NASA Astrophysics Data System (ADS)
Sharapov, V. N.; Cherepanov, A. N.; Popov, V. N.; Bykova, V. G.
2012-11-01
A model describing two-dimensional (2D) dynamics of heat transfer in the fluid systems with a localized sink of a magmatic fluid into local fractured zones above the roof of crystallizing crustal intrusions is suggested. Numerical modeling of the migration of the phase boundaries in 2D intrusive chambers under retrograde boiling of magma with relatively high initial water content in the melt shows that, depending on the character of heat dissipation from a magmatic fluid into the host rock, two types of fluid magmatic systems can arise. (1) At high heat losses, the zoning of fluidogenic ore formation is determined by the changes in temperature of the rocks within the contact aureole of the intrusive bodies. These temperature variations are controlled by the migration of the phase boundaries in the cooling melt towards the center of the magmatic bodies from their contacts. (2) In the case of a localized sink of the magmatic fluid in different parts of the top of the intrusive chambers, a specific characteristic scenario of cooling of the magmatic bodies is probably implemented. In 2D systems with a heat transfer coefficient α k < 5 × 104 W/m2 K, an area with quasi-stationary phase boundaries develops close to the region of fluid drainage through the fractured zone in the intrusion. Therefore, as the phase boundaries contract to the sink zone of a fluid, specific thermal tubes arise, whose characteristics depend on the width of the fluid-conductive zone and the heat losses into the side rocks. (3) The time required for the intrusion to solidify varies depending on the particular position of the fluid conductor above the top of the magmatic body.
Collective excitations in 2D hard-disc fluid.
Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij
2015-07-01
Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
This study is a part of an ongoing research project that aims at assessing the environmental benefits of DNAPL removal. The laboratory part of the research project is to examine the functional relationship between DNAPL architecture, mass removal and contaminant mass flux in 2-D ...
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
A 2D electrohydrodynamic model for electrorotation of fluid drops.
Feng, James Q
2002-02-01
A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391
Scaglione, S; Wendt, D; Miggino, S; Papadimitropoulos, A; Fato, M; Quarto, R; Martin, I
2008-08-01
In this study, we investigated the effect of the long-term (10 days) application of a defined and uniform level of fluid flow (uniform shear stress of 1.2 x 10(-3) N/m(2)) on human bone marrow stromal cells (BMSC) cultured on different substrates (i.e., uncoated glass or calcium phosphate coated glass, Osteologictrade mark) in a 2D parallel plate model. Both exposure to flow and culture on Osteologic significantly reduced the number of cell doublings. BMSC cultured under flow were more intensely stained for collagen type I and by von Kossa for mineralized matrix. BMSC exposed to flow displayed an increased osteogenic commitment (i.e., higher mRNA expression of cbfa-1 and osterix), although phenotype changes in response to flow (i.e., mRNA expression of osteopontin, osteocalcin and bone sialoprotein) were dependent on the substrate used. These findings highlight the importance of the combination of physical forces and culture substrate to determine the functional state of differentiating osteoblastic cells. The results obtained using a simple and controlled 2D model system may help to interpret the long-term effects of BMSC culture under perfusion within 3D porous scaffolds, where multiple experimental variables cannot be easily studied independently, and shear stresses cannot be precisely computed. PMID:17969030
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
Fluid Management System (FMS) fluid systems overview
NASA Technical Reports Server (NTRS)
Baird, R. S.
1990-01-01
Viewgraphs on fluid management system (FMS) fluid systems overview are presented. Topics addressed include: fluid management system description including system requirements (integrated nitrogen system, integrated water system, and integrated waste gas system) and physical description; and fluid management system evolution.
Roton Excitations and the Fluid-Solid Phase Transition in Superfluid 2D Yukawa Bosons
NASA Astrophysics Data System (ADS)
Molinelli, S.; Galli, D. E.; Reatto, L.; Motta, M.
2016-05-01
We compute several ground-state properties and the dynamical structure factor of a zero-temperature system of Bosons interacting with the 2D screened Coulomb (2D-SC) potential. We resort to the exact shadow path integral ground state (SPIGS) quantum Monte Carlo method to compute the imaginary-time correlation function of the model, and to the genetic algorithm via falsification of theories (GIFT) to retrieve the dynamical structure factor. We provide a detailed comparison of ground-state properties and collective excitations of 2D-SC and ^4 He atoms. The roton energy of the 2D-SC system is an increasing function of density, and not a decreasing one as in ^4 He. This result is in contrast with the view that the roton is the soft mode of the fluid-solid transition. We uncover a remarkable quasi-universality of backflow and of other properties when expressed in terms of the amount of short-range order as quantified by the height of the first peak of the static structure factor.
2-D traveling-wave patterns in binary fluid convection
Surko, C.M.; Porta, A.L.
1996-12-31
An overview is presented of recent experiments designed to study two-dimensional traveling-wave convection in binary fluid convection in a large aspect ratio container. Disordered patterns are observed when convection is initiated. As time proceeds, they evolve to more ordered patterns, consisting of several domains of traveling-waves separated by well-defined domain boundaries. The detailed character of the patterns depends sensitively on the Rayleigh number. Numerical techniques are described which were developed to provide a quantitative characterization of the traveling-wave patterns. Applications of complex demodulation techniques are also described, which make a detailed study of the structure and dynamics of the domain boundaries possible.
Friedel, Michael J.
2001-01-01
This report describes a model for simulating transient, Variably Saturated, coupled water-heatsolute Transport in heterogeneous, anisotropic, 2-Dimensional, ground-water systems with variable fluid density (VST2D). VST2D was developed to help understand the effects of natural and anthropogenic factors on quantity and quality of variably saturated ground-water systems. The model solves simultaneously for one or more dependent variables (pressure, temperature, and concentration) at nodes in a horizontal or vertical mesh using a quasi-linearized general minimum residual method. This approach enhances computational speed beyond the speed of a sequential approach. Heterogeneous and anisotropic conditions are implemented locally using individual element property descriptions. This implementation allows local principal directions to differ among elements and from the global solution domain coordinates. Boundary conditions can include time-varying pressure head (or moisture content), heat, and/or concentration; fluxes distributed along domain boundaries and/or at internal node points; and/or convective moisture, heat, and solute fluxes along the domain boundaries; and/or unit hydraulic gradient along domain boundaries. Other model features include temperature and concentration dependent density (liquid and vapor) and viscosity, sorption and/or decay of a solute, and capability to determine moisture content beyond residual to zero. These features are described in the documentation together with development of the governing equations, application of the finite-element formulation (using the Galerkin approach), solution procedure, mass and energy balance considerations, input requirements, and output options. The VST2D model was verified, and results included solutions for problems of water transport under isohaline and isothermal conditions, heat transport under isobaric and isohaline conditions, solute transport under isobaric and isothermal conditions, and coupled water
In situ fluid typing and quantification with 1D and 2D NMR logging.
Sun, Boqin
2007-05-01
In situ nuclear magnetic resonance (NMR) fluid typing has recently gained momentum due to data acquisition and inversion algorithm enhancement of NMR logging tools. T(2) distributions derived from NMR logging contain information on bulk fluids and pore size distributions. However, the accuracy of fluid typing is greatly overshadowed by the overlap between T(2) peaks arising from different fluids with similar apparent T(2) relaxation times. Nevertheless, the shapes of T(2) distributions from different fluid components are often different and can be predetermined. Inversion with predetermined T(2) distributions allows us to perform fluid component decomposition to yield individual fluid volume ratios. Another effective method for in situ fluid typing is two-dimensional (2D) NMR logging, which results in proton population distribution as a function of T(2) relaxation time and fluid diffusion coefficient (or T(1) relaxation time). Since diffusion coefficients (or T(1) relaxation time) for different fluid components can be very different, it is relatively easy to separate oil (especially heavy oil) from water signal in a 2D NMR map and to perform accurate fluid typing. Combining NMR logging with resistivity and/or neutron/density logs provides a third method for in situ fluid typing. We shall describe these techniques with field examples. PMID:17466778
Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
NASA Astrophysics Data System (ADS)
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
Potential role of CYP2D6 in the central nervous system
Cheng, Jie; Zhen, Yueying; Miksys, Sharon; Beyoğlu, Diren; Krausz, Kristopher W.; Tyndale, Rachel F.; Yu, Aiming; Idle, Jeffrey R.; Gonzalez, Frank J.
2013-01-01
Cytochrome P450 2D6 (CYP2D6) is a pivotal enzyme responsible for a major human drug oxidation polymorphism in human populations. Distribution of CYP2D6 in brain and its role in serotonin metabolism suggest this CYP2D6 may have a function in central nervous system. To establish an efficient and accurate platform for the study of CYP2D6 in vivo, a transgenic human CYP2D6 (Tg-2D6) model was generated by transgenesis in wild-type C57BL/6 (WT) mice using a P1 phage artificial chromosome clone containing the complete human CYP2D locus, including CYP2D6 gene and 5’- and 3’- flanking sequences. Human CYP2D6 was expressed not only in the liver, but also in brain. The abundance of serotonin and 5-hydroxyindoleacetic acid in brain of Tg-2D6 is higher than in WT mice either basal levels or after harmaline induction. Metabolomics of brain homogenate and cerebrospinal fluid revealed a significant up-regulation of l-carnitine, acetyl-l-carnitine, pantothenic acid, dCDP, anandamide, N-acetylglucosaminylamine, and a down-regulation of stearoyl-l-carnitine in Tg-2D6 mice compared with WT mice. Anxiety tests indicate Tg-2D6 mice have a higher capability to adapt to anxiety. Overall, these findings indicate that the Tg-2D6 mouse model may serve as a valuable in vivo tool to determine CYP2D6-involved neurophysiological metabolism and function. PMID:23614566
A case study of fluid flow in fractured rock mass based on 2-D DFN modeling
NASA Astrophysics Data System (ADS)
Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon
2014-05-01
A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.
2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation
NASA Astrophysics Data System (ADS)
Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.
2006-12-01
The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193
Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction
NASA Astrophysics Data System (ADS)
Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi
2013-10-01
A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498
Chang, F.H.; Santee, G.E. Jr.; Mortensen, G.A.; Brockett, G.F.; Gross, M.B.; Silling, S.A.; Belytschko, T.
1981-03-01
This report, the second in a series of reports for RP-1065, describes the second step in the stepwise approach for developing the three-dimensional, nonlinear, fluid/structure interaction methodology to assess the hydroloads on a large PWR during the subcooled portions of a hypothetical LOCA. The second step in the methodology considers enhancements and special modifications to the 2D STEALTH-HYDRO computer program and the 2D WHAMSE computer program. The 2D STEALTH-HYDRO enhancements consist of a fluid-fluid coupling control-volume model and an orifice control-volume model. The enhancements to 2D WHAMSE include elimination of the implicit integration routines, material models, and structural elements not required for the hydroloads application. In addition the logic for coupling the 2D STEALTH-HYDRO computer program to the 2D WHAMSE computer program is discussed.
An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
On Regularity Criteria for the 2D Generalized MHD System
NASA Astrophysics Data System (ADS)
Jiang, Zaihong; Wang, Yanan; Zhou, Yong
2016-06-01
This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.
Resonances of piezoelectric plate with embedded 2D electron system
NASA Astrophysics Data System (ADS)
Suslov, A. V.
2009-02-01
A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
NASA Technical Reports Server (NTRS)
Davis, Donald Y. (Inventor); Hitch, Bradley D. (Inventor)
1994-01-01
A fluid channeling system includes a fluid ejector, a heat exchanger, and a fluid pump disposed in series flow communication The ejector includes a primary inlet for receiving a primary fluid, and a secondary inlet for receiving a secondary fluid which is mixed with the primary fluid and discharged therefrom as ejector discharge. Heat is removed from the ejector discharge in the heat exchanger, and the heat exchanger discharge is compressed in the fluid pump and channeled to the ejector secondary inlet as the secondary fluid In an exemplary embodiment, the temperature of the primary fluid is greater than the maximum operating temperature of a fluid motor powering the fluid pump using a portion of the ejector discharge, with the secondary fluid being mixed with the primary fluid so that the ejector discharge temperature is equal to about the maximum operating temperature of the fluid motor.
Universal Fabrication of 2D Electron Systems in Functional Oxides.
Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe
2016-03-01
2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Thermal conductivity measurements in a 2D Yukawa system
NASA Astrophysics Data System (ADS)
Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.
2007-03-01
Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
2D induced gravity from the canonically gauged WZNW system
NASA Astrophysics Data System (ADS)
Blagojević, M.; Popović, D. S.; Sazdović, B.
1999-02-01
Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Symmetries of the 2D magnetic particle imaging system matrix.
Weber, A; Knopp, T
2015-05-21
In magnetic particle imaging (MPI), the relation between the particle distribution and the measurement signal can be described by a linear system of equations. For 1D imaging, it can be shown that the system matrix can be expressed as a product of a convolution matrix and a Chebyshev transformation matrix. For multidimensional imaging, the structure of the MPI system matrix is not yet fully explored as the sampling trajectory complicates the physical model. It has been experimentally found that the MPI system matrix rows have symmetries and look similar to the tensor products of Chebyshev polynomials. In this work we will mathematically prove that the 2D MPI system matrix has symmetries that can be used for matrix compression. PMID:25919400
Gradient-Driven Vortex Motion in Nonneutral Plasmas and Ideal 2D Fluids
NASA Astrophysics Data System (ADS)
Schecter, David A.
2000-10-01
Two-dimensional (2D) turbulent flows can relax to metastable patterns without dissipation of kinetic energy. This ``rapid'' relaxation has been observed in computer simulations of ideal 2D fluids, and more recently in experiments with pure electron plasmas, which can obey similar dynamics. The late stage of relaxation often involves small vortices moving in a larger ``background'' shear-flow.(X.P. Huang et al., Phys. Rev. Lett. 74), 4424 (1995). In time, positive vortices (rotating counter-clockwise) move to peaks in background vorticity, whereas negative vortices (rotating clockwise) move to minima.(C.G. Rossby, J. Mar. Res. 7), 175 (1948); C.H. Liu and L. Ting, Comp. & Fluids 15, 77 (1987). In general, the rate of this migration increases with the magnitude of the background vorticity gradient, whereas it decreases as the background shear intensifies.\\vspace12pt Positive and negative vortices can also be classified as either prograde or retrograde, depending on whether they rotate with or against the local background shear. Surprisingly, a retrograde vortex moves up or down a background vorticity gradient orders of magnitude faster than a prograde vortex of equal strength.(D.A. Schecter and D.H.E. Dubin, Phys. Rev. Lett. 83), 2191 (1999). An accurate expression for the velocity of a weak retrograde vortex is obtained from an analytic calculation, in which the response of the background flow to the vortex is linearized. However, this linear theory fails for prograde vortices of any strength. Interestingly, the velocity of a prograde vortex can be obtained from a simple estimate, which accounts for the nonlinear ``trapping'' of background fluid around the vortex. The analytic expressions for the velocities of both prograde and retrograde vortices are in good quantitative agreement with vortex-in-cell simulations, and with electron plasma experiments, when the background shear is below a critical level. When the ratio of background shear to background vorticity
Upscaling of upward CO2 migration in 2D system
NASA Astrophysics Data System (ADS)
Behzadi, Hamid; Alvarado, Vladimir
2012-09-01
A procedure for upscaling CO2 buoyancy driven upward migration in finite-difference simulation models is presented in this work. This upscaling procedure accounts for capillary and buoyancy forces to enable CO2 upward migration modeling in coarser grids while accounting for dominant fine-scaled geological effects. The developed method is applied to 2D domains with no-flow boundary conditions. The absolute permeability field is correlated in the horizontal direction, with zero correlation in the vertical direction. Capillary pressure is parameterized using a Leveret J-function. A Dykstra-Parsons coefficient of 0.7 was used to generate a relatively heterogeneous absolute permeability field and hence test the developed algorithm under more stringent conditions. Multiphase flow upscaling is improved by accounting for spatial connectivity (percolation), which enables us to obtain more realistic rock-fluid pseudo-functions and capture effects of local capillary trapping at the fine scale (meso-scale trapping). The upscaling method and estimation of rock-fluid functions are numerically tested and compared with currently accepted single and multiphase flow upscaling methods. Results show that single-phase flow upscaling is insufficient, because it fails to adequately predict mobility and residual saturation, and hence multiphase flow upscaling should be employed. Significant improvement in gas travel time (representative of mobility) and trapped CO2 saturation (representative of trapped saturation) are observed when spatial connectivity (percolation) is included. The simulation execution time reduces 17-fold through upscaling. This speedup will enable simulating 3D CO2 sequestration simulation scenarios.
Measurement of topological invariants in a 2D photonic system
NASA Astrophysics Data System (ADS)
Mittal, Sunil; Ganeshan, Sriram; Fan, Jingyun; Vaezi, Abolhassan; Hafezi, Mohammad
2016-03-01
A hallmark feature of topological physics is the presence of one-way propagating chiral modes at the system boundary. The chirality of edge modes is a consequence of the topological character of the bulk. For example, in a non-interacting quantum Hall model, edge modes manifest as mid-gap states between two topologically distinct bulk bands. The bulk-boundary correspondence dictates that the number of chiral edge modes, a topological invariant called the winding number, is completely determined by the bulk topological invariant, the Chern number. Here, for the first time, we measure the winding number in a 2D photonic system. By inserting a unit flux quantum at the edge, we show that the edge spectrum resonances shift by the winding number. This experiment provides a new approach for unambiguous measurement of topological invariants, independent of the microscopic details, and could possibly be extended to probe strongly correlated topological orders.
Force-chain identification in quasi-2D granular systems
NASA Astrophysics Data System (ADS)
Zhang, Ling; Wu, Jun-Qi; Zhang, Jie
2013-06-01
Understanding the properties of force-chains is essential in understanding the physical and mechanical properties of granular materials. The key is to identify force-chains. In this study, we describe a systematic method to identify individual force-chains in 2D granular systems under different external load-pure shear or isotropic compression, where bi-disperse photo-elastic particles were used in order to measure vector contact forces between particles. Using this method, we studied the statistics of force-chain size distribution in these two systems: in pure shear, the distribution shows a fat tail that deviates from an exponential distribution function, whereas in isotropic compression, the distribution decays exponentially. In addition, we also investigated the dependence of various force-chain statistics on two main parameters defined in the force-chain identification algorithm.
NASA Astrophysics Data System (ADS)
Choquard, Ph.; Vuffray, M.
2014-10-01
The coupling between dilatation and vorticity, two coexisting and fundamental processes in fluid dynamics (Wu et al., 2006, pp. 3, 6) is investigated here, in the simplest cases of inviscid 2D isotropic Burgers and pressureless Euler-Coriolis fluids respectively modeled by single vortices confined in compressible, local, inertial and global, rotating, environments. The field equations are established, inductively, starting from the equations of the characteristics solved with an initial Helmholtz decomposition of the velocity fields namely a vorticity free and a divergence free part (Wu et al., 2006, Sects. 2.3.2, 2.3.3) and, deductively, by means of a canonical Hamiltonian Clebsch like formalism (Clebsch, 1857, 1859), implying two pairs of conjugate variables. Two vector valued fields are constants of the motion: the velocity field in the Burgers case and the momentum field per unit mass in the Euler-Coriolis one. Taking advantage of this property, a class of solutions for the mass densities of the fluids is given by the Jacobian of their sum with respect to the actual coordinates. Implementation of the isotropy hypothesis entails a radial dependence of the velocity potentials and of the stream functions associated to the compressible and to the rotational part of the fluids and results in the cancellation of the dilatation-rotational cross terms in the Jacobian. A simple expression is obtained for all the radially symmetric Jacobians occurring in the theory. Representative examples of regular and singular solutions are shown and the competition between dilatation and vorticity is illustrated. Inspired by thermodynamical, mean field theoretical analogies, a genuine variational formula is proposed which yields unique measure solutions for the radially symmetric fluid densities investigated. We stress that this variational formula, unlike the Hopf-Lax formula, enables us to treat systems which are both compressible and rotational. Moreover in the one
2D numerical modelling of fluid percolation in the subduction zone
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.; Podladchikov, Y.
