for CG-TFET. The potential distribution and electric field distribution in the cylindrical channel has been obtained using the 2-D Poisson's equation which in turn computes the shortest tunneling distance and tunneling current. The threshold voltage is extracted using peak transconductance change method based on the saturation of tunneling barrier width. The impact of scaling of effective oxide thickness, cylindrical pillar diameter and gate length on the threshold voltage has been investigated. The consistency of the proposed model is validated with the TCAD simulated results. The present model can be a handful for the study of switching behavior of TFET.
Dynamics and Control of the 2-d Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2013-11-01
The control problem of the dynamics of the two-dimensional (2-d) Navier-Stokes (N-S) equations with spatially periodic and temporally steady forcing is studied. First, we devise a dynamical system of several nonlinear differential equations by a truncation of the 2-d N-S equations. Then, we study the dynamics of the obtained Galerkin system by analyzing the system's attractors for different values of the Reynolds number, Re. By applying the symmetry of the equation on one of the system's attractors, a symmetric limit trajectory that is part of the dynamics is obtained. Next, a control strategy to drive the dynamics from one attractor to another attractor for a given Re is designed. Finally, numerical simulations are undertaken to validate the theoretical developments. This work was supported and funded by Kuwait University Research Grant No. SM02/13.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.