Science.gov

Sample records for 2d electron gas

  1. Quantum Oscillations in an Interfacial 2D Electron Gas.

    SciTech Connect

    Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong

    2016-01-01

    Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb1-xSnxTe thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.

  2. Dynamical symmetry breaking in a 2D electron gas with a spectral node

    NASA Astrophysics Data System (ADS)

    Ziegler, Klaus

    2013-09-01

    We study a disordered 2D electron gas with a spectral node in a vicinity of the node. After identifying the fundamental dynamical symmetries of this system, the spontaneous breaking of the latter by a Grassmann field is studied within a nonlinear sigma model approach. This allows us to reduce the average two-particle Green's function to a diffusion propagator with a random diffusion coefficient. The latter has non-degenerate saddle points and is treated by the conventional self-consistent Born approximation. This leads to a renormalized chemical potential and a renormalized diffusion coefficient, where the DC conductivity increases linearly with the density of quasiparticles. Applied to the special case of Dirac fermions, our approach provides a comprehensive description of the minimal conductivity at the Dirac node as well as for the V-shape conductivity inside the bands.

  3. Finite-size scaling in a 2D disordered electron gas with spectral nodes

    NASA Astrophysics Data System (ADS)

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo–Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .

  4. Finite-size scaling in a 2D disordered electron gas with spectral nodes.

    PubMed

    Sinner, Andreas; Ziegler, Klaus

    2016-08-01

    We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084

  5. Selective MBE growth of nonalloyed ohmic contacts to 2D electron gas in high-electron-mobility transistors based on GaN/AlGaN heterojunctions

    NASA Astrophysics Data System (ADS)

    Maiboroda, I. O.; Andreev, A. A.; Perminov, P. A.; Fedorov, Yu. V.; Zanaveskin, M. L.

    2014-06-01

    Specific features of how nonalloyed ohmic contacts to the 2D conducting channel of high-electron-mobility transistors based on AlGaN/(AlN)/GaN heterostructures are fabricated via deposition of heavily doped n +-GaN through a SiO2 mask by ammonia molecular-beam epitaxy have been studied. The technique developed makes it possible to obtain specific resistances of contacts to the 2D gas as low as 0.11 Ω mm on various types of Ga-face nitride heterostructures, which are several times lower than the resistance of conventional alloyed ohmic contacts.

  6. Charge balancing in GaN-based 2-D electron gas devices employing an additional 2-D hole gas and its influence on dynamic behaviour of GaN-based heterostructure field effect transistors

    SciTech Connect

    Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver

    2015-03-14

    GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.

  7. Novel quantum Monte Carlo methods for spin-orbit Hamiltonians: 2D interacting electron gas with the Rashba interaction

    NASA Astrophysics Data System (ADS)

    Guo, Shi; Zhu, Minyi; Hu, Shuming; Mitas, Lubos

    2013-03-01

    Very recently, a quantum Monte Carlo (QMC) method was proposed for Rashba spin-orbit operators which expands the applicability of QMC to systems with variable spins. It is based on incorporating the spin-orbit into the Green's function and thus samples (ie, rotates) the spinors in the antisymmetric part of the trial function [1]. Here we propose a new alternative for both variational and diffusion Monte Carlo algorithms for calculations of systems with variable spins. Specifically, we introduce a new spin representation which allows us to sample the spin configurations efficiently and without introducing additional fluctuations. We develop the corresponding Green's function which treats the electron spin as a dynamical variable and we use the fixed-phase approximation to eliminate the negative probabilities. The trial wave function is a Slater determinant of spinors and spin-indepedent Jastrow correlations. The method also has the zero variance property. We benchmark the method on the 2D electron gas with the Rashba interaction and we find very good overall agreement with previously obtained results. Research supported by NSF and ARO.

  8. Can fractional quantum Hall effect be due to the formation of coherent wave structures in a 2D electron gas?

    NASA Astrophysics Data System (ADS)

    Mirza, Babur M.

    2016-05-01

    A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.

  9. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  10. 2D microwave imaging reflectometer electronics

    SciTech Connect

    Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.

    2014-11-15

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  11. 2D microwave imaging reflectometer electronics

    NASA Astrophysics Data System (ADS)

    Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.

  12. 2D microwave imaging reflectometer electronics.

    PubMed

    Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C

    2014-11-01

    A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247

  13. 2D hydrodynamic simulations of a variable length gas target for density down-ramp injection of electrons into a laser wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.

    2016-09-01

    In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.

  14. An unambiguous identification of 2D electron gas features in the photoluminescence spectrum of AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Jana, Dipankar; Sharma, T. K.

    2016-07-01

    A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm‑1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.

  15. Correlated Electron Phenomena in 2D Materials

    NASA Astrophysics Data System (ADS)

    Lambert, Joseph G.

    In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in

  16. Electron Energy Levels in the 1D-2D Transition

    NASA Astrophysics Data System (ADS)

    Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint

    Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.

  17. Graphene as a platform to study 2D electronic transitions

    NASA Astrophysics Data System (ADS)

    Bouchiat, Vincent; Kessler, Brian; Girit, Caglar; Zettl, Alex

    2010-03-01

    The easily accessible 2D electron gas in graphene provides an ideal platform on which to tune, via application of an electrostatic gate, the coupling between electronically ordered dopants deposited on its surface. To demonstrate this concept, we have measured arrays of superconducting clusters deposited on Graphene capable to induce via the proximity effect a gate-tunable superconducting transition. Using a simple fabrication procedure based on metal layer dewetting, doped graphene sheets can be decorated with a non percolating network on nanoscale tin clusters. This hybrid material displays a two-step superconducting transition. The higher transition step is gate independent and corresponds to the transition of the tin clusters to the superconducting state. The lower transition step towards a real zero resistance state exhibiting a well developped supercurrent, is strongly gate-tunable and is quantitatively described by Berezinskii-Kosterlitz-Thouless 2D vortex unbinding. Our simple self-assembly method and tunable coupling can readily be extended to other electronic order parameters such as ferro/antiferromagnetism, charge/spin density waves using similar decoration techniques. [1] B. M. Kessler, C.O. Girit, A. Zettl, and V. Bouchiat, Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets submitted to PRL, arXiv:0907.3661

  18. Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials

    NASA Astrophysics Data System (ADS)

    Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee

    2015-07-01

    Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.

  19. Energy level transitions of gas in a 2D nanopore

    SciTech Connect

    Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.

    2015-10-27

    An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.

  20. Unitary quantum lattice gas representation of 2D quantum turbulence

    NASA Astrophysics Data System (ADS)

    Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min

    2011-05-01

    Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.

  1. Controlled Confinement of Half-metallic 2D Electron Gas in BaTiO3/Ba2FeReO6/BaTiO3 Heterostructures: A First-principles Study

    NASA Astrophysics Data System (ADS)

    Saha-Dasgupta, Tanusri; Baidya, Santu; Waghmare, Umesh; Paramekanti, Arun

    Using density functional theory calculations, we establish that the half-metallicity of bulk Ba2FeReO6 survives down i to 1 nm thickness in BaTiO3/Ba2FeReO6/BaTiO3 heterostructures grown along the (001) and (111) directions. The confinement of the two-dimensional (2D) electron gas in this quantum well structure arises from the suppressed hybridization between Re/Fe d states and unoccupied Ti d states, and it is further strengthened by polar fields for the (111) direction. This mechanism, distinct from the polar catastrophe, leads to an order of magnitude stronger confinement of the 2D electron gas than that at the LaAlO3/SrTiO3 interface. We further show low-energy bands of (111) heterostructure display nontrivial topological character. Our work opens up the possibility of realizing ultra-thin spintronic devices. Journal Ref: Phys. Rev. B 92, 161106(R) (2015) S.B. and T.S.D thank Department of Science and Technology, India for the support through Thematic Unit of Excellence. AP was supported by NSERC (Canada).

  2. 2-D Imaging of Electron Temperature in Tokamak Plasmas

    SciTech Connect

    T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol

    2004-07-08

    By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.

  3. Transport Experiments on 2D Correlated Electron Physics in Semiconductors

    SciTech Connect

    Tsui, Daniel

    2014-03-24

    This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.

  4. Resonances of piezoelectric plate with embedded 2D electron system

    NASA Astrophysics Data System (ADS)

    Suslov, A. V.

    2009-02-01

    A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.

  5. Universal Fabrication of 2D Electron Systems in Functional Oxides.

    PubMed

    Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe

    2016-03-01

    2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522

  6. 2D-MoO3 nanosheets for superior gas sensors

    NASA Astrophysics Data System (ADS)

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong (Frank)

    2016-04-01

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites.By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00880a

  7. Electron dynamics and valley relaxation in 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Gundogdu, Kenan

    2015-03-01

    Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.

  8. 2-D stationary gas dynamics in a barred galaxy

    NASA Astrophysics Data System (ADS)

    Mulder, W. A.

    2015-06-01

    A code for solving the 2-D isothermal Euler equations of gas dynamics in a rotating disc is presented. The gravitational potential represents a weak bar and controls the flow. A damped Newton method solves the second-order upwind discretisation of the equations for a steady-state solution, using a consistent linearisation and a direct solver. Successive grid refinement, starting from a finite-volume grid with 8 by 8 cells, is applied to find solutions on subsequently finer meshes. On coarser meshes, a first-order spatial discretisation is used. The method obtains quadratic convergence once the solution approaches the steady state. The initial search is quick with the first-order scheme and slower with the second-order discretisation, up to 256 by 256 cells. Beyond, with 512 by 512 cells, the number of iterations becomes too large to be of practical use. Potential causes are discussed. The code can be applied as a tool for generating flow models if used on not too fine meshes.

  9. Transport Properties of 2D-Electron Gas in a InGaAs/GaAs DQW in a Vicinity of Low Magnetic-Field-Induced Insulator-Quantum Hall Liquid Transition

    NASA Astrophysics Data System (ADS)

    Arapov, Yu. G.; Yakunin, M. V.; Gudina, S. V.; Harus, G. I.; Neverov, V. N.; Shelushinina, N. G.; Podgornyh, S. M.; Uskova, E. A.; Zvonkov, B. N.

    2007-04-01

    The resistivity ρ of low mobility dilute 2D-elecron gas in a InGaAs/GaAs double quantum well (DQW) exhibits the monotonic "insulating-like" temperature dependence (dρ/dT < 0) at T = 1.8-70K in zero magnetic field. This temperature interval corresponds to a ballistic regime (kBTτ/ℏ > 0.1) for our samples. We observed the coexistence of both the quantum Hall (QH) effect for the filling factors v = 2, 4 and the low magnetic field insulator — QH liquid (with v = 10) transition.

  10. Metal Decoration Effects on the Gas-Sensing Properties of 2D Hybrid-Structures on Flexible Substrates

    PubMed Central

    Cho, Byungjin; Yoon, Jongwon; Lim, Sung Kwan; Kim, Ah Ra; Choi, Sun-Young; Kim, Dong-Ho; Lee, Kyu Hwan; Lee, Byoung Hun; Ko, Heung Cho; Hahm, Myung Gwan

    2015-01-01

    We have investigated the effects of metal decoration on the gas-sensing properties of a device with two-dimensional (2D) molybdenum disulfide (MoS2) flake channels and graphene electrodes. The 2D hybrid-structure device sensitively detected NO2 gas molecules (>1.2 ppm) as well as NH3 (>10 ppm). Metal nanoparticles (NPs) could tune the electronic properties of the 2D graphene/MoS2 device, increasing sensitivity to a specific gas molecule. For instance, palladium NPs accumulate hole carriers of graphene/MoS2, electronically sensitizing NH3 gas molecules. Contrarily, aluminum NPs deplete hole carriers, enhancing NO2 sensitivity. The synergistic combination of metal NPs and 2D hybrid layers could be also applied to a flexible gas sensor. There was no serious degradation in the sensing performance of metal-decorated MoS2 flexible devices before/after 5000 bending cycles. Thus, highly sensitive and endurable gas sensor could be achieved through the metal-decorated 2D hybrid-structure, offering a useful route to wearable electronic sensing platforms. PMID:26404279

  11. Optical and Electronic Properties of 2D Graphitic Carbon-Nitride and Carbon Enriched Alloys

    NASA Astrophysics Data System (ADS)

    Therrien, Joel; Li, Yancen; Schmidt, Daniel; Masaki, Michael; Syed, Abdulmannan

    The two-dimensional form of graphitic carbon-nitride (gCN) has been successfully synthesized using a simple CVD process. In it's pure form, the carbon to nitrogen ratio is 0.75. By adding a carbon bearing gas to the growth environment, the C/N ratio can be increased, ultimately reaching the pure carbon form: graphene. Unlike attempts at making a 2D alloy system out of BCN, the CN system does not suffer from phase segregation and thus forms a homogeneous alloy. The synthesis approach and electronic and optical properties will be presented for the pure gCN and a selection of alloy compositions.

  12. A scintillating gas detector for 2D dose measurements in clinical carbon beams.

    PubMed

    Seravalli, E; de Boer, M; Geurink, F; Huizenga, J; Kreuger, R; Schippers, J M; van Eijk, C W E; Voss, B

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies. PMID:18695295

  13. A scintillating gas detector for 2D dose measurements in clinical carbon beams

    NASA Astrophysics Data System (ADS)

    Seravalli, E.; de Boer, M.; Geurink, F.; Huizenga, J.; Kreuger, R.; Schippers, J. M.; van Eijk, C. W. E.; Voss, B.

    2008-09-01

    A two-dimensional position sensitive dosimetry system based on a scintillating gas detector has been developed for pre-treatment verification of dose distributions in hadron therapy. The dosimetry system consists of a chamber filled with an Ar/CF4 scintillating gas mixture, inside which two cascaded gas electron multipliers (GEMs) are mounted. A GEM is a thin kapton foil with copper cladding structured with a regular pattern of sub-mm holes. The primary electrons, created in the detector's sensitive volume by the incoming beam, drift in an electric field towards the GEMs and undergo gas multiplication in the GEM holes. During this process, photons are emitted by the excited Ar/CF4 gas molecules and detected by a mirror-lens-CCD camera system. Since the amount of emitted light is proportional to the dose deposited in the sensitive volume of the detector by the incoming beam, the intensity distribution of the measured light spot is proportional to the 2D hadron dose distribution. For a measurement of a 3D dose distribution, the scintillating gas detector is mounted at the beam exit side of a water-bellows phantom, whose thickness can be varied in steps. In this work, the energy dependence of the output signal of the scintillating gas detector has been verified in a 250 MeV/u clinical 12C ion beam by means of a depth-dose curve measurement. The underestimation of the measured signal at the Bragg peak depth is only 9% with respect to an air-filled ionization chamber. This is much smaller than the underestimation found for a scintillating Gd2O2S:Tb ('Lanex') screen under the same measurement conditions (43%). Consequently, the scintillating gas detector is a promising device for verifying dose distributions in high LET beams, for example to check hadron therapy treatment plans which comprise beams with different energies.

  14. 2D Carbon Nanotube Network: A New material for Electronics

    NASA Astrophysics Data System (ADS)

    Gruner, George

    2006-03-01

    This talk will focus on the electronic properties of two dimensional carbon nanotube networks, and on their application potential. Percolation issues, together with the frequency, and temperature dependent activity will be discussed. The network can be tuned from having semiconducting to metallic like behavior, and doping with electron withdrawing and donating species leads to networks with tailor-made electronic properties. The network is also highly transparent in the visible spectral range, this attribute -- together with simple room temperature fab processes -- opens up application opportunities in the area of electronics, opto-electronics, photovoltaics and sensors. Recent results on solar cells, OLEDs and smart windows will be reviewed. Field effect transistors that incorporate nanotube network conducting channels, together with complex functional devices that incorporate networks and functional molecules will also be discussed. Finally a comparison will be made with conventional and emerging materials that compete area of disposable, flexible and printable electronics.

  15. Crossover from 2D to 3D in a Weakly Interacting Fermi Gas

    SciTech Connect

    Dyke, P.; Kuhnle, E. D.; Hu, H.; Mark, M.; Hoinka, S.; Lingham, M.; Hannaford, P.; Vale, C. J.; Whitlock, S.

    2011-03-11

    We have studied the transition from two to three dimensions in a low temperature weakly interacting {sup 6}Li Fermi gas. Below a critical atom number N{sub 2D} only the lowest transverse vibrational state of a highly anisotropic oblate trapping potential is occupied and the gas is two dimensional. Above N{sub 2D} the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.

  16. Magnetoresistance oscillations due to Zener tunneling and microwave radiation in a 2D electron gas in GaAs quantum well with AlAs/GaAs superlattices barriers

    NASA Astrophysics Data System (ADS)

    Bykov, A. A.; Bakarov, A. K.; Kalagin, A. K.; Goran, A. V.; Toropov, A. I.; Vitkalov, S. A.

    2006-08-01

    The effect of microwave radiation in the frequency range from 1.2 to 10 GHz on the magnetoresistance of a high-mobility two-dimensional electron gas has been studied in a GaAs quantum well with AlAs/GaAs superlattice barriers. It has been found that the microwave field induces magnetoresistance oscillations periodic in the reciprocal magnetic field (1/B). It has been shown that the period of these oscillations in the covered frequency range depends on the microwave radiation power.

  17. Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla

    SciTech Connect

    Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.

    1998-11-08

    We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn2+ spins.

  18. Corbino Disk Viscometer for 2D Quantum Electron Liquids

    NASA Astrophysics Data System (ADS)

    Tomadin, Andrea; Vignale, Giovanni; Polini, Marco

    2014-12-01

    The shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner and the outer edge of the disk in response to an oscillating magnetic flux.

  19. Corbino disk viscometer for 2D quantum electron liquids.

    PubMed

    Tomadin, Andrea; Vignale, Giovanni; Polini, Marco

    2014-12-01

    The shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner and the outer edge of the disk in response to an oscillating magnetic flux. PMID:25526137

  20. Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.

    SciTech Connect

    Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong

    2009-09-01

    The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.

  1. Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets

    NASA Astrophysics Data System (ADS)

    Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa

    2014-12-01

    Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.

  2. Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles

    NASA Astrophysics Data System (ADS)

    Shen, Pengtao; Quader, Khandker

    We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).

  3. Dual-mode operation of 2D material-base hot electron transistors

    PubMed Central

    Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  4. Dual-mode operation of 2D material-base hot electron transistors.

    PubMed

    Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L

    2016-01-01

    Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550

  5. 2D Optical Streaking for Ultra-Short Electron Beam Diagnostics

    SciTech Connect

    Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC

    2011-12-14

    field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.

  6. 2D-MoO3 nanosheets for superior gas sensors.

    PubMed

    Ji, Fangxu; Ren, Xianpei; Zheng, Xiaoyao; Liu, Yucheng; Pang, Liuqing; Jiang, Jiaxing; Liu, Shengzhong Frank

    2016-04-28

    By taking advantages of both grinding and sonication, an effective exfoliation process is developed to prepare two-dimensional (2D) molybdenum oxide (MoO3) nanosheets. The approach avoids high-boiling-point solvents that would leave a residue and cause aggregation. Gas sensors fabricated using the 2D-MoO3 nanosheets provide a significantly enhanced chemical sensor performance. Compared with the sensors using bulk MoO3, the response of the 2D-MoO3 sensor increases from 7 to 33; the sensor response time is reduced from 27 to 21 seconds, and the recovery time is shortened from 26 to 10 seconds. We attribute the superior performance to the 2D-structure with a much increased surface area and reactive sites. PMID:27053379

  7. 2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe

    SciTech Connect

    Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.

    2014-11-15

    A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.

  8. 2 D patterns of soil gas diffusivity , soil respiration, and methane oxidation in a soil profile

    NASA Astrophysics Data System (ADS)

    Maier, Martin; Schack-Kirchner, Helmer; Lang, Friederike

    2015-04-01

    The apparent gas diffusion coefficient in soil (DS) is an important parameter describing soil aeration, which makes it a key parameter for root growth and gas production and consumption. Horizontal homogeneity in soil profiles is assumed in most studies for soil properties - including DS. This assumption, however, is not valid, even in apparently homogeneous soils, as we know from studies using destructive sampling methods. Using destructive methods may allow catching a glimpse, but a large uncertainty remains, since locations between the sampling positions cannot be analyzed, and measurements cannot be repeated. We developed a new method to determine in situ the apparent soil gas diffusion coefficient in order to examine 2 D pattern of DS and methane oxidation in a soil profile. Different tracer gases (SF6, CF4, C2H6) were injected continuously into the subsoil and measured at several locations in the soil profile. These data allow for modelling inversely the 2 D patterns of DS using Finite Element Modeling. The 2D DS patterns were then combined with naturally occurring CH4 and CO2 concentrations sampled at the same locations to derive the 2D pattern of soil respiration and methane oxidation in the soil profile. We show that methane oxidation and soil respiration zones shift within the soil profile while the gas fluxes at the surface remain rather stable during a the 3 week campaign.

  9. Nano-scale electronic and optoelectronic devices based on 2D crystals

    NASA Astrophysics Data System (ADS)

    Zhu, Wenjuan

    In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.

  10. Broadband 2D Electronic Spectroscopy Reveals Coupling Between Dark 1Bu- State of Carotenoid and Qx State of Bacteriochlorophyll

    NASA Astrophysics Data System (ADS)

    Ostroumov, Evgeny E.; Jumper, Chanelle C.; Mulvaney, Rachel M.; Cogdell, Richard J.; Scholes, Gregory D.

    2013-03-01

    The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.

  11. Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma

    NASA Astrophysics Data System (ADS)

    Durkin, Daniel; Fajans, Joel

    1998-11-01

    The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/

  12. Microtubes and corrugations fabricated from strained ZnTe/CdHgTe/HgTe/CdHgTe heterofilms with 2D electron-hole gas in the HgTe quantum well

    NASA Astrophysics Data System (ADS)

    Mutilin, S. V.; Soots, R. A.; Vorob'ev, A. B.; Ikusov, D. G.; Mikhailov, N. N.; Prinz, V. Ya

    2014-07-01

    Variously shaped shells were fabricated from strained ZnTe/CdTe/CdHgTe/HgTe/CdHgTe heterofilms that contained a HgTe quantum well populated simultaneously with electrons and holes. The radius of curvature of formed tubes proved to be 12 µm and the period of corrugations about 20 µm. Such a curvature induces a 1.2% deformation in the HgTe layer sufficient for the occurrence of notable band-edge shifts in this layer and causes a transition of the band structure from a semiconductor to a semi-metal state. Curved HgTe-based films offer potential in studying surfaces where topological insulating states are interfaced with semiconductor states.

  13. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  14. Phase Separation and Pair Condensation in a Spin-Imbalanced 2D Fermi Gas.

    PubMed

    Mitra, Debayan; Brown, Peter T; Schauß, Peter; Kondov, Stanimir S; Bakr, Waseem S

    2016-08-26

    We study a two-component quasi-two-dimensional Fermi gas with imbalanced spin populations. We probe the gas at different interaction strengths and polarizations by measuring the density of each spin component in the trap and the pair momentum distribution after time of flight. For a wide range of experimental parameters, we observe in-trap phase separation characterized by the appearance of a spin-balanced core surrounded by a polarized gas. Our momentum space measurements indicate pair condensation in the imbalanced gas even for large polarizations where phase separation vanishes, pointing to the presence of a polarized pair condensate. Our observation of zero momentum pair condensates in 2D spin-imbalanced gases opens the way to explorations of more exotic superfluid phases that occupy a large part of the phase diagram in lower dimensions. PMID:27610853

  15. Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas

    NASA Astrophysics Data System (ADS)

    Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning

    2016-05-01

    The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.

  16. Microphase formation at a 2D solid-gas phase transition.

    PubMed

    Schuman, Adam W; Bsaibes, Thomas S; Schlossman, Mark L

    2014-10-01

    Density modulated micro-separated phases (microphases) occur at 2D liquid interfaces in the form of alternating regions of high and low density domains. Brewster angle microscopy (BAM) images demonstrate the existence of microphases in cluster, stripe, and mosaic morphologies at the buried interface between hexane and water with fluoro-alkanol surfactant dissolved in the bulk hexane. At high temperature, the surfactant assembles at the interface in a 2D gaseous state. As the system is cooled additional surfactants condense onto the interface, which undergoes a 2D gas-solid phase transition. Microphase structure is observed within a few degrees of this transition in the form of clusters and labyrinthine stripes. Microphases have been observed previously in a number of other systems; nevertheless, we demonstrate that adsorption transitions at the liquid-liquid interface provide a convenient way to observe a full sequence of temperature-dependent 2D phases, from gas to cluster to stripe to mosaic to inverted stripe phases, as well as coexistence between some of these microphases. Cracking and fracture of the clusters reveal that they are a solid microphase. Theories of microphases often predict a single length scale for cluster and stripe phases as a result of the competition between an attractive and a repulsive interaction. Our observation that two characteristic length scales are required to describe clusters whose diameter is much larger than the stripe period, combined with the solid nature of the clusters, suggests that a long-range elastic interaction is relevant. These results complement earlier X-ray measurements on the same system. PMID:25088351

  17. Laser Absorption spectrometer instrument for tomographic 2D-measurement of climate gas emission from soils

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2014-05-01

    One of the most intricate effects in climate modelling is the role of permafrost thawing during the global warming process. Soil that has formerly never totally lost its ice cover now emits climate gases due to melting processes[1]. For a better prediction of climate development and possible feedback mechanisms, insights into physical procedures (like e.g. gas emission from underground reservoirs) are required[2]. Therefore, a long-term quantification of greenhouse gas concentrations (and further on fluxes) is necessary and the related structures that are responsible for emission need to be identified. In particular the spatial heterogeneity of soils caused by soil internal structures (e.g. soil composition changes or surface cracks) or by surface modifications (e.g. by plant growth) generate considerable complexities and difficulties for local measurements, for example with soil chambers. For such situations, which often cannot be avoided, a spatially resolved 2D-measurement to identify and quantify the gas emission from the structured soil would be needed, to better understand the influence of the soil sub-structures on the emission behavior. Thus we designed a spatially scanning laser absorption spectrometer setup to determine a 2D-gas concentration map in the soil-air boundary layer. The setup is designed to cover the surfaces in the range of square meters in a horizontal plane above the soil to be investigated. Existing field instruments for gas concentration or flux measurements are based on point-wise measurements, so structure identification is very tedious or even impossible. For this reason, we have developed a tomographic in-situ instrument based on TDLAS ('tunable diode laser absorption spectroscopy') that delivers absolute gas concentration distributions of areas with 0.8m × 0.8m size, without any need for reference measurements with a calibration gas. It is a simple and robust device based on a combination of scanning mirrors and reflecting foils, so

  18. 2D electron temperature diagnostic using soft x-ray imaging technique

    SciTech Connect

    Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.

    2014-03-15

    We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.

  19. Observation of 2D Ising criticality of liquid-gas transition by the flowgram method

    NASA Astrophysics Data System (ADS)

    Yarmolinsky, Max; Kuklov, Anatoly

    We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.

  20. Pair interaction energy for a 12-electron 2D square Quantum Dot.

    NASA Astrophysics Data System (ADS)

    Nissenbaum, Daniel; Barbiellini, Bernardo; Bansil, Arun

    2004-03-01

    We have investigated a system of 12 electrons enclosed in a 2D square well representing a quantum dot. We employ a Jastrow-type wavefunction with Slater determinants and optimize the Jastrow parameter using the variational Monte Carlo method. We use the Metropolis algorithm to select a large distribution of configuration points and to perform a relatively noiseless calculation of the radial distribution function and to obtain insight into the contrast between the Fermi hole for the same-spin electrons and the Coulomb hole for the opposite-spin electrons. The calculated pair interaction energy provides a handle for constructing a model Hamiltonian useful for the study of spontaneous spin magnetization of the system. Work supported in part by the USDOE.

  1. Local electronic structures and 2D topological phase transition of ultrathin Sb films

    NASA Astrophysics Data System (ADS)

    Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong

    We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.

  2. Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle

    PubMed Central

    2015-01-01

    This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146

  3. Measurement of electrostatic potential variations between 2D materials using low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    de La Barrera, Sergio; Mende, Patrick; Li, Jun; Feenstra, Randall; Lin, Yu-Chuan; Robinson, Joshua; Vishwanath, Suresh; Xing, Huili

    Among the many properties that evolve as isolated 2D materials are brought together to form a heterostructure, rearrangement of charges between layers due to unintentional doping results in dipole fields at the interface, which critically affect the electronic properties of the structure. Here we report a method for directly measuring work function differences, and hence electrostatic potential variations, across the surface of 2D materials and heterostructures thereof using low energy electron microscopy (LEEM). Study of MoSe2 grown by molecular beam epitaxy on epitaxial graphene on SiC with LEEM reveals a large work function difference between the MoSe2 and the graphene, indicating charge transfer between the layers and a subsequent dipole layer. In addition to quantifying dipole effects between transition metal dichalcogenides and graphene, direct imaging of the surface, diffraction information, and the spectroscopic dependence of electron reflectivity will be discussed. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.

  4. Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas

    NASA Astrophysics Data System (ADS)

    Romé, M.; Chen, S.; Maero, G.

    2016-06-01

    A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).

  5. Electron phase coherent effects in nanostructures and coupled 2D systems

    SciTech Connect

    Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Sherwin, M.E.; Harff, N.E.; Eiles, T.M.; Wendt, J.R.

    1995-05-01

    This report describes the research accomplishments achieved under the LDRD Project ``Electron Phase Coherent Effects in Nanostructures and Coupled 2D Systems.`` The goal of this project was to discover and characterize novel quantum transport phenomena in small semiconductor structures at low temperatures. Included is a description of the purpose of the research, the various approaches used, and a detailed qualitative description of the numerous new results obtained. The first appendix gives a detailed listing of publications, presentations, patent applications, awards received, and various other measures of the LDRD project success. Subsequent appendices consist of reprinted versions of several specific,`` scientific journal publications resulting from this LDRD project.

  6. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  7. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.

    PubMed

    Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  8. Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array

    PubMed Central

    Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen

    2015-01-01

    The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552

  9. Uniform quantized electron gas.

    PubMed

    Høye, Johan S; Lomba, Enrique

    2016-10-19

    In this work we study the correlation energy of the quantized electron gas of uniform density at temperature T  =  0. To do so we utilize methods from classical statistical mechanics. The basis for this is the Feynman path integral for the partition function of quantized systems. With this representation the quantum mechanical problem can be interpreted as, and is equivalent to, a classical polymer problem in four dimensions where the fourth dimension is imaginary time. Thus methods, results, and properties obtained in the statistical mechanics of classical fluids can be utilized. From this viewpoint we recover the well known RPA (random phase approximation). Then to improve it we modify the RPA by requiring the corresponding correlation function to be such that electrons with equal spins can not be on the same position. Numerical evaluations are compared with well known results of a standard parameterization of Monte Carlo correlation energies. PMID:27546166

  10. Neutrino-electron Scattering in 2-D Models of Supernova Convection

    NASA Astrophysics Data System (ADS)

    DeNisco, K. R.; Swesty, F. D.; Myra, E. S.

    2005-12-01

    We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.

  11. Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.

    We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

  12. Enhancement of low-energy electron emission in 2D radioactive films.

    PubMed

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J; Lewis, Emily A; Lucci, Felicia R; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E Charles H

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies. PMID:26076306

  13. Enhancement of low-energy electron emission in 2D radioactive films

    NASA Astrophysics Data System (ADS)

    Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.

    2015-09-01

    High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.

  14. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  15. Observation of Rashba zero-field spin splitting in a strained germanium 2D hole gas

    SciTech Connect

    Morrison, C. Rhead, S. D.; Foronda, J.; Leadley, D. R.; Myronov, M.; Wiśniewski, P.

    2014-11-03

    We report the observation, through Shubnikov-de Haas oscillations in the magnetoresistance, of spin splitting caused by the Rashba spin-orbit interaction in a strained Ge quantum well epitaxially grown on a standard Si(001) substrate. The Shubnikov-de Haas oscillations display a beating pattern due to the spin split Landau levels. The spin-orbit parameter and Rashba spin-splitting energy are found to be 1.0 × 10{sup −28 } eVm{sup 3} and 1.4 meV, respectively. This energy is comparable to 2D electron gases in III-V semiconductors, but substantially larger than in Si, and illustrates the suitability of Ge for modulated hole spin transport devices.

  16. Phase Diagram of Bilayer 2D Electron Systems at νT = 1

    NASA Astrophysics Data System (ADS)

    Champagne, Alexandre

    2009-03-01

    Bilayer 2D electron systems at total filling fraction νT = 1 and small interlayer spacing can support a strongly correlated phase which exhibits spontaneous interlayer phase coherence and may be described as an excitonic Bose condensate. We use electron interlayer tunnelling and transport to explore the phase diagram of bilayer 2D electron systems at νT = 1, and find that phase transitions between the excitonic νT = 1 phase and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing, d/l, the temperature, T, or the charge imbalance, δν=ν1-ν2. First, for the balanced (δν = 0) system we find that the amplitude of the resonant tunneling in the coherent νT = 1 phase obeys an empirical power law scaling versus d/l at various T, and the layer separation where the tunneling disappears scales linearly with T. Our results [1] offer strong evidence that a finite temperature phase transition separates the balanced interlayer coherent phase from incoherent phases which lack strong interlayer correlations. Secondly, we observe [2] that close to the phase boundary the coherent νT = 1 phase can be absent at δν = 0, present at intermediate δν, and absent again at large δν, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. Lastly, at δν = 1/3 we report [2] the observation of a direct phase transition between the coherent νT = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1 = 2/3 and ν2 = 1/3.[4pt] [1] A.R. Champagne, et al., Phys. Rev. Lett. 100, 096801 (2008).[0pt] [2] A.R. Champagne, et al, Phys. Rev. B 78, 205310 (2008)

  17. 2D array of cold-electron nanobolometers with double polarised cross-dipole antennas

    PubMed Central

    2012-01-01

    A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950

  18. 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure

    NASA Astrophysics Data System (ADS)

    Giese, Thorsten; Janes, Joachim

    2015-05-01

    Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.

  19. Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study

    NASA Astrophysics Data System (ADS)

    Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team

    Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.

  20. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  1. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  2. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  3. Kinetic electron bounce instability in a 2D current sheet - Implication for substorm dynamics

    NASA Astrophysics Data System (ADS)

    Fruit, G.; Tur, A.; Louarn, P.

    2013-12-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic ballooning-type instabilities in resonant interaction with trapped bouncing electrons in a 2D current sheet. Tur et al. 2010 and Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Here, we generalize the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly stretched current sheet (Bz > 0.1 Blobes) undamped and stable modes oscillate at typical electron bounce frequency with wavelength (in y) of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in epsilon=Bz/Blobes < 0.05 typically, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few tens of seconds. The free energy contained in the electron bouncing motion could thus trigger and drive an electromagnetic instability able to disrupt the cross-tail current in a few seconds. The role of the temperature ratio Te/Ti is also evaluated.

  4. Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems

    NASA Astrophysics Data System (ADS)

    Khaetskii, A.

    Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.

  5. The Instability of Terahertz Plasma Waves in Two Dimensional Gated and Ungated Quantum Electron Gas

    NASA Astrophysics Data System (ADS)

    Zhang, Liping

    2016-04-01

    The instability of terahertz (THz) plasma waves in two-dimensional (2D) quantum electron gas in a nanometer field effect transistor (FET) with asymmetrical boundary conditions has been investigated. We analyze THz plasma waves of two parts of the 2D quantum electron gas: gated and ungated regions. The results show that the radiation frequency and the increment (radiation power) in 2D ungated quantum electron gas are much higher than that in 2D gated quantum electron gas. The quantum effects always enhance the radiation power and enlarge the region of instability in both cases. This allows us to conclude that 2D quantum electron gas in the transistor channel is important for the emission and detection process and both gated and ungated parts take part in that process. supported by National Natural Science Foundation of China (No. 10975114)

  6. Control of electronic properties of 2D carbides (MXenes) by manipulating their transition metal layers

    DOE PAGESBeta

    Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury

    2016-02-24

    In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less

  7. Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum Field Effect Transistor

    NASA Astrophysics Data System (ADS)

    Hu, Binhui; Yazdanpanah, M. M.; Kane, B. E.; Hwang, E. H.; Das Sarma, S.

    2015-07-01

    We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility (˜18 m2/V s ) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using random phase approximation screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.

  8. Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory

    NASA Astrophysics Data System (ADS)

    Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly

    2016-07-01

    In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few

  9. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  10. Quantitative nanoscale visualization of heterogeneous electron transfer rates in 2D carbon nanotube networks.

    PubMed

    Güell, Aleix G; Ebejer, Neil; Snowden, Michael E; McKelvey, Kim; Macpherson, Julie V; Unwin, Patrick R

    2012-07-17

    Carbon nanotubes have attracted considerable interest for electrochemical, electrocatalytic, and sensing applications, yet there remains uncertainty concerning the intrinsic electrochemical (EC) activity. In this study, we use scanning electrochemical cell microscopy (SECCM) to determine local heterogeneous electron transfer (HET) kinetics in a random 2D network of single-walled carbon nanotubes (SWNTs) on an Si/SiO(2) substrate. The high spatial resolution of SECCM, which employs a mobile nanoscale EC cell as a probe for imaging, enables us to sample the responses of individual portions of a wide range of SWNTs within this complex arrangement. Using two redox processes, the oxidation of ferrocenylmethyl trimethylammonium and the reduction of ruthenium (III) hexaamine, we have obtained conclusive evidence for the high intrinsic EC activity of the sidewalls of the large majority of SWNTs in networks. Moreover, we show that the ends of SWNTs and the points where two SWNTs cross do not show appreciably different HET kinetics relative to the sidewall. Using finite element method modeling, we deduce standard rate constants for the two redox couples and demonstrate that HET based solely on characteristic defects in the SWNT side wall is highly unlikely. This is further confirmed by the analysis of individual line profiles taken as the SECCM probe scans over an SWNT. More generally, the studies herein demonstrate SECCM to be a powerful and versatile method for activity mapping of complex electrode materials under conditions of high mass transport, where kinetic assignments can be made with confidence. PMID:22635266

  11. Electron-beam induced photoresist shrinkage influence on 2D profiles

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Allgair, John; Aguilar, Daniel Bellido; Tileli, Vasiliki; Thiel, Bradley; Avitan, Yohanan; Peltinov, Ram; Bar-Zvi, Mayaan; Adan, Ofer; Chirko, Konstantin

    2010-03-01

    For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. Also, such smaller feature sizes will require thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMI's CD-SEM Unified Specification. A model for resist shrinkage, while derived elsewhere, was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) before e-beam exposure. With these parameters and exhaustive measurements, a fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized features. This work was extended in yet another paper in which we presented a 1-D model for resist shrinkage that can be used to curve-fit to shrinkage curves. Calibration of parameters to describe the photoresist material and the electron beam were all that were required to fit the model to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. In this paper, we extend this work yet again to a 2-D model of a trapezoidal photoresist profile. This model thus

  12. Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.

    PubMed

    Gao, Feng; Cundiff, Steven T; Li, Hebin

    2016-07-01

    We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074

  13. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    NASA Astrophysics Data System (ADS)

    Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito

    2015-06-01

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  14. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra

    SciTech Connect

    Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.

    2015-06-07

    Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.

  15. Spin susceptibility of a 2D gas with Rashba spin-orbit in the HF approximation

    NASA Astrophysics Data System (ADS)

    Giuliani, Gabriele

    2005-03-01

    The in plane and out of plane spin susceptibility χS^ () (rs, α) in a two dimensional electron gas with Rashba spin-orbit is studied within the Hartree-Fock approximation in both the static (φ->0 first then q ->0) and adiabatic (q ->0 first then φ->0) limits. The latter is related to what is commonly referred to as the spin-Hall conductivity. The behavior of χS^ () (rs, α) as a function of the density parameter rs and the spin-orbit coupling strength α has been explored. At variance with a recent perturbative analysis, we find that, as one would expect, the exchange interaction tends to increase χS^ () (rs, α) over its non interacting value. The interplay between the differential instability of the paramagnetic chiral state as signaled by the divergence of χS^ () (rs, α) and the (first order) spin polarization transition to a spin-textured chiral state will be discussed.