2012-04-01
Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of nonlinear visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized for the case of high porosity contrasts. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with earlier obtained ones (Cherkaoui & Wilcock, 1999). We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (Katz et al, 2006). We have developed a setup of a self-initiating due to gravitational instability subduction. With our coupled fluid-solid flow we have achieved a self-consistent water downward suction by a slab bending predicted by the other models with a simplified fluid kinematical motion implementation (Faccenda et al, 2009). With this setup we have obtained a self-consistent upper crust weakening by a porous fluid pressure which was theoretically assumed in the previously existing subduction models (Gerya & Meilick, 2011; Faccenda et al, 2009
2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments
NASA Astrophysics Data System (ADS)
Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.
2012-10-01
Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508
Fast modular data acquisition system for GEM-2D detector
NASA Astrophysics Data System (ADS)
Kasprowicz, G.; Byszuk, Adrian; Wojeński, A.; Zienkiewicz, P.; Czarski, T.; Chernyshova, M.; Poźniak, K.; Rzadkiewicz, J.; Zabolotny, W.; Juszczyk, B.
2014-11-01
A novel approach to two dimensional Gas Electron Multiplier (GEM) detector readout is presented. Unlike commonly used methods, based on discriminators and analogue FIFOs, the method developed uses simulta- neously sampling high speed ADCs with fast hybrid integrator and advanced FPGA-based processing logic to estimate the energy of every single photon. Such a method is applied to every GEM strip / pixel signal. It is especially useful in case of crystal-based spectrometers for soft X-rays, 2D imaging for plasma tomography and all these applications where energy resolution of every single photon is required. For the purpose of the detector readout, a novel, highly modular and extendable conception of the measurement platform was developed. It is evolution of already deployed measurement system for JET Spectrometer.
Global small solutions of 2-D incompressible MHD system
NASA Astrophysics Data System (ADS)
Lin, Fanghua; Xu, Li; Zhang, Ping
2015-11-01
In this paper, we consider the global wellposedness of 2-D incompressible magneto-hydrodynamical system with smooth initial data which is close to some non-trivial steady state. It is a coupled system between the Navier-Stokes equations and a free transport equation with a universal nonlinear coupling structure. The main difficulty of the proof lies in exploring the dissipative mechanism of the system. To achieve this and to avoid the difficulty of propagating anisotropic regularity for the free transport equation, we first reformulate our system (1.1) in the Lagrangian coordinates (2.19). Then we employ anisotropic Littlewood-Paley analysis to establish the key a prioriL1 (R+ ; Lip (R2)) estimate for the Lagrangian velocity field Yt. With this estimate, we can prove the global wellposedness of (2.19) with smooth and small initial data by using the energy method. We emphasize that the algebraic structure of (2.19) is crucial for the proofs to work. The global wellposedness of the original system (1.1) then follows by a suitable change of variables.
NASA Technical Reports Server (NTRS)
1974-01-01
Performance testing carried out in the development of the prototype zero-g fluid infusion system is described and summarized. Engineering tests were performed in the course of development, both on the original breadboard device and on the prototype system. This testing was aimed at establishing baseline system performance parameters and facilitating improvements. Acceptance testing was then performed on the prototype system to verify functional performance. Acceptance testing included a demonstration of the fluid infusion system on a laboratory animal.
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
Anomalous diffusion of an ellipsoid in quasi-2D active fluids
NASA Astrophysics Data System (ADS)
Peng, Yi; Yang, Ou; Tang, Chao; Cheng, Xiang
Enhanced diffusion of a tracer particle is a unique feature in active fluids. Here, we studied the diffusion of an ellipsoid in a free-standing film of E. coli. Particle diffusion is linearly enhanced at low bacterial concentrations, whereas a non-linear enhancement is observed at high bacterial concentrations due to the giant fluctuation. More importantly, we uncover an anomalous coupling between the translational and rotational degrees of freedom that is strictly prohibited in the classical Brownian diffusion. Combining experiments with theoretical modeling, we show that such an anomaly arises from the stretching flow induced by the force dipole of swimming bacteria. Our work illustrates a novel universal feature of active matter and transforms the understanding of fundamental transport processes in microbiological systems. ACS Petroleum Research Fund #54168-DNI9, NSF Faculty Early Career Development Program, DMR-1452180.
SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media
NASA Astrophysics Data System (ADS)
Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.
2008-12-01
Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.
Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.
1993-01-01
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Evidence for a New Intermediate Phase in a Strongly Correlated 2D System near Wigner Crystallization
NASA Astrophysics Data System (ADS)
Gao, Xuan; Qiu, Richard; Goble, Nicholas; Serafin, Alex; Yin, Liang; Xia, Jian-Sheng; Sullivan, Neil; Pfeiffer, Loren; West, Ken
How the two dimensional (2D) quantum Wigner crystal (WC) transforms into the metallic liquid phase remains an outstanding problem in physics. In theories considering the 2D WC to liquid transition in the clean limit, it was suggested that a number of intermediate phases might exist. We have studied the transformation between the metallic fluid phase and the low magnetic field reentrant insulating phase (RIP) which was interpreted as due to the WC [Qiu et al., PRL 108, 106404 (2012)], in a strongly correlated 2D hole system in GaAs quantum well with large interaction parameter rs (~20-30) and high mobility. Instead of a sharp transition, we found that increasing density (or lowering rs) drives the RIP into a state where the incipient RIP coexists with Fermi liquid. This apparent mixture phase intermediate between Fermi liquid and WC also exhibits a non-trivial temperature dependent resistivity behavior which can be qualitatively understood by the reversed melting of WC in the mixture, in analogy to the Pomeranchuk effect in the solid-liquid mixture of Helium-3. X.G. thanks NSF (DMR-0906415) for supporting work at CWRU. Experiments at the NHMFL High B/T Facility were supported by NSF Grant 0654118 and the State of Florida. L.P. thanks the Gordon and Betty Moore Foundation and NSF MRSEC (DMR-0819860) for support.
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
NASA Astrophysics Data System (ADS)
Pan, Li-Hua; Hou, Peng-Fei; Chen, Jia-Yun
2016-08-01
The 2D steady-state solutions regarding the expressions of stress and strain for fluid-saturated, orthotropic, poroelastic plane are derived in this paper. For this object, the general solutions of the corresponding governing equation are first obtained and expressed in harmonic functions. Based on these compact general solutions, the suitable harmonic functions with undetermined constants for line fluid source in the interior of infinite poroelastic body and a line fluid source on the surface of semi-infinite poroelastic body are presented, respectively. The fundamental solutions can be obtained by substituting these functions into the general solution, and the undetermined constants can be obtained by the continuous conditions, equilibrium conditions and boundary conditions.
Vlasov Fluid stability of a 2-D plasma with a linear magnetic field null
Kim, J.S.
1984-01-01
Vlasov Fluid stability of a 2-dimensional plasma near an O type magnetic null is investigated. Specifically, an elongated Z-pinch is considered, and applied to Field Reversed Configurations at Los Alamos National Laboratory by making a cylindrical approximation of the compact torus. The orbits near an elliptical O type null are found to be very complicated; the orbits are large and some are stochastic. The kinetic corrections to magnetohydrodynamics (MHD) are investigated by evaluating the expectation values of the growth rates of a Vlasov Fluid dispersion functional by using a set of trial functions based on ideal MHD. The dispersion functional involves fluid parts and orbit dependent parts. The latter involves phase integral of two time correlations. The phase integral is replaced by the time integral both for the regular and for the stochastic orbits. Two trial functions are used; one has a large displacement near the null and the other away from the null.
2D foam coarsening in a microfluidic system
NASA Astrophysics Data System (ADS)
Marchalot, J.; Lambert, J.; Cantat, I.; Tabeling, P.; Jullien, M.-C.
2008-09-01
We report an experimental study of 2D microfoam coarsening confined in a micrometer scale geometry, the typical bubbles diameter being of the order of 50-100 μm. These experiments raise both fundamental and applicative issues. For applicative issues: what is the typical time of foam ageing (for a polydisperse foam) in microsystems in scope of gas pocket storage in lab-on-a-chips? Experimental results show that a typical time of 2-3 mn is found, leading to the possibility of short-time storing, depending on the application. For fundamental interests, 2D foam ageing is generally described by von Neumann's law (von Neumann J., Metal Interfaces (American Society of Metals, Cleveland) 1952, p. 108) which is based on the hypothesis that bubbles are separated by thin films. Does this hypothesis still hold for foams confined in a 40 μm height geometry? This problematic is analyzed and it is shown that von Neumann's law still holds but that the diffusion coefficient involved in this law is modified by the confinement which imposes a curvature radius at Plateau borders. More precisely, it is shown that the liquid fraction is high on a film cross-section, in contrast with macrometric experiments where drainage occurs. An analytical description of the diffusion is developped taking into account the fact that soap film height is only a fraction of the cell height. While most of microfoams are flowing, the experimental set-up we describe leads to the achievement of a motionless confined microfoam.
NASA Technical Reports Server (NTRS)
Johnston, A. S., (Nick); Ryder, Mel; Tyler, Tony R.
1998-01-01
An automated fluid and power interface system needs to be developed for future space missions which require on orbit consumable replenishment. Current method of fluid transfer require manned vehicles and extravehicular activity. Currently the US does not have an automated capability for consumable transfer on-orbit. This technology would benefit both Space Station and long duration satellites. In order to provide this technology the Automated Fluid Interface System (AFIS) was developed. The AFIS project was an advanced development program aimed at developing a prototype satellite servicer for future space operations. This mechanism could transfer propellants, cryogens, fluids, gasses, electrical power, and communications from a tanker unit to the orbiting satellite. The development of this unit was a cooperative effort between Marshall Space Flight Center in Huntsville, Alabama, and Moog, Inc. in East Aurora, New York. An engineering model was built and underwent substantial development testing at Marshall Space Flight Center (MSFC). While the AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit. The lessons learned from testing the AFIS provided the foundation for the next generation fluid transfer mechanism, the Orbital Fluid Transfer System (OFTS). The OFTS project was a study contract with MSFC and Moog, Inc. The OFTS was designed for the International Space Station (ISS), but its flexible design could used for long duration satellite missions and other applications. The OFTS was designed to be used after docking. The primary function was to transfer bipropellants and high pressure gases. The other items addressed by this task included propellant storage, hardware integration, safety and control system issues. A new concept for high pressure couplings was also developed. The results of the AFIS testing provided an excellent basis for the OFTS design. The OFTS
Intravenous Fluid Generation System
NASA Technical Reports Server (NTRS)
McQuillen, John; McKay, Terri; Brown, Daniel; Zoldak, John
2013-01-01
The ability to stabilize and treat patients on exploration missions will depend on access to needed consumables. Intravenous (IV) fluids have been identified as required consumables. A review of the Space Medicine Exploration Medical Condition List (SMEMCL) lists over 400 medical conditions that could present and require treatment during ISS missions. The Intravenous Fluid Generation System (IVGEN) technology provides the scalable capability to generate IV fluids from indigenous water supplies. It meets USP (U.S. Pharmacopeia) standards. This capability was performed using potable water from the ISS; water from more extreme environments would need preconditioning. The key advantage is the ability to filter mass and volume, providing the equivalent amount of IV fluid: this is critical for remote operations or resource- poor environments. The IVGEN technology purifies drinking water, mixes it with salt, and transfers it to a suitable bag to deliver a sterile normal saline solution. Operational constraints such as mass limitations and lack of refrigeration may limit the type and volume of such fluids that can be carried onboard the spacecraft. In addition, most medical fluids have a shelf life that is shorter than some mission durations. Consequently, the objective of the IVGEN experiment was to develop, design, and validate the necessary methodology to purify spacecraft potable water into a normal saline solution, thus reducing the amount of IV fluids that are included in the launch manifest. As currently conceived, an IVGEN system for a space exploration mission would consist of an accumulator, a purifier, a mixing assembly, a salt bag, and a sterile bag. The accumulator is used to transfer a measured amount of drinking water from the spacecraft to the purifier. The purifier uses filters to separate any air bubbles that may have gotten trapped during the drinking water transfer from flowing through a high-quality deionizing cartridge that removes the impurities in
Fluid management system technology discipline
NASA Technical Reports Server (NTRS)
Symons, E. Patrick
1990-01-01
Viewgraphs on fluid management system technology discipline for Space Station Freedom are presented. Topics covered include: subcritical cryogenic storage and transfer; fluid handling; and components and instrumentation.
Density functional theory for polymeric systems in 2D
NASA Astrophysics Data System (ADS)
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343
Comparing a 2D fluid model of the DC planar magnetron cathode to experiments
Garcia, M.
1996-05-01
Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density near the electrode surface. This enhances the ion bombardment of the surface and the yield of sputtered atoms. Magnetron cathodes are used in the Plasma Electrode Pockels Cell (PEPC) devices of the Laser Program because they provide for significantly higher conduction than do glow discharges. An essential feature of magnetron cathodes is that the vector product of the perpendicular electric field, E[sub y], with the parallel component of the magnetic field, B[sub x], forms a closed track with a circulating current along the cathode surface. An analytical, 2D, two component, quasi-neutral, continuum model yields formulas for the plasma density, the total and component current densities, the electric field, and the positive electrical potential, between the cathode surface and a distant, uniform plasma. For a specific gas, the free parameters are electron temperature, gas number density, and total current. The model is applied to the interpretation of experimental data from the PEPC device, as well as a small vacuum facility for testing magnetron cathodes. Finally, the model has been applied to generate cross sectional views of a PEPC magnetron cathode track.
2-D isotropic negative refractive index in a N-type four-level atomic system
NASA Astrophysics Data System (ADS)
Zhao, Shun-Cai; Wu, Qi-Xuan; Ma, Kun
2015-11-01
2-D(Two-dimensional) isotropic negative refractive index (NRI) is explicitly realized via the orthogonal signal and coupling standing-wave fields coupling the Ntype four-level atomic system. Under some key parameters of the dense vapour media, the atomic system exhibits isotropic NRI with simultaneous negative permittivity and permeability (i.e. left-handedness) in the 2-D x-y plane. Compared with other 2-D NRI schemes, the coherent atomic vapour media in our scheme may be an ideal 2-D isotropic NRI candidate and has some potential advantages, significance or applications in the further investigation.
Disorder-driven loss of phase coherence in a quasi-2D cold atom system
NASA Astrophysics Data System (ADS)
Beeler, M. C.; Reed, M. E. W.; Hong, T.; Rolston, S. L.
2012-07-01
We study the order parameter of a quasi-two-dimensional (quasi-2D) gas of ultracold atoms trapped in an optical potential in the presence of controllable disorder. Our results show that disorder drives phase fluctuations without significantly affecting the amplitude of the quasi-condensate order parameter. This is evidence that disorder can drive phase fluctuations in 2D systems, relevant to the phase-fluctuation mechanism for the superconductor-to-insulator phase transition (SIT) in disordered 2D superconductors.
GAS DIFFUSION IN A 2-D SOIL SYSTEM
Technology Transfer Automated Retrieval System (TEKTRAN)
Chemical alternatives for methyl bromide appear to be the only viable short to medium range replacements in pre-plant soil fumigation systems. However, current fumigation practices need to be improved to minimize negative societal and environmental impacts. Often the amount of fumigant applied to so...
Screening and transport in 2D semiconductor systems at low temperatures
Das Sarma, S.; Hwang, E. H.
2015-01-01
Low temperature carrier transport properties in 2D semiconductor systems can be theoretically well-understood within RPA-Boltzmann theory as being limited by scattering from screened Coulomb disorder arising from random quenched charged impurities in the environment. In this work, we derive a number of analytical formula, supported by realistic numerical calculations, for the relevant density, mobility, and temperature range where 2D transport should manifest strong intrinsic (i.e., arising purely from electronic effects) metallic temperature dependence in different semiconductor materials arising entirely from the 2D screening properties, thus providing an explanation for why the strong temperature dependence of the 2D resistivity can only be observed in high-quality and low-disorder 2D samples and also why some high-quality 2D materials manifest much weaker metallicity than other materials. We also discuss effects of interaction and disorder on the 2D screening properties in this context as well as compare 2D and 3D screening functions to comment why such a strong intrinsic temperature dependence arising from screening cannot occur in 3D metallic carrier transport. Experimentally verifiable predictions are made about the quantitative magnitude of the maximum possible low-temperature metallicity in 2D systems and the scaling behavior of the temperature scale controlling the quantum to classical crossover. PMID:26572738
NASA Astrophysics Data System (ADS)
Kopáček, Jaroslav; Fojtášek, Kamil; Dvořák, Lukáš
2016-03-01
This paper focuses on the importance of detection reliability, especially in complex fluid systems for demanding production technology. The initial criterion for assessing the reliability is the failure of object (element), which is seen as a random variable and their data (values) can be processed using by the mathematical methods of theory probability and statistics. They are defined the basic indicators of reliability and their applications in calculations of serial, parallel and backed-up systems. For illustration, there are calculation examples of indicators of reliability for various elements of the system and for the selected pneumatic circuit.
NASA Astrophysics Data System (ADS)
Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.
2013-12-01
Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.
Novel exciton systems in 2D TMD monolayers and heterobilayers
NASA Astrophysics Data System (ADS)
Yu, Hongyi
In this talk, two exciton systems in transition metal dichalcogenides (TMDs) monolayer and heterobilayer will be discussed. In TMD monolayers, the strong e-h Coulomb exchange interaction splits the exciton and trion dispersions into two branches with zero and finite gap, respectively. Each branch is a center-of-mass wave vector dependent coherent superposition of the two valleys, which leads to a valley-orbit coupling and possibly a trion valley Hall effect. The exchange interaction also eliminates the linear polarization of the negative trion PL emission. In TMD heterobilayers with a type-II band alignment, the low energy exciton has an interlayer configuration with the e and h localized in opposite layers. Because of the inevitable twist or/and lattice mismatch between the two layers, the bright interlayer excitons are located at finite center-of-mass velocities with a six-fold degeneracy. The corresponding photon emission is elliptically polarized, with the major axis locked to the direction of exciton velocity, and helicity determined by the valley indices of the e and h. Some experimental results on the interlayer excitons in the WSe2-MoSe2 heterobilayers will also be presented. The interlayer exciton exhibits a long lifetime as well as a long depolarization time, which facilitate the observation of a PL polarization ring pattern due to the valley dependent exciton-exciton interaction induced expansion. The works were supported by the Research Grant Council of Hong Kong (HKU17305914P, HKU705513P), the Croucher Foundation, and the HKU OYRA and ROP.
