Optical Signatures from Magnetic 2-D Electron Gases in High Magnetic Fields to 60 Tesla
Crooker, S.A.; Kikkawa, J.M.; Awschalom, D.D.; Smorchikova, I.P.; Samarth, N.
1998-11-08
We present experiments in the 60 Tesla Long-Pulse magnet at the Los Alamos National High Magnetic Field Lab (NHMFL) focusing on the high-field, low temperature photoluminescence (PL) from modulation-doped ZnSe/Zn(Cd,Mn)Se single quantum wells. High-speed charge-coupled array detectors and the long (2 second) duration of the magnet pulse permit continuous acquisition of optical spectra throughout a single magnet shot. High-field PL studies of the magnetic 2D electron gases at temperatures down to 350mK reveal clear intensity oscillations corresponding to integer quantum Hall filling factors, from which we determine the density of the electron gas. At very high magnetic fields, steps in the PL energy are observed which correspond to the partial unlocking of antiferromagnetically bound pairs of Mn^{2+} spins.
Oxide 2D electron gases as a route for high carrier densities on (001) Si
Kornblum, Lior; Jin, Eric N.; Kumah, Divine P.; Walker, Fred J.; Ernst, Alexis T.; Broadbridge, Christine C.; Ahn, Charles H.
2015-05-18
Two dimensional electron gases (2DEGs) formed at the interfaces of oxide heterostructures draw considerable interest owing to their unique physics and potential applications. Growing such heterostructures on conventional semiconductors has the potential to integrate their functionality with semiconductor device technology. We demonstrate 2DEGs on a conventional semiconductor by growing GdTiO{sub 3}-SrTiO{sub 3} on silicon. Structural analysis confirms the epitaxial growth of heterostructures with abrupt interfaces and a high degree of crystallinity. Transport measurements show the conduction to be an interface effect, ∼9 × 10{sup 13} cm{sup −2} electrons per interface. Good agreement is demonstrated between the electronic behavior of structures grown on Si and on an oxide substrate, validating the robustness of this approach to bridge between lab-scale samples to a scalable, technologically relevant materials system.
Negative huge magnetoresistance in high-mobility 2D electron gases: DC-current dependence
NASA Astrophysics Data System (ADS)
Iñarrea, J.; Bockhorn, L.; Haug, R. J.
2016-07-01
Two-dimensional electron gases with very high mobility show a huge or giant negative magnetoresistance at low temperatures and low magnetic fields. We present an experimental and theoretical work on the influence of the applied current on the negative huge magnetoresistance of these systems. We obtain an unexpected and strong nonlinear behavior consisting in an increase of the negative huge magnetoresistance with increasing current, in other words, for increasing current the magnetoresistance collapses at small magnetic fields. This nonlinearity is explained by the subtle interplay of elastic scattering within Landau levels and between Landau levels.
Kaindl, Robert A.; Carnahan, Marc A.; Hagele, Daniel; Chemla, D.S.
2006-09-02
Excitons are of fundamental interest and of importance foropto-electronic applications of bulk and nano-structured semiconductors.This paper discusses the utilization of ultrafast terahertz (THz) pulsesfor the study of characteristic low-energy excitations of photoexcitedquasi 2D electron-hole (e-h) gases. Optical-pump THz-probe spectroscopyat 250-kHz repetition rate is employed to detect characteristic THzsignatures of excitons and unbound e-h pairs in GaAs quantum wells.Exciton and free-carrier densities are extracted from the data using atwo-component model. We report the detailed THz response and pairdensities for different photoexcitation energies resonant to heavy-holeexcitons, light-hole excitons, or the continuum of unbound pairs. Suchexperiments can provide quantitative insights into wavelength, time, andtemperature dependence of the low-energy response and composition ofoptically excited e-h gases in low-dimensionalsemiconductors.
Photoluminescence and the gallium problem for highest-mobility GaAs/AlGaAs-based 2d electron gases
NASA Astrophysics Data System (ADS)
Schläpfer, F.; Dietsche, W.; Reichl, C.; Faelt, S.; Wegscheider, W.
2016-05-01
The quest for extremely high mobilities of 2d electron gases in MBE-grown heterostructures is hampered by the available purity of the starting materials, particularly of the gallium. Here we compare the role of different Ga lots having nominally the highest possible quality on the mobility and the photoluminescence (PL) of modulation doped single interface structures and find significant differences. A weak exciton PL reveals that the purity of the Ga is insufficient. No high mobility can be reached with such a lot with a reasonable effort. On the other hand, a strong exciton PL indicates a high initial Ga purity, allowing to reach mobilities of 15 million (single interface) or 28 million cm2/V s (doped quantum wells) in our MBE systems. We discuss possible origins of the inconsistent Ga quality. Furthermore, we compare samples grown in different MBE systems over a period of several years and find that mobility and PL are correlated if similar structures and growth procedures are used.
Final LDRD report : the physics of 1D and 2D electron gases in III-nitride heterostructure NWs.
Armstrong, Andrew M.; Arslan, Ilke; Upadhya, Prashanth C.; Morales, Eugenia T.; Leonard, Francois Leonard; Li, Qiming; Wang, George T.; Talin, Albert Alec; Prasankumar, Rohit P.; Lin, Yong
2009-09-01
The proposed work seeks to demonstrate and understand new phenomena in novel, freestanding III-nitride core-shell nanowires, including 1D and 2D electron gas formation and properties, and to investigate the role of surfaces and heterointerfaces on the transport and optical properties of nanowires, using a combined experimental and theoretical approach. Obtaining an understanding of these phenomena will be a critical step that will allow development of novel, ultrafast and ultraefficient nanowire-based electronic and photonic devices.
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
Progress towards ultracold gases in arbitrary 2D potentials
NASA Astrophysics Data System (ADS)
Corcovilos, Theodore
2016-05-01
We describe our progress in building an apparatus for investigating degenerate quantum gases of potassium in arbitrary two-dimensional optical potentials. The optical potentials are created by holographic projection of an image created using a MEMS mirror array. Systems we would like to study with this experiment are quantum simulations of bosons and fermions at crystal heterojunctions and systems with well defined boundaries, including topological edge states. Funding provided by the Charles E Kaufman Foundation, a part of the Pittsburgh Foundation.
Critical Dynamics in Quenched 2D Atomic Gases
NASA Astrophysics Data System (ADS)
Larcher, F.; Dalfovo, F.; Proukakis, N. P.
2016-05-01
Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
NASA Astrophysics Data System (ADS)
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
2-D Imaging of Electron Temperature in Tokamak Plasmas
T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol
2004-07-08
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties
NASA Astrophysics Data System (ADS)
Ortega, Ivan
Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to
Stopping power of two-dimensional spin quantum electron gases
NASA Astrophysics Data System (ADS)
Zhang, Ya; Jiang, Wei; Yi, Lin
2015-04-01
Quantum effects can contribute significantly to the electronic stopping powers in the interactions between the fast moving beams and the degenerate electron gases. From the Pauli equation, the spin quantum hydrodynamic (SQHD) model is derived and used to calculate the stopping power and the induced electron density for protons moving above a two-dimensional (2D) electron gas with considering spin effect under an external in-plane magnetic field. In our calculation, the stopping power is not only modulated by the spin direction, but also varied with the strength of the spin effect. It is demonstrated that the spin effect can obviously enhance or reduce the stopping power of a 2D electron gas within a laboratory magnetic field condition (several tens of Tesla), thus a negative stopping power appears at some specific proton velocity, which implies the protons drain energy from the Pauli gas, showing another significant example of the low-dimensional physics.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
Resonances of piezoelectric plate with embedded 2D electron system
NASA Astrophysics Data System (ADS)
Suslov, A. V.
2009-02-01
A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.
Corbino Disk Viscometer for 2D Quantum Electron Liquids
NASA Astrophysics Data System (ADS)
Tomadin, Andrea; Vignale, Giovanni; Polini, Marco
2014-12-01
The shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner and the outer edge of the disk in response to an oscillating magnetic flux.
Corbino disk viscometer for 2D quantum electron liquids.
Tomadin, Andrea; Vignale, Giovanni; Polini, Marco
2014-12-01
The shear viscosity of a variety of strongly interacting quantum fluids, ranging from ultracold atomic Fermi gases to quark-gluon plasmas, can be accurately measured. On the contrary, no experimental data exist, to the best of our knowledge, on the shear viscosity of two-dimensional quantum electron liquids hosted in a solid-state matrix. In this work we propose a Corbino disk device, which allows a determination of the viscosity of a quantum electron liquid from the dc potential difference that arises between the inner and the outer edge of the disk in response to an oscillating magnetic flux. PMID:25526137
Universal Fabrication of 2D Electron Systems in Functional Oxides.
Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe
2016-03-01
2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522
Quantum Oscillations in an Interfacial 2D Electron Gas.
Zhang, Bingop; Lu, Ping; Liu, Henan; Lin, Jiao; Ye, Zhenyu; Jaime, Marcelo; Balakirev, Fedor F.; Yuan, Huiqiu; Wu, Huizhen; Pan, Wei; Zhang, Yong
2016-01-01
Recently, it has been predicted that topological crystalline insulators (TCIs) may exist in SnTe and Pb_{1-x}Sn_{x}Te thin films [1]. To date, most studies on TCIs were carried out either in bulk crystals or thin films, and no research activity has been explored in heterostructures. We present here the results on electronic transport properties of the 2D electron gas (2DEG) realized at the interfaces of PbTe/ CdTe (111) heterostructures. Evidence of topological state in this interfacial 2DEG was observed.
Electron Energy Levels in the 1D-2D Transition
NASA Astrophysics Data System (ADS)
Pepper, Michael; Sanjeev, Kumar; Thomas, Kalarikad; Creeth, Graham; English, David; Ritchie, David; Griffiths, Jonathan; Farrer, Ian; Jones, Geraint
Using GaAs-AlGaAs heterostructures we have investigated the behaviour of electron energy levels with relaxation of the potential confining a 2D electron gas into a 1D configuration. In the ballistic regime of transport, when the conductance shows quantized plateaux, different types of behaviour are found according to the spins of interacting levels, whether a magnetic field is applied and lifting of the momentum degeneracy with a source-drain voltage. We have observed both crossing and anti-crossing of levels and have investigated the manner in which they can be mutually converted. In the presence of a magnetic field levels can cross and lock together as the confinement is altered in a way which is characteristic of parallel channels. The overall behaviour is discussed in terms of electron interactions and the wavefunction flexibility allowed by the increasing two dimensionality of the electron distribution as the confinement is weakened. Work supported by UK EPSRC.
Electron-Atom Collisions in Gases
ERIC Educational Resources Information Center
Kraftmakher, Yaakov
2013-01-01
Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.
Graphene as a platform to study 2D electronic transitions
NASA Astrophysics Data System (ADS)
Bouchiat, Vincent; Kessler, Brian; Girit, Caglar; Zettl, Alex
2010-03-01
The easily accessible 2D electron gas in graphene provides an ideal platform on which to tune, via application of an electrostatic gate, the coupling between electronically ordered dopants deposited on its surface. To demonstrate this concept, we have measured arrays of superconducting clusters deposited on Graphene capable to induce via the proximity effect a gate-tunable superconducting transition. Using a simple fabrication procedure based on metal layer dewetting, doped graphene sheets can be decorated with a non percolating network on nanoscale tin clusters. This hybrid material displays a two-step superconducting transition. The higher transition step is gate independent and corresponds to the transition of the tin clusters to the superconducting state. The lower transition step towards a real zero resistance state exhibiting a well developped supercurrent, is strongly gate-tunable and is quantitatively described by Berezinskii-Kosterlitz-Thouless 2D vortex unbinding. Our simple self-assembly method and tunable coupling can readily be extended to other electronic order parameters such as ferro/antiferromagnetism, charge/spin density waves using similar decoration techniques. [1] B. M. Kessler, C.O. Girit, A. Zettl, and V. Bouchiat, Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets submitted to PRL, arXiv:0907.3661
Electron dynamics and valley relaxation in 2D semiconductors
NASA Astrophysics Data System (ADS)
Gundogdu, Kenan
2015-03-01
Single layer transition metal dichalcogenides are 2D semiconducting systems with unique electronic band structure. Two-valley energy bands along with strong spin-orbital coupling lead to valley dependent career spin polarization, which is the basis for recently proposed valleytronic applications. Since the durations of valley population provide the time window in which valley specific processes take place, it is an essential parameter for developing valleytronic devices. These systems also exhibit unusually strong many body affects, such as strong exciton and trion binding, due to reduced dielectric screening of Coulomb interactions. But there is not much known about the impact of strong many particle correlations on spin and valley polarization dynamics. Here we report direct measurements of ultrafast valley specific relaxation dynamics in single layer MoS2 and WS2. We found that excitonic many body interactions significantly contribute to the relaxation process. Biexciton formation reveals hole valley spin relaxation time. Our results also suggest initial fast intervalley electron scattering and electron spin relaxation leads to loss of electron valley polarization, which then facilitates hole valley relaxation via excitonic spin exchange interaction.
Study of electron transport in hydrocarbon gases
NASA Astrophysics Data System (ADS)
Hasegawa, H.; Date, H.
2015-04-01
The drift velocity and the effective ionization coefficient of electrons in the organic gases, C2H2, C2H4, C2H6, CH3OH, C2H5OH, C6H6, and C6H5CH3, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α - η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.
Observation of the Leggett-Rice effect in an ensemble of 2D Fermi gases
NASA Astrophysics Data System (ADS)
Luciuk, Christopher; Smale, Scott; Trotzky, Stefan; Sharum, Haille; Enss, Tilman; Thywissen, Joseph
2016-05-01
Transport properties of unitary Fermi gases have been studied extensively in the past few years. Because of strong interparticle scattering at unitarity, many transport phenomenon, in particular the spin diffusivity, are observed to be bounded. However, anomalously slow spin diffusion has been observed in two dimensions and remains to be understood. Here we study the spin currents that arise as a result of a non-equilibrium magnetization in an ensemble of two dimensional Fermi gases. Spin currents possess both a dissipative and reactive component. The dissipative component - parameterized by the spin diffusivity - is a measure of the scattering rate. The reactive component describes a part of the spin current that precesses around the local magnetization known as the Leggett-Rice effect. Using a spin-echo sequence we measure both the amplitude and phase of magnetization dynamics to extract these two transport parameters at a range of interaction strengths near a Feshbach resonance.
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup
Doerscher, Soeren; Thobe, Alexander; Hundt, Bastian; Kochanke, Andre; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus
2013-04-15
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong {sup 1}S{sub 0}{yields}{sup 1}P{sub 1} transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow {sup 1}S{sub 0}{yields}{sup 3}P{sub 1} intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy.
Creation of quantum-degenerate gases of ytterbium in a compact 2D-/3D-magneto-optical trap setup.
Dörscher, Sören; Thobe, Alexander; Hundt, Bastian; Kochanke, André; Le Targat, Rodolphe; Windpassinger, Patrick; Becker, Christoph; Sengstock, Klaus
2013-04-01
We report on the first experimental setup based on a 2D-/3D-magneto-optical trap (MOT) scheme to create both Bose-Einstein condensates and degenerate Fermi gases of several ytterbium isotopes. Our setup does not require a Zeeman slower and offers the flexibility to simultaneously produce ultracold samples of other atomic species. Furthermore, the extraordinary optical access favors future experiments in optical lattices. A 2D-MOT on the strong (1)S0 → (1)P1 transition captures ytterbium directly from a dispenser of atoms and loads a 3D-MOT on the narrow (1)S0 → (3)P1 intercombination transition. Subsequently, atoms are transferred to a crossed optical dipole trap and cooled evaporatively to quantum degeneracy. PMID:23635183
Non-equilibrium dynamics of an ensemble of 2D Fermi gases
NASA Astrophysics Data System (ADS)
Sharum, Haille; Smale, Scott; Luciuk, Christopher; Trotzky, Stefan; Enss, Tilman; Yu, Zhenhua; Zhang, Shizhong; Thywissen, Joseph
2016-05-01
We study the dynamics of an ensemble of two dimensional Fermi gases near Feshbach scattering resonances. We begin our experiments with a weakly interacting or non-interacting gas and initiate strong interactions on a timescale that is fast compared to equilibration. We probe the evolution of the short-ranged part of the many-body wavefunction via radio frequency spectroscopy. Alternatively, we perform spin echo measurements to reveal the dissipative (spin diffusion) and reactive (Leggett-Rice effect) components of transverse spin currents.
Study of electron transport in hydrocarbon gases
Hasegawa, H.; Date, H.
2015-04-07
The drift velocity and the effective ionization coefficient of electrons in the organic gases, C{sub 2}H{sub 2}, C{sub 2}H{sub 4}, C{sub 2}H{sub 6}, CH{sub 3}OH, C{sub 2}H{sub 5}OH, C{sub 6}H{sub 6}, and C{sub 6}H{sub 5}CH{sub 3}, have been measured over relatively wide ranges of density-reduced electric fields (E/N) at room temperature (around 300 K). The drift velocity was measured, based on the arrival-time spectra of electrons by using a double-shutter drift tube over the E/N range from 300 to 2800 Td, and the effective ionization coefficient (α − η) was determined by the steady-state Townsend method from 150 to 3000 Td. Whenever possible, these parameters were compared with those available in the literature. It has been shown that the swarm parameters for these gases have specific tendencies, depending on their molecular configurations.
FFLO Superfluids in 2D Spin-Orbit Coupled Fermi Gases
Zheng, Zhen; Gong, Ming; Zhang, Yichao; Zou, Xubo; Zhang, Chuanwei; Guo, Guangcan
2014-01-01
We show that the combination of spin-orbit coupling and in-plane Zeeman field in a two-dimensional degenerate Fermi gas can lead to a larger parameter region for Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phases than that using spin-imbalanced Fermi gases. The resulting FFLO superfluids are also more stable due to the enhanced energy difference between FFLO and conventional Bardeen-Cooper-Schrieffer (BCS) excited states. We clarify the crucial role of the symmetry of Fermi surface on the formation of finite momentum pairing. The phase diagram for FFLO superfluids is obtained in the BCS-BEC crossover region and possible experimental observations of FFLO phases are discussed. PMID:25288379
2D Carbon Nanotube Network: A New material for Electronics
NASA Astrophysics Data System (ADS)
Gruner, George
2006-03-01
This talk will focus on the electronic properties of two dimensional carbon nanotube networks, and on their application potential. Percolation issues, together with the frequency, and temperature dependent activity will be discussed. The network can be tuned from having semiconducting to metallic like behavior, and doping with electron withdrawing and donating species leads to networks with tailor-made electronic properties. The network is also highly transparent in the visible spectral range, this attribute -- together with simple room temperature fab processes -- opens up application opportunities in the area of electronics, opto-electronics, photovoltaics and sensors. Recent results on solar cells, OLEDs and smart windows will be reviewed. Field effect transistors that incorporate nanotube network conducting channels, together with complex functional devices that incorporate networks and functional molecules will also be discussed. Finally a comparison will be made with conventional and emerging materials that compete area of disposable, flexible and printable electronics.
Electron thermalization in gases. III. Epithermal electron scavenging in rare gases
NASA Astrophysics Data System (ADS)
Mozumder, A.
1981-06-01
Earlier work on electron thermalization in rare gases by the author [J. Chem. Phys. 72, 1657 (1980); 72, 6289 (1980)] has been extended to include electron scavenging by an attaching compound present as a minor component. While the cooling rate for the surviving fraction proceeds as in the pure gas, the scavenging rate is calculated using a time-dependent velocity distribution function and a velocity-dependent attachment cross section. For the last mentioned item, functions decreasing with a certain power of velocity specific to a given scavenger have been experimentally found by Christophorou and co-workers; the same are used with analytical extension. In general, epithermal scavenging has been found to be ubiquitous and time dependent. It depends mainly on the thermalization time, relative scavenger concentration, temperature, and thermal attachment cross section. Relative scavenger effectiveness has been found to be temperature dependent. In a simple case autodetachment has been included in the calculation using SF6 as an example. Both attachment and detachment compete with thermalization, the equilibrium being established only in the postthermal regime. To ensure purely thermal reactions in a rare gas such as Ar, which has the longest thermalization time of all the rare gases, purification from reactive scavengers must be carried to the level of 1 ppb (part per billion) or better. For other rare gases the requirement may be less stringent.
Electronic structure study on 2D hydrogenated Icosagens nitride nanosheets
NASA Astrophysics Data System (ADS)
Ramesh, S.; Marutheeswaran, S.; Ramaclus, Jerald V.; Paul, Dolon Chapa
2014-12-01
Metal nitride nanosheets has attracted remarkable importance in surface catalysis due to its characteristic ionic nature. In this paper, using density functional theory, we investigate geometric stability and electronic properties of hydrogenated Icosagen nitride nanosheets. Binding energy of the sheets reveals hydrogenation is providing more stability. Band structure of the hydrogenated sheets is found to be n-type semiconductor. Partial density of states shows metals (B, Al, Ga and In) and its hydrogens dominating in the Fermi region. Mulliken charge analysis indications that hydrogenated nanosheets are partially hydridic surface nature except boron nitride.
Suspended two-dimensional electron and hole gases
Kazazis, D.; Bourhis, E.; Gierak, J.; Gennser, U.; Bourgeois, O.; Antoni, T.
2013-12-04
We report on the fabrication of fully suspended two-dimensional electron and hole gases in III-V heterostructures. Low temperature transport measurements verify that the properties of the suspended gases are only slightly degraded with respect to the non-suspended gases. Focused ion beam technology is used to pattern suspended nanostructures with minimum damage from the ion beam, due to the small width of the suspended membrane.
Dual-mode operation of 2D material-base hot electron transistors
Lan, Yann-Wen; Torres, Jr., Carlos M.; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R.; Lerner, Mitchell B.; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L.
2016-01-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550
Dual-mode operation of 2D material-base hot electron transistors.
Lan, Yann-Wen; Torres, Carlos M; Zhu, Xiaodan; Qasem, Hussam; Adleman, James R; Lerner, Mitchell B; Tsai, Shin-Hung; Shi, Yumeng; Li, Lain-Jong; Yeh, Wen-Kuan; Wang, Kang L
2016-01-01
Vertical hot electron transistors incorporating atomically-thin 2D materials, such as graphene or MoS2, in the base region have been proposed and demonstrated in the development of electronic and optoelectronic applications. To the best of our knowledge, all previous 2D material-base hot electron transistors only considered applying a positive collector-base potential (VCB > 0) as is necessary for the typical unipolar hot-electron transistor behavior. Here we demonstrate a novel functionality, specifically a dual-mode operation, in our 2D material-base hot electron transistors (e.g. with either graphene or MoS2 in the base region) with the application of a negative collector-base potential (VCB < 0). That is, our 2D material-base hot electron transistors can operate in either a hot-electron or a reverse-current dominating mode depending upon the particular polarity of VCB. Furthermore, these devices operate at room temperature and their current gains can be dynamically tuned by varying VCB. We anticipate our multi-functional dual-mode transistors will pave the way towards the realization of novel flexible 2D material-based high-density and low-energy hot-carrier electronic applications. PMID:27581550
2D Optical Streaking for Ultra-Short Electron Beam Diagnostics
Ding, Y.T.; Huang, Z.; Wang, L.; /SLAC
2011-12-14
field ionization, which occurs in plasma case, gases species with high field ionization threshold should be considered. For a linear polarized laser, the kick to the ionized electrons depends on the phase of the laser when the electrons are born and the unknown timing jitter between the electron beam and laser beam makes the data analysis very difficult. Here we propose to use a circular polarized laser to do a 2-dimensional (2D) streaking (both x and y) and measure the bunch length from the angular distribution on the screen, where the phase jitter causes only a rotation of the image on the screen without changing of the relative angular distribution. Also we only need to know the laser wavelength for calibration. A similar circular RF deflecting mode was used to measure long bunches. We developed a numerical particle-in-Cell (PIC) code to study the dynamics of ionization electrons with the high energy beam and the laser beam.