  16. Microscopy of a Quantum Gas in a 2D Optical Lattice

    NASA Astrophysics Data System (ADS)

    Bakr, Waseem; Peng, Amy; Tai, Ming; Ma, Ruichao; Jotzu, Gregor; Gillen, Jonathon; Foelling, Simon; Greiner, Markus

    2010-03-01

    Ultracold quantum gases in optical lattices provide a rich experimental toolbox for simulating the physics of condensed matter systems. With atoms in the lattice playing the role of electrons or Cooper pairs in real materials, it is possible to experimentally realize condensed matter Hamiltonians in a controlled way. To realize the full potential of such quantum simulations, we have created a quantum gas microscope (NA = 0.8) which can spatially resolve the atoms in the optical lattice at the single site level, and project arbitrary potential landscapes onto the atoms by combining the high resolution optics with static holographic masks or a spatial light modulator. The high resolution microscope operates with the atoms trapped in a two dimensional optical lattice at a distance of 10 microns from a glass surface that is part of the microscope. We have experimentally verified a resolution of ˜ 600 nm, providing the capability to study the phase diagram of the Bose Hubbard model by measuring occupation number at individual sites.

  17. Flexible Transparent Electronic Gas Sensors.

    PubMed

    Wang, Ting; Guo, Yunlong; Wan, Pengbo; Zhang, Han; Chen, Xiaodong; Sun, Xiaoming

    2016-07-01

    Flexible and transparent electronic gas sensors capable of real-time, sensitive, and selective analysis at room-temperature, have gained immense popularity in recent years for their potential to be integrated into various smart wearable electronics and display devices. Here, recent advances in flexible transparent sensors constructed from semiconducting oxides, carbon materials, conducting polymers, and their nanocomposites are presented. The sensing material selection, sensor device construction, and sensing mechanism of flexible transparent sensors are discussed in detail. The critical challenges and future development associated with flexible and transparent electronic gas sensors are presented. Smart wearable gas sensors are believed to have great potential in environmental monitoring and noninvasive health monitoring based on disease biomarkers in exhaled gas. PMID:27276698

  18. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.

    PubMed

    Zhou, Si; Zhao, Jijun

    2016-04-21

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp(2) honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm(2) V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices. PMID:27072060

  19. Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR

    SciTech Connect

    Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.

    1988-01-01

    We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.

  20. A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.

    PubMed

    Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali

    2016-05-01

    The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715

  1. Broadband 7-fs diffractive-optic-based 2D electronic spectroscopy using hollow-core fiber compression.

    PubMed

    Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias

    2016-09-01

    We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681

  2. Bayesian inversion of marine CSEM data from the Scarborough gas field using a transdimensional 2-D parametrization

    NASA Astrophysics Data System (ADS)

    Ray, Anandaroop; Key, Kerry; Bodin, Thomas; Myer, David; Constable, Steven

    2014-12-01

    We apply a reversible-jump Markov chain Monte Carlo method to sample the Bayesian posterior model probability density function of 2-D seafloor resistivity as constrained by marine controlled source electromagnetic data. This density function of earth models conveys information on which parts of the model space are illuminated by the data. Whereas conventional gradient-based inversion approaches require subjective regularization choices to stabilize this highly non-linear and non-unique inverse problem and provide only a single solution with no model uncertainty information, the method we use entirely avoids model regularization. The result of our approach is an ensemble of models that can be visualized and queried to provide meaningful information about the sensitivity of the data to the subsurface, and the level of resolution of model parameters. We represent models in 2-D using a Voronoi cell parametrization. To make the 2-D problem practical, we use a source-receiver common midpoint approximation with 1-D forward modelling. Our algorithm is transdimensional and self-parametrizing where the number of resistivity cells within a 2-D depth section is variable, as are their positions and geometries. Two synthetic studies demonstrate the algorithm's use in the appraisal of a thin, segmented, resistive reservoir which makes for a challenging exploration target. As a demonstration example, we apply our method to survey data collected over the Scarborough gas field on the Northwest Australian shelf.

  3. Methods for Solving Gas Damping Problems in Perforated Microstructures Using a 2D Finite-Element Solver

    PubMed Central

    Veijola, Timo; Råback, Peter

    2007-01-01

    We present a straightforward method to solve gas damping problems for perforated structures in two dimensions (2D) utilising a Perforation Profile Reynolds (PPR) solver. The PPR equation is an extended Reynolds equation that includes additional terms modelling the leakage flow through the perforations, and variable diffusivity and compressibility profiles. The solution method consists of two phases: 1) determination of the specific admittance profile and relative diffusivity (and relative compressibility) profiles due to the perforation, and 2) solution of the PPR equation with a FEM solver in 2D. Rarefied gas corrections in the slip-flow region are also included. Analytic profiles for circular and square holes with slip conditions are presented in the paper. To verify the method, square perforated dampers with 16–64 holes were simulated with a three-dimensional (3D) Navier-Stokes solver, a homogenised extended Reynolds solver, and a 2D PPR solver. Cases for both translational (in normal to the surfaces) and torsional motion were simulated. The presented method extends the region of accurate simulation of perforated structures to cases where the homogenisation method is inaccurate and the full 3D Navier-Stokes simulation is too time-consuming.

  4. 2D models of gas flow and ice grain acceleration in Enceladus' vents using DSMC methods

    NASA Astrophysics Data System (ADS)

    Tucker, Orenthal J.; Combi, Michael R.; Tenishev, Valeriy M.

    2015-09-01

    The gas distribution of the Enceladus water vapor plume and the terminal speeds of ejected ice grains are physically linked to its subsurface fissures and vents. It is estimated that the gas exits the fissures with speeds of ∼300-1000 m/s, while the micron-sized grains are ejected with speeds comparable to the escape speed (Schmidt, J. et al. [2008]. Nature 451, 685-688). We investigated the effects of isolated axisymmetric vent geometries on subsurface gas distributions, and in turn, the effects of gas drag on grain acceleration. Subsurface gas flows were modeled using a collision-limiter Direct Simulation Monte Carlo (DSMC) technique in order to consider a broad range of flow regimes (Bird, G. [1994]. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Oxford University Press, Oxford; Titov, E.V. et al. [2008]. J. Propul. Power 24(2), 311-321). The resulting DSMC gas distributions were used to determine the drag force for the integration of ice grain trajectories in a test particle model. Simulations were performed for diffuse flows in wide channels (Reynolds number ∼10-250) and dense flows in narrow tubular channels (Reynolds number ∼106). We compared gas properties like bulk speed and temperature, and the terminal grain speeds obtained at the vent exit with inferred values for the plume from Cassini data. In the simulations of wide fissures with dimensions similar to that of the Tiger Stripes the resulting subsurface gas densities of ∼1014-1020 m-3 were not sufficient to accelerate even micron-sized ice grains to the Enceladus escape speed. In the simulations of narrow tubular vents with radii of ∼10 m, the much denser flows with number densities of 1021-1023 m-3 accelerated micron-sized grains to bulk gas speed of ∼600 m/s. Further investigations are required to understand the complex relationship between the vent geometry, gas source rate and the sizes and speeds of ejected grains.

  5. Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime

    SciTech Connect

    VITKALOV,S.A.; BOWERS,C.R.; SIMMONS,JERRY A.; RENO,JOHN L.

    2000-07-13

    The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.

  6. Temperature-dependent quantum electron transport in 2D point contacts.

    PubMed

    Krishtop, T V; Nagaev, K E

    2013-02-01

    We consider the transmission of electrons through a two-dimensional ballistic point contact in the low-conductance regime near the pinch-off region. The scattering of electrons by Friedel oscillations of charge density results in a contribution to the conductance proportional to the temperature. The sign of this linear term depends on the range of the electron-electron interaction and appears to be negative for the relevant experimental parameters. PMID:23288558

  7. Exact ground state for the four-electron problem in a 2D finite honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Trencsényi, Réka; Glukhov, Konstantin; Gulácsi, Zsolt

    2014-07-01

    Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact four-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure identifies first a small subspace ? in which the ground state ? is placed, than deduces ? by exact diagonalization in ?. The small subspace is obtained by the repeated application of the Hamiltonian ? on a carefully chosen starting wave vector describing the most interacting particle configuration, and the wave vectors resulting from the application of ?, till the obtained system of equations closes in itself. The procedure which can be applied in principle at fixed but arbitrary system size and number of particles is interesting on its own since it provides exact information for the numerical approximation techniques which use a similar strategy, but apply non-complete basis for ?. The diagonalization inside ? provides an incomplete image of the low lying part of the excitation spectrum, but provides the exact ?. Once the exact ground state is obtained, its properties can be easily analysed. The ? is found always as a singlet state whose energy, interestingly, saturates in the ? limit. The unapproximated results show that the emergence probabilities of different particle configurations in the ground state presents 'Zittern' (trembling) characteristics which are absent in 2D square Hubbard systems. Consequently, the manifestation of the local Coulomb repulsion in 2D square and honeycomb types of systems presents differences, which can be a real source in the differences in the many-body behaviour.

  8. Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.

    PubMed

    Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C

    2016-01-01

    Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors. PMID:26514248

  9. Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices

    NASA Astrophysics Data System (ADS)

    Zhou, Si; Zhao, Jijun

    2016-04-01

    Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor

  10. Investigation of 2D-Trace Gas Field Reconstruction Techniques From Tomographic AMAX-DOAS Measurements

    NASA Astrophysics Data System (ADS)

    Laepple, T.; Heue, K.; Friedeburg, C. V.; Wang, P.; Knab, V.; Pundt, I.

    2002-12-01

    Tomographic-Differential-Optical-Absorption-Spectroscopy (Tom-DOAS) is a new application of the DOAS method designed to measure 2-3-dimensional concentration fields of different trace gases (e.g. NO2, HCHO, Ozone) in the troposphere. Numerical reconstruction techniques are used to obtain spatially resolved data from the slant column densities provided by DOAS instruments. We discuss the detection of emission plumes by AMAX (Airborne Multi AXis) DOAS Systems which measure sunlight by telescopes pointing in different directions. 2D distributions are reconstructed from slant columns by using airmass factor matrices and inversion techniques. We discuss possibilities and limitations of this technique gained with the use of simulated test fields. Therefore the effect of the parameter choice (e.g. flight track, algorithm changes) and measurement errors is investigated. Further, first results from the Partenavia aircraft measurements over Milano (Italy) during the European FORMAT campaign will be presented.

  11. Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials

    NASA Astrophysics Data System (ADS)

    Terrones, Humberto

    One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).

  12. Binary and ternary recombination of H2D(+) and HD2(+) ions with electrons at 80 K.

    PubMed

    Dohnal, Petr; Kálosi, Ábel; Plašil, Radek; Roučka, Štěpán; Kovalenko, Artem; Rednyk, Serhiy; Johnsen, Rainer; Glosík, Juraj

    2016-08-24

    The recombination of deuterated trihydrogen cations with electrons has been studied in afterglow plasmas containing mixtures of helium, argon, hydrogen and deuterium. By monitoring the fractional abundances of H3(+), H2D(+), HD2(+) and D3(+) as a function of the [D2]/[H2] ratio using infrared absorption observed in a cavity ring down absorption spectrometer (CRDS), it was possible to deduce effective recombination rate coefficients for H2D(+) and HD2(+) ions at a temperature of 80 K. From pressure dependences of the measured effective recombination rate coefficients the binary and the ternary recombination rate coefficients for both ions have been determined. The inferred binary and ternary recombination rate coefficients are: αbinH2D(80 K) = (7.1 ± 4.2) × 10(-8) cm(3) s(-1), αbinHD2(80 K) = (8.7 ± 2.5) × 10(-8) cm(3) s(-1), KH2D(80 K) = (1.1 ± 0.6) × 10(-25) cm(6) s(-1) and KHD2(80 K) = (1.5 ± 0.4) × 10(-25) cm(6) s(-1). PMID:27506912

  13. Electron Momentum Distribution Mapping of Trans-Stilbene Projected to [101] by Positron 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Selvakumar, S.; Sivaji, K.; Smith, S. V.

    Electron momentum distribution (EMD) on trans-stilbene single crystal projected along [101] direction has been studied by using positron two dimensional -angular correlation of annihilation radiation (2D-ACAR). The projected EMD is explained with respect to the molecular arrangement in the plane. The EMD features reflected the delocalized electronic states in [101] direction. The results of EMD mapping did not show a characteristic ellipsoidal distribution at lower momentum region (LMR) as observed in trans-stilbene projected to [010] direction at room temperature. The LMR region exhibits a hexagonal contour projected to [101] direction.

  14. 2D Time-lapse Resistivity Monitoring of an Organic Produced Gas Plume in a Landfill using ERT.

    NASA Astrophysics Data System (ADS)

    Amaral, N. D.; Mendonça, C. A.; Doherty, R.

    2014-12-01

    This project has the objective to study a landfill located on the margins of Tietê River, in São Paulo, Brazil, using the electroresistivity tomography method (ERT). Due to huge organic matter concentrations in the São Paulo Basin quaternary sediments, there is subsurface depth related biogas accumulation (CH4 and CO2), induced by anaerobic degradation of the organic matter. 2D resistivity sections were obtained from a test area since March 2012, a total of 7 databases, being the last one dated from October 2013. The studied line has the length of 56m, the electrode interval is of 2m. In addition, there are two boreholes along the line (one with 3 electrodes and the other one with 2) in order to improve data quality and precision. The boreholes also have a multi-level sampling system that indicates the fluid (gas or water) presence in relation to depth. With our results it was possible to map the gas plume position and its area of extension in the sections as it is a positive resistivity anomaly, with the gas level having approximately 5m depth. With the time-lapse analysis (Matlab script) between the obtained 2D resistivity sections from the site, it was possible to map how the biogas volume and position change in the landfill in relation to time. Our preliminary results show a preferential gas pathway through the subsurface studied area. A consistent relation between the gas depth and obtained microbiological data from archea and bacteria population was also observed.

  15. Increasing the lego of 2D electronics materials: silicene and germanene, graphene's new synthetic cousins

    NASA Astrophysics Data System (ADS)

    Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria

    2015-05-01

    The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.

  16. Subsurface Gas Flow and Ice Grain Acceleration within Enceladus and Europa Fissures: 2D DSMC Models

    NASA Astrophysics Data System (ADS)

    Tucker, O. J.; Combi, M. R.; Tenishev, V.

    2014-12-01

    The ejection of material from geysers is a ubiquitous occurrence on outer solar system bodies. Water vapor plumes have been observed emanating from the southern hemispheres of Enceladus and Europa (Hansen et al. 2011, Roth et al. 2014), and N2plumes carrying ice and ark particles on Triton (Soderblom et al. 2009). The gas and ice grain distributions in the Enceladus plume depend on the subsurface gas properties and the geometry of the fissures e.g., (Schmidt et al. 2008, Ingersoll et al. 2010). Of course the fissures can have complex geometries due to tidal stresses, melting, freezing etc., but directly sampled and inferred gas and grain properties for the plume (source rate, bulk velocity, terminal grain velocity) can be used to provide a basis to constrain characteristic dimensions of vent width and depth. We used a 2-dimensional Direct Simulation Monte Carlo (DSMC) technique to model venting from both axi-symmetric canyons with widths ~2 km and narrow jets with widths ~15-40 m. For all of our vent geometries, considered the water vapor source rates (1027­ - 1028 s-1) and bulk gas velocities (~330 - 670 m/s) obtained at the surface were consistent with inferred values obtained by fits of the data for the plume densities (1026 - 1028 s-1, 250 - 1000 m/s) respectively. However, when using the resulting DSMC gas distribution for the canyon geometries to integrate the trajectories of ice grains we found it insufficient to accelerate submicron ice grains to Enceladus' escape speed. On the other hand, the gas distributions in the jet like vents accelerated grains > 10 μm significantly above Enceladus' escape speed. It has been suggested that micron-sized grains are ejected from the vents with speeds comparable to the Enceladus escape speed. Here we report on these results including comparisons to results obtained from 1D models as well as discuss the implications of our plume model results. We also show preliminary results for similar considerations applied to Europa

  17. High-resolution mapping of 1D and 2D dose distributions using X-band electron paramagnetic resonance imaging.

    PubMed

    Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E

    2014-06-01

    Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487

  18. Environmental analysis of present and future fuels in 2D simple model marine gas tubines

    NASA Astrophysics Data System (ADS)

    El Gohary, M. Morsy

    2013-12-01

    Increased worldwide concerns about fossil fuel costs and effects on the environment lead many governments and scientific societies to consider the hydrogen as the fuel of the future. Many researches have been made to assess the suitability of using the hydrogen gas as fuel for internal combustion engines and gas turbines; this suitability was assessed from several viewpoints including the combustion characteristics, the fuel production and storage and also the thermodynamic cycle changes with the application of hydrogen instead of ordinary fossil fuels. This paper introduces the basic environmental differences happening when changing the fuel of a marine gas turbine from marine diesel fuel to gaseous hydrogen for the same power output. Environmentally, the hydrogen is the best when the CO2 emissions are considered, zero carbon dioxide emissions can be theoretically attained. But when the NOx emissions are considered, the hydrogen is not the best based on the unit heat input. The hydrogen produces 270% more NOx than the diesel case without any control measures. This is primarily due to the increased air flow rate bringing more nitrogen into the combustion chamber and the increased combustion temperature (10% more than the diesel case). Efficient and of course expensive NOx control measures are a must to control these emissions levels.

  19. Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation

    NASA Astrophysics Data System (ADS)

    Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-08-01

    Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.

  20. RKKY interaction for the spin-polarized electron gas

    NASA Astrophysics Data System (ADS)

    Valizadeh, Mohammad M.; Satpathy, Sashi

    2015-11-01

    We extend the original work of Ruderman, Kittel, Kasuya and Yosida (RKKY) on the interaction between two magnetic moments embedded in an electron gas to the case where the electron gas is spin-polarized. The broken symmetry of a host material introduces the Dzyaloshinsky-Moriya (DM) vector and tensor interaction terms, in addition to the standard RKKY term, so that the net interaction energy has the form ℋ = JS1 ṡS2 + D ṡS1 ×S2 + S1 ṡΓ ↔ṡS2. We find that for the spin-polarized electron gas, a nonzero tensor interaction Γ ↔ is present in addition to the scalar RKKY interaction J, while D is zero due to the presence of inversion symmetry. Explicit expressions for these are derived for the electron gas both in 2D and 3D and we show that the net magnetic interaction can be expressed as a sum of Heisenberg and Ising like terms. The RKKY interaction exhibits a beating pattern, caused by the presence of the two Fermi momenta kF↑ and kF↓, while the R-3 distance dependence of the original RKKY result for the 3D electron gas is retained. This model serves as a simple example of the magnetic interaction in systems with broken symmetry, which goes beyond the RKKY interaction.

  1. Pion transfer from hydrogen to deuterium in H2+D2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Weber, P.; Armstrong, D. S.; Measday, D. F.; Noble, A. J.; Stanislaus, S.; Harston, M. R.; Aniol, K. A.; Horváth, D.

    1990-01-01

    The transfer of negative pions from pionic hydrogen to deuterium has been investigated in gas mixtures of H2 and D2 as a function of the D2 concentration (C). The concentration dependence of the transfer rate was fitted using a phenomenological model with two parameters. For C-->∞ (32+/-3)% of the pions undergo transfer. The fitted parameters reflect the ratio of pion capture to pion transfer in collisions of pionic hydrogen with protons or deuterons. No pressure dependence for pion transfer was found.

  2. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  3. Pair condensation in a spin-imbalanced 2D Fermi gas

    NASA Astrophysics Data System (ADS)

    Mitra, Debayan; Brown, Peter; Schauss, Peter; Kondov, Stanimir; Bakr, Waseem

    2016-05-01

    We study the phase diagram of the strongly-interacting spin-imbalanced Fermi gas in two dimensions, where the low dimensionality enhances correlations and phase fluctuations. Our interest is motivated by the connection of this system with superconductivity in the presence of a large Zeeman field. We observe pair condensation for a range of spin imbalance and interaction strengths. The measurement of the phase diagram opens the door for a detailed investigation of exotic phases such as the Sarma/broken pair phase and the elusive FFLO phase.

  4. Oxide 2D electron gases as a route for high carrier densities on (001) Si

    SciTech Connect

    Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.

    2015-05-18

    Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.

  5. Interlayer tunneling studies of highly imbalanced bilayer 2D electron systems at νT= 1

    NASA Astrophysics Data System (ADS)

    Champagne, A. R.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.

    2007-03-01

    When the separation between two parallel 2-dimensional electron systems (2DES) becomes comparable to the average distance between electrons within a single layer, the system can support a quantum Hall state with total filling factor νT=1. This state can be described as a Bose condensate of excitons. Previous studies [1] have shown that close to the νT=1 phase boundary, a small imbalance in the number of electrons in each layer can strengthen the condensate. We report on interlayer tunneling measurements of the effect of large imbalances as a function of the interlayer spacing. We explore the possibility of competing order between the excitonic state and the (1/3, 2/3) fractional states in the individual layers. This work was supported by the NSF and the DOE. [1] I. B. Spielman, et al., Phys. Rev. B 70, 081303 (2004).

  6. Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.

    PubMed

    Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M

    2008-01-25

    An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015

  7. Depletion and low gas temperature in the L183 (=L134N) prestellar core: the N2H^+-N2D+ tool

    NASA Astrophysics Data System (ADS)

    Pagani, L.; Bacmann, A.; Cabrit, S.; Vastel, C.

    2007-05-01

    Context: The study of pre-stellar cores (PSCs) suffers from a lack of undepleted species to trace the physical properties of the gas in their very dense inner parts. Aims: We carry out detailed modelling of N2H+ and N2D+ cuts across the L183 main core to evaluate the depletion of these species and their usefulness as a probe of physical conditions in PSCs. Methods: We have developed a non-LTE (NLTE) Monte-Carlo code treating the 1D radiative transfer of both N2H+ and N2D^+, making use of recently published collisional coefficients with He between individual hyperfine levels. The code includes line overlap between hyperfine transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source coupling to the antenna beam. Results: The best-fitting models indicate that i) gas in the core center is very cold (7 ± 1 K) and thermalized with dust; ii) depletion of N2H+ does occur, starting at densities 5-7×105 cm-3 and reaching a factor of 6^+13-3 in abundance; iii) deuterium fractionation reaches ~70% at the core center; and iv) the density profile is proportional to r-1 out to ~4000 AU, and to r-2 beyond. Conclusions: Our NLTE code could be used to (re-)interpret recent and upcoming observations of N2H+ and N2D+ in many pre-stellar cores of interest, to obtain better temperature and abundance profiles. Based on observations made with the IRAM 30-m and the CSO 10-m. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). Table 1, Figs. 5 and 6 are only available in electronic form at http://www.aanda.org

  8. A Fast Parallel Algorithm for Selected Inversion of Structured Sparse Matrices with Application to 2D Electronic Structure Calculations

    SciTech Connect

    Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan

    2009-09-25

    We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.

  9. Electron-positron momentum density distribution of Gd from 2D ACAR data via Maximum Entropy and Cormack's methods

    NASA Astrophysics Data System (ADS)

    Pylak, M.; Kontrym-Sznajd, G.; Dobrzyński, L.

    2011-08-01

    A successful application of the Maximum Entropy Method (MEM) to the reconstruction of electron-positron momentum density distribution in gadolinium out of the experimental of 2D ACAR data is presented. Formally, the algorithm used was prepared for two-dimensional reconstructions from line integrals. For the first time the results of MEM, applied to such data, are compared in detail with the ones obtained by means of Cormack's method. It is also shown how the experimental uncertainties may influence the results of the latter analysis. Preliminary calculations, using WIEN2k code, of band structure and Fermi surface have been done as well.

  10. Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study

    NASA Astrophysics Data System (ADS)

    Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir

    2010-07-01

    Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.

  11. Effective mass from microwave photoresistance in high-mobility 2D electron systems

    NASA Astrophysics Data System (ADS)

    Zudov, Michael; Hatke, Anthony; Watson, John; Manfra, Michael; Pfeiffer, Loren; West, Kenneth

    2013-03-01

    We have performed microwave photoresistance measurements in high mobility GaAs/AlGaAs quantum wells and investigated the value of the effective mass. Surprisingly, the effective mass, obtained from the period of microwave-induced resistance oscillations, is found to be considerably lower than the band mass in GaAs. This finding provides evidence for electron-electron interactions which can be probed by microwave photoresistance in very high Landau levels. In contrast, the measured magneto-plasmon dispersion revealed an effective mass which is close to the band mass, in accord with previous studies. The work at Minnesota and Purdue was supported by the DOE Grant Nos. DE-SC002567 and DE-SC0006671, respectively. The work at Princeton was partially funded by the Gordon and Betty Moore Foundation Foundation and the NSF MRSEC Program..

  12. Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.; Lorenz, J.

    1999-03-02

    A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers.

  13. Melting Temperatures of 2D Electron Solids in the Lowest Landau Level from Microwave Spectroscopy

    NASA Astrophysics Data System (ADS)

    Chen, Y. P.; Ganapathy, S.; Lewis, R. M.; Engel, L. W.; Tsui, D. C.; Wang, Z. H.; Ye, P. D.; Pfeiffer, L. N.; West, K. W.

    2005-03-01

    We studied the temperature(T) dependence of the microwave conductivity spectra of two dimensional electron systems in the high magnetic field (B) insulating phase (HBIP) for Landau filling factor ν<˜1/5. Such an insulating phase, believed to be a pinned electron solid, supports a characteristic pinning resonance in the conductivity spectrum. Two samples were studied. Sample 1 is a heterojunction with density n˜7x10^10 cm^ -2 and mobility μ˜5x10^6cm^2/Vs and has a single resonance in the HBIP. Sample 2 is a 65nm-wide QW with n˜6x10 ^10cm-2 and μ˜10x10^6cm^2/V and was recently found to have two resonances in the HBIP, interpreted as corresponding to two different solid phases, with one crossing over to the other as ν is reduced [1]. We studied the higher-T behavior of the resonances at many different combinations of n (through backgating) and B, and measured the characteristic temperatures Tc at which the resonances disappear. We foundTc is a non-increasing function of ν for either sample, although the function differs significantly for both samples. We interpret Tc as the melting temperature of the electron solid(s) to a quantum liquid, for which ν captures the importance of inter-electron quantum correlation. [1] Y.P. Chen et al., Phys.Rev.Lett. 93, 206805 (2004)

  14. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  15. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGESBeta

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  16. Negative huge magnetoresistance in high-mobility 2D electron gases: DC-current dependence

    NASA Astrophysics Data System (ADS)

    Iñarrea, J.; Bockhorn, L.; Haug, R. J.

    2016-07-01

    Two-dimensional electron gases with very high mobility show a huge or giant negative magnetoresistance at low temperatures and low magnetic fields. We present an experimental and theoretical work on the influence of the applied current on the negative huge magnetoresistance of these systems. We obtain an unexpected and strong nonlinear behavior consisting in an increase of the negative huge magnetoresistance with increasing current, in other words, for increasing current the magnetoresistance collapses at small magnetic fields. This nonlinearity is explained by the subtle interplay of elastic scattering within Landau levels and between Landau levels.

  17. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.

    PubMed

    Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M

    2016-08-19

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. PMID:27588873

  18. Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal

    NASA Astrophysics Data System (ADS)

    Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.

    2016-08-01

    We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.

  19. Beyond classical nucleation theory: A 2-D lattice-gas automata model

    NASA Astrophysics Data System (ADS)

    Hickey, Joseph

    Nucleation is the first step in the formation of a new phase in a thermodynamic system. The Classical Nucleation Theory (CNT) is the traditional theory used to describe this phenomenon. The object of this thesis is to investigate nucleation beyond one of the most significant limitations of the CNT: the assumption that the surface tension of a nucleating cluster of the new phase is independent of the cluster's size and has the same value that it would have in the bulk of the new phase. In order to accomplish this, we consider a microscopic, two-dimensional Lattice Gas Automata (LGA) model of precipitate nucleation in a supersaturated system, with model input parameters Ess (solid particle-to-solid particle bonding energy), Esw (solid particle-to-water particle bonding energy), eta (next-to-nearest neighbour bonding coeffiicent in solid phase), and Cin (initial solute concentration). The LGA method was chosen for its advantages of easy implementation, low memory requirements, and fast computation speed. Analytical results for the system's concentration and the crystal radius as functions of time are derived and the former is fit to the simulation data in order to determine the system's equilibrium concentration. A mean first-passage time (MFPT) technique is used to obtain the nucleation rate and critical nucleus size from the simulation data. The nucleation rate and supersaturation are evaluated using a modification to the CNT that incorporates a two-dimensional, radius-dependent surface tension term. The Tolman parameter, delta, which controls the radius-dependence of the surface tension, decreases (increases) as a function of the magnitude of Ess (Esw), at fixed values of eta and Esw (Ess). On the other hand, delta increases as eta increases while E ss and Esw are held constant. The constant surface tension term of the CNT, Sigma0, increases (decreases) with increasing magnitudes of Ess (Esw) fixed values of Esw (Ess), and increases as eta is increased. Together

  20. Theoretical predictions on the electronic structure and charge carrier mobility in 2D Phosphorus sheets

    PubMed Central

    Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli

    2015-01-01

    We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176

  1. Applications of Ultrafast Terahertz Pulses for Intra-ExcitonicSpectroscopy of Quasi-2D Electron-Hole Gases

    SciTech Connect

    Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Chemla, D.S.

    2006-09-02

    Excitons are of fundamental interest and of importance foropto-electronic applications of bulk and nano-structured semiconductors.This paper discusses the utilization of ultrafast terahertz (THz) pulsesfor the study of characteristic low-energy excitations of photoexcitedquasi 2D electron-hole (e-h) gases. Optical-pump THz-probe spectroscopyat 250-kHz repetition rate is employed to detect characteristic THzsignatures of excitons and unbound e-h pairs in GaAs quantum wells.Exciton and free-carrier densities are extracted from the data using atwo-component model. We report the detailed THz response and pairdensities for different photoexcitation energies resonant to heavy-holeexcitons, light-hole excitons, or the continuum of unbound pairs. Suchexperiments can provide quantitative insights into wavelength, time, andtemperature dependence of the low-energy response and composition ofoptically excited e-h gases in low-dimensionalsemiconductors.

  2. Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh

    SciTech Connect

    Drumm, C.R.

    1999-01-01

    A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.

  3. Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images

    PubMed Central

    Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.

    2012-01-01

    SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773

  4. Modeling of Devonian shale gas reservoirs. Task 16. Mathematical modeling of shale gas production (2D model). Final report

    SciTech Connect

    Not Available

    1980-07-31

    The Department of Energy (DOE), Morgantown Energy Technology Center (METC) has been supporting the development of flow models for Devonian shale gas reservoirs. The broad objectives of this modeling program are to: (1) develop and validate a mathematical model which describes gas flow through Devonian shales; (2) determine the sensitive parameters that affect deliverability and recovery of gas from Devonian shales; (3) recommend laboratory and field measurements for determination of those parameters critical to the productivity and timely recovery of gas from the Devonian shales; (4) analyze pressure and rate transient data from observation and production gas wells to determine reservoir parameters and well performance; and (5) study and determine the overall performance of Devonian shale reservoirs in terms of well stimulation, well spacing, and resource recovery as a function of gross reservoir properties such as anisotropy, porosity and thickness variations, and boundary effects. During the previous annual period, a mathematical model describing gas flow through Devonian shales and the software for a radial one-dimensional numerical model for single well performance were completed and placed into operation. Although the radial flow model is a powerful tool for studying single well behavior, it is inadequate for determining the effects of well spacing, stimulation treatments, and variation in reservoir properties. Hence, it has been necessary to extend the model to two-dimensions, maintaining full capability regarding Klinkerberg effects, desorption, and shale matrix parameters. During the current annual period, the radial flow model has been successfully extended to provide the two-dimensional capability necessary for the attainment of overall program objectives, as described above.

  5. Influence of weak vibrational-electronic couplings on 2D electronic spectra and inter-site coherence in weakly coupled photosynthetic complexes

    SciTech Connect

    Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito

    2015-08-14

    Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.

  6. Hartree-Fock Solutions of 2d Interacting Tight-Binding Electrons: Mott Properties and Room Temperature Superconductivity Indications

    NASA Astrophysics Data System (ADS)

    Cabo Montes de Oca, A.; March, N. H.; Cabo-Bizet, A.

    2014-12-01

    Former results for a tight-binding (TB) model of CuO planes in La2CuO4 are reinterpreted here to underline their wider implications. It is noted that physical systems being appropriately described by the TB model can exhibit the main strongly correlated electron system (SCES) properties, when they are solved in the HF approximation, by also allowing crystal symmetry breaking effects and noncollinear spin orientations of the HF orbitals. It is argued how a simple 2D square lattice system of Coulomb interacting electrons can exhibit insulator gaps and pseudogap states, and quantum phase transitions as illustrated by the mentioned former works. A discussion is also presented here indicating the possibility of attaining room temperature superconductivity, by means of a surface coating with water molecules of cleaved planes of graphite, being orthogonal to its c-axis. The possibility that 2D arrays of quantum dots can give rise to the same effect is also proposed to consideration. The analysis also furnishes theoretical insight to solve the Mott-Slater debate, at least for the La2CuO4 and TMO band structures. The idea is to apply a properly noncollinear GW scheme to the electronic structure calculation of these materials. The fact is that the GW approach can be viewed as a HF procedure in which the screening polarization is also determined. This directly indicates the possibility of predicting the assumed dielectric constant in the previous works. Thus, the results seem to identify that the main correlation properties in these materials are determined by screening. Finally, the conclusions also seem to be of help for the description of the experimental observations of metal-insulator transitions and Mott properties in atoms trapped in planar photonic lattices.

  7. Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures.

    PubMed

    Kang, Jun; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai; Wang, Lin-Wang

    2013-01-01

    The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties. PMID:24079953

  8. Magneto-transport characteristics of a 2D electron system driven to negative magneto-conductivity by microwave photoexcitation

    NASA Astrophysics Data System (ADS)

    Mani, Ramesh; Kriisa, A.

    2015-03-01

    Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking- property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance with a concomitant sign reversal in the Hall voltage. Transport measurements are supported by the DOE, Office of Basic Energy Sciences, Material Sciences and Engineering Division under DE-SC0001762. Additional support by the ARO under W911NF-07-01-015.

  9. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: Electronic versus vibrational coherence

    SciTech Connect

    Plenio, M. B.; Almeida, J.; Huelga, S. F.

    2013-12-21

    We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.

  10. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  11. Warm ionized gas in CALIFA early-type galaxies. 2D emission-line patterns and kinematics for 32 galaxies

    NASA Astrophysics Data System (ADS)

    Gomes, J. M.; Papaderos, P.; Kehrig, C.; Vílchez, J. M.; Lehnert, M. D.; Sánchez, S. F.; Ziegler, B.; Breda, I.; Dos Reis, S. N.; Iglesias-Páramo, J.; Bland-Hawthorn, J.; Galbany, L.; Bomans, D. J.; Rosales-Ortega, F. F.; Cid Fernandes, R.; Walcher, C. J.; Falcón-Barroso, J.; García-Benito, R.; Márquez, I.; Del Olmo, A.; Masegosa, J.; Mollá, M.; Marino, R. A.; González Delgado, R. M.; López-Sánchez, Á. R.; Califa Collaboration

    2016-04-01

    Context. The morphological, spectroscopic, and kinematical properties of the warm interstellar medium (wim) in early-type galaxies (ETGs) hold key observational constraints to nuclear activity and the buildup history of these massive, quiescent systems. High-quality integral field spectroscopy (IFS) data with a wide spectral and spatial coverage, such as those from the CALIFA survey, offer an unprecedented opportunity for advancing our understanding of the wim in ETGs. Aims: This article centers on a 2D investigation of the wim component in 32 nearby (≲150 Mpc) ETGs from CALIFA, complementing a previous 1D analysis of the same sample. Methods: The analysis presented here includes Hα intensity and equivalent width (EW) maps and radial profiles, diagnostic emission-line ratios, and ionized-gas and stellar kinematics. It is supplemented by τ-ratio maps, which are a more efficient means to quantify the role of photoionization by the post-AGB stellar component than alternative mechanisms (e.g., AGN, low-level star formation). Results: Confirming and strengthening our previous conclusions, we find that ETGs span a broad continuous sequence in the properties of their wim, exemplified by two characteristic classes. The first (type i) comprises systems with a nearly constant EW(Hα) in their extranuclear component, which quantitatively agrees with (but is no proof of) the hypothesis that photoionization by the post-AGB stellar component is the main driver of extended wim emission. The second class (type ii) stands for virtually wim-evacuated ETGs with a very low (≤0.5 Å), outwardly increasing EW(Hα). These two classes appear indistinguishable from one another by their LINER-specific emission-line ratios in their extranuclear component. Here we extend the tentative classification we proposed previously by the type i+, which is assigned to a subset of type i ETGs exhibiting ongoing low-level star-forming activity in their periphery. This finding along with faint

  12. Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.

    2008-03-01

    High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.

  13. A Stochastic Hill Climbing Approach for Simultaneous 2D Alignment and Clustering of Cryogenic Electron Microscopy Images.

    PubMed

    Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans

    2016-06-01

    A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214

  14. High Mobility Two-Dimensional Electron Gas in Black Phosphorus

    NASA Astrophysics Data System (ADS)

    Li, Likai; Ye, Guojun; Tran, Vy; Chen, Guorui; Wang, Huichao; Wang, Jian; Watanabe, Kenji; Taniguchi, Takashi; Yang, Li; Chen, Xianhui; Zhang, Yuanbo

    2015-03-01

    Black phosphorus has recently emerged as a new member in the family of two-dimensional (2D) atomic crystals. It is a semiconductor with a tunable bandgap and high carrier mobility - material properties that are important for potential opto-electronic and high-speed device applications. In this work, we achieve a record-high carrier mobility in black phosphorus by placing it on hexagonal boron nitride (h-BN) substrate. The exceptional mobility of the 2D electron gas created at the interface allows us to observe quantum oscillations for the first time in this material. The temperature and magnetic field dependence of the oscillations yields crucial information about the black phosphorus 2DEG, such as cyclotron mass of the charge carriers and their lifetime. Our results pave the way to future research on quantum transport in black phosphorus.

  15. Effective Mass and g-factor of 2D Electrons in a HgTe Quantum Well from THz Photoresponse

    NASA Astrophysics Data System (ADS)

    Pakmehr, Mehdi; Stier, A. V.; Zhang, H. D.; Bruene, C.; Buhmann, H.; Molenkamp, L.; McCombe, B. D.

    2013-03-01

    There is current interest in HgTe because of its interesting ``inverted'' band structure and large spin-orbit interaction, and because it is a topological insulator under quantum confinement, Well-widths close to that at which the band structure goes from the ``inverted'' to the normal structure are of particular interest. We have used photoresponse excited by several lines from an optically pumped THz laser and magnetotransport measurements to determine the cyclotron effective mass and g-factor of 2D electrons in the gamma_6 conduction band of a high quality HgTe quantum well (ns = 1.55 x 1012 cm-2; 6 nm well) at low temperatures. One of the two samples studied was gated, which allowed density to be varied by over 30%. We find m* =0.039me and g = -18 at the highest density from fits to the PR with the field normal to the plane of the QW, and separately from CR transmission measurements and tilted field experiments. We will also discuss electron spin resonance measurements near filling factors 7 and 9. Supported in part by NSF DMR 1008138

  16. Energy transfer dynamics in trimers and aggregates of light-harvesting complex II probed by 2D electronic spectroscopy

    SciTech Connect

    Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.

    2015-06-07

    The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.

  17. Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure

    NASA Astrophysics Data System (ADS)

    de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.

    2016-06-01

    Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au

  18. Development of a soft-X ray detector for energy resolved 2D imaging by means of a Gas Pixel Detector with highly integrated microelectronics

    SciTech Connect

    Pacella, D.; Pizzicaroli, G.; Romano, A.; Gabellieri, L.; Bellazzini, R.; Brez, A.

    2008-03-12

    Soft-X ray 2-D imaging on ITER is not considered yet. We propose a new approach, based on a gas detector with a gas electron multiplier (GEM) as amplifying structure and with a two-dimensional readout fully integrated with the front end electronics, through an ASIC developed on purpose. The concept has been already tested by means of a prototype, with 128 pixels, carried out in Frascati in collaboration with INFN-Pisa and tested on FTU in 2001 and NSTX in 2002-2004. Thanks to the photon counting mode, it provides 2-D imaging with high time resolution (sub millisecond), high sensitivity and signal to noise ratio. Its capability of energy discrimination allows the acquisition of pictures in X-ray energy bands or to perform a spectral scan in the full energy interval. We propose the realisation of such kind a detector with a readout microchip (ASIC) equipped with 105600 hexagonal pixels arranged at 70 {mu}m pitch in a 300x352 honeycomb matrix, corresponding to an active area of 2.1x2.1 cm{sup 2}, with a pixel density of 240 pixels/ mm{sup 2}. Each pixel is connected to a charge sensitive amplifier followed by a discriminator of pulse amplitude and counter. The chip integrates more than 16.5 million transistors and it is subdivided in 64 identical clusters, to be read independently each other. An important part of the work will be also the design of the whole detector to fulfil all the constraints and requirements as plasma diagnostic in a tokamak machine. Since the detector has high and controllable intrinsic gain, it works well even at very low photon energy, ranging from 0.2 keV to 10 keV (X-VUV region). This range appears therefore particularly suitable for ITER to monitor the outer part of the plasma. In particular pedestal physics, edge modes, localization and effects of additional heating, boundary plasma control etc. The capability of this proposed detector to work in this energy range is further valuable because solid state detectors are not favorite at low

  19. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  20. Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization

    NASA Astrophysics Data System (ADS)

    Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.