NASA Technical Reports Server (NTRS)
Hammond, J. C.
1975-01-01
Development of a fluid infusion system was undertaken in response to a need for an intravenous infusion device operable under conditions of zero-g. The initial design approach, pursued in the construction of the first breadboard instrument, was to regulate the pressure of the motive gas to produce a similar regulated pressure in the infusion liquid. This scheme was not workable because of the varying bag contact area, and a major design iteration was made. A floating sensor plate in the center of the bag pressure plate was made to operate a pressure regulator built into the bellows assembly, effectively making liquid pressure the directly controlled variable. Other design changes were made as experience was gained with the breadboard. Extensive performance tests were conducted on both the breadboard and the prototype device; accurately regulated flows from 6 m1/min to 100 m1/min were achieved. All system functions were shown to operate satisfactorily.
2D and 3D Mechanobiology in Human and Nonhuman Systems.
Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert
2016-08-31
Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology. PMID:27214883
Dynamics and Control of a Reduced Order System of the 2-d Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2014-11-01
The dynamics and control problem of a reduced order system of the 2-d Navier-Stokes (N-S) equations is analyzed. First, a seventh order system of nonlinear ordinary differential equations (ODE) which approximates the dynamical behavior of the 2-d N-S equations is obtained by using the Fourier Galerkin method. We show that the dynamics of this ODE system transforms from periodic solutions to chaotic attractors through a sequence of bifurcations including a period doubling scenarios. Then three Lyapunov based controllers are designed to either control the system of ODEs to a desired fixed point or to synchronize two ODE systems obtained from the truncation of the 2-d N-S equations under different conditions. Numerical simulations are presented to show the effectiveness of the proposed controllers. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM02/14.
NASA Astrophysics Data System (ADS)
Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Titi, Edriss S.; Zang, Aibin
2015-06-01
The second-grade fluid equations are a model for viscoelastic fluids, with two parameters: α > 0, corresponding to the elastic response, and , corresponding to viscosity. Formally setting these parameters to 0 reduces the equations to the incompressible Euler equations of ideal fluid flow. In this article we study the limits of solutions of the second-grade fluid system, in a smooth, bounded, two-dimensional domain with no-slip boundary conditions. This class of problems interpolates between the Euler- α model (), for which the authors recently proved convergence to the solution of the incompressible Euler equations, and the Navier-Stokes case ( α = 0), for which the vanishing viscosity limit is an important open problem. We prove three results. First, we establish convergence of the solutions of the second-grade model to those of the Euler equations provided , as α → 0, extending the main result in (Lopes Filho et al., Physica D 292(293):51-61, 2015). Second, we prove equivalence between convergence (of the second-grade fluid equations to the Euler equations) and vanishing of the energy dissipation in a suitably thin region near the boundary, in the asymptotic regime , as α → 0. This amounts to a convergence criterion similar to the well-known Kato criterion for the vanishing viscosity limit of the Navier-Stokes equations to the Euler equations. Finally, we obtain an extension of Kato's classical criterion to the second-grade fluid model, valid if , as . The proof of all these results relies on energy estimates and boundary correctors, following the original idea by Kato.
NASA Astrophysics Data System (ADS)
Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Marakhtanov, A. M.
2016-06-01
A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths.
Comparative study on 3D-2D convertible integral imaging systems
NASA Astrophysics Data System (ADS)
Choi, Heejin; Kim, Joohwan; Kim, Yunhee; Lee, Byoungho
2006-02-01
In spite of significant improvements in three-dimensional (3D) display fields, the commercialization of a 3D-only display system is not achieved yet. The mainstream of display market is a high performance two-dimensional (2D) flat panel display (FPD) and the beginning of the high-definition (HD) broadcasting accelerates the opening of the golden age of HD FPDs. Therefore, a 3D display system needs to be able to display a 2D image with high quality. In this paper, two different 3D-2D convertible methods based on integral imaging are compared and categorized for its applications. One method uses a point light source array and a polymer-dispersed liquid crystal and one display panel. The other system adopts two display panels and a lens array. The former system is suitable for mobile applications while the latter is for home applications such as monitors and TVs.
High performance CCD camera system for digitalisation of 2D DIGE gels.
Strijkstra, Annemieke; Trautwein, Kathleen; Roesler, Stefan; Feenders, Christoph; Danzer, Daniel; Riemenschneider, Udo; Blasius, Bernd; Rabus, Ralf
2016-07-01
An essential step in 2D DIGE-based analysis of differential proteome profiles is the accurate and sensitive digitalisation of 2D DIGE gels. The performance progress of commercially available charge-coupled device (CCD) camera-based systems combined with light emitting diodes (LED) opens up a new possibility for this type of digitalisation. Here, we assessed the performance of a CCD camera system (Intas Advanced 2D Imager) as alternative to a traditionally employed, high-end laser scanner system (Typhoon 9400) for digitalisation of differential protein profiles from three different environmental bacteria. Overall, the performance of the CCD camera system was comparable to the laser scanner, as evident from very similar protein abundance changes (irrespective of spot position and volume), as well as from linear range and limit of detection. PMID:27252121
Houck, Edward D.
1994-01-01
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Houck, E.D.
1994-10-11
An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.
Houck, E.D.
1993-12-31
This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Design of FBG En/decoders in Coherent 2-D Time-polarization OCDMA Systems
NASA Astrophysics Data System (ADS)
Hou, Fen-fei; Yang, Ming
2012-12-01
A novel fiber Bragg grating (FBG)-based en/decoder for the two-dimensional (2-D) time-spreading and polarization multiplexer optical coding is proposed. Compared with other 2-D en/decoders, the proposed en/decoding for an optical code-division multiple-access (OCDMA) system uses a single phase-encoded FBG and coherent en/decoding. Furthermore, combined with reconstruction-equivalent-chirp technology, such en/decoders can be realized with a conventional simple fabrication setup. Experimental results of such en/decoders and the corresponding system test at a data rate of 5 Gbit/s demonstrate that this kind of 2-D FBG-based en/decoders could improve the performances of OCDMA systems.
Ultrasonic Fluid Quality Sensor System
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2003-10-21
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Ultrasonic fluid quality sensor system
Gomm, Tyler J.; Kraft, Nancy C.; Phelps, Larry D.; Taylor, Steven C.
2002-10-08
A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.
Hydrocarbon fluid, ejector refrigeration system
Kowalski, G.J.; Foster, A.R.
1993-08-31
A refrigeration system is described comprising: a vapor ejector cycle including a working fluid having a property such that entropy of the working fluid when in a saturated vapor state decreases as pressure decreases, the vapor ejector cycle comprising: a condenser located on a common fluid flow path; a diverter located downstream from the condenser for diverting the working fluid into a primary fluid flow path and a secondary fluid flow path parallel to the primary fluid flow path; an evaporator located on the secondary fluid flow path; an expansion device located on the secondary fluid flow path upstream of the evaporator; a boiler located on the primary fluid flow path parallel to the evaporator for boiling the working fluid, the boiler comprising an axially extending core region having a substantially constant cross sectional area and a porous capillary region surrounding the core region, the core region extending a length sufficient to produce a near sonic velocity saturated vapor; and an ejector having an outlet in fluid communication with the inlet of the condenser and an inlet in fluid communication with the outlet of the evaporator and the outlet of the boiler and in which the flows of the working fluid from the evaporator and the boiler are mixed and the pressure of the working fluid is increased to at least the pressure of the condenser, the ejector inlet, located downstream from the axially extending core region, including a primary nozzle located sufficiently close to the outlet of the boiler to minimize a pressure drop between the boiler and the primary nozzle, the primary nozzle of the ejector including a converging section having an included angle and length preselected to receive the working fluid from the boiler as a near sonic velocity saturated vapor.
A multifunctional automated system of 2D laser polarimetry of biological tissues
NASA Astrophysics Data System (ADS)
Zabolotna, Natalia I.; Radchenko, Kostiantyn O.
2014-09-01
Multifunctional automated system of 2D laser polarimetry of biological tissues with enhanced functional capabilities is proposed. Two-layer optically thin (attenuation coefficient τ <= 0,1 ) biological structures, formed by "muscle tissue (MT) - the dermis of the skin (DS)" histological cryosections for the two physiological states (normal - dystrophy) were investigated. Complex of objective indexes which characterized by 2D polarization reproduced distributions under the following criteria: histograms of the distributions; statistical moments of the 1st - 4th order; autocorrelation functions; correlation moments; power spectra logarithmic dependencies of the distributions; fractal dimensions of the distributions; spectra moments are presented.
2-D PSD Diagnostic System for the Pellet Trajectory in LHD Plasmas
NASA Astrophysics Data System (ADS)
Hoshino, Mitsuyasu; Sakamoto, Ryuichi; Yamada, Hiroshi; Itoh, Yasuhiko; Kumagai, Kohki; Kumazawa, Ryuhei; Watari, Tetsuo; LHD Experimental Group
Ablation of a solid hydrogen pellet in hot plasmas of Large Helical Device (LHD) has been studied. A position sensitive detector (PSD) diagnostics has been newly installed to measure the trajectory of ablating pellets. 2-D diagnostics enables the measurement with high time (1 MHz) and spatial resolutions (80 μm). A 3-D pellet trajectory can be described by a combination of 2-D images and information of initial pellet direction and velocity. A deflection of the pellet trajectory in the neutral beam injection (NBI) heated plasmas of LHD has been observed. Means of improving the measurement accuracy of this system are also discussed.
Oil well fluid processing system
Cobb, J.R.
1988-10-25
This patent describes an oil well fluid processing system, comprising: a skid having a first skid section and a second skid section separable from the first skid section; means for connecting one end of the first skid section to one end of the second skid section; a cylindrical fluid processing apparatus pivotally mounted at a lower end thereof on the first skid section for pivoting movement between a raised position wherein the fluid processing apparatus extends vertically from the first skid section and a lowered position wherein the fluid processing apparatus overlays the second skid section at such times that the two sections of the skid are connected together; and means mounted on the second skid section and connectable to the fluid processing apparatus for moving the fluid processing apparatus between the raised and lowered positions at such times that the two sections of the skid are connected together.
Priority depth fusion for the 2D to 3D conversion system
NASA Astrophysics Data System (ADS)
Chang, Yu-Lin; Chen, Wei-Yin; Chang, Jing-Ying; Tsai, Yi-Min; Lee, Chia-Lin; Chen, Liang-Gee
2008-02-01
For the sake of providing 3D contents for up-coming 3D display devices, a real-time automatic depth fusion 2D-to-3D conversion system is needed on the home multimedia platform. We proposed a priority depth fusion algorithm with a 2D-to-3D conversion system which generates the depth map from most of the commercial video sequences. The results from different kinds of depth reconstruction methods are integrated into one depth map by the proposed priority depth fusion algorithm. Then the depth map and the original 2D image are converted to stereo images for showing on the 3D display devices. In this paper, a 2D-to-3D conversion algorithm set is combined with the proposed depth fusion algorithm to show the improved results. With the converted 3D contents, the needs for 3D display devices will also increase. As long as the two technologies evolve, the 3D-TV era will come as soon as possible.
2D and 3D Mass Transfer Simulations in β Lyrae System
NASA Astrophysics Data System (ADS)
Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.
2001-12-01
2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.
BILL2D - A software package for classical two-dimensional Hamiltonian systems
NASA Astrophysics Data System (ADS)
Solanpää, J.; Luukko, P. J. J.; Räsänen, E.
2016-02-01
We present BILL2D, a modern and efficient C++ package for classical simulations of two-dimensional Hamiltonian systems. BILL2D can be used for various billiard and diffusion problems with one or more charged particles with interactions, different external potentials, an external magnetic field, periodic and open boundaries, etc. The software package can also calculate many key quantities in complex systems such as Poincaré sections, survival probabilities, and diffusion coefficients. While aiming at a large class of applicable systems, the code also strives for ease-of-use, efficiency, and modularity for the implementation of additional features. The package comes along with a user guide, a developer's manual, and a documentation of the application program interface (API).
A 2-D Microdisplay Using An Integrated Microresonating Waveguide Scanning System
Hua, Wei-Shu; Tsui, Chi Leung; Soetanto, William; Wu, Wen-Jong; Wang, Wei-Chih
2012-01-01
Our research team has developed a MEMS based on a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high image resolution and field of view obtained by mirror based display systems. The basic design of the optical scanner includes a micro-fabricated polymer based cantilever waveguide that is electromechanically deflected by a 2D piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the X-Y actuators and the LED light modulation are controlled using a field programmable gate array (FPGA). In this paper we will extend our display development by reporting more recent integration of components including actuators and light sources with a controller. Here we will describe the design, fabrication of the latest polymeric waveguide cantilever beam steering device driven by 2-D piezoelectric actuator using aerosol deposited PZT thick film actuators. The mechanical and optical design for the microresonating scanner will be discussed. In addition, the mechanical and optical performance of the 2-D scanner will be presented. PMID:26726320
Automated Fluid Interface System (AFIS)
NASA Technical Reports Server (NTRS)
1990-01-01
Automated remote fluid servicing will be necessary for future space missions, as future satellites will be designed for on-orbit consumable replenishment. In order to develop an on-orbit remote servicing capability, a standard interface between a tanker and the receiving satellite is needed. The objective of the Automated Fluid Interface System (AFIS) program is to design, fabricate, and functionally demonstrate compliance with all design requirements for an automated fluid interface system. A description and documentation of the Fairchild AFIS design is provided.
Parameterising root system growth models using 2D neutron radiography images
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
NASA Astrophysics Data System (ADS)
Zhai, Cuili; Zhang, Ting
2016-09-01
In this article, we consider the global existence and uniqueness of the solution to the 2D incompressible non-resistive MHD system with non-equilibrium background magnetic field. Our result implies that a strong enough non-equilibrium background magnetic field will guarantee the stability of the nonlinear MHD system. Beside the classical energy method, the interpolation inequalities and the algebraic structure of the equations coming from the incompressibility of the fluid are crucial in our arguments.
Developing Mobile BIM/2D Barcode-Based Automated Facility Management System
Chen, Yen-Pei
2014-01-01
Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373
Developing mobile BIM/2D barcode-based automated facility management system.
Lin, Yu-Cheng; Su, Yu-Chih; Chen, Yen-Pei
2014-01-01
Facility management (FM) has become an important topic in research on the operation and maintenance phase. Managing the work of FM effectively is extremely difficult owing to the variety of environments. One of the difficulties is the performance of two-dimensional (2D) graphics when depicting facilities. Building information modeling (BIM) uses precise geometry and relevant data to support the facilities depicted in three-dimensional (3D) object-oriented computer-aided design (CAD). This paper proposes a new and practical methodology with application to FM that uses an integrated 2D barcode and the BIM approach. Using 2D barcode and BIM technologies, this study proposes a mobile automated BIM-based facility management (BIMFM) system for FM staff in the operation and maintenance phase. The mobile automated BIMFM system is then applied in a selected case study of a commercial building project in Taiwan to verify the proposed methodology and demonstrate its effectiveness in FM practice. The combined results demonstrate that a BIMFM-like system can be an effective mobile automated FM tool. The advantage of the mobile automated BIMFM system lies not only in improving FM work efficiency for the FM staff but also in facilitating FM updates and transfers in the BIM environment. PMID:25250373
Phase Transitions in Quasi-2D Plasma-Dust Systems: Simulations and Experiments
NASA Astrophysics Data System (ADS)
Petrov, Oleg; Vasiliev, Mikhail; Statsenko, Konstantin; Koss, Xeniya; Vasilieva, Elena; Myasnikov, Maxim; Lisin, Evgeny
2015-11-01
A nature of phase transition in quasi-2D dusty plasma structures was studied and the influence of the quasi-2D cluster size (a number of particles in it) on the features of the phase transition was investigated. Experiments and numerical simulation was conducted for the systems consisting of small (~ 10) and large (~ 103) number of particles. To investigate the phase state of the system with 7, 18 and 100 particles observed in numerical and laboratory experiments, we used the method based on analysis of dynamic entropy. Numerical modeling of small systems was conducted by the Langevin molecular dynamic method with the Langevin force, responsible for the stochastic nature of the motion of particles with a given kinetic temperature. Phase state of systems with the number of elements in the order of 103, was studied using the methods of statistical thermodynamics. Here we present new results of an experimental study of the change of translational and orientational order and topological defects, and the pair interactions at 2D melting of dust cluster in rf discharge plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. This work was supported by the Russian Science Foundation (O.F. Petrov, M.M.Vasiliev, K.B. Stacenko, X.G. Koss, E.V. Vasilieva, M.I.Myasnikov and E.?.Lisin) through Grant No. 14-12-01440).
Preliminary work of real-time ultrasound imaging system for 2-D array transducer.
Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming
2015-01-01
Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time. PMID:26405923
Delay-dependent stability and stabilisation of continuous 2D delayed systems with saturating control
NASA Astrophysics Data System (ADS)
Hmamed, Abdelaziz; Kririm, Said; Benzaouia, Abdellah; Tadeo, Fernando
2016-09-01
This paper deals with the stabilisation problem of continuous two-dimensional (2D) delayed systems, in the presence of saturations on the control signals. For this, a new delay decomposition approach is proposed to deal with the stability and stabilisation issues. The idea is that the range of variation of each delay is divided into segments, and a specific Lyapunov- Krasovskii functional is used that contains different weight matrices in each segment. Then, based on this approach, new delay-dependent stability and stabilisation criteria for continuous 2D delayed systems are derived. These criteria are less conservative and include some existing results as special cases. Some numerical examples are provided to show that a significant improvement is achieved using the proposed approach.
Generalized Fluid System Simulation Program
NASA Technical Reports Server (NTRS)
Majumdar, Alok Kumar (Inventor); Bailey, John W. (Inventor); Schallhorn, Paul Alan (Inventor); Steadman, Todd E. (Inventor)
2004-01-01
A general purpose program implemented on a computer analyzes steady state and transient flow in a complex fluid network, modeling phase changes, compressibility, mixture thermodynamics and external body forces such as gravity and centrifugal force. A preprocessor provides for the inter- active development of a fluid network simulation having nodes and branches. Mass, energy, and specie conservation equations are solved at the nodes, and momentum conservation equations are solved in the branches. Contained herein are subroutines for computing "real fluid" thermodynamic and thermophysical properties for 12 fluids, and a number of different source options are provided for model- ing momentum sources or sinks in the branches. The system of equations describing the fluid network is solved by a hybrid numerical method that is a combination of the Newton-Raphson and successive substitution methods. Application and verification of this invention are provided through an example problem, which demonstrates that the predictions of the present invention compare most reasonably with test data.
Fluid management systems technology summaries
NASA Technical Reports Server (NTRS)
Stark, J. A.; Blatt, M. H.; Bennett, F. O., Jr.; Campbell, B. J.
1974-01-01
A summarization and categorization of the pertinent literature associated with fluid management systems technology having potential application to in-orbit fluid transfer and/or associated storage are presented. A literature search was conducted to obtain pertinent documents for review. Reports determined to be of primary significance were summarized in the following manner: (1) report identification, (2) objective(s) of the work, (3) description of pertinent work performed, (4) major results, and (5) comments of the reviewer. Pertinent figures are presented on a single facing page separate from the text. Specific areas covered are: fluid line dynamics and thermodynamics, low-g mass gauging, other instrumentation, stratification/pressurization, low-g vent systems, fluid mixing refrigeration and reliquefaction, and low-g interface control and liquid acquisition systems. Reports which were reviewed and not summarized, along with reasons for not summarizing, are also listed.