Electron swarm experiments in dense rare gases: a review
NASA Astrophysics Data System (ADS)
Borghesani, A. Francesco
2014-03-01
Swarm techniques have largely been used to investigate electron transport in very dilute gases in order to shed light on the electron-atom (molecule) scattering cross section and, hence, on the interaction potential. The theoretical basis for the analysis of these experiments is classical Kinetic Theory. However, electron transport in dense media, either in gaseous- or condensed phase, is a physical phenomenon of fundamental and practical interest. Dense rare gases are model systems for disordered media. They are particularly well suited to investigate how the dynamics and energetics of quasifree electrons change as the environment density is gradually increased. A review on the electron swarm experiments in dense rare gases is presented here. Contribution to the Topical Issue "Electron and Positron Induced Processes", edited by Michael Brunger, Radu Campeanu, Masamitsu Hoshino, Oddur Ingólfsson, Paulo Limão-Vieira, Nigel Mason, Yasuyuki Nagashima and Hajime Tanuma.
2D electron density profile measurement in tokamak by laser-accelerated ion-beam probe
Chen, Y. H.; Yang, X. Y.; Lin, C. E-mail: cjxiao@pku.edu.cn; Wang, X. G.; Xiao, C. J. E-mail: cjxiao@pku.edu.cn; Wang, L.; Xu, M.
2014-11-15
A new concept of Heavy Ion Beam Probe (HIBP) diagnostic has been proposed, of which the key is to replace the electrostatic accelerator of traditional HIBP by a laser-driven ion accelerator. Due to the large energy spread of ions, the laser-accelerated HIBP can measure the two-dimensional (2D) electron density profile of tokamak plasma. In a preliminary simulation, a 2D density profile was reconstructed with a spatial resolution of about 2 cm, and with the error below 15% in the core region. Diagnostics of 2D density fluctuation is also discussed.
Nano-scale electronic and optoelectronic devices based on 2D crystals
NASA Astrophysics Data System (ADS)
Zhu, Wenjuan
In the last few years, the research community has been rapidly growing interests in two-dimensional (2D) crystals and their applications. The properties of these 2D crystals are diverse -- ranging from semi-metal such as graphene, semiconductors such as MoS2, to insulator such as boron nitride. These 2D crystals have many unique properties as compared to their bulk counterparts due to their reduced dimensionality and symmetry. A key difference is the band structures, which lead to distinct electronic and photonic properties. The 2D nature of the material also plays an important role in defining their exceptional properties of mechanical strength, surface sensitivity, thermal conductivity, tunable band-gap and their interaction with light. These unique properties of 2D crystals open up a broad territory of applications in computing, communication, energy, and medicine. In this talk, I will present our work on understanding the electrical properties of graphene and MoS2, in particular current transport and band-gap engineering in graphene, interface between gate dielectrics and graphene, and gap states in MoS2. I will also present our work on the nano-scale electronic devices (RF and logic devices) and photonic devices (plasmonic devices and photo-detectors) based on these 2D crystals.
Electron energy-distribution functions in gases
Pitchford, L.C.
1981-01-01
Numerical calculation of the electron energy distribution functions in the regime of drift tube experiments is discussed. The discussion is limited to constant applied fields and values of E/N (ratio of electric field strength to neutral density) low enough that electron growth due to ionization can be neglected. (GHT)
Laser driven electron acceleration in vacuum, gases and plasmas
Sprangle, P.; Esarey, E.; Krall, J.
1996-04-19
This paper discusses some of the important issues pertaining to laser acceleration in vacuum, neutral gases and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self guided in a partially ionized gas. Optical self guiding is the result of a balance between the nonlinear self focusing properties of neutral gases and the diffraction effects of ionization. The stability of self guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser driven accelerator experiments are briefly discussed.
NASA Astrophysics Data System (ADS)
Ostroumov, Evgeny E.; Jumper, Chanelle C.; Mulvaney, Rachel M.; Cogdell, Richard J.; Scholes, Gregory D.
2013-03-01
The study of LH2 protein of purple bacteria by broadband 2D electronic spectroscopy is presented. The dark 1Bu- carotenoid state is directly observed in 2D spectra and its role in carotenoid-bacteriochlorophyll interaction is discussed.
Experiments on 2D Vortex Patterns with a Photoinjected Pure Electron Plasma
NASA Astrophysics Data System (ADS)
Durkin, Daniel; Fajans, Joel
1998-11-01
The equations governing the evolution of a strongly magnetized pure electron plasma are analogous to those of an ideal 2D fluid; plasma density is analogous to fluid vorticity. Therefore, we can study vortex dynamics with pure electron plasmas. We generate our electron plasma with a photocathode electron source. The photocathode provides greater control over the initial profile than previous thermionic sources and allows us to create complicated initial density distributions, corresponding to complicated vorticity distributions in a fluid. Results on the stability of 2D vortex patterns will be presented: 1) The stability of N vortices arranged in a ring; 2) The stability of N vortices arranged in a ring with a central vortex; 3) The stability of more complicated vortex patterns.(http://socrates.berkeley.edu/ )fajans/
2-D simulation of a waveguide free electron laser having a helical undulator
Kim, S.K.; Lee, B.C.; Jeong, Y.U.
1995-12-31
We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.
Moment theory of electron thermalization in gases
Knierim, K.D.; Waldman, M.; Mason, E.A.
1982-07-15
A time-dependent moment method for solving the Boltzmann equation, not restricted to elastic collisions, is applied to the description of the thermalization of a beam of electrons in a gas. An exact solution is also obtained for diffusion and velocity relaxation by elastic collisions at very short times, before appreciable energy is lost. These results are compared with a recent approximate theory of Mozumder for electron thermalization, using two model systems: the Maxwell model (constant collisions frequency), and the rigid-sphere interaction (constant collision cross section). All results are exact for the Maxwell model, but for rigid-sphere interactions the errors in the velocity and energy relaxation times from Mozumder's method are approximately 25%. Many real systems are therefore probably described satisfactorily by the approximate theory, unless perhaps the cross sections have a peculiar energy dependence or inelastic collisions are important. If more accurate results are needed, the present moment method gives a systematic procedure for the calculation of higher-order approximations. Although the specific examples treated here consider only elastic collisions, the moment method applies to the case of inelastic collisions as well.
Unconventional dc Transport in Rashba Electron Gases.
Brosco, Valentina; Benfatto, Lara; Cappelluti, Emmanuele; Grimaldi, Claudio
2016-04-22
We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy associated with spin-orbit coupling, dc transport is accurately described by a standard Drude's law, due to a nontrivial compensation between the suppression of backscattering and the relativistic correction to the quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime, Drude's paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of freedom in these systems. PMID:27152815
Unconventional dc Transport in Rashba Electron Gases
NASA Astrophysics Data System (ADS)
Brosco, Valentina; Benfatto, Lara; Cappelluti, Emmanuele; Grimaldi, Claudio
2016-04-01
We discuss the transport properties of a disordered two-dimensional electron gas with strong Rashba spin-orbit coupling. We show that in the high-density regime where the Fermi energy overcomes the energy associated with spin-orbit coupling, dc transport is accurately described by a standard Drude's law, due to a nontrivial compensation between the suppression of backscattering and the relativistic correction to the quasiparticle velocity. On the contrary, when the system enters the opposite dominant spin-orbit regime, Drude's paradigm breaks down and the dc conductivity becomes strongly sensitive to the spin-orbit coupling strength, providing a suitable tool to test the entanglement between spin and charge degrees of freedom in these systems.
One-dimensional Electron Gases at Oxide Interfaces
NASA Astrophysics Data System (ADS)
Cao, Yanwei; Zhong, Zhicheng; Shafer, P.; Liu, Xiaoran; Kareev, M.; Middey, S.; Meyers, D.; Arenholz, E.; Chakhalian, Jak
Emergence of two-dimensional electron gases (2DEG) at the oxide interfaces of two dissimilar insulators is a remarkable manifestation of interface engineering. With continuously reduced dimensionality, it arises an interesting question: could one-dimensional electron gases (1DEG) be designed at oxide interfaces? So far there is no report on this. Here, we report on the formation of 1DEG at the carefully engineered titanate heterostructures. Combined resonant soft X-ray linear dichroism with electrical transport and the first-principles calculations have confirmed the formation of 1DEG driven by the interfacial symmetry breaking. Our findings provide a route to engineer new electronic and magnetic states. This work was supported by Gordon and Betty Moore Foundation, DODARO, DOE, and the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy.
2D electron temperature diagnostic using soft x-ray imaging technique
Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.
2014-03-15
We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.
Measuring Chern numbers in Atomic Gases: 2D and 4D Quantum Hall Physics in the Lab
NASA Astrophysics Data System (ADS)
Goldman, Nathan
Optical-lattice experiments have recently succeeded in probing the geometry of 2D Bloch bands with cold neutral atoms. Beyond these local geometrical effects, which are captured by the Berry curvature, 2D Bloch bands may also display non-trivial topology, a global property captured by a topological invariant (e.g. the first Chern number). Such topological properties have dramatic consequences on the transport of non-interacting atoms, such as quantized responses whenever the bands are uniformly populated. In this talk, I will start with the first experimental demonstration of topological transport in a gas of neutral particles, which revealed the Chern number through a cold-atom analogue of quantum-Hall measurements. I will then describe how this Chern-number measurement could be extended in order to probe the topology of higher-dimensional systems. In particular, I will show how the second Chern number - an emblematic topological invariant associated with 4D Bloch bands - could be extracted from an atomic gas, using a 3D optical lattice extended by a synthetic dimension. Finally, I will describe a general scheme by which optical lattices of subwavelength spacing could be realized. This method leads to topological band structures with significantly enhanced energy scales, offering an interesting route towards the experimental realization of strongly-correlated topological states with cold atoms.
Pair interaction energy for a 12-electron 2D square Quantum Dot.
NASA Astrophysics Data System (ADS)
Nissenbaum, Daniel; Barbiellini, Bernardo; Bansil, Arun
2004-03-01
We have investigated a system of 12 electrons enclosed in a 2D square well representing a quantum dot. We employ a Jastrow-type wavefunction with Slater determinants and optimize the Jastrow parameter using the variational Monte Carlo method. We use the Metropolis algorithm to select a large distribution of configuration points and to perform a relatively noiseless calculation of the radial distribution function and to obtain insight into the contrast between the Fermi hole for the same-spin electrons and the Coulomb hole for the opposite-spin electrons. The calculated pair interaction energy provides a handle for constructing a model Hamiltonian useful for the study of spontaneous spin magnetization of the system. Work supported in part by the USDOE.
Local electronic structures and 2D topological phase transition of ultrathin Sb films
NASA Astrophysics Data System (ADS)
Kim, Sunghwan; Jin, Kyung-Hwan; Park, Joonbum; Kim, Jun Sung; Jhi, Seung-Hoon; Yeom, Han Woong
We investigate local electronic structures of ultrathin Sb islands and their edges grown on Bi2Te2Se by scanning tunneling microscopy/spectroscopy (STM/STS) and density functional theory (DFT) calculations. The Sb islands of various thickness are grown with atomically well ordered edge structure over the 3 bilayers (BL). On the surfaces and edges of these islands, we clearly resolve edge-localized electronic states by STS measurements, which depend on the thickness. The DFT calculations identify that the strongly localized edge states of 4 and 5 BL films correspond to a quantum spin Hall (QSH) states while the edge states of 3 BL are trivial. Our experimental and theoretical results confirm the 2D topological phase transition of the ultrathin Sb films from trivial to QSH phase. Center for Artificial Low Dimensional Electronic Systems, Institute for Basic Science and Department of Physics, Pohang University of Science and Technology, Korea.
Electron Microscopy: From 2D to 3D Images with Special Reference to Muscle
2015-01-01
This is a brief and necessarily very sketchy presentation of the evolution in electron microscopy (EM) imaging that was driven by the necessity of extracting 3-D views from the essentially 2-D images produced by the electron beam. The lens design of standard transmission electron microscope has not been greatly altered since its inception. However, technical advances in specimen preparation, image collection and analysis gradually induced an astounding progression over a period of about 50 years. From the early images that redefined tissues, cell and cell organelles at the sub-micron level, to the current nano-resolution reconstructions of organelles and proteins the step is very large. The review is written by an investigator who has followed the field for many years, but often from the sidelines, and with great wonder. Her interest in muscle ultrastructure colors the writing. More specific detailed reviews are presented in this issue. PMID:26913146
NASA Astrophysics Data System (ADS)
de La Barrera, Sergio; Mende, Patrick; Li, Jun; Feenstra, Randall; Lin, Yu-Chuan; Robinson, Joshua; Vishwanath, Suresh; Xing, Huili
Among the many properties that evolve as isolated 2D materials are brought together to form a heterostructure, rearrangement of charges between layers due to unintentional doping results in dipole fields at the interface, which critically affect the electronic properties of the structure. Here we report a method for directly measuring work function differences, and hence electrostatic potential variations, across the surface of 2D materials and heterostructures thereof using low energy electron microscopy (LEEM). Study of MoSe2 grown by molecular beam epitaxy on epitaxial graphene on SiC with LEEM reveals a large work function difference between the MoSe2 and the graphene, indicating charge transfer between the layers and a subsequent dipole layer. In addition to quantifying dipole effects between transition metal dichalcogenides and graphene, direct imaging of the surface, diffraction information, and the spectroscopic dependence of electron reflectivity will be discussed. This work was supported in part by the Center for Low Energy Systems Technology (LEAST), one of the six SRC STARnet Centers, sponsored by MARCO and DARPA.
Wavelet characterization of 2D turbulence and intermittency in magnetized electron plasmas
NASA Astrophysics Data System (ADS)
Romé, M.; Chen, S.; Maero, G.
2016-06-01
A study of the free relaxation of turbulence in a two-dimensional (2D) flow is presented, with a focus on the role of the initial vorticity conditions. Exploiting a well-known analogy with 2D inviscid incompressible fluids, the system investigated here is a magnetized pure electron plasma. The dynamics of this system are simulated by means of a 2D particle-in-cell code, starting from different spiral density (vorticity) distributions. A wavelet multiresolution analysis is adopted, which allows the coherent and incoherent parts of the flow to be separated. Comparison of the turbulent evolution in the different cases is based on the investigation of the time evolution of statistical properties, including the probability distribution functions and structure functions of the vorticity increments. It is also based on an analysis of the enstrophy evolution and its spectrum for the two components. In particular, while the statistical features assess the degree of flow intermittency, spectral analysis allows us not only to estimate the time required to reach a state of fully developed turbulence, but also estimate its dependence on the thickness of the initial spiral density distribution, accurately tracking the dynamics of both the coherent structures and the turbulent background. The results are compared with those relevant to annular initial vorticity distributions (Chen et al 2015 J. Plasma Phys. 81 495810511).
Optical and Electronic Properties of 2D Graphitic Carbon-Nitride and Carbon Enriched Alloys
NASA Astrophysics Data System (ADS)
Therrien, Joel; Li, Yancen; Schmidt, Daniel; Masaki, Michael; Syed, Abdulmannan
The two-dimensional form of graphitic carbon-nitride (gCN) has been successfully synthesized using a simple CVD process. In it's pure form, the carbon to nitrogen ratio is 0.75. By adding a carbon bearing gas to the growth environment, the C/N ratio can be increased, ultimately reaching the pure carbon form: graphene. Unlike attempts at making a 2D alloy system out of BCN, the CN system does not suffer from phase segregation and thus forms a homogeneous alloy. The synthesis approach and electronic and optical properties will be presented for the pure gCN and a selection of alloy compositions.
Electron phase coherent effects in nanostructures and coupled 2D systems
Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Sherwin, M.E.; Harff, N.E.; Eiles, T.M.; Wendt, J.R.
1995-05-01
This report describes the research accomplishments achieved under the LDRD Project ``Electron Phase Coherent Effects in Nanostructures and Coupled 2D Systems.`` The goal of this project was to discover and characterize novel quantum transport phenomena in small semiconductor structures at low temperatures. Included is a description of the purpose of the research, the various approaches used, and a detailed qualitative description of the numerous new results obtained. The first appendix gives a detailed listing of publications, presentations, patent applications, awards received, and various other measures of the LDRD project success. Subsequent appendices consist of reprinted versions of several specific,`` scientific journal publications resulting from this LDRD project.
Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.
2009-01-01
A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array.
Yoganathan, S A; Das, K J Maria; Raj, D Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Dosimetric verification of gated delivery of electron beams using a 2D ion chamber array
Yoganathan, S. A.; Das, K. J. Maria; Raj, D. Gowtham; Kumar, Shaleen
2015-01-01
The purpose of this study was to compare the dosimetric characteristics; such as beam output, symmetry and flatness between gated and non-gated electron beams. Dosimetric verification of gated delivery was carried for all electron beams available on Varian CL 2100CD medical linear accelerator. Measurements were conducted for three dose rates (100 MU/min, 300 MU/min and 600 MU/min) and two respiratory motions (breathing period of 4s and 8s). Real-time position management (RPM) system was used for the gated deliveries. Flatness and symmetry values were measured using Imatrixx 2D ion chamber array device and the beam output was measured using plane parallel ion chamber. These detector systems were placed over QUASAR motion platform which was programmed to simulate the respiratory motion of target. The dosimetric characteristics of gated deliveries were compared with non-gated deliveries. The flatness and symmetry of all the evaluated electron energies did not differ by more than 0.7 % with respect to corresponding non-gated deliveries. The beam output variation of gated electron beam was less than 0.6 % for all electron energies except for 16 MeV (1.4 %). Based on the results of this study, it can be concluded that Varian CL2100 CD is well suitable for gated delivery of non-dynamic electron beams. PMID:26170552
Neutrino-electron Scattering in 2-D Models of Supernova Convection
NASA Astrophysics Data System (ADS)
DeNisco, K. R.; Swesty, F. D.; Myra, E. S.
2005-12-01
We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.
Correlating Structural and Electronic Degrees of Freedom in 2D Transition Metal Dichalcogenides
NASA Astrophysics Data System (ADS)
Tung, I.-Cheng; Zhang, Z.; Seyler, K. L.; Jones, A. M.; Clark, G.; Xiao, D.; Laanait, N.; Xu, X.; Wen, H.
We have conducted a microscopic study of the interplay between structural and electronic degrees of freedom in two-dimensional (2D) transition metal dichalcogenide (TMD) monolayers, multilayers and heterostructures. Using the recently developed full field x-ray reflection interface microscopy with the photoluminescence microscopic probe capability at the Advanced Photon Source, we demonstrated the x-ray reflection imaging of a monolayer 2D material for the first time. The structural variation across an exfoliated WSe2 monolayer is quantified by interlayer spacing relative to the crystal substrate and the smoothness of the layer. This structural information is correlated with the electronic properties of TMDs characterized by the in-situ photoluminescence measurements. This work is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-SC0012509. The use of Advanced Photon Source is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.
Design of transparent conductors and periodic two-dimensional electron gases without doping
NASA Astrophysics Data System (ADS)
Zhang, Xiuwen; Zhang, Lijun; Zunger, Alex; Perkins, John; Materials by Design Team; John D. Perkins Collaboration
The functionality of transparency plus conductivity plays an important role in renewable energy and information technologies, including applications such as solar cells, touch-screen sensors, and flat panel display. However, materials with such seemingly contraindicated properties are difficult to come by. The traditional strategy for designing bulk transparent conductors (TCs) starts from a wide-gap insulator and finds ways to make it conductive by extensive doping. We propose a different strategy for TC design--starting with a metallic conductor and designing transparency by control of intrinsic interband transitions and intraband plasmonic frequency. We identified specific design principles for prototypical intrinsic TC classes and searched computationally for materials that satisfy them. The electron gases in the 3D intrinsic TCs demonstrate intriguing properties, such as periodic 2D electron gas regions with very high carrier density. We will discuss a more extended search of these functionalities, in parallel with stability and growability calculations
Enhancement of low-energy electron emission in 2D radioactive films.
Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J; Lewis, Emily A; Lucci, Felicia R; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E Charles H
2015-09-01
High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope (125)I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual (125)I atoms into (125)Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic (125)I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies. PMID:26076306
Enhancement of low-energy electron emission in 2D radioactive films
NASA Astrophysics Data System (ADS)
Pronschinske, Alex; Pedevilla, Philipp; Murphy, Colin J.; Lewis, Emily A.; Lucci, Felicia R.; Brown, Garth; Pappas, George; Michaelides, Angelos; Sykes, E. Charles H.
2015-09-01
High-energy radiation has been used for decades; however, the role of low-energy electrons created during irradiation has only recently begun to be appreciated. Low-energy electrons are the most important component of radiation damage in biological environments because they have subcellular ranges, interact destructively with chemical bonds, and are the most abundant product of ionizing particles in tissue. However, methods for generating them locally without external stimulation do not exist. Here, we synthesize one-atom-thick films of the radioactive isotope 125I on gold that are stable under ambient conditions. Scanning tunnelling microscopy, supported by electronic structure simulations, allows us to directly observe nuclear transmutation of individual 125I atoms into 125Te, and explain the surprising stability of the 2D film as it underwent radioactive decay. The metal interface geometry induces a 600% amplification of low-energy electron emission (<10 eV; ref. ) compared with atomic 125I. This enhancement of biologically active low-energy electrons might offer a new direction for highly targeted nanoparticle therapies.
Eucken correction in high-temperature gases with electronic excitation
Istomin, V. A.; Kustova, E. V. Mekhonoshina, M. A.
2014-05-14
In the present paper, thermal conductivity coefficient of high-temperature molecular and atomic gases with excited electronic states is studied using both the kinetic theory algorithm developed by authors earlier and the well known simple expression for the thermal conductivity coefficient proposed by Eucken and generalized by Hirschfelder. The influence of large collision diameters of excited states on the thermal conductivity is discussed. The limit of validity of the Eucken correction is evaluated on the basis of the kinetic theory calculations; an improved model suitable for air species under high-temperature conditions is proposed.
Phase Diagram of Bilayer 2D Electron Systems at νT = 1
NASA Astrophysics Data System (ADS)
Champagne, Alexandre
2009-03-01
Bilayer 2D electron systems at total filling fraction νT = 1 and small interlayer spacing can support a strongly correlated phase which exhibits spontaneous interlayer phase coherence and may be described as an excitonic Bose condensate. We use electron interlayer tunnelling and transport to explore the phase diagram of bilayer 2D electron systems at νT = 1, and find that phase transitions between the excitonic νT = 1 phase and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing, d/l, the temperature, T, or the charge imbalance, δν=ν1-ν2. First, for the balanced (δν = 0) system we find that the amplitude of the resonant tunneling in the coherent νT = 1 phase obeys an empirical power law scaling versus d/l at various T, and the layer separation where the tunneling disappears scales linearly with T. Our results [1] offer strong evidence that a finite temperature phase transition separates the balanced interlayer coherent phase from incoherent phases which lack strong interlayer correlations. Secondly, we observe [2] that close to the phase boundary the coherent νT = 1 phase can be absent at δν = 0, present at intermediate δν, and absent again at large δν, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. Lastly, at δν = 1/3 we report [2] the observation of a direct phase transition between the coherent νT = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1 = 2/3 and ν2 = 1/3.[4pt] [1] A.R. Champagne, et al., Phys. Rev. Lett. 100, 096801 (2008).[0pt] [2] A.R. Champagne, et al, Phys. Rev. B 78, 205310 (2008)
2D array of cold-electron nanobolometers with double polarised cross-dipole antennas
2012-01-01
A novel concept of the two-dimensional (2D) array of cold-electron nanobolometers (CEB) with double polarised cross-dipole antennas is proposed for ultrasensitive multimode measurements. This concept provides a unique opportunity to simultaneously measure both components of an RF signal and to avoid complicated combinations of two schemes for each polarisation. The optimal concept of the CEB includes a superconductor-insulator-normal tunnel junction and an SN Andreev contact, which provides better performance. This concept allows for better matching with the junction gate field-effect transistor (JFET) readout, suppresses charging noise related to the Coulomb blockade due to the small area of tunnel junctions and decreases the volume of a normal absorber for further improvement of the noise performance. The reliability of a 2D array is considerably increased due to the parallel and series connections of many CEBs. Estimations of the CEB noise with JFET readout give an opportunity to realise a noise equivalent power (NEP) that is less than photon noise, specifically, NEP = 4 10−19 W/Hz1/2 at 7 THz for an optical power load of 0.02 fW. PMID:22512950
Compilation of Electron-Neutral Collision Data in Gases
NASA Astrophysics Data System (ADS)
Raju, Gorur Govinda
2009-10-01
Data on electron-neutral interaction are required and indispensable in several areas of research including Power systems, Plasma applications, material scientists, Chemistry, and even biological processes. The data are generally classified under cross sections for various elastic and inelastic processes, swarm properties including transport parameters and growth coefficients. A large number of reviews and compilations for a limited number of gases have been previously published in the literature by other researchers. In this presentation the author has compiled, over a period of twenty years or so, data for most of the molecules, if not for all, studied for the electron energy range (0-1000 eV) For each target particle about sixteen quantities have been classified to the extent that data are available, provided in tabular and graphical formats. The data are updated on a continuous basis till publication time.