    2008-03-01

    We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.

  1. Photoluminescence and the gallium problem for highest-mobility GaAs/AlGaAs-based 2d electron gases

    NASA Astrophysics Data System (ADS)

    Schläpfer, F.; Dietsche, W.; Reichl, C.; Faelt, S.; Wegscheider, W.

    2016-05-01

    The quest for extremely high mobilities of 2d electron gases in MBE-grown heterostructures is hampered by the available purity of the starting materials, particularly of the gallium. Here we compare the role of different Ga lots having nominally the highest possible quality on the mobility and the photoluminescence (PL) of modulation doped single interface structures and find significant differences. A weak exciton PL reveals that the purity of the Ga is insufficient. No high mobility can be reached with such a lot with a reasonable effort. On the other hand, a strong exciton PL indicates a high initial Ga purity, allowing to reach mobilities of 15 million (single interface) or 28 million cm2/V s (doped quantum wells) in our MBE systems. We discuss possible origins of the inconsistent Ga quality. Furthermore, we compare samples grown in different MBE systems over a period of several years and find that mobility and PL are correlated if similar structures and growth procedures are used.

  2. Shubnikov-de Haas oscillations in a two-dimensional electron gas under subterahertz radiation

    NASA Astrophysics Data System (ADS)

    Shi, Q.; Martin, P. D.; Hatke, A. T.; Zudov, M. A.; Watson, J. D.; Gardner, G. C.; Manfra, M. J.; Pfeiffer, L. N.; West, K. W.

    2015-08-01

    We report on magnetotransport measurements in a two-dimensional (2D) electron gas subject to subterahertz radiation in the regime where Shubnikov-de Haas oscillations (SdHOs) and microwave-induced resistance oscillations (MIROs) coexist over a wide magnetic field range, spanning several harmonics of the cyclotron resonance. Surprisingly, we find that the SdHO amplitude is modified by the radiation in a nontrivial way, owing to the oscillatory correction which has the same period and phase as MIROs. This finding challenges our current understanding of microwave photoresistance in 2D electron gas, calling for future investigations.

  3. Electron spectrometer for gas-phase spectroscopy

    SciTech Connect

    Bozek, J.D.; Schlachter, A.S.

    1997-04-01

    An electron spectrometer for high-resolution spectroscopy of gaseous samples using synchrotron radiation has been designed and constructed. The spectrometer consists of a gas cell, cylindrical electrostatic lens, spherical-sector electron energy analyzer, position-sensitive detector and associated power supplies, electronics and vacuum pumps. Details of the spectrometer design are presented together with some representative spectra.

  4. Gas Electron Multiplier (GEM) Chamber Characteristics Test

    SciTech Connect

    Yu, Jaehoon; White, Andy; Park, Seongtae; Hahn, Changhie; Baldeloma, Edwin; Tran, Nam; McIntire, Austin; Soha, Aria; /Fermilab

    2011-01-11

    Gas Electron Multipliers (GEMs) have been used in many HEP experiments as tracking detectors. They are sensitive to X-rays which allows use beyond that of HEP. The UTA High Energy group has been working on using GEMs as the sensitive gap detector in a DHCAL for the ILC. The physics goals at the ILC put a stringent requirement on detector performance. Especially the precision required for jet mass and positions demands an unprecedented jet energy resolution to hadronic calorimeters. A solution to meet this requirement is using the Particle Flow Algorithm (PFA). In order for PFA to work well, high calorimeter granularity is necessary. Previous studies based on GEANT simulations using GEM DHCAL gave confidence on the performance of GEM in the sensitive gap in a sampling calorimeter and its use as a DHCAL in PFA. The UTA HEP team has built several GEM prototype chambers, including the current 30cm x 30cm chamber integrated with the SLAC-developed 64 channel kPiX analog readout chip. This chamber has been tested on the bench using radioactive sources and cosmic ray muons. In order to have fuller understanding of various chamber characteristics, the experiments plan to expose 1-3 GEM chambers of dimension 35cm x 35cm x 5cm with 1cm x 1cm pad granularity with 64 channel 2-D simultaneous readout using the kPiX chip. In this experiment the experiments pan to measure MiP signal height, chamber absolute efficiencies, chamber gain versus high voltage across the GEM gap, the uniformity of the chamber across the 8cm x 8cm area, cross talk and its distance dependence to the triggered pad, chamber rate capabilities, and the maximum pad occupancy rate.

  5. Acentric 2-D Ensembles of D-br-A Electron-Transfer Chromophores via Vectorial Orientation within Amphiphilic n-Helix Bundle Peptides for Photovoltaic Device Applications

    PubMed Central

    Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H. Christopher; Therien, Michael J.; Blasie, J. Kent

    2012-01-01

    We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially-orient a linearly-extended Donor-bridge-Acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle’s interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents, and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle’s exterior was employed to vectorially-orient the peptide-chromophore complex at a liquid-gas interface, and its ends tailored for subsequent covalent attachment to an inorganic surface, via a “directed assembly” approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrates that densely-packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200Å2 offer unique potential as active layers in binary heterojucntion photovoltaic devices. PMID:22242787

  6. Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  7. Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x

    SciTech Connect

    Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)

    1991-12-01

    We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.

  8. Insights into Gulf of Mexico Gas Hydrate Study Sites GC955 and WR313 from New Multicomponent and High-Resolution 2D Seismic Data

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Collett, T. S.; Shedd, W. W.; Frye, M.

    2014-12-01

    In 2013, the U.S. Geological Survey led a seismic acquisition expedition in the Gulf of Mexico, acquiring multicomponent data and high-resolution 2D multichannel seismic (MCS) data at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313). Based on previously collected logging-while-drilling (LWD) borehole data, these gas hydrate study sites are known to include high concentrations of gas hydrate within sand layers. At GC955 our new 2D data reveal at least three features that appear to be fluid-flow pathways (chimneys) responsible for gas migration and thus account for some aspects of the gas hydrate distribution observed in the LWD data. Our new data also show that the main gas hydrate target, a Pleistocene channel/levee complex, has an areal extent of approximately 5.5 square kilometers and that a volume of approximately 3 x 107 cubic meters of this body lies within the gas hydrate stability zone. Based on LWD-inferred values and reasonable assumptions for net sand, sand porosity, and gas hydrate saturation, we estimate a total equivalent gas-in-place volume of approximately 8 x 108 cubic meters for the inferred gas hydrate within the channel/levee deposits. At WR313 we are able to map the thin hydrate-bearing sand layers in considerably greater detail than that provided by previous data. We also can map the evolving and migrating channel feature that persists in this area. Together these data and the emerging results provide valuable new insights into the gas hydrate systems at these two sites.

  9. An Electronically Timed Gas Viscometer.

    ERIC Educational Resources Information Center

    Bramwell, Fitzgerald B.; Bramwell, Fitzgerald

    1982-01-01

    Describes modification of a gas viscometer to produce a low cost instrument with high precision and safe design. Three tungsten electrodes are mounted in the viscometer using graded glass seals and a ball trap is inserted between mercury reservoir and all external stopcocks. Also describes modifications in experimental procedures. (Author/JN)

  10. 3D Reservoir Modeling of Semutang Gas Field: A lonely Gas field in Chittagong-Tripura Fold Belt, with Integrated Well Log, 2D Seismic Reflectivity and Attributes.

    NASA Astrophysics Data System (ADS)

    Salehin, Z.; Woobaidullah, A. S. M.; Snigdha, S. S.

    2015-12-01

    Bengal Basin with its prolific gas rich province provides needed energy to Bangladesh. Present energy situation demands more Hydrocarbon explorations. Only 'Semutang' is discovered in the high amplitude structures, where rest of are in the gentle to moderate structures of western part of Chittagong-Tripura Fold Belt. But it has some major thrust faults which have strongly breached the reservoir zone. The major objectives of this research are interpretation of gas horizons and faults, then to perform velocity model, structural and property modeling to obtain reservoir properties. It is needed to properly identify the faults and reservoir heterogeneities. 3D modeling is widely used to reveal the subsurface structure in faulted zone where planning and development drilling is major challenge. Thirteen 2D seismic and six well logs have been used to identify six gas bearing horizons and a network of faults and to map the structure at reservoir level. Variance attributes were used to identify faults. Velocity model is performed for domain conversion. Synthetics were prepared from two wells where sonic and density logs are available. Well to seismic tie at reservoir zone shows good match with Direct Hydrocarbon Indicator on seismic section. Vsh, porosity, water saturation and permeability have been calculated and various cross plots among porosity logs have been shown. Structural modeling is used to make zone and layering accordance with minimum sand thickness. Fault model shows the possible fault network, those liable for several dry wells. Facies model have been constrained with Sequential Indicator Simulation method to show the facies distribution along the depth surfaces. Petrophysical models have been prepared with Sequential Gaussian Simulation to estimate petrophysical parameters away from the existing wells to other parts of the field and to observe heterogeneities in reservoir. Average porosity map for each gas zone were constructed. The outcomes of the research

  11. High-throughput critical dimensions uniformity (CDU) measurement of two-dimensional (2D) structures using scanning electron microscope (SEM) systems

    NASA Astrophysics Data System (ADS)

    Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack

    2011-03-01

    In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.

  12. Resistively detected high-order magnetoplasmons in a high-quality 2D electron gas

    NASA Astrophysics Data System (ADS)

    Zudov, M. A.; Shi, Q.; Pfeiffer, L. N.; West, K. W.; Watson, J. D.; Manfra, M. J.

    We report on high-order magnetoplasmon resonances detected in photoresistance in high-mobility GaAs quantum wells. These resonances manifest themselves as a series of resistance extrema in the regime of Shubnikov-de Haas oscillations. Extending to orders above 20, the extrema exhibit alternating strength, being less (more) pronounced at even (odd) order magnetoplasmon modes. The lower magnetoplasmon modes reveal the importance of retardation effects.

  13. Quasi-One-Dimensional Electron Gas Bound to a Helium-Coated Nanotube

    NASA Astrophysics Data System (ADS)

    Liebrecht, Michael; Del Maestro, Adrian; Cole, Milton W.

    2016-05-01

    A much-studied system is the quasi-2D electron gas in image-potential bound states at the surface of helium and hydrogen. In this paper, we report on an analogous quasi-1D system: electrons bound by image-like polarization forces to the surface of a helium-coated carbon nanotube. The potential is computed from an electron-helium pseudopotential, plus a dynamic image term evaluated from a semi-classical model of the nanotube's response function. Predictions are made for the bound states and potential many-body properties of this novel electron gas for a specific choice of tube radius and film thickness.

  14. Electronic Transport Properties of New 2-D Materials GeH and NaSn2As2

    NASA Astrophysics Data System (ADS)

    He, Bin; Cultrara, Nicholas; Arguilla, Maxx; Goldberger, Joshua; Heremans, Joseph

    2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and NaSn2As2. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe2 crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn2As2 is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, NaSn2As2 is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of 5m Ω/square. Thermoelectric transport properties of NaSn2As2 will be reported. This work is support by the NSF EFRI-2DARE project EFRI-1433467.

  15. The effect of electron-hole scattering on transport properties of a 2D semimetal in the HgTe quantum well

    SciTech Connect

    Entin, M. V.; Magarill, L. I.; Olshanetsky, E. B. Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.

    2013-11-15

    The influence of e-h scattering on the conductivity and magnetotransport of 2D semimetallic HgTe is studied both theoretically and experimentally. The presence of e-h scattering leads to the friction between electrons and holes resulting in a large temperature-dependent contribution to the transport coefficients. The coefficient of friction between electrons and holes is determined. The comparison of experimental data with the theory shows that the interaction between electrons and holes based on the long-range Coulomb potential strongly underestimates the e-h friction. The experimental results are in agreement with the model of strong short-range e-h interaction.

  16. PM2D code simulation of electronic dynamics and electro-magnetic fields generation by ultra-short laser pulses interaction with matter

    SciTech Connect

    Litvinenko, I. A.; Lykov, V. A.

    1997-04-15

    The results of numerical simulation of fast electrons motion and generated electro-magnetic fields at the picosecond pulse laser interaction with flat target are presented. The calculations were performed with PM2D code, where relativistic equation of electron motion joint with Maxwell equations is solved by particle method in cells. The efficiency of fast electrons energy conversion to the transverse electromagnetic wave of picosecond duration can reach the value 10{sup -4} for the intensity of ultrashort laser pulse at the target 10{sup 16}-10{sup 17} W/cm{sup 2}.

  17. Nuclei embedded in an electron gas

    SciTech Connect

    Buervenich, Thomas J.; Mishustin, Igor N.; Greiner, Walter

    2007-09-15

    The properties of nuclei embedded in an electron gas are studied within the relativistic mean-field approach. These studies are relevant for nuclear properties in astrophysical environments such as neutron-star crusts and supernova explosions. The electron gas is treated as a constant background in the Wigner-Seitz cell approximation. We investigate the stability of nuclei with respect to {alpha} and {beta} decay. Furthermore, the influence of the electronic background on spontaneous fission of heavy and superheavy nuclei is analyzed. We find that the presence of the electrons leads to stabilizing effects for both {alpha} decay and spontaneous fission at high electron densities. Furthermore, the screening effect shifts the proton dripline to more proton-rich nuclei, and the stability line with respect to {beta}-decay is shifted to more neutron-rich nuclei. Implications for the creation and survival of very heavy nuclear systems are discussed.

  18. Electron energy deposition in carbon monoxide gas

    NASA Technical Reports Server (NTRS)

    Liu, Weihong; Victor, G. A.

    1994-01-01

    A comprehensive set of electron impact cross sections for carbon monoxide molecules is presented on the basis of the most recent experimental measurements and theoretical calculations. The processes by which energetic electrons lose energy in CO gas are analyzed with these input cross sections. The efficiencies are computed of vibrational and electronic excitation, dissociation, ionization, and heating for CO gas with fractional ionization ranging from 0% to 10%. The calculated mean energy per ion pair for neutral CO gas is 32.3 eV, which is in excellent agreement with the experimental value of 32.2 eV. It increases to 35.6 eV at a fractional ionization of 1%, typical of supernovae ejecta.

  19. Collisional electron spectroscopy method for gas analysis

    NASA Astrophysics Data System (ADS)

    Stefanova, M. S.; Pramatarov, P. M.; Kudryavtsev, A. A.; Peyeva, R. A.; Patrikov, T. B.

    2016-05-01

    Recently developed collisional electron spectroscopy (CES) method, based on identification of gas impurities by registration of groups of nonlocal fast electrons released by Penning ionization of the impurity particles by helium metastable atoms, is verified experimentally. Detection and identification of atoms and molecules of gas impurities in helium at pressures of 14 - 90 Torr with small admixtures of Ar, Kr, CO2, and N2 are carried out. The nonlocal negative glow plasma of short dc microdischarge is used as most suitable medium. Records of the energy spectra of penning electrons are performed by means of an additional electrode - sensor, located at the boundary of the discharge volume. Maxima appear in the electron energy spectra at the characteristic energies corresponding to Penning ionization of the impurity particles by helium metastable atoms.

  20. Seismic investigation of gas hydrates in the Gulf of Mexico: Results from 2013 high-resolution 2D and multicomponent seismic surveys

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Shedd, W. W.; Frye, M.; Agena, W.; Miller, J. J.; Ruppel, C. D.

    2013-12-01

    In the spring of 2013, the U.S. Geological Survey led a 16-day seismic acquisition cruise aboard the R/V Pelican in the Gulf of Mexico to survey two established gas hydrate study sites. We used a pair of 105/105 cubic inch generator/injector airguns as the seismic source, and a 450-m 72-channel hydrophone streamer to record two-dimensional (2D) data. In addition, we also deployed at both sites an array of 4-component ocean-bottom seismometers (OBS) to record P- and S-wave energy at the seafloor from the same seismic source positions as the streamer data. At lease block Green Canyon 955 (GC955), we acquired 400 km of 2-D streamer data, in a 50- to 250-m-spaced grid augmented by several 20-km transects that provide long offsets for the OBS. The seafloor recording at GC955 was accomplished by a 2D array of 21 OBS at approximately 400-m spacing, including instruments carefully positioned at two of the three boreholes where extensive logging-while-drilling data is available to characterize the presence of gas hydrate. At lease block Walker Ridge 313 (WR313), we acquired 450 km of streamer data in a set of 11-km, 150- to 1,000-m-spaced, dip lines and 6- to 8-km, 500- to 1000-m-spaced strike lines. These were augmented by a set of 20-km lines that provide long offsets for a predominantly linear array of 25 400- to 800-m spaced OBS deployed in the dip direction in and around WR313. The 2D data provide at least five times better resolution of the gas hydrate stability zone than the available petroleum industry seismic data from the area; this enables considerably improved analysis and interpretation of stratigraphic and structural features including previously unseen faults and gas chimneys that may have considerable impact on gas migration. Initial processing indicates that the OBS data quality is good, and we anticipate that these data will yield estimates of P- and S-wave velocities, as well as PP (reflected) and PS (converted wave) images beneath each sensor location.

  1. Seismic investigation of gas hydrates in the Gulf of Mexico: 2013 multi-component and high-resolution 2D acquisition at GC955 and WR313

    USGS Publications Warehouse

    Haines, Seth S.; Hart, Patrick E.; Shedd, William W.; Frye, Matthew

    2014-01-01

    The U.S. Geological Survey led a seismic acquisition cruise at Green Canyon 955 (GC955) and Walker Ridge 313 (WR313) in the Gulf of Mexico from April 18 to May 3, 2013, acquiring multicomponent and high-resolution 2D seismic data. GC955 and WR313 are established, world-class study sites where high gas hydrate saturations exist within reservoir-grade sands in this long-established petroleum province. Logging-while-drilling (LWD) data acquired in 2009 by the Gulf of Mexico Gas Hydrates Joint Industry Project provide detailed characterization at the borehole locations, and industry seismic data provide regional- and local-scale structural and stratigraphic characterization. Significant remaining questions regarding lithology and hydrate saturation between and away from the boreholes spurred new geophysical data acquisition at these sites. The goals of our 2013 surveys were to (1) achieve improved imaging and characterization at these sites and (2) refine geophysical methods for gas hydrate characterization in other locations. In the area of GC955 we deployed 21 ocean-bottom seismometers (OBS) and acquired approximately 400 km of high-resolution 2D streamer seismic data in a grid with line spacing as small as 50 m and along radial lines that provide source offsets up to 10 km and diverse azimuths for the OBS. In the area of WR313 we deployed 25 OBS and acquired approximately 450 km of streamer seismic data in a grid pattern with line spacing as small as 250 m and along radial lines that provide source offsets up to 10 km for the OBS. These new data afford at least five times better resolution of the structural and stratigraphic features of interest at the sites and enable considerably improved characterization of lithology and the gas and gas hydrate systems. Our recent survey represents a unique application of dedicated geophysical data to the characterization of confirmed reservoir-grade gas hydrate accumulations.

  2. Using Divergent Δ12CH2D2 and Δ13CH3D to Trace the Provenance and Evolution of Methane Gas

    NASA Astrophysics Data System (ADS)

    Young, E. D.; Freedman, P.; Mills, M.; Rumble, D.

    2015-12-01

    Measurements of Δ13CH3D (deviations in Δ13CH3D/12CH4 from stochastic; Ono et al. Anal. Chem. v.86, p.6487, 2014) or Δ18 (from (12CH2D2 + 13CH3D)/12CH4; Stolper et al. Science, v.344, p.1500, 2014, ) have been used to infer temperatures of formation of methane gas. However, departures from thermodynamic equilibrium isotopic bond ordering will result from any fractionating process that do not include bond rupture and reformation, including mixing, diffusion, and kinetic processing. This is because the isotopic bond ordering no longer reflects the bulk isotopic composition once fractionation occurs. A direct measure of departures from thermodynamic equilibrium isotopic bond ordering in methane comes from both Δ12CH2D2 and Δ13CH3D in the same gas. Until now, this has not been possible due to instrumental limitations. We have carried out measurements of Δ12CH2D2 and Δ13CH3D in methane gas mixtures using a unique, large-geometry double-focusing isotope ratio mass spectrometer (IRMS), the Panorama, in order to investigate the usefulness of these two mass-18 isotopologues as tracers of mixing of methane sources. This instrument has a dispersion/magnification ratio, the parameter of merit for mass resolving power, of ~ 1400 mm that exceeds that of any other gas-source IRMS by more than 3.5x and is slightly larger than that for large-geometry SIMS instruments. With this geometry we routinely operate with mass resolving power (M/ΔM, 5% and 95%) of 40,000 or greater with useful sensitivity for isotope ratio analysis. For these experiments we mixed two gases with bulk D/H differing by 100 ‰. The results follow theoretical expectations within uncertainties of 0.5 ‰ for Δ12CH2D2 and 0.1 ‰ for Δ13CH3D. Precision is sufficient to detect as little as 10% mixing in this system. This precision would also be capable of detecting subtle departures from equilibrium caused by diffusion and kinetic bond rupture (e.g. CH4 + OH).

  3. PHOTOELECTRON AND AUGER ELECTRON ASYMMETRIES: ALIGNMENT OF Xe{sup +}({sup 2}D{sub 5/2}) BY PHOTOIONIZATION

    SciTech Connect

    Southworth, S. H.; Kobrin, P. H.; Truesdale, C. M.; Lindle, D.; Owaki, S.; Shirley, D. A.

    1980-12-01

    Angular distributions of photoelectrons from the Xe 4d subshell, and N{sub 4,5}oo Auger electrons, have been measured using synchrotron radiation. The 4d asymmetry parameter exhibits strong oscillations with energy, in agreement with several theoretical calculations. The Auger electrons show large asymmetries due to alignment of Xe{sup +} by photoionization.

  4. Electron gas grid semiconductor radiation detectors

    DOEpatents

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  5. Communication: two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): simultaneous planar imaging and multiplex spectroscopy in a single laser shot.

    PubMed

    Bohlin, Alexis; Kliewer, Christopher J

    2013-06-14

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15,000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm(2). PMID:23781772

  6. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    NASA Astrophysics Data System (ADS)

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-06-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  7. Communication: Two-dimensional gas-phase coherent anti-Stokes Raman spectroscopy (2D-CARS): Simultaneous planar imaging and multiplex spectroscopy in a single laser shot

    SciTech Connect

    Bohlin, Alexis; Kliewer, Christopher J.

    2013-01-01

    Coherent anti-Stokes Raman spectroscopy (CARS) has been widely used as a powerful tool for chemical sensing, molecular dynamics measurements, and rovibrational spectroscopy since its development over 30 years ago, finding use in fields of study as diverse as combustion diagnostics, cell biology, plasma physics, and the standoff detection of explosives. The capability for acquiring resolved CARS spectra in multiple spatial dimensions within a single laser shot has been a long-standing goal for the study of dynamical processes, but has proven elusive because of both phase-matching and detection considerations. Here, by combining new phase matching and detection schemes with the high efficiency of femtosecond excitation of Raman coherences, we introduce a technique for single-shot two-dimensional (2D) spatial measurements of gas phase CARS spectra. We demonstrate a spectrometer enabling both 2D plane imaging and spectroscopy simultaneously, and present the instantaneous measurement of 15, 000 spatially correlated rotational CARS spectra in N2 and air over a 2D field of 40 mm2.

  8. Energy of the quasi-free electron in H{sub 2}, D{sub 2}, and O{sub 2}: Probing intermolecular potentials within the local Wigner-Seitz model

    SciTech Connect

    Evans, C. M. Krynski, Kamil; Streeter, Zachary; Findley, G. L.

    2015-12-14

    We present for the first time the quasi-free electron energy V{sub 0}(ρ) for H{sub 2}, D{sub 2}, and O{sub 2} from gas to liquid densities, on noncritical isotherms and on a near critical isotherm in each fluid. These data illustrate the ability of field enhanced photoemission (FEP) to determine V{sub 0}(ρ) accurately in strongly absorbing fluids (e.g., O{sub 2}) and fluids with extremely low critical temperatures (e.g., H{sub 2} and D{sub 2}). We also show that the isotropic local Wigner-Seitz model for V{sub 0}(ρ) — when coupled with thermodynamic data for the fluid — can yield optimized parameters for intermolecular potentials, as well as zero kinetic energy electron scattering lengths.

  9. A zero-equation turbulent electron transport model for cross-field migration and its implementation in a 2-D hybrid plasma Hall thruster simulation

    NASA Astrophysics Data System (ADS)

    Cappelli, Mark; Young, Chris; Cha, Eusnun; Fernandez, Eduardo; Stanford Plasma Physics Laboratory Collaboration; Eckerd College Collaboration

    2015-09-01

    We present a simple, zero-equation turbulence model for electron transport across the magnetic field of a plasma Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations of a 72 mm diameter laboratory thruster operating at 400 W. The turbulent transport model is based on the assumption that the primary means of electron energy dissipation is the turbulent eddy cascade in the electron fluid to smaller scales. Implementing the model into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. We find that the model captures the strong axial variation in the mobility seen in experiments. In particular, it predicts the existence of a strong transport barrier which anchors the region of plasma acceleration. The model also captures the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. We observe quantitative agreement with recent laser induced fluorescence measurements of time-averaged xenon ion and neutral velocities along the channel centerline. This work was supported by the Air Force Office of Scientific Research.

  10. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.

    PubMed

    Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  11. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    PubMed Central

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres

    2016-01-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161

  12. Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties

    NASA Astrophysics Data System (ADS)

    Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres

    2016-03-01

    We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.

  13. Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II

    SciTech Connect

    Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.

    1998-11-01

    Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.

  14. 2D numerical modelling of gas temperature in a nanosecond pulsed longitudinal He-SrBr2 discharge excited in a high temperature gas-discharge tube for the high-power strontium laser

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2016-05-01

    An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  15. Electronic Desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bender, M; Bieniosek, F M; Kramer, A; Kwan, J; Prost, L; Seidl, P A; Westenskow, G

    2006-11-02

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  16. Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface

    SciTech Connect

    Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia

    2013-11-14

    A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.

  17. Engineering the electronic and magnetic properties of d(0) 2D dichalcogenide materials through vacancy doping and lattice strains.

    PubMed

    Ao, L; Pham, A; Xiao, H Y; Zu, X T; Li, S

    2016-03-14

    We have systematically investigated the effects of different vacancy defects in 2D d(0) materials SnS2 and ZrS2 using first principles calculations. The theoretical results show that the single cation vacancy and the vacancy complex like V-SnS6 can induce large magnetic moments (3-4 μB) in these single layer materials. Other defects, such as V-SnS3, V-S, V-ZrS3 and V-ZrS6, can result in n-type conductivity. In addition, the ab initio studies also reveal that the magnetic and conductive properties from the cation vacancy and the defect complex V-SnS6 can be modified using the compressive/tensile strain of the in-plane lattices. Specifically, the V-Zr doped ZrS2 monolayer can be tuned from a ferromagnetic semiconductor to a metallic/half-metallic material with decreasing/increasing magnetic moments depending on the external compressive/tensile strains. On the other hand, the semiconducting and magnetic properties of V-Sn doped SnS2 is preserved under different lattice compression and tension. For the defect complex like V-SnS6, only the lattice compression can tune the magnetic moments in SnS2. As a result, by manipulating the fabrication parameters, the magnetic and conductive properties of SnS2 and ZrS2 can be tuned without the need for chemical doping. PMID:26888010

  18. Analysis of bell-shape negative giant-magnetoresistance in high mobility GaAs/AlGaAs 2D electron systems using multi-conduction model

    NASA Astrophysics Data System (ADS)

    Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh

    Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.

  19. Theoretical study of the thermodynamic stability and electronic structure of thin films of 3 C, 2 H, and 2 D silicon carbides

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Eliseeva, N. S.; Krasnov, P. O.; Tomilin, F. N.; Fedorov, A. S.; Tolstaya, A. V.

    2014-08-01

    Silicon carbide is among the most common materials used in semiconductor engineering. Silicon carbide thin films are attractive from the standpoint of designing devices based on heterojunctions. This is due to a characteristic feature of this compound, such as polytypism, leading to the difference in the physical properties and also hampering the preparation of high-quality material samples. In this work, the thermodynamic stability and electronic structure of thin films based on the polytypes 3 C, 2 H, and 2 D with a thickness of a few nanometers have been studied.

  20. 2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7

    NASA Astrophysics Data System (ADS)

    Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer

    2016-03-01

    Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.

  1. Spin coherence of the two-dimensional electron gas in a GaAs quantum well

    SciTech Connect

    Larionov, A. V.

    2015-01-15

    The coherent spin dynamics of the quasi-two-dimensional electron gas in a GaAs quantum well is experimentally investigated using the time-resolved spin Kerr effect in an optical cryostat with a split coil inducing magnetic fields of up to 6 T at a temperature of about 2 K. The electron spin dephasing times and degree of anisotropy of the spin relaxation of electrons are measured in zero magnetic field at different electron densities. The dependence of the spin-orbit splitting on the electron-gas density is established. In the integral quantum-Hall-effect mode, the unsteady behavior of the spin dephasing time of 2D electrons of the lower Landau spin sublevel near the odd occupation factor ν = 3 is found. The experimentally observed unsteady behavior of the spin dephasing time can be explained in terms of new-type cyclotron modes that occur in a liquid spin texture.

  2. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy.

    PubMed

    Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems. PMID:26673260

  3. Real-time observation of multiexcitonic states in ultrafast singlet fission using coherent 2D electronic spectroscopy

    NASA Astrophysics Data System (ADS)

    Bakulin, Artem A.; Morgan, Sarah E.; Kehoe, Tom B.; Wilson, Mark W. B.; Chin, Alex W.; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay

    2016-01-01

    Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.

  4. Application of Gas-Kinetic BGK Scheme for Solving 2-D Compressible Inviscid Flow around Linear Turbine Cascade

    NASA Astrophysics Data System (ADS)

    Abdusslam, Saleh N.; Chit, Ong J.; Hamdan, Megat M.; Omar, Ashraf A.; Asrar, Waqar

    2006-12-01

    Fluid flows within turbomachinery tend to be extremely complex. Understanding such flows is crucial in the effort to improve current turbomachinery designs. Hence, computational approaches can be used to great advantage in this regard. In this paper, gas-kinetic BGK (Bhatnagar-Gross-Krook) scheme is developed for simulating compressible inviscid flow around a linear turbine cascade. BGK scheme is an approximate Riemann solver that uses the collisional Boltzmann equation as the governing equation for flow evolutions. For efficient computations, particle distribution functions in the general solution of the BGK model are simplified and used for the flow simulations. Second-order accuracy is achieved via the reconstruction of flow variables using the MUSCL (Monotone Upstream-Centered Schemes for Conservation Laws) interpolation technique together with a multistage Runge-Kutta method. A multi-zone H-type mesh for the linear turbine cascades is generated using a structured algebraic grid generation method. Computed results are compared with available experimental data and found to be in agreement with each other. In order to further substantiate the performance of the BGK scheme, another test case, namely a wedge cascade, is used. The numerical solutions obtained via this test are validated against analytical solutions, which showed to be in good agreement.

  5. Simulations of Electron Density Perturbations in a Gas Discharge

    NASA Astrophysics Data System (ADS)

    Caplinger, James; Sotnikov, Vladimir; Main, Daniel

    2015-11-01

    Beginning with the idealized case of the Pierce diode, a series of particle-in-cell (PIC) simulations are conducted in order to characterize density perturbations in a laboratory gas discharge. This work is conducted to support future experimental investigations into electromagnetic scattering off of electron density perturbations excited by plasma flows. As a first step, 2D PIC simulations were conducted for the Pierce diode case, which is a simple model that exploits instabilities of a monochromatic electron beam between two grounded electrodes. These results were compared to the standard analytical solution. Departing from this idealized case we will include in the simulations electron-neutral collisions, particle creation from ionization, as well as an electric field generated by biased electrodes. A parameter study of electric field strength and collision frequency will be performed for values approaching the Pierce diode as well as extending to cases of expected laboratory parameters. If we can extract physical density spectra from simulations with parameters approaching experimental values, it may be possible to analyze electromagnetic scattering characteristics.

  6. Dose Imaging Detectors for Radiotherapy Based on Gas Electron Multipliers

    PubMed Central

    Klyachko, A.V.; Friesel, D.L.; Kline, C.; Liechty, J.; Nichiporov, D.F.; Solberg, K.A.

    2010-01-01

    New techniques in charged particle therapy and widespread use of modern dynamic beam delivery systems demand new beam monitoring devices as well as accurate 2D dosimetry systems to verify the delivered dose distribution. We are developing dose imaging detectors based on gas electron multipliers (GEM) with the goal of improving dose measurement linearity, position and timing resolution, and to ultimately allow pre-treatment verification of dose distributions and dose delivery monitoring employing scanning beam technology. A prototype 10×10 cm2 double-GEM detector has been tested in the 205 MeV proton beam using electronic and optical readout modes. Preliminary results with electronic cross-strip readout demonstrate fast response and single-pixel (4 mm) position resolution. In optical readout mode, the line spread function of the detector was found to have σ=0.7 mm. In both readout modes, the detector response was linear up to dose rates of 50 Gy/min, with adequate representation of the Bragg peak in depth-dose profile measurements. PMID:21528010

  7. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    PubMed Central

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-01-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646

  8. 2D/3D electron temperature fluctuations near explosive MHD instabilities accompanied by minor and major disruptions

    NASA Astrophysics Data System (ADS)

    Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.

    2016-06-01

    Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n  =  2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n  =  2/1 and m/n  =  1/1 instabilities. The m/n  =  2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.

  9. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals.

    PubMed

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M

    2016-01-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646

  10. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  11. Characterization of Muscat wines aroma evolution using comprehensive gas chromatography followed by a post-analytic approach to 2D contour plots comparison.

    PubMed

    Bordiga, Matteo; Rinaldi, Maurizio; Locatelli, Monica; Piana, Gianluca; Travaglia, Fabiano; Coïsson, Jean Daniel; Arlorio, Marco

    2013-09-01

    This study presents the application of a headspace solid-phase microextraction (HS-SPME) method on the analysis of Muscat-based wines volatiles by comprehensive two-dimensional gas chromatography (GC×GC) and Time-Of-Flight mass spectrometry (TOF-MS). The aroma patterns were established for different samples of Asti Spumante and Moscato d'Asti wines, stored in bottles for 6 months at different temperatures. Wines stored at 5 °C for 6 months did not show significant changes in flavor; otherwise, the samples stored at 15 and 25 °C, showed a significant decrease in linalool, β-damascenone, ethyl hexanoate, and ethyl octanoate levels. In these last samples, α-terpineol, hotrienol, nerol oxide, furanic linalool oxides A/B and rose oxide concentrations significantly increased. A mathematical approach was developed and applied to raw data exported after the chromatographic course, in order (i) to normalise different 2D chromatograms, permitting their direct comparison and (ii) to automatically identify and calculate from pixel-to-pixel re-designed 2D chromatograms any differences among key volatile compounds. PMID:23578615

  12. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608

  13. Numerical simulations - Some results for the 2- and 3-D Hubbard models and a 2-D electron phonon model

    NASA Technical Reports Server (NTRS)

    Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.

    1989-01-01

    Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.

  14. Multicomponent, 3-D, and High-Resolution 2-D Seismic Characterization of Gas Hydrate Study Sites in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Haines, S. S.; Hart, P. E.; Ruppel, C. D.; Collett, T. S.; Shedd, W.; Lee, M. W.; Miller, J.

    2012-12-01

    High saturations of gas hydrates have been identified within coarse-grained sediments in the Green Canyon 955 and Walker Ridge 313 lease blocks of the deepwater northern Gulf of Mexico. The thickness, lateral extent, and hydrate saturations in these deposits are constrained by geological and geophysical data and state-of-the-art logging-while-drilling information obtained in multiple boreholes at each site during a 2009 expedition. Presently lacking are multicomponent seismic data that can provide a thorough understanding of the in-situ compressional and shear seismic properties of the hydrate-bearing sediments. Such data may represent an important tool for future characterization of gas hydrate resources. To address this data gap, the U.S. Geological Survey, the U.S. Department of Energy, and the Bureau of Ocean Energy Management will collaborate on a 20-day research expedition to acquire wide-angle ocean bottom seismometer and high-resolution vertical incidence 2-D seismic data at the study sites. In preparation for this mid-2013 expedition, we have analyzed existing industry 3-D seismic data, along with numerically modeled multicomponent data. The 3-D seismic data allow us to identify and rank specific survey targets and can be combined with the numerical modeling results to determine optimal survey line orientation and acquisition parameters. Together, these data also provide a more thorough understanding of the gas hydrate systems at these two sites.

  15. A 2D multiwavelength study of the ionized gas and stellar population in the giant H II region NGC 588

    NASA Astrophysics Data System (ADS)

    Monreal-Ibero, A.; Relaño, M.; Kehrig, C.; Pérez-Montero, E.; Vílchez, J. M.; Kelz, A.; Roth, M. M.; Streicher, O.

    2011-05-01

    Giant H II regions (GHIIRs) in nearby galaxies are a local sample in which we can study in detail processes in the interaction of gas, dust and newly formed stars which are analogous to those which occurred in episodes of higher intensity in which much of the current stellar population was born. Here, we present an analysis of NGC 588, a GHIIR in M33, based on optical Integral Field Spectroscopy data obtained with the Potsdam Multi-Aperture Spectrophotometer at the 3.5-m telescope of the Calar Alto Observatory, CAHA, together with Spitzer infrared images at 8 and 24 μm. The extinction distribution measured in the optical shows complex structure, with three maxima which correlate in position with those of the emission at 24 and 8 μm. Furthermore, the Hα luminosity absorbed by the dust within the H II region reproduces the structure observed in the 24-μm image, supporting the use of the 24-μm band as a valid tracer of recent star formation. A velocity difference of ˜50 km s-1 was measured between the areas of high and low surface brightness, which would be expected if NGC 588 were an evolved GHIIR. We have carefully identified the areas which contribute most to the line ratios measured in the integrated spectrum. Those line ratios which are used in diagnostic diagrams proposed by Baldwin, Phillips & Terlevich (i.e. the BPT diagrams) show a larger range of variation in the low surface brightness areas. The ranges are ˜0.5-1.2 dex for [N II]λ6584/Hα, 0.7-1.7 dex for [S II]λλ6717,6731/Hα and 0.3-0.5 dex for [O III]λ5007/Hβ, with higher values of [N II]λ6584/Hα and [S II]λλ6717,6731/Hα, and lower values of [O III]λ5007/Hβ in the areas of lower surface brightness. Ratios corresponding to large ionization parameter (U) are found between the peak of the emission in Hβ and the main ionizing source decreasing radially outwards within the region. Differences between the integrated and local values of the U tracers can be as high as ˜0.8 dex, notably when

  16. The role of electronic coupling between substrate and 2D MoS2 nanosheets in electrocatalytic production of hydrogen.

    PubMed

    Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish

    2016-09-01

    The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER. PMID:27295098

  17. Gas breakdown and secondary electron yields

    NASA Astrophysics Data System (ADS)

    Marić, Dragana; Savić, Marija; Sivoš, Jelena; Škoro, Nikola; Radmilović-Radjenović, Marija; Malović, Gordana; Petrović, Zoran Lj.

    2014-06-01

    In this paper we present a systematic study of the gas breakdown potentials. An analysis of the key elementary processes in low-current low-pressure discharges is given, with an aim to illustrate how such discharges are used to determine swarm parameters and how such data may be applied to modeling discharges. Breakdown data obtained in simple parallel-plate geometry are presented for a number of atomic and molecular gases. Ionization coefficients, secondary electron yields and their influence on breakdown are analyzed, with special attention devoted to non-hydrodynamic conditions near cathode.