The potential energy surface and chaos in 2D Hamiltonian systems
NASA Astrophysics Data System (ADS)
Li, Jiangdan; Zhang, Suying
2011-02-01
We provide a new insight into the relationship between the geometric property of the potential energy surface and chaotic behavior of 2D Hamiltonian dynamical systems, and give an indicator of chaos based on the geometric property of the potential energy surface by defining Mean Convex Index (MCI). We also discuss a model of unstable Hamiltonian in detail, and show our results in good agreement with HBLSL's (Horwitz, Ben Zion, Lewkowicz, Schiffer and Levitan) new Riemannian geometric criterion.
Interaction of water molecules with hexagonal 2D systems. A DFT study
NASA Astrophysics Data System (ADS)
Rojas, Ángela; Rey, Rafael
Over the years water sources have been contaminated with many chemical agents, becoming issues that affect health of the world population. The advances of the nanoscience and nanotechnology in the development new materials constitute an alternative for design molecular filters with great efficiencies and low cost for water treatment and purification. In the nanoscale, the process of filtration or separation of inorganic and organic pollutants from water requires to study interactions of these atoms or molecules with different nano-materials. Specifically, it is necessary to understand the role of these interactions in physical and chemical properties of the nano-materials. In this work, the main interest is to do a theoretical study of interaction between water molecules and 2D graphene-like systems, such as silicene (h-Si) or germanene (h-Ge). Using Density Functional Theory we calculate total energy curves as function of separation between of water molecules and 2D systems. Different spatial configurations of water molecules relative to 2D systems are considered. Structural relaxation effects and changes of electronic charge density also are reported. Universidad Nacional de Colombia.
IGUANA: a high-performance 2D and 3D visualisation system
NASA Astrophysics Data System (ADS)
Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.
2004-11-01
The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.
Strong and Weak 2D Topological Superconductivity in Hidden Quasi-1D Systems
NASA Astrophysics Data System (ADS)
Yang, Fan; Yao, Hong
2014-03-01
Partly motivated by the newly discovered family of bismuth-based superconductors including LaO1-xFxBiS2, we study possible 2D topological superconductivities (TSC) in hidden quasi-1D systems with spin-orbit couplings. By doing RPA calculations and renormalization group (RG) treatment, we theoretically find that in a large portion of the phase diagram with varying interaction strengths and spin-orbit coupling the ground states favors superconductivity with odd-parity pairing, which results in either chiral TSC or time reversal invariant weak-Z2 TSC. We shall discuss several ways to experimentally identify these strong and weak 2D topological superconductivity. Possible applications to the bismuth-based superconductors LaO1-xFxBiS2 will also be remarked.
Numerical studies of the melting transition in 2D Yukawa systems
Hartmann, P.; Donko, Z.; Kalman, G. J.
2008-09-07
We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.
FPGA implementation of 2-D discrete cosine transforms algorithm using systemC
NASA Astrophysics Data System (ADS)
Liu, Yifei; Ding, Mingyue
2007-12-01
Discrete Cosine Transform (DCT) is widely applied in image and video compression. This paper presented the software and hardware co-design method based on SystemC. As a case of study, a two dimension (2D) DCT Algorithm was implemented on Programmable Gate Arrays (FPGAs) chip. The short simulation time and verification process greatly increases the design efficiency of SystemC, making the product designed by SystemC more quickly into the market. The design effect using SystemC is compared between the expertise hardware designer and the software designer with little hardware knowledge. The result shows SystemC is an excellent and high efficiency hardware design method for an expertise hardware designer.
Corner transfer matrices for 2D strongly coupled many-body Floquet systems
NASA Astrophysics Data System (ADS)
Kukuljan, Ivan; Prosen, Tomaž
2016-04-01
We develop, based on Baxter’s corner transfer matrices, a renormalizable numerically exact method for computation of the level density of the quasienergy spectra of two-dimensional (2D) locally interacting many-body Floquet systems. We demonstrate its functionality exemplified by the kicked 2D quantum Ising model. Using the method, we are able to treat systems of arbitrarily large finite size (for example lattices of the order of 108 spins). We clearly demonstrate that the density of the Floquet quasienergy spectrum tends to a flat function in the thermodynamic limit for generic values of model parameters. However, contrary to the prediction of random matrices of the circular orthogonal ensemble, the decay rates of the Fourier coefficients of the Floquet level density exhibit rich and non-trivial dependence on the system’s parameters. Remarkably, we find that the method is renormalizable and gives thermodynamically convergent results only in certain regions of the parameter space where the corner transfer matrices have effectively a finite rank for any system size. In the complementary regions, the corner transfer matrices effectively become of full rank and the method becomes non-renormalizable. This may indicate an interesting phase transition from an area- to volume-law of entanglement in the thermodynamic state of a Floquet system.
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures
NASA Astrophysics Data System (ADS)
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-04-01
Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)—the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper.
Microwave tomography of extremities: 1. Dedicated 2D system and physiological signatures.
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-04-01
Microwave tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. Imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity's soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity's soft tissues. Specifically, the system's performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome)--the so-called physiological signatures. The developed 2D MWT system dedicated to the imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between the experimentally measured electromagnetic (EM) field and the simulated EM field within a measurement domain. Using the system, we were able to obtain physiological signatures associated with systolic versus diastolic phases of circulation in an animal extremity, reperfusion versus occlusion phases of the blood supply to the animal's extremity and a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265
Electron phase coherent effects in nanostructures and coupled 2D systems
Simmons, J.A.; Lyo, S.K.; Klem, J.F.; Sherwin, M.E.; Harff, N.E.; Eiles, T.M.; Wendt, J.R.
1995-05-01
This report describes the research accomplishments achieved under the LDRD Project ``Electron Phase Coherent Effects in Nanostructures and Coupled 2D Systems.`` The goal of this project was to discover and characterize novel quantum transport phenomena in small semiconductor structures at low temperatures. Included is a description of the purpose of the research, the various approaches used, and a detailed qualitative description of the numerous new results obtained. The first appendix gives a detailed listing of publications, presentations, patent applications, awards received, and various other measures of the LDRD project success. Subsequent appendices consist of reprinted versions of several specific,`` scientific journal publications resulting from this LDRD project.
The evaluation system of the 2-D scanning mirror based on CMOS sensor
NASA Astrophysics Data System (ADS)
Zeng, Gui-ying; Xie, Yuan; Chen, Jin-xing
2010-10-01
The high precision two-dimension scanning control technique is being developed for the next geosynchronous satellites FY-4 satellites which is using the three-axis stabilization stages. How to evaluate the point and scanning precision of the scanning mirror is one of the most important technologies. This paper describes the optoelectronic measure method based on CMOS sensors to evaluate the point and scanning precision of the scanning mirror in the laboratory, which is a 2-D dynamic angle measurement system. Some technologies, such as the sup-pixel orientation technology and the CMOS ROI technology, are used in the measurement system. The research shows that the angle measurement system based on IBIS-6600CMOS sensors can attain the 20°× 20° field of view, 2" accuracy, and 1Kframes/s speed. But the system is sensitive to the environment and it can only be worked in the laboratory.
Image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing
NASA Astrophysics Data System (ADS)
Zhou, Nanrun; Pan, Shumin; Cheng, Shan; Zhou, Zhihong
2016-08-01
Most image encryption algorithms based on low-dimensional chaos systems bear security risks and suffer encryption data expansion when adopting nonlinear transformation directly. To overcome these weaknesses and reduce the possible transmission burden, an efficient image compression-encryption scheme based on hyper-chaotic system and 2D compressive sensing is proposed. The original image is measured by the measurement matrices in two directions to achieve compression and encryption simultaneously, and then the resulting image is re-encrypted by the cycle shift operation controlled by a hyper-chaotic system. Cycle shift operation can change the values of the pixels efficiently. The proposed cryptosystem decreases the volume of data to be transmitted and simplifies the keys distribution simultaneously as a nonlinear encryption system. Simulation results verify the validity and the reliability of the proposed algorithm with acceptable compression and security performance.
Development of 2D Microdisplay Using an Integrated Microresonating Waveguide Scanning System.
Hua, Wei-Shu; Wang, Wei-Chih; Wu, Wen-Jong; Tsui, Chi Leung; Cui, Wei; Shih, Wen-Pin
2011-09-01
Our research team has developed a 2D micro image display device that can potentially overcome the size reduction limits while maintaining the high-image resolution and field of view obtained by mirror-based display systems. The basic design of the optical scanner includes a microfabricated SU-8 cantilever waveguide that is electromechanically deflected by a piezoelectric actuator. From the distal tip of the cantilever waveguide, a light beam is emitted and the direction of propagation is displaced along two orthogonal directions. The waveforms for the actuator and the LED light modulation are generated and controlled using a field programmable gate array. Our recent study is an update to the previously-reported mechanical scanner, replacing the hand-built PZT scanner and fiber waveguide with a microfabricated system incorporating aerosol-deposited PZT thin film and a polymeric SU-8 wave guide. In this article, we report on the design and fabrication of a prototype miniaturized 2D scanner, discuss optical and mechanical the modeling of the system's properties and present the experimental results. PMID:22876080
Microwave tomography of extremities: 1) Dedicated 2D system and physiological signatures
Semenov, Serguei; Kellam, James; Sizov, Yuri; Nazarov, Alexei; Williams, Thomas; Nair, Bindu; Pavlovsky, Andrey; Posukh, Vitaly; Quinn, Michael
2011-01-01
Microwave Tomography (MWT) is a novel imaging modality which might be applicable for non-invasive assessment of functional and pathological conditions of biological tissues. The imaging of the soft tissue of extremities is one of its potential applications. The feasibility of this technology for such applications was demonstrated earlier. This is the first of two companion papers focused on an application of MWT for imaging of the extremity’s soft tissues. The goal of this study is to assess the technical performance of the developed 2D MWT system dedicated for imaging of functional and pathological conditions of the extremity’s soft tissues. Specifically, the system’s performance was tested by its ability to detect signals associated with physiological activity and soft tissue interventions (circulatory related changes, blood flow reduction and a simulated compartmental syndrome) – so called “physiological signatures”. The developed 2D MWT system dedicated for an imaging of animal extremities demonstrates good technical performance allowing for stable and predictable data acquisition with reasonable agreement between experimentally measured electromagnetic (EM) field and simulated EM field within a measurement domain. Using the system we were able to obtain physiological signatures associated with systolic vs diastolic phases of circulation in an animal extremity, reperfusion vs occlusion phases of the blood supply to the animal’s extremity and the a compartment syndrome. The imaging results are presented and discussed in the second companion paper. PMID:21364265
Wellbottom fluid implosion treatment system
Brieger, Emmet F.
2001-01-01
A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.
Spanning graphene to carbon-nitride: A 2-D semiconductor alloy system of carbon and nitrogen
NASA Astrophysics Data System (ADS)
Therrien, Joel; Li, Yancen; Schmidt, Daniel
2014-03-01
With the explosion of materials that form 2-D structures in the past few years, there have been a much more diverse ecosystem of combinations of characteristics to explore. Yet with the majority of materials investigated, the properties are fixed according to the composition of the material. Ideally, one wishes to have a tunable system similar to the semiconductor alloy systems, such as AlxGa1-xAs. There have been some theoretical studies of transition metal dichalogenides, none have been reported experimentally as of this writing. The tertianary alloy of BCN has been synthesized, however it was found that the boron had the tendency to cause phase segregation of the material into domains of graphene and boron nitride. Here we will report on the synthesis of non-phase seperated carbon-nitrogen 2D alloys ranging from graphene (Eg = 0 eV) to carbon-nitride, or melon, (Eg = 2.7 eV). We will report on synthesis methods and a summary of relevant electronic and material properties of selected alloys.
Schrödinger equation for non-pure dipole potential in 2D systems
NASA Astrophysics Data System (ADS)
Moumni, M.; Falek, M.
2016-07-01
In this work, we analytically study the Schrödinger equation for the (non-pure) dipolar ion potential V(r) = q/r + Dcosθ/r2, in the case of 2D systems (systems in two-dimensional Euclidean plane) using the separation of variables and the Mathieu equations for the angular part. We give the expressions of eigenenergies and eigenfunctions and study their dependence on the dipole moment D. Imposing the condition of reality on the energies En,m implies that the dipole moment must not exceed a maximum value, otherwise the corresponding bound state disappears. We also find that the s states (m = 0) can no longer exist in the system as soon as the dipole term is present.
Radiometer uncertainty equation research of 2D planar scanning PMMW imaging system
NASA Astrophysics Data System (ADS)
Hu, Taiyang; Xu, Jianzhong; Xiao, Zelong
2009-07-01
With advances in millimeter-wave technology, passive millimeter-wave (PMMW) imaging technology has received considerable concerns, and it has established itself in a wide range of military and civil practical applications, such as in the areas of remote sensing, blind landing, precision guidance and security inspection. Both the high transparency of clothing at millimeter wavelengths and the spatial resolution required to generate adequate images combine to make imaging at millimeter wavelengths a natural approach of screening people for concealed contraband detection. And at the same time, the passive operation mode does not present a safety hazard to the person who is under inspection. Based on the description to the design and engineering implementation of a W-band two-dimensional (2D) planar scanning imaging system, a series of scanning methods utilized in PMMW imaging are generally compared and analyzed, followed by a discussion on the operational principle of the mode of 2D planar scanning particularly. Furthermore, it is found that the traditional radiometer uncertainty equation, which is derived from a moving platform, does not hold under this 2D planar scanning mode due to the fact that there is no absolute connection between the scanning rates in horizontal direction and vertical direction. Consequently, an improved radiometer uncertainty equation is carried out in this paper, by means of taking the total time spent on scanning and imaging into consideration, with the purpose of solving the problem mentioned above. In addition, the related factors which affect the quality of radiometric images are further investigated under the improved radiometer uncertainty equation, and ultimately some original results are presented and analyzed to demonstrate the significance and validity of this new methodology.
An IPOT meshless method using DC PSE approximation for fluid flow equations in 2D and 3D geometries
NASA Astrophysics Data System (ADS)
Bourantas, G. C.; Loukopoulos, V. C.; Skouras, E. D.; Burganos, V. N.; Nikiforidis, G. C.
2016-06-01
Navier-Stokes (N-S) equations, in their primitive variable (u-v-p) formulation, are numerically solved using the Implicit Potential (IPOT) numerical scheme in the context of strong form Meshless Point Collocation (MPC) method. The unknown field functions are computed using the Discretization Correction Particle Strength Exchange (DC PSE) approximation method. The latter makes use of discrete moment conditions to derive the operator kernels, which leads to low condition number for the moment matrix compared to other meshless interpolation methods and increased stability for the numerical solution. The proposed meshless scheme is applied on 2D and 3D spatial domains, using uniform or irregular set of nodes to represent the domain. The numerical results obtained are compared against those obtained using well-established methods.
Avalanches in 2D Dislocation Systems: Plastic Yielding Is Not Depinning
NASA Astrophysics Data System (ADS)
Ispánovity, Péter Dusán; Laurson, Lasse; Zaiser, Michael; Groma, István; Zapperi, Stefano; Alava, Mikko J.
2014-06-01
We study the properties of strain bursts (dislocation avalanches) occurring in two-dimensional discrete dislocation dynamics models under quasistatic stress-controlled loading. Contrary to previous suggestions, the avalanche statistics differ fundamentally from predictions obtained for the depinning of elastic manifolds in quenched random media. Instead, we find an exponent τ =1 of the power-law distribution of slip or released energy, with a cutoff that increases exponentially with the applied stress and diverges with system size at all stresses. These observations demonstrate that the avalanche dynamics of 2D dislocation systems is scale-free at every applied stress and, therefore, cannot be envisaged in terms of critical behavior associated with a depinning transition.
Robust H(∞) control for a class of 2-D discrete delayed systems.
Ye, Shuxia; Li, Jianzhen; Yao, Juan
2014-09-01
In this paper, we deal with the problem of robust H∞ control for a class of 2-D discrete uncertain systems with delayed perturbations described by the Roesser state-space model (RM). The problem to be addressed is the design of robust controllers via state feedback such that the stability of the resulting closed-loop system is guaranteed and a prescribed H∞ performance level is ensured for all delayed perturbations. By utilizing the Lyapunov method and some results, H∞ controllers are given. The results are delay-dependent and can be expressed in terms of linear matrix inequalities (LMIs). Finally, some numerical examples are given to illustrate the effectiveness of the proposed results. PMID:24411024
Engagement of neural circuits underlying 2D spatial navigation in a rodent virtual reality system
Aronov, Dmitriy; Tank, David W.
2015-01-01
SUMMARY Virtual reality (VR) enables precise control of an animal’s environment and otherwise impossible experimental manipulations. Neural activity in navigating rodents has been studied on virtual linear tracks. However, the spatial navigation system’s engagement in complete two-dimensional environments has not been shown. We describe a VR setup for rats, including control software and a large-scale electrophysiology system, which supports 2D navigation by allowing animals to rotate and walk in any direction. The entorhinal-hippocampal circuit, including place cells, grid cells, head direction cells and border cells, showed 2D activity patterns in VR similar to those in the real world. Hippocampal neurons exhibited various remapping responses to changes in the appearance or the shape of the virtual environment, including a novel form in which a VR-induced cue conflict caused remapping to lock to geometry rather than salient cues. These results suggest a general-purpose tool for novel types of experimental manipulations in navigating rats. PMID:25374363
Automatic angle measurement of a 2D object using optical correlator-neural networks hybrid system
NASA Astrophysics Data System (ADS)
Manivannan, N.; Neil, M. A. A.
2011-04-01
In this paper a novel method is proposed and demonstrated for automatic rotation angle measurement of a 2D object using a hybrid architecture, consisting of a 4f optical correlator with a binary phase only multiplexed matched filter and a single layer neural network. The hybrid set-up can be considered as a two-layer perceptron-like neural network; an optical correlator is the first layer and the standard single layer neural network is the second layer. The training scheme used to train the hybrid architecture is a combination of a Direct Binary Search algorithm, to train the optical correlator, and an Error Back Propagation algorithm, to train the neural network. The aim is to perform the major information processing by the optical correlator with a small additional processing by the neural network stage. This allows the system to be used for real-time applications as optics has the inherent ability to process information in a parallel manner at high speed. The neural network stage gives an extra dimension of freedom so that complicated tasks like automatic rotation angle measurement can be achieved. Results of both computer simulation and experimental set-up are presented for rotation angle measurement of an English alphabetic character as a 2D object. The experimental set-up consists of a real optical correlator using two spatial light modulators for both input and frequency plane representations and a PC based model of a single layer network.