Dynamical symmetry breaking in a 2D electron gas with a spectral node
NASA Astrophysics Data System (ADS)
Ziegler, Klaus
2013-09-01
We study a disordered 2D electron gas with a spectral node in a vicinity of the node. After identifying the fundamental dynamical symmetries of this system, the spontaneous breaking of the latter by a Grassmann field is studied within a nonlinear sigma model approach. This allows us to reduce the average two-particle Green's function to a diffusion propagator with a random diffusion coefficient. The latter has non-degenerate saddle points and is treated by the conventional self-consistent Born approximation. This leads to a renormalized chemical potential and a renormalized diffusion coefficient, where the DC conductivity increases linearly with the density of quasiparticles. Applied to the special case of Dirac fermions, our approach provides a comprehensive description of the minimal conductivity at the Dirac node as well as for the V-shape conductivity inside the bands.
2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure
NASA Astrophysics Data System (ADS)
Giese, Thorsten; Janes, Joachim
2015-05-01
Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.
Finite-size scaling in a 2D disordered electron gas with spectral nodes
NASA Astrophysics Data System (ADS)
Sinner, Andreas; Ziegler, Klaus
2016-08-01
We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo–Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near {{e}2}/π h .
Finite-size scaling in a 2D disordered electron gas with spectral nodes.
Sinner, Andreas; Ziegler, Klaus
2016-08-01
We study the DC conductivity of a weakly disordered 2D electron gas with two bands and spectral nodes, employing the field theoretical version of the Kubo-Greenwood conductivity formula. Disorder scattering is treated within the standard perturbation theory by summing up ladder and maximally crossed diagrams. The emergent gapless (diffusion) modes determine the behavior of the conductivity on large scales. We find a finite conductivity with an intermediate logarithmic finite-size scaling towards smaller conductivities but do not obtain the logarithmic divergence of the weak-localization approach. Our results agree with the experimentally observed logarithmic scaling of the conductivity in graphene with the formation of a plateau near [Formula: see text]. PMID:27270084
Electronic and geometrical properties of monoatomic and diatomic 2D honeycomb lattices. A DFT study
NASA Astrophysics Data System (ADS)
Rojas, Ángela; Rey, Rafael; Fonseca, Karen; Grupo de Óptica e Información Cuántica Team
Since the discovery of graphene by Geim and Novoselov at 2004, several analogous systems have been theoretically and experimentally studied, due to their technological interest. Both monoatomic lattices, such as silicine and germanene, and diatomic lattices (h-GaAs and h-GaN) have been studied. Using Density Functional Theory we obtain and confirm the chemical stability of these hexagonal 2D systems through the total energy curves as a function of interatomic distance. Unlike graphene, silicine and germanene, gapless materials, h-GaAs and h-GaN exhibit electronic gaps, different from that of the bulk, which could be interesting for the industry. On the other hand, the ab initio band structure calculations for graphene, silicene and germanene show a non-circular cross section around K points, at variance with the prediction of usual Tight-binding models. In fact, we have found that Dirac cones display a dihedral group symmetry. This implies that Fermi speed can change up to 30 % due to the orientation of the wave vector, for both electrons and holes. Traditional analytic studies use the Dirac equation for the electron dynamics at low energies. However, this equation assumes an isotropic, homogeneous and uniform space. Authors would like to thank the División de Investigación Sede Bogotá for their financial support at Universidad Nacional de Colombia. A. M. Rojas-Cuervo would also like to thank the Colciencias, Colombia.
Kinetic electron bounce instability in a 2D current sheet - Implication for substorm dynamics
NASA Astrophysics Data System (ADS)
Fruit, G.; Tur, A.; Louarn, P.
2013-12-01
In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic ballooning-type instabilities in resonant interaction with trapped bouncing electrons in a 2D current sheet. Tur et al. 2010 and Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Here, we generalize the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period. The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasineutrality condition and the Ampere's law for the current density. It is found that for mildly stretched current sheet (Bz > 0.1 Blobes) undamped and stable modes oscillate at typical electron bounce frequency with wavelength (in y) of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in epsilon=Bz/Blobes < 0.05 typically, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few tens of seconds. The free energy contained in the electron bouncing motion could thus trigger and drive an electromagnetic instability able to disrupt the cross-tail current in a few seconds. The role of the temperature ratio Te/Ti is also evaluated.
Ionization of gases by a pulsed electron beam as studied by self-focusing. II. Polyatomic gases
Arai, H.; Hotta, H.
1981-09-15
In order to analyze data on the self-focusing of a pulsed electron beam in polyatomic gases, the net current I/sub net/ in H/sub 2/, N/sub 2/, and CH/sub 4/ was computed self-consistently as functions of time in the pressure range between 5 and 300 Torr of these gases by using swarm parameters. The computational result indicates that the larger dose D/sub obs/, observed by a piled dosimeter on the beam axis, is attributed to the larger I/sub net/, which is mainly determined by a mean ionization time t/sub 1/ for secondary ionization by the electric field induced by the pulsed beam. When values of D/sub obs/ for different gases are compared at the same pressure, the larger D/sub obs/ is given by the larger t/sub i/. This relationship is demonstrated for several polyatomic gases by estimating t/sub i/ from various parameters in a function of secondary electron energy or E/p such as the electron drift velocity, the first Townsend ionization coefficient, the ionization cross section, and so on. For the short pulse duration of a Febetron 706, electron--ion recombination processes scarcely affect I/sub net/ except at high pressures of some polyatomic gases, while the effect of electron-attachment processes is appreciable in SF/sub 6/, CCl/sub 2/F/sub 2/, and N/sub 2/O.
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Anasori, Babak; Shi, Chenyang; Moon, Eun Ju; Xie, Yu; Voigt, Cooper A.; Kent, Paul R. C.; May, Steven J.; Billinge, Simon J. L.; Barsoum, Michel W.; Gogotsi, Yury
2016-02-24
In this paper, a transition from metallic to semiconducting-like behavior has been demonstrated in two-dimensional (2D) transition metal carbides by replacing titanium with molybdenum in the outer transition metal (M) layers of M3C2 and M4C3 MXenes. The MXene structure consists of n + 1 layers of near-close packed M layers with C or N occupying the octahedral site between them in an [MX]nM arrangement. Recently, two new families of ordered 2D double transition metal carbides MXenes were discovered, M'2M"C2 and M'2M"2C3 – where M' and M" are two different early transition metals, such as Mo, Cr, Ta, Nb, V, andmore » Ti. The M' atoms only occupy the outer layers and the M" atoms fill the middle layers. In other words, M' atomic layers sandwich the middle M"–C layers. Using X-ray atomic pair distribution function (PDF) analysis on Mo2TiC2 and Mo2Ti2C3 MXenes, we present the first quantitative analysis of structures of these novel materials and experimentally confirm that Mo atoms are in the outer layers of the [MC]nM structures. The electronic properties of these Mo-containing MXenes are compared with their Ti3C2 counterparts, and are found to be no longer metallic-like conductors; instead the resistance increases mildly with decreasing temperatures. Density functional theory (DFT) calculations suggest that OH terminated Mo–Ti MXenes are semiconductors with narrow band gaps. Measurements of the temperature dependencies of conductivities and magnetoresistances have confirmed that Mo2TiC2Tx exhibits semiconductor-like transport behavior, while Ti3C2Tx is a metal. Finally, this finding opens new avenues for the control of the electronic and optical applications of MXenes and for exploring new applications, in which semiconducting properties are required.« less
Strongly Metallic Electron and Hole 2D Transport in an Ambipolar Si-Vacuum Field Effect Transistor
NASA Astrophysics Data System (ADS)
Hu, Binhui; Yazdanpanah, M. M.; Kane, B. E.; Hwang, E. H.; Das Sarma, S.
2015-07-01
We report experiment and theory on an ambipolar gate-controlled Si(111)-vacuum field effect transistor where we study electron and hole (low-temperature 2D) transport in the same device simply by changing the external gate voltage to tune the system from being a 2D electron system at positive gate voltage to a 2D hole system at negative gate voltage. The electron (hole) conductivity manifests strong (moderate) metallic temperature dependence with the conductivity decreasing by a factor of 8 (2) between 0.3 K and 4.2 K with the peak electron mobility (˜18 m2/V s ) being roughly 20 times larger than the peak hole mobility (in the same sample). Our theory explains the data well using random phase approximation screening of background Coulomb disorder, establishing that the observed metallicity is a direct consequence of the strong temperature dependence of the effective screened disorder.
Destabilization of 2D magnetic current sheets by resonance with bouncing electron - a new theory
NASA Astrophysics Data System (ADS)
Fruit, Gabriel; Louarn, Philippe; Tur, Anatoly
2016-07-01
In the general context of understanding the possible destabilization of the magnetotail before a substorm, we propose a kinetic model for electromagnetic instabilities in resonant interaction with trapped bouncing electrons. The geometry is clearly 2D and uses Harris sheet profile. Fruit et al. 2013 already used this model to investigate the possibilities of electrostatic instabilities. Tur et al. 2014 generalizes the model for full electromagnetic perturbations. Starting with a modified Harris sheet as equilibrium state, the linearized gyrokinetic Vlasov equation is solved for electromagnetic fluctuations with period of the order of the electron bounce period (a few seconds). The particle motion is restricted to its first Fourier component along the magnetic field and this allows the complete time integration of the non local perturbed distribution functions. The dispersion relation for electromagnetic modes is finally obtained through the quasi neutrality condition and the Ampere's law for the current density. The present talk will focus on the main results of this theory. The electrostatic version of the model may be applied to the near-Earth environment (8-12 R_{E}) where beta is rather low. It is showed that inclusion of bouncing electron motion may enhance strongly the growth rate of the classical drift wave instability. This model could thus explain the generation of strong parallel electric fields in the ionosphere and the formation of aurora beads with wavelength of a few hundreds of km. In the electromagnetic version, it is found that for mildly stretched current sheet (B_{z} > 0.1 B _{lobes}) undamped modes oscillate at typical electron bounce frequency with wavelength of the order of the plasma sheet thickness. As the stretching of the plasma sheet becomes more intense, the frequency of these normal modes decreases and beyond a certain threshold in B_{z}/B _{lobes}, the mode becomes explosive (pure imaginary frequency) with typical growing rate of a few
Güell, Aleix G; Ebejer, Neil; Snowden, Michael E; McKelvey, Kim; Macpherson, Julie V; Unwin, Patrick R
2012-07-17
Carbon nanotubes have attracted considerable interest for electrochemical, electrocatalytic, and sensing applications, yet there remains uncertainty concerning the intrinsic electrochemical (EC) activity. In this study, we use scanning electrochemical cell microscopy (SECCM) to determine local heterogeneous electron transfer (HET) kinetics in a random 2D network of single-walled carbon nanotubes (SWNTs) on an Si/SiO(2) substrate. The high spatial resolution of SECCM, which employs a mobile nanoscale EC cell as a probe for imaging, enables us to sample the responses of individual portions of a wide range of SWNTs within this complex arrangement. Using two redox processes, the oxidation of ferrocenylmethyl trimethylammonium and the reduction of ruthenium (III) hexaamine, we have obtained conclusive evidence for the high intrinsic EC activity of the sidewalls of the large majority of SWNTs in networks. Moreover, we show that the ends of SWNTs and the points where two SWNTs cross do not show appreciably different HET kinetics relative to the sidewall. Using finite element method modeling, we deduce standard rate constants for the two redox couples and demonstrate that HET based solely on characteristic defects in the SWNT side wall is highly unlikely. This is further confirmed by the analysis of individual line profiles taken as the SECCM probe scans over an SWNT. More generally, the studies herein demonstrate SECCM to be a powerful and versatile method for activity mapping of complex electrode materials under conditions of high mass transport, where kinetic assignments can be made with confidence. PMID:22635266
Electron-beam induced photoresist shrinkage influence on 2D profiles
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Cordes, Aaron; Allgair, John; Aguilar, Daniel Bellido; Tileli, Vasiliki; Thiel, Bradley; Avitan, Yohanan; Peltinov, Ram; Bar-Zvi, Mayaan; Adan, Ofer; Chirko, Konstantin
2010-03-01
For many years, lithographic resolution has been the main obstacle in keeping the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. Also, such smaller feature sizes will require thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in ISMI's CD-SEM Unified Specification. A model for resist shrinkage, while derived elsewhere, was presented, that can be used to curve-fit to the shrinkage data resulting from multiple repeated measurements of resist features. Parameters in the curve-fit allow for metrics quantifying total shrinkage, shrinkage rate, and initial critical dimension (CD) before e-beam exposure. With these parameters and exhaustive measurements, a fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized features. This work was extended in yet another paper in which we presented a 1-D model for resist shrinkage that can be used to curve-fit to shrinkage curves. Calibration of parameters to describe the photoresist material and the electron beam were all that were required to fit the model to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. In this paper, we extend this work yet again to a 2-D model of a trapezoidal photoresist profile. This model thus
Study of Electron Transfer Processes between Simple Plasma Ions and Electron Attaching Gases
NASA Astrophysics Data System (ADS)
Williams, Ted; Adams, Nigel; Babcock, Lucia
1998-11-01
CCl4 and SF6 are gases that rapidly attach electrons. They are used in etchant plasmas and in high power switches to prevent breakdown. This attachment results in a simple negative ion chemistry that can be well characterized. A concurrent series of reactions involving positive ions also occurs, with ionization eventually being removed by ion-ion mutual neutralization. However, unlike the negative ion chemistry, the positive ion chemistry is more complex and has not been well characterized. Common plasma ions are those of the rare and diatomic gases, along with impurity ions such as H_2O^+ and H_3O^+. Reactions of these ions with CCl4 and SF6 generally occur rapidly by dissociative electron transfer. Some exceptions have been observed when the reactant ion contains an H-atom(s), such as the production of HCl when H_3^+ reacts with CCl_4. Since these reactions involve a fixed amount of energy, they bear similarity to photoelectron and photoelectron-photoion coincidence studies of these electron attaching gases in which only Franck-Condon transitions can occur. Comparision of product ions observed and rate coefficients gives better insights into the mechanism of the electron transfer process. Support by NSF AST-9415485 is gratefully acknowledged.
NASA Astrophysics Data System (ADS)
Fujihashi, Yuta; Fleming, Graham R.; Ishizaki, Akihito
2015-06-01
Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.
Fujihashi, Yuta; Ishizaki, Akihito; Fleming, Graham R.
2015-06-07
Recently, nuclear vibrational contribution signatures in two-dimensional (2D) electronic spectroscopy have attracted considerable interest, in particular as regards interpretation of the oscillatory transients observed in light-harvesting complexes. These transients have dephasing times that persist for much longer than theoretically predicted electronic coherence lifetime. As a plausible explanation for this long-lived spectral beating in 2D electronic spectra, quantum-mechanically mixed electronic and vibrational states (vibronic excitons) were proposed by Christensson et al. [J. Phys. Chem. B 116, 7449 (2012)] and have since been explored. In this work, we address a dimer which produces little beating of electronic origin in the absence of vibronic contributions, and examine the impact of protein-induced fluctuations upon electronic-vibrational quantum mixtures by calculating the electronic energy transfer dynamics and 2D electronic spectra in a numerically accurate manner. It is found that, at cryogenic temperatures, the electronic-vibrational quantum mixtures are rather robust, even under the influence of the fluctuations and despite the small Huang-Rhys factors of the Franck-Condon active vibrational modes. This results in long-lasting beating behavior of vibrational origin in the 2D electronic spectra. At physiological temperatures, however, the fluctuations eradicate the mixing, and hence, the beating in the 2D spectra disappears. Further, it is demonstrated that such electronic-vibrational quantum mixtures do not necessarily play a significant role in electronic energy transfer dynamics, despite contributing to the enhancement of long-lived quantum beating in 2D electronic spectra, contrary to speculations in recent publications.
Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices.
Zhou, Si; Zhao, Jijun
2016-04-21
Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp(2) honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ∼1000 cm(2) V(-1) s(-1) even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices. PMID:27072060
Electronic structure of disordered CuPd alloys by positron-annihilation 2D-ACAR
Smedskjaer, L.C.; Benedek, R.; Siegel, R.W.; Legnini, D.G.; Stahulak, M.D.; Bansil, A.
1988-01-01
We report 2D-ACAR experiments and KKR CPA calculations on alpha-phase single-crystal Cu/sub 1-x/Pd/sub x/ in the range x less than or equal to 0.25. The flattening of the Fermi surface near (110) with increasing x predicted by theory is confirmed by our experimental results. 16 refs., 2 figs.
A Bioactive Carbon Nanotube-Based Ink for Printing 2D and 3D Flexible Electronics.
Shin, Su Ryon; Farzad, Raziyeh; Tamayol, Ali; Manoharan, Vijayan; Mostafalu, Pooria; Zhang, Yu Shrike; Akbari, Mohsen; Jung, Sung Mi; Kim, Duckjin; Comotto, Mattia; Annabi, Nasim; Al-Hazmi, Faten Ebrahim; Dokmeci, Mehmet R; Khademhosseini, Ali
2016-05-01
The development of electrically conductive carbon nanotube-based inks is reported. Using these inks, 2D and 3D structures are printed on various flexible substrates such as paper, hydrogels, and elastomers. The printed patterns have mechanical and electrical properties that make them beneficial for various biological applications. PMID:26915715
'Metal'-like transport in high-resistance, high aspect ratio two-dimensional electron gases.
Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay
2016-01-13
We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity [Formula: see text]. In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a 'metal'-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT. PMID:26647878
Ma, Xiaonan; Dostál, Jakub; Brixner, Tobias
2016-09-01
We demonstrate noncollinear coherent two-dimensional (2D) electronic spectroscopy for which broadband pulses are generated in an argon-filled hollow-core fiber pumped by a 1-kHz Ti:Sapphire laser. Compression is achieved to 7 fs duration (TG-FROG) using dispersive mirrors. The hollow fiber provides a clean spatial profile and smooth spectral shape in the 500-700 nm region. The diffractive-optic-based design of the 2D spectrometer avoids directional filtering distortions and temporal broadening from time smearing. For demonstration we record data of cresyl-violet perchlorate in ethanol and use phasing to obtain broadband absorptive 2D spectra. The resulting quantum beating as a function of population time is consistent with literature data. PMID:27607681
Nitride multilayers as a platform for parallel two-dimensional electron-hole gases: MgO/ScN(111)
NASA Astrophysics Data System (ADS)
Botana, Antia S.; Pardo, Victor; Pickett, Warren E.
2016-02-01
At interfaces between insulating oxides LaAlO3 and SrTiO3, a two dimensional electron gas (2DEG) has been observed and well studied, while the predicted hole gas (2DHG) has not been realized due to the strong tendency of holes in oxygen 2 p orbitals to localize. Here we propose, via ab initio calculations, an unexplored class of materials for the realization of parallel two dimensional (2D), two carrier (electron+hole) gases: nitride-oxide heterostructures, with (111)-oriented ScN and MgO as the specific example. Beyond a critical thickness of five ScN layers, this interface hosts spatially separated conducting Sc -3 d electrons and N -2 p holes, each confined to ˜ two atomic layers—the transition metal nitride provides both gases. A guiding concept is that the N3 - anion should promote robust two carrier 2D hole conduction compared to that of O2 -; metal mononitrides are mostly metallic and even superconducting while most metal monoxides are insulating. A second positive factor is that the density of transition metal ions, hence of a resulting 2DG, is about three times larger for a rocksalt (111) interface than for a perovskite (001) interface. Our results, including calculation of Hall coefficient and thermopower for each conducting layer separately, provide guidance for new exploration, both experimental and theoretical, on nitride-based conducting gases that should promote study of long sought exotic states viz. new excitonic phases and distinct, nanoscale parallel superconducting nanolayers.
Effect of the Nuclear Hyperfine Field on the 2D Electron Conductivity in the Quantum Hall Regime
VITKALOV,S.A.; BOWERS,C.R.; SIMMONS,JERRY A.; RENO,JOHN L.
2000-07-13
The effect of the nuclear hyperfine interaction on the dc conductivity of 2D electrons under quantum Hall effect conditions at filling factor v= 1 is observed for the first time. The local hyperfine field enhanced by dynamic nuclear polarization is monitored via the Overhauser shift of the 2D conduction electron spin resonance in AlGaAs/GaAs multiquantum-well samples. The experimentally observed change in the dc conductivity resulting from dynamic nuclear polarization is in agreement with a thermal activation model incorporating the Zeeman energy change due to the hyperfine interaction. The relaxation decay time of the dc conductivity is, within experimental error, the same as the relaxation time of the nuclear spin polarization determined from the Overhauser shift. These findings unequivocally establish the nuclear spin origins of the observed conductivity change.
Temperature-dependent quantum electron transport in 2D point contacts.
Krishtop, T V; Nagaev, K E
2013-02-01
We consider the transmission of electrons through a two-dimensional ballistic point contact in the low-conductance regime near the pinch-off region. The scattering of electrons by Friedel oscillations of charge density results in a contribution to the conductance proportional to the temperature. The sign of this linear term depends on the range of the electron-electron interaction and appears to be negative for the relevant experimental parameters. PMID:23288558
Exact ground state for the four-electron problem in a 2D finite honeycomb lattice
NASA Astrophysics Data System (ADS)
Trencsényi, Réka; Glukhov, Konstantin; Gulácsi, Zsolt
2014-07-01
Working in a subspace with dimensionality much smaller than the dimension of the full Hilbert space, we deduce exact four-particle ground states in 2D samples containing hexagonal repeat units and described by Hubbard type of models. The procedure identifies first a small subspace ? in which the ground state ? is placed, than deduces ? by exact diagonalization in ?. The small subspace is obtained by the repeated application of the Hamiltonian ? on a carefully chosen starting wave vector describing the most interacting particle configuration, and the wave vectors resulting from the application of ?, till the obtained system of equations closes in itself. The procedure which can be applied in principle at fixed but arbitrary system size and number of particles is interesting on its own since it provides exact information for the numerical approximation techniques which use a similar strategy, but apply non-complete basis for ?. The diagonalization inside ? provides an incomplete image of the low lying part of the excitation spectrum, but provides the exact ?. Once the exact ground state is obtained, its properties can be easily analysed. The ? is found always as a singlet state whose energy, interestingly, saturates in the ? limit. The unapproximated results show that the emergence probabilities of different particle configurations in the ground state presents 'Zittern' (trembling) characteristics which are absent in 2D square Hubbard systems. Consequently, the manifestation of the local Coulomb repulsion in 2D square and honeycomb types of systems presents differences, which can be a real source in the differences in the many-body behaviour.
Layer-by-Layer Assembled 2D Montmorillonite Dielectrics for Solution-Processed Electronics.