  18. Simplified theory of the acoustic surface plasmons at the two-dimentional electron gas

    NASA Astrophysics Data System (ADS)

    Ahn, Jong-Kwan; Kim, Yon-Il; Kim, Kwang-Hyon; Kang, Chol-Jin; Ri, Myong Chol; Kim, Song-Hyok

    2016-01-01

    In the two-dimensional electron gas (2DEG), the system can be polarized by metal ions on the 2D surface, resulting in screening of Coulomb interaction between electrons. We calculate the 2D screened Coulomb interaction in Thomas-Fermi approximation and find that both electron-hole (e-h) and collective excitations occurring in the 2DEG can be described with the use of effective dielectric function, in the random-phase approximation (RPA). In this paper we show that the mode proportional to in-plane momentum, called acoustic surface plasmon (ASP), can appear in long-wavelength limit. We calculate ASP dispersion and determine the critical wave number and frequency for the ASP decay into e-h pair, and the velocity of ASP. Our result agrees qualitatively with previous ones in tendency.

  19. Off-axis electron holography with a dual-lens imaging system and its usefulness in 2-D potential mapping of semiconductor devices.

    PubMed

    Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J

    2004-11-01

    A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653

  20. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement.

    PubMed

    Yang, Yongliang; Li, Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO(2) interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis. PMID:21135460

  1. The Integer and Fractional Quantum Hall Effect in the Lowest Landau Level of Valley Degenerate 2D Electrons on Hydrogen Terminated Si(111)

    NASA Astrophysics Data System (ADS)

    Kott, Tomasz M.; Hu, Binhui; Brown, S. H.; Kane, B. E.

    2013-03-01

    We report low temperature magnetotransport measurements on a high mobility (μ = 325 000 cm2/Vsec) 2D electron system on a H-terminated Si(111) surface. In Si(111), there are six degenerate, anisotropic valleys which can affect the magnetotransport in unexpected ways. While low magnetic field data indeed show a six-fold valley degenerate system, we observe the integral quantum Hall effect at all filling factors ν <= 6 , indicating a magnetic-field-induced breaking of the valley degeneracy. Additionally, we find that ν = 2 develops in an unusually narrow temperature range, which might indicate the existence of a novel broken-symmetry valley phase. Finally, we observe an extended, exclusively even numerator, fractional quantum Hall hierarchy surrounding ν = 3 / 2 with denominators up to 15. This hierarchy is consistent with two-fold valley-degenerate composite fermions. We determine activation energies and provide the first estimate the composite fermion mass in a multi-valley system.

  2. Electronic Structure and Fermi Surface of the Quaternary Intermetallic Borocarbide Superconductor YNi2B2C from 2D-ACAR

    NASA Astrophysics Data System (ADS)

    Hamid, A. S.

    We measured the angular momentum density distribution of YNi2B2C to acquire information about its electronic structure. The measurements were performed using the full-scale utility of the two-dimensional angular correlation of annihilation radiation (2D-ACAR). The measured spectra clarified that Ni (3d) like state, predominantly, affected the Fermi surface of YNi2B2C. Further, s- and p-like-states enhanced its superconducting properties. The Fermi surface of YNi2B2C. was reconstructed using Fourier transformation followed by the LCW (Loucks, Crisp and West) folding procedure. It showed a large and complex surface similar to that of the high temperature superconductors HTS, with anisotropic properties. It also disclosed the effect of d-like state. Nevertheless, the current Fermi surface could deliver the needed topological information to isolate its features. The general layouts of this Fermi surface are; two large electron surfaces running along Γ-Z direction; as well as an additional large electron surface centered on X point; beside one hole surface centered on 100 point. This Fermi surface was interpreted in view of the earlier results.

  3. Characterization of Gas Amplification in Varied Gas Mixtures for Stacked Gas Electron Multiplier and Micromegas Detectors

    NASA Astrophysics Data System (ADS)

    Ehlers, Raymond

    2015-04-01

    Micropattern Gas Detectors (MPGDs) represent a promising group of gas amplification technologies. Utilizing large electric fields over geometries on the order of tens of micrometers, these elements can achieve large gas amplification while minimizing field distortions by minimizing the number of ions escaping from the amplification stage. Such properties are extremely useful for readout in gaseous detectors such as Time Projection Chambers. Two types of MPGDs are of particular interest, Gas Electron Multipliers (GEMs) and Micro-mesh Gaseous Structure (Micromegas) detectors. These elements may be stacked, which allows for the utilization of the best properties of both, further improving the amplification performance. We report here on the characterization of 2 GEMs stacked on top of a Micromegas. In particular, I will present the dependence of gas amplification on Micromegas voltage in various gas mixtures, as well as an investigation into stability of the elements against sparking.

  4. Effects of the electron-electron interaction in the spin resonance in 2D systems with Dresselhaus spin-orbit coupling

    SciTech Connect

    Krishtopenko, S. S.

    2015-02-15

    The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.

  5. Theory of the classical electron gas

    NASA Technical Reports Server (NTRS)

    Guernsey, R. L.

    1978-01-01

    In a previous paper Cohen and Murphy (1969) used the Meeron resummation (1958) of the Mayer diagrams (1950) to calculate the pair correlation for the classical electron gas in thermal equilibrium. They found that successive terms in the expression for the pair correlation were more and more singular for small interparticle spacing, actually dominating the Debye-Hueckel result for sufficiently small distances. This led to apparent divergence in the higher order contributions to the internal energy. The present paper shows that the apparent anomalies in the Cohen-Murphy results can be removed without further resummation by a more careful treatment of the region of small interparticle spacing. It is shown that there is really no anomalous behavior at short range in any order and all integrals in the expression for the internal energy converge.

  6. Heat diffusion in the disordered electron gas

    NASA Astrophysics Data System (ADS)

    Schwiete, G.; Finkel'stein, A. M.

    2016-03-01

    We study the thermal conductivity of the disordered two-dimensional electron gas. To this end, we analyze the heat density-heat density correlation function concentrating on the scattering processes induced by the Coulomb interaction in the subtemperature energy range. These scattering processes are at the origin of logarithmic corrections violating the Wiedemann-Franz law. Special care is devoted to the definition of the heat density in the presence of the long-range Coulomb interaction. To clarify the structure of the correlation function, we present details of a perturbative calculation. While the conservation of energy strongly constrains the general form of the heat density-heat density correlation function, the balance of various terms turns out to be rather different from that for the correlation functions of other conserved quantities such as the density-density or spin density-spin density correlation function.

  7. Gas and dust in the star-forming region ρ Oph A. The dust opacity exponent β and the gas-to-dust mass ratio g2d

    NASA Astrophysics Data System (ADS)

    Liseau, R.; Larsson, B.; Lunttila, T.; Olberg, M.; Rydbeck, G.; Bergman, P.; Justtanont, K.; Olofsson, G.; de Vries, B. L.

    2015-06-01

    Aims: We aim at determining the spatial distribution of the gas and dust in star-forming regions and address their relative abundances in quantitative terms. We also examine the dust opacity exponent β for spatial and/or temporal variations. Methods: Using mapping observations of the very dense ρ Oph A core, we examined standard 1D and non-standard 3D methods to analyse data of far-infrared and submillimetre (submm) continuum radiation. The resulting dust surface density distribution can be compared to that of the gas. The latter was derived from the analysis of accompanying molecular line emission, observed with Herschel from space and with APEX from the ground. As a gas tracer we used N2H+, which is believed to be much less sensitive to freeze-out than CO and its isotopologues. Radiative transfer modelling of the N2H+ (J = 3-2) and (J = 6-5) lines with their hyperfine structure explicitly taken into account provides solutions for the spatial distribution of the column density N(H2), hence the surface density distribution of the gas. Results: The gas-to-dust mass ratio is varying across the map, with very low values in the central regions around the core SM 1. The global average, = 88, is not far from the canonical value of 100, however. In ρ Oph A, the exponent β of the power-law description for the dust opacity exhibits a clear dependence on time, with high values of 2 for the envelope-dominated emission in starless Class -1 sources to low values close to 0 for the disk-dominated emission in Class III objects. β assumes intermediate values for evolutionary classes in between. Conclusions: Since β is primarily controlled by grain size, grain growth mostly occurs in circumstellar disks. The spatial segregation of gas and dust, seen in projection toward the core centre, probably implies that, like C18O, also N2H+ is frozen onto the grains. Based on observations with APEX, which is a 12 m diameter submillimetre telescope at 5100 m altitude on Llano Chajnantor

  8. Electronic structures and magnetic stabilities of 2D Mn-doped GaAs nanosheets: The role of long-range exchange interactions and doping strategies

    SciTech Connect

    Lan, Mu; Xiang, Gang Zhang, Xi

    2014-08-28

    We investigate the structural, electronic and magnetic properties of Mn atoms doped two-dimensional (2D) hexagonal GaAs nanosheets (GaAsNSs) using both first-principle calculations and Monte Carlo simulations. The first-principle molecular dynamics is first used to test the structural stability of Mn-doped GaAsNS ((Ga,Mn)AsNS). The analysis of spin-resolved electronic structures and determination of magnetic exchange interactions based on density functional theory (DFT) calculations reveals the existence of long-range exchange interaction in the system. Finally, Metropolis Monte Carlo simulation is employed to estimate Curie temperatures (T{sub C}s) of (Ga,Mn)AsNSs with different doping concentrations by different doping strategies. The results indicate that a T{sub C} up to 82 K can be obtained in regularly-doped (Ga,Mn)AsNSs and doping strategies have prominent impact on T{sub C}s of the systems, which emphasizes the importance of both long-range interactions and doping strategies in reduced dimensional diluted magnetic semiconductors (DMSs)

  9. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid

    NASA Astrophysics Data System (ADS)

    Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.

  10. Tailoring the nature and strength of electron-phonon interactions in the SrTiO3(001) 2D electron liquid.

    PubMed

    Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F

    2016-08-01

    Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs. PMID:27064529

  11. Evaluation of Comprehensive 2-D Gas Chromatography-Time-Of-Flight Mass Spectrometry for 209 Chlorinated Biphenyl Congeners in Two Chromatographic Runs

    EPA Science Inventory

    This research evaluates a recently developed comprehensive 2-D GC coupled with a time-of-flight (TOF) mass spectrometer for the potential separation of 209 PCB congeners, using a sequence of 1-D and 2-D chromatographic modes. In two consecutive chromatographic runs, using a 40 m,...

  12. Stopping power of an electron gas with anisotropic temperature

    NASA Astrophysics Data System (ADS)

    Khelemelia, O. V.; Kholodov, R. I.

    2016-04-01

    A general theory of motion of a heavy charged particle in the electron gas with an anisotropic velocity distribution is developed within the quantum-field method. The analytical expressions for the dielectric susceptibility and the stopping power of the electron gas differs in no way from well-known classic formulas in the approximation of large and small velocities. Stopping power of the electron gas with anisotropic temperature in the framework of the quantum-field method is numerically calculated for an arbitrary angle between directions of the motion of the projectile particle and the electron beam. The results of the numerical calculations are compared with the dielectric model approach.

  13. Effects of Pauli, Rashba and Dresselhaus spin-orbit interactions on electronic states in 2D circular hydrogenic anti-dot

    NASA Astrophysics Data System (ADS)

    Abuali, Z.; Golshan, M. M.; Davatolhagh, S.

    2016-09-01

    The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.

  14. Spin polarization of two-dimensional electronic gas decoupled from structural asymmetry environment

    NASA Astrophysics Data System (ADS)

    Pieczyrak, B.; Szary, M.; Jurczyszyn, L.; Radny, M. W.

    2016-05-01

    It is shown, using density functional theory, that a 2D electron gas induced in a monolayer of Pb or Tl adatoms on the Si (111 )-1 ×1 surface is insensitive to the structural asymmetry of the system and its spin polarization is governed by the interaction between the adlayer and the substrate. It is demonstrated that this interaction changes the in-plane inversion symmetry of the charge distribution within the monolayer and can either suppress [Pb/Si(111)] or enhance [Tl/Si(111)] the adatom intra-atomic spin-orbit effect on a Rashba-Bychkov-type spin splitting.

  15. Quenching Plasma Waves in Two Dimensional Electron Gas by a Femtosecond Laser Pulse

    NASA Astrophysics Data System (ADS)

    Shur, Michael; Rudin, Sergey; Greg Rupper Collaboration; Andrey Muraviev Collaboration

    Plasmonic detectors of terahertz (THz) radiation using the plasma wave excitation in 2D electron gas are capable of detecting ultra short THz pulses. To study the plasma wave propagation and decay, we used femtosecond laser pulses to quench the plasma waves excited by a short THz pulse. The femtosecond laser pulse generates a large concentration of the electron-hole pairs effectively shorting the 2D electron gas channel and dramatically increasing the channel conductance. Immediately after the application of the femtosecond laser pulse, the equivalent circuit of the device reduces to the source and drain contact resistances connected by a short. The total response charge is equal to the integral of the current induced by the THz pulse from the moment of the THz pulse application to the moment of the femtosecond laser pulse application. This current is determined by the plasma wave rectification. Registering the charge as a function of the time delay between the THz and laser pulses allowed us to follow the plasmonic wave decay. We observed the decaying oscillations in a sample with a partially gated channel. The decay depends on the gate bias and reflects the interplay between the gated and ungated plasmons in the device channel. Army Research Office.

  16. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

    SciTech Connect

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobility in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.

  17. LaTiO₃/KTaO₃ interfaces: A new two-dimensional electron gas system

    DOE PAGESBeta

    Zou, K.; Ismail-Beigi, Sohrab; Kisslinger, Kim; Shen, Xuan; Su, Dong; Walker, F. J.; Ahn, C. H.

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO₃, and a band insulator, KTaO₃. For LaTiO₃/KTaO₃ interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO₃-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm²/V s) of SrTiO₃ at room temperature. By using KTaO₃, we achieve mobilities in LaTiO₃/KTaO₃ interfaces as high as 21 cm²/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO₃. By density functional theory, we attribute the higher mobilitymore » in KTaO₃ 2DEGs to the smaller effective mass for electrons in KTaO₃.« less

  18. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  19. Electrothermal gas generator: Development and qualification of the control electronics

    NASA Astrophysics Data System (ADS)

    Matthaeus, G.; Schmitz, H. D.

    1986-07-01

    The development and qualification of an electronic control circuitry for an electrothermal or catalytic hydrazine gas generator system is described. The circuitry, named manual override, controls the gas pressure in a tank using a pressure transducer and the gas generator to keep the pressure constant within narrow tolerances. The present pressure can be varied by ground command, enabling a variable thrust of the gas fed cold gas thrusters. The automatic loop can be switched off and the tank pressure be controlled by ground command. Two manual overrides SN01 and SN02 were qualified.

  20. Electrothermal energy conversion using electron gas volumetric change inside semiconductors

    NASA Astrophysics Data System (ADS)

    Yazawa, K.; Shakouri, A.

    2016-07-01

    We propose and analyze an electrothermal energy converter using volumetric changes in non-equilibrium electron gas inside semiconductors. The geometric concentration of electron gas under an electric field increases the effective pressure of the electrons, and then a barrier filters out cold electrons, acting like a valve. Nano- and micro-scale features enable hot electrons to arrive at the contact in a short enough time to avoid thermalization with the lattice. Key length and time scales, preliminary device geometry, and anticipated efficiency are estimated for electronic analogs of Otto and Brayton power generators and Joule-Thomson micro refrigerators on a chip. The power generators convert the energy of incident photons from the heat source to electrical current, and the refrigerator can reduce the temperature of electrons in a semiconductor device. The analytic calculations show that a large energy conversion efficiency or coefficient of performance may be possible.

  1. Scaling in electron scattering from a relativistic Fermi gas

    SciTech Connect

    W. M. Alberico; A. Molinari; T. William Donnelly; E. L. Kronenberg; Wally Van Orden

    1988-10-01

    Within the context of the relativistic Fermi gas model, the concept of ''y scaling'' for inclusive electron scattering from nuclei is investigated. Specific kinematic shifts of the single-nucleon response in the nuclear medium can be incorporated with this model. Suggested generalizations beyond the strict Fermi gas model, including treatments of separated longitudinal and transverse responses, are also explored.

  2. 2D numerical modelling of the gas temperature in a high-temperature high-power strontium atom laser excited by nanosecond pulsed longitudinal discharge in a He-SrBr2 mixture

    NASA Astrophysics Data System (ADS)

    Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.

    2014-05-01

    Assuming axial symmetry and a uniform power input, a 2D model (r, z) is developed numerically for determination of the gas temperature in the case of a nanosecond pulsed longitudinal discharge in He-SrBr2 formed in a newly-designed large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge-free zone, in order to find the optimal thermal mode for achievement of maximal output laser parameters. The model determines the gas temperature of a nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.

  3. Aniso2D

    Energy Science and Technology Software Center (ESTSC)

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  4. Towards the Identification of the Keeper Erosion Cause(s): Numerical Simulations of the Plasma and Neutral Gas Using the Global Cathode Model OrCa2D-II

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.

    2006-01-01

    Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.

  5. Renormalization of Fermi Velocity in a Composite Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Weger, M.; Burlachkov, L.

    We calculate the self-energy Σ(k, ω) of an electron gas with a Coulomb interaction in a composite 2D system, consisting of metallic layers of thickness d ≳ a0, where a0 = ħ2ɛ1/me2 is the Bohr radius, separated by layers with a dielectric constant ɛ2 and a lattice constant c perpendicular to the planes. The behavior of the electron gas is determined by the dimensionless parameters kFa0 and kFc ɛ2/ɛ1. We find that when ɛ2/ɛ1 is large (≈5 or more), the velocity v(k) becomes strongly k-dependent near kF, and v(kF) is enhanced by a factor of 5-10. This behavior is similar to the one found by Lindhard in 1954 for an unscreened electron gas; however here we take screening into account. The peak in v(k) is very sharp (δk/kF is a few percent) and becomes sharper as ɛ2/ɛ1 increases. This velocity renormalization has dramatic effects on the transport properties; the conductivity at low T increases like the square of the velocity renormalization and the resistivity due to elastic scattering becomes temperature dependent, increasing approximately linearly with T. For scattering by phonons, ρ ∝ T2. Preliminary measurements suggest an increase in vk in YBCO very close to kF.

  6. Advances in electron kinetics and theory of gas discharges

    SciTech Connect

    Kolobov, Vladimir I.

    2013-10-15

    Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples of the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.

  7. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  8. Mesh2d

    Energy Science and Technology Software Center (ESTSC)

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  9. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  10. Proton cooling in ultracold low-density electron gas

    NASA Astrophysics Data System (ADS)

    Bobrov, A. A.; Bronin, S. Y.; Manykin, E. A.; Zelener, B. B.; Zelener, B. V.; Khikhlukha, D. R.

    2015-11-01

    A sole proton energy loss processes in an electron gas and the dependence of these processes on temperature and magnetic field are studied using molecular dynamics techniques in present work. It appears that for electron temperatures less than 100 K many body collisions affect the proton energy loss and these collisions must be taken into account. The influence of a strong magnetic field on the relaxation processes is also considered in this work. Calculations were performed for electron densities 10 cm-3, magnetic field 1-3 Tesla, electron temperatures 10-50 K, initial proton energies 100-10000 K.

  11. New "wet type" electron beam flue gas treatment pilot plant

    NASA Astrophysics Data System (ADS)

    Tan, Erdal; Ünal, Suat; Doğan, Alişan; Letournel, Eric; Pellizzari, Fabien

    2016-02-01

    We describe a new pilot plant for flue gas cleaning by a high energy electron beam. The special feature of this pilot plant is a uniquely designed reactor called VGS® (VIVIRAD Gas Scrubber, patent pending), that allows oxidation/reduction treating flue gas in a single step. The VGS® process combines a scrubber and an advanced oxidation/reduction process with the objective of optimizing efficiency and treatment costs of flue gas purification by electron accelerators. Promising treatment efficiency was achieved for SOx and NOx removal in early tests (99.2% and 80.9% respectively). The effects of various operational parameters on treatment performance and by-product content were investigated during this study.

  12. Characterisation of an electronic radon gas personal dosemeter.

    PubMed

    Gründel, M; Postendörfer, J

    2003-01-01

    The monitoring of radon exposure at workplaces is of great importance. Up to now passive measurement systems have been used for the registration of radon gas. Recently an electronic radon gas personal dosemeter came onto the market as an active measurement system for the registration of radon exposure (DOSEman; Sarad GmbH, Dresden, Germany). In this personal monitor, the radon gas diffuses through a membrane into a measurement chamber. A silicon detector system records spectroscopically the alpha decays of the radon gas and of the short-lived progeny 218Po and 214Po gathered onto the detector by an electrical field. In this work the calibration was tested and a proficiency test of this equipment was made. The diffusion behaviour of the radon gas into the measurement chamber, susceptibility to thoron, efficiency, influence of humidity, accuracy and the detection limit were checked. PMID:14756187

  13. Energy degradation of fast electrons in hydrogen gas

    NASA Technical Reports Server (NTRS)

    Xu, Yueming; Mccray, Richard

    1991-01-01

    An equation is derived for calculating the energy distribution of fast electrons in a partially ionized gas and a method is provided to solve for the electron degradation spectrum and the energy deposition in different forms (ionization, excitation, or heating). As an example, the energy degradation of fast electrons in a gas of pure hydrogen is calculated, considering excitations to the lowest 10 atomic levels. The Bethe approximation and the continuous slowing-down approximation are discussed and it is concluded that these approximations are accurate to the order of 20 percent for electrons with initial energy of greater than about keV. The method and results can be used to determine heating, excitations, and ionizations by high-energy photoelectrons or cosmic-ray particles in various astrophysical circumstances, such as the interstellar medium, supernova envelopes, and QSO emission-line clouds.

  14. Pulsed electron beam propagation in argon and nitrogen gas mixture

    SciTech Connect

    Kholodnaya, G. E.; Sazonov, R. V.; Ponomarev, D. V.; Remnev, G. E.; Zhirkov, I. S.

    2015-10-15

    The paper presents the results of current measurements for the electron beam, propagating inside a drift tube filled in with a gas mixture (Ar and N{sub 2}). The experiments were performed using the TEA-500 pulsed electron accelerator. The main characteristics of electron beam were as follows: 60 ns pulse duration, up to 200 J energy, and 5 cm diameter. The electron beam propagated inside the drift tube assembled of three sections. Gas pressures inside the drift tube were 760 ± 3, 300 ± 3, and 50 ± 1 Torr. The studies were performed in argon, nitrogen, and their mixtures of 33%, 50%, and 66% volume concentrations, respectively.

  15. Edge spin accumulation in a two-dimensional electron gas with two subbands

    NASA Astrophysics Data System (ADS)

    Khaetskii, Alexander; Egues, J. Carlos

    We have studied the edge spin accumulation in 2D electron gas due to the intrinsic mechanism of spin-orbit interaction for the case of a two-subband structure. This study is strongly motivated by recent experiments which observed the spin accumulation near the edges of a high mobility 2D electron system in a bilayer symmetric GaAs structure in contrast to zero effect in a single-layer configuration. Our theoretical explanation is based on the Rashba-like spin-orbit interaction which arises as a result of the coupling between two subband states of opposite parities in a symmetric quantum well. Following the method developed in, we have calculated the edge spin density in a quasi-ballistic regime, and explained the experimental results, in particular, a large magnitude of the edge spin density. We showed that one can easily proceed from the regime of strong spin accumulation to the regime of weak one. It opens up a possibility to construct an interesting new spintronic device Supported by FAPESP (Brazil).

  16. Extreme g-factor anisotropy of low mobility 2D hole gas in GaAs/In0.2Ga0.8As/GaAs quantum well

    NASA Astrophysics Data System (ADS)

    Soldatov, I. V.; Germanenko, A. V.; Kozlova, N.

    2014-03-01

    The Shubnikov-de Haas (SdH) oscillations in low-mobility two-dimensional (2D) hole gas in a single quantum well GaAs/In0.2Ga0.8As/GaAs in magnetic fields up to 50 T were investigated. Analyzing the behavior of those oscillations within the framework of highly anisotropic spin splitting of the Landau levels, we obtained the values of the out-of-plane and in-plane g-factor of |g⊥|=4.4±0.6 and |g∥|=0.4±0.1 respectively.

  17. Muonium addition reactions in the gas phase: Quantum tunneling in Mu+C2H4 and Mu+C2D4

    NASA Astrophysics Data System (ADS)

    Garner, David M.; Fleming, Donald G.; Arseneau, Donald J.; Senba, Masayoshi; Reid, Ivan D.; Mikula, Randall J.

    1990-08-01

    The reaction kinetics for the addition of the muonium (Mu=μ+e-) atom to C2H4 and C2D4 have been measured over the temperature range 150-500 K at (N2) moderator pressures near 1 atm. A factor of about 8 variation in moderator pressure was carried out for C2H4, with no significant change seen in the apparent rate constant kapp, which is therefore taken to be at the high pressure limit, yielding the bimolecular rate constant kMu for the addition step. This is also expected from the nature of the μSR technique employed, which, in favorable cases, gives kapp=kMu at any pressure. Comparisons with the H atom data of Lightfoot and Pilling, and Sugawara et al. and the D atom data of Sugawara et al. reveal large isotope effects. Only at the highest temperatures, near 500 K, is kMu/kH given by its classical value of 2.9, from the mean velocity dependence of the collision rate but at the lowest temperatures kMu/kH≳30/1 is seen, reflecting the pronounced tunneling of the much lighter Mu atom (mμ=1/9 mp). The present Mu results should provide accurate tests of reaction theories on currently available ab initio surfaces.

  18. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  19. PIV, 2D-LIF and 1D-Raman measurements of flow field, composition and temperature in premixed gas turbine flames

    SciTech Connect

    Stopper, U.; Aigner, M.; Ax, H.; Meier, W.; Sadanandan, R.; Stoehr, M.; Bonaldo, A.

    2010-04-15

    Several laser diagnostic measurement techniques have been applied to study the lean premixed natural gas/air flames of an industrial swirl burner. This was made possible by equipping the burner with an optical combustion chamber that was installed in the high-pressure test rig facility at the DLR Institute of Combustion Technology in Stuttgart. The burner was operated with preheated air at various operating conditions with pressures up to p = 6 bar and a maximum thermal power of P = 1 MW. The instantaneous planar flow field inside the combustor was studied with particle image velocimetry (PIV). Planar laser induced fluorescence (PLIF) of OH radicals on a single-shot basis was used to determine the shape and the location of the flame front as well as the spatial distribution of reaction products. 1D laser Raman spectroscopy was successfully applied for the measurement of the temperature and the concentration of major species under realistic gas turbine conditions. Results of the flow field analysis show the shape and the size of the main flow regimes: the inflow region, the inner and the outer recirculation zone. The highly turbulent flow field of the inner shear layer is found to be dominated by small and medium sized vortices. High RMS fluctuations of the flow velocity in the exhaust gas indicate the existence of a rotating exhaust gas swirl. From the PLIF images it is seen that the primary reactions happened in the shear layers between inflow and the recirculation zones and that the appearance of the reaction zones changed with flame parameters. The results of the multiscalar Raman measurements show a strong variation of the local mixture fraction allowing conclusions to be drawn about the premix quality. Furthermore, mixing effects of unburnt fuel and air with fully reacted combustion products are studied giving insights into the processes of the turbulence-chemistry interaction. (author)

  20. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  1. Qualitative Characterization of the Aqueous Fraction from Hydrothermal Liquefaction of Algae Using 2D Gas Chromatography with Time-of-flight Mass Spectrometry.

    PubMed

    Maddi, Balakrishna; Panisko, Ellen; Albrecht, Karl; Howe, Daniel

    2016-01-01

    Two-dimensional gas chromatography coupled with time-of-flight mass spectrometry is a powerful tool for identifying and quantifying chemical components in complex mixtures. It is often used to analyze gasoline, jet fuel, diesel, bio-diesel and the organic fraction of bio-crude/bio-oil. In most of those analyses, the first dimension of separation is non-polar, followed by a polar separation. The aqueous fractions of bio-crude and other aqueous samples from biofuels production have been examined with similar column combinations. However, sample preparation techniques such as derivatization, solvent extraction, and solid-phase extraction were necessary prior to analysis. In this study, aqueous fractions obtained from the hydrothermal liquefaction of algae were characterized by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry without prior sample preparation techniques using a polar separation in the first dimension followed by a non-polar separation in the second. Two-dimensional plots from this analysis were compared with those obtained from the more traditional column configuration. Results from qualitative characterization of the aqueous fractions of algal bio-crude are discussed in detail. The advantages of using a polar separation followed by a non-polar separation for characterization of organics in aqueous samples by two-dimensional gas chromatography coupled with time-of-flight mass spectrometry are highlighted. PMID:27022829

  2. Electron gas induced in SrTiO3

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-03-01

    This mini-review is dedicated to the 85th birthday of Prof. L.V. Keldysh, from whom we have learned so much. In this paper, we study the potential and electron density depth profiles in surface accumulation layers in crystals with a large and nonlinear dielectric response such as SrTiO3 (STO) in the cases of planar, spherical, and cylindrical geometries. The electron gas can be created by applying an induction D 0 to the STO surface. We describe the lattice dielectric response of STO using the Landau-Ginzburg free energy expansion and employ the Thomas-Fermi (TF) approximation for the electron gas. For the planar geometry, we arrive at the electron density profile n( x) ∝ ( x + d)-12/7, where d ∝ D 0 -12/7 . We extend our results to overlapping electron gases in GTO/STO/GTO heterojunctions and electron gases created by spill-out from NSTO (heavily n-type doped STO) layers into STO. Generalization of our approach to a spherical donor cluster creating a big TF atom with electrons in STO brings us to the problem of supercharged nuclei. It is known that for an atom with a nuclear charge Ze where Z > 170, electrons collapse onto the nucleus, resulting in a net charge Zn < Z. Here, instead of relativistic physics, the collapse is caused by the nonlinear dielectric response. Electrons collapse into the charged spherical donor cluster with radius R when its total charge number Z exceeds the critical value Z c ≈ R/ a, where a is the lattice constant. The net charge e Z n grows with Z until Z exceeds Z* ≈ ( R/ a)9/7. After this point, the charge number of the compact core Z n remains ≈ Z*, with the rest Z* electrons forming a sparse TF atom with it. We extend our studies of collapse to the case of long cylindrical clusters as well.

  3. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.

    PubMed

    Miller, Benjamin K; Crozier, Peter A

    2014-06-01

    Operando transmission electron microscopy (TEM) of catalytic reactions requires that the gas composition inside the TEM be known during the in situ reaction. Two techniques for measuring gas composition inside the environmental TEM are described and compared here. First, electron energy-loss spectroscopy, both in the low-loss and core-loss regions of the spectrum was utilized. The data were quantified using a linear combination of reference spectra from individual gasses to fit a mixture spectrum. Mass spectrometry using a residual gas analyzer was also used to quantify the gas inside the environmental cell. Both electron energy-loss spectroscopy and residual gas analysis were applied simultaneously to a known 50/50 mixture of CO and CO2, so the results from the two techniques could be compared and evaluated. An operando TEM experiment was performed using a Ru catalyst supported on silica spheres and loaded into the TEM on a specially developed porous pellet TEM sample. Both techniques were used to monitor the conversion of CO to CO2 over the catalyst, while simultaneous atomic resolution imaging of the catalyst was performed. PMID:24815065

  4. Electronic structure of charge-density-wave state in quasi-2D KMo6O17 purple bronze characterized by angle resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Valbuena, M. A.; Avila, J.; Drouard, S.; Guyot, H.; Asensio, M. C.

    2006-01-01

    We report on an angle-resolved-photoemission spectroscopy (ARPES) investigation of layered quasi-two dimensional (2D) Molybdenum purple bronze KMo6O17 in order to study and characterizes the transition to a charge-density-wave (CDW) state. We have performed photoemission temperature dependent measurements cooling down from room temperature (RT) to 32 K, well below the Peierls transition for this material, with CDW transition temperature Tc =110 K. The spectra have been taken at a selected kF point of the Fermi surface (FS) that satisfies the nesting condition of the FS, looking for the characteristic pseudo-gap opening in this kind of materials. The pseudogap has been estimated and it result to be in agreement with our previous works. The shift to lower binding energy of crossing Fermi level ARPES feature have been also confirmed and studied as a function of temperature, showing a rough like BCS behaviour. Finally we have also focused on ARPES measurements along ΓM¯ high symmetry direction for both room and low temperature states finding some insight for ‘shadow’ or back folded bands indicating the new periodicity of real lattice after the CDW lattice distortion.

  5. Uniform electron gas at warm, dense matter conditions

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Dufty, James

    2013-06-01

    A simple, practical model for computing the equilibrium thermodynamics and structure of the uniform electron gas (jellium) by classical strong-coupling methods is proposed. Conditions addressed are those of interest for recent studies of warm dense matter: solid densities and temperatures from zero to plasma states. An effective pair potential and coupling constant are introduced, incorporating the ideal gas, low density, and weak-coupling quantum limits. The resulting parameter-free, analytic model is illustrated by the calculation of the pair correlation function via strong-coupling classical liquid state theory. The results compare favorably with the first finite-temperature restricted path integral Monte Carlo simulations reported recently.

  6. Path integral Monte Carlo and the electron gas

    NASA Astrophysics Data System (ADS)

    Brown, Ethan W.

    Path integral Monte Carlo is a proven method for accurately simulating quantum mechanical systems at finite-temperature. By stochastically sampling Feynman's path integral representation of the quantum many-body density matrix, path integral Monte Carlo includes non-perturbative effects like thermal fluctuations and particle correlations in a natural way. Over the past 30 years, path integral Monte Carlo has been successfully employed to study the low density electron gas, high-pressure hydrogen, and superfluid helium. For systems where the role of Fermi statistics is important, however, traditional path integral Monte Carlo simulations have an exponentially decreasing efficiency with decreased temperature and increased system size. In this thesis, we work towards improving this efficiency, both through approximate and exact methods, as specifically applied to the homogeneous electron gas. We begin with a brief overview of the current state of atomic simulations at finite-temperature before we delve into a pedagogical review of the path integral Monte Carlo method. We then spend some time discussing the one major issue preventing exact simulation of Fermi systems, the sign problem. Afterwards, we introduce a way to circumvent the sign problem in PIMC simulations through a fixed-node constraint. We then apply this method to the homogeneous electron gas at a large swatch of densities and temperatures in order to map out the warm-dense matter regime. The electron gas can be a representative model for a host of real systems, from simple medals to stellar interiors. However, its most common use is as input into density functional theory. To this end, we aim to build an accurate representation of the electron gas from the ground state to the classical limit and examine its use in finite-temperature density functional formulations. The latter half of this thesis focuses on possible routes beyond the fixed-node approximation. As a first step, we utilize the variational

  7. Dissociative attachment reactions of electrons with gas phase superacids

    SciTech Connect

    Liu, X.

    1992-01-01

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients [beta] for reactions of electrons with gas phase superacids HCo(PF[sub 3])[sub 4], HRh(PF[sub 3])[sub 4] and carbonyl hydride complexes HMn(CO)[sub 5], HRe(CO)[sub 5] have been determined under thermal conditions over the approximate temperature range 300[approximately]550 K. The superacids react relatively slowly (<1/20 of [beta][sub max]) with free electrons in a thermal plasma, and the values of [beta] obtained this far do not show a correlation between acidity and [beta]. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; it was found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF[sub 3])[sub 4] was found to be independent of temperature even though the [beta][HCo(PF[sub 3])[sub 4

  8. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  9. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  10. Temperature-driven disorder-order transitions in 2D copper-intercalated MoO3 revealed using dynamic transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Reed, Bryan W.; Chung, Frank R.; Wang, Mengjing; LaGrange, Thomas; Koski, Kristie J.

    2014-12-01

    We demonstrate two different classes of disorder-order phase transitions in two-dimensional layered nanomaterial MoO3 intercalated with ˜9-15 atomic percent zero-valent copper using conventional in situ electron diffraction and dynamic transmission electron microscopy. Heating to ˜325 °C on a time scale of minutes produces a superlattice consistent with the formation of a charge density wave stabilized by nanometer-scale ordering of the copper intercalant. Unlike conventional purely electronic charge-density-wave states which form, reform, and disappear on picosecond scales as the temperature is changed, once it forms the observed structure in Cu-MoO3 is stable indefinitely over a very large temperature range (30 °C to the decomposition temperature of 450 °C). Nanosecond-scale heating to ˜380-400 °C produced a completely different structure, replacing the disordered as-fabricated Cu-MoO3 with a much more crystallographically ordered metastable state that, according to a precession electron diffraction reconstruction, resembles the original MoO3 lattice apart from an asymmetric distortion that appears to expand parts of the van der Waals gaps to accommodate the copper intercalant. Control experiments in Cu-free material exhibited neither transformation, thus it appears the copper is a necessary part of the phase dynamics. This work shows how the combination of high-density metal atom intercalation and heat treatment over a wide range of time scales can produce nanomaterials of high crystalline quality in unique structural states that cannot be accessed through other methods.

  11. Contrasting 1D tunnel-structured and 2D layered polymorphs of V2O5: relating crystal structure and bonding to band gaps and electronic structure.

    PubMed

    Tolhurst, Thomas M; Leedahl, Brett; Andrews, Justin L; Marley, Peter M; Banerjee, Sarbajit; Moewes, Alexander

    2016-06-21

    New V2O5 polymorphs have risen to prominence as a result of their open framework structures, cation intercalation properties, tunable electronic structures, and wide range of applications. The application of these materials and the design of new, useful polymorphs requires understanding their defining structure-property relationships. We present a characterization of the band gap and electronic structure of nanowires of the novel ζ-phase and the orthorhombic α-phase of V2O5 using X-ray spectroscopy and density functional theory calculations. The band gap is found to decrease from 1.90 ± 0.20 eV in the α-phase to 1.50 ± 0.20 eV in the ζ-phase, accompanied by the loss of the α-phase's characteristic split-off dxy band in the ζ-phase. States of dxy origin continue to dominate the conduction band edge in the new polymorph but the inequivalence of the vanadium atoms and the increased local symmetry of [VO6] octahedra results in these states overlapping with the rest of the V 3d conduction band. ζ-V2O5 exhibits anisotropic conductivity along the b direction, defining a 1D tunnel, in contrast to α-V2O5 where the anisotropic conductivity is along the ab layers. We explain the structural origins of the differences in electronic properties that exist between the α- and ζ-phase. PMID:27230816

  12. Neutron microdosimetric response of a gas electron multiplier.

    PubMed

    Dubeau, J; Waker, A J

    2008-01-01

    A new high-sensitivity tissue equivalent proportional counter (TEPC) on the basis of the gas electron multiplier (GEM) detector used in high-energy physics experiments has been designed, constructed and tested in a variety of neutron fields. The GEM-TEPC makes use of a lithographically produced strip readout system to achieve the equivalent of a large number of miniature TEPC detector elements. This new device could be used as the basis of an electronic personal dosemeter for gamma and neutron mixed radiation fields. PMID:17951607

  13. Heavy-ion induced electronic desorption of gas from metals

    SciTech Connect

    Molvik, A W; Kollmus, H; Mahner, E; Covo, M K; Bellachioma, M C; Bender, M; Bieniosek, F M; Hedlund, E; Kramer, A; Kwan, J; Malyshev, O B; Prost, L; Seidl, P A; Westenskow, G; Westerberg, L

    2006-12-19

    During heavy ion operation in several particle accelerators world-wide, dynamic pressure rises of orders of magnitude were triggered by lost beam ions that bombarded the vacuum chamber walls. This ion-induced molecular desorption, observed at CERN, GSI, and BNL, can seriously limit the ion beam lifetime and intensity of the accelerator. From dedicated test stand experiments we have discovered that heavy-ion induced gas desorption scales with the electronic energy loss (dE{sub e}/d/dx) of the ions slowing down in matter; but it varies only little with the ion impact angle, unlike electronic sputtering.

  14. Radiofrequency Spectroscopy and Thermodynamics of Fermi Gases in the 2D to Quasi-2D Dimensional Crossover

    NASA Astrophysics Data System (ADS)

    Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John

    2016-05-01

    We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.

  15. The effective density of randomly moving electrons and related characteristics of materials with degenerate electron gas

    SciTech Connect

    Palenskis, V.