Phase Diagram of Bilayer 2D Electron Systems at νT = 1
NASA Astrophysics Data System (ADS)
Champagne, Alexandre
2009-03-01
Bilayer 2D electron systems at total filling fraction νT = 1 and small interlayer spacing can support a strongly correlated phase which exhibits spontaneous interlayer phase coherence and may be described as an excitonic Bose condensate. We use electron interlayer tunnelling and transport to explore the phase diagram of bilayer 2D electron systems at νT = 1, and find that phase transitions between the excitonic νT = 1 phase and bilayer states which lack significant interlayer correlations can be induced in three different ways: by increasing the effective interlayer spacing, d/l, the temperature, T, or the charge imbalance, δν=ν1-ν2. First, for the balanced (δν = 0) system we find that the amplitude of the resonant tunneling in the coherent νT = 1 phase obeys an empirical power law scaling versus d/l at various T, and the layer separation where the tunneling disappears scales linearly with T. Our results [1] offer strong evidence that a finite temperature phase transition separates the balanced interlayer coherent phase from incoherent phases which lack strong interlayer correlations. Secondly, we observe [2] that close to the phase boundary the coherent νT = 1 phase can be absent at δν = 0, present at intermediate δν, and absent again at large δν, thus indicating an intricate phase competition between it and incoherent quasi-independent layer states. Lastly, at δν = 1/3 we report [2] the observation of a direct phase transition between the coherent νT = 1 bilayer integer quantum Hall phase and the pair of single layer fractional quantized Hall states at ν1 = 2/3 and ν2 = 1/3.[4pt] [1] A.R. Champagne, et al., Phys. Rev. Lett. 100, 096801 (2008).[0pt] [2] A.R. Champagne, et al, Phys. Rev. B 78, 205310 (2008)
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
Formation of a helical channel in a 2D system in a quantum Hall regime
NASA Astrophysics Data System (ADS)
Kazakov, Aleksandr; Kolkovsky, V.; Adamus, Z.; Karczewski, G.; Wojtowicz, T.; Rokhinson, Leonid
A two-dimensional system with reconfigurable network of one-dimensional p-wave superconducting channels is a perfect platform to perform braiding of non-Abelian excitations. Such channels can be realized in CdTe:Mn quantum wells in a quantum Hall effect regime, where counterpropagaring edge states with opposite spin polarization can be formed by electrostatic gating. These edges form helical channels similar to the edges of 2D topological insulators and, coupled to a superconductor, should support non-Abelian excitations. While long channels are localized at low temperatures, we found that resistance in short (<6 μm) helical channels remains finite at low temperatures. Transport data and resistance scaling with channel length will be presented. Work supported by ONR, National Science Centre (Poland) and Foundation for Polish Science.
Calibration of an Ultrasound Tomography System for Medical Imaging with 2D Contrast-Source Inversion
NASA Astrophysics Data System (ADS)
Faucher, Gabriel Paul
This dissertation describes two possible methods for the calibration of an ultrasound tomography system developed at University of Manitoba's Electromagnetic Imaging Laboratory for imaging with the contrast-source inversion algorithm. The calibration techniques are adapted from existing procedures employed for microwave tomography. A theoretical model of these calibration principles is developed in order to provide a rationale for the effectiveness of the proposed procedures. The applicability of such an imaging algorithm and calibration methods in the context of ultrasound are discussed. Also presented are 2D and 3D finite-difference time-domain update equations for the simulation of acoustic wave propagation in inhomogeneous media. Details regarding the application of an absorbing boundary-condition, point-source modelling and the treatment of penetrable objects are included in this document.
The stability of freely-propagating ion acoustic waves in 2D systems
NASA Astrophysics Data System (ADS)
Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan
2014-10-01
The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).
Stress dynamics of a 2D dense granular system near shear jamming
NASA Astrophysics Data System (ADS)
Ren, Jie; Dijksman, Joshua; Behringer, Robert
2013-03-01
We study the dynamics of pressure and shear stress in a frictional 2D dense granular system using a novel apparatus that can provide fixed-volume shear without generating inhomogeneities. Under increasing shear strain, the system's pressure shows a strong increase with strain, characterized by a ``Reynolds coefficient,'' R =d2 P / dγ2 . R depends only on packing fraction ϕ, and shows a strong increase as ϕ approaches ϕJ from below. In the meantime, the system's shear stress shows a non-monotonic behavior with increasing strain. It first increases with strain as the system is in ``fragile'' states and builds up long force chains along the compression direction. After a certain amount of strain, force chains along the dilation direction starts to build up, and the system transfers into a ``shear-jammed'' state and the shear stress starts to decrease with strain. Under oscillatory shear, both pressure and shear stress show limit-cycle behavior and reach steady states after many cycles. However, the limit cycles of pressure and shear stress are very different: the pressure exhibits a hysteresis-free parabolic curve, while the shear stress exhibits a strongly hysteretic loop. This work is funded by NSF grants: DMR0906908, DMS0835571, NASA grant NNX10AU01G and ARO grant W911NF-11-1-0110.
Multichannel reconfigurable measurement system for hot plasma diagnostics based on GEM-2D detector
NASA Astrophysics Data System (ADS)
Wojenski, A. J.; Kasprowicz, G.; Pozniak, K. T.; Byszuk, A.; Chernyshova, M.; Czarski, T.; Jablonski, S.; Juszczyk, B.; Zienkiewicz, P.
2015-12-01
In the future magnetically confined fusion research reactors (e.g. ITER tokamak), precise determination of the level of the soft X-ray radiation of plasma with temperature above 30 keV (around 350 mln K) will be very important in plasma parameters optimization. This paper presents the first version of a designed spectrography measurement system. The system is already installed at JET tokamak. Based on the experience gained from the project, the new generation of hardware for spectrography measurements, was designed and also described in the paper. The GEM detector readout structure was changed to 2D in order to perform measurements of i.e. laser generated plasma. The hardware structure of the system was redesigned in order to provide large number of high speed input channels. Finally, this paper also covers the issue of new control software, necessary to set-up a complete system of certain complexity and perform data acquisition. The main goal of the project was to develop a new version of the system, which includes upgraded structure and data transmission infrastructure (i.e. handling large number of measurement channels, high sampling rate).
Two-Phase Acto-Cytosolic Fluid Flow in a Moving Keratocyte: A 2D Continuum Model.
Nikmaneshi, M R; Firoozabadi, B; Saidi, M S
2015-09-01
The F-actin network and cytosol in the lamellipodia of crawling cells flow in a centripetal pattern and spout-like form, respectively. We have numerically studied this two-phase flow in the realistic geometry of a moving keratocyte. Cytosol has been treated as a low viscosity Newtonian fluid flowing through the high viscosity porous medium of F-actin network. Other involved phenomena including myosin activity, adhesion friction, and interphase interaction are also discussed to provide an overall view of this problem. Adopting a two-phase coupled model by myosin concentration, we have found new accurate perspectives of acto-cytosolic flow and pressure fields, myosin distribution, as well as the distribution of effective forces across the lamellipodia of a keratocyte with stationary shape. The order of magnitude method is also used to determine the contribution of forces in the internal dynamics of lamellipodia. PMID:26403420
Caracterisation pratique des systemes quantiques et memoires quantiques auto-correctrices 2D
NASA Astrophysics Data System (ADS)
Landon-Cardinal, Olivier
approche, dite de tomographie variationnelle, propose de reconstruire l'etat en restreignant l'espace de recherche a une classe variationnelle plutot qu'a l'immense espace des etats possibles. Un etat variationnel etant decrit par un petit nombre de parametres, un petit nombre d'experiences peut suffire a identifier les parametres variationnels de l'etat experimental. Nous montrons que c'est le cas pour deux classes variationnelles tres utilisees, les etats a produits matriciels (MPS) et l'ansatz pour intrication multi-echelle (MERA). Memoires quantiques auto-correctrices 2D. Une memoire quantique auto-correctrice est un systeme physique preservant de l'information quantique durant une duree de temps macroscopique. Il serait done l'equivalent quantique d'un disque dur ou d'une memoire flash equipant les ordinateurs actuels. Disposer d'un tel dispositif serait d'un grand interet pour l'informatique quantique. Une memoire quantique auto-correctrice est initialisee en preparant un etat fondamental, c'est-a-dire un etat stationnaire de plus basse energie. Afin de stocker de l'information quantique, il faut plusieurs etats fondamentaux distincts, chacun correspondant a une valeur differente de la memoire. Plus precisement, l'espace fondamental doit etre degenere. Dans cette these, on s'interesse a des systemes de particules disposees sur un reseau bidimensionnel (2D), telles les pieces sur un echiquier, qui sont plus faciles a realiser que les systemes 3D. Nous identifions deux criteres pour l'auto-correction: - La memoire quantique doit etre stable face aux perturbations provenant de l'environnement, par exemple l'application d'un champ magnetique externe. Ceci nous amene a considerer les systemes topologiques 2D dont les degres de liberte sont intrinsequement robustes aux perturbations locales de l'environnement. - La memoire quantique doit etre robuste face a un environnement thermique. Il faut s'assurer que les excitations thermiques n'amenent pas deux etats fondamentaux
Spin-Orbit Interaction and Related Transport Phenomena in 2d Electron and Hole Systems
NASA Astrophysics Data System (ADS)
Khaetskii, A.
Spin-orbit interaction is responsible for many physical phenomena which are under intensive study currently. Here we discuss several of them. The first phenomenon is the edge spin accumulation, which appears due to spin-orbit interaction in 2D mesoscopic structures in the presence of a charge current. We consider the case of a strong spin-orbit-related splitting of the electron spectrum, i.e. a spin precession length is small compared to the mean free path l. The structure can be either in a ballistic regime (when the mean free path is the largest scale in the problem) or quasi-ballistic regime (when l is much smaller than the sample size). We show how physics of edge spin accumulation in different situations should be understood from the point of view of unitarity of boundary scattering. Using transparent method of scattering states, we are able to explain some previous puzzling theoretical results. We clarify the important role of the form of the spin-orbit Hamiltonian, the role of the boundary conditions, etc., and reveal the wrong results obtained in the field by other researchers. The relation between the edge spin density and the bulk spin current in different regimes is discussed. The detailed comparison with the existing theoretical works is presented. Besides, we consider several new transport phenomena which appear in the presence of spin-orbit interaction, for example, magnetotransport phenomena in an external classical magnetic field. In particular, new mechanism of negative magneto-resistance appears which is due to destruction of spin fluxes by the magnetic field, and which can be really pronounced in 2D systems with strong scatterers.
Propagating fronts in 2D Cr(OH) 3 precipitate systems in gelled media
NASA Astrophysics Data System (ADS)
Sultan, Rabih; Panjarian, Shoghag
2001-09-01
Diffusion fronts propagate as two co-precipitate ions inter-diffuse in a gel medium. Liesegang bands of precipitate form periodically behind the diffusion front of an outer electrolyte. The precipitation of Cr(OH) 3 from NaOH diffusing into a Cr 3+ gel matrix is known to yield a single band that propagates in a one-dimensional (1D) tube - Cr(OH) 3 dissolves in excess OH - forming Cr(OH) 4-. We perform similar experiments on the Cr(OH) 3 system in two dimensions (2D), wherein we obtain a perfectly circular Cr(OH) 3 ring that grows larger and thicker as time advances. Using a specially designed Petri dish, ring propagation is monitored both in the absence and the presence of a constant electric field. The field is applied along a radial direction, and the front velocities with the field on are compared with the field-free case. When the field is applied against the direction of front propagation (“negative” field), wave saturation is obtained, characterized by a slight increase in the velocity of propagation with field strength, until it reaches a constant value as the field strength is further increased. In a positive field situation, the wave velocity increases with field strength and exhibits some other interesting features: (1) wave stopping indicated by a freeze in the ring position at a certain characteristic time; (2) annihilation of the ring formation above a critical value of the field strength. Electrical effects in 2D are also studied when electrodes with different potentials are planted at various locations in the electrolyte periphery. Interesting patterning structures including the distortion of the circular symmetry and the birth of multiple rings are reported.
Controlling the Dynamics of the Five-Mode Truncation System of the 2-d Navier-Stokes Equations
NASA Astrophysics Data System (ADS)
Smaoui, Nejib; Zribi, Mohamed
2015-11-01
The dynamics and the control problem of the two dimensional (2-d) Navier-Stokes (N-S) equations with spatially periodic and temporally steady forcing is addressed. At first, the Fourier Galerkin method is applied to the 2-d N-S equations to obtain a fifth order system of nonlinear ordinary differential equations (ODE) that approximates the behavior of these equations. Simulation studies indicate that the obtained ODE system captures the behavior of the 2-d N-S equations. Then, a control law is proposed to drive the states of the ODE system to a desired fixed point. Next, a second control law is developed to synchronize two reduced order ODE models of the 2-d N-S equations having the same Reynolds number and starting from different initial conditions. Finally, simulation results are undertaken to validate the theoretical developments. This research was supported and funded by the Research Sector, Kuwait University under Grant No. SM 05/15.
Compressor bleed cooling fluid feed system
Donahoo, Eric E; Ross, Christopher W
2014-11-25
A compressor bleed cooling fluid feed system for a turbine engine for directing cooling fluids from a compressor to a turbine airfoil cooling system to supply cooling fluids to one or more airfoils of a rotor assembly is disclosed. The compressor bleed cooling fluid feed system may enable cooling fluids to be exhausted from a compressor exhaust plenum through a downstream compressor bleed collection chamber and into the turbine airfoil cooling system. As such, the suction created in the compressor exhaust plenum mitigates boundary layer growth along the inner surface while providing flow of cooling fluids to the turbine airfoils.
NASA Astrophysics Data System (ADS)
Chen, K.; You, Y.; Noblesse, F.
2016-07-01
Experiments are conducted in a linear stratified fluid with a momentum source modeled via a nozzle jet moving horizontally. The generation mechanism of the quasi-two-dimensional dipolar vortex streets is investigated and their evolution characteristics are analyzed. Observation shows that the formation of a dipolar vortex street requires a nonzero motion of the nozzle in addition to conditions of the Reynolds and Froude number (Re, Fr). The (Re, Fr) condition that the dipolar vortex streets can be generated is determined via experimental measurements. The explanation for the absence of such a vortex street can be the low energy of the jet and the strong body-effect disturbance of the solid nozzle. The dependence of the vortex street dimensionless formation time τ and the Strouhal number St on the Froude number Fr or the Reynolds number Re is analyzed. This analysis shows that τ and St appear to be independent of Re and approximately have power-law relations with Fr via data fitting. The exponents of Fr in the two power-law functions are -0.27 for τ and -0.21 for St, while the constant coefficients are 65 and 0.21.
Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems
NASA Technical Reports Server (NTRS)
Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.
2013-01-01
NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing
Eliminating friction with friction: 2D Janssen effect in a friction-driven system.
Karim, M Yasinul; Corwin, Eric I
2014-05-01
The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system. PMID:24856724
Eliminating Friction with Friction: 2D Janssen Effect in a Friction-Driven System
NASA Astrophysics Data System (ADS)
Karim, M. Yasinul; Corwin, Eric I.
2014-05-01
The Janssen effect is a unique property of confined granular materials experiencing gravitational compaction in which the pressure at the bottom saturates with an increasing filling height due to frictional interactions with side walls. In this Letter, we replace gravitational compaction with frictional compaction. We study friction-compacted 2D granular materials confined within fixed boundaries on a horizontal conveyor belt. We find that even with high-friction side walls the Janssen effect completely vanishes. Our results demonstrate that gravity-compacted granular systems are inherently different from friction-compacted systems in at least one important way: vibrations induced by sliding friction with the driving surface relax away tangential forces on the walls. Remarkably, we find that the Janssen effect can be recovered by replacing the straight side walls with a sawtooth pattern. The mechanical force introduced by varying the sawtooth angle θ can be viewed as equivalent to a tunable friction force. By construction, this mechanical friction force cannot be relaxed away by vibrations in the system.
NASA Astrophysics Data System (ADS)
Nissen-Meyer, Tarje; Fournier, Alexandre; Dahlen, F. A.
2008-09-01
We portray a dedicated spectral-element method to solve the elastodynamic wave equation upon spherically symmetric earth models at the expense of a 2-D domain. Using this method, 3-D wavefields of arbitrary resolution may be computed to obtain Fréchet sensitivity kernels, especially for diffracted arrivals. The meshing process is presented for varying frequencies in terms of its efficiency as measured by the total number of elements, their spacing variations and stability criteria. We assess the mesh quantitatively by defining these numerical parameters in a general non-dimensionalized form such that comparisons to other grid-based methods are straightforward. Efficient-mesh generation for the PREM example and a minimum-messaging domain decomposition and parallelization strategy lay foundations for waveforms up to frequencies of 1 Hz on moderate PC clusters. The discretization of fluid, solid and respective boundary regions is similar to previous spectral-element implementations, save for a fluid potential formulation that incorporates the density, thereby yielding identical boundary terms on fluid and solid sides. We compare the second-order Newmark time extrapolation scheme with a newly implemented fourth-order symplectic scheme and argue in favour of the latter in cases of propagation over many wavelengths due to drastic accuracy improvements. Various validation examples such as full moment-tensor seismograms, wavefield snapshots, and energy conservation illustrate the favourable behaviour and potential of the method.
System for connecting fluid couplings
NASA Technical Reports Server (NTRS)
Cody, Joseph C. (Inventor); Matthews, Paul R. (Inventor)
1990-01-01
A system for mating fluid transfer couplings is constructed having a male connector which is provided with a pair of opposed rollers mounted to an exterior region thereof. A male half of a fluid transfer coupling is rotatably supported in an opening in an end of the connector and is equipped with an outwardly extending forward portion. The forward portion locks into an engagement and locking region of a female half of the fluid transfer coupling, with female half being rotatably supported in a receptacle. The receptacle has an opening aligned with locking region, with this opening having a pair of concentric, annularly disposed ramps extending around an interior portion of opening. These ramps are inclined toward the interior of the receptacle and are provided with slots through which rollers of the connector pass. After the connector is inserted into the receptacle (engaging forward portion into engagement region), relative rotation between the connector and receptacle causes the rollers to traverse ramps until the rollers abut and are gripped by retainers. This axially forces the forward portion into locked, sealed engagement with the engagement region.
Hönekopp, Johannes
2012-08-01
Prenatal testosterone (PT) effects have been proposed to increase systemizing (the drive to understand lawful input-output relationships), to decrease empathizing (the drive to understand others), and to cause autism via hypermasculinization of the brain. Digit ratio 2D:4D is a putative marker of PT effects in humans. An online study (n = 1896) into the relationship between the Reading the Mind in the Eyes Test (a widely used measure of empathizing) and self-measured 2D:4D in a nonclinical sample is reported. No evidence for a link between empathizing and 2D:4D in either females or males emerged. Further, three meta-analyses are presented that look into the relationships of 2D:4D with autism spectrum disorder (ASD), systemizing, and empathizing. 2D:4D was substantially lower (more masculine) in ASD-affected individuals than in normal controls (d = -0.58, P < 0.001). However, 2D:4D was found to be virtually unrelated to systemizing and empathizing in normal adults. The results support the idea that high PT is a risk factor for autism, but they challenge the view that PT substantially contributes to sex differences in systemizing and empathizing. Possibly, this pattern reflects an interaction effect, whereby PT drives ASD characteristic changes only in brains with a specific damage. PMID:22674640
A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer
NASA Astrophysics Data System (ADS)
Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming
2016-04-01
This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.
Exosomes and the MICA-NKG2D system in cancer.