Zhu, Jian; Liu, Xiaolong; Geier, Michael L; McMorrow, Julian J; Jariwala, Deep; Beck, Megan E; Huang, Wei; Marks, Tobin J; Hersam, Mark C
2016-01-01
Layer-by-layer assembled 2D montmorillonite nanosheets are shown to be high-performance, solution-processed dielectrics. These scalable and spatially uniform sub-10 nm thick dielectrics yield high areal capacitances of ≈600 nF cm(-2) and low leakage currents down to 6 × 10(-9) A cm(-2) that enable low voltage operation of p-type semiconducting single-walled carbon nanotube and n-type indium gallium zinc oxide field-effect transistors. PMID:26514248
Two-dimensional B-C-O alloys: a promising class of 2D materials for electronic devices
NASA Astrophysics Data System (ADS)
Zhou, Si; Zhao, Jijun
2016-04-01
Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor forming alternate patterns into the chain- or ring-like structures embedded in the pristine graphene regions. These B-C-O hybrid sheets can be either metals or semiconductors depending on the B : O ratio. The semiconducting (B2O)nCm and (B6O3)nCm phases exist under the B- and O-rich conditions, and possess a tunable band gap of 1.0-3.8 eV and high carrier mobility, retaining ~1000 cm2 V-1 s-1 even for half coverage of B and O atoms. These B-C-O alloys form a new class of 2D materials that are promising candidates for high-speed electronic devices.Graphene, a superior 2D material with high carrier mobility, has limited application in electronic devices due to zero band gap. In this regard, boron and nitrogen atoms have been integrated into the graphene lattice to fabricate 2D semiconducting heterostructures. It is an intriguing question whether oxygen can, as a replacement of nitrogen, enter the sp2 honeycomb lattice and form stable B-C-O monolayer structures. Here we explore the atomic structures, energetic and thermodynamic stability, and electronic properties of various 2D B-C-O alloys using first-principles calculations. Our results show that oxygen can be stably incorporated into the graphene lattice by bonding with boron. The B and O species favor
Beyond Graphene: Electronic and Mechanical Properties of Defective 2-D Materials
NASA Astrophysics Data System (ADS)
Terrones, Humberto
One of the challenges in the production of 2-D materials is the synthesis of defect free systems which can achieve the desired properties for novel applications. However, the reality so far indicates that we need to deal with defective systems and understand their main features in order to perform defect engineering in such a way that we can engineer a new material. In this talk I discuss first, the introduction of defects in a hierarchic way starting from 2-D graphene to form giant Schwarzites or graphene foams, which also can exhibit further defects, thus we can have several levels of defectiveness. In this context, it will be shown that giant Schwarzites, depending on their symmetry, can exhibit Dirac-Fermion behavior and further, possess protected topological states as shown by other authors. Regarding the mechanical properties of these systems, it is possible to tune the Poisson Ratio by the addition of defects, thus shedding light to the explanation of the almost zero Poisson ratios in experimentally obtained graphene foams. Second, the idea of Haeckelites, a planar sp2 graphene-like structure with heptagons and pentagons, can be extended to transition metal dichalcogenides (TMDs) with square and octagonal-like defects, finding semi-metallic behaviors with Dirac-Fermions, and even topological insulating properties. National Science Foundation (EFRI-1433311).
Binary and ternary recombination of H2D(+) and HD2(+) ions with electrons at 80 K.
Dohnal, Petr; Kálosi, Ábel; Plašil, Radek; Roučka, Štěpán; Kovalenko, Artem; Rednyk, Serhiy; Johnsen, Rainer; Glosík, Juraj
2016-08-24
The recombination of deuterated trihydrogen cations with electrons has been studied in afterglow plasmas containing mixtures of helium, argon, hydrogen and deuterium. By monitoring the fractional abundances of H3(+), H2D(+), HD2(+) and D3(+) as a function of the [D2]/[H2] ratio using infrared absorption observed in a cavity ring down absorption spectrometer (CRDS), it was possible to deduce effective recombination rate coefficients for H2D(+) and HD2(+) ions at a temperature of 80 K. From pressure dependences of the measured effective recombination rate coefficients the binary and the ternary recombination rate coefficients for both ions have been determined. The inferred binary and ternary recombination rate coefficients are: αbinH2D(80 K) = (7.1 ± 4.2) × 10(-8) cm(3) s(-1), αbinHD2(80 K) = (8.7 ± 2.5) × 10(-8) cm(3) s(-1), KH2D(80 K) = (1.1 ± 0.6) × 10(-25) cm(6) s(-1) and KHD2(80 K) = (1.5 ± 0.4) × 10(-25) cm(6) s(-1). PMID:27506912
Electron Momentum Distribution Mapping of Trans-Stilbene Projected to [101] by Positron 2D-ACAR
NASA Astrophysics Data System (ADS)
Selvakumar, S.; Sivaji, K.; Smith, S. V.
Electron momentum distribution (EMD) on trans-stilbene single crystal projected along [101] direction has been studied by using positron two dimensional -angular correlation of annihilation radiation (2D-ACAR). The projected EMD is explained with respect to the molecular arrangement in the plane. The EMD features reflected the delocalized electronic states in [101] direction. The results of EMD mapping did not show a characteristic ellipsoidal distribution at lower momentum region (LMR) as observed in trans-stilbene projected to [010] direction at room temperature. The LMR region exhibits a hexagonal contour projected to [101] direction.
NASA Astrophysics Data System (ADS)
Le Lay, Guy; Salomon, Eric; Angot, Thierry; Eugenia Dávila, Maria
2015-05-01
The realization of the first Field Effect Transistors operating at room temperature, based on a single layer silicene channel, open up highly promising perspectives, e.g., typically, for applications in digital electronics. Here, we describe recent results on the growth, characterization and electronic properties of novel synthetic two-dimensional materials beyond graphene, namely silicene and germanene, its silicon and germanium counterparts.
Kolbun, N; Adolfsson, E; Gustafsson, H; Lund, E
2014-06-01
Electron paramagnetic resonance imaging (EPRI) was performed to visualise 2D dose distributions of homogenously irradiated potassium dithionate tablets and to demonstrate determination of 1D dose profiles along the height of the tablets. Mathematical correction was applied for each relative dose profile in order to take into account the inhomogeneous response of the resonator using X-band EPRI. The dose profiles are presented with the spatial resolution of 0.6 mm from the acquired 2D images; this value is limited by pixel size, and 1D dose profiles from 1D imaging with spatial resolution of 0.3 mm limited by the intrinsic line-width of potassium dithionate. In this paper, dose profiles from 2D reconstructed electron paramagnetic resonance (EPR) images using the Xepr software package by Bruker are focussed. The conclusion is that using potassium dithionate, the resolution 0.3 mm is sufficient for mapping steep dose gradients if the dosemeters are covering only ±2 mm around the centre of the resonator. PMID:24748487
Reorientation of the Stripe Phase of 2D Electrons by a Minute Density Modulation
NASA Astrophysics Data System (ADS)
Mueed, M. A.; Hossain, Md. Shafayat; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.
2016-08-01
Interacting two-dimensional electrons confined in a GaAs quantum well exhibit isotropic transport when the Fermi level resides in the first excited (N =1 ) Landau level. Adding an in-plane magnetic field (B||) typically leads to an anisotropic, stripelike (nematic) phase of electrons with the stripes oriented perpendicular to the B|| direction. Our experimental data reveal how a periodic density modulation, induced by a surface strain grating from strips of negative electron-beam resist, competes against the B||-induced orientational order of the stripe phase. Even a minute (<0.25 %) density modulation is sufficient to reorient the stripes along the direction of the surface grating.
Interlayer tunneling studies of highly imbalanced bilayer 2D electron systems at νT= 1
NASA Astrophysics Data System (ADS)
Champagne, A. R.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2007-03-01
When the separation between two parallel 2-dimensional electron systems (2DES) becomes comparable to the average distance between electrons within a single layer, the system can support a quantum Hall state with total filling factor νT=1. This state can be described as a Bose condensate of excitons. Previous studies [1] have shown that close to the νT=1 phase boundary, a small imbalance in the number of electrons in each layer can strengthen the condensate. We report on interlayer tunneling measurements of the effect of large imbalances as a function of the interlayer spacing. We explore the possibility of competing order between the excitonic state and the (1/3, 2/3) fractional states in the individual layers. This work was supported by the NSF and the DOE. [1] I. B. Spielman, et al., Phys. Rev. B 70, 081303 (2004).
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015
High temperature electronic excitation and ionization rates in gases
NASA Technical Reports Server (NTRS)
Hansen, Frederick
1991-01-01
The relaxation times for electronic excitation due to electron bombardment of atoms was found to be quite short, so that electron kinetic temperature (T sub e) and the electron excitation temperature (T asterisk) should equilibrate quickly whenever electrons are present. However, once equilibrium has been achieved, further energy to the excited electronic states and to the kinetic energy of free electrons must be fed in by collisions with heavy particles that cause vibrational and electronic state transitions. The rate coefficients for excitation of electronic states produced by heavy particle collision have not been well known. However, a relatively simple semi-classical theory has been developed here which is analytic up to the final integration over a Boltzmann distribution of collision energies; this integral can then be evaluated numerically by quadrature. Once the rate coefficients have been determined, the relaxation of electronic excitation energy can be evaluated and compared with the relaxation rates of vibrational excitation. Then the relative importance of these two factors, electronic excitation and vibrational excitation by heavy particle collision, on the transfer of energy to free electron motion, can be assessed.
Uniform electron gases. III. Low-density gases on three-dimensional spheres
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W. Loos, Pierre-François
2015-08-28
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
Uniform electron gases. III. Low-density gases on three-dimensional spheres
NASA Astrophysics Data System (ADS)
Agboola, Davids; Knol, Anneke L.; Gill, Peter M. W.; Loos, Pierre-François
2015-08-01
By combining variational Monte Carlo (VMC) and complete-basis-set limit Hartree-Fock (HF) calculations, we have obtained near-exact correlation energies for low-density same-spin electrons on a three-dimensional sphere (3-sphere), i.e., the surface of a four-dimensional ball. In the VMC calculations, we compare the efficacies of two types of one-electron basis functions for these strongly correlated systems and analyze the energy convergence with respect to the quality of the Jastrow factor. The HF calculations employ spherical Gaussian functions (SGFs) which are the curved-space analogs of Cartesian Gaussian functions. At low densities, the electrons become relatively localized into Wigner crystals, and the natural SGF centers are found by solving the Thomson problem (i.e., the minimum-energy arrangement of n point charges) on the 3-sphere for various values of n. We have found 11 special values of n whose Thomson sites are equivalent. Three of these are the vertices of four-dimensional Platonic solids — the hyper-tetrahedron (n = 5), the hyper-octahedron (n = 8), and the 24-cell (n = 24) — and a fourth is a highly symmetric structure (n = 13) which has not previously been reported. By calculating the harmonic frequencies of the electrons around their equilibrium positions, we also find the first-order vibrational corrections to the Thomson energy.
Lin, Lin; Yang, Chao; Lu, Jiangfeng; Ying, Lexing; E, Weinan
2009-09-25
We present an efficient parallel algorithm and its implementation for computing the diagonal of $H^-1$ where $H$ is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of $H$ through a recently developed pole-expansion technique \\cite{LinLuYingE2009}. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems \\citeHohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of $(H-z_i I)^-1$ for a small number of poles $z_i$ is much faster, especially when the quantum dot contains many electrons.
NASA Astrophysics Data System (ADS)
Pylak, M.; Kontrym-Sznajd, G.; Dobrzyński, L.
2011-08-01
A successful application of the Maximum Entropy Method (MEM) to the reconstruction of electron-positron momentum density distribution in gadolinium out of the experimental of 2D ACAR data is presented. Formally, the algorithm used was prepared for two-dimensional reconstructions from line integrals. For the first time the results of MEM, applied to such data, are compared in detail with the ones obtained by means of Cormack's method. It is also shown how the experimental uncertainties may influence the results of the latter analysis. Preliminary calculations, using WIEN2k code, of band structure and Fermi surface have been done as well.
Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study
NASA Astrophysics Data System (ADS)
Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir
2010-07-01
Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.
NASA Astrophysics Data System (ADS)
Maiboroda, I. O.; Andreev, A. A.; Perminov, P. A.; Fedorov, Yu. V.; Zanaveskin, M. L.
2014-06-01
Specific features of how nonalloyed ohmic contacts to the 2D conducting channel of high-electron-mobility transistors based on AlGaN/(AlN)/GaN heterostructures are fabricated via deposition of heavily doped n +-GaN through a SiO2 mask by ammonia molecular-beam epitaxy have been studied. The technique developed makes it possible to obtain specific resistances of contacts to the 2D gas as low as 0.11 Ω mm on various types of Ga-face nitride heterostructures, which are several times lower than the resistance of conventional alloyed ohmic contacts.
Effective mass from microwave photoresistance in high-mobility 2D electron systems
NASA Astrophysics Data System (ADS)
Zudov, Michael; Hatke, Anthony; Watson, John; Manfra, Michael; Pfeiffer, Loren; West, Kenneth
2013-03-01
We have performed microwave photoresistance measurements in high mobility GaAs/AlGaAs quantum wells and investigated the value of the effective mass. Surprisingly, the effective mass, obtained from the period of microwave-induced resistance oscillations, is found to be considerably lower than the band mass in GaAs. This finding provides evidence for electron-electron interactions which can be probed by microwave photoresistance in very high Landau levels. In contrast, the measured magneto-plasmon dispersion revealed an effective mass which is close to the band mass, in accord with previous studies. The work at Minnesota and Purdue was supported by the DOE Grant Nos. DE-SC002567 and DE-SC0006671, respectively. The work at Princeton was partially funded by the Gordon and Betty Moore Foundation Foundation and the NSF MRSEC Program..
Parallel FE Electron-Photon Transport Analysis on 2-D Unstructured Mesh
Drumm, C.R.; Lorenz, J.
1999-03-02
A novel solution method has been developed to solve the coupled electron-photon transport problem on an unstructured triangular mesh. Instead of tackling the first-order form of the linear Boltzmann equation, this approach is based on the second-order form in conjunction with the conventional multi-group discrete-ordinates approximation. The highly forward-peaked electron scattering is modeled with a multigroup Legendre expansion derived from the Goudsmit-Saunderson theory. The finite element method is used to treat the spatial dependence. The solution method is unique in that the space-direction dependence is solved simultaneously, eliminating the need for the conventional inner iterations, a method that is well suited for massively parallel computers.
Melting Temperatures of 2D Electron Solids in the Lowest Landau Level from Microwave Spectroscopy
NASA Astrophysics Data System (ADS)
Chen, Y. P.; Ganapathy, S.; Lewis, R. M.; Engel, L. W.; Tsui, D. C.; Wang, Z. H.; Ye, P. D.; Pfeiffer, L. N.; West, K. W.
2005-03-01
We studied the temperature(T) dependence of the microwave conductivity spectra of two dimensional electron systems in the high magnetic field (B) insulating phase (HBIP) for Landau filling factor ν<˜1/5. Such an insulating phase, believed to be a pinned electron solid, supports a characteristic pinning resonance in the conductivity spectrum. Two samples were studied. Sample 1 is a heterojunction with density n˜7x10^10 cm^ -2 and mobility μ˜5x10^6cm^2/Vs and has a single resonance in the HBIP. Sample 2 is a 65nm-wide QW with n˜6x10 ^10cm-2 and μ˜10x10^6cm^2/V and was recently found to have two resonances in the HBIP, interpreted as corresponding to two different solid phases, with one crossing over to the other as ν is reduced [1]. We studied the higher-T behavior of the resonances at many different combinations of n (through backgating) and B, and measured the characteristic temperatures Tc at which the resonances disappear. We foundTc is a non-increasing function of ν for either sample, although the function differs significantly for both samples. We interpret Tc as the melting temperature of the electron solid(s) to a quantum liquid, for which ν captures the importance of inter-electron quantum correlation. [1] Y.P. Chen et al., Phys.Rev.Lett. 93, 206805 (2004)
Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal.
Jiang, B-Y; Ni, G X; Pan, C; Fei, Z; Cheng, B; Lau, C N; Bockrath, M; Basov, D N; Fogler, M M
2016-08-19
We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept. PMID:27588873
Tunable Plasmonic Reflection by Bound 1D Electron States in a 2D Dirac Metal
NASA Astrophysics Data System (ADS)
Jiang, B.-Y.; Ni, G. X.; Pan, C.; Fei, Z.; Cheng, B.; Lau, C. N.; Bockrath, M.; Basov, D. N.; Fogler, M. M.
2016-08-01
We show that the surface plasmons of a two-dimensional Dirac metal such as graphene can be reflected by linelike perturbations hosting one-dimensional electron states. The reflection originates from a strong enhancement of the local optical conductivity caused by optical transitions involving these bound states. We propose that the bound states can be systematically created, controlled, and liquidated by an ultranarrow electrostatic gate. Using infrared nanoimaging, we obtain experimental evidence for the locally enhanced conductivity of graphene induced by a carbon nanotube gate, which supports this theoretical concept.
Xiao, Jin; Long, Mengqiu; Zhang, Xiaojiao; Ouyang, Jun; Xu, Hui; Gao, Yongli
2015-01-01
We have investigated the electronic structure and carrier mobility of four types of phosphorous monolayer sheet (α-P, β-P,γ-P and δ-P) using density functional theory combined with Boltzmann transport method and relaxation time approximation. It is shown that α-P, β-P and γ-P are indirect gap semiconductors, while δ-P is a direct one. All four sheets have ultrahigh carrier mobility and show anisotropy in-plane. The highest mobility value is ~3 × 105 cm2V−1s−1, which is comparable to that of graphene. Because of the huge difference between the hole and electron mobilities, α-P, γ-P and δ-P sheets can be considered as n-type semiconductors, and β-P sheet can be considered as a p-type semiconductor. Our results suggest that phosphorous monolayer sheets can be considered as a new type of two dimensional materials for applications in optoelectronics and nanoelectronic devices. PMID:26035176
Parallel Finite Element Electron-Photon Transport Analysis on 2-D Unstructured Mesh
Drumm, C.R.
1999-01-01
A computer code has been developed to solve the linear Boltzmann transport equation on an unstructured mesh of triangles, from a Pro/E model. An arbitriwy arrangement of distinct material regions is allowed. Energy dependence is handled by solving over an arbitrary number of discrete energy groups. Angular de- pendence is treated by Legendre-polynomial expansion of the particle cross sections and a discrete ordinates treatment of the particle fluence. The resulting linear system is solved in parallel with a preconditioned conjugate-gradients method. The solution method is unique, in that the space-angle dependence is solved si- multaneously, eliminating the need for the usual inner iterations. Electron cross sections are obtained from a Goudsrnit-Saunderson modifed version of the CEPXS code. A one-dimensional version of the code has also been develop@ for testing and development purposes.
Iterative Stable Alignment and Clustering of 2D Transmission Electron Microscope Images
Yang, Zhengfan; Fang, Jia; Chittuluru, Johnathan; Asturias, Francisco J.; Penczek, Pawel A.
2012-01-01
SUMMARY Identification of homogeneous subsets of images in a macromolecular electron microscopy (EM) image data set is a critical step in single-particle analysis. The task is handled by iterative algorithms, whose performance is compromised by the compounded limitations of image alignment and K-means clustering. Here we describe an approach, iterative stable alignment and clustering (ISAC) that, relying on a new clustering method and on the concepts of stability and reproducibility, can extract validated, homogeneous subsets of images. ISAC requires only a small number of simple parameters and, with minimal human intervention, can eliminate bias from two-dimensional image clustering and maximize the quality of group averages that can be used for ab initio three-dimensional structural determination and analysis of macromolecular conformational variability. Repeated testing of the stability and reproducibility of a solution within ISAC eliminates heterogeneous or incorrect classes and introduces critical validation to the process of EM image clustering. PMID:22325773
Monahan, Daniele M.; Whaley-Mayda, Lukas; Fleming, Graham R.; Ishizaki, Akihito
2015-08-14
Coherence oscillations measured in two-dimensional (2D) electronic spectra of pigment-protein complexes may have electronic, vibrational, or mixed-character vibronic origins, which depend on the degree of electronic-vibrational mixing. Oscillations from intrapigment vibrations can obscure the inter-site coherence lifetime of interest in elucidating the mechanisms of energy transfer in photosynthetic light-harvesting. Huang-Rhys factors (S) for low-frequency vibrations in Chlorophyll and Bacteriochlorophyll are quite small (S ≤ 0.05), so it is often assumed that these vibrations influence neither 2D spectra nor inter-site coherence dynamics. In this work, we explore the influence of S within this range on the oscillatory signatures in simulated 2D spectra of a pigment heterodimer. To visualize the inter-site coherence dynamics underlying the 2D spectra, we introduce a formalism which we call the “site-probe response.” By comparing the calculated 2D spectra with the site-probe response, we show that an on-resonance vibration with Huang-Rhys factor as small as S = 0.005 and the most strongly coupled off-resonance vibrations (S = 0.05) give rise to long-lived, purely vibrational coherences at 77 K. We moreover calculate the correlation between optical pump interactions and subsequent entanglement between sites, as measured by the concurrence. At 77 K, greater long-lived inter-site coherence and entanglement appear with increasing S. This dependence all but vanishes at physiological temperature, as environmentally induced fluctuations destroy the vibronic mixing.
NASA Astrophysics Data System (ADS)
Cabo Montes de Oca, A.; March, N. H.; Cabo-Bizet, A.
2014-12-01
Former results for a tight-binding (TB) model of CuO planes in La2CuO4 are reinterpreted here to underline their wider implications. It is noted that physical systems being appropriately described by the TB model can exhibit the main strongly correlated electron system (SCES) properties, when they are solved in the HF approximation, by also allowing crystal symmetry breaking effects and noncollinear spin orientations of the HF orbitals. It is argued how a simple 2D square lattice system of Coulomb interacting electrons can exhibit insulator gaps and pseudogap states, and quantum phase transitions as illustrated by the mentioned former works. A discussion is also presented here indicating the possibility of attaining room temperature superconductivity, by means of a surface coating with water molecules of cleaved planes of graphite, being orthogonal to its c-axis. The possibility that 2D arrays of quantum dots can give rise to the same effect is also proposed to consideration. The analysis also furnishes theoretical insight to solve the Mott-Slater debate, at least for the La2CuO4 and TMO band structures. The idea is to apply a properly noncollinear GW scheme to the electronic structure calculation of these materials. The fact is that the GW approach can be viewed as a HF procedure in which the screening polarization is also determined. This directly indicates the possibility of predicting the assumed dielectric constant in the previous works. Thus, the results seem to identify that the main correlation properties in these materials are determined by screening. Finally, the conclusions also seem to be of help for the description of the experimental observations of metal-insulator transitions and Mott properties in atoms trapped in planar photonic lattices.
Electron affinities for rare gases and some actinides from local-spin-density-functional theory
Guo, Y.; Wrinn, M.C.; Whitehead, M.A. )
1989-12-01
The negative ions of the rare gases (He, Ne, Ar, Kr, Xe, and Rn) and some actinides (Pu, Am, Bk, Cf, and Es) have been calculated self-consistently by the generalized exchange local-spin-density-functional theory with self-interaction correction and correlation. The electron affinities were obtained as the differences between the statistical total energies of the negative ions and neutral atoms; the electron affinities were positive around several millirydbergs. Consequently, the negative ions are predicted stable for the rare gases and actinides.
Electronic structural Moiré pattern effects on MoS2/MoSe2 2D heterostructures.
Kang, Jun; Li, Jingbo; Li, Shu-Shen; Xia, Jian-Bai; Wang, Lin-Wang
2013-01-01
The structural and electronic properties of MoS2/MoSe2 bilayers are calculated using first-principles methods. It is found that the interlayer van der Waals interaction is not strong enough to form a lattice-matched coherent heterostructure. Instead, a nanometer-scale Moiré pattern structure will be formed. By analyzing the electronic structures of different stacking configurations, we predict that the valence-band maximum (VBM) state will come from the Γ point due to interlayer electronic coupling. This is confirmed by a direct calculation of a Moiré pattern supercell containing 6630 atoms using the linear scaling three-dimensional fragment method. The VBM state is found to be strongly localized, while the conduction band minimum (CBM) state is only weakly localized, and it comes from the MoS2 layer at the K point. We predict such wave function localization can be a general feature for many two-dimensional (2D) van der Waals heterostructures and can have major impacts on the carrier mobility and other electronic and optical properties. PMID:24079953
NASA Astrophysics Data System (ADS)
Mani, Ramesh; Kriisa, A.
2015-03-01
Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking- property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance with a concomitant sign reversal in the Hall voltage. Transport measurements are supported by the DOE, Office of Basic Energy Sciences, Material Sciences and Engineering Division under DE-SC0001762. Additional support by the ARO under W911NF-07-01-015.
Plenio, M. B.; Almeida, J.; Huelga, S. F.
2013-12-21
We demonstrate that the coupling of excitonic and vibrational motion in biological complexes can provide mechanisms to explain the long-lived oscillations that have been obtained in nonlinear spectroscopic signals of different photosynthetic pigment protein complexes and we discuss the contributions of excitonic versus purely vibrational components to these oscillatory features. Considering a dimer model coupled to a structured spectral density we exemplify the fundamental aspects of the electron-phonon dynamics, and by analyzing separately the different contributions to the nonlinear signal, we show that for realistic parameter regimes purely electronic coherence is of the same order as purely vibrational coherence in the electronic ground state. Moreover, we demonstrate how the latter relies upon the excitonic interaction to manifest. These results link recently proposed microscopic, non-equilibrium mechanisms to support long lived coherence at ambient temperatures with actual experimental observations of oscillatory behaviour using 2D photon echo techniques to corroborate the fundamental importance of the interplay of electronic and vibrational degrees of freedom in the dynamics of light harvesting aggregates.