    2014-04-15

    Interpretation of the conductivity of metals, of superconductors in the normal state and of semiconductors with highly degenerate electron gas remains a significant issue if consideration is based on the classical statistics. This study is addressed to the characterization of the effective density of randomly moving electrons and to the evaluation of carrier diffusion coefficient, mobility, and other parameters by generalization of the widely published experimental results. The generalized expressions have been derived for various kinetic parameters attributed to the non-degenerate and degenerate electron gas, by analyzing a random motion of the single type carriers in homogeneous materials. The values of the most important kinetic parameters for different metals are also systematized and discussed. It has been proved that Einstein's relation between the diffusion coefficient and the drift mobility of electrons is held for any level of degeneracy if the effective density of randomly moving carriers is properly taken into account.

  16. The gas electron multiplier (GEM): Operating principles and applications

    NASA Astrophysics Data System (ADS)

    Sauli, Fabio

    2016-01-01

    Introduced by the author in 1997, The Gas Electron Multiplier (GEM) constitutes a powerful addition to the family of fast radiation detectors; originally developed for particle physics experiments, the device and has spawned a large number of developments and applications; a web search yields more than 400 articles on the subject. This note is an attempt to summarize the status of the design, developments and applications of the new detector.

  17. Turbulence generated by a gas of electron acoustic solitons

    SciTech Connect

    Dubouloz, N.; Pottelette, R.; Malingre, M.; Treumann, R.A.

    1993-10-01

    The authors consider a gas of electron acoustic solitons propagating in a magnetized plasma, such as the auroral region. They show that such modes can exist, and propagate, and that the velocities and amplitudes of such waves, consistent with measured plasma density and temperature, are capable of explaining the high frequency part of the broadband electrostatic noise observed by the Viking satellite, which is in a spectral region forbidden to linear electrostatic waves.

  18. Small-angle shubnikov-de haas measurements in a 2D electron system: the effect of a strong In-plane magnetic field

    PubMed

    Vitkalov; Zheng; Mertes; Sarachik; Klapwijk

    2000-09-01

    Measurements in magnetic fields applied at small angles relative to the electron plane in silicon MOSFETs indicate a factor of 2 increase of the frequency of Shubnikov-de Haas oscillations at H>H(sat). This signals the onset of full spin polarization above H(sat), the parallel field above which the resistivity saturates to a constant value. For H

  19. 2-D Interferometric Measurements of Electron Density in an Air Breakdown Plasma Using a 124.5 GHz, 1 MW Gyrotron

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2015-11-01

    A 1 MW, 124.5 GHz gyrotron was used to produce a linearly polarized, quasioptical beam in 2.2 μs pulses. The beam was focused to a 2.6 mm spot size, producing a peak electric field of 70 kV/cm, after transmission losses. This electric field is great enough to produce a breakdown plasma in air at pressures ranging from a few Torr up to atmospheric pressure. The resulting breakdown plasma spontaneously forms a two-dimensional array of filaments, oriented parallel to the polarization of the beam, that propagate toward the microwave source. A needlepoint initiator was placed at the focal point of the beam, creating highly reproducible plasma arrays. An intensified CCD, with a minimum exposure of 2 ns, was combined with a two-wavelength laser interferometer, operating at 532 and 635 nm, to make spatially and temporally resolved electron density measurements of the plasma array.

  20. Development and testing of a deuterium gas target assembly for neutron production via the H-2(d,n)He-3 reaction at a low-energy accelerator facility

    SciTech Connect

    Feautrier, D.; Smith, D.L.

    1992-03-01

    This report describes the development and testing of a deuterium gas target intended for use at a low-energy accelerator facility to produce neutrons for basic research and various nuclear applications. The principle source reaction is H-2(d,n)He-3. It produces a nearly mono-energetic group of neutrons. However, a lower-energy continuum neutron spectrum is produced by the H-2(d;n,p)H-2 reaction and also by deuterons which strike various components in the target assembly. The present target is designed to achieve the following objectives: (1) minimize unwanted background neutron production from the target assembly, (2) provide a relatively low level of residual long-term activity within the target components, (3) have the capacity to dissipate up to 150 watts of beam power with good target longevity, and (4) possess a relatively modest target mass in order to minimize neutron scattering from the target components. The basic physical principles that have to be considered in designing an accelerator target are discussed and the major engineering features of this particular target design are outlined. The results of initial performance tests on this target are documented and some conclusions concerning the viability of the target design are presented.

  1. Drift and diffusion of spin and charge density waves in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Yang, Luyi; Koralek, J. D.; Orenstein, J.; Tibbetts, D. R.; Reno, J. L.; Lilly, M. P.

    2011-03-01

    We use transient grating spectroscopy (TGS) to study the persistent spin helix (PSH) state and electron-hole density wave (EHDW) in a 2D electron gas in the presence of an in-plane electric field parallel to the wavevector of the PSH or EHDW. By directly measuring the phase, we can measure the PSH and EHDW displacement with 10 nm spatial and sub-picosecond time resolution. We obtain both the spin diffusion and mobility and ambipolar diffusion and mobility from the TGS measurements of PSH and EHDW, respectively. The spin transresistivity extracted from the spin diffusion is in excellent agreement with the RPA theory of spin Coulomb drag (SCD). The spin mobility data indicate that SCD may also play a role in the spin wave drifting process. From the ambipolar diffusion and mobility, we obtain the transresistivity of electrons and holes in the same layer, which is much stronger than is typically seen in the conventional Coulomb drag experiments on coupled quantum wells.

  2. Enhanced thermopower in ZnO two-dimensional electron gas.

    PubMed

    Shimizu, Sunao; Bahramy, Mohammad Saeed; Iizuka, Takahiko; Ono, Shimpei; Miwa, Kazumoto; Tokura, Yoshinori; Iwasa, Yoshihiro

    2016-06-01

    Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to [Formula: see text] 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities. PMID:27222585

  3. Enhanced thermopower in ZnO two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shimizu, Sunao; Saeed Bahramy, Mohammad; Iizuka, Takahiko; Ono, Shimpei; Miwa, Kazumoto; Tokura, Yoshinori; Iwasa, Yoshihiro

    2016-06-01

    Control of dimensionality has proven to be an effective way to manipulate the electronic properties of materials, thereby enabling exotic quantum phenomena, such as superconductivity, quantum Hall effects, and valleytronic effects. Another example is thermoelectricity, which has been theoretically proposed to be favorably controllable by reducing the dimensionality. Here, we verify this proposal by performing a systematic study on a gate-tuned 2D electron gas (2DEG) system formed at the surface of ZnO. Combining state-of-the-art electric-double-layer transistor experiments and realistic tight-binding calculations, we show that, for a wide range of carrier densities, the 2DEG channel comprises a single subband, and its effective thickness can be reduced to ˜ 1 nm at sufficiently high gate biases. We also demonstrate that the thermoelectric performance of the 2DEG region is significantly higher than that of bulk ZnO. Our approach opens up a route to exploit the peculiar behavior of 2DEG electronic states and realize thermoelectric devices with advanced functionalities.

  4. Design and function of an electron mobility spectrometer with a thick gas electron multiplier

    NASA Astrophysics Data System (ADS)

    Orchard, Gloria M.; Puddu, Silvia; Waker, Anthony J.

    2016-04-01

    The design and function of an electron mobility spectrometer (EMS) including a thick gas electron multiplier (THGEM) is presented. The THGEM was designed to easily be incorporated in an existing EMS to investigate the ability to detect tritium in air using a micropattern gas detector. The THGEM and a collection plate (anode) were installed and the appropriate circuitry was designed and connected to supply the required voltages to the THGEM-EMS. An alpha source (241Am) was used to generate electron-ion pairs within the gas-filled sensitive volume of the EMS. The electrons were used to investigate the THGEM-EMS response as a function of applied voltage to the THGEM and anode. The relative gas-gain and system resolution of the THGEM-EMS were measured at various applied voltage settings. It was observed a potential difference across the THGEM of +420 V and potential difference across the induction region of +150 V for this EMS setup resulted in the minimum voltage requirements to operate with a stable gain and system resolution. Furthermore, as expected, the gain is strongly affected not only by the potential difference across the THGEM, but also by the applied voltage to the anode and resulting potential difference between the THGEM and anode.

  5. Electronic excitations of slow ions in a free electron gas metal: evidence for charge exchange effects.

    PubMed

    Primetzhofer, D; Rund, S; Roth, D; Goebl, D; Bauer, P

    2011-10-14

    Electronic energy loss of light ions transmitted through nanometer films of Al has been studied at very low ion velocities. For hydrogen, the electronic stopping power S is found to be perfectly proportional to velocity, as expected for a free electron gas. For He, the same is anticipated, but S shows a transition between two distinct regimes, in both of which S is velocity proportional-however, with remarkably different slopes. This finding can be explained as a consequence of charge exchange in close encounters between He and Al atoms, which represents an additional energy loss channel. PMID:22107378

  6. Hartree-Fock electronic structure calculations for free atoms and immersed atoms in an electron gas

    NASA Astrophysics Data System (ADS)

    Walsh, Kenneth Charles

    Electronic structure calculations for free and immersed atoms are performed in the context of unrestricted Hartree-Fock Theory. Spherical symmetry is broken, lifting degeneracies in electronic configurations involving the magnetic quantum number mℓ. Basis sets, produced from density functional theory, are then explored for completeness. Comparison to spectroscopic data is done by a configurational interaction of the appropriate L and S symmetry. Finally, a perturbation technique by Lowdin is used to couple the bound atomic states to a neutral, uniform background electronic gas (jellium).

  7. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    PubMed Central

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  8. Microwave polarization angle study of the radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2D electron system under dc current bias

    NASA Astrophysics Data System (ADS)

    Iqbal, Muhammad-Zahir; Liu, Han-Chun; Heimbeck, Martin S.; Everitt, Henry O.; Wegscheider, Werner; Mani, Ramesh G.

    Microwave-induced magnetoresistance oscillations followed by the vanishing resistance states are a prime representation of non-equilibrium transport phenomena in two-dimensional electron systems (2DES). The effect of a dc current bias on the nonlinear response of 2DES with microwave polarization angle under magnetic field is a subject of interest. Here, we have studied the effect of various dc current bias on microwave radiation-induced magnetoresistance oscillations in a high mobility 2DES. Further, we systematically investigate the effect of the microwave polarization angle on the magneto-resistance oscillations at two different frequencies 152.78 GHz and 185.76 GHz. This study aims to better understand the effects of both dc current and microwave polarization angle in the GaAs/AlGaAs system, both of which modify the observed magneto-transport properties DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  9. Study of microwave reflection in the regime of the radiation-induced magnetoresistance oscillations in the high mobility GaAs/AlGaAs 2D electron system

    NASA Astrophysics Data System (ADS)

    Kriisa, Annika; Liu, H.-C.; Samaraweera, R. L.; Heimbeck, M. S.; Everitt, H. O.; Wegscheider, W.; Mani, R. G.

    Microwave-induced zero-resistance-states in the photo-excited GaAs/AlGaAs system evolve from the minima of microwave photo-excited ``quarter-cycle shifted'' magnetoresistance oscillations. Such magnetoresistance oscillations are known to exhibit nodes at cyclotron resonance (hf = ℏωc) and cyclotron resonance harmonics (hf = nℏωc). Further, the effective mass extracted from the radiation-induced magnetoresistance oscillations is known to differ from the canonical effective mass ratio for electrons in the GaAs/AlGaAs system. In an effort to reconcile this difference, we have looked for cyclotron resonance in the microwave reflection from the high mobility 2DES and attempted to correlate the observations with observed oscillatory magnetoresistance over the 30 <= f <= 330 GHz band. The results of such a study will be reported here. DOE-BES, Mat'l. Sci. & Eng. Div., DE-SC0001762; ARO W911NF-14-2-0076; ARO W911NF-15-1-0433.

  10. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    NASA Astrophysics Data System (ADS)

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J.; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890.

  11. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium

    SciTech Connect

    Maiuri, Margherita; Réhault, Julien; Polli, Dario; Cerullo, Giulio; Carey, Anne-Marie; Hacking, Kirsty; Cogdell, Richard J.; Garavelli, Marco; Lüer, Larry

    2015-06-07

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Q{sub x} and Q{sub y} transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S{sub 2} of the Spx towards the Q{sub x} state of the B890, and (iii) the internal conversion from Q{sub x} to Q{sub y} within the B890.

  12. Ultra-broadband 2D electronic spectroscopy of carotenoid-bacteriochlorophyll interactions in the LH1 complex of a purple bacterium.

    PubMed

    Maiuri, Margherita; Réhault, Julien; Carey, Anne-Marie; Hacking, Kirsty; Garavelli, Marco; Lüer, Larry; Polli, Dario; Cogdell, Richard J; Cerullo, Giulio

    2015-06-01

    We investigate the excitation energy transfer (EET) pathways in the photosynthetic light harvesting 1 (LH1) complex of purple bacterium Rhodospirillum rubrum with ultra-broadband two-dimensional electronic spectroscopy (2DES). We employ a 2DES apparatus in the partially collinear geometry, using a passive birefringent interferometer to generate the phase-locked pump pulse pair. This scheme easily lends itself to two-color operation, by coupling a sub-10 fs visible pulse with a sub-15-fs near-infrared pulse. This unique pulse combination allows us to simultaneously track with extremely high temporal resolution both the dynamics of the photoexcited carotenoid spirilloxanthin (Spx) in the visible range and the EET between the Spx and the B890 bacterio-chlorophyll (BChl), whose Qx and Qy transitions peak at 585 and 881 nm, respectively, in the near-infrared. Global analysis of the one-color and two-color 2DES maps unravels different relaxation mechanisms in the LH1 complex: (i) the initial events of the internal conversion process within the Spx, (ii) the parallel EET from the first bright state S2 of the Spx towards the Qx state of the B890, and (iii) the internal conversion from Qx to Qy within the B890. PMID:26049453

  13. Engineering the Electronic Structure of 2D WS2 Nanosheets Using Co Incorporation as Cox W(1- x ) S2 for Conspicuously Enhanced Hydrogen Generation.

    PubMed

    Shifa, Tofik Ahmed; Wang, Fengmei; Liu, Kaili; Xu, Kai; Wang, Zhenxing; Zhan, Xueying; Jiang, Chao; He, Jun

    2016-07-01

    Transition metal dichalcogenides (TMDs), as one of potential electrocatalysts for hydrogen evolution reaction (HER), have been extensively studied. Such TMD-based ternary materials are believed to engender optimization of hydrogen adsorption free energy to thermoneutral value. Theoretically, cobalt is predicted to actively promote the catalytic activity of WS2 . However, experimentally it requires systematic approach to form Cox W(1- x ) S2 without any concomitant side phases that are detrimental for the intended purpose. This study reports a rational method to synthesize pure ternary Cox W(1- x ) S2 nanosheets for efficiently catalyzing HER. Benefiting from the modification in the electronic structure, the resultant material requires overpotential of 121 mV versus reversible hydrogen electrode (RHE) to achieve current density of 10 mA cm(-2) and shows Tafel slope of 67 mV dec(-1) . Furthermore, negligible loss of activity is observed over continues electrolysis of up to 2 h demonstrating its fair stability. The finding provides noticeable experimental support for other computational reports and paves the way for further works in the area of HER catalysis based on ternary materials. PMID:27322598

  14. 2-D time evolution of T/sub e/ during sawtooth crash based on fast ECE (electron cyclotron emission) measurements on TFTR

    SciTech Connect

    Kuo-Petravic, G.

    1988-12-01

    Electron cyclotron emission measurements taken at 20 locations in the horizontal midplane during a sawtooth crash have been analysed based on the assumption of fast rigid rotation of the plasma. Due to this fast rotation (approx.100..mu..sec), which remains fairly constant throughout the sawtooth crash, we have been able to make time-to-space reconstructions of half the poloidal plane using points which are separated in time by not more than 40..mu..sec. The existence of a temperature flattening in the precursor phase, which we interpret as an m = 1 temperature island, is clearly demonstrated, and its location and width agree well with local emissivity measurements from soft x-ray tomography viewing the same poloidal plane. The rotating temperature island in the precursor phase, the outward movement of the region of high T/sub c/ during the crash phase, and the shape of T/sub e/ during the crash phase, and the shape of T/sub e/ distribution after the crash during the successor phase have all been documented in a time sequence of color contours. 4 refs., 10 figs.

  15. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms.

    PubMed

    Bangert, U; Pierce, W; Boothroyd, C; Pan, C-T; Gwilliam, R

    2016-01-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes. PMID:27271352

  16. Collective electronic excitations in the ultra violet regime in 2-D and 1-D carbon nanostructures achieved by the addition of foreign atoms

    NASA Astrophysics Data System (ADS)

    Bangert, U.; Pierce, W.; Boothroyd, C.; Pan, C.-T.; Gwilliam, R.

    2016-06-01

    Plasmons in the visible/UV energy regime have attracted great attention, especially in nano-materials, with regards to applications in opto-electronics and light harvesting; tailored enhancement of such plasmons is of particular interest for prospects in nano-plasmonics. This work demonstrates that it is possible, by adequate doping, to create excitations in the visible/UV regime in nano-carbon materials, i.e., carbon nanotubes and graphene, with choice of suitable ad-atoms and dopants, which are introduced directly into the lattice by low energy ion implantation or added via deposition by evaporation. Investigations as to whether these excitations are of collective nature, i.e., have plasmonic character, are carried out via DFT calculations and experiment-based extraction of the dielectric function. They give evidence of collective excitation behaviour for a number of the introduced impurity species, including K, Ag, B, N, and Pd. It is furthermore demonstrated that such excitations can be concentrated at nano-features, e.g., along nano-holes in graphene through metal atoms adhering to the edges of these holes.

  17. Dissociative Attachment Reactions of Electrons with Gas Phase Superacids

    NASA Astrophysics Data System (ADS)

    Liu, Xifan

    Using the flowing afterglow Langmuir probe (FALP) technique, dissociative attachment coefficients beta for reactions of electrons with gas phase superacids HCo(PF_3)_4, HRh(PF _3)_4 and carbonyl hydride complexes HMn(CO)_5, HRe(CO) _5 have been determined under thermal conditions over the approximate temperature range 300~ 550 K. The superacids react relatively slowly (< 1/20 of beta_{rm max}) with free electrons in a thermal plasma, and the values of beta obtained this far do not show a correlation between acidity and beta. The pioneer researchers in this field had speculated that any superacid would be a rapid attacher of electrons; we found that this speculation is not true in general. The product distribution of electron attachment reaction to HCo(PF_3)_4 was found to be independent of temperature even though the beta (HCo(PF_3)_4 ) increases with temperature. This leads us to propose that the electron attachment process occurs well before the excited complex dissociates. In addition, the activation energy of HCo(PF_3)_4 for electron attachment has been derived from the Arrhenius plots. The carbonyl hydride complexes, HMn(CO) _5 and HRe(CO)_5, react relatively rapidly (>1/4 of beta_{rm max}) with free electrons in thermal plasma. This indicates that these reactions cannot be significantly endothermic. Observation of rapid attachment for these non-superacids shows that the Mn-CO and Re-CO bonds are weaker than the Mn-H and Re-H bonds, respectively. Comparisons between the carbonyl and trifluorophosphine cases implies that fast electron capture is related more to the CO ligand than to the transition -metal species.

  18. Electron mobility of a two-dimensional electron gas at the interface of SrTiO3 and LaAlO3

    NASA Astrophysics Data System (ADS)

    Faridi, A.; Asgari, Reza; Langari, A.

    2016-06-01

    We calculate the mobility of a two-dimensional electron gas residing at the interface of LaAlO3/SrTiO3 following a three band Boltzmann approach at low temperature, where a carrier-charged impurity scattering process is assumed to be dominant. We explain the anisotropic characteristic of the dielectric function, which is a consequence of elliptical bands close to Fermi surface. The screening effect, which weakens the long-range Coulomb interaction of the electron-impurity, is considered within the random phase approximation. Working at carrier densities high enough to neglect the spin-orbit induced splitting of the bands, we find that the mobility varies inversely with the cubic power of the carrier density (n2D-3) in good agreement with the experimental results. We also investigate the role of variable dielectric constant of SrTiO3, the multiband nature of the system, and interband interactions in exploring this result.

  19. Gas lasers pumped by runaway electrons preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexei I.

    2015-05-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of gas mixtures at elevated pressures and can produce laser emission. We report experimental and simulated results of application of the REP DD for excitation of different active gas mixtures. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing predicting the radiation parameters of nitrogen laser at 337.1 nm. Peculiarities of the REP DD development in different gas mixtures are studied, as well. It was shown that the REP DD allows obtaining efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. New operation mode of nitrogen laser is demonstrated under REP DD excitation. Laser action on N2, HF, and DF molecules was obtained with the efficiency close to the limiting value. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  20. PIC code modeling of spacecraft charging potential during electron beam injection into a background of neutral gas and plasma, part 1

    NASA Technical Reports Server (NTRS)

    Koga, J. K.; Lin, C. S.; Winglee, R. M.

    1989-01-01

    Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.

  1. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  2. High-speed digital holography for neutral gas and electron density imaging.

    PubMed

    Granstedt, E M; Thomas, C E; Kaita, R; Majeski, R; Baylor, L R; Meitner, S J; Combs, S K

    2016-05-01

    An instrument was developed using digital holographic reconstruction of the wavefront from a CO2 laser imaged on a high-speed commercial IR camera. An acousto-optic modulator is used to generate 1-25 μs pulses from a continuous-wave CO2 laser, both to limit the average power at the detector and also to freeze motion from sub-interframe time scales. Extensive effort was made to characterize and eliminate noise from vibrations and second-surface reflections. Mismatch of the reference and object beam curvature initially contributed substantially to vibrational noise, but was mitigated through careful positioning of identical imaging lenses. Vibrational mode amplitudes were successfully reduced to ≲1 nm for frequencies ≳50 Hz, and the inter-frame noise across the 128 × 128 pixel window which is typically used is ≲2.5 nm. To demonstrate the capabilities of the system, a piezo-electric valve and a reducing-expanding nozzle were used to generate a super-sonic gas jet which was imaged with high spatial resolution (better than 0.8 lp/mm) at high speed. Abel inversions were performed on the phase images to produce 2-D images of localized gas density. This system could also be used for high spatial and temporal resolution measurements of plasma electron density or surface deformations. PMID:27250423

  3. Electron-beam synthesis of fuel in the gas phase

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Holodkova, E. M.; Ershov, B. G.

    2012-09-01

    Electron-beam synthesis of liquid fuel from gaseous alkanes was upgraded for formation of conventional and alternative fuel from biomass or pyrolysis oil. Bio-feedstock conversion algorithm includes two consecutive stages: (1) initial macromolecules' transformation to low-molecular-weight intermediates; (2) transformation of these intermediates to stable fuel in gaseous alkanes' atmosphere. Radicals originated from alkanes participate in alkylation/hydrogenation of biomass intermediates. Chemical fixation of gaseous alkanes is amplified in the presence of biomass derivatives due to suppression of gas regeneration reactions, higher molar mass of reagents and lower volatility of radiolytic intermediates.

  4. Momentum distribution function of the electron gas at metallic densities

    NASA Astrophysics Data System (ADS)

    Takada, Yasutami; Yasuhara, H.

    1991-10-01

    The momentum distribution function n(k) of the electron gas is calculated in the effective-potential-expansion method at metallic densities. The recently established self-consistency relation between n(k) and the correlation energy [Y. Takada and T. Kita, J. Phys. Soc. Jpn. 60, 25 (1991)] is employed to check the accuracy of our results. This check shows that the effective-potential-expansion method provides probably the exact and at least more accurate results of n(k) than all the other methods that have given n(k) thus far.

  5. Inkjet printing of 2D layered materials.

    PubMed

    Li, Jiantong; Lemme, Max C; Östling, Mikael

    2014-11-10

    Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938

  6. Microplume model of spatial-yield spectra. [applying to electron gas degradation in molecular nitrogen gas

    NASA Technical Reports Server (NTRS)

    Green, A. E. S.; Singhal, R. P.

    1979-01-01

    An analytic representation for the spatial (radial and longitudinal) yield spectra is developed in terms of a model containing three simple 'microplumes'. The model is applied to electron energy degradation in molecular nitrogen gas for 0.1 to 5 keV incident electrons. From the nature of the cross section input to this model it is expected that the scaled spatial yield spectra for other gases will be quite similar. The model indicates that each excitation, ionization, etc. plume should have its individual spatial and energy dependence. Extensions and aeronomical and radiological applications of the model are discussed.

  7. Distribution of a nonstationary electron beam in a dense gas

    SciTech Connect

    Sklyarov, Y.M.; Shelepin, L.A.; Syts'ko, Y.L.

    1986-11-01

    The problem of the temporal and spatial dependences of the parameters of the action of a modulated fast-electron beam on a dense gas is posed on the basis of the transport equation. The problem is simplified by making it nondimensional and by transforming to the Fokker-Planck approximation. A Green's function formalism is developed for this problem and is used to express the solution of the general nonstationary problem in the form of a convolution of a nonstationary boundary flow with a stationary Green's function. The use of the derived equation is illustrated using as an example the solution of a problem with the simplest stationary Green's function corresponding to the ''straight-ahead'' approximation. This approximation is used to consider a general relativistic case with model scattering cross sections. The methods and results of a numerical computer solution of the nonstationary problem of electron retardation in the upper layer of the atmosphere are surveyed.

  8. Large Area Synthesis of 2D Materials

    NASA Astrophysics Data System (ADS)

    Vogel, Eric

    Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.

  9. Determination of phosphine and other fumigants in air samples by thermal desorption and 2D heart-cutting gas chromatography with synchronous SIM/Scan mass spectrometry and flame photometric detection.

    PubMed

    Fahrenholtz, Svea; Hühnerfuss, Heinrich; Baur, Xaver; Budnik, Lygia Therese

    2010-12-24

    Fumigants and volatile industrial chemicals are particularly hazardous to health when a freight container is fumigated or the contaminated material is introduced into its enclosed environment. Phosphine is now increasingly used as a fumigant, after bromomethane--the former fumigant of choice--has been banned by the Montreal Protocol. We have enhanced our previously established thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method by integrating a second gas chromatographic dimension and a flame photometric detector to allow the simultaneous detection of phosphine and volatile organic compounds (VOCs), providing a novel application. A thermal desorption system is coupled to a two dimensional gas chromatograph using both mass spectrometric and flame photometric detection (TD-2D-GC-MS/FPD). Additionally, the collection of mass spectrometric SIM and Scan data has been synchronised, so only a single analysis is now sufficient for qualitative scanning of the whole sample and for sensitive quantification. Though detection limits for the herewith described method are slightly higher than in the previous method, they are in the low μL m(-3) range, which is not only below the respective occupational exposure and intervention limits but also allows the detection of residual contamination after ventilation. The method was developed for the separation and identification of 44 volatile substances. For 12 of these compounds (bromomethane, iodomethane, dichloromethane, 1,2-dichlorethane, benzene, tetrachloromethane, 1,2-dichloropropane, toluene, trichloronitromethane, ethyl benzene, phosphine, carbon disulfide) the method was validated as we chose the target compounds due to their relevance in freight container handling. PMID:21084090

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  11. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  12. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  13. Quantum holographic encoding in a two-dimensional electron gas

    SciTech Connect

    Moon, Christopher

    2010-05-26

    The advent of bottom-up atomic manipulation heralded a new horizon for attainable information density, as it allowed a bit of information to be represented by a single atom. The discrete spacing between atoms in condensed matter has thus set a rigid limit on the maximum possible information density. While modern technologies are still far from this scale, all theoretical downscaling of devices terminates at this spatial limit. Here, however, we break this barrier with electronic quantum encoding scaled to subatomic densities. We use atomic manipulation to first construct open nanostructures - 'molecular holograms' - which in turn concentrate information into a medium free of lattice constraints: the quantum states of a two-dimensional degenerate Fermi gas of electrons. The information embedded in the holograms is transcoded at even smaller length scales into an atomically uniform area of a copper surface, where it is densely projected into both two spatial degrees of freedom and a third holographic dimension mapped to energy. In analogy to optical volume holography, this requires precise amplitude and phase engineering of electron wavefunctions to assemble pages of information volumetrically. This data is read out by mapping the energy-resolved electron density of states with a scanning tunnelling microscope. As the projection and readout are both extremely near-field, and because we use native quantum states rather than an external beam, we are not limited by lensing or collimation and can create electronically projected objects with features as small as {approx}0.3 nm. These techniques reach unprecedented densities exceeding 20 bits/nm{sup 2} and place tens of bits into a single fermionic state.

  14. Towards transcorrelated FCIQMC for the uniform electron gas

    NASA Astrophysics Data System (ADS)

    Mohr, Jennifer A.-F.; Shepherd, James; Alavi, Ali

    2013-03-01

    The full configuration interaction quantum Monte Carlo (FCIQMC) method1 has been shown to provide exact results for the solution of the N-particle Schrödinger equation of the uniform electron gas (UEG) within a finite basis set2. However, due to the difficulty of representing the electron-electron cusp, a large number of basis functions is needed to describe the exact wavefunction of this model system. In order to make larger UEG systems accessible for FCIQMC calculations, we aim to improve the convergence of the ground-state eigenvector of the Hamiltonian with respect to the size of the basis set. For this purpose, we use a transcorrelated ansatz that was first suggested by Boys and Handy3 in 1969. Within this method, the problematic behaviour of the wavefunction near the cusp is incorporated into the Hamiltonian by a similarity transformation. With our poster, we will present encountered obstacles as well as our ideas and aspirations for this new project. 1 G. H. Booth, A. J. W. Thom, and A. Alavi, J. Chem. Phys. 131, 054106 (2009) 2 J. J. Shepherd, G. H Booth, A. Grüneis, and A. Alavi, Phys. Rev. B 85, 081103(R) (2012) 3 S. F. Boys, and N. C. Handy, Proc. R. Soc. Lond. A 310, 43-61(1969)

  15. Schottky diodes from 2D germanane

    NASA Astrophysics Data System (ADS)

    Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.

    2016-07-01

    We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.

  16. A ballistic two-dimensional-electron-gas Andreev interferometer

    SciTech Connect

    Amado, M. Fornieri, A.; Sorba, L.; Giazotto, F.; Biasiol, G.

    2014-06-16

    We report the realization and investigation of a ballistic Andreev interferometer based on an InAs two dimensional electron gas coupled to a superconducting Nb loop. We observe strong magnetic modulations in the voltage drop across the device due to quasiparticle interference within the weak-link. The interferometer exhibits flux noise down to ∼80 μΦ{sub 0}/√(Hz) and a robust behavior in temperature with voltage oscillations surviving up to ∼7 K. Besides this remarkable performance, the device represents a crucial first step for the realization of a fully-tunable ballistic superconducting magnetometer and embodies a potential advanced platform for the investigation of Majorana bound states, non-local entanglement of Cooper pairs, as well as the manipulation and control of spin triplet correlations.

  17. Compressibility sum rule for the two-dimensional electron gas.

    PubMed

    Das, M P; Golden, K I; Green, F

    2001-07-01

    The authors establish formulas for the isothermal compressibility and long-wavelength static density-density response function of a weakly correlated two-dimensional electron gas in the 1

  18. Energy fluctuations of a finite free-electron Fermi gas.

    PubMed

    Pekola, Jukka P; Muratore-Ginanneschi, Paolo; Kupiainen, Antti; Galperin, Yuri M

    2016-08-01

    We discuss the energy distribution of free-electron Fermi-gas, a problem with a textbook solution of Gaussian energy fluctuations in the limit of a large system. We find that for a small system, characterized solely by its heat capacity C, the distribution can be solved analytically, and it is both skewed and it vanishes at low energies, exhibiting a sharp drop to zero at the energy corresponding to the filled Fermi sea. The results are relevant from the experimental point of view, since the predicted non-Gaussian effects become pronounced when C/k_{B}≲10^{3} (k_{B} is the Boltzmann constant), a regime that can be easily achieved for instance in mesoscopic metallic conductors at sub-kelvin temperatures. PMID:27627262

  19. AnisWave 2D

    Energy Science and Technology Software Center (ESTSC)

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  20. 2D materials: Graphene and others

    NASA Astrophysics Data System (ADS)

    Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh

    2016-05-01

    Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.

  1. Development of Resistive Electrode Gas Electron Multiplier (RE-GEM)

    NASA Technical Reports Server (NTRS)

    Yoshikawa, A.; Tamagawa, T.; Iwahashi, T.; Asami, F.; Takeuchi, Y.; Hayato, A.; Hamagaki, H.; Gunji, T.; Akimoto, R.; Nukariya, A.; Hayashi, S.; Ueno, K.; Ochi, A.; Oliveria, R.

    2012-01-01

    We successfully produced Resistive-Electrode Gas Electron Multiplier (RE-GEM) which has resistive electrodes instead of the metal ones which are employed for the standard GEM foils. RE-GEM has a resistive electrode of 25 micron-thick and an insulator layer of 100 micron-thick. The hole structure of RE-GEM is a single conical with the wider and narrower hole diameters of 80 micron and 60 micron, respectively. A hole pitch of RE-GEM is 140 micron. We obtained the maximum gain of about 600 and the typical energy resolution of about 20% (FWHM) at an applied voltage between the resistive electrodes of 620 V, using a collimated 8 keV X-rays from a generator in a gas mixture of 70% Ar and 30% CO2 by volume at the atmospheric pressure. We measured the effective gain as a function of the electric field of the drift region and obtained the maximum gain at an drift field of 0.5 kV/cm.

  2. Tuning the conductivity threshold and carrier density of two-dimensional electron gas at oxide interfaces through interface engineering

    SciTech Connect

    Ma, H. J. Harsan E-mail: ariando@nus.edu.sg; Zeng, S. W.; Annadi, A.; Ariando E-mail: ariando@nus.edu.sg; Huang, Z.; Venkatesan, T.

    2015-08-15

    The two-dimensional electron gas (2DEG) formed at the perovskite oxides heterostructures is of great interest because of its potential applications in oxides electronics and nanoscale multifunctional devices. A canonical example is the 2DEG at the interface between a polar oxide LaAlO{sub 3} (LAO) and non-polar SrTiO{sub 3} (STO). Here, the LAO polar oxide can be regarded as the modulating or doping layer and is expected to define the electronic properties of 2DEG at the LAO/STO interface. However, to practically implement the 2DEG in electronics and device design, desired properties such as tunable 2D carrier density are necessary. Here, we report the tuning of conductivity threshold, carrier density and electronic properties of 2DEG in LAO/STO heterostructures by insertion of a La{sub 0.5}Sr{sub 0.5}TiO{sub 3} (LSTO) layer of varying thicknesses, and thus modulating the amount of polarization of the oxide over layers. Our experimental result shows an enhancement of carrier density up to a value of about five times higher than that observed at the LAO/STO interface. A complete thickness dependent metal-insulator phase diagram is obtained by varying the thickness of LAO and LSTO providing an estimate for the critical thickness needed for the metallic phase. The observations are discussed in terms of electronic reconstruction induced by polar oxides.

  3. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces.

    PubMed

    Zhuang, Houlong L; Zhang, Lipeng; Xu, Haixuan; Kent, P R C; Ganesh, P; Cooper, Valentino R

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the "polar catastrophe" mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified "polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  4. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    PubMed Central

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases. PMID:27151049

  5. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Zhang, Lipeng; Xu, Haixuan; Kent, P. R. C.; Ganesh, P.; Cooper, Valentino R.

    2016-05-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO layers. This insulator to-metal transition can be explained through the “polar catastrophe” mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified “polar catastrophe” model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first-principles calculations indicate that for nanowire heterostructures a robust one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity at LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density decays laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier dimensionality between 1D and 2D conductivity. Our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  6. Tunable one-dimensional electron gas carrier densities at nanostructured oxide interfaces

    DOE PAGESBeta

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R. C.; Ganesh, Panchapakesan; Cooper, Valentino R.; Zhuang, Houlong L.

    2016-05-06

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructuremore » geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. Furthermore, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.« less

  7. Tunable One-Dimensional Electron Gas Carrier Densities at Nanostructured Oxide Interfaces

    SciTech Connect

    Zhang, Lipeng; Xu, Haixuan; Kent, Paul R; Ganesh, Panchapakesan; Cooper, Valentino R

    2016-01-01

    The emergence of two-dimensional metallic states at the LaAlO3/SrTiO3 (LAO/STO) heterostructure interface is known to occur at a critical thickness of four LAO over layers. This insulator-to-metal transition can be explained through the polar catastrophe mechanism arising from the divergence of the electrostatic potential at the LAO surface. Here, we demonstrate that nanostructuring can be effective in reducing or eliminating this critical thickness. Employing a modified polar catastrophe" model, we demonstrate that the nanowire heterostructure electrostatic potential diverges more rapidly as a function of layer thickness than in a regular heterostructure. Our first principles calculations indicate that for nanowire heterostructure geometries a one-dimensional electron gas (1DEG) can be induced, consistent with recent experimental observations of 1D conductivity in LAO/STO steps. Similar to LAO/STO 2DEGs, we predict that the 1D charge density will decay laterally within a few unit cells away from the nanowire; thus providing a mechanism for tuning the carrier behavior between 1D and 2D conductivity. In essence, our work provides insight into the creation and manipulation of charge density at an oxide heterostructure interface and therefore may be beneficial for future nanoelectronic devices and for the engineering of novel quantum phases.

  8. Dissociative electron attachment to the gas-phase nucleobase hypoxanthine

    SciTech Connect

    Dawley, M. Michele; Tanzer, Katrin; Denifl, Stephan E-mail: Sylwia.Ptasinska.1@nd.edu; Carmichael, Ian; Ptasińska, Sylwia E-mail: Sylwia.Ptasinska.1@nd.edu

    2015-06-07

    We present high-resolution measurements of the dissociative electron attachment (DEA) to isolated gas-phase hypoxanthine (C{sub 5}H{sub 4}N{sub 4}O, Hyp), a tRNA purine base. The anion mass spectra and individual ion efficiency curves from Hyp were measured as a function of electron energy below 9 eV. The mass spectra at 1 and 6 eV exhibit the highest anion yields, indicating possible common precursor ions that decay into the detectable anionic fragments. The (Hyp − H) anion (C{sub 5}H{sub 3}N{sub 4}O{sup −}) exhibits a sharp resonant peak at 1 eV, which we tentatively assign to a dipole-bound state of the keto-N1H,N9H tautomer in which dehydrogenation occurs at either the N1 or N9 position based upon our quantum chemical computations (B3LYP/6-311+G(d,p) and U(MP2-aug-cc-pVDZ+)) and prior studies with adenine. This closed-shell dehydrogenated anion is the dominant fragment formed upon electron attachment, as with other nucleobases. Seven other anions were also observed including (Hyp − NH){sup −}, C{sub 4}H{sub 3}N{sub 4}{sup −}/C{sub 4}HN{sub 3}O{sup −}, C{sub 4}H{sub 2}N{sub 3}{sup −}, C{sub 3}NO{sup −}/HC(HCN)CN{sup −}, OCN{sup −}, CN{sup −}, and O{sup −}. Most of these anions exhibit broad but weak resonances between 4 and 8 eV similar to many analogous anions from adenine. The DEA to Hyp involves significant fragmentation, which is relevant to understanding radiation damage of biomolecules.

  9. Fast modular data acquisition system for GEM-2D detector

    NASA Astrophysics Data System (ADS)

    Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.

    2014-11-01

    A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.

  10. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bandsa)

    NASA Astrophysics Data System (ADS)

    Romano, A.; Pacella, D.; Mazon, D.; Murtas, F.; Malard, P.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Corradi, G.

    2010-10-01

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  11. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bands

    SciTech Connect

    Romano, A.; Pacella, D.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Mazon, D.; Malard, P.