Clayton, Aled; Tabi, Zsuzsanna
2005-01-01
Exosomes are nanometer sized vesicles, secreted by a diverse range of cell types, whose biological functions remain ambiguous. Several groups have demonstrated the potential of manipulating exosomes for activating cellular immune responses. The possibility that exosomes may inhibit immunological responses, however, has not been widely addressed. We have investigated if exosomes produced by tumor cells can inhibit immunological functions, through modulating expression of the NKG2D receptor by effector cells. Incubating tumor exosomes with fresh peripheral blood leukocytes resulted in a marked reduction in the proportion of NKG2D-positive CD3+CD8+ Cells, and CD3- cells by 48 h. This effect was dose dependent and was shown with exosomes from different tumor cells including breast cancer and mesothelioma. Analysis of tumor exosome-phenotype revealed positive expression of several NKG2D ligands, and antibody blocking experiments revealed the importance of such ligands in driving the reduction in the proportion of NKG2D-positive effector cells. The functional importance of the decrease in NKG2D-positive cells was addressed in vitro cytotoxicity assays. For example a CD8+ T cell line pre-incubated with tumor exosomes had significant decreased capacity to kill peptide-pulsed T2 target cells. These data highlight a role for tumor exosomes bearing NKG2D ligands as a mechanism contributing to cancer immune evasion. PMID:15885603
NASA Astrophysics Data System (ADS)
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
Magnetotransport properties of 2D fermionic systems with k-cubic Rashba spin-orbit interaction
NASA Astrophysics Data System (ADS)
Mawrie, Alestin; Biswas, Tutul; Kanti Ghosh, Tarun
2014-10-01
The spin-orbit interaction in heavy hole gas formed at p-doped semiconductor heterojunctions and electron gas at SrTiO3 surfaces is cubic in momentum. Here we report magnetotransport properties of k-cubic Rashba spin-orbit coupled 2D fermionic systems. We study longitudinal and Hall components of the resistivity tensor analytically as well as numerically. The longitudinal resistivity shows a beating pattern due to different Shubnikov-de Haas (SdH) oscillation frequencies f± for spin-up and spin-down fermions. We propose empirical forms of f± as exact expressions are not available, which are being used to find locations of the beating nodes. The beating nodes and the number of oscillations between any two successive nodes obtained from exact numerical results are in excellent agreement with those calculated from the proposed empirical formula. In the Hall resistivity, an additional Hall plateau appears between the two conventional ones as the spin-orbit coupling constant increases. The width of this additional plateau increases with spin-orbit coupling constant.
Amundsen, Morten; Linder, Jacob
2016-01-01
An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921
Experimental investigation on the high chip rate of 2D incoherent optical CDMA system
NASA Astrophysics Data System (ADS)
Su, Guorui; Wang, Rong; Pu, Tao; Fang, Tao; Zheng, Jilin; Zhu, Huatao; Wu, Weijiang
2015-08-01
An innovative approach to realise high chip rate in OCDMA transmission system is proposed and experimentally investigation, the high chip rate is achieved through a 2-D wavelength-hopping time-spreading en/decoder based on the supercontinuum light source. The source used in the experiment is generated by high nonlinear optical fiber (HNLF), Erbium-doped fiber amplifier (EDFA) which output power is 26 dBm, and distributed feed-back laser diode which works in the gain switch state. The span and the flatness of the light source are 20 nm and 3 dB, respectively, after equalization of wavelength selective switch (WSS). The wavelength-hopping time-spreading coder can be changed 20 nm in the wavelength and 400 ps in the time, is consist of WSS and delay lines. Therefore, the experimental results show that the chip rate can achieve 500 Gchip/s, in the case of 2.5 Gbit/s, while keeping a bit error rate below forward error correction limit after 40 km transmission.
Amundsen, Morten; Linder, Jacob
2016-01-01
An extension of quasiclassical Keldysh-Usadel theory to higher spatial dimensions than one is crucial in order to describe physical phenomena like charge/spin Hall effects and topological excitations like vortices and skyrmions, none of which are captured in one-dimensional models. We here present a numerical finite element method which solves the non-linearized 2D and 3D quasiclassical Usadel equation relevant for the diffusive regime. We show the application of this on three model systems with non-trivial geometries: (i) a bottlenecked Josephson junction with external flux, (ii) a nanodisk ferromagnet deposited on top of a superconductor and (iii) superconducting islands in contact with a ferromagnet. In case (i), we demonstrate that one may control externally not only the geometrical array in which superconducting vortices arrange themselves, but also to cause coalescence and tune the number of vortices. In case (iii), we show that the supercurrent path can be tailored by incorporating magnetic elements in planar Josephson junctions which also lead to a strong modulation of the density of states. The finite element method presented herein paves the way for gaining insight in physical phenomena which have remained largely unexplored due to the complexity of solving the full quasiclassical equations in higher dimensions. PMID:26961921
NASA Astrophysics Data System (ADS)
Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme
2015-03-01
Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.
Parametric Modeling for Fluid Systems
NASA Technical Reports Server (NTRS)
Pizarro, Yaritzmar Rosario; Martinez, Jonathan
2013-01-01
Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.
A three-dimensional measuring system based on 2D laser displacement sensor
NASA Astrophysics Data System (ADS)
Jiang, Sulun; Fu, Yuegang; Zhu, Wangbin; Zhang, Yingwei; Wang, Weichen
2014-12-01
3D(Three-dimensional) measurement has found its applications in the fields of automation process, Reverse engineering(RE), machine vision, as well as medical diagnostic. There are some disadvantages in the present 3D measurement methods. In this paper, a 2D laser displacement sensor-based and fast-dimensional surface measurement method for small size objects was proposed after analyzing the existing three-dimensional measurement methods. This method uses the information collected by 2D laser displacement sensor and encoder in pan-tilt to three-dimensional reconstruct 3D model. And then discuss the restrictive relation between angular velocity of pan-tilt and parameters (measurement range, signal sample rate, precision, etc.) of 2D laser displacement sensor. The sources of error and methods of improving precision were analyzed. Theoretical analyses and experiments have proved the feasibility, high-precision and practical of this method.
Extension of Generalized Fluid System Simulation Program's Fluid Property Database
NASA Technical Reports Server (NTRS)
Patel, Kishan
2011-01-01
This internship focused on the development of additional capabilities for the General Fluid Systems Simulation Program (GFSSP). GFSSP is a thermo-fluid code used to evaluate system performance by a finite volume-based network analysis method. The program was developed primarily to analyze the complex internal flow of propulsion systems and is capable of solving many problems related to thermodynamics and fluid mechanics. GFSSP is integrated with thermodynamic programs that provide fluid properties for sub-cooled, superheated, and saturation states. For fluids that are not included in the thermodynamic property program, look-up property tables can be provided. The look-up property tables of the current release version can only handle sub-cooled and superheated states. The primary purpose of the internship was to extend the look-up tables to handle saturated states. This involves a) generation of a property table using REFPROP, a thermodynamic property program that is widely used, and b) modifications of the Fortran source code to read in an additional property table containing saturation data for both saturated liquid and saturated vapor states. Also, a method was implemented to calculate the thermodynamic properties of user-fluids within the saturation region, given values of pressure and enthalpy. These additions required new code to be written, and older code had to be adjusted to accommodate the new capabilities. Ultimately, the changes will lead to the incorporation of this new capability in future versions of GFSSP. This paper describes the development and validation of the new capability.
Safety drain system for fluid reservoir
NASA Technical Reports Server (NTRS)
England, John Dwight (Inventor); Kelley, Anthony R. (Inventor); Cronise, Raymond J. (Inventor)
2012-01-01
A safety drain system includes a plurality of drain sections, each of which defines distinct fluid flow paths. At least a portion of the fluid flow paths commence at a side of the drain section that is in fluid communication with a reservoir's fluid. Each fluid flow path at the side communicating with the reservoir's fluid defines an opening having a smallest dimension not to exceed approximately one centimeter. The drain sections are distributed over at least one surface of the reservoir. A manifold is coupled to the drain sections.
Application of a Hybrid 3D-2D Laser Scanning System to the Characterization of Slate Slabs
López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier
2010-01-01
Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard. PMID:22219696
Determining ice water content from 2D crystal images in convective cloud systems
NASA Astrophysics Data System (ADS)
Leroy, Delphine; Coutris, Pierre; Fontaine, Emmanuel; Schwarzenboeck, Alfons; Strapp, J. Walter
2016-04-01
Cloud microphysical in-situ instrumentation measures bulk parameters like total water content (TWC) and/or derives particle size distributions (PSD) (utilizing optical spectrometers and optical array probes (OAP)). The goal of this work is to introduce a comprehensive methodology to compute TWC from OAP measurements, based on the dataset collected during recent HAIC (High Altitude Ice Crystals)/HIWC (High Ice Water Content) field campaigns. Indeed, the HAIC/HIWC field campaigns in Darwin (2014) and Cayenne (2015) provide a unique opportunity to explore the complex relationship between cloud particle mass and size in ice crystal environments. Numerous mesoscale convective systems (MCSs) were sampled with the French Falcon 20 research aircraft at different temperature levels from -10°C up to 50°C. The aircraft instrumentation included an IKP-2 (isokinetic probe) to get reliable measurements of TWC and the optical array probes 2D-S and PIP recording images over the entire ice crystal size range. Based on the known principle relating crystal mass and size with a power law (m=α•Dβ), Fontaine et al. (2014) performed extended 3D crystal simulations and thereby demonstrated that it is possible to estimate the value of the exponent β from OAP data, by analyzing the surface-size relationship for the 2D images as a function of time. Leroy et al. (2015) proposed an extended version of this method that produces estimates of β from the analysis of both the surface-size and perimeter-size relationships. Knowing the value of β, α then is deduced from the simultaneous IKP-2 TWC measurements for the entire HAIC/HIWC dataset. The statistical analysis of α and β values for the HAIC/HIWC dataset firstly shows that α is closely linked to β and that this link changes with temperature. From these trends, a generalized parameterization for α is proposed. Finally, the comparison with the initial IKP-2 measurements demonstrates that the method is able to predict TWC values
NASA Astrophysics Data System (ADS)
Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW
2016-01-01
This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.
Korecka, Magdalena; Waligorska, Teresa; Figurski, Michal; Toledo, Jon B; Arnold, Steven E; Grossman, Murray; Trojanowski, John Q; Shaw, Leslie M
2014-01-01
The primary aims of this work were to: 1) establish a calibrator surrogate matrix for quantification of amyloid-β (Aβ)42 in human cerebrospinal fluid (CSF) and preparation of quality control samples for LC-MS-MS methodology, 2) validate analytical performance of the assay, and 3) evaluate its diagnostic utility and compare it with the AlzBio3 immunoassay. The analytical methodology was based on a 2D-UPLC-MS-MS platform. Sample pretreatment used 5 M guanidine hydrochloride and extraction on μElution SPE columns as previously described. A column cleaning procedure involved gradual removal of aqueous solvents by acetonitrile assured consistent long-term chromatography performance. Receiver-operator characteristic (ROC) curve and correlation analyses evaluated the diagnostic utility of UPLC-MS-MS compared to AlzBio3 immunoassay for detection of Alzheimer's disease (AD). The surrogate matrix, artificial CSF containing 4 mg/mL of BSA, provides linear and reproducible calibration comparable to human pooled CSF as calibration matrix. Appropriate cleaning of the trapping and analytical columns provided every-day, trouble-free runs. Analyses of CSF Aβ42 showed that UPLC-MS-MS distinguished neuropathologically-diagnosed AD subjects from healthy controls with at least equivalent diagnostic utility to AlzBio3. Comparison of ROC curves for these two assays showed no statistically significant difference (p = 0.2229). Linear regression analysis of Aβ42 concentrations measured by this mass spectrometry-based method compared to the AlzBio3 immunoassay showed significantly higher but highly correlated results. In conclusion, the newly established surrogate matrix for 2D-UPLC-MS-MS measurement of Aβ42 provides selective, reproducible, and accurate results. The documented analytical performance and diagnostic performance for AD versus controls supports consideration as a candidate reference method. PMID:24625802
Mitri, F G
2015-09-01
The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and
Fluid sampling system for a nuclear reactor
Lau, L.K.; Alper, N.I.
1994-11-22
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.
Fluid sampling system for a nuclear reactor
Lau, Louis K.; Alper, Naum I.
1994-01-01
A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump.
NASA Astrophysics Data System (ADS)
Christopher, Jason; Vutukuru, Mounika; Bishop, David; Swan, Anna; Goldberg, Bennett
Straining 2D materials can dramatically change electrical, thermal and optical properties and can even cause unconventional behavior such as generating pseudo-magnetic fields. However attempts at probing these effects have been hindered by the difficulty involved with precisely straining these materials. Here we present micro-electromechanical systems (MEMS) as an ideal platform for straining 2D materials because they are readily compatible with existing electronics and their size makes them compatible with 2D materials. Additionally the MEMS platform does more than facilitate experimentation; by freeing us to think of strain as dynamical it makes a whole new class of devices practical for next generation technology. To demonstrate the power of this platform we have for the first time measured the strain response of the Raman and photoluminescence spectra of suspended MoS2, and measured the friction force between MoS2 and the MEMS structure. This talk will touch on the basics of designing MEMS structures for straining 2D materials, how to transfer 2D materials onto MEMS without break either, proof of concept experimental results, and next steps in developing the MEMS platform. This work is supported by NSF DMR Grant 1411008, and author J. Christopher thanks the NDSEG program for its support.
Disappearance of 2D Magnetic Character in Quasi-1D System CoNb2O6 under Magnetic Field
NASA Astrophysics Data System (ADS)
Mitsuda, Setsuo; Kobayashi, Satoru; Katagiri, Kouji; Yoshizawa, Hideki; Ishikawa, Masayasu; Miyatani, Kazuo; Kohn, Kay
1995-07-01
We report neutron scattering as well as ac susceptibility studies on the formation of magnetic ordering in a quasi-1D ferromagnetic chain system CoNb2O6 in magnetic fields up to 600 Oe. At T=1.5 K, a noncollinear ferrimagnetic (FR) phase with up-up-down spin arrangement along the b axis is field-induced in the magnetic field above ˜300 Oe. Interestingly, the pronounced 2D magnetic character previously found in the noncollinear antiferromagnetic phase disappears in the FR phase. This is direct evidence that the 2D magnetic character is due to the cancellation of interchain exchange fields at an apex site of a 2D isosceles-triangular lattice where quasi-1D ferromagnetic chains lie.
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
Space station integrated propulsion and fluid system study: Fluid systems configuration databook
NASA Technical Reports Server (NTRS)
Rose, L.; Bicknell, B.; Bergman, D.; Wilson, S.
1987-01-01
This databook contains fluid system requirements and system descriptions for Space Station program elements including the United States and International modules, integrated fluid systems, attached payloads, fluid servicers and vehicle accommodation facilities. Separate sections are devoted to each of the program elements and include a discussion of the overall system requirements, specific fluid systems requirements and systems descriptions. The systems descriptions contain configurations, fluid inventory data and component lists. In addition, a list of information sources is referenced at the end of each section.
Capacitive system detects and locates fluid leaks
NASA Technical Reports Server (NTRS)
1966-01-01
Electronic monitoring system automatically detects and locates minute leaks in seams of large fluid storage tanks and pipelines covered with thermal insulation. The system uses a capacitive tape-sensing element that is adhesively bonded over seams where fluid leaks are likely to occur.
Critical thickness of 2D to 3D transition in GexSi1-x/Si(001) system
NASA Astrophysics Data System (ADS)
Lozovoy, K. A.; Kokhanenko, A. P.; Voitsekhovskii, A. V.
2016-07-01
In this paper, Stranski-Krastanov growth of GexSi1-x epitaxial layers on the Si(001) surface is considered. Experimental investigations show that the moment of transition from 2D to 3D growth and the critical thickness of 2D layer at which this transition occurs play a key role during the synthesis of such materials. Among the most important parameters determining the peculiarities of the growth process and characteristics of emerging island ensembles are growth temperature and surface conditions (for example, the presence of surfactants). But existing theoretical models are not able to predict the values of the critical thickness in the whole range of growth temperatures and compositions x of solution for these systems. For the calculations of the critical thickness of transition from 2D to 3D growth, in this paper, a theoretical model based on general nucleation theory is proposed. This model is specified by taking into account dependencies of elastic modulus, lattices mismatch, and surface energy of the side facet on the composition x. As a result, dependencies of the critical thickness of Stranski-Krastanov transition on composition x and temperature are obtained. This allows one to determine conditions of transition from 2D to 3D growth mode in these systems. The simulated results explain experimentally observed results on temperature dependencies of the critical thickness for different germanium contents.
NASA Astrophysics Data System (ADS)
Baudon, Catherine; Gillet, Hervé; Cremer, Michel
2013-04-01
High-quality bathymetric, 2D seismic and Chirp data located in the southern parts of the Bay of Biscay, France, collected by the University of Bordeaux 1 (Cruises ITSAS 2, 2001; PROSECAN 3, 2006 and SARGASS, 2010) have recently been compiled. The survey area widely covers the Capbreton Canyon, which lies on the boundary between two major structural zones: the Aquitanian passive margin to the North, and the Basque-Cantabrian margin to the South which corresponds to the offshore Pyrenean front. The dataset revealed a large number of key seafloor features potentially associated with focused fluid-flow processes and subsurface sediment-remobilization. Focused fluid migration through sub-seabed sediments is a common phenomenon on continental margins worldwide and has widespread implications from both industrial and fundamental perspectives, from seafloor marine environmental issues to petroleum exploration and hazard assessments. Our study analyses the relationships between seafloor features, deeper structures and fluid migration through the Plio-Quaternary sedimentary pile. The geometrical characteristics, mechanisms of formation and kinematics of four main groups of seabed features have been investigated. (i) A 150km2 field of pockmarks can be observed on the Basque margin. These features are cone-shaped circular or elliptical depressions that are either randomly distributed as small pockmarks (diameter < 20m) or aligned in trains of large pockmarks (ranging from 200 to 600m in diameter) along shallow troughs leading downstream to the Capbreton Canyon. Seismic data show that most pockmarks reach the seabed through vertically staked V-shaped features but some are buried and show evidence of lateral migration through time. (ii) A second field of widely-spaced groups of pockmarks pierce the upper slope of the Aquitanian margin. These depressions are typically a few hundred meters in diameter and seem to be preferentially located in the troughs or on the stoss sides of
Two-fluid Hydrodynamic Model for Fluid-Flow Simulation in Fluid-Solids Systems
Energy Science and Technology Software Center (ESTSC)
1994-06-20
FLUFIX is a two-dimensional , transient, Eulerian, and finite-difference program, based on a two-fluid hydrodynamic model, for fluid flow simulation in fluid-solids systems. The software is written in a modular form using the Implicit Multi-Field (IMF) numerical technique. Quantities computed are the spatial distribution of solids loading, gas and solids velocities, pressure, and temperatures. Predicted are bubble formation, bed frequencies, and solids recirculation. Applications include bubbling and circulating atmospheric and pressurized fluidized bed reactors, combustors,more » gasifiers, and FCC (Fluid Catalytic Cracker) reactors.« less
Morisawa, Hiraku; Hirota, Mikako; Toda, Tosifusa
2006-01-01
Background In the post-genome era, most research scientists working in the field of proteomics are confronted with difficulties in management of large volumes of data, which they are required to keep in formats suitable for subsequent data mining. Therefore, a well-developed open source laboratory information management system (LIMS) should be available for their proteomics research studies. Results We developed an open source LIMS appropriately customized for 2-D gel electrophoresis-based proteomics workflow. The main features of its design are compactness, flexibility and connectivity to public databases. It supports the handling of data imported from mass spectrometry software and 2-D gel image analysis software. The LIMS is equipped with the same input interface for 2-D gel information as a clickable map on public 2DPAGE databases. The LIMS allows researchers to follow their own experimental procedures by reviewing the illustrations of 2-D gel maps and well layouts on the digestion plates and MS sample plates. Conclusion Our new open source LIMS is now available as a basic model for proteome informatics, and is accessible for further improvement. We hope that many research scientists working in the field of proteomics will evaluate our LIMS and suggest ways in which it can be improved. PMID:17018156
Karavitis, G.A.