NASA Astrophysics Data System (ADS)
Ortega, I.; Coburn, S.; Kassianov, E.; Barnard, J.; Berg, L. K.; Hostetler, C. A.; Hair, J. W.; Ferrare, R. A.; Volkamer, R. M.
2012-12-01
The two Column Aerosol Project (TCAP) investigates uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) provide an opportunity for 1) atmospheric radiation closure studies, and 2) test retrievals of aerosol optical properties in the presence and absence of clouds. This presentation discusses innovative means to access column information about aerosol optical properties in the lower atmosphere from ground based measurements of solar stray light spectra in the hyperspectral domain, i.e., measurements of the Raman Scattering Probability (RSP, the probability that an observed photon has undergone a rotational Raman scattering event), and oxygen dimer slant column densities (O4 SCD) by means of the University of Colorado 2D scanning ground Multi AXis Differential Optical Absorption Spectroscopy (2D-GMAX-DOAS) instrument that was located at the ARM/MAOS site at Cape Cod, MA. We compare retrievals of aerosol optical properties with those retrieved from the MFRSR and the Cimel Sunphotometer, for case studies in the presence/absence of clouds, and assess the need for atmospheric correction of NO2. 2D-GMAX-DOAS also facilitates a link between the ground-based ARM/MAOS dataset and DoE's G1 aircraft, NASA's King Air aircraft, and NASA's OMI satellite (i.e., NO2 vertical column). Early results that explore these linkages are presented for a case study that combines ground based MFRSR, in-situ observations aboard the G1 aircraft, as well as High Spectral Resolution LIDAR aboard the King Air aircraft.
Breakdown and discharges in dense gases governed by runaway electrons
Babich, L.P.
1996-03-01
The phenomenon of runaway electrons (REs) at high values of the ratio field intensity/gas number density {ital E}/{ital N} and {ital N} up to the Loshmidt number {ital N}{sub {ital L}}{approx_equal}2.7{times}10{sup 19} cm{sup {minus}3} is described. REs are shown to govern the breakdown and discharges at such condition. {copyright} {ital 1996 American Institute of Physics.}
Radiofrequency electron swarm transport in reactive gases and plasmas
NASA Astrophysics Data System (ADS)
Maeda, K.; Makabe, T.
1994-01-01
This paper gives a historical review of the development of radiofrequency (RF) electron swarm from a theoretical point of view. Also the recent progress of the direct numerical procedure (DNP) for solving the Boltzmann equation will be discussed with some typical examples of the temporally modulated velocity distribution in Ar and HCl in an RF field. The significance of DNP will be demonstrated for an RF swarm in the frequency range from MHz to GHz at strong fields.
Electronic band structure and charge density wave transition in quasi-2D KMo6O17 purple bronze
NASA Astrophysics Data System (ADS)
Valbuena, M. A.; Avila, J.; Vyalikh, D. V.; Guyot, H.; Laubschat, C.; Molodtsov, S. L.; Asensio, M. C.
2008-03-01
High resolution angle-resolved photoemission of quasi-2D KMo6O17 purple bronze has been performed in the range from room temperature to 130 K, slightly above the charge density wave (CDW) transition (Tc = 110 K), and down to 35 K (well below Tc). In this paper we report a detailed study of how electronic band structure is affected by this transition driven by the hidden nesting scenario. The expected spectroscopic fingerprints of the CDW phase transition have been found and discussed according to the hidden one dimension and the development of a quasi-commensurate CDW. The excellent agreement between theory and our experimental results makes of potassium purple bronze a reference system for studying this type of instabilities.
Reboul, Cyril F; Bonnet, Frederic; Elmlund, Dominika; Elmlund, Hans
2016-06-01
A critical step in the analysis of novel cryogenic electron microscopy (cryo-EM) single-particle datasets is the identification of homogeneous subsets of images. Methods for solving this problem are important for data quality assessment, ab initio 3D reconstruction, and analysis of population diversity due to the heterogeneous nature of macromolecules. Here we formulate a stochastic algorithm for identification of homogeneous subsets of images. The purpose of the method is to generate improved 2D class averages that can be used to produce a reliable 3D starting model in a rapid and unbiased fashion. We show that our method overcomes inherent limitations of widely used clustering approaches and proceed to test the approach on six publicly available experimental cryo-EM datasets. We conclude that, in each instance, ab initio 3D reconstructions of quality suitable for initialization of high-resolution refinement are produced from the cluster centers. PMID:27184214
NASA Astrophysics Data System (ADS)
Ortega, I.; Coburn, S.; Kassianov, E.; Barnard, J.; Berg, L. K.; Hostetler, C. A.; Hair, J. W.; Ferrare, R. A.; Hodges, G.; Lantz, K. O.; Volkamer, R.
2013-12-01
The two Column Aerosol Project (TCAP) investigates uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) provide an opportunity for 1) atmospheric radiation closure studies, and 2) test retrievals of aerosol optical and microphysical properties in the presence and absence of clouds. The University of Colorado 2D-MAX-DOAS instrument was deployed during the first intensive period of the TCAP field project. This presentation presents an inversion algorithm to obtain both aerosol extinction profiles and column from off axis measurements, and infer - for the first time- aerosol microphysical properties from the solar angular distribution of sky radiances. An innovative aspect of the method is that the optical and microphysical properties of aerosols are inferred without the need for an absolute radiance calibration. We compare retrievals of aerosol optical properties with those retrieved from the MFRSR and the Cimel Sunphotometer, for case studies in the presence/absence of clouds, and assess the need for atmospheric correction of NO2. 2D-GMAX-DOAS also facilitates a link between the ground-based ARM/MAOS dataset and DoE's G1 aircraft, NASA's King Air aircraft, and NASA's OMI satellite (i.e., NO2 vertical column). Early results that explore these linkages are presented for a case study that combines ground based MFRSR, in-situ observations aboard the G1 aircraft, as well as High Spectral Resolution LIDAR aboard the King Air aircraft.
Electron angular distributions of noble gases in sequential two-photon double ionization
NASA Astrophysics Data System (ADS)
Braune, M.; Hartmann, G.; Ilchen, M.; Knie, A.; Lischke, T.; Reinköster, A.; Meissner, A.; Deinert, S.; Glaser, L.; Al-Dossary, O.; Ehresmann, A.; Kheifets, A. S.; Viefhaus, J.
2016-02-01
We present an angle resolved study of photoelectrons emitted from ions of the noble gases neon, argon and krypton by means of time-of-flight spectroscopy. The ionic targets are generated in a sequential two-photon process induced by the free-electron laser FLASH. Values of the anisotropy parameters ? and ? are derived from electron angular distribution measurements in the photon energy range from 38 to 91 eV and compared with recent theoretical calculations.
Effective Mass and g-factor of 2D Electrons in a HgTe Quantum Well from THz Photoresponse
NASA Astrophysics Data System (ADS)
Pakmehr, Mehdi; Stier, A. V.; Zhang, H. D.; Bruene, C.; Buhmann, H.; Molenkamp, L.; McCombe, B. D.
2013-03-01
There is current interest in HgTe because of its interesting ``inverted'' band structure and large spin-orbit interaction, and because it is a topological insulator under quantum confinement, Well-widths close to that at which the band structure goes from the ``inverted'' to the normal structure are of particular interest. We have used photoresponse excited by several lines from an optically pumped THz laser and magnetotransport measurements to determine the cyclotron effective mass and g-factor of 2D electrons in the gamma_6 conduction band of a high quality HgTe quantum well (ns = 1.55 x 1012 cm-2; 6 nm well) at low temperatures. One of the two samples studied was gated, which allowed density to be varied by over 30%. We find m* =0.039me and g = -18 at the highest density from fits to the PR with the field normal to the plane of the QW, and separately from CR transmission measurements and tilted field experiments. We will also discuss electron spin resonance measurements near filling factors 7 and 9. Supported in part by NSF DMR 1008138
NASA Astrophysics Data System (ADS)
Guo, Shi; Zhu, Minyi; Hu, Shuming; Mitas, Lubos
2013-03-01
Very recently, a quantum Monte Carlo (QMC) method was proposed for Rashba spin-orbit operators which expands the applicability of QMC to systems with variable spins. It is based on incorporating the spin-orbit into the Green's function and thus samples (ie, rotates) the spinors in the antisymmetric part of the trial function [1]. Here we propose a new alternative for both variational and diffusion Monte Carlo algorithms for calculations of systems with variable spins. Specifically, we introduce a new spin representation which allows us to sample the spin configurations efficiently and without introducing additional fluctuations. We develop the corresponding Green's function which treats the electron spin as a dynamical variable and we use the fixed-phase approximation to eliminate the negative probabilities. The trial wave function is a Slater determinant of spinors and spin-indepedent Jastrow correlations. The method also has the zero variance property. We benchmark the method on the 2D electron gas with the Rashba interaction and we find very good overall agreement with previously obtained results. Research supported by NSF and ARO.
Enriquez, Miriam M.; Zhang, Cheng; Tan, Howe-Siang; Akhtar, Parveen; Garab, Győző; Lambrev, Petar H.
2015-06-07
The pathways and dynamics of excitation energy transfer between the chlorophyll (Chl) domains in solubilized trimeric and aggregated light-harvesting complex II (LHCII) are examined using two-dimensional electronic spectroscopy (2DES). The LHCII trimers and aggregates exhibit the unquenched and quenched excitonic states of Chl a, respectively. 2DES allows direct correlation of excitation and emission energies of coupled states over population time delays, hence enabling mapping of the energy flow between Chls. By the excitation of the entire Chl b Q{sub y} band, energy transfer from Chl b to Chl a states is monitored in the LHCII trimers and aggregates. Global analysis of the two-dimensional (2D) spectra reveals that energy transfer from Chl b to Chl a occurs on fast and slow time scales of 240–270 fs and 2.8 ps for both forms of LHCII. 2D decay-associated spectra resulting from the global analysis identify the correlation between Chl states involved in the energy transfer and decay at a given lifetime. The contribution of singlet–singlet annihilation on the kinetics of Chl energy transfer and decay is also modelled and discussed. The results show a marked change in the energy transfer kinetics in the time range of a few picoseconds. Owing to slow energy equilibration processes, long-lived intermediate Chl a states are present in solubilized trimers, while in aggregates, the population decay of these excited states is significantly accelerated, suggesting that, overall, the energy transfer within the LHCII complexes is faster in the aggregated state.
NASA Astrophysics Data System (ADS)
General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.
2014-03-01
Many relevant processes in tropospheric chemistry take place on rather small scales (e.g. tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established DOAS method. The Heidelberg Airborne Imaging Differential Optical Absorption Spectrometer Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we report a technical description of the instrument including its custom build spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BROMEX campaign, which was performed 2012 in Barrow (Alaska, USA).
NASA Astrophysics Data System (ADS)
General, S.; Pöhler, D.; Sihler, H.; Bobrowski, N.; Frieß, U.; Zielcke, J.; Horbanski, M.; Shepson, P. B.; Stirm, B. H.; Simpson, W. R.; Weber, K.; Fischer, C.; Platt, U.
2014-10-01
Many relevant processes in tropospheric chemistry take place on rather small scales (e.g., tens to hundreds of meters) but often influence areas of several square kilometer. Thus, measurements of the involved trace gases with high spatial resolution are of great scientific interest. In order to identify individual sources and sinks and ultimately to improve chemical transport models, we developed a new airborne instrument, which is based on the well established Differential Optical Absorption Spectroscopy (DOAS) method. The Heidelberg Airborne Imaging DOAS Instrument (HAIDI) is a passive imaging DOAS spectrometer, which is capable of recording horizontal and vertical trace gas distributions with a resolution of better than 100 m. Observable species include NO2, HCHO, C2H2O2, H2O, O3, O4, SO2, IO, OClO and BrO. Here we give a technical description of the instrument including its custom-built spectrographs and CCD detectors. Also first results from measurements with the new instrument are presented. These comprise spatial resolved SO2 and BrO in volcanic plumes, mapped at Mt. Etna (Sicily, Italy), NO2 emissions in the metropolitan area of Indianapolis (Indiana, USA) as well as BrO and NO2 distributions measured during arctic springtime in context of the BRomine, Ozone, and Mercury EXperiment (BROMEX) campaign, which was performed 2012 in Barrow (Alaska, USA).
Gold-induced nanowires on the Ge(100) surface yield a 2D and not a 1D electronic structure
NASA Astrophysics Data System (ADS)
de Jong, N.; Heimbuch, R.; Eliëns, S.; Smit, S.; Frantzeskakis, E.; Caux, J.-S.; Zandvliet, H. J. W.; Golden, M. S.
2016-06-01
Atomic nanowires on semiconductor surfaces induced by the adsorption of metallic atoms have attracted a lot of attention as possible hosts of the elusive, one-dimensional Tomonaga-Luttinger liquid. The Au/Ge(100) system in particular is the subject of controversy as to whether the Au-induced nanowires do indeed host exotic, 1D (one-dimensional) metallic states. In light of this debate, we report here a thorough study of the electronic properties of high quality nanowires formed at the Au/Ge(100) surface. The high-resolution ARPES data show the low-lying Au-induced electronic states to possess a dispersion relation that depends on two orthogonal directions in k space. Comparison of the E (kx,ky) surface measured using high-resolution ARPES to tight-binding calculations yields hopping parameters in the two different directions that differ by approximately factor of two. Additionally, by pinpointing the Au-induced surface states in the first, second, and third surface Brillouin zones and analyzing their periodicity in k||, the nanowire propagation direction seen clearly in STM can be imported into the ARPES data. We find that the larger of the two hopping parameters corresponds, in fact, to the direction perpendicular to the nanowires (tperp). This proves that the Au-induced electron pockets possess a two-dimensional, closed Fermi surface, and this firmly places the Au/Ge(100) nanowire system outside potential hosts of a Tomonaga-Luttinger liquid. We combine these ARPES data with scanning tunneling spectroscopic measurements of the spatially resolved electronic structure and find that the spatially straight—wirelike—conduction channels observed up to energies of order one electron volt below the Fermi level do not originate from the Au-induced states seen in the ARPES data. The former are rather more likely to be associated with bulk Ge states that are localized to the subsurface region. Despite our proof of the 2D (two-dimentional) nature of the Au
Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization
NASA Astrophysics Data System (ADS)
Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.
2008-03-01
We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.
NASA Astrophysics Data System (ADS)
Schell, W. R.; Vives-Batlle, J.; Yoon, S. R.; Tobin, M. J.
1999-02-01
Low levels of radioactive gases are released from nuclear electric power generation, nuclear fuel reprocessing plants, nuclear weapons tests and from diagnostic medical uses of radioactive gas tracers. A prototype model of an inorganic scintillator - Crystal Gas Electron Detector (CGED) - was built for measurements of xenon isotopes in-line by detecting the beta and internal conversion (IC) electrons present in atmospheric samples. The detection and quantification of the radionuclide spectra are accomplished, during air flow, without complete purification of the fission gases. Initial operational tests and calibrations made permit the integration of the CGED into a portable Gas Analysis, Separation and Purification (GASP) system [1-3]. The CGED detector, Pulse Shaping and Timing (PSA) electronics, and mathematical treatment of the accumulated spectra are used to resolve the K and LMNO-IC electrons and beta continuum. These data are used, in-line, for dating the age of an air parcel containing fission gases released from nuclear reactors and/or from nuclear weapons tests, as part of the monitoring equipment required to enforce the Comprehensive Test Ban Treaty, CTBT. This report is one of a series of papers providing the design features, operational methods, calibration, and applications of radioactive gas analysis system to the International CTBT.
Statistics of electron avalanches and bursts in low pressure gases below the breakdown voltage
Donko, Z.
1995-12-31
Avalanches in different types of dynamical systems have been subject of recent interest. Avalanches building up in gases play an important role in radiation detectors and in the breakdown process of gas discharges. We have used computer simulation to study statistical properties of electron avalanches and bursts (sequences of avalanches) in a gas subjected to a homogeneous electric field. Helium was used as buffer gas, but we believe that our results are more general. The bursts were initiated by injecting low energy electrons into the gas. We applied Monte Carlo procedure to trace the trajectories of electrons. The elementary processes considered in the model were anisotropic elastic scattering of electrons from He atoms, electron impact excitation and ionization of He atoms. The electrons were traced until the are reached the perfectly absorbing anode.
Hahn, Herwig Reuters, Benjamin; Geipel, Sascha; Schauerte, Meike; Kalisch, Holger; Vescan, Andrei; Benkhelifa, Fouad; Ambacher, Oliver
2015-03-14
GaN-based heterostructure FETs (HFETs) featuring a 2-D electron gas (2DEG) can offer very attractive device performance for power-switching applications. This performance can be assessed by evaluation of the dynamic on-resistance R{sub on,dyn} vs. the breakdown voltage V{sub bd}. In literature, it has been shown that with a high V{sub bd}, R{sub on,dyn} is deteriorated. The impairment of R{sub on,dyn} is mainly driven by electron injection into surface, barrier, and buffer traps. Electron injection itself depends on the electric field which typically peaks at the gate edge towards the drain. A concept suitable to circumvent this issue is the charge-balancing concept which employs a 2-D hole gas (2DHG) on top of the 2DEG allowing for the electric field peak to be suppressed. Furthermore, the 2DEG concentration in the active channel cannot decrease by a change of the surface potential. Hence, beside an improvement in breakdown voltage, also an improvement in dynamic behaviour can be expected. Whereas the first aspect has already been demonstrated, the second one has not been under investigation so far. Hence, in this report, the effect of charge-balancing is discussed and its impact on the dynamic characteristics of HFETs is evaluated. It will be shown that with appropriate device design, the dynamic behaviour of HFETs can be improved by inserting an additional 2DHG.
‘Metal’-like transport in high-resistance, high aspect ratio two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Backes, Dirk; Hall, Richard; Pepper, Michael; Beere, Harvey; Ritchie, David; Narayan, Vijay
2016-01-01
We investigate the striking absence of strong localisation observed in mesoscopic two-dimensional electron gases (2DEGs) (Baenninger et al 2008 Phys. Rev. Lett. 100 016805, Backes et al 2015 arXiv:1505.03444) even when their resistivity ρ \\gg h/{{e}2} . In particular, we try to understand whether this phenomenon originates in quantum many-body effects, or simply percolative transport through a network of electron puddles. To test the latter scenario, we measure the low temperature (low-T) transport properties of long and narrow 2DEG devices in which percolation effects should be heavily suppressed in favour of Coulomb blockade. Strikingly we find no indication of Coulomb blockade and that the high-ρ, low-T transport is exactly similar to that previously reported in mesoscopic 2DEGs with different geometries. Remarkably, we are able to induce a ‘metal’-insulator transition (MIT) by applying a perpendicular magnetic field B. We present a picture within which these observations fit into the more conventional framework of the 2D MIT.
Kaindl, Robert A.; Hagele, D.; Carnahan, M. A.; Chemla, D. S.
2008-09-11
We report a comprehensive experimental study and detailed model analysis of the terahertz (THz) dielectric response and density kinetics of excitons and unbound electron-hole pairs in GaAs quantum wells. A compact expression is given, in absolute units, for the complex-valued THz dielectric function of intra-excitonic transitions between the 1s and higher-energy exciton and continuum levels. It closely describes the THz spectra of resonantly generated excitons. Exciton ionization and formation are further explored, where the THz response exhibits both intra-excitonic and Drude features. Utilizing a two-component dielectric function, we derive the underlying exciton and unbound pair densities. In the ionized state, excellent agreement is found with the Saha thermodynamic equilibrium, which provides experimental verification of the two-component analysis and density scaling. During exciton formation, in turn, the pair kinetics is quantitatively described by a Saha equilibrium that follows the carrier cooling dynamics. The THz-derived kinetics is, moreover, consistent with time-resolved luminescence measured for comparison. Our study establishes a basis for tracking pair densities via transient THz spectroscopy of photoexcited quasi-2D electron-hole gases.
Whether abnormal energy electrons are being produced in electric discharges in dense gases?
NASA Astrophysics Data System (ADS)
Babich, L. P.; Loiko, T. V.
2015-06-01
Reviewing results of experimental research of picosecond pulses of runaway electrons (REs) generated by discharges in dense gases at multiple overvoltages, including, along with routine measurements of voltage pulses and RE current, direct measurements of RE energy distributions, pressure dependence of RE numbers and experiment with retarding voltage similar to the accelerating voltage, a reality of the effect of "abnormal energy" REs is being substantiated. With this goal we emphasize non-conventional qualitative RE characteristics rather than quantitative.
Uniform electron gases. II. The generalized local density approximation in one dimension
Loos, Pierre-François Ball, Caleb J.; Gill, Peter M. W.
2014-05-14
We introduce a generalization (gLDA) of the traditional Local Density Approximation (LDA) within density functional theory. The gLDA uses both the one-electron Seitz radius r{sub s} and a two-electron hole curvature parameter η at each point in space. The gLDA reduces to the LDA when applied to the infinite homogeneous electron gas but, unlike the LDA, it is also exact for finite uniform electron gases on spheres. We present an explicit gLDA functional for the correlation energy of electrons that are confined to a one-dimensional space and compare its accuracy with LDA, second- and third-order Møller-Plesset perturbation energies, and exact calculations for a variety of inhomogeneous systems.
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
LaPointe, M.A.; Hirshfield, J.L.; Hirshfield, J.L.; Wang, Changbiao
1999-06-01
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96{percent}. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDS and other possible environmental applications. {copyright} {ital 1999 American Institute of Physics.}
Cyclotron autoresonant accelerator for electron beam dry scrubbing of flue gases
LaPointe, M. A.; Hirshfield, J. L.; Wang Changbiao
1999-06-10
Design and construction is underway for a novel rf electron accelerator for electron beam dry scrubbing (EBDS) of flue gases emanating from fossil-fuel burners. This machine, a cyclotron autoresonance accelerator (CARA), has already shown itself capable of converting rf power to electron beam power with efficiency values as high as 96%. This proof-of-principle experiment will utilize a 300 kV, 33 A Pierce type electron gun and up to 24 MW of available rf power at 2.856 GHz to produce 1.0 MeV, 33 MW electron beam pulses. The self-scanning conical beam from the high power CARA will be evaluated for EBDS and other possible environmental applications.
Istomin, V. A.; Kustova, E. V.; Mekhonoshina, M. A.
2014-12-09
In the present work we evaluate the accuracy of the Eucken formula and Stokes’ viscosity relation in high temperature non-equilibrium air species with electronic excitation. The thermal conductivity coefficient calculated using the exact kinetic theory methods is compared with that obtained applying approximate formulas in the temperature range 200–20000 K. A modification of the Eucken formula providing a good agreement with exact calculations is proposed. It is shown that the Stokes viscosity relation is not valid in electronically excited monoatomic gases at temperatures higher than 2000 K.
Spatio-temporal dynamics of electron density in femtosecond laser microplasma of gases
NASA Astrophysics Data System (ADS)
Bukin, V. V.; Garnov, S. V.; Strelkov, V. V.; Shirokikh, T. V.; Sychev, D. K.
2009-06-01
The formation and evolution of femtosecond laser plasma produced in microvolumes of gases at different pressures upon their multiply ionization by high intensity pulses of fundamental and second harmonics of a Ti:sapphire laser is studied. The interferometric technique for precise ultrafast optical diagnostics of such plasma was applied. The numerical technique of interferogram processing and reconstruction of instant spatial distribution of refractive index and free electron density in laser-induced plasma applied for this proposes is described. The spatiotemporal distribution of the refractive index and free electron density were studied with a spatial resolution of ˜1 μ m and a temporal resolution of ˜70 fs.
Accurate lifetime measurements for the noble gases by the electron beam alignment technique
NASA Astrophysics Data System (ADS)
Gorny, M. B.; Kazantsev, S. A.; Matisov, B. G.; Polezhaevs, N. T.
1985-03-01
Accurate lifetime measurement for the 41 P 1, 41 D 2, 51 D 2 helium and the atomic 2 p and 3 p states of other noble gases was performed by the low energy electron beam alignment technique. An account of the influence of magnetic field on the electron path was made to obtain the real Hanle signal shape. The influence of the radiation trapping in the collision chamber was analysed with regard to the metastables diffusion. The experimental data were compared with the results of other methods of the lifetime determination.