    2010-10-15

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  12. Resonant spin Hall effect in two dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Shun-Qing

    2005-03-01

    Remarkable phenomena have been observed in 2DEG over last two decades, most notably, the discovery of integer and fractional quantum Hall effect. The study of spin transport provides a good opportunity to explore spin physics in two-dimensional electron gas (2DEG) with spin-orbit coupling and other interaction. It is already known that the spin-orbit coupling leads to a zero-field spin splitting, and competes with the Zeeman spin splitting if the system is subjected to a magnetic field perpendicular to the plane of 2DEG. The result can be detected as beating of the Shubnikov-de Haas oscillation. Very recently the speaker and his collaborators studied transport properties of a two-dimensional electron system with Rashba spin-orbit coupling in a perpendicular magnetic field. The spin-orbit coupling competes with the Zeeman splitting to generate additional degeneracies between different Landau levels at certain magnetic fields. It is predicted theoretically that this degeneracy, if occurring at the Fermi level, gives rise to a resonant spin Hall conductance, whose height is divergent as 1/T and whose weight is divergent as -lnT at low temperatures. The charge Hall conductance changes by 2e^2/h instead of e^2/h as the magnetic field changes through the resonant point. The speaker will address the resonance condition, symmetries in the spin-orbit coupling, the singularity of magnetic susceptibility, nonlinear electric field effect, the edge effect and the disorder effect due to impurities. This work was supported by the Research Grants Council of Hong Kong under Grant No.: HKU 7088/01P. *S. Q. Shen, M. Ma, X. C. Xie, and F. C. Zhang, Phys. Rev. Lett. 92, 256603 (2004) *S. Q. Shen, Y. J. Bao, M. Ma, X. C. Xie, and F. C. Zhang, cond-mat/0410169

  13. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  14. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  15. New Approach for 2D Readout of GEM Detectors

    SciTech Connect

    Hasell, Douglas K

    2011-10-29

    Detectors based on Gas Electron Multiplication (GEM) technology are becoming more and more widely used in nuclear and high energy physics and are being applied in astronomy, medical physics, industry, and homeland security. GEM detectors are thin, low mass, insensitive to magnetic fields, and can currently provide position resolutions down to {approx}50 microns. However, the designs for reconstructing the position, in two dimensions (2D), of the charged particles striking a GEM detector are often complicated to fabricate and expensive. The objective of this proposal is to investigate a simpler procedure for producing the two dimensional readout layer of GEM detectors using readily available printed circuit board technology which can be tailored to the detector requirements. We will use the established GEM laboratory and facilities at M.I.T. currently employed in developing GEM detectors for the STAR forward tracking upgrade to simplify the testing and evaluation of the new 2D readout designs. If this new design proves successful it will benefit future nuclear and high energy physics experiments already being planned and will similarly extend and simplify the application of GEM technology to other branches of science, medicine, and industry. These benefits would be not only in lower costs for fabrication but also it increased flexibility for design and application.

  16. Suspended 2-D photonic crystal aluminum nitride membrane reflector.

    PubMed

    Ho, Chong Pei; Pitchappa, Prakash; Soon, Bo Woon; Lee, Chengkuo

    2015-04-20

    We experimentally demonstrated a free-standing two-dimensional (2-D) photonic crystal (PhC) aluminum nitride (AlN) membrane to function as a free space (or out-of-plane) reflector working in the mid infrared region. By etching circular holes of radius 620nm in a 330nm thick AlN slab, greater than 90% reflection was measured from 3.08μm to 3.78μm, with the peak reflection of 96% at 3.16μm. Due to the relatively low refractive index of AlN, we also investigated the importance of employing methods such as sacrificial layer release to enhance the performance of the PhC. In addition, characterization of the AlN based PhC was also done up to 450°C to examine the impact of thermo-optic effect on the performance. Despite the high temperature operation, the redshift in the peak reflection wavelengths of the device was estimated to be only 14.1nm. This equates to a relatively low thermo-optic coefficient 2.22 × 10(-5) K(-1) for AlN. Such insensitivity to thermo-optic effect makes AlN based 2-D PhC a promising technology to be used as photonic components for high temperature applications such as Fabry-Perot interferometer used for gas sensing in down-hole oil drilling and ruggedized electronics. PMID:25969099

  17. Gas breakdown in electron cyclotron resonance ion sources

    NASA Astrophysics Data System (ADS)

    Skalyga, V. A.; Zorin, V. G.; Izotov, I. V.; Sidorov, A. V.; Lamy, T.; Sortais, P.; Thuillier, T.

    2006-03-01

    The realization of the beta-beam project (http://beta-beam.web.cern.ch/beta-beam/) assumes the formation of a pulsed ion beam of helium and neon radioactive isotopes. A pulsed electron cyclotron resonance (ECR) source of multicharged ions has been proposed to produce such a beam [P. Sortais et al., Rev. Sci. Instrum. 75, 1610 (2004)]. The rising of plasma density up to a stationary level must be fast enough to actualize this approach. This condition is mandatory to avoid particle losses in the transmission line. In the presented work, the rising time of the plasma density in an ECR ion source from a background level up to 98% of a stationary level is calculated. A zero-dimensional model of plasma formation in a mirror trap [V. Semenov et al., Rev. Sci. Instrum. 73, 635 (2002)] is used, able to make calculation for a wide range of microwave frequencies. Plasma confinement regime can either be classic (Pastoukhov [Rev. Plasma Phys. 13, 203 (1987)]) or gas dynamic, depending on the plasma parameters. The calculations are in good agreement with the experimental results obtained at the SMIS'37 setup. Numerical calculations also show that particle losses can be significantly reduced by pumping effect; thanks to microwave frequency increase above 40GHz.

  18. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    NASA Astrophysics Data System (ADS)

    Park, Seongtae; Baldelomar, Edwin; Park, Kwangjune; Sosebee, Mark; White, Andy; Yu, Jaehoon

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28×28 cm2 active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3×3 cm2 GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and 55Fe radioactive source. From the 55Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  19. Measurement Of Gas Electron Multiplier (GEM) Detector Characteristics

    SciTech Connect

    Park, Seongtae; Baldelomar, Edwin; Sosebee, Mark; White, Andy; Yu, Jaehoon; Park, Kwangjune

    2011-06-01

    The High Energy Physics group of the University of Texas at Arlington has been developing gas electron multiplier detectors to use them as sensitive gap detectors in digital hadron calorimeters for the International Linear Collider, a future high energy particle accelerator. For this purpose, we constructed numerous GEM detectors that employ double GEM layers. In this study, two kinds of prototype GEM detectors were tested; one with 28x28 cm{sup 2} active area double GEM structure with a 3 mm drift gap, a 1 mm transfer gap and a 1 mm induction gap and the other with two 3x3 cm{sup 2} GEM foils in the amplifier stage with a 5 mm drift gap, a 2 mm transfer gap and a 1 mm induction gap. The detectors' characteristics from exposure to high-energy charged particles and other radiations were measured using cosmic rays and {sup 55}Fe radioactive source. From the {sup 55}Fe tests, we observed two well separated characteristic X-ray emission peaks and confirmed the detectors' functionality. We also measured chamber gains to be over 6000 at a high voltage of 395 V across each GEM electrode. The responses to cosmic rays show the spectra that fit well to Landau distributions as expected from minimum ionizing particles.

  20. Gas-phase electronic spectrum of the indole radical cation

    NASA Astrophysics Data System (ADS)

    Chalyavi, N.; Catani, K. J.; Sanelli, J. A.; Dryza, V.; Bieske, E. J.

    2015-08-01

    The visible and near-UV electronic spectrum of the indole radical cation is measured in the gas phase by photodissociation of indole+-Ar and indole+-He complexes in a tandem mass spectrometer. A series of resolved vibronic transitions extending from 610 to 460 nm are assigned to the D2 ← D0 band system, while weak transitions between 390 and 360 nm are assigned to the D3 ← D0 system, and a stronger, broad, unresolved absorption between 350 and 300 nm is attributed to the D4 ← D0 system. Time-dependent density functional theory calculations are used to assign vibronic structure of the D2 ← D0 band system, and show that the main active vibrational modes correspond to in-plane ring deformations. The strongest D2 ← D0 vibronic transitions of indole+-He do not correspond with any catalogued diffuse interstellar bands, even considering band displacements of up to 50 cm-1possibly caused by the attached He atom.

  1. Infrared light emission from nano hot electron gas created in atomic point contacts

    NASA Astrophysics Data System (ADS)

    Malinowski, T.; Klein, H. R.; Iazykov, M.; Dumas, Ph.

    2016-06-01

    Gold atomic point contacts are prototype systems to evidence ballistic electron transport. The typical dimension of the nanojunction being smaller than the electron-phonon interaction length, even at room temperature, electrons transfer their excess energy to the lattice only far from the contact. At the contact however, favored by huge current densities, electron-electron interactions result in a nano hot electron gas acting as a source of photons. Using a home built Mechanically Controlled Break Junction, it is reported here, for the first time, that this nano hot electron gas also radiates in the infrared range (0.2 eV to 1.2 eV). Moreover, following the description introduced by Tomchuk et al. (Sov. Phys.-Solid State, 8 (1966) 2510), we show that this radiation is compatible with a black-body–like spectrum emitted from an electron gas at temperatures of several thousands of kelvins.

  2. Electron temperature and density measurement of tungsten inert gas arcs with Ar-He shielding gas mixture

    NASA Astrophysics Data System (ADS)

    Kühn-Kauffeldt, M.; Marques, J.-L.; Forster, G.; Schein, J.

    2013-10-01

    The diagnostics of atmospheric welding plasma is a well-established technology. In most cases the measurements are limited to processes using pure shielding gas. However in many applications shielding gas is a mixture of various components including metal vapor in gas metal arc welding (GMAW). Shielding gas mixtures are intentionally used for tungsten inert gas (TIG) welding in order to improve the welding performance. For example adding Helium to Argon shielding gas allows the weld geometry and porosity to be influenced. Yet thermal plasmas produced with gas mixtures or metal vapor still require further experimental investigation. In this work coherent Thomson scattering is used to measure electron temperature and density in these plasmas, since this technique allows independent measurements of electron and ion temperature. Here thermal plasmas generated by a TIG process with 50% Argon and 50% Helium shielding gas mixture have been investigated. Electron temperature and density measured by coherent Thomson scattering have been compared to the results of spectroscopic measurements of the plasma density using Stark broadening of the 696.5 nm Argon spectral line. Further investigations of MIG processes using Thomson scattering technique are planned.

  3. Photocurrent spectroscopy of 2D materials

    NASA Astrophysics Data System (ADS)

    Cobden, David

    Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.

  4. Simulation of electron beam formation and transport in a gas-filled electron-optical system with a plasma emitter

    NASA Astrophysics Data System (ADS)

    Grishkov, A. A.; Kornilov, S. Yu.; Rempe, N. G.; Shidlovskiy, S. V.; Shklyaev, V. A.

    2016-07-01

    The results of computer simulations of the electron-optical system of an electron gun with a plasma emitter are presented. The simulations are performed using the KOBRA3-INP, XOOPIC, and ANSYS codes. The results describe the electron beam formation and transport. The electron trajectories are analyzed. The mechanisms of gas influence on the energy inhomogeneity of the beam and its current in the regions of beam primary formation, acceleration, and transport are described. Recommendations for optimizing the electron-optical system with a plasma emitter are presented.

  5. MOSS2D V1

    Energy Science and Technology Software Center (ESTSC)

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  6. Photoionization of the outer electrons in noble gas endohedral atoms

    SciTech Connect

    Amusia, M. Ya. Baltenkov, A. S.; Chernysheva, L. V.

    2008-08-15

    We suggest a prominent modification of the outer shell photoionization cross section in noble gas (NG) endohedral atoms NG-C{sub n} under the action of the electron shell of fullerene C{sub n}. This shell leads to two important effects: a strong enhancement of the cross section due to fullerene shell polarization under the action of the incoming electromagnetic wave and to prominent oscillation of this cross section due to the reflection of a photoelectron from the NG by the fullerene shell. Both factors lead to powerful maxima in the outer shell ionization cross sections of NG-C{sub n}, which we call giant endohedral resonances. The oscillator strength reaches a very large value in the atomic scale, 25. We consider atoms of all noble gases except He. The polarization of the fullerene shell is expressed in terms of the total photoabsorption cross section of the fullerene. The photoelectron reflection is taken into account in the framework of the so-called bubble potential, which is a spherical {delta}-type potential. It is assumed in the derivations that the NG is centrally located in the fullerene. It is also assumed, in accordance with the existing experimental data, that the fullerene radius R{sub C} is much larger than the atomic radius r{sub A} and the thickness {delta}{sub C} of the fullerene shell. As was demonstrated recently, these assumptions allow us to represent the NG-C{sub n} photoionization cross section as a product of the NG cross section and two well-defined calculated factors.

  7. Ultrafast electronic relaxation of excited state vitamin B 12 in the gas phase

    NASA Astrophysics Data System (ADS)

    Shafizadeh, Niloufar; Poisson, Lionel; Soep, Benoıˆt

    2008-06-01

    The time evolution of electronically excited vitamin B 12 (cyanocobalamin) has been observed for the first time in the gas phase. It reveals an ultrafast decay to a state corresponding to metal excitation. This decay is interpreted as resulting from a ring to metal electron transfer. This opens the observation of the excited state of other complex biomimetic systems in the gas phase, the key to the characterisation of their complex evolution through excited electronic states.

  8. From weakly to strongly interacting 2D Fermi gases

    NASA Astrophysics Data System (ADS)

    Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris

    2014-05-01

    We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.

  9. Shubnikov-de Haas measurements of the 2-D electron gas in pseudomorphic In(0.1)Ga(0.9)As grown on GaAs

    NASA Technical Reports Server (NTRS)

    Szydlic, P. P.; Alterovitz, S. A.; Haugland, E. J.; Segall, B.; Henderson, T. S.

    1988-01-01

    Shubnikov-de Hass (SdH) measurements performed on a 200 A layer of pseudomorphic In(0.10)Ga(0.90)As grown by MBE on undoped GaAs with an overlayer of Al(0.15)Ga(0.85)As are presented. These measurements were performed in magnetic fields up to 1.4 tesla at T in the range of 1.4-10 K. It was found that only one subband was populated with a density of 5.8 x 10 to the 11/cm-squared and an effective mass at the Fermi level m(asterisk) = (0.060 + or - 0.001)m(0).

  10. Electronic conductance of a two-dimensional electron gas in the presence of periodic potentials

    NASA Astrophysics Data System (ADS)

    Takagaki, Y.; Ferry, D. K.

    1992-04-01

    We utilize mode-matching and transfer-matrix methods to study the transport properties of an electron through two-dimensionally modulated periodic potentials. The model structures treated here are finite-size one- and two-dimensional arrays of quantum boxes (lateral surface superlattice) and antidots. The structure is divided into a chain of uniform waveguide sections in the direction of current flow, and mode matching is imposed across the boundaries. The transfer-matrix technique is utilized to obtain the transmission probability for the composite superlattice structures. Energy dependences of the two-terminal conductance are presented in terms of the transition from one-dimensional to two-dimensional transport. Increasing the number of quantum boxes in the lateral surface superlattice shows that Lorentzian-shaped transmission resonances in a single quantum box are brought together to form a Bloch band structure. Complete reflections over broad energy ranges, due to the formation of minigaps, and a strong resonant behavior due to discrete states in minibands are observed in the energy dependence of the conductance. For the antidot lattice, the formation of the Bloch band structure is found to arise as a drop in the conductance. If attractive scattering centers are embedded in a two-dimensional electron gas, transmission resonances due to quasibound states are observed.

  11. 2dF mechanical engineering

    NASA Astrophysics Data System (ADS)

    Smith, Greg; Lankshear, Allan

    1998-07-01

    2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.

  12. Gas Desorption and Electron Emission from 1 MeV Potassium Iion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A; Covo, M K; Bieniosek, F; Prost, L; Seidl, P; Baca, D; Coorey, A; Sakumi, A

    2004-03-25

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 degrees from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86 degrees, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88 degrees. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub 0} were much larger, of order {gamma}{sub 0} = 10{sub 4}. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to {approx}220 degrees had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  13. Gas Desorption and Electron Emission from 1 MeV Potassium Ion Bombardment of Stainless Steel

    SciTech Connect

    Molvik, A W; Covo, M K; Bieniosek, F M; Prost, L; Seidl, P A; Baca, D; Coorey, A; Sakumi, A

    2004-07-19

    Gas desorption and electron emission coefficients were measured for 1 MeV potassium ions incident on stainless steel at grazing angles (between 80 and 88 from normal incidence) using a new gas-electron source diagnostic (GESD). Issues addressed in design and commissioning of the GESD include effects from backscattering of ions at the surface, space-charge limited emission current, and reproducibility of desorption measurements. We find that electron emission coefficients {gamma}{sub e} scale as 1/cos({theta}) up to angles of 86, where {gamma}{sub e} = 90. Nearer grazing incidence, {gamma}{sub e} is reduced below the 1/cos({theta}) scaling by nuclear scattering of ions through large angles, reaching {gamma}{sub e} = 135 at 88. Electrons were emitted with a measured temperature of {approx}30 eV. Gas desorption coefficients {gamma}{sub sigma} were much larger, of order {gamma}{sub sigma} = 104. They also varied with angle, but much more slowly than 1/cos({theta}). From this we conclude that the desorption was not entirely from adsorbed layers of gas on the surface. Two mitigation techniques were investigated: rough surfaces reduced electron emission by a factor of ten and gas desorption by a factor of two; a mild bake to 230 had no effect on electron emission, but decreased gas desorption by 15% near grazing incidence. We propose that gas desorption is due to electronic sputtering.

  14. Solar wind heating beyond 1 AU. [interplanetary atomic hydrogen gas effect on protons and electrons

    NASA Technical Reports Server (NTRS)

    Holzer, T. E.; Leer, E.

    1973-01-01

    The effect of an interplanetary atomic hydrogen gas on solar wind proton, electron and alpha-particle temperatures beyond 1 AU is considered. It is shown that the proton temperature (and probably also the alpha-particle temperature) reaches a minimum between 2 AU and 4 AU, depending on values chosen for solar wind and interstellar gas parameters. Heating of the electron gas depends primarily on the thermal coupling of the protons and electrons. For strong coupling, the electron temperature reaches a minimum between 4 AU and 8 AU, but for weak coupling (Coulomb collisions only), the electron temperature continues to decrease throughout the inner solar system. A spacecraft travelling to Jupiter should be able to observe the heating effect of the solar wind-interplanetary hydrogen interaction, and from such observations it may be possible of infer some properties of the interstellar neutral gas.

  15. Experiments to validate self-consistent beam-gas-electron code

    NASA Astrophysics Data System (ADS)

    Molvik, A. W.; Sharp, W. M.; Kireeff Covo, M.; Cohen, R. H.; Friedman, A.; Lund, S. M.; Vay, J.-L.; Coleman, J. E.; Bieniosek, F. M.; Furman, M. A.; Roy, P. K.; Seidl, P. A.

    2007-11-01

    The WARP-POSINST model tracks beam ions and secondary particles (ions, electrons, gas molecules) in a self-consistent manner with techniques developed for heavy-ion fusion and e-cloud studies in high-intensity accelerators. We have developed simple experiments to exercise the code. Heavy-ion beams striking a surface cause gas desorption and electron emission, both of which can limit beam performance. Subsequent beam ions can ionize the gas, producing additional electrons. Two parallel plates, on either side of the beam and orthogonal to the end wall, are biased as a dipole: one grounded and the other biased to ± 10 kV. The electron current to a positive plate jumps to the electron emission value; then ramps slowly due to ionization of desorbed gas. This is a rigorous test of the particle dynamics of the model and constrains the secondary particle production coefficients.

  16. Electron and hole gas in modulation-doped GaAs/Al{sub 1-x}Ga{sub x}As radial heterojunctions

    SciTech Connect

    Bertoni, Andrea; Royo, Miquel; Mahawish, Farah; Goldoni, Guido

    2011-11-15

    We perform self-consistent Schroedinger-Poisson calculations with exchange and correlation corrections to determine the electron and hole gas in a radial heterojunction formed in a GaAs/AlGaAs core-multi-shell nanowire, which is either n- or p-doped. We show that the electron and hole gases can be tuned to different localizations and symmetries inside the core as a function of the doping density/gate potential. Contrary to planar heterojunctions, conduction electrons do not form a uniform 2D electron gas (2DEG) localized at the GaAs/AlGaAs interface, but rather show a transition between an isotropic, cylindrical distribution deep in the GaAs core (low doping) and a set of six tunnel-coupled quasi-1D channels at the edges of the interface (high doping). Holes, on the other hand, are much more localized at the GaAs/AlGaAs interface. At low doping, they present an additional localization pattern with six separated 2DEGs strips. The field generated by a back-gate may easily deform the electron or hole gas, breaking the sixfold symmetry. Single 2DEGs at one interface or multiple quasi-1D channels are shown to form as a function of voltage intensity, polarity, and carrier type.

  17. Study of the propagation of ultra-intense laser-produced fast electrons in gas jets

    NASA Astrophysics Data System (ADS)

    Batani, D.; Manclossi, M.; Piazza, D.; Baton, S. D.; Benuzzi-Mounaix, A.; Koenig, M.; Popescu, H.; Amiranoff, F.; Rabec Le Gloahec, M.; Rousseaux, C.; Borghesi, M.; Cecchetti, C.

    2006-06-01

    We present the results of some recent experiments performed at the LULI laboratory using the 100 TW laser facility concerning the study of the propagation of fast electrons in gas targets. Novel diagnostics have been implemented including chirped shadowgraphy and proton radiography. Proton radiography images did show the presence of very strong fields in the gas probably produced by charge separation. In turn, these imply a slowing down of the fast electron cloud as it penetrates in the gas, and a strong inhibition of propagation. Indeed chirped shadowgraphy images show a strong reduction of the electron cloud velocity from the initial value close to a fraction of c.

  18. Van der Waals stacked 2D layered materials for optoelectronics

    NASA Astrophysics Data System (ADS)

    Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.

    2016-06-01

    The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.

  19. An incompressible state of a photo-excited electron gas

    PubMed Central

    Chepelianskii, Alexei D.; Watanabe, Masamitsu; Nasyedkin, Kostyantyn; Kono, Kimitoshi; Konstantinov, Denis

    2015-01-01

    Two-dimensional electrons in a magnetic field can form new states of matter characterized by topological properties and strong electronic correlations as displayed in the integer and fractional quantum Hall states. In these states, the electron liquid displays several spectacular characteristics, which manifest themselves in transport experiments with the quantization of the Hall resistance and a vanishing longitudinal conductivity or in thermodynamic equilibrium when the electron fluid becomes incompressible. Several experiments have reported that dissipationless transport can be achieved even at weak, non-quantizing magnetic fields when the electrons absorb photons at specific energies related to their cyclotron frequency. Here we perform compressibility measurements on electrons on liquid helium demonstrating the formation of an incompressible electronic state under these resonant excitation conditions. This new state provides a striking example of irradiation-induced self-organization in a quantum system. PMID:26007282

  20. LaTiO{sub 3}/KTaO{sub 3} interfaces: A new two-dimensional electron gas system

    SciTech Connect

    Zou, K.; Ismail-Beigi, Sohrab; Walker, F. J.; Ahn, C. H.; Kisslinger, Kim; Su, Dong; Shen, Xuan

    2015-03-01

    We report a new 2D electron gas (2DEG) system at the interface between a Mott insulator, LaTiO{sub 3}, and a band insulator, KTaO{sub 3}. For LaTiO{sub 3}/KTaO{sub 3} interfaces, we observe metallic conduction from 2 K to 300 K. One serious technological limitation of SrTiO{sub 3}-based conducting oxide interfaces for electronics applications is the relatively low carrier mobility (0.5-10 cm{sup 2}/V s) of SrTiO{sub 3} at room temperature. By using KTaO{sub 3}, we achieve mobilities in LaTiO{sub 3}/KTaO{sub 3} interfaces as high as 21 cm{sup 2}/V s at room temperature, over a factor of 3 higher than observed in doped bulk SrTiO{sub 3}. By density functional theory, we attribute the higher mobility in KTaO{sub 3} 2DEGs to the smaller effective mass for electrons in KTaO{sub 3}.

  1. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  2. 2D superconductivity by ionic gating

    NASA Astrophysics Data System (ADS)

    Iwasa, Yoshi

    2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially

  3. Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.

    PubMed

    Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin

    2016-03-01

    Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956

  4. Hot-Electron Gallium Nitride Two Dimensional Electron Gas Nano-bolometers For Advanced THz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Rahul

    Two-dimensional electron gas (2DEG) in semiconductor heterostructures was identified as a promising medium for hot-electron bolometers (HEB) in the early 90s. Up until now all research based on 2DEG HEBs is done using high mobility AlGaAs/GaAs heterostructures. These systems have demonstrated very good performance, but only in the sub terahertz (THz) range. However, above ˜0.5 THz the performance of AlGaAs/GaAs detectors drastically deteriorates. It is currently understood, that detectors fabricated from standard AlGaAs/GaAs heterostructures do not allow for reasonable coupling to THz radiation while maintaining high conversion efficiency. In this work we have developed 2DEG HEBs based on disordered Gallium Nitride (GaN) semiconductor, that operate at frequencies beyond 1THz at room temperature. We observe strong free carrier absorption at THz frequencies in our disordered 2DEG film due to Drude absorption. We show the design and fabrication procedures of novel micro-bolometers having ultra-low heat capacities. In this work the mechanism of 2DEG response to THz radiation is clearly identified as bolometric effect through our direct detection measurements. With optimal doping and detector geometry, impedances of 10--100 O have been achieved, which allow integration of these devices with standard THz antennas. We also demonstrate performance of the antennas used in this work in effectively coupling THz radiation to the micro-bolometers through polarization dependence and far field measurements. Finally heterodyne mixing due to hot electrons in the 2DEG micro-bolometer has been performed at sub terahertz frequencies and a mixing bandwidth greater than 3GHz has been achieved. This indicates that the characteristic cooling time in our detectors is fast, less than 50ps. Due to the ultra-low heat capacity; these detectors can be used in a heterodyne system with a quantum cascade laser (QCL) as a local oscillator (LO) which typically provides output powers in the micro

  5. Stimulation of high-frequency breakdown of gas in Uragan-3M torsatron by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasov, I. K.; Tarasov, M. I.; Sitnikov, D. A.; Pashnev, V. K.; Lytova, M. A.

    2016-01-01

    In experiments on confinement and heating of plasma in the Uragan-3M torsatron, the method of high-frequency breakdown of the working gas is used. In these experiments, in conditions of a relatively stable magnetic field, the rf power supplied to the setup chamber has a frequency close to the ion-cyclotron frequency. Such a method of gas breakdown is not always sufficiently reliable. In our experiments, preliminary ionization of the working gas by the run-away electron beam is used for stabilizing the breakdown. This work contains the results of experiments on enhancement of the runaway electron beam and on the interaction of the runaway electron beam in the Uragan-3M torsatron with the HF electromagnetic pump field. This enables us to formulate a number of recommendations for using spontaneously formed beams of accelerated particles for stimulating the rf breakdown. Our results confirm the possibility of gas breakdown by runaway electrons.

  6. Nitrogen-related effects on low-temperature electronic properties of two-dimensional electron gas in very dilute nitride GaNxAs1-x/AlGaAs (x = 0 and 0.08%) modulation-doped heterostructures

    NASA Astrophysics Data System (ADS)

    Mootabian, Mahnaz; Eshghi, Hosein

    2013-07-01

    The low-temperature (4 K) two-dimensional (2D) electron gas mobility data versus carrier concentration in the modulation-doped dilute nitride GaAs1-xNx/Al0.3Ga0.7As (x = 0 and 0.08%) heterostructures are analyzed. Theoretical analysis is based on Fermi-Dirac statistics for the occupation of the quantum confined electronic states in the triangular quantum wells and the width of the quantum well versus 2D concentration. In addition, the mobility analysis is based on Matthiessen's rule for various scattering mechanisms. We found that the N-related neutral cluster alloy scattering together with crystal dislocations created at the interface strongly affects the electrons' mobility in the N-contained channel sample. We also found that as the electron concentration in the well increases from ˜1 × 1011 to 3.5 × 1011 cm-2 the carriers mainly occupy the first subband, tending to remain closer and closer to the hetero-interface.

  7. Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures.

    PubMed

    Renshaw Wang, X; Sun, L; Huang, Z; Lü, W M; Motapothula, M; Annadi, A; Liu, Z Q; Zeng, S W; Venkatesan, T; Ariando

    2015-01-01

    We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575

  8. Parallel charge sheets of electron liquid and gas in La0.5Sr0.5TiO3/SrTiO3 heterostructures

    PubMed Central

    Renshaw Wang, X.; Sun, L.; Huang, Z.; Lü, W. M.; Motapothula, M.; Annadi, A.; Liu, Z. Q.; Zeng, S. W.; Venkatesan, T.; Ariando

    2015-01-01

    We show here a new phenomenon in La0.5Sr0.5TiO3/SrTiO3 (LSTO/STO) heterostructures; that is a coexistence of three-dimensional electron liquid (3DEL) and 2D electron gas (2DEG), separated by an intervening insulating LSTO layer. The two types of carriers were revealed through multi-channel analysis of the evolution of nonlinear Hall effect as a function of film thickness, temperature and back gate voltage. We demonstrate that the 3D electron originates from La doping in LSTO film and the 2D electron at the surface of STO is due to the polar field in the intervening insulating layer. As the film thickness is reduced below a critical thickness of 6 unit cells (uc), an abrupt metal-to-insulator transition (MIT) occurs without an intermediate semiconducting state. The properties of the LSTO layer grown on different substrates suggest that the insulating phase of the intervening layer is a result of interface strain induced by the lattice mismatch between the film and substrate. Further, by fitting the magnetoresistance (MR) curves, the 6 unit cell thick LSTO is shown to exhibit spin-orbital coupling. These observations point to new functionalities, in addition to magnetism and superconductivity in STO-based systems, which could be exploited in a multifunctional context. PMID:26669575

  9. Device for the removal of sulfur dioxide from exhaust gas by pulsed energization of free electrons

    SciTech Connect

    Mizuno, A.; Clements, J.S.; Davis, R.H.

    1984-01-01

    The performance of a new device using pulsed streamer corona for the removal of sulfur dioxide from humid air has been evaluated. The pulsed streamer corona produced free electrons which enhance gas-phase chemical reactions, and convert SO/sub 2/ to sulfuric acid mist. The SO/sub 2/ removal efficiency was compared with that of the electron-beam flue-gas treatment process. The comparison demonstrates the advantage of the novel device.

  10. A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures

    SciTech Connect

    Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.

    1998-12-14

    We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.

  11. Photoinduced amplification of phonons localized in a two-dimensional electron gas

    SciTech Connect

    Epshtein, E.M.

    1995-09-01

    This paper discusses how phonons localized within a two-dimensional electron gas are affected by the presence a strong electromagnetic wave whose electric field vector lies in the plane of the two-dimensional electron gas. A dispersion relation for the phonons is derived under the assumption and the electromagnetic wave affects the phonon subsystem only via the two-dimensional electron gas. When the energy of an electromagnetic wave quantum is large compared to the electron energies, new regimes of electron-phonon interaction become possible (which are forbidden by conservation laws in the absence of the wave), including regimes in which the {open_quotes}attenuation{close_quotes} of the phonons is negative (photoinduced gain). 7 refs.

  12. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  13. Microwave Assisted 2D Materials Exfoliation

    NASA Astrophysics Data System (ADS)

    Wang, Yanbin

    Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.

  14. Operation of gas electron multiplier (GEM) with propane gas at low pressure and comparison with tissue-equivalent gas mixtures

    NASA Astrophysics Data System (ADS)

    De Nardo, L.; Farahmand, M.

    2016-05-01

    A Tissue-Equivalent Proportional Counter (TEPC), based on a single GEM foil of standard geometry, has been tested with pure propane gas at low pressure, in order to simulate a tissue site of about 1 μm equivalent size. In this work, the performance of GEM with propane gas at a pressure of 21 and 28 kPa will be presented. The effective gas gain was measured in various conditions using a 244Cm alpha source. The dependence of effective gain on the electric field strength along the GEM channel and in the drift and induction region was investigated. A maximum effective gain of about 5×103 has been reached. Results obtained in pure propane gas are compared with gas gain measurements in gas mixtures commonly employed in microdosimetry, that is propane and methane based Tissue-Equivalent gas mixtures.

  15. 2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.

    2012-10-01

    Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)

  16. Properties of a finite fully spin-polarized free homogeneous one-dimensional electron gas

    SciTech Connect

    Ciftja, Orion

    2015-01-15

    The homogeneous electron gas model has been quite successful to predict the bulk properties of systems of electrons at various densities. In many occasions, a simplified free homogeneous electron gas model represents a powerful first approximation to a real system. Despite our considerable knowledge on the bulk properties of a homogeneous electron gas, advances in nanoscience and nanotechnology call for a greater effort to understand the opposite limit of small finite systems of electrons with size-dependent properties. In this work, we provide a detailed description of the properties of a finite fully spin-polarized (spinless) free homogeneous one-dimensional electron gas, the simplest of the free homogeneous electron gases. We derive exact analytical results for various quantities such as the one-particle density function, two-particle density function, one-particle density matrix, pair correlation function and energy of finite systems with an arbitrary number of electrons. The results obtained provide a detailed view on how various quantities corresponding to a finite system approach their bulk (thermodynamic limit) value.

  17. Simultaneous resonant enhanced multiphoton ionization and electron avalanche ionization in gas mixtures

    SciTech Connect

    Shneider, Mikhail N.; Zhang Zhili; Miles, Richard B.

    2008-07-15

    Resonant enhanced multiphoton ionization (REMPI) and electron avalanche ionization (EAI) are measured simultaneously in Ar:Xe mixtures at different partial pressures of mixture components. A simple theory for combined REMPI+EAI in gas mixture is developed. It is shown that the REMPI electrons seed the avalanche process, and thus the avalanche process amplifies the REMPI signal. Possible applications are discussed.

  18. Dissociative electron attachment to gas-phase 5-bromouracil

    NASA Astrophysics Data System (ADS)

    Abdoul-Carime, H.; Huels, M. A.; Brüning, F.; Illenberger, E.; Sanche, L.

    2000-08-01

    We report measurements of dissociative electron attachment (DEA) to gaseous 5-bromouracil (BrU) for incident electron energies between 0 and 16 eV. Low energy electron impact on BrU leads not only to the formation of a long lived parent anion BrU-, but also various anion fragments resulting from endo- and exo-cyclic bond ruptures, such as Br-, uracil-yl anions, i.e., (U-yl)-, OCN-, and a 68 amu anion tentatively attributed to H2C3NO-. The incident electron energy dependent signatures of either the Br- and (U-yl)- yields (at 0, 1.4, and 6 eV), or the OCN- and H2C3NO- yields (at 1.6 and 5.0 eV) suggests competing DEA channels for anion fragment formation. The production cross sections, at 0 eV incident electron energy, for BrU-, Br-, and (U-yl)- are estimated to be about 6×10-15, 6×10-14, and 1.0×10-15 cm2, respectively.

  19. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    SciTech Connect

    Lisenkov, V. V.; Shklyaev, V. A.

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  20. The topological features of the intracule density of the uniform electron gas

    NASA Astrophysics Data System (ADS)

    Fradera, X.; Sarasola, C.; Ugalde, J. M.; Boyd, R. J.

    1999-05-01

    The Laplacian of the self-consistent-field radial intracule density of the uniform electron gas has been analyzed. It reaches its absolute maximum at the electron-electron coalescence point with a value of 0.3 ρ2, where ρ is the electron charge density. Then, it decreases as the interlectronic distance increases and has an attenuated oscillatory decay at larger distances. Further examination of this function yields an onion-like representation of the spatial structure of the uniform electron gas from the viewpoint of an arbitrary reference electron. Our calculations demonstrate that the radius of the first layer is 13.069 rs and the remaining layers obey a simple relationship with respect to the layer number with a separation of 6.065 rs between adjacent layers.

  1. Fabrication and test of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1978-01-01

    A program was conducted to develop an innovative digital output interface device, a digital effector with optical feedback of the fuel metering valve position, for future electronic controls for gas turbine engines. A digital effector (on-off solenoids driven directly by on-off signals from a digital electronic controller) with optical position feedback was fabricated, coupled with the fuel metering valve, and tested under simulated engine operating conditions. The testing indicated that a digital effector with optical position feedback is a suitable candidate, with proper development for future digital electronic gas turbine controls. The testing also identified several problem areas which would have to be overcome in a final production configuration.

  2. RAPID COMMUNICATION: Electron transport coefficients in SF6 and xenon gas mixtures

    NASA Astrophysics Data System (ADS)

    Xiao, D. M.; Zhu, L. L.; Li, X. G.

    2000-12-01

    The electron swarm growth processes in SF6-Xe gas mixtures have been studied by a pulsed Townsend method over the range 32.24≤E/N≤564.2 Td (1 Td = 10-21 Vm2), where E is the electric field and N is the gas density of the mixture. The variation patterns as a function of the density-reduced electric field of the effective ionization coefficient bar α, electron drift velocity Ve and longitudinal diffusion coefficient DL in SF6-Xe gas mixtures have been given. The dielectric strength of SF6-Xe gas mixtures has also been determined, which varies linearly with SF6 concentration in the gas mixtures.

  3. Peoples Gas System turns to electronic data management

    SciTech Connect

    Sievers, R.T.

    1997-02-01

    Peoples Gas System, Inc. (PGS) is the largest natural gas distributor in Florida with 12 divisions that service most of the state`s major metropolitan areas. The company is a consolidation of various gas utilities with maps and records dating back to the early 1900s. As a result, these records are in various paper formats, map scales and condition. Distribution maps are drawn on large format medium: linen cloth, mylar or vellum. These maps are routinely copied and reduced to a size that is suitable for field use. Service records have been recorded on numerous types of paper that are stored in different file cabinets according to the card size. As these records are researched on a daily basis, the condition of the permanent records steadily deteriorate and are commonly misfiled. A major concern is the loss of records due to a natural disaster. Hurricanes, which are a constant threat in Florida, could physically affect many of PGS`s division offices. The distribution maps have been archived on microfilm on a continuing basis, but other irreplaceable records have not. Disaster recovery of the maps from the archives would be very time consuming and expensive.

  4. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  5. Gas-Phase Structures of Ketene and Acetic Acid from Acetic Anhydride Using Very-High-Temperature Gas Electron Diffraction.

    PubMed

    Atkinson, Sandra J; Noble-Eddy, Robert; Masters, Sarah L

    2016-03-31

    The gas-phase molecular structure of ketene has been determined using samples generated by the pyrolysis of acetic anhydride (giving acetic acid and ketene), using one permutation of the very-high-temperature (VHT) inlet nozzle system designed and constructed for the gas electron diffraction (GED) apparatus based at the University of Canterbury. The gas-phase structures of acetic anhydride, acetic acid, and ketene are presented and compared to previous electron diffraction and microwave spectroscopy data to show improvements in data extraction and manipulation with current methods. Acetic anhydride was modeled with two conformers, rather than a complex dynamic model as in the previous study, to allow for inclusion of multiple pyrolysis products. The redetermined gas-phase structure of acetic anhydride (obtained using the structure analysis restrained by ab initio calculations for electron diffraction method) was compared to that from the original study, providing an improvement on the description of the low vibrational torsions compared to the dynamic model. Parameters for ketene and acetic acid (both generated by the pyrolysis of acetic anhydride) were also refined with higher accuracy than previously reported in GED studies, with structural parameter comparisons being made to prior experimental and theoretical studies. PMID:26916368

  6. Electron Density Measurements in UV-Preionized XeCl and CO2 Laser Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Takagi, Shigeyuki; Sato, Saburo; Goto, Tatsumi

    1989-11-01

    A Langmuir probe technique has been used to measure electron densities and temperatures in UV-preionized XeCl excimer and CO2 laser gas mixtures in a laser tube. For this experiment, only pin electrodes (preionization sparks) were operated with no discharge between the main electrodes. The measured electron densities were about 108 cm-3 in both the excimer and CO2 laser gases, compared with 1010 cm-3 in pure He gas. The electron density was found to increase due to the proximity of the main electrodes. The coefficients of absorption for excimer and CO2 laser gas were obtained from the characteristics of the electron densities vs the distance from the UV source. Based on the absorption coefficient for XeCl, 0.9 cm-1 atm-1, we propose pin-electrode arrangements for spatially uniform preionization.

  7. Electron and phonon properties and gas storage in carbon honeycombs

    NASA Astrophysics Data System (ADS)

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-06-01

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments.A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ~106 m s-1. Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by

  8. Landau levels and spin splitting in the two-dimensional electron gas of a HgTe quantum well near the critical width for the topological phase transition

    NASA Astrophysics Data System (ADS)

    Pakmehr, M.; Bruene, C.; Buhmann, H.; Molenkamp, L. W.; Stier, A. V.; McCombe, B. D.