1984-01-01
The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)
Ti3CrCu4: A possible 2-D ferromagnetic spin fluctuating system
NASA Astrophysics Data System (ADS)
Dhar, S. K.; Provino, A.; Manfrinetti, P.; Kulkarni, R.; Goyal, Neeraj; Paudyal, D.
2016-05-01
Ti3CrCu4 is a new ternary compound which crystallizes in the tetragonal Ti3Pd5 structure type. The Cr atoms form square nets in the a-b plane (a = 3.124 Å) which are separated by an unusually large distance c = 11.228 Å along the tetragonal axis, thus forming a -2-D Cr-sublattice. The paramagnetic susceptibility is characterized by a low effective moment, μeff = 1.1 μB, a low paramagnetic Curie temperature θP (below 7 K) and a temperature independent χ0 = 6.7 x 10-4 emu/mol. The magnetization at 1.8 K increases rapidly with field nearly saturating to 0.2 μB/f.u. The zero field heat capacity C/T shows an upturn below 7 K (˜190 mJ/mol K2 at ˜0.1K) which is suppressed in applied magnetic fields and interpreted as suggesting the presence of spin fluctuations. The resistivity at low temperatures shows non-Fermi liquid behavior. Overall, the experimental data thus reveal an unusual magnetic state in Ti3CrCu4, which likely has its origin in the layered nature of the Cr sub-lattice and ferromagnetic spin fluctuations. Density functional theoretical calculations reveal a sharp Cr density of states peak just above the Fermi level, indicating the propensity of Ti3CrCu4 to become magnetic.
NASA Astrophysics Data System (ADS)
Syah Putra, Rudy
2016-02-01
Agar matrix was artificially contaminated with caesium and subjected to rapid assessment of electrokinetic treatment on the basis of the 2D electrode configuration. The effect of caesium concentration on the process was investigated using different electrode configuration (i.e. rectangular, hexagonal and triangular). During treatment the in situ pH distribution, the current flow, and the potential distribution were monitored. At the end of the treatment, the caesium concentration distribution was measured. The results of these experiments showed that for caesium contamination, pH control is essential in order to create a suitable environment throughout the agar matrix to enable contaminant removal. It was found that the type of electrode configuration used to control the pH affected the rate of caesium accumulation. All of the electrode configurations tested was effective, but the highest caesium extraction was achieved when the hexagonal pattern was used to control the pH. After 72 h of treatment at 50 mA, the concentration of caesium decreased gradually from the second and first layer of agar matrix throughout the cell, suggesting that most of the caesium was concentrated on the cathode part.
Fluid permeability measurement system and method
Hallman, Jr., Russell Louis; Renner, Michael John
2008-02-05
A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.
NASA Astrophysics Data System (ADS)
Eichenlaub, Jesse B.
1995-03-01
Mounting a lenticular lens in front of a flat panel display is a well known, inexpensive, and easy way to create an autostereoscopic system. Such a lens produces half resolution 3D images because half the pixels on the LCD are seen by the left eye and half by the right eye. This may be acceptable for graphics, but it makes full resolution text, as displayed by common software, nearly unreadable. Very fine alignment tolerances normally preclude the possibility of removing and replacing the lens in order to switch between 2D and 3D applications. Lenticular lens based displays are therefore limited to use as dedicated 3D devices. DTI has devised a technique which removes this limitation, allowing switching between full resolution 2D and half resolution 3D imaging modes. A second element, in the form of a concave lenticular lens array whose shape is exactly the negative of the first lens, is mounted on a hinge so that it can be swung down over the first lens array. When so positioned the two lenses cancel optically, allowing the user to see full resolution 2D for text or numerical applications. The two lenses, having complementary shapes, naturally tend to nestle together and snap into perfect alignment when pressed together--thus obviating any need for user operated alignment mechanisms. This system represents an ideal solution for laptop and notebook computer applications. It was devised to meet the stringent requirements of a laptop computer manufacturer including very compact size, very low cost, little impact on existing manufacturing or assembly procedures, and compatibility with existing full resolution 2D text- oriented software as well as 3D graphics. Similar requirements apply to high and electronic calculators, several models of which now use LCDs for the display of graphics.
Surface cleanliness of fluid systems, specification for
NASA Technical Reports Server (NTRS)
1995-01-01
This specification establishes surface cleanliness levels, test methods, cleaning and packaging requirements, and protection and inspection procedures for determining surface cleanliness. These surfaces pertain to aerospace parts, components, assemblies, subsystems, and systems in contact with any fluid medium.
A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene
Brinkman, D.; Heitzinger, C.; Markowich, P.A.
2014-01-15
We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.
Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study
NASA Astrophysics Data System (ADS)
Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir
2010-07-01
Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.
Learning control system design based on 2-D theory - An application to parallel link manipulator
NASA Technical Reports Server (NTRS)
Geng, Z.; Carroll, R. L.; Lee, J. D.; Haynes, L. H.
1990-01-01
An approach to iterative learning control system design based on two-dimensional system theory is presented. A two-dimensional model for the iterative learning control system which reveals the connections between learning control systems and two-dimensional system theory is established. A learning control algorithm is proposed, and the convergence of learning using this algorithm is guaranteed by two-dimensional stability. The learning algorithm is applied successfully to the trajectory tracking control problem for a parallel link robot manipulator. The excellent performance of this learning algorithm is demonstrated by the computer simulation results.
Wireless Fluid Level Measuring System
NASA Technical Reports Server (NTRS)
Taylor, Bryant D. (Inventor); Woodard, Stanley E. (Inventor)
2007-01-01
A level-sensing probe positioned in a tank is divided into sections with each section including (i) a fluid-level capacitive sensor disposed along the length thereof, (ii) an inductor electrically coupled to the capacitive sensor, (iii) a sensor antenna positioned for inductive coupling to the inductor, and (iv) an electrical conductor coupled to the sensor antenna. An electrically non-conductive housing accessible from a position outside of the tank houses antennas arrayed in a pattern. Each antenna is electrically coupled to the electrical conductor from a corresponding one of the sections. A magnetic field response recorder has a measurement head with transceiving antennas arrayed therein to correspond to the pattern of the housing's antennas. When a measurement is to be taken, the measurement head is mechanically coupled to the housing so that each housing antenna is substantially aligned with a specific one of the transceiving antennas.
NASA Technical Reports Server (NTRS)
1987-01-01
The Earth Observing System (Eos) will provide an ideal forum in which the stronly synergistic characteristics of the lidar systems can be used in concert with the characteristics of a number of other sensors to better understand the Earth as a system. Progress in the development of more efficient and long-lasting laser systems will insure their availability in the Eos time frame. The necessary remote-sensing techniques are being developed to convert the Lidar Atmospheric Sounder and Altimeter (LASA) observations into the proper scientific parameters. Each of these activities reinforces the promise that LASA and GLRS will be a reality in the Eos era.
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-15
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
NASA Astrophysics Data System (ADS)
Kim, Young-Keun; Kim, Kyung-Soo
2014-10-01
Maritime transportation demands an accurate measurement system to track the motion of oscillating container boxes in real time. However, it is a challenge to design a sensor system that can provide both reliable and non-contact methods of 6-DOF motion measurements of a remote object for outdoor applications. In the paper, a sensor system based on two 2D laser scanners is proposed for detecting the relative 6-DOF motion of a crane load in real time. Even without implementing a camera, the proposed system can detect the motion of a remote object using four laser beam points. Because it is a laser-based sensor, the system is expected to be highly robust to sea weather conditions.
Twin robotic x-ray system for 2D radiographic and 3D cone-beam CT imaging
NASA Astrophysics Data System (ADS)
Fieselmann, Andreas; Steinbrener, Jan; Jerebko, Anna K.; Voigt, Johannes M.; Scholz, Rosemarie; Ritschl, Ludwig; Mertelmeier, Thomas
2016-03-01
In this work, we provide an initial characterization of a novel twin robotic X-ray system. This system is equipped with two motor-driven telescopic arms carrying X-ray tube and flat-panel detector, respectively. 2D radiographs and fluoroscopic image sequences can be obtained from different viewing angles. Projection data for 3D cone-beam CT reconstruction can be acquired during simultaneous movement of the arms along dedicated scanning trajectories. We provide an initial evaluation of the 3D image quality based on phantom scans and clinical images. Furthermore, initial evaluation of patient dose is conducted. The results show that the system delivers high image quality for a range of medical applications. In particular, high spatial resolution enables adequate visualization of bone structures. This system allows 3D X-ray scanning of patients in standing and weight-bearing position. It could enable new 2D/3D imaging workflows in musculoskeletal imaging and improve diagnosis of musculoskeletal disorders.
Large scale cryogenic fluid systems testing
NASA Technical Reports Server (NTRS)
1992-01-01
NASA Lewis Research Center's Cryogenic Fluid Systems Branch (CFSB) within the Space Propulsion Technology Division (SPTD) has the ultimate goal of enabling the long term storage and in-space fueling/resupply operations for spacecraft and reusable vehicles in support of space exploration. Using analytical modeling, ground based testing, and on-orbit experimentation, the CFSB is studying three primary categories of fluid technology: storage, supply, and transfer. The CFSB is also investigating fluid handling, advanced instrumentation, and tank structures and materials. Ground based testing of large-scale systems is done using liquid hydrogen as a test fluid at the Cryogenic Propellant Tank Facility (K-site) at Lewis' Plum Brook Station in Sandusky, Ohio. A general overview of tests involving liquid transfer, thermal control, pressure control, and pressurization is given.
Implementation of a system to life test 2-D laser arrays
NASA Astrophysics Data System (ADS)
Faltus, Thomas H.; Bicket, Daniel J.
1992-02-01
Multi-emitter laser devices, stacked to form 2-dimensional arrays, have been shown to effectively pump Nd:YAG slabs in solid state laser systems. Using these arrays as substitutes for flashlamps provides the potential for increased reliability of laser systems. However, to quantify this reliability improvement, laser arrays must be life tested. To ensure that the life test data accurately describes the array lifetimes, the life test system must possess the following characteristics: adequate control of operating stresses, to ensure that the test results apply to true use-conditions; continuous monitoring and recording of array health, to capture unpredictable variations in array performance; in-situ parameter measurement, to measure array performance without inducing handling damage; and extensive safety interlocks, to protect personnel from laser hazards. This paper describes an array life test system possessing these characteristics. It describes the system hardware, operating and test software, and the methodology behind the system's use. We demonstrate the system's performance by life testing 2-dimensional laser arrays having previously documented front facet anomalies. Disadvantages as well as advantages of design decisions are discussed.
Küchemann, Stefan; Mahn, Carsten; Samwer, Konrad
2014-01-15
The investigation of short time dynamics using X-ray scattering techniques is commonly limited either by the read out frequency of the detector or by a low intensity. In this paper, we present a chopper system, which can increase the temporal resolution of 2D X-ray detectors by a factor of 13. This technique only applies to amorphous or polycrystalline samples due to their circular diffraction patterns. Using the chopper, we successfully increased the temporal resolution up to 5.1 ms during synchrotron experiments. For the construction, we provide a mathematical formalism, which, in principle, allows an even higher increase of the temporal resolution.
NASA Astrophysics Data System (ADS)
Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe
2016-04-01
In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the
Control system for fluid heated steam generator
Boland, James F.; Koenig, John F.
1985-01-01
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
Control system for fluid heated steam generator
Boland, J.F.; Koenig, J.F.
1984-05-29
A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.
NASA Technical Reports Server (NTRS)
Reardon, John E.; Violett, Duane L., Jr.
1991-01-01
The AFAS Database System was developed to provide the basic structure of a comprehensive database system for the Marshall Space Flight Center (MSFC) Structures and Dynamics Laboratory Aerophysics Division. The system is intended to handle all of the Aerophysics Division Test Facilities as well as data from other sources. The system was written for the DEC VAX family of computers in FORTRAN-77 and utilizes the VMS indexed file system and screen management routines. Various aspects of the system are covered, including a description of the user interface, lists of all code structure elements, descriptions of the file structures, a description of the security system operation, a detailed description of the data retrieval tasks, a description of the session log, and a description of the archival system.
An automated calibration system that combines fringe projection and 2D digital image correlation
NASA Astrophysics Data System (ADS)
Siegmann, Philip; Felipe-Sesé, Luis A.; Díaz Garrido, Francisco; Piñeiro-Ave, José
2015-09-01
An optical non-contact and full-field system that allows large displacement measurements in x-, y- and z-direction is presented. The system combines 2-dimentional digital image correlation (for in-plane measurements) and fringe projection (for out-of-plane displacements) and uses only one camera. The in- and out-of-plane displacements are obtained at the same instant allowing real-time measurements thanks to a color encoding filtering procedure. The out-of-plane measurement allows the correction of the in-plane measurements and the system has to be precisely aligned by following an established alignment procedure. Furthermore, a calibration has to be done to obtain a fringe parameter k for each pixel of the specimen surface image necessary to relate the shifted phase with the out-of-plane displacements. The presented system obtains different values of k for each pixel because of the divergent and non-normal incidence of the fringe beam onto the sample surface (non zero incidence angle). The calibration is performed automatically and only has to be done once for each configuration of the system. The system is portable and can be easily adapted to measure large displacements and wide areas (using small incidence angle) or smaller distances but with higher resolutions (when increasing the incidence angle).
A robust omnifont open-vocabulary Arabic OCR system using pseudo-2D-HMM
NASA Astrophysics Data System (ADS)
Rashwan, Abdullah M.; Rashwan, Mohsen A.; Abdel-Hameed, Ahmed; Abdou, Sherif; Khalil, A. H.
2012-01-01
Recognizing old documents is highly desirable since the demand for quickly searching millions of archived documents has recently increased. Using Hidden Markov Models (HMMs) has been proven to be a good solution to tackle the main problems of recognizing typewritten Arabic characters. These attempts however achieved a remarkable success for omnifont OCR under very favorable conditions, they didn't achieve the same performance in practical conditions, i.e. noisy documents. In this paper we present an omnifont, large-vocabulary Arabic OCR system using Pseudo Two Dimensional Hidden Markov Model (P2DHMM), which is a generalization of the HMM. P2DHMM offers a more efficient way to model the Arabic characters, such model offer both minimal dependency on the font size/style (omnifont), and high level of robustness against noise. The evaluation results of this system are very promising compared to a baseline HMM system and best OCRs available in the market (Sakhr and NovoDynamics). The recognition accuracy of the P2DHMM classifier is measured against the classic HMM classifier, the average word accuracy rates for P2DHMM and HMM classifiers are 79% and 66% respectively. The overall system accuracy is measured against Sakhr and NovoDynamics OCR systems, the average word accuracy rates for P2DHMM, NovoDynamics, and Sakhr are 74%, 71%, and 61% respectively.
Single-snapshot 2D color measurement by plenoptic imaging system
NASA Astrophysics Data System (ADS)
Masuda, Kensuke; Yamanaka, Yuji; Maruyama, Go; Nagai, Sho; Hirai, Hideaki; Meng, Lingfei; Tosic, Ivana
2014-03-01
Plenoptic cameras enable capture of directional light ray information, thus allowing applications such as digital refocusing, depth estimation, or multiband imaging. One of the most common plenoptic camera architectures contains a microlens array at the conventional image plane and a sensor at the back focal plane of the microlens array. We leverage the multiband imaging (MBI) function of this camera and develop a single-snapshot, single-sensor high color fidelity camera. Our camera is based on a plenoptic system with XYZ filters inserted in the pupil plane of the main lens. To achieve high color measurement precision of this system, we perform an end-to-end optimization of the system model that includes light source information, object information, optical system information, plenoptic image processing and color estimation processing. Optimized system characteristics are exploited to build an XYZ plenoptic colorimetric camera prototype that achieves high color measurement precision. We describe an application of our colorimetric camera to color shading evaluation of display and show that it achieves color accuracy of ΔE<0.01.
A neuromorphic VLSI device for implementing 2-D selective attention systems.
Indiveri, G
2001-01-01
Selective attention is a mechanism used to sequentially select and process salient subregions of the input space, while suppressing inputs arriving from nonsalient regions. By processing small amounts of sensory information in a serial fashion, rather than attempting to process all the sensory data in parallel, this mechanism overcomes the problem of flooding limited processing capacity systems with sensory inputs. It is found in many biological systems and can be a useful engineering tool for developing artificial systems that need to process in real-time sensory data. In this paper we present a neuromorphic hardware model of a selective attention mechanism implemented on a very large scale integration (VLSI) chip, using analog circuits. The chip makes use of a spike-based representation for receiving input signals, transmitting output signals and for shifting the selection of the attended input stimulus over time. It can be interfaced to neuromorphic sensors and actuators, for implementing multichip selective attention systems. We describe the characteristics of the circuits used in the architecture and present experimental data measured from the system. PMID:18249973
NASA Astrophysics Data System (ADS)
Polukhin, V. A.; Kurbanova, E. D.
2016-02-01
Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).
Hexatic and mesoscopic phases in a 2D quantum coulomb system.
Clark, Bryan K; Casula, Michele; Ceperley, D M
2009-07-31
We study the Wigner crystal melting in a two-dimensional quantum system of distinguishable particles interacting via the 1/r Coulomb potential. We use quantum Monte Carlo methods to calculate its phase diagram, locate the Wigner crystal region, and analyze its instabilities towards the liquid phase. We discuss the role of quantum effects in the critical behavior of the system, and compare our numerical results with the classical theory of melting, and the microemulsion theory of frustrated Coulomb systems. We find a Pomeranchuk effect much larger then in solid helium. In addition, we find that the exponent for the algebraic decay of the hexatic phase differs significantly from the Kosterilitz-Thouless theory of melting. We search for the existence of mesoscopic phases and find evidence of metastable bubbles but no mesoscopic phase that is stable in equilibrium. PMID:19792514
The evaluation of an inexpensive, 2D, video based gait assessment system for clinical use.