Positron 2D-ACAR experiments and electron-positron momentum density in YBa{sub 2}Cu{sub 3}O{sub 7-x}
Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G.; Bansil, A.
1991-12-01
We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a ``background corrected`` experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.
Positron 2D-ACAR experiments and electron-positron momentum density in YBa sub 2 Cu sub 3 O sub 7-x
Smedskjaer, L.C.; Welp, U.; Fang, Y.; Bailey, K.G. ); Bansil, A. . Dept. of Physics)
1991-12-01
We discuss positron annihilation (2D-ACAR) measurements in the C- projection on an untwinned metallic single crystal of YBa{sub 2}Cu{sub 3}O{sub 7-x} as a function of temperature, for five temperatures ranging from 30K to 300K. The measured 2D-ACAR intensities are interpreted in terms of the electron-positron momentum density obtained within the KKR-band theory framework. The temperature dependence of the 2D-ACAR spectra is used to extract a background corrected'' experimental spectrum which is in remarkable accord with the corresponding band theory predictions, and displays in particular clear signatures of the electron ridge Fermi surface.
NASA Astrophysics Data System (ADS)
Pitchford, Leanne; Zatsarinny, O.; Bartschat, K.; Fursa, D. V.; Bray, I.; Alves, L. L.; Biagi, S.
2013-09-01
Can state-of-the-art theory now provide complete sets of cross sections for electron scattering from noble gases suitable for use in Boltzmann calculations of swarm parameters and to the accuracy required for plasma modeling? The answer is a qualified ``yes'' for He, Ne, and Ar, but ``not yet'' for Kr and Xe. Purely theoretical cross section sets for electron scattering from these species are presently available on the LXCat website in the BRAY database for He (calculated using the convergent close-coupling technique, formulated in momentum space) and in the BSR database for the other rare gases (obtained with a convergent B-spline R-matrix with pseudo-states method, formulated in coordinated space). Although significant differences occasionally appear in some of the cross sections between experiment and theory, the calculated ionization rate coefficients as a function of reduced electric field strength, E/N, for He, Ne and Ar agree with experiment to within a few percent for the three lighter noble gases. This work is supported, in part, by the United States National Science Foundation.
Superradiant decay of cyclotron resonance of two-dimensional electron gases.
Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L; Pan, Wei; Watson, John D; Manfra, Michael J; Zudov, Michael A; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro
2014-07-25
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem. PMID:25105654
Superradiant Decay of Cyclotron Resonance of Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Zhang, Qi; Arikawa, Takashi; Kato, Eiji; Reno, John L.; Pan, Wei; Watson, John D.; Manfra, Michael J.; Zudov, Michael A.; Tokman, Mikhail; Erukhimova, Maria; Belyanin, Alexey; Kono, Junichiro
2014-07-01
We report on the observation of collective radiative decay, or superradiance, of cyclotron resonance (CR) in high-mobility two-dimensional electron gases in GaAs quantum wells using time-domain terahertz magnetospectroscopy. The decay rate of coherent CR oscillations increases linearly with the electron density in a wide range, which is a hallmark of superradiant damping. Our fully quantum mechanical theory provides a universal formula for the decay rate, which reproduces our experimental data without any adjustable parameter. These results firmly establish the many-body nature of CR decoherence in this system, despite the fact that the CR frequency is immune to electron-electron interactions due to Kohn's theorem.
Flue gases treatment by simultaneous use of electron beam and streams of microwave energy
NASA Astrophysics Data System (ADS)
Zimek, Z.; Chmielewski, A. G.; Bulka, S.; Lysov, G. W.; Artukh, I. G.; Frank, N. W.
1995-09-01
The experimental set up for investigation of SO2 and NOX removal from flue gases has been built on the base of electron accelerator and two independent microwave generators in Institute of Nuclear Chemistry and Technology. That allows to investigate a combined removal concept based on the simultaneous use the electron beam and streams of microwave energy to produce free radicals in reaction vessel. The preliminary experiment shows that is possible to find such condition with NH3 presence, where the efficiencies of the removal processes caused separately by electron beam and microwave energy are similar in described configuration of the experimental set up. The result of experiment where electron beam and microwave energy were used simultaneously indicates that total efficiency of the combined process is higher to compare with separate ones in certain experimental conditions.
NASA Astrophysics Data System (ADS)
Fullam, Jennifer; Boye, Carol; Standaert, Theodorus; Gaudiello, John; Tomlinson, Derek; Xiao, Hong; Fang, Wei; Zhang, Xu; Wang, Fei; Ma, Long; Zhao, Yan; Jau, Jack
2011-03-01
In this paper, we tested a novel methodology of measuring critical dimension (CD) uniformity, or CDU, with electron beam (e-beam) hotspot inspection and measurement systems developed by Hermes Microvision, Inc. (HMI). The systems were used to take images of two-dimensional (2D) array patterns and measure CDU values in a custom designated fashion. Because this methodology combined imaging of scanning micro scope (SEM) and CD value averaging over a large array pattern of optical CD, or OCD, it can measure CDU of 2D arrays with high accuracy, high repeatability and high throughput.
Electronic Transport Properties of New 2-D Materials GeH and NaSn2As2
NASA Astrophysics Data System (ADS)
He, Bin; Cultrara, Nicholas; Arguilla, Maxx; Goldberger, Joshua; Heremans, Joseph
2-D materials potentially have superior thermoelectric properties compared to traditional 3-D materials due to their layered structure. Here we present electrical and thermoelectric transport properties of 2 types of 2-D materials, GeH and NaSn2As2. GeH is a graphane analog which is prepared using chemical exfoliation of CaGe2 crystals. Intrinsic GeH is proven to be a highly resistive material at room temperature. Resistance and Seebeck coefficient of Ga doped GeH are measured in a cryostat with a gating voltage varying from -100V to 100V. NaSn2As2 is another 2-D system, with Na atom embedded between nearly-2D Sn-As layers. Unlike GeH, NaSn2As2 is a metal based of Hall measurements, with p-type behavior, and with van der Pauw resistances on the order of 5m Ω/square. Thermoelectric transport properties of NaSn2As2 will be reported. This work is support by the NSF EFRI-2DARE project EFRI-1433467.
Interpretation of calculated transverse and longitudinal diffusion for electrons in gases
NASA Astrophysics Data System (ADS)
Phelps, A. V.; Hagelaar, G. J. M.
2012-10-01
Ratios of transverse DT and longitudinal DL diffusion coefficients to mobility μ and mean energies for electrons in gases are calculated for a wide range of E/N for He, Ar, Xe, H2, N2, and CO. These transport coefficients are determined from spatial-gradient expansion, two-term spherical harmonic theoryfootnotetextJ. H. Parker and J. J. Lowke, Phys. Rev. 181, 290 (1969).^,footnotetextG. J. M. Hagelaar (unpublished codes, 2012). and from Monte Carlo simulations.footnotetextIbid.^,footnotetextS. F. Biagi, Nucl. Instr. and Meth. A 421, 234 (1999). As predicted by simplified theoryfootnotetextParker, Lowke, Op. cit. applied to the heavier rare gases, e.g., Ar and Xe, the ratio DT/DL reaches 7 to 10 at mean electron energies for which the momentum transfer cross sections are rapidly rising functions of energy. Comparisons are made of simplifiedfootnotetextIbid. and detailed predictions of DL/DT values for N2 and CO at low electron energies where the effects of scattering by the quadrupole potential of N2 versus the dipole/quadrupole potential of CO are expected to be observed.
Quantum point contacts on two-dimensional electron gases with a strong spin-orbit coupling
NASA Astrophysics Data System (ADS)
Lee, Joon Sue; Pendaharkar, Mihir; Shojaei, Borzoyeh; McFadden, Anthony P.; Palmstrøm, Chris
Studies of electrical transport in one-dimensional semiconductors in a presence of a strong spin-orbit interaction are crucial not only for exploring the emergent phenomena, such as topological superconductivity, but also for potential spintronic applications by controlling of the electron spins. We investigate the electrical transport properties of one-dimensional confinement defined by electrostatic potentials on large area two-dimensional electron gases of InAs and InSb, which have a strong spin-orbit coupling. The high-quality InAs and InSb quantum wells are grown on antimonide buffers by molecular beam epitaxy, and the gate-tunable regions are created using Al2O3 or HfO2 gate dielectrics by atomic layer deposition. We will discuss the modulation of spin-orbit coupling in the two-dimensional electron gases and the spin-orbit-induced spin splitting by the split-gate quantum point contacts. This work was supported by Microsoft Research.
NASA Astrophysics Data System (ADS)
Schluck, Jakob; Fasbender, Stefan; Wissenberg, Stephan; Heinzel, Thomas; Pierz, Klaus; Schumacher, Hans-Werner; Kazazis, Dimitris; Gennser, Ulf
Hybrid lateral superlattices composed of a square array of antidots and a periodic one-dimensional magnetic modulation are prepared in Ga[Al]As heterostructures. The two-dimensional electron gases exposed to these superlattices are characterized by magnetotransport experiments in various magnetic field configurations. Commensurability resonances as a function of a parallel external magnetic field are observed even in the absence of closed orbits, and interpreted with the help of numerical simulations based on the semiclassical Kubo model. In additional homogeneous perpendicular magnetic fields, quantum effects emerge, which can be attributed to the formation of closed quantized orbits.
An improved classical mapping method for homogeneous electron gases at finite temperature
Liu, Yu; Wu, Jianzhong
2014-08-14
We introduce a modified classical mapping method to predict the exchange-correlation free energy and the structure of homogeneous electron gases (HEG) at finite temperature. With the classical map temperature parameterized on the basis of the quantum Monte Carlo simulation data for the correlation energy and exact results at high and low temperature limits, the new theoretical procedure greatly improves the classical mapping method for correlating the energetic properties HEG over a broad range of thermodynamic conditions. Improvement can also be identified in predicting the long-range components of the spin-averaged pair correlation functions.
Entin, M. V.; Magarill, L. I.; Olshanetsky, E. B. Kvon, Z. D.; Mikhailov, N. N.; Dvoretsky, S. A.
2013-11-15
The influence of e-h scattering on the conductivity and magnetotransport of 2D semimetallic HgTe is studied both theoretically and experimentally. The presence of e-h scattering leads to the friction between electrons and holes resulting in a large temperature-dependent contribution to the transport coefficients. The coefficient of friction between electrons and holes is determined. The comparison of experimental data with the theory shows that the interaction between electrons and holes based on the long-range Coulomb potential strongly underestimates the e-h friction. The experimental results are in agreement with the model of strong short-range e-h interaction.
Litvinenko, I. A.; Lykov, V. A.
1997-04-15
The results of numerical simulation of fast electrons motion and generated electro-magnetic fields at the picosecond pulse laser interaction with flat target are presented. The calculations were performed with PM2D code, where relativistic equation of electron motion joint with Maxwell equations is solved by particle method in cells. The efficiency of fast electrons energy conversion to the transverse electromagnetic wave of picosecond duration can reach the value 10{sup -4} for the intensity of ultrashort laser pulse at the target 10{sup 16}-10{sup 17} W/cm{sup 2}.
Coherent Terahertz Magneto-Spectroscopy of High-Mobility Two-Dimensional Electron Gases
NASA Astrophysics Data System (ADS)
Zhang, Qi; Arikawa, Takashi; Pan, Wei; Reno, John; Watson, John; Manfra, Michael; Kono, Junichiro; Rice University Team; Sandia National Laboratory Collaboration; Purdue University Collaboration
2013-03-01
Landau-quantized high-mobility two-dimensional electron gases (2DEG) in GaAs quantum wells provide an ideal platform for studying and controlling the coherence of many-electron states. Here, we study the coherent dynamics of cyclotron resonance (CR) in a 2DEGin the terahertz range. It is well known that Kohn's theorem protects the CR frequency from the influence of electron-electron interactions, but how the coherence of CR decays via electron-electron interactions is an open question. Since the 1980s, studies have focused on CR decoherence time measurements, primarily using incoherent far-infrared spectroscopy, which fails to obtain the true CR linewidth due to the `saturation effect' in high-mobility systems. By using coherent time-domain magneto-terahertz spectroscopy, we have systematically studied the CR decoherence time in an ultrahigh-mobility 2DEG as a function of both temperature and magnetic field. These results show a clear saturation of the CR decoherence time at low temperature, which decreases monotonically with increasing magnetic field. No filling-factor-dependent oscillations of CR dephasing time have been observed. Possible CR decoherence mechanisms will be discussed in light of these new findings.
The viscosity cross section for electron scattering from the heavy noble gases
NASA Astrophysics Data System (ADS)
Stauffer, Allan; McEachran, Robert
2014-10-01
The viscosity cross section is defined in terms of the elastic differential cross section σ (θ) as σv =∫0 π (1 -cos2 θ) sin θ σ (θ) dθ and appears in the Boltzmann equation for the electron distribution function in velocity space. If this distribution function is expanded in Legendre polynomials, the viscosity cross section arises from the third term. Normally, only the first two terms in this expansion are retained in the solution of the Boltzmann equation. We have recently published results for the elastic and momentum transfer cross section for electron scattering from the heavy noble gases (argon, krypton and xenon) using our complex, relativistic optical potential method which includes the effect of excitation and ionization channels on the elastic cross sections. We also provided simple analytic fits to these cross sections to aid in plasma modelling calculations. We will present similar results for the viscosity cross sections for these gases including fits using similar analytic functions. By including the third term in the expansion of the Boltzmann equation which depends on this cross section, an evaluation of the accuracy of the two-term solution can be made.
Subband structure of two-dimensional electron gases in SrTiO{sub 3}
Raghavan, Santosh; Stemmer, Susanne; James Allen, S.
2013-11-18
Tunneling between two parallel, two-dimensional electron gases (2DEGs) in a complex oxide heterostructure containing a large, mobile electron density of ∼3 × 10{sup 14} cm{sup −2} is used to probe the subband structure of the 2DEGs. Temperature-dependent current-voltage measurements are performed on SrTiO{sub 3}/GdTiO{sub 3}/SrTiO{sub 3} junctions, where GdTiO{sub 3} serves as the tunnel barrier, and each interface contains a high-density 2DEG. Resonant tunneling features in the conductance and its derivative occur when subbands on either side of the barrier align in energy as the applied bias is changed, and are used to analyze subband energy spacings in the two 2DEGs. We show that the results agree substantially with recent theoretical predictions for such interfaces.
Density-dependent thermopower oscillations in mesoscopic two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Narayan, Vijay; Kogan, Eugene; Ford, Chris; Pepper, Michael; Kaveh, Moshe; Griffiths, Jonathan; Jones, Geb; Beere, Harvey; Ritchie, Dave
2014-08-01
We present thermopower S and resistance R measurements on GaAs-based mesoscopic two-dimensional electron gases as functions of the electron density ns. At high ns we observe good agreement between the measured S and SMOTT, the Mott prediction for a non-interacting metal. As ns is lowered, we observe a crossover from Mott-like behaviour to that where S shows strong oscillations and even sign changes. Remarkably, there are absolutely no features in R corresponding to those in S. In fact, R is devoid of even any universal conductance fluctuations. A statistical analysis of the thermopower oscillations from two devices of dissimilar dimensions suggest a universal nature of the oscillations. We critically examine whether they can be mesoscopic fluctuations of the kind described by Lesovik and Khmelnitskii (1988 Sov. Phys. JETP 67 957).
Directed motion of electrons in gases under the action of photon flux
NASA Astrophysics Data System (ADS)
Amusia, M. Ya.; Baltenkov, A. S.; Chernysheva, L. V.; Felfli, Z.; Msezane, A. Z.; Nordgren, J.
2001-05-01
The phenomenon of directed motion of electrons and ions in gases under the action of ionizing radiation pressure is investigated. It is shown that for photon energies from the thresholds of atomic photoionization to several keV the photoionization process is the main mechanism for the transfer of electromagnetic radiation momentum to an atom. Expressions for the drag currents that appear under the action of ionizing radiation in atomic gases and their mixtures are obtained. The connection between the drag currents and one of the nondipole asymmetry parameters is established. Experimental investigation of the drag currents for use in precision measurement of the asymmetry parameters is discussed, particularly for small photoelectron energies where it is difficult to apply the traditional experimental schemes to measure the differential cross sections for photoionization. Nondipole parameters for the Ne 2s, Ne 2p, and Ar 1s subshell photoionization are calculated and compared with measurements and other calculations. Partial drag currents for the Ne 2s, Ne 2p, and Ar 1s subshells are also presented.
Third-order transport coefficients for electron and positron swarms in gases
NASA Astrophysics Data System (ADS)
Simonovic, Ilija; Dujko, Sasa; White, Ronald; Petrovic, Zoran
2015-09-01
A multi term solution of the Boltzmann equation has been used to calculate third-order transport coefficients of charged particle swarms in neutral gases under the influence of electric and magnetic fields. The hierarchy resulting from a spherical harmonic decomposition of the Boltzmann equation in the hydrodynamic regime is solved numerically by representing the speed dependence of the phase-space distribution function in terms of an expansion in Sonine polynomials about a Maxwellian velocity distribution at an internally determined temperature. A group projector technique is employed to determine the structure and symmetries along individual elements of the skewness tensor when both electric and magnetic fields are present. Results are given for electron and positron swarms for certain model and real gases over a range of electric and magnetic field strengths. The results of the Boltzmann equation analysis are compared with those obtained by a Monte Carlo simulation technique. Various aspects in the behavior of skewness tensor elements are investigated, including the existence of correlation with low-order transport coefficients, sensitivity to post-ionization energy partitioning and errors of two-term approximation for solving Boltzmann's equation.
Southworth, S. H.; Kobrin, P. H.; Truesdale, C. M.; Lindle, D.; Owaki, S.; Shirley, D. A.
1980-12-01
Angular distributions of photoelectrons from the Xe 4d subshell, and N{sub 4,5}oo Auger electrons, have been measured using synchrotron radiation. The 4d asymmetry parameter exhibits strong oscillations with energy, in agreement with several theoretical calculations. The Auger electrons show large asymmetries due to alignment of Xe{sup +} by photoionization.
Imaginary time density-density correlations for two-dimensional electron gases at high density
Motta, M.; Galli, D. E.; Moroni, S.; Vitali, E.
2015-10-28
We evaluate imaginary time density-density correlation functions for two-dimensional homogeneous electron gases of up to 42 particles in the continuum using the phaseless auxiliary field quantum Monte Carlo method. We use periodic boundary conditions and up to 300 plane waves as basis set elements. We show that such methodology, once equipped with suitable numerical stabilization techniques necessary to deal with exponentials, products, and inversions of large matrices, gives access to the calculation of imaginary time correlation functions for medium-sized systems. We discuss the numerical stabilization techniques and the computational complexity of the methodology and we present the limitations related to the size of the systems on a quantitative basis. We perform the inverse Laplace transform of the obtained density-density correlation functions, assessing the ability of the phaseless auxiliary field quantum Monte Carlo method to evaluate dynamical properties of medium-sized homogeneous fermion systems.
Decoherence mechanisms of Landau level THz excitations in two dimensional electron gases
Maissen, Curdin; Scalari, Giacomo; Faist, Jérôme; Reichl, Christian; Wegscheider, Werner
2013-12-04
We report coherent THz transmission measurements on different two dimensional electron gases (2DEGs) in magnetic field. The investigated 2DEGs form in GaAs/AlGaAs heterostructures. A short (1 ps) linearly polarized THz pulse is used to excite inter Landau level transitions. The circular polarized radiation emitted by the 2DEG is then measured by electro optic sampling of the linear component orthogonal to the pump pulse polarization. Here we present measurements on two high mobility samples with μ = 5×10{sup 6}cm{sup 2}/Vs and μ = 16×10{sup 6}cm{sup 2}/Vs respectively. The decay times of the emitted radiation are 5.5 ps and 9 ps respectively at 2 K.
NASA Astrophysics Data System (ADS)
Santos, A. C. F.; Sigaud, G. M.; Melo, W. S.; Sant'Anna, M. M.; Montenegro, E. C.
2011-02-01
Absolute cross sections for projectile electron loss accompanied by target multiple ionization in collisions between He+ ions and noble gases have been measured for energies between 1.0 and 3.5 MeV. The data have been compared with other absolute cross sections that exist in the literature for the same projectile, and with calculations for the screening mode (nucleus-electron interaction) using both perturbative (plane-wave Born approximation (PWBA)) and non-perturbative (extended classical-impulse free-collision model, sudden approximation and coupled-channel method) approaches, and for the antiscreening mode (electron-electron interaction) within the PWBA. The energy dependence of the average number of active electrons for the antiscreening has been described by means of a simple function, which is 'universal' for noble gases but projectile dependent. A previously developed method has been employed to obtain the number of active electrons for each target subshell in the high-velocity regime.
NASA Astrophysics Data System (ADS)
Cappelli, Mark; Young, Chris; Cha, Eusnun; Fernandez, Eduardo; Stanford Plasma Physics Laboratory Collaboration; Eckerd College Collaboration
2015-09-01
We present a simple, zero-equation turbulence model for electron transport across the magnetic field of a plasma Hall thruster and integrate this model into 2-D hybrid particle-in-cell simulations of a 72 mm diameter laboratory thruster operating at 400 W. The turbulent transport model is based on the assumption that the primary means of electron energy dissipation is the turbulent eddy cascade in the electron fluid to smaller scales. Implementing the model into 2-D hybrid simulations is relatively straightforward and leverages the existing framework for solving the electron fluid equations. We find that the model captures the strong axial variation in the mobility seen in experiments. In particular, it predicts the existence of a strong transport barrier which anchors the region of plasma acceleration. The model also captures the time-averaged experimental discharge current and its fluctuations due to ionization instabilities. We observe quantitative agreement with recent laser induced fluorescence measurements of time-averaged xenon ion and neutral velocities along the channel centerline. This work was supported by the Air Force Office of Scientific Research.
Diffusion tensor in electron transport in gases in a radio-frequency field
Maeda, K.; Makabe, T.; Nakano, N.; Bzenic, S.; Petrovic, Z.L.
1997-05-01
Electron transport theory in gases in a radio-frequency field is developed in the hydrodynamic regime from the density gradient expansion method of the Boltzmann equation. Swarm parameters for the radio-frequency (rf) field with periodic time modulation are derived as functions of both reduced effective field strength and reduced angular frequency from the time dependent velocity distribution function. The rf electron transport in phase space is analyzed from the series of governing equations by a direct numerical procedure (DNP). Electron velocity distribution function and corresponding swarm parameters obtained from DNP agree with those of the Monte Carlo simulation in the frequency range 10{endash}200 MHz at 10 Td for Reid`s inelastic ramp model gas. The temporal modulation of the ensemble average of energy and the diffusion tensor are discussed. The appearance of the anomalous time behavior of the longitudinal diffusion coefficient is discussed in particular detail, and we provide an explanation of the observed effect. {copyright} {ital 1997} {ital The American Physical Society}
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties.
Island, Joshua O; Biele, Robert; Barawi, Mariam; Clamagirand, José M; Ares, José R; Sánchez, Carlos; van der Zant, Herre S J; Ferrer, Isabel J; D'Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D’Agosta, Roberto; Castellanos-Gomez, Andres
2016-01-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance. PMID:26931161
Titanium trisulfide (TiS3): a 2D semiconductor with quasi-1D optical and electronic properties
NASA Astrophysics Data System (ADS)
Island, Joshua O.; Biele, Robert; Barawi, Mariam; Clamagirand, José M.; Ares, José R.; Sánchez, Carlos; van der Zant, Herre S. J.; Ferrer, Isabel J.; D'Agosta, Roberto; Castellanos-Gomez, Andres
2016-03-01
We present characterizations of few-layer titanium trisulfide (TiS3) flakes which, due to their reduced in-plane structural symmetry, display strong anisotropy in their electrical and optical properties. Exfoliated few-layer flakes show marked anisotropy of their in-plane mobilities reaching ratios as high as 7.6 at low temperatures. Based on the preferential growth axis of TiS3 nanoribbons, we develop a simple method to identify the in-plane crystalline axes of exfoliated few-layer flakes through angle resolved polarization Raman spectroscopy. Optical transmission measurements show that TiS3 flakes display strong linear dichroism with a magnitude (transmission ratios up to 30) much greater than that observed for other anisotropic two-dimensional (2D) materials. Finally, we calculate the absorption and transmittance spectra of TiS3 in the random-phase-approximation (RPA) and find that the calculations are in qualitative agreement with the observed experimental optical transmittance.