    2014-12-01

    We report a detailed low-temperature study of the two-dimensional (2D) electron gas in a 6.1-nm-wide HgTe quantum well with H g0.3C d0.7Te barriers by terahertz magnetophotoconductivity and magnetotransmission combined with magnetotransport measurements (Rx x and Rx y) in magnetic fields up to 10 T. This well width, close to that at the topological phase transition, corresponds to conventional band ordering, and we probe the "bulk" quasi-2D Landau-level (LL) spectrum of the conduction band at high energies (≈135 -160 meV ) above the Dirac point. The calculated separations between adjacent LLs of the same spin based on published parameters for this structure are in fair agreement with the measured cyclotron resonance energies. However, the very large spin splittings observed (Espin>Ecyclotron) require a significantly larger g -parameter ge for electrons. Tilted field coincidence experiments are consistent with the large spin splitting showing coincidences at 3/2 and twice the cyclotron energy. This large value of ge also leads to interesting crossings of the calculated LLs, and we find direct evidence of these crossings in the Rx x measurements at lower electron densities (Fermi energies) produced by negative gate bias.

  9. Phosphorene: A New High-Mobility 2D Semiconductor

    NASA Astrophysics Data System (ADS)

    Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide

    2014-03-01

    The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.

  10. Electron proportional gas counter for linear and elliptical Moessbauer polarimetry

    SciTech Connect

    Tancziko, F.; Sajti, Sz.; Deak, L.; Merkel, D. G.; Endro''czi, G.; Nagy, D. L.; Bottyan, L.; Olszewski, W.; Szymanski, K.

    2010-02-15

    Design, characterization, and selected applications of a novel electron detector dedicated to conventional perpendicular- and low-angle-incidence conversion electron Moessbauer spectroscopy are presented. The setup is suitable for varying the incident angle and external magnetic fields on Moessbauer source and absorber. Test experiments were performed on {alpha}-{sup 57}Fe films using a conventional single-line {sup 57}Co(Rh) and magnetically split, {sup 57}Co({alpha}-Fe) Moessbauer sources. The integral ''blackness effect'' in conversion-electron Moessbauer spectra of {sup 57}Fe isotope-enriched absorbers is demonstrated and shown to be pronounced at shallow angles of incidence. In order to determine the alignment and sign of the hyperfine field in an isotope-enriched absorber, the blackness effect is accounted for in a semiempirical way by using single-line source/absorber experimental relative intensities determined independently. This method works with high accuracy for linear polarimetry; however it is only a rough approximation in the case of nearly circular polarimetry.

  11. Electron and phonon properties and gas storage in carbon honeycombs.

    PubMed

    Gao, Yan; Chen, Yuanping; Zhong, Chengyong; Zhang, Zhongwei; Xie, Yuee; Zhang, Shengbai

    2016-07-14

    A new kind of three-dimensional carbon allotrope, termed carbon honeycomb (CHC), has recently been synthesized [PRL 116, 055501 (2016)]. Based on the experimental results, a family of graphene networks has been constructed, and their electronic and phonon properties are studied by various theoretical approaches. All networks are porous metals with two types of electron transport channels along the honeycomb axis and they are isolated from each other: one type of channel originates from the orbital interactions of the carbon zigzag chains and is topologically protected, while the other type of channel is from the straight lines of the carbon atoms that link the zigzag chains and is topologically trivial. The velocity of the electrons can reach ∼10(6) m s(-1). Phonon transport in these allotropes is strongly anisotropic, and the thermal conductivities can be very low when compared with graphite by at least a factor of 15. Our calculations further indicate that these porous carbon networks possess high storage capacity for gaseous atoms and molecules in agreement with the experiments. PMID:27315245

  12. Dissociative electron attachment and charging of SF6 adsorbed on rare-gas films

    NASA Astrophysics Data System (ADS)

    Weik, Fritz; Illenberger, Eugen

    1998-10-01

    Electron stimulated desorption (ESD) of fragment ions in the energy range between 0 and 18 eV from SF6 adsorbed on rare-gas films (Kr, Xe) is reported. The ESD results are compared with previous experiments on dissociative electron attachment (DA) to gas-phase SF6. At energies characteristic for the respective rare-gas substrate strong resonant enhancements in the ESD yield of F- are observed. This enhancement is explained by the appearance of an "electron-exciton complex" in the rare-gas film (the analogue to the anionic Feshbach resonances in single atoms) which couples to the first dipole allowed excitation of the SF6 molecule. After electron and energy transfer, the highly excited SF6*- ion dissociates at the surface resulting in the desorption of F- fragments. At low electron energies (in the range from 0 to 0.6 eV) charging of the rare-gas film covered with SF6 is observed. From these experiments a charging cross section of 2.1(±1.8)×10-15 cm2 is derived.

  13. Electrons Mediate the Gas-Phase Oxidation of Formic Acid with Ozone.

    PubMed

    van der Linde, Christian; Tang, Wai-Kit; Siu, Chi-Kit; Beyer, Martin K

    2016-08-26

    Gas-phase reactions of CO3 (.-) with formic acid are studied using Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. Signal loss indicates the release of a free electron, with the formation of neutral reaction products. This is corroborated by adding traces of SF6 to the reaction gas, which scavenges 38 % of the electrons. Quantum chemical calculations of the reaction potential energy surface provide a reaction path for the formation of neutral carbon dioxide and water as the thermochemically favored products. From the literature, it is known that free electrons in the troposphere attach to O2 , which in turn transfer the electron to O3 . O3 (.-) reacts with CO2 to form CO3 (.-) . The reaction reported here formally closes the catalytic cycle for the oxidation of formic acid with ozone, catalyzed by free electrons. PMID:27400953

  14. Electron density and temperature of gas-temperature-dependent cryoplasma jet

    SciTech Connect

    Noma, Yuri; Hyuk Choi, Jai; Muneoka, Hitoshi; Terashima, Kazuo

    2011-03-01

    A microsize cryoplasma jet was developed and analyzed at plasma gas temperatures ranging from room temperature down to 5 K. Experimental results obtained from optical emission spectroscopy and current-voltage measurements indicate that the average electron density and electron temperature of the cryoplasma jet depend on the gas temperature. In particular, the electron temperature in the cryoplasma starts to decrease rapidly near 60 K from about 13 eV at 60 K to 2 eV at 5 K, while the electron density increases from about 10{sup 9} to approximately 10{sup 12} cm{sup -3} from room temperature to 5 K. This phenomenon induces an increase in the Coulomb interaction between electrons, which can be explained by the virial equation of state.

  15. Controlling the electron energy distribution function of electron beam generated plasmas with molecular gas concentration: II. Numerical modeling

    NASA Astrophysics Data System (ADS)

    Petrov, G. M.; Boris, D. R.; Petrova, Tz B.; Lock, E. H.; Fernsler, R. F.; Walton, S. G.

    2013-12-01

    In this work, the second in a series of two, a spatially averaged model of an electron beam generated Ar-N2 plasma is developed to identify the processes behind the measured influence of trace amounts of N2 on the development of the electron energy distribution function. The model is based on the numerical solution of the electron Boltzmann equation self-consistently coupled to a set of rate balance equations for electrons, argon and nitrogen species. Like the experiments, the calculations cover only the low-energy portion (<50 eV) of the electron energy distribution, and therefore a source term is added to the Boltzmann equation to represent ionization by the beam. Similarly, terms representing ambipolar diffusion along and across the magnetic field are added to allow for particle loss and electrostatic cooling from the ambipolar electric field. This work focuses on the changes introduced by adding a small admixture of nitrogen to an argon background. The model predictions for the electron energy distribution function, electron density and temperature are in good agreement with the experimentally measured data reported in part I, where it was found that the electron and ion energy distributions can be controlled by adjusting the fraction of nitrogen in the gas composition.

  16. Observation of Spin Coulomb Drag in a Two-Dimensional Electron Gas

    SciTech Connect

    Weber, C.P.

    2011-08-19

    An electron propagating through a solid carries spin angular momentum in addition to its mass and charge. Of late there has been considerable interest in developing electronic devices based on the transport of spin, which offer potential advantages in dissipation, size, and speed over charge-based devices. However, these advantages bring with them additional complexity. Because each electron carries a single, fixed value (-e) of charge, the electrical current carried by a gas of electrons is simply proportional to its total momentum. A fundamental consequence is that the charge current is not affected by interactions that conserve total momentum, notably collisions among the electrons themselves. In contrast, the electron's spin along a given spatial direction can take on two values, {+-} {h_bar}/2 (conventionally {up_arrow}, {down_arrow}), so that the spin current and momentum need not be proportional. Although the transport of spin polarization is not protected by momentum conservation, it has been widely assumed that, like the charge current, spin current is unaffected by electron-electron (e-e) interactions. Here we demonstrate experimentally not only that this assumption is invalid, but that over a broad range of temperature and electron density, the flow of spin polarization in a two-dimensional gas of electrons is controlled by the rate of e-e collisions.

  17. Electron bunching in a Penning trap and accelerating process for CO2 gas mixture active medium

    NASA Astrophysics Data System (ADS)

    Tian, Xiu-Fang; Wu, Cong-Feng; Jia, Qi-Ka

    2015-12-01

    In PASER (particle acceleration by stimulated emission of radiation), in the presence of an active medium incorporated in a Penning trap, moving electrons can become bunched, and as they get enough energy, they escape the trap forming an optical injector. These bunched electrons can enter the next PASER section filled with the same active medium to be accelerated. In this paper, electron dynamics in the presence of a gas mixture active medium incorporated in a Penning trap is analyzed by developing an idealized 1D model. We evaluate the energy exchange occurring as the train of electrons traverses into the next PASER section. The results show that the oscillating electrons can be bunched at the resonant frequency of the active medium. The influence of the trapped time and population inversion are analyzed, showing that the longer the electrons are trapped, the more energy from the medium the accelerated electrons get, and with the increase of population inversion, the decelerated electrons are virtually unchanged but the accelerated electrons more than double their peak energy values. The simulation results show that the gas active medium needs a lower population inversion to bunch the electrons compared to a solid active medium, so the experimental conditions can easily be achieved. Supported by National Natural Science Foundation of China (10675116) and Major State Basic Research Development Programme of China (2011CB808301)

  18. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  19. Excitonic splitting and coherent electronic energy transfer in the gas-phase benzoic acid dimer

    SciTech Connect

    Ottiger, Philipp; Leutwyler, Samuel

    2012-11-28

    The benzoic acid dimer, (BZA){sub 2}, is a paradigmatic symmetric hydrogen bonded dimer with two strong antiparallel hydrogen bonds. The excitonic S{sub 1}/S{sub 2} state splitting and coherent electronic energy transfer within supersonically cooled (BZA){sub 2} and its {sup 13}C-, d{sub 1}-, d{sub 2}-, and {sup 13}C/d{sub 1}- isotopomers have been investigated by mass-resolved two-color resonant two-photon ionization spectroscopy. The (BZA){sub 2}-(h-h) and (BZA){sub 2}-(d-d) dimers are C{sub 2h} symmetric, hence only the S{sub 2} Leftwards-Arrow S{sub 0} transition can be observed, the S{sub 1} Leftwards-Arrow S{sub 0} transition being strictly electric-dipole forbidden. A single {sup 12}C/{sup 13}C or H/D isotopic substitution reduces the symmetry of the dimer to C{sub s}, so that the isotopic heterodimers (BZA){sub 2}-{sup 13}C, (BZA){sub 2}-(h-d), (BZA){sub 2}-(h{sup 13}C-d), and (BZA){sub 2}-(h-d{sup 13}C) show both S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} bands. The S{sub 1}/S{sub 2} exciton splitting inferred is {Delta}{sub exc}= 0.94 {+-} 0.1 cm{sup -1}. This is the smallest splitting observed so far for any H-bonded gas-phase dimer. Additional isotope-dependent contributions to the splittings, {Delta}{sub iso}, arise from the change of the zero-point vibrational energy upon electronic excitation and range from {Delta}{sub iso}= 3.3 cm{sup -1} upon {sup 12}C/{sup 13}C substitution to 14.8 cm{sup -1} for carboxy H/D substitution. The degree of excitonic localization/delocalization can be sensitively measured via the relative intensities of the S{sub 1} Leftwards-Arrow S{sub 0} and S{sub 2} Leftwards-Arrow S{sub 0} origin bands; near-complete localization is observed even for a single {sup 12}C/{sup 13}C substitution. The S{sub 1}/ S{sub 2} energy gap of (BZA){sub 2} is {Delta}{sub calc}{sup exc}=11 cm{sup -1} when calculated by the approximate second-order perturbation theory (CC2) method. Upon correction for vibronic

  20. Metrology for graphene and 2D materials

    NASA Astrophysics Data System (ADS)

    Pollard, Andrew J.

    2016-09-01

    The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the

  1. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures.

    PubMed

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J; Pfeiffer, Loren N; West, Ken W; Rokhinson, Leonid P

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  2. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    NASA Astrophysics Data System (ADS)

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-06-01

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields.

  3. Induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures

    PubMed Central

    Wan, Zhong; Kazakov, Aleksandr; Manfra, Michael J.; Pfeiffer, Loren N.; West, Ken W.; Rokhinson, Leonid P.

    2015-01-01

    Search for Majorana fermions renewed interest in semiconductor–superconductor interfaces, while a quest for higher-order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, such as a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high-mobility two-dimensional electron gas in gallium arsenide heterostructures and development of highly transparent semiconductor–superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (>16 T) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two-dimensional electron gas at high magnetic fields. PMID:26067452

  4. Induced superconductivity in high mobility two dimensional electron gas in GaAs heterostructures

    NASA Astrophysics Data System (ADS)

    Rokhinson, Leonid P.

    Search for Majorana fermions renewed interest in semiconductor-superconductor interfaces, while a quest for higher order non-Abelian excitations demands formation of superconducting contacts to materials with fractionalized excitations, e.g. a two-dimensional electron gas in a fractional quantum Hall regime. Here we report induced superconductivity in high mobility two-dimensional electron gas in GaAs heterostructures and development of highly transparent semiconductor-superconductor ohmic contacts. Supercurrent with characteristic temperature dependence of a ballistic junction has been observed across 0.6 μm, a regime previously achieved only in point contacts but essential to the formation of well separated non-Abelian states. High critical fields (> 16 Tesla) in NbN contacts enables investigation of an interplay between superconductivity and strongly correlated states in a two dimensional electron gas at high magnetic fields.

  5. Effects of strong magnetic fields on the electron distribution and magnetisability of rare gas atoms

    NASA Astrophysics Data System (ADS)

    Pagola, G. I.; Caputo, M. C.; Ferraro, M. B.; Lazzeretti, P.

    2004-12-01

    Strong uniform static magnetic fields compress the electronic distribution of rare gas atoms and cause a 'spindle effect', which can be illustrated by plotting charge-density functions which depend quadratically on the flux density of the applied field. The fourth rank hypermagnetisabilities of He, Ne, Ar and Kr are predicted to have small positive values. Accordingly, the diamagnetism of rare gas atoms diminishes by a very little amount in the presence of intense magnetic field.

  6. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    SciTech Connect

    Mirzaie, Mohammad; Hafz, Nasr A. M. Li, Song; Liu, Feng; Zhang, Jie; He, Fei; Cheng, Ya

    2015-10-15

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  7. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets.

    PubMed

    Mirzaie, Mohammad; Hafz, Nasr A M; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes. PMID:26520950

  8. Enhanced electron yield from laser-driven wakefield acceleration in high-Z gas jets

    NASA Astrophysics Data System (ADS)

    Mirzaie, Mohammad; Hafz, Nasr A. M.; Li, Song; Liu, Feng; He, Fei; Cheng, Ya; Zhang, Jie

    2015-10-01

    An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ˜1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

  9. Persistent Photoconductivity in A Magnetic Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Ray, O.; Smorchkova, I. P.; Samarth, N.

    1998-03-01

    Magnetic two-dimensional electron gases (2DEGs) based on modulation-doped (Zn,Cd,Mn)Se/ZnSe heterostructures are of current interest because of their novel transport properties (PRL 78, 3571 (1997)). Here, we examine the phenomenon of persistent photoconductivity (PPC) in these structures, with the aim of understanding the nature of defects and their role in limiting the 2DEG mobility. We have observed significant PPC at high temperatures in modulation doped magnetic 2DEGs. The clear presence of a deep trap responsible for the observed PPC is established through temperature-dependent photoconductivity, photoluminescence, deep level transient fourier spectroscopy and photo induced current transient spectroscopy. An analysis of these experiments will be presented, summarizing the specific characteristics and possible origins of this deep level.

  10. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    SciTech Connect

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-15

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N{sub 2}, and 0.05% CO{sub 2} are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50–250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  11. Use of nonlocal helium microplasma for gas impurities detection by the collisional electron spectroscopy method

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly A.; Stefanova, Margarita S.; Pramatarov, Petko M.

    2015-10-01

    The collisional electron spectroscopy (CES) method, which lays the ground for a new field for analytical detection of gas impurities at high pressures, has been verified. The CES method enables the identification of gas impurities in the collisional mode of electron movement, where the advantages of nonlocal formation of the electron energy distribution function (EEDF) are fulfilled. Important features of dc negative glow microplasma and probe method for plasma diagnostics are applied. A new microplasma gas analyzer design is proposed. Admixtures of 0.2% Ar, 0.6% Kr, 0.1% N2, and 0.05% CO2 are used as examples of atomic and molecular impurities to prove the possibility for detecting and identifying their presence in high pressure He plasma (50-250 Torr). The identification of the particles under analysis is made from the measurements of the high energy part of the EEDF, where maxima appear, resulting from the characteristic electrons released in Penning reactions of He metastable atoms with impurity particles. Considerable progress in the development of a novel miniature gas analyzer for chemical sensing in gas phase environments has been made.

  12. Simulating strongly correlated electrons with a strongly interacting Fermi gas

    SciTech Connect

    Thomas, John E.

    2013-05-28

    The quantum many-body physics of strongly-correlated fermions is studied in a degenerate, strongly- interacting atomic Fermi gas, first realized by our group with DOE support in 2002. This system, which exhibits strong spin pairing, is now widely studied and provides an important paradigm for testing predictions based on state-of-the-art many-body theory in fields ranging from nuclear matter to high temperature superfluidity and superconductivity. As the system is strongly interacting, both the superfluid and the normal fluid are nontrivial and of great interest. A central part of our program on Fermi gases is the connection between the study of thermodynamics, supported by DOE and the study of hydrodynamic transport, supported by NSF. This connection is especially interesting in view of a recent conjecture from the string theory community on the concept of nearly perfect normal fluids, which exhibit a minimum ratio of shear viscosity to entropy density in strongly-interacting, scale-invariant systems.

  13. Rashba coupling in three-dimensional wurtzite structure electron gas at electric-dipole spin resonance

    NASA Astrophysics Data System (ADS)

    Ungier, W.

    2014-05-01

    Theoretical description of Rashba effects in three-dimensional electron gas at electric-dipole spin resonance conditions is presented in the frame of conductivity tensor formalism. The details due to anisotropy of the effective mass tensor, as well as the Lande factor, are considered. The absorbed power is calculated for arbitrary orientation of the sample with respect to external fields: constant magnetic field and rf electric field. The differences between resonance signals in two- and three-dimensional electron gas are pointed out.

  14. Effects of introducing a gas into the free-electron laser

    NASA Technical Reports Server (NTRS)

    Pantell, R. H.; Fisher, A. S.; Feinstein, J.; Ho, A. H.; Ozcan, M.; Dulman, H. D.; Reid, M. B.

    1989-01-01

    The introduction of a gas into the wiggler section of a free electron laser (FEL) alters the phase velocity of the electromagnetic wave, and so changes the synchronism condition relating wavelength to wiggler parameters and beam energy. This provides a means for tuning the frequency of an oscillator, with the addition of 200 torr of hydrogen gas, the wavelength of a FEL operating in the near infrared without gas was reduced by 0.73 microns. The plasma generated from ionization of the hydrogen molecules by collisions with the electron beam diminished the oscillator gain, but this effect was eliminated by the addition of less than 0.1 percent of an electron attachment gas. Gain is also reduced by multiple scattering of the beam electrons, but this effect is not severe for a 1-m wiggler length. When hydrogen is used, a FEL with fixed wiggler parameters and electron energy can be tuned from the near infrared to about 1200 A, and, with helium, the wavelength can be reduced to 600 A.

  15. Gas mixing system for imaging of nanomaterials under dynamic environments by environmental transmission electron microscopy

    SciTech Connect

    Akatay, M. Cem; Zvinevich, Yury; Ribeiro, Fabio H. E-mail: estach@bnl.gov; Baumann, Philipp; Stach, Eric A. E-mail: estach@bnl.gov

    2014-03-15

    A gas mixing manifold system that is capable of delivering a stable pressure stream of a desired composition of gases into an environmental transmission electron microscope has been developed. The system is designed to provide a stable imaging environment upon changes of either the composition of the gas mixture or upon switching from one gas to another. The design of the system is described and the response of the pressure inside the microscope, the sample temperature, and sample drift in response to flow and composition changes of the system are reported.

  16. Growth and Characterization of Silicon at the 2D Limit

    NASA Astrophysics Data System (ADS)

    Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan

    2015-03-01

    Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.

  17. Ground state of a hydrogen ion molecule immersed in an inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Diaz-Valdes, J.; Gutierrez, F. A.; Matamala, A. R.; Denton, C. D.; Vargas, P.; Valdes, J. E.

    2007-01-01

    In this work we have calculated the ground state energy of the hydrogen molecule, H2+, immersed in the highly inhomogeneous electron gas around a metallic surface within the local density approximation. The molecule is perturbed by the electron density of a crystalline surface of Au <1 0 0> with the internuclear axis parallel to the surface. The surface spatial electron density is calculated through a linearized band structure method (LMTO-DFT). The ground state of the molecule-ion was calculated using the Born-Oppenheimer approximation for a fixed-ion while the screening effects of the inhomogeneous electron gas are depicted by a Thomas-Fermi like electrostatic potential. We found that within our model the molecular ion dissociates at the critical distance of 2.35 a.u. from the first atomic layer of the solid.

  18. Analysis of the Molecules Structure and Vertical Electron Affinity of Organic Gas Impact on Electric Strength

    NASA Astrophysics Data System (ADS)

    Jiao, Juntao; Xiao, Dengming; Zhao, Xiaoling; Deng, Yunkun

    2016-05-01

    It is necessary to find an efficient selection method to pre-analyze the gas electric strength from the perspective of molecule structure and the properties for finding the alternative gases to sulphur hexafluoride (SF6). As the properties of gas are determined by the gas molecule structure, the research on the relationship between the gas molecule structure and the electric strength can contribute to the gas pre-screening and new gas development. In this paper, we calculated the vertical electron affinity, molecule orbits distribution and orbits energy of gas molecules by the means of density functional theory (DFT) for the typical structures of organic gases and compared their electric strengths. By this method, we find part of the key properties of the molecule which are related to the electric strength, including the vertical electron affinity, the lowest unoccupied molecule orbit (LUMO) energy, molecule orbits distribution and negative-ion system energy. We also listed some molecule groups such as unsaturated carbons double bonds (C=C) and carbonitrile bonds (C≡N) which have high electric strength theoretically by this method. supported by National Natural Science Foundation of China (Nos. 51177101 and 51337006)

  19. On the screening of impurities by a two dimensional electron gas in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Heift, K.; Hajdu, J.

    We consider the effective potential of an impurity charge placed into a two dimensional non-interacting electron gas at zero temperature and in the presence of a perpendicular, quantum limit magnetic field. Restricting ourselves to a one band model and describing the electronic self-energy due to the impurity scattering in the generalized Born approximation (GBA), it is possible to derive a selfconsistency equation for the RPA-dielectric function.

  20. Magnetic properties of a two-dimensional electron gas strongly coupled to light

    NASA Astrophysics Data System (ADS)

    Dini, K.; Kibis, O. V.; Shelykh, I. A.

    2016-06-01

    Considering the quantum dynamics of two-dimensional electron gas (2DEG) exposed to both a stationary magnetic field and an intense high-frequency electromagnetic wave, we found that the wave decreases the scattering-induced broadening of Landau levels. Therefore, various magnetoelectronic properties of two-dimensional nanostructures (density of electronic states at Landau levels, magnetotransport, etc.) are sensitive to irradiation by light. Thus, the elaborated theory paves the way for optically controlling the magnetic properties of 2DEG.

  1. An electron beam polarimeter based on scattering from a windowless, polarized hydrogen gas target

    SciTech Connect

    Bernauer, Jan; Milner, Richard

    2013-11-07

    Here we present the idea to develop a precision polarimeter for low energy, intense polarized electron beams using a windowless polarized hydrogen gas cell fed by an atomic beam source. This technique would use proven technology used successfully in both the electron scattering experiments: HERMES with 27 GeV electron and positron beams at DESY, and BLAST with 850 MeV electron beams at MIT-Bates. At 100 MeV beam energy, both spin-dependent Mo/ller and elastic electron-proton scattering processes have a high cross section and sizable spin asymmetries. The concept is described and estimates for realistic rates for elastic electron-proton scattering and Mo/ller scattering are presented. A number of important issues which affect the ultimate systematic uncertainty are identified.

  2. Method for resurrecting negative electron affinity photocathodes after exposure to an oxidizing gas

    DOEpatents

    Mulhollan, Gregory A; Bierman, John C

    2012-10-30

    A method by which negative electron affinity photocathodes (201), single crystal, amorphous, or otherwise ordered, can be made to recover their quantum yield following exposure to an oxidizing gas has been discovered. Conventional recovery methods employ the use of cesium as a positive acting agent (104). In the improved recovery method, an electron beam (205), sufficiently energetic to generate a secondary electron cloud (207), is applied to the photocathode in need of recovery. The energetic beam, through the high secondary electron yield of the negative electron affinity surface (203), creates sufficient numbers of low energy electrons which act on the reduced-yield surface so as to negate the effects of absorbed oxidizing atoms thereby recovering the quantum yield to a pre-decay value.

  3. Electron density and gas density measurements in a millimeter-wave discharge

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Hummelt, J. S.; Guss, W. C.; Shapiro, M. A.; Temkin, R. J.

    2016-08-01

    Electron density and neutral gas density have been measured in a non-equilibrium air breakdown plasma using optical emission spectroscopy and two-dimensional laser interferometry, respectively. A plasma was created with a focused high frequency microwave beam in air. Experiments were run with 110 GHz and 124.5 GHz microwaves at powers up to 1.2 MW. Microwave pulses were 3 μs long at 110 GHz and 2.2 μs long at 124.5 GHz. Electron density was measured over a pressure range of 25 to 700 Torr as the input microwave power was varied. Electron density was found to be close to the critical density, where the collisional plasma frequency is equal to the microwave frequency, over the pressure range studied and to vary weakly with input power. Neutral gas density was measured over a pressure range from 150 to 750 Torr at power levels high above the threshold for initiating breakdown. The two-dimensional structure of the neutral gas density was resolved. Intense, localized heating was found to occur hundreds of nanoseconds after visible plasma formed. This heating led to neutral gas density reductions of greater than 80% where peak plasma densities occurred. Spatial structure and temporal dynamics of gas heating at atmospheric pressure were found to agree well with published numerical simulations.

  4. Optoelectronics of supported and suspended 2D semiconductors

    NASA Astrophysics Data System (ADS)

    Bolotin, Kirill

    2014-03-01

    Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.

  5. Analysis and design of digital output interface devices for gas turbine electronic controls

    NASA Technical Reports Server (NTRS)

    Newirth, D. M.; Koenig, E. W.

    1976-01-01

    A trade study was performed on twenty-one digital output interface schemes for gas turbine electronic controls to select the most promising scheme based on criteria of reliability, performance, cost, and sampling requirements. The most promising scheme, a digital effector with optical feedback of the fuel metering valve position, was designed.

  6. High-energy electron acceleration in the gas-puff Z-pinch plasma

    SciTech Connect

    Takasugi, Keiichi; Miyazaki, Takanori; Nishio, Mineyuki

    2014-12-15

    The characteristics of hard x-ray generation were examined in the gas-puff z-pinch experiment. The experiment on reversing the voltage was conducted. In both of the positive and negative discharges, the x-ray was generated only from the anode surface, so it was considered that the electrons were accelerated by the induced electromagnetic force at the pinch time.

  7. High energy electrons from interaction with a 10 mm gas-jet at FLAME

    NASA Astrophysics Data System (ADS)

    Grittani, G. M.; Anania, M. P.; Gatti, G.; Giulietti, D.; Kando, M.; Krus, M.; Labate, L.; Levato, T.; Oishi, Y.; Rossi, F.; Gizzi, L. A.

    2013-05-01

    In this paper we discuss the spectra of the electrons produced in the laser-plasma acceleration experiment at FLAME. Here a <30 fs laser pulse is focused via an f/10 parabola in a focal spot of 10 μm diameter into a 1.2 mm by 10 mm rectangular Helium gas-jets at a backing pressure ranging from 5 to 15 bar. The intensity achieved exceeds 1019 Wcm -2. In our experiment the laser is set to propagate in the gas-jet along the longitudinal axis to use the 10 mm gas-jet length and to evaluate the role of density gradients. The propagation of the laser pulse in the gas is monitored by means of a Thomson scattering optical imaging. Accelerated electrons are set to propagate for 47,5 cm before being detected by a scintillating screen to evaluate bunch divergence and pointing. Alternatively, electrons are set to propagate in the field of a magnetic dipole before reaching the scintillating screen in order to evaluate their energy spectrum. Our experimental data show highly collimated bunches (<1 mrad) with a relatively stable pointing direction (<10 mrad). Typical bunch electron energy ranges between 50 and 200 MeV with occasional exceptional events of higher energy up to 1GeV.

  8. Identification and measurement of chlorinated organic pesticides in water by electron-capture gas chromatography

    USGS Publications Warehouse

    Lamar, William L.; Goerlitz, Donald F.; Law, LeRoy M.

    1965-01-01

    Pesticides, in minute quantities, may affect the regimen of streams, and because they may concentrate in sediments, aquatic organisms, and edible aquatic foods, their detection and their measurement in the parts-per-trillion range are considered essential. In 1964 the U.S. Geological Survey at Menlo Park, Calif., began research on methods for monitoring pesticides in water. Two systems were selected--electron-capture gas chromatography and microcoulometric-titration gas chromatography. Studies on these systems are now in progress. This report provides current information on the development and application of an electron-capture gas chromatographic procedure. This method is a convenient and extremely sensitive procedure for the detection and measurement of organic pesticides having high electron affinities, notably the chlorinated organic pesticides. The electron-affinity detector is extremely sensitive to these substances but it is not as sensitive to many other compounds. By this method, the chlorinated organic pesticide may be determined on a sample of convenient size in concentrations as low as the parts-per-trillion range. To insure greater accuracy in the identifications, the pesticides reported were separated and identified by their retention times on two different types of gas chromatographic columns.

  9. The determination of cyclohexylamine in aqueous solutions of sodium cyclamate by electron-capture gas chromatography.

    NASA Technical Reports Server (NTRS)

    Solomon, M. D.; Pereira, W. E.; Duffield, A. M.

    1971-01-01

    A sensitive primary amine assay, capable of detecting 10 to the minus 11th g and utilizing the determination of the amine N-2,4-dinitrophenyl derivative by electron-capture gas chromatography is described. The method is exemplified by the determination of cyclohexylamine in sodium cyclamate.

  10. DETERMINATION OF ACRYLAMIDE IN RAT SERUM AND SCIATIC NERVE BY GAS CHROMATOGRAPHY-ELECTRON-CAPTURE DETECTION

    EPA Science Inventory

    A modified method for the derivatization and analysis of acrylamide as 2-bromopropenamide by gas chromatography/electron capture detection was validated in serum and sciatic nerve from rats. he method was accurate and precise over the concentration range of 2240 to 74700 ppm (w/v...

  11. Supersilyl radicals from the dissociation of superdisilane observed by gas electron diffraction.

    PubMed

    Masters, Sarah L; Grassie, Duncan A; Robertson, Heather E; Hölbling, Margit; Hassler, Karl

    2007-07-01

    The vapour produced upon mild heating of hexa-tert-butyldisilane (superdisilane) has been studied by gas electron diffraction and ab initio molecular orbital calculations; the disilane is not observed in the vapour, and the observed radical structure is not the lowest energy structure predicted ab initio. PMID:17579757

  12. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ...The EPA is finalizing technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule related to fluorinated heat transfer fluids. More specifically, EPA is finalizing amendments to the definition of fluorinated heat transfer fluids and to the provisions to estimate and report emissions from fluorinated heat transfer fluids. This final rule is narrow......

  13. Generation of electron beams from a laser wakefield acceleration in pure neon gas

    SciTech Connect

    Li, Song; Hafz, Nasr A. M. Mirzaie, Mohammad; Elsied, Ahmed M. M.; Ge, Xulei; Liu, Feng; Sokollik, Thomas; Chen, Min; Sheng, Zhengming; Zhang, Jie; Tao, Mengze; Chen, Liming

    2014-08-15

    We report on the generation of quasimonoenergetic electron beams by the laser wakefield acceleration of 17–50 TW, 30 fs laser pulses in pure neon gas jet. The generated beams have energies in the range 40–120 MeV and up to ∼430 pC of charge. At a relatively high density, we observed multiple electron beamlets which has been interpreted by simulations to be the result of breakup of the laser pulse into multiple filaments in the plasma. Each filament drives its own wakefield and generates its own electron beamlet.

  14. Hose instability and wake generation by an intense electron beam in a self-ionized gas.

    PubMed

    Deng, S; Barnes, C D; Clayton, C E; O'Connell, C; Decker, F J; Fonseca, R A; Huang, C; Hogan, M J; Iverson, R; Johnson, D K; Joshi, C; Katsouleas, T; Krejcik, P; Lu, W; Mori, W B; Muggli, P; Oz, E; Tsung, F; Walz, D; Zhou, M

    2006-02-01

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested. PMID:16486834

  15. Hose Instability and Wake Generation By An Intense Electron Beam in a Self-Ionized Gas

    SciTech Connect

    Deng, S.; Barnes, C.D.; Clayton, C.E.; O'Connell, C.; Decker, F.J.; Fonseca, R.A.; Huang, C.; Hogan, M.J.; Iverson, R.; Johnson, D.K.; Joshi, C.; Katsouleas, T.; Krejcik, P.; Lu, W.; Mori, W.B.; Muggli, P.; Oz, E.; Tsung, F.; Walz, D.; Zhou, M.; /Southern California U. /UCLA /SLAC

    2006-04-12

    The propagation of an intense relativistic electron beam through a gas that is self-ionized by the beam's space charge and wakefields is examined analytically and with 3D particle-in-cell simulations. Instability arises from the coupling between a beam and the offset plasma channel it creates when it is perturbed. The traditional electron hose instability in a preformed plasma is replaced with this slower growth instability depending on the radius of the ionization channel compared to the electron blowout radius. A new regime for hose stable plasma wakefield acceleration is suggested.

  16. Nonlinear effects in the energy loss of a slow dipole in a free-electron gas

    SciTech Connect

    Alducin, M.; Juaristi, J.I.

    2002-11-01

    We analyze beyond linear-response theory the energy loss of a slow dipole moving inside a free-electron gas. The energy loss is obtained from a nonlinear treatment of the scattering of electrons at the dipole-induced potential. This potential and the total electronic density are calculated with density-functional theory. We focus on the interference effects, i.e., the difference between the energy loss of a dipole and that of the isolated charges forming it. Comparison of our results to those obtained in linear-response theory shows that a nonlinear treatment of the screening is required to accurately describe the energy loss of slow dipoles.

  17. Theoretical prediction of gas-phase infrared spectra of imidazo[1,2- a]pyrazinediones and imidazo[1,2- a]imidazo[1,2- d]pyrazinediones derived from glycine

    NASA Astrophysics Data System (ADS)

    Contreras-Torres, Flavio F.; Basiuk, Vladimir A.

    2005-09-01

    Imidazo[1,2- a]pyrazine-3,6-diones and imidazo[1,2- a]imidazo[1,2- d]pyrazine-3,8-diones can be produced by pyrolysis of simple amino acids. While such bicyclic and tricyclic amidines were detected and characterized by IR spectroscopy for some α-substituted amino acids, the parent systems composed of glycine fragments are unknown up to now. IR spectra for five amidines derived from glycine were calculated by using different semi-empirical (PM3, AM1, MNDO and MINDO/3), HF, and hybrid DFT (B3LYP, B3P86 and B3PW91) methods in conjunction with 6-31G( d) basis set (for HF and DFT). Vibration frequencies in the experimental IR spectra were predicted based upon the B3LYP data, by correcting the calculated wavenumbers by a scaling factor of 0.959. The behavior of most characteristic bands ( νC dbnd X , νNH, etc.) and their shifts with respect to such bands in the spectra of alanine and α-aminoisobutyric acid derivatives studied before, are discussed. Performance of the semi-empirical methods was tested, bearing in mind possible future needs for IR spectra predictions for larger molecular systems of similar chemical nature; the use of MINDO/3 and MNDO is recommended. A basis set effect on the B3LYP fundamental vibration frequencies for hexahydroimidazo[1,2- a]pyrazine-3,6-dione was studied by varying Pople basis sets from minimal STO-3G to 6-311++G( d, p). No significant improvements were found beyond the 6-31G( d) basis set, which thus can be recommended to predict IR spectra for the amidines and similar molecules.

  18. Gain Characteristics of a 100 μm thick Gas Electron Multiplier (GEM)

    NASA Astrophysics Data System (ADS)

    Mir, J. A.; Natal da Luz, H.; Carvalho, X.; Azevedo, C. D. R.; dos Santos, J. M. F.; Amaro, F. D.

    2015-12-01

    The standard Gas Electron Multiplier (GEM) invented by F. Sauli [1] consists of high density holes etched in 50 μm thick copper clad Kapton foil. This study, however, investigated the basic charge gain characteristics of a non-standard 100 μm thick Gas Electron Multiplier, fabricated using the same wet chemical etch process at CERN. It was possible to sustain charge gains of 3× 103 and 1× 104 using single and double stage configurations, respectively, operated in an Ar(70%)-CO2(30%) gas mixture. These values are similar to those achieved with standard GEMs. Crucially, we found that the thicker GEM is more robust as it withstood sparking without catastrophic failure. We also measured the gain dependence on ambient variables such as pressure and temperature and found the gain sensitivity to be 4.0 K/mbar, compared with 1.55 K/mbar for the standard GEM.

  19. Electron collection enhancement arising from neutral gas jets on a charged vehicle in the ionosphere

    NASA Technical Reports Server (NTRS)

    Gilchrist, Brian E.; Banks, Peter M.; Neubert, Torsten; Williamson, P. Roger; Myers, Neil B.

    1990-01-01

    Observations of current collection enhancements due to cold nitrogen gas control jet emissions from a highly charged, isolated rocket payload in the ionosphere have been made during the cooperative high altitude rocket gun experiment (CHARGE) 2 using an electrically tethered mother/daughter payload system. The current collection enhancement was observed on a platform (daughter payload) located 100 to 400 m away from the main payload firing an energetic electron beam (mother payload). These results are interpreted in terms of an electrical discharge forming in close proximity to the daughter vehicle during the short periods of gas emission. The results indicate that it is possible to enhance the electron current collection capability of positively charged vehicles by means of deliberate neutral gas releases into an otherwise undisturbed space plasma. The results are also compared with recent laboratory observations of hollow cathode plasma contactors operating in the 'ignited' mode.

  20. Further developments and beam tests of the gas electron multiplier (GEM)

    NASA Astrophysics Data System (ADS)

    Benlloch, J.; Bressan, A.; Capeáns, M.; Gruwé, M.; Hoch, M.; Labbé, J. C.; Placci, A.; Ropelewski, L.; Sauli, F.

    1998-12-01

    We describe the development and operation of the Gas Electron Multiplier (GEM), a thin insulating foil metal-clad on both sides and perforated by a regular pattern of small holes. The mesh can be incorporated into the gas volume of an active detector to provide a first amplification channel for electrons, or used as stand alone. We report on the basic properties of GEMs manufactured with different geometries and operated in several gas mixtures as well as on their long-term stability after accumulation of charge equivalent to several years of operation in high-luminosity experiments. Optimized GEMs reach gains close to 10 000 at safe operating voltages, permitting the detection of ionizing tracks, without other amplifying elements, on a simple Printed Circuit Board (PCB), opening new possibilities for detector design.