Time resolved, 2-D hard X-ray imaging of relativistic electron-beam target interactions on ETA-II
Crist, C.E.; Sampayan, S.; Westenskow, G.; Caporaso, G.; Houck, T.; Weir, J.; Trimble, D.; Krogh, M.
1998-11-01
Advanced radiographic applications require a constant source size less than 1 mm. To study the time history of a relativistic electron beam as it interacts with a bremsstrahlung converter, one of the diagnostics they use is a multi-frame time-resolved hard x-ray camera. They are performing experiments on the ETA-II accelerator at Lawrence Livermore National Laboratory to investigate details of the electron beam/converter interactions. The camera they are using contains 6 time-resolved images, each image is a 5 ns frame. By starting each successive frame 10 ns after the previous frame, they create a 6-frame movie from the hard x-rays produced from the interaction of the 50-ns electron beam pulse.
Orbital dependent Rashba splitting and electron-phonon coupling of 2D Bi phase on Cu(100) surface
Gargiani, Pierluigi; Lisi, Simone; Betti, Maria Grazia; Ibrahimi, Amina Taleb; Bertran, François; Le Fèvre, Patrick; Chiodo, Letizia
2013-11-14
A monolayer of bismuth deposited on the Cu(100) surface forms a highly ordered c(2×2) reconstructed phase. The low energy single particle excitations of the c(2×2) Bi/Cu(100) present Bi-induced states with a parabolic dispersion in the energy region close to the Fermi level, as observed by angle-resolved photoemission spectroscopy. The electronic state dispersion, the charge density localization, and the spin-orbit coupling have been investigated combining photoemission spectroscopy and density functional theory, unraveling a two-dimensional Bi phase with charge density well localized at the interface. The Bi-induced states present a Rashba splitting, when the charge density is strongly localized in the Bi plane. Furthermore, the temperature dependence of the spectral density close to the Fermi level has been evaluated. Dispersive electronic states offer a large number of decay channels for transitions coupled to phonons and the strength of the electron-phonon coupling for the Bi/Cu(100) system is shown to be stronger than for Bi surfaces and to depend on the electronic state symmetry and localization.
Ao, L; Pham, A; Xiao, H Y; Zu, X T; Li, S
2016-03-14
We have systematically investigated the effects of different vacancy defects in 2D d(0) materials SnS2 and ZrS2 using first principles calculations. The theoretical results show that the single cation vacancy and the vacancy complex like V-SnS6 can induce large magnetic moments (3-4 μB) in these single layer materials. Other defects, such as V-SnS3, V-S, V-ZrS3 and V-ZrS6, can result in n-type conductivity. In addition, the ab initio studies also reveal that the magnetic and conductive properties from the cation vacancy and the defect complex V-SnS6 can be modified using the compressive/tensile strain of the in-plane lattices. Specifically, the V-Zr doped ZrS2 monolayer can be tuned from a ferromagnetic semiconductor to a metallic/half-metallic material with decreasing/increasing magnetic moments depending on the external compressive/tensile strains. On the other hand, the semiconducting and magnetic properties of V-Sn doped SnS2 is preserved under different lattice compression and tension. For the defect complex like V-SnS6, only the lattice compression can tune the magnetic moments in SnS2. As a result, by manipulating the fabrication parameters, the magnetic and conductive properties of SnS2 and ZrS2 can be tuned without the need for chemical doping. PMID:26888010
NASA Astrophysics Data System (ADS)
Samaraweera, Rasanga; Liu, Han-Chun; Wegscheider, Werner; Mani, Ramesh
Recent advancements in the growth techniques of the GaAs/AlGaAs two dimensional electron system (2DES) routinely yield high quality heterostructures with enhanced physical and electrical properties, including devices with 2D electron mobilities well above 107 cm2/Vs. These improvements have opened new pathways to study interesting physical phenomena associated with the 2D electron system. Negative giant-magnetoresistance (GMR) is one such phenomenon which can observed in the high mobility 2DES. However, the negative GMR in the GaAs/AlGaAs 2DES is still not fully understood. In this contribution, we present an experimental study of the bell-shape negative GMR in high mobility GaAs/AlGaAs devices and quantitatively analyze the results utilizing the multi-conduction model. The multi-conduction model includes interesting physical characteristics such as negative diagonal conductivity, non-vanishing off-diagonal conductivity, etc. The aim of the study is to examine GMR over a wider experimental parameter space and determine whether the multi-conduction model serves to describe the experimental results.
NASA Astrophysics Data System (ADS)
Kuzubov, A. A.; Eliseeva, N. S.; Krasnov, P. O.; Tomilin, F. N.; Fedorov, A. S.; Tolstaya, A. V.
2014-08-01
Silicon carbide is among the most common materials used in semiconductor engineering. Silicon carbide thin films are attractive from the standpoint of designing devices based on heterojunctions. This is due to a characteristic feature of this compound, such as polytypism, leading to the difference in the physical properties and also hampering the preparation of high-quality material samples. In this work, the thermodynamic stability and electronic structure of thin films based on the polytypes 3 C, 2 H, and 2 D with a thickness of a few nanometers have been studied.
Stability of trions in strongly spin-polarized two-dimensional electron gases
Crooker, S. A.; Johnston-Halperin, E.; Awschalom, D. D.; Knobel, R.; Samarth, N.
2000-06-15
Low-temperature magnetophotoluminescence studies of negatively charged excitons (X{sub s}{sup -} trions) are reported for n-type modulation-doped ZnSe/Zn(Cd,Mn)Se quantum wells over a wide range of Fermi energy and spin splitting. The magnetic composition is chosen such that these magnetic two-dimensional electron gases are highly spin polarized even at low magnetic fields, throughout the entire range of electron densities studied (5x10{sup 10} to 6.5x10{sup 11} cm-2). This spin polarization has a pronounced effect on the formation and energy of X{sub s}{sup -}, with the striking result that the trion ionization energy (the energy separating X{sub s}{sup -} from the neutral exciton) follows the temperature- and magnetic field-tunable Fermi energy. The large Zeeman energy destabilizes X{sub s}{sup -} at the {nu}=1 quantum limit, beyond which a separate photoluminescence peak appears and persists to 60 T, suggesting the formation of spin-triplet charged excitons. (c) 2000 The American Physical Society.
Cyclotron Autoresonance Accelerator for Electron Beam Dry Scrubbing of Flue Gases
NASA Astrophysics Data System (ADS)
Hirshfield, J. L.; Wang, Changbiao
1997-05-01
A novel, self-scanning, highly-efficient electron beam source is proposed for electron beam dry scrubbing (EBDS) of flue gases. The beam is prepared using cyclotron autoresonance acceleration (CARA),(C. Wang and J. L. Hirshfield, Phys. Rev. E 51), 2456 (1995); B. Hafizi, P. Sprangle , and J. L. Hirshfield, Phys. Rev. E 50, 3077 (1994). which has already demonstrated an rf efficiency of above 90% experimentally.(M. A. LaPointe, R. B. Yoder, C. Wang, A. K. Ganguly, and J. L. Hirshfield, Phys. Rev. Lett. 76), 2718 (1996). Simulations were done for a 250 kV, 25 A warm beam which is accelerated in a 130 cm CARA using an rf power of 21 MW at 2.856 GHz. The accelerated beam has an energy of up to 1.0 MV, corresponding to 98% acceleration efficiency. The beam can scan across the escaping flue gas with a conical angle of about 11 degrees after a 60-cm down-tapered-to-zero magnetic field. The conical scan angle is adjustable by changing the slope of the tapered magnetic field.
NASA Astrophysics Data System (ADS)
Garcia, Gustavo
2011-10-01
Many radiation applications require detailed energy deposition maps in reduced volumes, typically at the nanoscale. In addition, information about the type of interaction processes taking place in these reduced areas is usually needed. In order to achieve this level of description, single particle tracks, both for primary radiation and secondary generated species, should be simulated upon reasonable physical descriptions of the interaction processes in terms of cross sections and energy loss. In this study we present a Low Energy Particle Track Simulation (LEPTS) Monte Carlo code which is based on experimental and theoretical cross section data we have previously derived as well as on the observed energy loss distribution functions. This model will be applied to the irradiation of atomic (Ar) and molecular (SF6) gases with high energy electrons, positrons and photons by simulating single particle tracks until their final thermalization in the medium. Special attention will be paid to the low energy secondary electrons generated along the tracks. Detailed energy deposition pictures and local radiation effects will be derived from the simulated track structure and compared with direct observations in simple experiments. Acknowledgement to the Spanish Ministry of Science and Innovation (Project FIS2009-10245).
Status and perspectives for the electron beam technology for flue gases treatment
NASA Astrophysics Data System (ADS)
Frank, Norman W.
The electron-beam process is one of the most effective methods of removing SO 2 and NO x from industrial flue gases. This flue gas treatment consists of adding a small amount of ammonia to the flue gas and irradiating the gas by means of an electron beam, thereby causing reactions which convert the SO 2 and NO x to ammonium sulfate and ammonium sulfate-nitrate. These salts may the be collected from the flue gas by means of such conventional collectors as an electrostatic precipitator or baghouse. This process has numerous advantages over currently-used conventional processes as follows: (1) the process simultaneously removes SO 2 and NO x from flue gas at high efficiency levels; (2) it is a dry process which is easily controlled and has excellent load-following capability; (3) stack-gas reheat is not required; (4) the pollutants are converted into a saleable agricultural fertilizer; (5) the process has low capital and operating cost requirements. The history of the process is shown with a summary of the work that is presently underway. All of the current work is for the purpose of fine tuning the process for commercial usage. It is believed that with current testing and improvements, the process will be very competitive with existing processes and it will find its place in an environmental conscious world.
2D 31P solid state NMR spectroscopy, electronic structure and thermochemistry of PbP7
NASA Astrophysics Data System (ADS)
Benndorf, Christopher; Hohmann, Andrea; Schmidt, Peer; Eckert, Hellmut; Johrendt, Dirk; Schäfer, Konrad; Pöttgen, Rainer
2016-03-01
Phase pure polycrystalline PbP7 was prepared from the elements via a lead flux. Crystalline pieces with edge-lengths up to 1 mm were obtained. The assignment of the previously published 31P solid state NMR spectrum to the seven distinct crystallographic sites was accomplished by radio-frequency driven dipolar recoupling (RFDR) experiments. As commonly found in other solid polyphosphides there is no obvious correlation between the 31P chemical shift and structural parameters. PbP7 decomposes incongruently under release of phosphorus forming liquid lead as remainder. The thermal decomposition starts at T>550 K with a vapor pressure almost similar to that of red phosphorus. Electronic structure calculations reveal PbP7 as a semiconductor according to the Zintl description and clearly shows the stereo-active Pb-6s2 lone pairs in the electron localization function ELF.
Bakulin, Artem A; Morgan, Sarah E; Kehoe, Tom B; Wilson, Mark W B; Chin, Alex W; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay
2016-01-01
Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems. PMID:26673260
NASA Astrophysics Data System (ADS)
Bakulin, Artem A.; Morgan, Sarah E.; Kehoe, Tom B.; Wilson, Mark W. B.; Chin, Alex W.; Zigmantas, Donatas; Egorova, Dassia; Rao, Akshay
2016-01-01
Singlet fission is the spin-allowed conversion of a spin-singlet exciton into a pair of spin-triplet excitons residing on neighbouring molecules. To rationalize this phenomenon, a multiexcitonic spin-zero triplet-pair state has been hypothesized as an intermediate in singlet fission. However, the nature of the intermediate states and the underlying mechanism of ultrafast fission have not been elucidated experimentally. Here, we study a series of pentacene derivatives using ultrafast two-dimensional electronic spectroscopy and unravel the origin of the states involved in fission. Our data reveal the crucial role of vibrational degrees of freedom coupled to electronic excitations that facilitate the mixing of multiexcitonic states with singlet excitons. The resulting manifold of vibronic states drives sub-100 fs fission with unity efficiency. Our results provide a framework for understanding singlet fission and show how the formation of vibronic manifolds with a high density of states facilitates fast and efficient electronic processes in molecular systems.
NASA Astrophysics Data System (ADS)
Mirza, Babur M.
2016-05-01
A microscopic theory of integer and fractional quantum Hall effects is presented here. In quantum density wave representation of charged particles, it is shown that, in a two-dimensional electron gas coherent structures form under the low temperature and high density conditions. With a sufficiently high applied magnetic field, the combined N particle quantum density wave exhibits collective periodic oscillations. As a result the corresponding quantum Hall voltage function shows a step-wise change in multiples of the ratio h/e2. At lower temperatures further subdivisions emerge in the Hall resistance, exhibiting the fractional quantum Hall effect.
Li, Xufan; Lin, Ming-Wei; Puretzky, Alexander A.; Idrobo, Juan C.; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M.; Kravchenko, Ivan I.; Geohegan, David B.; Xiao, Kai
2014-01-01
Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 μm in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their structure and orientation were characterized from atomic scale to micrometer scale. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors. PMID:24975226
Li, Xufan; Lin, Ming-Wei; Zhang, Huidong; Puretzky, Alexander A; Idrobo Tapia, Juan C; Ma, Cheng; Chi, Miaofang; Yoon, Mina; Rouleau, Christopher M; Kravchenko, Ivan I; Geohegan, David B; Xiao, Kai
2014-01-01
Abstract Compared with their bulk counterparts, atomically thin two-dimensional (2D) crystals exhibit new physical properties, and have the potential to enable next-generation electronic and optoelectronic devices. However, controlled synthesis of large uniform monolayer and multi-layer 2D crystals is still challenging. Here, we report the controlled synthesis of 2D GaSe crystals on SiO2/Si substrates using a vapor phase deposition method. For the first time, uniform, large (up to ~60 m in lateral size), single-crystalline, triangular monolayer GaSe crystals were obtained and their atomic resolution structure were characterized. The size, density, shape, thickness, and uniformity of the 2D GaSe crystals were shown to be controllable by growth duration, growth region, growth temperature, and argon carrier gas flow rate. The theoretical modeling of the electronic structure and Raman spectroscopy demonstrate a direct-to-indirect bandgap transition and progressive confinement-induced bandgap shifts for 2D GaSe crystals. The 2D GaSe crystals show p-type semiconductor characteristics and high photoresponsivity (~1.7 A/W under white light illumination) comparable to exfoliated GaSe nanosheets. These 2D GaSe crystals are potentially useful for next-generation electronic and optoelectronic devices such as photodetectors and field-effect transistors.
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.
2016-01-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646
NASA Astrophysics Data System (ADS)
Choi, M. J.; Park, H. K.; Yun, G. S.; Lee, W.; Luhmann, N. C., Jr.; Lee, K. D.; Ko, W.-H.; Park, Y.-S.; Park, B. H.; In, Y.
2016-06-01
Minor and major disruptions by explosive MHD instabilities were observed with the novel quasi 3D electron cyclotron emission imaging (ECEI) system in the KSTAR plasma. The fine electron temperature (T e) fluctuation images revealed two types of minor disruptions: a small minor disruption is a q∼ 2 localized fast transport event due to a single m/n = 2/1 magnetic island growth, while a large minor disruption is partial collapse of the q≤slant 2 region with two successive fast heat transport events by the correlated m/n = 2/1 and m/n = 1/1 instabilities. The m/n = 2/1 magnetic island growth during the minor disruption is normally limited below the saturation width. However, as the additional interchange-like perturbation grows near the inner separatrix of the 2/1 island, the 2/1 island can expand beyond the limit through coupling with the cold bubble formed by the interchange-like perturbation.
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals.
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M
2016-01-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit. PMID:27245646
Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals
NASA Astrophysics Data System (ADS)
Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.
2016-06-01
Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.
Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam
2014-08-14
We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
Voiry, Damien; Fullon, Raymond; Yang, Jieun; de Carvalho Castro E Silva, Cecilia; Kappera, Rajesh; Bozkurt, Ibrahim; Kaplan, Daniel; Lagos, Maureen J; Batson, Philip E; Gupta, Gautam; Mohite, Aditya D; Dong, Liang; Er, Dequan; Shenoy, Vivek B; Asefa, Tewodros; Chhowalla, Manish
2016-09-01
The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER. PMID:27295098
Liu, Yu; Wu, Jianzhong
2014-02-28
Efficient and accurate prediction of the correlation functions of uniform electron gases is of great importance for both practical and theoretical applications. This paper presents a bridge-functional-based classical mapping method for calculating the correlation functions of uniform spin-unpolarized electron gases at finite temperature. The bridge functional is formulated by following Rosenfeld's universality ansatz in combination with the modified fundamental measure theory. The theoretical predictions are in good agreement with recent quantum Monte Carlo results but with negligible computational cost, and the accuracy is better than a previous attempt based on the hypernetted-chain approximation. We find that the classical mapping method is most accurate if the effective mass of electrons increases as the density falls.
NASA Astrophysics Data System (ADS)
Kononenko, O.; Lopes, N. C.; Cole, J. M.; Kamperidis, C.; Mangles, S. P. D.; Najmudin, Z.; Osterhoff, J.; Poder, K.; Rusby, D.; Symes, D. R.; Warwick, J.; Wood, J. C.; Palmer, C. A. J.
2016-09-01
In this work, two-dimensional (2D) hydrodynamic simulations of a variable length gas cell were performed using the open source fluid code OpenFOAM. The gas cell was designed to study controlled injection of electrons into a laser-driven wakefield at the Astra Gemini laser facility. The target consists of two compartments: an accelerator and an injector section connected via an aperture. A sharp transition between the peak and plateau density regions in the injector and accelerator compartments, respectively, was observed in simulations with various inlet pressures. The fluid simulations indicate that the length of the down-ramp connecting the sections depends on the aperture diameter, as does the density drop outside the entrance and the exit cones. Further studies showed, that increasing the inlet pressure leads to turbulence and strong fluctuations in density along the axial profile during target filling, and consequently, is expected to negatively impact the accelerator stability.
Wang, Y Y; Kawasaki, M; Bruley, J; Gribelyuk, M; Domenicucci, A; Gaudiello, J
2004-11-01
A variable magnification electron holography, applicable for two-dimensional (2-D) potential mapping of semiconductor devices, employing a dual-lens imaging system is described. Imaging operation consists of a virtual image formed by the objective lens (OL) and a real image formed in a fixed imaging plane by the objective minilens. Wide variations in field of view (100-900 nm) and fringe spacing (0.7-6 nm) were obtained using a fixed biprism voltage by varying the total magnification of the dual OL system. The dual-lens system allows fringe width and spacing relative to the object to be varied roughly independently from the fringe contrast, resulting in enhanced resolution and sensitivity. The achievable fringe width and spacing cover the targets needed for devices in the semiconductor technology road map from the 350 to 45 nm node. Two-D potential maps for CMOS devices with 220 and 70 nm gate lengths were obtained. PMID:15450653
Yang, Yongliang; Li, Xinxin
2011-01-01
The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO(2) interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis. PMID:21135460
NASA Astrophysics Data System (ADS)
Kott, Tomasz M.; Hu, Binhui; Brown, S. H.; Kane, B. E.
2013-03-01
We report low temperature magnetotransport measurements on a high mobility (μ = 325 000 cm2/Vsec) 2D electron system on a H-terminated Si(111) surface. In Si(111), there are six degenerate, anisotropic valleys which can affect the magnetotransport in unexpected ways. While low magnetic field data indeed show a six-fold valley degenerate system, we observe the integral quantum Hall effect at all filling factors ν <= 6 , indicating a magnetic-field-induced breaking of the valley degeneracy. Additionally, we find that ν = 2 develops in an unusually narrow temperature range, which might indicate the existence of a novel broken-symmetry valley phase. Finally, we observe an extended, exclusively even numerator, fractional quantum Hall hierarchy surrounding ν = 3 / 2 with denominators up to 15. This hierarchy is consistent with two-fold valley-degenerate composite fermions. We determine activation energies and provide the first estimate the composite fermion mass in a multi-valley system.
NASA Astrophysics Data System (ADS)
Hamid, A. S.
We measured the angular momentum density distribution of YNi2B2C to acquire information about its electronic structure. The measurements were performed using the full-scale utility of the two-dimensional angular correlation of annihilation radiation (2D-ACAR). The measured spectra clarified that Ni (3d) like state, predominantly, affected the Fermi surface of YNi2B2C. Further, s- and p-like-states enhanced its superconducting properties. The Fermi surface of YNi2B2C. was reconstructed using Fourier transformation followed by the LCW (Loucks, Crisp and West) folding procedure. It showed a large and complex surface similar to that of the high temperature superconductors HTS, with anisotropic properties. It also disclosed the effect of d-like state. Nevertheless, the current Fermi surface could deliver the needed topological information to isolate its features. The general layouts of this Fermi surface are; two large electron surfaces running along Γ-Z direction; as well as an additional large electron surface centered on X point; beside one hole surface centered on 100 point. This Fermi surface was interpreted in view of the earlier results.
Gerasimov, Gennady
2016-09-01
The efficiency of the electron beam treatment of industrial flue gases for the removal of sulfur and nitrogen oxides was investigated as applied to polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) using methods of mathematical modeling. The proposed kinetic model of the process includes mechanism of PCDD/Fs decomposition caused by their interaction with OH radicals generated in the flue gases under the electron beam (EB) irradiation as well as PCDD/Fs formation from unburned aromatic compounds. The model allows to predict the main features of the process, which are observed in pilot plant installations, as well as to evaluate the process efficiency. The results of calculations are compared with the available experimental data. PMID:27258900
Krishtopenko, S. S.
2015-02-15
The effect of the electron-electron interaction on the spin-resonance frequency in two-dimensional electron systems with Dresselhaus spin-orbit coupling is investigated. The oscillatory dependence of many-body corrections on the magnetic field is demonstrated. It is shown that the consideration of many-body interaction leads to a decrease or an increase in the spin-resonance frequency, depending on the sign of the g factor. It is found that the term cubic in quasimomentum in Dresselhaus spin-orbit coupling partially decreases exchange corrections to the spin resonance energy in a two-dimensional system.
Huang, Chiao-Ti Li, Jiun-Yun; Chou, Kevin S.; Sturm, James C.
2014-06-16
We report the strong screening of the remote charge scattering sites from the oxide/semiconductor interface of buried enhancement-mode undoped Si two-dimensional electron gases (2DEGs), by introducing a tunable shielding electron layer between the 2DEG and the scattering sites. When a high density of electrons in the buried silicon quantum well exists, the tunneling of electrons from the buried layer to the surface quantum well can lead to the formation of a nearly immobile surface electron layer. The screening of the remote charges at the interface by this newly formed surface electron layer results in an increase in the mobility of the buried 2DEG. Furthermore, a significant decrease in the minimum mobile electron density of the 2DEG occurs as well. Together, these effects can reduce the increased detrimental effect of interface charges as the setback distance for the 2DEG to the surface is reduced for improved lateral confinement by top gates.
Lan, Mu; Xiang, Gang Zhang, Xi
2014-08-28
We investigate the structural, electronic and magnetic properties of Mn atoms doped two-dimensional (2D) hexagonal GaAs nanosheets (GaAsNSs) using both first-principle calculations and Monte Carlo simulations. The first-principle molecular dynamics is first used to test the structural stability of Mn-doped GaAsNS ((Ga,Mn)AsNS). The analysis of spin-resolved electronic structures and determination of magnetic exchange interactions based on density functional theory (DFT) calculations reveals the existence of long-range exchange interaction in the system. Finally, Metropolis Monte Carlo simulation is employed to estimate Curie temperatures (T{sub C}s) of (Ga,Mn)AsNSs with different doping concentrations by different doping strategies. The results indicate that a T{sub C} up to 82 K can be obtained in regularly-doped (Ga,Mn)AsNSs and doping strategies have prominent impact on T{sub C}s of the systems, which emphasizes the importance of both long-range interactions and doping strategies in reduced dimensional diluted magnetic semiconductors (DMSs)
NASA Astrophysics Data System (ADS)
Wang, Z.; McKeown Walker, S.; Tamai, A.; Wang, Y.; Ristic, Z.; Bruno, F. Y.; de la Torre, A.; Riccò, S.; Plumb, N. C.; Shi, M.; Hlawenka, P.; Sánchez-Barriga, J.; Varykhalov, A.; Kim, T. K.; Hoesch, M.; King, P. D. C.; Meevasana, W.; Diebold, U.; Mesot, J.; Moritz, B.; Devereaux, T. P.; Radovic, M.; Baumberger, F.
2016-08-01
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs.
Wang, Z; McKeown Walker, S; Tamai, A; Wang, Y; Ristic, Z; Bruno, F Y; de la Torre, A; Riccò, S; Plumb, N C; Shi, M; Hlawenka, P; Sánchez-Barriga, J; Varykhalov, A; Kim, T K; Hoesch, M; King, P D C; Meevasana, W; Diebold, U; Mesot, J; Moritz, B; Devereaux, T P; Radovic, M; Baumberger, F
2016-08-01
Surfaces and interfaces offer new possibilities for tailoring the many-body interactions that dominate the electrical and thermal properties of transition metal oxides. Here, we use the prototypical two-dimensional electron liquid (2DEL) at the SrTiO3(001) surface to reveal a remarkably complex evolution of electron-phonon coupling with the tunable carrier density of this system. At low density, where superconductivity is found in the analogous 2DEL at the LaAlO3/SrTiO3 interface, our angle-resolved photoemission data show replica bands separated by 100 meV from the main bands. This is a hallmark of a coherent polaronic liquid and implies long-range coupling to a single longitudinal optical phonon branch. In the overdoped regime the preferential coupling to this branch decreases and the 2DEL undergoes a crossover to a more conventional metallic state with weaker short-range electron-phonon interaction. These results place constraints on the theoretical description of superconductivity and allow a unified understanding of the transport properties in SrTiO3-based 2DELs. PMID:27064529
NASA Astrophysics Data System (ADS)
Jana, Dipankar; Sharma, T. K.
2016-07-01
A fast and non-destructive method for probing the true signatures of 2D electron gas (2DEG) states in AlGaN/GaN heterostructures is presented. Two broad features superimposed with interference oscillations are observed in the low temperature photoluminescence (PL) spectrum. The two features are identified as the ground and excited 2DEG states which are confirmed by comparing the PL spectra of as-grown and top barrier layer etched samples. Broad PL features disappear at a certain temperature along with the associated interference oscillations. Furthermore, the two broad PL features depicts specific temperature and excitation intensity dependencies which make them easily distinguishable from the bandedge excitonic or defect related PL features. The presence of strong interference oscillations associated with the 2DEG PL features is explained by considering the localized generation of PL signal at the AlGaN/GaN heterointerface. Finally, a large value of the polarization induced electric field of ~1.01 MV cm‑1 is reported from PL measurements for AlGaN/GaN HEMT structures. It became possible only when the true identification of 2DEG features was made possible by the proposed method.
Koo, Jaseung; Park, Jaehong; Tronin, Andrey; Zhang, Ruili; Krishnan, Venkata; Strzalka, Joseph; Kuzmenko, Ivan; Fry, H. Christopher; Therien, Michael J.; Blasie, J. Kent
2012-01-01
We show that simply designed amphiphilic 4-helix bundle peptides can be utilized to vectorially-orient a linearly-extended Donor-bridge-Acceptor (D-br-A) electron transfer (ET) chromophore within its core. The bundle’s interior is shown to provide a unique solvation environment for the D-br-A assembly not accessible in conventional solvents, and thereby control the magnitudes of both light-induced ET and thermal charge recombination rate constants. The amphiphilicity of the bundle’s exterior was employed to vectorially-orient the peptide-chromophore complex at a liquid-gas interface, and its ends tailored for subsequent covalent attachment to an inorganic surface, via a “directed assembly” approach. Structural data, combined with evaluation of the excited state dynamics exhibited by these peptide-chromophore complexes, demonstrates that densely-packed, acentrically ordered 2-D monolayer ensembles of such complexes at high in-plane chromophore densities approaching 1/200Å2 offer unique potential as active layers in binary heterojucntion photovoltaic devices. PMID:22242787
NASA Astrophysics Data System (ADS)
Bordage, M. C.; Biagi, S. F.; Alves, L. L.; Bartschat, K.; Chowdhury, S.; Pitchford, L. C.; Hagelaar, G. J. M.; Morgan, W. L.; Puech, V.; Zatsarinny, O.
2013-08-01
This paper, the third in a series of three, describes work carried in the context of Plasma Data Exchange Project of the Gaseous Electronics Conference (PDEP-GEC) to compare electron collision cross-sections sets from ground-state, noble gases atoms and to check their consistency with measured swarm parameters. Such consistency is a minimum requirement if the cross-section data are to be used for modelling low-temperature plasmas. In this paper, we present intercomparisons of the independently compiled sets of electron cross-sections from ground-state, neutral Kr and Xe atoms presently available on the LXCat open-access website (www.lxcat.laplace.univ-tlse.fr). Swarm parameters (reduced mobility, characteristic energy, reduced longitudinal diffusion coefficient, reduced ionization coefficient) calculated in a Boltzmann solver or Monte Carlo simulation using these cross-sections sets are compared with experimental data, also available online on the LXCat site.
NASA Astrophysics Data System (ADS)
Fonte, P.; Mangiarotti, A.; Botelho, S.; Gonçalves, J. A. C.; Ridenti, M. A.; Bueno, C. C.
2010-01-01
Electron transport parameters are important in several areas ranging from particle detectors to plasma-assisted processing reactors. Nevertheless, especially at high fields strengths and for complex gases, relatively few data are published. A dedicated setup has been developed to measure the electron drift velocity and the first Townsend coefficient in parallel plate geometry. An RPC-like cell has been adopted to reach high field strengths without the risk of destructive sparks. The validation data obtained with pure Nitrogen will be presented and compared to a selection of the available literature and to calculations performed with Magboltz 2 version 8.6. The new data collected in pure Isobutane will then be discussed. This is the first time the electron drift velocity in pure Isobutane is measured well into the saturation region. Good agreement is found with expectations from Magboltz.
White, R D; Tattersall, W; Boyle, G; Robson, R E; Dujko, S; Petrovic, Z Lj; Bankovic, A; Brunger, M J; Sullivan, J P; Buckman, S J; Garcia, G
2014-01-01
We present a study of electron and positron transport in water in both the gaseous and liquid states using a Boltzmann equation analysis and a Monte-Carlo simulation technique. We assess the importance of coherent scattering processes when considering transport of electrons/positrons in dense gases and liquids. We highlight the importance of electron and positron swarm studies and experiments as a test of the accuracy and completeness of cross-sections, as well as a technique for benchmarking Monte-Carlo simulations. The thermalization of low-energy positrons (<150 eV) in water is discussed and the sensitivity of the profiles to the form of the cross-sections in this energy region, and assumptions in the microscopic processes, is considered. PMID:23395226
Studies of scattering mechanisms in gate tunable InAs/(Al,Ga)Sb two dimensional electron gases
Shojaei, B.; McFadden, A.; Schultz, B. D.; Shabani, J.; Palmstrøm, C. J.
2015-06-01
A study of scattering mechanisms in gate tunable two dimensional electron gases confined to InAs/(Al,Ga)Sb heterostructures with varying interface roughness and dislocation density is presented. By integrating an insulated gate structure the evolution of the low temperature electron mobility and single-particle lifetime was determined for a previously unexplored density regime, 10{sup 11}–10{sup 12 }cm{sup −2}, in this system. Existing theoretical models were used to analyze the density dependence of the electron mobility and single particle lifetime in InAs quantum wells. Scattering was found to be dominated by charged dislocations and interface roughness. It was demonstrated that the growth of InAs quantum wells on nearly lattice matched GaSb substrate results in fewer dislocations, lower interface roughness, and improved low temperature transport properties compared to growth on lattice mismatched GaAs substrates.
Ott, E.; Liu, C.S.; Grantstein, V.L.
1993-06-01
The focus of the Maryland Program is to establish strong experimental and theoretical support for ongoing programs at NRL. Areas of research which are of mutual interest are pursued by members of the University of Maryland faculty in collaboration with their counterparts at NRL. The proposal encompasses basically three broad areas of research activities. The first area deals with excimer laser technology and the interaction of high power lasers with matter (gases, solids and plasma). The second area of mutual interest involves diagnostics of intense relativistic electron beams and study of their propagation and interaction with a background gas. The nonlinear temporal dynamics in neural networks is the third area for collaboration.
NASA Astrophysics Data System (ADS)
Abuali, Z.; Golshan, M. M.; Davatolhagh, S.
2016-09-01
The present work is concerned with a report on the effects of Pauli, Rashba and Dresselhaus spin-orbit interactions (SOI) on the energy levels of a 2D circular hydrogenic quantum anti-dot(QAD). To pursue this aim, we first present a brief review on the analytical solutions to the Schrödinger equation of electronic states in a quantum anti-dot when a hydrogenic donor is placed at the center, revealing the degeneracies involved in the ground, first and second excited states. We then proceed by adding the aforementioned spin-orbit interactions to the Hamiltonian and treat them as perturbation, thereby, calculating the energy shifts to the first three states. As we show, the Rashba spin-orbit interaction gives rise to a shift in the energies of the ground and second excited states, while it partially lifts the degeneracy of the first excited state. Our calculations also indicate that the Dresselhaus effect, while keeping the degeneracy of the ground and second excited states intact, removes the degeneracy of the first excited state in the opposite sense. The Pauli spin-orbit interaction, on the other hand, is diagonal in the appropriate bases, and thus its effect is readily calculated. The results show that degeneracy of ℓ = 0 (prevailing in the ground and second excited state) remains but the degeneracy of ℓ = 1 (prevailing in the first excited state) is again partially lifted. Moreover, we present the energy corrections due to the three spin-orbit interactions as functions of anti-dot's radius, Rashba and Dresselhaus strengths discussing how they affect the corresponding states. The material presented in the article conceives the possibility of generating spin currents in the hydrogenic circular anti-dots.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
NASA Astrophysics Data System (ADS)
Rödel, T. C.; Fortuna, F.; Bertran, F.; Gabay, M.; Rozenberg, M. J.; Santander-Syro, A. F.; Le Fèvre, P.
2015-07-01
We report the existence of metallic two-dimensional electron gases (2DEGs) at the (001) and (101) surfaces of bulk-insulating TiO2 anatase due to local chemical doping by oxygen vacancies in the near-surface region. Using angle-resolved photoemission spectroscopy, we find that the electronic structure at both surfaces is composed of two occupied subbands of dx y orbital character. While the Fermi surface observed at the (001) termination is isotropic, the 2DEG at the (101) termination is anisotropic and shows a charge carrier density three times larger than at the (001) surface. Moreover, we demonstrate that intense UV synchrotron radiation can alter the electronic structure and stoichiometry of the surface up to the complete disappearance of the 2DEG. These results open a route for the nanoengineering of confined electronic states, the control of their metallic or insulating nature, and the tailoring of their microscopic symmetry, using UV illumination at different surfaces of anatase.
NASA Technical Reports Server (NTRS)
Mumma, M. J.; Borst, W. L.; Zipf, E. C.
1972-01-01
Vacuum ultraviolet multiplets of C I, C II, and O I were produced by electron impact on CO2. Absolute emission cross sections for these multiplets were measured from threshold to 350 eV. The electrostatically focused electron gun used is described in detail. The atomic multiplets which were produced by dissociative excitation of CO2 and the cross sections at 100 eV are presented. The dependence of the excitation functions on electron energy shows that these multiplets are produced by electric-dipole-allowed transitions in CO2.
A small 1 MeV electron accelerator for measuring heavy metal concentrations in smokestack gases
NASA Astrophysics Data System (ADS)
Reppond, A.; Redden, D. P.; Meitzler, C. R.; Swenson, D. A.
1997-05-01
A low-current electron beam may be used as a diagnostic tool to measure the concentrations of heavy metals (Cd, Pb, Hg) present in the flue gas particulates produced by smelters or cement kilns. A small electron accelerator is being constructed as part of a prototype emissions monitoring system. The electron beam energy has a design energy of 1 MeV, a peak current of 5 mA, and a duty factor of 0.1 percent. In this paper, we discuss the results of a set of EGS4 calculations used to model the transport properties of a 1 MeV electron beam passing through a thin vacuum window and the flue gas. Since the accelerator will be mounted in a harsh environment, we have investigated the effects of temperature variations on the linac structure and RF power source. The present status of the accelerator construction project is presented.
NASA Astrophysics Data System (ADS)
Podosek, F. A.
2003-12-01
The noble gases are the group of elements - helium, neon, argon, krypton, xenon - in the rightmost column of the periodic table of the elements, those which have "filled" outermost shells of electrons (two for helium, eight for the others). This configuration of electrons results in a neutral atom that has relatively low electron affinity and relatively high ionization energy. In consequence, in most natural circumstances these elements do not form chemical compounds, whence they are called "noble." Similarly, much more so than other elements in most circumstances, they partition strongly into a gas phase (as monatomic gas), so that they are called the "noble gases" (also, "inert gases"). (It should be noted, of course, that there is a sixth noble gas, radon, but all isotopes of radon are radioactive, with maximum half-life a few days, so that radon occurs in nature only because of recent production in the U-Th decay chains. The factors that govern the distribution of radon isotopes are thus quite different from those for the five gases cited. There are interesting stories about radon, but they are very different from those about the first five noble gases, and are thus outside the scope of this chapter.)In the nuclear fires in which the elements are forged, the creation and destruction of a given nuclear species depends on its nuclear properties, not on whether it will have a filled outermost shell when things cool off and nuclei begin to gather electrons. The numerology of nuclear physics is different from that of chemistry, so that in the cosmos at large there is nothing systematically special about the abundances of the noble gases as compared to other elements. We live in a very nonrepresentative part of the cosmos, however. As is discussed elsewhere in this volume, the outstanding generalization about the geo-/cosmochemistry of the terrestrial planets is that at some point thermodynamic conditions dictated phase separation of solids from gases, and that the
Modelling study of NOx removal in oil-fired waste off-gases under electron beam irradiation
NASA Astrophysics Data System (ADS)
Zwolińska, Ewa; Sun, Yongxia; Chmielewski, A. G.; Nichipor, H.; Bulka, S.
2015-08-01
Computer simulations for high concentration of NOx removal from oil-fired waste off-gases under electron beam irradiation were carried out by using the Computer code "Kinetic" and GEAR method. 293 reactions involving 64 species were used for the modelling calculations. The composition of simulated oil-fired off-gas was the same as the experimental conditions. The calculations were made for following system: (75.78% N2+11.5% CO2+8.62% H2O+4.1% O2), NOx concentration varies from 200 ppm to 1500 ppm. Calculation results qualitatively agree with the experimental results. Furthermore the influence of temperature, SO2 concentration and ammonia addition is discussed.
Relation of Electron Scattering Cross-Sections to Drift Measurements in Noble Gases
NASA Astrophysics Data System (ADS)
Stacey, Blake
2005-04-01
I investigate the classic ``inverse problem'' of extracting collision and scattering cross sections from measurements of electron swarm behavior. A Monte Carlo technique for simulating electron motion through a gas of isotropic scatterers is presented, providing a simplified version of Biagi's MAGBOLTZ algorithm. Using this Monte Carlo software, I examine the thermalization of electron swarms, focusing on their drift velocity and Shannon entropy, providing justification for a set of analytic expressions for drift measurements which are valid in the hydrodynamic regime. These expressions are then used to estimate the scattering cross section, first by a simple grid interpolation and then through a genetic algorithm (GA). This technique demonstrates that the He-4 momentum-transfer cross section in the 0-7 eV range is approximately 6.5 å^2, with a peak near 2 eV, in agreement with literature values.
Influence of oval defects on transport properties in high-mobility two-dimensional electron gases
NASA Astrophysics Data System (ADS)
Bockhorn, L.; Velieva, A.; Hakim, S.; Wagner, T.; Rugeramigabo, E. P.; Schuh, D.; Reichl, C.; Wegscheider, W.; Haug, R. J.
2016-02-01
Rare macroscopic growth defects next to a two-dimensional electron gas influence transport properties and cause a negative magnetoresistance. On the basis of this, we show that the number of oval defects seen on the material surface is comparable with the density of macroscopic growth defects determined from the negative magnetoresistance. We examine several materials with different densities of oval defects nS which were grown in one cycle under the same conditions to verify our observations. Paradoxically, the material with the largest number of oval defects has also the highest electron mobility.
NASA Astrophysics Data System (ADS)
Erofeev, Mikhail V.; Shulepov, Mikhail A.; Tarasenko, Victor F.
2015-12-01
The paper presents the results of an examination of aluminum samples exposed to runaway electron preionized diffuse discharges in air, nitrogen, and argon at atmospheric pressure. The changes in the chemical composition, structure, and hardness of the aluminum surface layers caused by the action of the discharge were investigated. It has been found that the oxygen and carbon concentrations in the surface layers depend on the number of discharge pulses and on the chemical composition of the working gas. The goal of the study was to find possible uses of runaway electron preionized diffuse discharges in research and industry.
NASA Astrophysics Data System (ADS)
Dentoni, Licinia; Capelli, Laura; Sironi, Selena; Del Rosso, Renato; Centola, Paolo; Della Torre, Matteo; Demattè, Fabrizio
2011-09-01
The use of a sensor array is demonstrated to be an effective approach to evaluate hazardous odor (or gas) emissions from industrial sites1. Therefore the possibility to use electronic noses for the prolonged survey of odor emissions from industrial sites is of particular interest for environmental monitoring purposes2. At the Olfactometric Laboratory of the Politecnico di Milano, in collaboration with Sacmi Group, Imola, an innovative electronic nose for the continuous monitoring of environmental odors is being developed. The aim of this work is to show the laboratory tests conducted to evaluate the capability of the electronic nose to recognize some specific environmentally important gases at their odor detection threshold concentration. The laboratory studies up to now focused on ammonia and butyric acid, those being compounds that can typically be found in the emissions from waste treatment plants, that may cause health effects when they exceed a given concentration level. The laboratory tests proved the sensors to be sensitive towards the considered compounds and the system to be capable of discriminating between odorous or non-odorous air, with a detection limit comparable with the detection limit of human nose.
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Experiments on the Photoelectric Effect and on the Diffusion of Electrons in Gases
ERIC Educational Resources Information Center
McClellan, G.; And Others
1978-01-01
Describes an apparatus for investigating the behavior of photoelectrons in a uniform magnetic field in either a vacuum or a low-pressure gas. Presents data and discusses some basic features of the photoelectric effect and the diffusion of free electrons in a gas. (GA)
NASA Astrophysics Data System (ADS)
Hernandez, F. G. G.; Ullah, S.; Ferreira, G. J.; Kawahala, N. M.; Gusev, G. M.; Bakarov, A. K.
2016-07-01
We imaged the transport of current-induced spin coherence in a two-dimensional electron gas confined in a triple quantum well. Nonlocal Kerr rotation measurements, based on the optical resonant amplification of the electrically-induced polarization, revealed a large spatial variation of the electron g factor and the efficient generation of a current-controlled spin-orbit field in a macroscopic Hall bar device. We observed coherence times in the nanoseconds range transported beyond half-millimeter distances in a direction transverse to the applied electric field. The measured long spin transport length can be explained by two material properties: large mean free path for charge diffusion in clean systems and enhanced spin-orbit coefficients in the triple well.
MeV femtosecond electron pulses from direct-field acceleration in low density atomic gases
NASA Astrophysics Data System (ADS)
Varin, Charles; Marceau, Vincent; Hogan-Lamarre, Pascal; Fennel, Thomas; Piché, Michel; Brabec, Thomas
2016-01-01
Using three-dimensional particle-in-cell (3DPIC) simulations, we show that few-MeV electrons can be produced by tightly focusing few-cycle radially-polarized laser pulses in a low-density atomic gas. In particular, it is observed that for the few-TW laser power needed to reach relativistic electron energies, longitudinal attosecond microbunching occurs naturally, resulting in femtosecond structures with high-contrast attosecond density modulations. The 3DPIC simulations show that in the relativistic regime the leading pulse of these attosecond substructures survives to propagation over extended distances, suggesting that it could be delivered to a distant target, with the help of a properly designed transport beamline.
Relativistic contributions to single and double core electron ionization energies of noble gases
Niskanen, J.; Norman, P.; Aksela, H.; Aagren, H.
2011-08-07
We have performed relativistic calculations of single and double core 1s hole states of the noble gas atoms in order to explore the relativistic corrections and their additivity to the ionization potentials. Our study unravels the interplay of progression of relaxation, dominating in the single and double ionization potentials of the light elements, versus relativistic one-electron effects and quantum electrodynamic effects, which dominate toward the heavy end. The degree of direct relative additivity of the relativistic corrections for the single electron ionization potentials to the double electron ionization potentials is found to gradually improve toward the heavy elements. The Dirac-Coulomb Hamiltonian is found to predict a scaling ratio of {approx}4 for the relaxation induced relativistic energies between double and single ionization. Z-scaling of the computed quantities were obtained by fitting to power law. The effects of nuclear size and form were also investigated and found to be small. The results indicate that accurate predictions of double core hole ionization potentials can now be made for elements across the full periodic table.
NASA Astrophysics Data System (ADS)
Barefield, J. E., II; Rice, W. W.; Dye, B. A.
1985-07-01
The quenching rate constants kq for the following rare gases and small molecules (He, Ar, Xe, H2, D2, N2, O2, F2, Cl2, HF, CO, CO2, CH4, CHF3, CF4, NO2F, SOF4, SF6, and UF6) are reported in units of cm3 molecule-1 s-1 for both the 1.0 and 2.3 μm excited electronic states of PuF6 (see Table I). The self-quenching rate constants for PuF6 at room temperture are kq(1.0 μm) =1.12±0.01×10-12 and kq(2.3 μm)=5.01±0.11×10-15 cm3 molecule-1 s-1. The magnitude of the quenching rate constants for most all of the gases considered above suggest that the dominant process in the collisional deexcitation of excited state PuF*6 (1.0 or 2.3 μm) molecules at room temperature is physical quenching (i.e., E-T or electronic-to-translational collisional energy transfer). Our data also indicate that E-V (electronic-to-vibrational) energy transfer is responsible for the efficient quenching of electronically excited PuF6 by H2, HF, CH4, and CHF3. There is also evidence from our data that the efficient quenching of the excited states of PuF6 by ground state PuF6 molecules proceeds via resonant energy transfer.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Nazarov, Vladimir U.
2016-05-01
The exchange-correlation potential experienced by an electron in the free space adjacent to a solid surface or to a low-dimensional system defines the fundamental image states and is generally important in surface and nanoscience. Here we determine the potential near the two- and one-dimensional electron gases (EG), doing this analytically at the level of the exact exchange of the density-functional theory (DFT). We find that, at r⊥≫kF-1 , where r⊥ is the distance from the EG and kF is the Fermi radius, the potential obeys the already known asymptotic -e2/r⊥ , while at r⊥≲kF-1 , but still in vacuum, qualitative and quantitative deviations of the exchange potential from the asymptotic law occur. The playground of the excitations to the low-lying image states falls into the latter regime, causing significant departure from the Rydberg series. In general, our analytical exchange potentials establish benchmarks for numerical approaches in the low-dimensional science, where DFT is by far the most common tool.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
NASA Astrophysics Data System (ADS)
White, Ron
2015-05-01
The determination of a comprehensive set of electron-biomolecule cross-sections is fundamental to understanding electron induced processes arising in plasma medicine and radiation damage modelling. Formulation of complete sets is generally based on a critical assessment of available experimental ``beam'' studies and theoretical calculations, and interpolations/extropolations. Issues of completeness and accuracy of cross-section sets aris and it is here that swarm experiments play a key role. In this presentation we report on recent swarm measurements in the biomolecules of water and tetrahydrafuran (THF) using the pulsed-Townsend technique of the de Urquijo group. We present and assess the consistency of cross-section sets for water and THF through a comparison of calculated transport coefficients using a multi-term Boltzmann equation solution with the available experimental swarm measurements provides a discriminating test on consistency and accuracy of the cross-section sets. Co-authors: J. de Urquijo, M. Casey, D. Konvalov, M. J. Brunger, G. Garcia and Z. Petrovic. Work supported by the Australian, Mexican, Serbian and Spanish governments.