  1. Investigation of Sterilization Effect by various Gas Plasmas and Electron Microscopic Observation of Bacteria

    NASA Astrophysics Data System (ADS)

    Sasaki, Yota; Takamatsu, Toshihiro; Uehara, Kodai; Oshita, Takaya; Miyahara, Hidekazu; Okino, Akitoshi; Ikeda, Keiko; Matsumura, Yuriko; Iwasawa, Atsuo; Kohno, Masahiro

    2014-10-01

    Atmospheric non-thermal plasmas have attracted attention as a new sterilization method. It is considered that factor of plasma sterilization are mainly reactive oxygen species (ROS). However, the sterilization mechanism hasn't been investigated in detail because conventional plasma sources have a limitation in usable gas species and lack variety of ROS. So we developed multi-gas plasma jet which can generate various gas plasmas. In this study, investigation of sterilization effect by various gas plasmas and electron microscopic observation of bacteria were performed. Oxygen, nitrogen, carbon dioxide, argon and air were used as plasma gas. To investigate gas-species dependence of sterilization effect, S.aureus was treated. As a result, nitrogen plasma and carbon dioxide plasma were effective for sterilization. To investigate sterilization mechanism, the surface of S.aureus was observed by scanning electron microscope. As a result, dimples were observed on the surface after irradiation of nitrogen plasma, but no change observed in the case of carbon dioxide plasma. These results suggest that bactericidal mechanism of nitrogen and carbon dioxide plasma should be different. In the presentation, Measurement result of ROS will be reported.

  2. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  3. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  4. Simulation of AlGaN/GaN high-electron-mobility transistor gauge factor based on two-dimensional electron gas density and electron mobility

    NASA Astrophysics Data System (ADS)

    Chu, Min; Koehler, Andrew D.; Gupta, Amit; Nishida, Toshikazu; Thompson, Scott E.

    2010-11-01

    The gauge factor of AlGaN/GaN high-electron-mobility transistor was determined theoretically, considering the effect of stress on the two-dimensional electron gas (2DEG) sheet carrier density and electron mobility. Differences in the spontaneous and piezoelectric polarization between the AlGaN and GaN layers, with and without external mechanical stress, were investigated to calculate the stress-altered 2DEG density. Strain was incorporated into a sp3d5-sp3 empirical tight-binding model to obtain the change in electron effective masses under biaxial and uniaxial stress. The simulated longitudinal gauge factor (-7.9±5.2) is consistent with experimental results (-2.4±0.5) obtained from measurements eliminating parasitic charge trapping effects through continuous subbandgap optical excitation.

  5. Propagation of the pulsed electron beam of nanosecond duration in gas composition of high pressure

    NASA Astrophysics Data System (ADS)

    Kholodnaya, G.; Sazonov, R.; Ponomarev, D.; Remnev, G.

    2015-11-01

    This paper presents the results of the investigation of the propagation of an electron beam in the high-pressure gas compositions (50, 300, and 760 Torr): sulfur hexafluoride and hydrogen, sulfur hexafluoride and nitrogen, sulfur hexafluoride and argon. The experiments have been performed using the TEA-500 laboratory accelerator. The main parameters of the accelerator are as follows: an accelerating voltage of 500 kV; an electron beam current of 10 kA; a pulse width at half maximum of 60 ns; a pulse energy of 200 J; a pulse repetition rate of up to 5 pulses per second, a beam diameter of 5 cm. The pulsed electron beam was injected into a 55 cm metal drift tube. The drift tube is equipped with three reverse-current shunts with simultaneous detecting of signals. The obtained results of the investigation make it possible to conclude that the picture of the processes occurring in the interaction of an electron beam in the high-pressure gas compositions is different from that observed in the propagation of the electron beam in the low-pressure gas compositions (1 Torr).

  6. Monte Carlo Simulation of Electron Swarm Parameters in the SF6/CF4 Gas Mixtures

    NASA Astrophysics Data System (ADS)

    Liu, Xueli; Xiao, Dengming

    2007-04-01

    We use a binary gas mixture Monte Carlo simulation model to calculate the electron transport parameters in SF6/CF4 mixtures in uniform electric fields. Electron collision cross section sets are assembled on the basis of the critical survey of Christophorou et al. [J. Phys. Chem. Ref. Data 25 (1996) 1341] for CF4 and Itoh et al. [J. Phys. D 21 (1988) 922] for SF6. The electron swarm parameters studied here are electron drift velocity, effective ionization coefficient and the ratio of longitudinal diffusion coefficient to mobility for the density-reduced electric field strength (E/N) in the range of 140≤ E/N≤ 600 Td (1 Td = 10-17 V cm2); the SF6 contents in the gas mixtures are 0, 20, 50, and 100%. The differences between the present calculated and measured values of Urquijo et al. [J. Phys. D 36 (2003) 3132] do not exceed the overall measured uncertainties for the parameters. To our knowledge, only Urquijo et al. [J. Phys. D 36 (2003) 3132] have measured the electron swarm parameters in SF6/CF4 gas mixtures by a pulsed Townsend technique; however, simulation results have scarcely been reported.

  7. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors.

    PubMed

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m(2) g(-1)) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics. PMID:27249547

  8. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  9. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  10. Shell structure and phase relations in electronic properties of metal nanowires from an electron-gas model

    NASA Astrophysics Data System (ADS)

    Han, Yong; Liu, Da-Jiang

    2010-09-01

    The electronic and dynamic properties of metal nanowires are analyzed by using a minimal electron-gas model (EGM), in which the nanowire is treated as a close system with variable Fermi energy as a function of nanowire radius. We show that the planar surface energy and the curvature energy from the EGM are reasonably consistent with those from previous stabilized-jellium-model calculations, especially for metals with low electron densities. The EGM shell structure due to the fillings of quantum-well subbands is similar to that from the stabilized jellium model. The crossings between subbands and Fermi energy level for the metal nanowire correspond to cusps on the chemical-potential curve versus nanowire radius, but inflection points on the surface-free-energy curve versus the radius, as in the case of metal nanofilms. We also find an oscillatory variation in electron density versus radius at the nanowire center with a global oscillation period which approximately equals half Fermi wavelength. Wire string tension, average binding energy, and thermodynamic stability from the EGM are in good agreement with the data from previous first-principles density-functional theory calculations. We also compare our model with those from previous reported free-electron models, in which the nanowire is treated as an open system with a constant Fermi energy. We demonstrate that the fundamental thermodynamic properties depend sensitively on the way that the potential wall is constructed in the models.

  11. Isotopic exchange processes in cold plasmas of H2/D2 mixtures.

    PubMed

    Jiménez-Redondo, Miguel; Carrasco, Esther; Herrero, Víctor J; Tanarro, Isabel

    2011-05-28

    Isotope exchange in low pressure cold plasmas of H(2)/D(2) mixtures has been investigated by means of mass spectrometric measurements of neutrals and ions, and kinetic model calculations. The measurements, which include also electron temperatures and densities, were performed in a stainless steel hollow cathode reactor for three discharge pressures: 1, 2 and 8 Pa, and for mixture compositions ranging from 100% H(2) to 100% D(2). The data are analyzed in the light of the model calculations, which are in good global agreement with the experiments. Isotope selective effects are found both in the surface recombination and in the gas-phase ionic chemistry. The dissociation of the fuel gas molecules is followed by wall recycling, which regenerates H(2) and D(2) and produces HD. Atomic recombination at the wall is found to proceed through an Eley-Rideal mechanism, with a preference for reaction of the adsorbed atoms with gas phase D atoms. The best fit probabilities for Eley-Rideal abstraction with H and D are: γ(ER H) = 1.5 × 10(-3), γ(ER D) = 2.0 × 10(-3). Concerning ions, at 1 Pa the diatomic species H(2)(+), D(2)(+) and HD(+), formed directly by electron impact, prevail in the distributions, and at 8 Pa, the triatomic ions H(3)(+), H(2)D(+), HD(2)(+) and D(3)(+), produced primarily in reactions of diatomic ions with molecules, dominate the plasma composition. In this higher pressure regime, the formation of the mixed ions H(2)D(+) and HD(2)(+) is favoured in comparison with that of H(3)(+) and D(3)(+), as expected on statistical grounds. The model results predict a very small preference, undetectable within the precision of the measurements, for the generation of triatomic ions with a higher degree of deuteration, which is probably a residual influence at room temperature of the marked zero point energy effects (ZPE), relevant for deuterium fractionation in interstellar space. In contrast, ZPE effects are found to be decisive for the observed distribution of

  12. Electronic transport properties of BN sheet on adsorption of ammonia (NH3) gas.

    PubMed

    Srivastava, Anurag; Bhat, Chetan; Jain, Sumit Kumar; Mishra, Pankaj Kumar; Brajpuriya, Ranjeet

    2015-03-01

    We report the detection of ammonia gas through electronic and transport properties analysis of boron nitride sheet. The density functional theory (DFT) based ab initio approach has been used to calculate the electronic and transport properties of BN sheet in presence of ammonia gas. Analysis confirms that the band gap of the sheet increases due to presence of ammonia. Out of different positions, the bridge site is the most favorable position for adsorption of ammonia and the mechanism of interaction falls between weak electrostatic interaction and chemisorption. On relaxation, change in the bond angles of the ammonia molecule in various configurations has been reported with the distance between NH3 and the sheet. An increase in the transmission of electrons has been observed on increasing the bias voltage and I-V relationship. This confirms that, the current increases on applying the bias when ammonia is introduced while a very small current flows for pure BN sheet. PMID:25666919

  13. Spin splitting in 2D monochalcogenide semiconductors

    PubMed Central

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-01-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed. PMID:26596907

  14. Spin splitting in 2D monochalcogenide semiconductors

    NASA Astrophysics Data System (ADS)

    Do, Dat T.; Mahanti, Subhendra D.; Lai, Chih Wei

    2015-11-01

    We report ab initio calculations of the spin splitting of the uppermost valence band (UVB) and the lowermost conduction band (LCB) in bulk and atomically thin GaS, GaSe, GaTe, and InSe. These layered monochalcogenides appear in four major polytypes depending on the stacking order, except for the monoclinic GaTe. Bulk and few-layer ε-and γ -type, and odd-number β-type GaS, GaSe, and InSe crystals are noncentrosymmetric. The spin splittings of the UVB and the LCB near the Γ-point in the Brillouin zone are finite, but still smaller than those in a zinc-blende semiconductor such as GaAs. On the other hand, the spin splitting is zero in centrosymmetric bulk and even-number few-layer β-type GaS, GaSe, and InSe, owing to the constraint of spatial inversion symmetry. By contrast, GaTe exhibits zero spin splitting because it is centrosymmetric down to a single layer. In these monochalcogenide semiconductors, the separation of the non-degenerate conduction and valence bands from adjacent bands results in the suppression of Elliot-Yafet spin relaxation mechanism. Therefore, the electron- and hole-spin relaxation times in these systems with zero or minimal spin splittings are expected to exceed those in GaAs when the D’yakonov-Perel’ spin relaxation mechanism is also suppressed.

  15. Disorder-driven loss of phase coherence in a quasi-2D cold atom system

    NASA Astrophysics Data System (ADS)

    Beeler, M. C.; Reed, M. E. W.; Hong, T.; Rolston, S. L.

    2012-07-01

    We study the order parameter of a quasi-two-dimensional (quasi-2D) gas of ultracold atoms trapped in an optical potential in the presence of controllable disorder. Our results show that disorder drives phase fluctuations without significantly affecting the amplitude of the quasi-condensate order parameter. This is evidence that disorder can drive phase fluctuations in 2D systems, relevant to the phase-fluctuation mechanism for the superconductor-to-insulator phase transition (SIT) in disordered 2D superconductors.

  16. Optical Generation of Hot Spin-Polarized Electrons from a Ferromagnetic Two-Dimensional Electron Gas.

    PubMed

    Ellguth, Martin; Tusche, Christian; Kirschner, Jürgen

    2015-12-31

    Linearly polarized light with an energy of 3.1 eV has been used to excite highly spin-polarized electrons in an ultrathin film of face-centered-tetragonal cobalt to majority-spin quantum well states (QWS) derived from an sp band at the border of the Brillouin zone. The spin-selective excitation process has been studied by spin- and momentum-resolved two-photon photoemission. Analyzing the photoemission patterns in two-dimensional momentum planes, we find that the optically driven transition from the valence band to the QWS acts almost exclusively on majority-spin electrons. The mechanism providing the high spin polarization is discussed by the help of a density-functional theory calculation. Additionally, a sizable effect of spin-orbit coupling for the QWS is evidenced. PMID:26765012

  17. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction.

    PubMed

    Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E

    2016-08-21

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174

  18. Molecular structure of cotinine studied by gas electron diffraction combined with theoretical calculations

    NASA Astrophysics Data System (ADS)

    Takeshima, Tsuguhide; Takeuchi, Hiroshi; Egawa, Toru; Konaka, Shigehiro

    2007-09-01

    The molecular structure of cotinine (( S)-1-methyl-5-(3-pyridinyl)-2-pyrrolidinone), the major metabolite of nicotine, has been determined at about 182 °C by gas electron diffraction combined with MP2 and DFT calculations. The diffraction data are consistent with the existence of the (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers, where ax and eq indicate the configuration of the pyrrolidinone ring by means of the position (axial and equatorial) of the pyridine ring, and sc, sp and ap distinguish the isomers arising from the internal rotation around the bond connecting the two rings. The (CH 3)NCCC(N) dihedral angles, ϕ, of the (ax, sc) and (eq, sp) conformers were determined independently to be 158(12)° and 129(13)°, respectively, where the numbers in parentheses are three times the standard errors, 3 σ. According to the MP2 calculations, the corresponding dihedral angles for the (ax, ap) and (eq, ap) conformers were assumed to differ by 180° from their syn counterparts. The ratios x(ax, sc)/ x(ax, ap) and x(eq, sp)/ x(eq, ap) were taken from the theoretically estimated free energy differences, Δ G, where x is the abundance of the conformer. The resultant abundances of (ax, sc), (ax, ap), (eq, sp) and (eq, ap) conformers are 34(6)%, 21% (d.p.), 28% (d.p.), and 17% (d.p.), respectively, where d.p. represents dependent parameters. The determined structural parameters ( rg (Å) and ∠ α (°)) of the most abundant conformer, (ax, sc), are as follows: r(N sbnd C) pyrrol = 1.463(5); r(N sbnd C methyl) = 1.457(←); r(N sbnd C( dbnd O)) = 1.384(12); r(C dbnd O) = 1.219(5); < r(C sbnd C) pyrrol> = 1.541(3); r(C pyrrolsbnd C pyrid) = 1.521(←); < r(C sbnd C) pyrid> = 1.396(2); < r(C sbnd N) pyrid> = 1.343(←); ∠(CNC) pyrrol = 113.9(11); ∠CCC pyrrol(-C pyrid) = 103.6(←); ∠NCO = 124.1(13); ∠NC pyrrolC pyrid = 113.1(12); ∠C pyrrolC pyrrolC pyrid = 113.3(←); ∠(CNC) pyrid = 117.1(2); <∠(NCC) pyrid> = 124.4(←); ∠C methylNC( dbnd O) =

  19. Spin-orbit relaxation of cesium 7 2D in mixtures of helium and argon

    NASA Astrophysics Data System (ADS)

    Davila, Ricardo C.; Perram, Glen P.

    2016-03-01

    Pulsed excitation on the two-photon Cs 6 2S1 /2→7 2D3 /2 ,5 /2 transition results in time-resolved fluorescence at 697 and 672 nm. The rates for fine-structure mixing between the 7 2D3 /2 ,5 /2 states have been measured for helium and argon rare-gas collision partners. The mixing rates are very fast, 1.26 ±0.05 ×10-9 cm3/atom s for He and 1.52 ±0.05 ×10-10 cm3/atom s for Ar, driven by the small energy splitting and large radial distribution for the valence electron. The quenching rates are considerably slower, 6.84 ±0.09 ×10-11 and 2.65 ±0.04 ×10-11 cm3/atom s for He and Ar, respectively. The current results are placed in context with similar rates for other alkali-metal-rare-gas collision pairs using adiabaticity arguments.

  20. An enhancement in the low-field electron mobility associated with a ZnMgO/ZnO heterostructure: The role of a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Baghani, Erfan; O'Leary, Stephen K.

    2013-07-01

    We determine the role that a two-dimensional electron gas, formed at a ZnMgO/ZnO heterojunction, plays in shaping the corresponding temperature dependence of the low-field electron Hall mobility. This analysis is cast within the framework of the model of Shur et al. [M. Shur et al., J. Electron. Mater. 25, 777 (1996)], and the contributions to the mobility related to the ionized impurity, polar optical phonon, piezoelectric, and acoustic deformation potential scattering processes are considered, the overall mobility being determined through the application of Mathiessen's rule. The best fit to the ZnMgO/ZnO experimental results of Makino et al. [T. Makino et al., Appl. Phys. Lett. 87, 022101 (2005)] is obtained by setting the free electron concentration to 3×1018 cm-3 and the ionized impurity concentration to 1017 cm-3, i.e., within the two-dimensional electron gas formed at the heterojunction, the free electron gas concentration is a factor of 30 times the corresponding ionized impurity concentration. How this enhanced free electron concentration influences the contributions to the low-field electron mobility corresponding to these different scattering processes is also examined. It is found that the enhanced free electron concentration found within the two-dimensional electron gas dramatically decreases the ionized impurity and piezoelectric scattering rates and this is found to increase the overall low-field electron Hall mobility.

  1. Gas bremsstrahlung studies for medium energy electron storage rings using FLUKA Monte Carlo code

    NASA Astrophysics Data System (ADS)

    Sahani, Prasanta Kumar; Haridas, G.; Sinha, Anil K.; Hannurkar, P. R.

    2016-02-01

    Gas bremsstrahlung is generated due to the interaction of the stored electron beam with residual gas molecules of the vacuum chamber in a storage ring. As the opening angle of the bremsstrahlung is very small, the scoring area used in Monte Carlo simulation plays a dominant role in evaluating the absorbed dose. In the present work gas bremsstrahlung angular distribution and absorbed dose for the energies ranging from 1 to 5 GeV electron storage rings are studied using the Monte Carlo code, FLUKA. From the study, an empirical formula for gas bremsstrahlung dose estimation was deduced. The results were compared with the data obtained from reported experimental values. The results obtained from simulations are found to be in very good agreement with the reported experimental data. The results obtained are applied in estimating the gas bremsstrahlung dose for 2.5 GeV synchrotron radiation source, Indus-2 at Raja Ramanna Centre for Advanced Technology, India. The paper discusses the details of the simulation and the results obtained.

  2. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  3. Spin current swapping and Hanle spin Hall effect in a two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Shen, Ka; Raimondi, R.; Vignale, G.

    2015-07-01

    We analyze the effect known as "spin current swapping" (SCS) due to electron-impurity scattering in a uniform spin-polarized two-dimensional electron gas. In this effect a primary spin current Jia (lower index for spatial direction, upper index for spin direction) generates a secondary spin current Jai if i ≠a , or Jjj, with j ≠i , if i =a . Contrary to naive expectation, the homogeneous spin current associated with the uniform drift of the spin polarization in the electron gas does not generate a swapped spin current by the SCS mechanism. Nevertheless, a swapped spin current will be generated, if a magnetic field is present, by a completely different mechanism, namely, the precession of the spin Hall spin current in the magnetic field. We refer to this second mechanism as Hanle spin Hall effect, and we notice that it can be observed in an experiment in which a homogeneous drift current is passed through a uniformly magnetized electron gas. In contrast to this, we show that an unambiguous observation of SCS requires inhomogeneous spin currents, such as those that are associated with spin diffusion in a metal, and no magnetic field. An experimental setup for the observation of the SCS is therefore proposed.

  4. Relativistic electron gas: A candidate for nature's left-handed materials

    NASA Astrophysics Data System (ADS)

    de Carvalho, C. A. A.

    2016-05-01

    The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential, frequency, and wave vector. The polarization and the magnetization depend linearly on both electric and magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature- and chemical-potential-dependent medium part. Analytic calculations lead to generalized expressions that depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the relativistic case, and in the long wavelength limit, we obtain the following: (i) for ω =0 , generalized susceptibilities that reduce to known nonrelativistic limits; (ii) for ω ≠0 , Drude-type responses at zero temperature. The latter implies that both the electric permittivity ɛ and the magnetic permeability μ may be simultaneously negative, a behavior characteristic of metamaterials. This unambiguously indicates that the relativistic electron gas is one of nature's candidates for the realization of a negative index of refraction system. Moreover, Maxwell's equations in the medium yield the dispersion relation and the index of refraction of the electron gas. Present results should be relevant for plasma physics, astrophysical observations, synchrotrons, and other environments with fast-moving electrons.

  5. The Gas Electron Multiplier, a Hall B, Region 1 Tracking Upgrade

    SciTech Connect

    Howard Fenker

    1998-06-01

    The Gas Electron Multiplier (GEM) is a novel device which provides gas avalanche multiplication without a reliance on precision mechanical structures or microfabricated surfaces. It is not difficult to imagine using it to build a drift chamber, a cathode strip chamber, or a combination of the two in geometries which would be challenging for more conventional wire chamber techniques. This report provides a description of the device, a draft implementation of a GEM for a Region-1 tracking upgrade in CLAS, and a summary of the properties of such a system.

  6. A Sealed, UHV Compatible, Soft X-ray Detector Utilizing Gas Electron Multipliers

    SciTech Connect

    Schaknowski, N.A.; Smith, G.

    2009-10-25

    An advanced soft X-ray detector has been designed and fabricated for use in synchrotron experiments that utilize X-ray absorption spectroscopy in the study a wide range of materials properties. Fluorescence X-rays, in particular C{sub K} at 277eV, are converted in a low pressure gas medium, and charge multiplication occurs in two gas electron multipliers, fabricated in-house from glass reinforced laminate, to enable single photon counting. The detector satisfies a number of demanding characteristics often required in synchrotron environments, such as UHV compatibility compactness, long-term stability, and energy resolving capability.

  7. On the equation of state for an electron gas in an intense magnetic field

    NASA Technical Reports Server (NTRS)

    Canuto, V.; Tsiang, E.

    1976-01-01

    In this paper we derive the equation of state for a relativistic electron gas imbedded in a static homogeneous magnetic field of arbitrary strength. The derivation is based on the evaluation of the energy-momentum tensor and the use of Dirac's equation for such a problem. Contrary to a derivation presented several years ago, the present derivation is completely gauge-invariant. We also show how to recover, in an exact manner, the perfect gas law for the case of weak magnetic fields.

  8. Fullerene-rare gas mixed plasmas in an electron cyclotron resonance ion source

    SciTech Connect

    Asaji, T. Ohba, T.; Uchida, T.; Yoshida, Y.; Minezaki, H.; Ishihara, S.; Racz, R.; Biri, S.; Kato, Y.

    2014-02-15

    A synthesis technology of endohedral fullerenes such as Fe@C{sub 60} has developed with an electron cyclotron resonance (ECR) ion source. The production of N@C{sub 60} was reported. However, the yield was quite low, since most fullerene molecules were broken in the ECR plasma. We have adopted gas-mixing techniques in order to cool the plasma and then reduce fullerene dissociation. Mass spectra of ion beams extracted from fullerene-He, Ar or Xe mixed plasmas were observed with a Faraday cup. From the results, the He gas mixing technique is effective against fullerene destruction.

  9. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    NASA Astrophysics Data System (ADS)

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-01

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  10. Prospects for applications of electron beams in processing of gas and oil hydrocarbons

    SciTech Connect

    Ponomarev, A. V.; Pershukov, V. A.; Smirnov, V. P.

    2015-12-15

    Waste-free processing of oil and oil gases can be based on electron-beam technologies. Their major advantage is an opportunity of controlled manufacturing of a wide range of products with a higher utility value at moderate temperatures and pressures. The work considers certain key aspects of electron beam technologies applied for the chain cracking of heavy crude oil, for the synthesis of premium gasoline from oil gases, and also for the hydrogenation, alkylation, and isomerization of unsaturated oil products. Electronbeam processing of oil can be embodied via compact mobile modules which are applicable for direct usage at distant oil and gas fields. More cost-effective and reliable electron accelerators should be developed to realize the potential of electron-beam technologies.

  11. Surface Chemically Switchable Ultraviolet Luminescence from Interfacial Two-Dimensional Electron Gas.

    PubMed

    Islam, Mohammad A; Saldana-Greco, Diomedes; Gu, Zongquan; Wang, Fenggong; Breckenfeld, Eric; Lei, Qingyu; Xu, Ruijuan; Hawley, Christopher J; Xi, X X; Martin, Lane W; Rappe, Andrew M; Spanier, Jonathan E

    2016-01-13

    We report intense, narrow line-width, surface chemisorption-activated and reversible ultraviolet (UV) photoluminescence from radiative recombination of the two-dimensional electron gas (2DEG) with photoexcited holes at LaAlO3/SrTiO3. The switchable luminescence arises from an electron transfer-driven modification of the electronic structure via H-chemisorption onto the AlO2-terminated surface of LaAlO3, at least 2 nm away from the interface. The control of the onset of emission and its intensity are functionalities that go beyond the luminescence of compound semiconductor quantum wells. Connections between reversible chemisorption, fast electron transfer, and quantum-well luminescence suggest a new model for surface chemically reconfigurable solid-state UV optoelectronics and molecular sensing. PMID:26675987

  12. Electron beam fluorescence system to measure gas density in impulse facilities

    NASA Technical Reports Server (NTRS)

    Hoppe, J. C.

    1974-01-01

    Very rapid measurements, ranging from a few microsecond to milliseconds in duration, characterize studies made in shock regions or behind them. A system to measure gas density under such conditions in a 15.24-cm (6-in.) expansion tube is described. The basic elements are an electron beam of moderate energy and high current capability, an optical detector, and the associated electronics and data readout equipment. A heated-cathode electron gun, capable of pulsed operation and delivering up to 200 milliamperes current, provides the source of electrons. Optics include a simple collector lens, aperture, collimator lens, filters, and a photomultiplier tube. The photomultiplier output signal was recorded by means of photographed oscilloscope traces for pulsed beam operation.

  13. Ultrasonic 2D matrix PVDF transducer

    NASA Astrophysics Data System (ADS)

    Ptchelintsev, A.; Maev, R. Gr.

    2000-05-01

    During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.

  14. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  15. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  16. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  17. 2-d Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  18. 2D molybdenum disulphide (2D-MoS2) modified electrodes explored towards the oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.

    2016-08-01

    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets

  19. Filling in the Roadmap for Self-Consistent Electron Cloud and Gas Modeling

    SciTech Connect

    Vay, J; Furman, M A; Seidl, P A; Cohen, R H; Friedman, A; Grote, D P; Covo, M K; Molvik, A W; Stoltz, P H; Veitzer, S; Verboncoeur, J

    2005-10-11

    Electron clouds and gas pressure rise limit the performance of many major accelerators. A multi-laboratory effort to understand the underlying physics via the combined application of experiment, theory, and simulation is underway. We present here the status of the simulation capability development, based on a merge of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP and the electron cloud code POSINST, with additional functionalities. The development of the new capability follows a ''roadmap'' describing the different functional modules, and their inter-relationships, that are ultimately needed to reach self-consistency. Newly developed functionalities include a novel particle mover bridging the time scales between electron and ion motion, a module to generate neutrals desorbed by beam ion impacts at the wall, and a module to track impact ionization of the gas by beam ions or electrons. Example applications of the new capability to the modeling of electron effects in the High Current Experiment (HCX) are given.

  20. The Atmospheric Scanning Electron Microscope with open sample space observes dynamic phenomena in liquid or gas.

    PubMed

    Suga, Mitsuo; Nishiyama, Hidetoshi; Konyuba, Yuji; Iwamatsu, Shinnosuke; Watanabe, Yoshiyuki; Yoshiura, Chie; Ueda, Takumi; Sato, Chikara

    2011-12-01

    Although conventional electron microscopy (EM) requires samples to be in vacuum, most chemical and physical reactions occur in liquid or gas. The Atmospheric Scanning Electron Microscope (ASEM) can observe dynamic phenomena in liquid or gas under atmospheric pressure in real time. An electron-permeable window made of pressure-resistant 100 nm-thick silicon nitride (SiN) film, set into the bottom of the open ASEM sample dish, allows an electron beam to be projected from underneath the sample. A detector positioned below captures backscattered electrons. Using the ASEM, we observed the radiation-induced self-organization process of particles, as well as phenomena accompanying volume change, including evaporation-induced crystallization. Using the electrochemical ASEM dish, we observed tree-like electrochemical depositions on the cathode. In silver nitrate solution, we observed silver depositions near the cathode forming incidental internal voids. The heated ASEM dish allowed observation of patterns of contrast in melting and solidifying solder. Finally, to demonstrate its applicability for monitoring and control of industrial processes, silver paste and solder paste were examined at high throughput. High resolution, imaging speed, flexibility, adaptability, and ease of use facilitate the observation of previously difficult-to-image phenomena, and make the ASEM applicable to various fields. PMID:22088441

  1. Miniband Transport in a Two-Dimensional Electron Gas with a Strong Periodic Unidirectional Potential Modulation

    SciTech Connect

    Lyo, Sungkwun K.; Pan, Wei

    2014-08-07

    In this paper, we study the Bloch oscillations of a two-dimensional electron gas with a strong periodic potential-modulation and miniband transport along the field at low temperatures, assuming a free motion in the transverse direction. The dependence of the current on the field, the electron density, and the temperature is investigated by using a relaxation-time approximation for inelastic scattering. Moreover, for a fixed total scattering rate, the field dependence of the current is sensitive to the ratio of the elastic and inelastic scattering rates in contrast with the recent result of a multiband but otherwise similar model with a weak potential modulation.

  2. Amplification and directional emission of surface acoustic waves by a two-dimensional electron gas

    SciTech Connect

    Shao, Lei; Pipe, Kevin P.

    2015-01-12

    Amplification of surface acoustic waves (SAWs) by electron drift in a two-dimensional electron gas (2DEG) is analyzed analytically and confirmed experimentally. Calculations suggest that peak power gain per SAW radian occurs at a more practical carrier density for a 2DEG than for a bulk material. It is also shown that SAW emission with tunable directionality can be achieved by modulating a 2DEG's carrier density (to effect SAW generation) in the presence of an applied DC field that amplifies SAWs propagating in a particular direction while attenuating those propagating in the opposite direction.

  3. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  4. Hierarchical graphene-polyaniline nanocomposite films for high-performance flexible electronic gas sensors

    NASA Astrophysics Data System (ADS)

    Guo, Yunlong; Wang, Ting; Chen, Fanhong; Sun, Xiaoming; Li, Xiaofeng; Yu, Zhongzhen; Wan, Pengbo; Chen, Xiaodong

    2016-06-01

    A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully interconnected and deposited onto flexible PET substrates to form hierarchical nanocomposite (PPANI/rGO-FPANI) network films. The assembled flexible, transparent electronic gas sensor exhibits high sensing performance towards NH3 gas concentrations ranging from 100 ppb to 100 ppm, reliable transparency (90.3% at 550 nm) for the PPANI/rGO-FPANI film (6 h sample), fast response/recovery time (36 s/18 s), and robust flexibility without an obvious performance decrease after 1000 bending/extending cycles. The excellent sensing performance could probably be ascribed to the synergetic effects and the relatively high surface area (47.896 m2 g-1) of the PPANI/rGO-FPANI network films, the efficient artificial neural network sensing channels, and the effectively exposed active surfaces. It is expected to hold great promise for developing flexible, cost-effective, and highly sensitive electronic sensors with real-time analysis to be potentially integrated into wearable flexible electronics.A hierarchically nanostructured graphene-polyaniline composite film is developed and assembled for a flexible, transparent electronic gas sensor to be integrated into wearable and foldable electronic devices. The hierarchical nanocomposite film is obtained via aniline polymerization in reduced graphene oxide (rGO) solution and simultaneous deposition on flexible PET substrate. The PANI nanoparticles (PPANI) anchored onto rGO surfaces (PPANI/rGO) and the PANI nanofiber (FPANI) are successfully

  5. Stable Laser-Driven Electron Beams from a Steady-State-Flow Gas Cell

    SciTech Connect

    Osterhoff, J.; Popp, A.; Karsch, S.; Major, Zs.; Marx, B.; Fuchs, M.; Hoerlein, R.; Gruener, F.; Habs, D.; Krausz, F.; Rowlands-Rees, T. P.; Hooker, S. M.

    2009-01-22

    Quasi-monoenergetic, laser-driven electron beams of up to {approx}200 MeV in energy have been generated from steady-state-flow gas cells [1]. These beams are emitted within a low-divergence cone of 2.1{+-}0.5 mrad FWHM and feature unparalleled shot-to-shot stability in energy (2.5% rms), pointing direction (1.4 mrad rms) and charge (16% rms) owing to a highly reproducible plasma-density profile within the laser-plasma-interaction volume. Laser-wakefield acceleration (LWFA) in gas cells of this type constitutes a simple and reliable source of relativistic electrons with well defined properties, which should allow for applications such as the production of extreme-ultraviolet undulator radiation in the near future.

  6. High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well

    NASA Astrophysics Data System (ADS)

    Hurst, Jérôme; Lévêque-Simon, Kévin; Hervieux, Paul-Antoine; Manfredi, Giovanni; Haas, Fernando

    2016-05-01

    An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics, which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas. Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with relatively weak driving fields by making use of chirped electromagnetic waves.

  7. Many-body effects of a two-dimensional electron gas on trion-polaritons

    NASA Astrophysics Data System (ADS)

    Baeten, Maarten; Wouters, Michiel

    2015-03-01

    We theoretically investigate the trion-polariton and the effects of a two-dimensional electron gas on its single-particle properties. Focusing on the trion and exciton transitions, we set up an effective model and calculate the optical absorption of the quantum well containing the two-dimensional electron gas (2DEG). Including the light-matter coupling, we compute the Rabi splitting and polariton line shapes as a function of 2DEG density. The role of finite temperature is investigated. The spatial extent of the trion-polariton is also calculated. We find a substantial charge buildup at short distances as long as the Rabi frequency does not exceed the trion binding energy. All our calculations take into account the Fermi edge singularity and the Anderson orthogonality catastrophe.

  8. Infrared absorption and electron paramagnetic resonance studies of vinyl radical in noble-gas matrices

    SciTech Connect

    Tanskanen, Hanna; Khriachtchev, Leonid; Raesaenen, Markku; Feldman, Vladimir I.; Sukhov, Fedor F.; Orlov, Aleksei Yu.; Tyurin, Daniil A.

    2005-08-08

    Vinyl radicals produced by annealing-induced reaction of mobilized hydrogen atoms with acetylene molecules in solid noble-gas matrices (Ar, Kr, and Xe) were characterized by Fourier transform infrared and electron paramagnetic resonance (EPR) spectroscopies. The hydrogen atoms were generated from acetylene by UV photolysis or fast electron irradiation. Two vibrational modes of the vinyl radical ({nu}{sub 7} and {nu}{sub 5}) were assigned in IR absorption studies. The assignment is based on data for various isotopic substitutions (D and {sup 13}C) and confirmed by comparison with the EPR measurements and density-functional theory calculations. The data on the {nu}{sub 7} mode is in agreement with previous experimental and theoretical results whereas the {nu}{sub 5} frequency agrees well with the computational data but conflicts with the gas-phase IR emission results.

  9. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  10. CBEAM. 2-D: a two-dimensional beam field code

    SciTech Connect

    Dreyer, K.A.

    1985-05-01

    CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.

  11. Valley and electric photocurrents in 2D silicon and graphene

    SciTech Connect

    Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.

    2013-12-04

    We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.

  12. Efficient gas lasers pumped by run-away electron preionized diffuse discharge

    NASA Astrophysics Data System (ADS)

    Panchenko, Alexei N.; Lomaev, Mikhail I.; Panchenko, Nikolai A.; Tarasenko, Victor F.; Suslov, Alexey I.

    2015-02-01

    It was shown that run-away electron preionized volume (diffuse) discharge (REP DD) can be used as an excitation source of active gas mixtures at elevated pressures and can produce laser emission. We report experimental and calculated results of application of the REP DD for excitation of different active gas mixtures. It was shown that the REP DD allows to obtain efficient lasing stimulated radiation in the IR, visible and UV spectral ranges. Kinetic model of the REP DD in mixtures of nitrogen with SF6 is developed allowing to predict the radiation parameters of nitrogen laser at 337.1 nm. Promising prospects of REP DD employment for exciting a series of gas lasers was demonstrated. Lasing was obtained on molecules N2, HF, and DF with the efficiency close to the limiting value. It was established that the REP DD is most efficient for pumping lasers with the mixtures comprising electro-negative gases.

  13. Ab Initio Study of the Dielectric and Electronic Properties of Multilayer GaS Films.

    PubMed

    Li, Yan; Chen, Hui; Huang, Le; Li, Jingbo

    2015-03-19

    The dielectric properties of multilayer GaS films have been investigated using a Berry phase method and a density functional perturbation theory approach. A linear relationship has been observed between the number of GaS layers and slab polarizability, which can be easily converged at a small supercell size and has a weak correlation with different stacking orders. Moreover, the intercoupling effect of the stacking pattern and applied vertical field on the electronic properties of GaS bilayers has been discussed. The band gaps of different stacking orders show various downward trends with the increasing field, which is interpreted as giant Stark effect. Our study demonstrates that the slab polarizability as the substitution of conventional dielectric constant can act as an independent and reliable parameter to elucidate the dielectric properties of low-dimensional systems and that the applied electric field is an effective method to modulate the electric properties of nanostructures. PMID:26262870

  14. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    NASA Astrophysics Data System (ADS)

    Li, Huijie; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan; Wang, Lianshan; Zhu, Qinsheng

    2014-05-01

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrödinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  15. Study of the one dimensional electron gas arrays confined by steps in vicinal GaN/AlGaN heterointerfaces

    SciTech Connect

    Li, Huijie E-mail: sh-yyang@semi.ac.cn; Zhao, Guijuan; Liu, Guipeng; Wei, Hongyuan; Jiao, Chunmei; Yang, Shaoyan E-mail: sh-yyang@semi.ac.cn; Wang, Lianshan; Zhu, Qinsheng

    2014-05-21

    One dimensional electron gas (1DEG) arrays in vicinal GaN/AlGaN heterostructures have been studied. The steps at the interface would lead to the lateral barriers and limit the electron movement perpendicular to such steps. Through a self-consistent Schrödinger-Poisson approach, the electron energy levels and wave functions were calculated. It was found that when the total electron density was increased, the lateral barriers were lowered due to the screening effects by the electrons, and the electron gas became more two-dimension like. The calculated 1DEG densities were compared to the experimental values and good agreements were found. Moreover, we found that a higher doping density is more beneficial to form 1-D like electron gas arrays.

  16. Weak and electromagnetic mechanisms of neutrino-pair photoproduction in a strongly magnetized electron gas

    SciTech Connect

    Borisov, A. V.; Kerimov, B. K.; Sizin, P. E.

    2012-11-15

    Expressions for the power of neutrino radiation from a degenerate electron gas in a strong magnetic field are derived for the case of neutrino-pair photoproduction via the weak and electromagnetic interaction mechanisms (it is assumed that the neutrino possesses electromagnetic form factors). It is shown that the neutrino luminosity of a medium in the electromagnetic reaction channel may exceed substantially the luminosity in the weak channel. Relative upper bounds on the effective neutrino magnetic moment are obtained.

  17. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  18. Interaction-induced huge magnetoresistance in a high mobility two-dimensional electron gas

    SciTech Connect

    Bockhorn, L.; Haug, R. J.; Gornyi, I. V.; Schuh, D.; Wegscheider, W.

    2013-12-04

    A strong negative magnetoresistance is observed in a high-mobility two-dimensional electron gas in a GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum well. We discuss that the negative magnetoresistance consists of a small peak induced by a combination of two types of disorder and a huge magnetoresistance explained by the interaction correction to the conductivity for mixed disorder.

  19. Thermal Photon and Residual Gas Scattering of the Electrons in the ILC RTML

    SciTech Connect

    Seletskiy, S.M.; /SLAC

    2006-08-16

    The scattering of the primary beam electrons off of thermal photons and residual gas molecules in the projected International Linear Collider (ILC) is a potential source of beam haloes which must be collimated downstream of the linac. In this report we give the analytic estimations of the individual input that each of the main scattering processes makes in the production of off-energy and large amplitude particles in the Damping Ring to Main Linac region (RTML).

  20. Operational experience of a commercial scale plant of electron beam purification of flue gas

    NASA Astrophysics Data System (ADS)

    Doi, Yoshitaka; Nakanishi, Ikuo; Konno, Yoshihide

    2000-03-01

    A commercial scale plant using electron beam irradiation was constructed to clean the flue gas from a coal fired thermal power plant at Chengdu in China. Operations began in September 1997 and the plant achieved its design performance with the satisfactory recovery of by-product fertilizer for agricultural use. Another commercial plant is now under construction at Nagoya, Japan and the operation will be started in November, 1999.