Ugbolue, U Chris; Papi, Enrica; Kaliarntas, Konstantinos T; Kerr, Andrew; Earl, Leo; Pomeroy, Valerie M; Rowe, Philip J
2013-07-01
The purpose of this study was to investigate the clinical potential of an augmented-video-based-portable-system (AVPS). The AVPS included a walkway grid mat made of vinyl flooring, flat paper bull's eye markers, four photoswitches mounted on tripods, a light-indicator, a video camera, and a computer with ProTrainer System software. The AVPS output was compared to a "gold standard" 3D Vicon Motion Analysis System both statically and dynamically over a fixed range (-90° to +90°) using a two-segment-goniometric-rig marked with both bull's eye and retroreflective markers. At each segment angle position, three trials of data were captured. The reliability of the AVPS was also tested using three raters. Further twelve, young, healthy subjects participated in a concurrent validity study in which they performed six gait trials which were simultaneously recorded by both systems. Both motion analysis systems showed low levels of intra subject variability in all kinematic variables indicated by the size of the standard deviations across the six trials. There were no significant differences between the motion systems with respect to the kinematic variables (P>0.05). The results showed a high intra- and inter-rater reliability for both the kinematic and temporo-spatial parameters. With respect to gait events the lowest ICC value for the intra-rater reliability test was 0.993 for the kinematic variables, and ranged from 0.941 to 0.956 for the temporo-spatial variables and 0.731 to 0.954 for the tibia inclination angles. The validation data suggest the AVPS is capable of generating highly reliable and repeatable data when applied to normal subjects and could be used within the clinical setting. PMID:23465758
A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.
Ghal-Eh, N; Green, S
2016-06-01
In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813
Filling of orbital fluid management systems
NASA Technical Reports Server (NTRS)
Merino, F.; Blatt, M. H.; Thies, N. C.
1978-01-01
A study was performed with three objectives: (1) analyze fluid management system fill under orbital conditions; (2) determine what experimentation is needed; and (3) develop an experimental program. The fluid management system was a 1.06m (41.7 in) diameter pressure vessel with screen channel device. Analyses were conducted using liquid hydrogen and N2O4. The influence of helium and autogenous pressurization systems was considered. Analyses showed that fluid management system fill will be more difficult with a cryogen than with an earth storable. The key to a successful fill with cryogens is in devising techniques for filling without vent liquid, and removing trapped vapor from the screen device at tank fill completion. This will be accomplished with prechill, fill, and vapor condensation processes. Refill will require a vent and purge process, to dilute the residual helium, prior to introducing liquid. Neither prechill, chill, nor purge processes will be required for earth storables.
Topologically robust transport of entangled photons in a 2D photonic system.
Mittal, Sunil; Orre, Venkata Vikram; Hafezi, Mohammad
2016-07-11
We theoretically study the transport of time-bin entangled photon pairs in a two-dimensional topological photonic system of coupled ring resonators. This system implements the integer quantum Hall model using a synthetic gauge field and exhibits topologically robust edge states. We show that the transport through edge states preserves temporal correlations of entangled photons whereas bulk transport does not preserve these correlations and can lead to significant unwanted temporal bunching or anti-bunching of photons. We study the effect of disorder on the quantum transport properties; while the edge transport remains robust, bulk transport is very susceptible, and in the limit of strong disorder, bulk states become localized. We show that this localization is manifested as an enhanced bunching/anti-bunching of photons. This topologically robust transport of correlations through edge states could enable robust on-chip quantum communication channels and delay lines for information encoded in temporal correlations of photons. PMID:27410836
Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system
NASA Astrophysics Data System (ADS)
Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.
The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.
Interlayer tunneling studies of highly imbalanced bilayer 2D electron systems at νT= 1
NASA Astrophysics Data System (ADS)
Champagne, A. R.; Eisenstein, J. P.; Pfeiffer, L. N.; West, K. W.
2007-03-01
When the separation between two parallel 2-dimensional electron systems (2DES) becomes comparable to the average distance between electrons within a single layer, the system can support a quantum Hall state with total filling factor νT=1. This state can be described as a Bose condensate of excitons. Previous studies [1] have shown that close to the νT=1 phase boundary, a small imbalance in the number of electrons in each layer can strengthen the condensate. We report on interlayer tunneling measurements of the effect of large imbalances as a function of the interlayer spacing. We explore the possibility of competing order between the excitonic state and the (1/3, 2/3) fractional states in the individual layers. This work was supported by the NSF and the DOE. [1] I. B. Spielman, et al., Phys. Rev. B 70, 081303 (2004).
Study of the height and density distributions of the 2-D granular system under vertical vibration
NASA Astrophysics Data System (ADS)
Pak, Hyuk Kyu; Kim, Kipom; Jun, Yonggun
1998-03-01
Melecular dynamic simulations and experiments are used to investigate the pattern formation of the granular materials in a vertically vibrated rigid container. The height and density distributions of the peak of the patterns in two dimensional system are measured using the simulation. The height distribution agrees with the experimental observation. At the peak of height of the pattern the density is observed minimum. From the information of the vertical velocities of the particles, the momentum flux distributions are studied also.
A novel 2D wavelength-time chaos code in optical CDMA system
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian
2012-11-01
Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.
Tracking contrast agents using real-time 2D photoacoustic imaging system for cardiac applications
NASA Astrophysics Data System (ADS)
Olafsson, Ragnar; Montilla, Leonardo; Ingram, Pier; Witte, Russell S.
2009-02-01
Photoacoustic (PA) imaging is a rapidly developing imaging modality that can detect optical contrast agents with high sensitivity. While detectors in PA imaging have traditionally been single element ultrasound transducers, use of array systems is desirable because they potentially provide high frame rates to capture dynamic events, such as injection and distribution of contrast in clinical applications. We present preliminary data consisting of 40 second sequences of coregistered pulse-echo (PE) and PA images acquired simultaneously in real time using a clinical ultrasonic machine. Using a 7 MHz linear array, the scanner allowed simultaneous acquisition of inphase-quadrature (IQ) data on 64 elements at a rate limited by the illumination source (Q-switched laser at 20 Hz) with spatial resolution determined to be 0.6 mm (axial) and 0.4 mm (lateral). PA images had a signal-to-noise ratio of approximately 35 dB without averaging. The sequences captured the injection and distribution of an infrared-absorbing contrast agent into a cadaver rat heart. From these data, a perfusion time constant of 0.23 s-1 was estimated. After further refinement, the system will be tested in live animals. Ultimately, an integrated system in the clinic could facilitate inexpensive molecular screening for coronary artery disease.
NASA Technical Reports Server (NTRS)
Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.
1988-01-01
Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.
NASA Astrophysics Data System (ADS)
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
Application of Compressed Sensing to 2-D Ultrasonic Propagation Imaging System data
Mascarenas, David D.; Farrar, Charles R.; Chong, See Yenn; Lee, J.R.; Park, Gyu Hae; Flynn, Eric B.
2012-06-29
The Ultrasonic Propagation Imaging (UPI) System is a unique, non-contact, laser-based ultrasonic excitation and measurement system developed for structural health monitoring applications. The UPI system imparts laser-induced ultrasonic excitations at user-defined locations on a structure of interest. The response of these excitations is then measured by piezoelectric transducers. By using appropriate data reconstruction techniques, a time-evolving image of the response can be generated. A representative measurement of a plate might contain 800x800 spatial data measurement locations and each measurement location might be sampled at 500 instances in time. The result is a total of 640,000 measurement locations and 320,000,000 unique measurements. This is clearly a very large set of data to collect, store in memory and process. The value of these ultrasonic response images for structural health monitoring applications makes tackling these challenges worthwhile. Recently compressed sensing has presented itself as a candidate solution for directly collecting relevant information from sparse, high-dimensional measurements. The main idea behind compressed sensing is that by directly collecting a relatively small number of coefficients it is possible to reconstruct the original measurement. The coefficients are obtained from linear combinations of (what would have been the original direct) measurements. Often compressed sensing research is simulated by generating compressed coefficients from conventionally collected measurements. The simulation approach is necessary because the direct collection of compressed coefficients often requires compressed sensing analog front-ends that are currently not commercially available. The ability of the UPI system to make measurements at user-defined locations presents a unique capability on which compressed measurement techniques may be directly applied. The application of compressed sensing techniques on this data holds the potential to
The optical system design and application of micro 2D barcode
NASA Astrophysics Data System (ADS)
Zhu, Yi-jia; Li, Liang-liang; Qian, Cheng; Liang, Zhong-cheng
2010-11-01
We show an optical system of micro visual tag which is based on the principle of microscope and the property of QR Code. Unlike current optical tag, such as barcodes, must be read within a short rang and occupy valuable physical space on products, the new tags can be shrunk to several millimeters and captured from a distance of over 0.5 meters. We design the transmitter according to the parameters of camera lens. We also take the detection range and apertures into account, meanwhile conduct simulations and experiments. The result shows that: the tag can be captured from a long distance, and the amplified image is able to accurately be decoded.
Anomalous giant piezoresistance in AlAs 2D electron systems with antidot lattices.
Gunawan, O; Gokmen, T; Shkolnikov, Y P; De Poortere, E P; Shayegan, M
2008-01-25
An AlAs two-dimensional electron system patterned with an antidot lattice exhibits a giant piezoresistance effect at low temperatures, with a sign opposite to the piezoresistance observed in the unpatterned region. We suggest that the origin of this anomalous giant piezoresistance is the nonuniform strain in the antidot lattice and the exclusion of electrons occupying the two conduction-band valleys from different regions of the sample. This is analogous to the well-known giant magnetoresistance effect, with valley playing the role of spin and strain the role of magnetic field. PMID:18233015
Chaotically Spiking Canards in an Excitable System with 2D Inertial Fast Manifolds
NASA Astrophysics Data System (ADS)
Marino, Francesco; Marin, Francesco; Balle, Salvador; Piro, Oreste
2007-02-01
We introduce a new class of excitable systems with two-dimensional fast dynamics that includes inertia. A novel transition from excitability to relaxation oscillations is discovered where the usual Hopf bifurcation is followed by a cascade of period doubled and chaotic small excitable attractors and, as they grow, by a new type of canard explosion where a small chaotic background erratically but deterministically triggers excitable spikes. This scenario is also found in a model for a nonlinear Fabry-Perot cavity with one pendular mirror.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
An active microwave imaging system for reconstruction of 2-D electrical property distributions.
Meaney, P M; Paulsen, K D; Hartov, A; Crane, R K
1995-10-01
The goal of this work is to develop a microwave-based imaging system for hyperthermia treatment monitoring and assessment. Toward this end, a four transmit channel and four receive channel hardware device and concomitant image reconstruction algorithm have been realized. The hardware is designed to measure electric fields (i.e., amplitude and phase) at various locations in a phantom tank with and without the presence of various heterogeneities using standard heterodyning principles. Particular attention has been paid to designing a receiver with better than 115 dB of linear dynamic range which is necessary for imaging biological tissue which often has very high conductivity, especially for tissues with high water content. A calibration procedure has been developed to compensate for signal loss due to three-dimensional radiation in the measured data, since the reconstruction process is only two-dimensional at the present time. Results are shown which demonstrate the stability and accuracy of the measurement system, the extent to which the forward computational model agrees with the measured field distribution when the electrical properties are known, and image reconstructions of electrically unknown targets of varying diameter. In the latter case, images of both the reactive and resistive component of the electrical property distribution have been recoverable. Quantitative information on object location, size, and electrical properties results when the target is approximately one-half wavelength in size. Images of smaller objects lack the same level of quantitative information, but remain qualitatively correct. PMID:8582719
Numerical and experimental studies of the elastic enhancement factor of 2D open systems
NASA Astrophysics Data System (ADS)
Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał
We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.
Orbital Express fluid transfer demonstration system
NASA Astrophysics Data System (ADS)
Rotenberger, Scott; SooHoo, David; Abraham, Gabriel
2008-04-01
Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging
Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems
NASA Astrophysics Data System (ADS)
Chen, MuSheng; Lin, ShunDa
2011-06-01
At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.
Location detection and tracking of moving targets by a 2D IR-UWB radar system.
Nguyen, Van-Han; Pyun, Jae-Young
2015-01-01
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773
Matrix Cracking in Four Different 2D SiC/SiC Composite Systems
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2003-01-01
Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.
Location Detection and Tracking of Moving Targets by a 2D IR-UWB Radar System
Nguyen, Van-Han; Pyun, Jae-Young
2015-01-01
In indoor environments, the Global Positioning System (GPS) and long-range tracking radar systems are not optimal, because of signal propagation limitations in the indoor environment. In recent years, the use of ultra-wide band (UWB) technology has become a possible solution for object detection, localization and tracking in indoor environments, because of its high range resolution, compact size and low cost. This paper presents improved target detection and tracking techniques for moving objects with impulse-radio UWB (IR-UWB) radar in a short-range indoor area. This is achieved through signal-processing steps, such as clutter reduction, target detection, target localization and tracking. In this paper, we introduce a new combination consisting of our proposed signal-processing procedures. In the clutter-reduction step, a filtering method that uses a Kalman filter (KF) is proposed. Then, in the target detection step, a modification of the conventional CLEAN algorithm which is used to estimate the impulse response from observation region is applied for the advanced elimination of false alarms. Then, the output is fed into the target localization and tracking step, in which the target location and trajectory are determined and tracked by using unscented KF in two-dimensional coordinates. In each step, the proposed methods are compared to conventional methods to demonstrate the differences in performance. The experiments are carried out using actual IR-UWB radar under different scenarios. The results verify that the proposed methods can improve the probability and efficiency of target detection and tracking. PMID:25808773
Association of autonomic nervous system and EEG scalp potential during playing 2D Grand Turismo 5.
Subhani, Ahmad Rauf; Likun, Xia; Saeed Malik, Aamir
2012-01-01
Cerebral activation and autonomic nervous system have importance in studies such as mental stress. The aim of this study is to analyze variations in EEG scalp potential which may influence autonomic activation of heart while playing video games. Ten healthy participants were recruited in this study. Electroencephalogram (EEG) and electrocardiogram (ECG) signals were measured simultaneously during playing video game and rest conditions. Sympathetic and parasympathetic innervations of heart were evaluated from heart rate variability (HRV), derived from the ECG. Scalp potential was measured by the EEG. The results showed a significant upsurge in the value theta Fz/alpha Pz (p<0.001) while playing game. The results also showed tachycardia while playing video game as compared to rest condition (p<0.005). Normalized low frequency power and ratio of low frequency/high frequency power were significantly increased while playing video game and normalized high frequency power sank during video games. Results showed synchronized activity of cerebellum and sympathetic and parasympathetic innervation of heart. PMID:23366661
2D position guidance with single-station optical scan-based system
NASA Astrophysics Data System (ADS)
Guo, Siyang; Ren, Yongjie; Huang, Zhe; Chen, Yang; Hong, Tianqi
2015-08-01
The workshop Measuring Position System (wMPS) based on intersection of optical planes is widely applied in large-scale metrology. However, in guidance areas concerning more about horizontal directions such as in the area of transporting with AGVs, the coordinate of z axis which represents the height of the vehicle is of no particular importance. Also, the installation and parameters calibration of wMPS is complex and time-consuming. In this paper, a new method with single transmitter measuring two dimensional coordinate to guide the moving object (except the vertical direction) is proposed and demonstrated. The three dimensional coordinate of receiver was calculated if its horizontal angle, vertical angle and the coordinate of vertical direction are given. In order to get the receiver's horizontal and vertical angle, a serious of mathematical formulas was derived from a model of single transmitter with two rotating laser planes. The coordinate of vertical direction was obtained by the laser tracker and mapped from laser tracker coordinates to transmitter coordinates. Concerning that the coordinate of the vertical direction remains almost the same if the object moves in the level ground, a series of vertical-direction coordinates of moving object was measured beforehand and the average value of coordinates was the approximate vertical-direction coordinates of every point. To verify this method, the points acquired by the transmitter were remeasured by the laser tracker. Finally, the coordinates were compared and the results were analyzed. The experiment results show that the method's measuring accuracy has reached 5mm.
A novel beat-noise-reducing en/decoding technology for a coherent 2-D OCDMA system.
Zheng, Jilin; Wang, Rong; Pu, Tao; Lu, Lin; Fang, Tao; Cheng, Yun; Chen, Xiangfei
2009-10-12
A novel fiber Bragg grating (FBG)-based en/decoder for a coherent two-dimensional (2-D) wavelength-time (WT) optical code-division multiple-access (OCDMA) system is proposed to suppress the beat noise (BN). The feasibility of en/decoding function and the effectiveness of BN suppression are demonstrated by the simulation comparison between the conventional and proposed scheme, which are also further validated by en/decoding experiments with two users at a data rate of 2.5, 5 and 10 Gb/s respectively. The further numerical performance analysis of the proposed en/decoding method reveals the BER improvement compared with the conventional system. PMID:20372663
Fluid Power Systems. Energy Technology Series.
ERIC Educational Resources Information Center
Center for Occupational Research and Development, Inc., Waco, TX.
This course in fluid power systems is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in company-sponsored…
Combining the switched-beam and beam-steering capabilities in a 2-D phased array antenna system
NASA Astrophysics Data System (ADS)
Tsai, Yi-Che; Chen, Yin-Bing; Hwang, Ruey-Bing
2016-01-01
This paper presents the development, fabrication, and measurement of a novel beam-forming system consisting of 16 subarray antennas, each containing four aperture-coupled patch antennas, and the application of this system in smart wireless communication systems. The beam patterns of each of the subarray antennas can be switched toward one of nine zones over a half space by adjusting the specific phase delay angles among the four antenna elements. Furthermore, when all subarrays are pointed at the same zone, slightly continuous beam steering in around 1° increments can be achieved by dynamically altering the progressive phase delay angle among the subarrays. Phase angle calibration was implemented by coupling each transmitter output and down converter into the in-phase/quadrature baseband to calculate the correction factor to the weight. In addition, to validate the proposed concepts and the fabricated 2-D phased array antenna system, this study measured the far-field radiation patterns of the aperture-coupled patch array integrated with feeding networks and a phase-calibration system to carefully verify its spatially switched-beam and beam-steering characteristics at a center frequency of 2.4 GHz which can cover the industrial, scientific, and medical band and some long-term evolution applications. In addition, measured results were compared with calculated results, and agreement between them was observed.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
NASA Astrophysics Data System (ADS)
Mani, Ramesh; Kriisa, A.
2015-03-01
Negative diagonal magneto-conductivity/resistivity is a spectacular- and thought provoking- property of driven, far-from-equilibrium, low dimensional electronic systems. The physical response of this exotic electronic state is not yet fully understood since it is rarely encountered in experiment. The microwave-radiation-induced zero-resistance state in the high mobility GaAs/AlGaAs 2D electron system is believed to be an example where negative magneto-conductivity/resistivity is responsible for the observed phenomena. Here, we examine the magneto-transport characteristics of this negative conductivity/resistivity state in the microwave photo-excited two-dimensional electron system (2DES) through a numerical solution of the associated boundary value problem. The results suggest, surprisingly, that a bare negative diagonal conductivity/resistivity state in the 2DES under photo-excitation should yield a positive diagonal resistance with a concomitant sign reversal in the Hall voltage. Transport measurements are supported by the DOE, Office of Basic Energy Sciences, Material Sciences and Engineering Division under DE-SC0001762. Additional support by the ARO under W911NF-07-01-015.
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.
1990-01-01
An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no
Systems Improved Numerical Fluids Analysis Code
NASA Technical Reports Server (NTRS)
Costello, F. A.
1990-01-01
Systems Improved Numerical Fluids Analysis Code, SINFAC, consists of additional routines added to April, 1983, version of SINDA. Additional routines provide for mathematical modeling of active heat-transfer loops. Simulates steady-state and pseudo-transient operations of 16 different components of heat-transfer loops, including radiators, evaporators, condensers, mechanical pumps, reservoirs, and many types of valves and fittings. Program contains property-analysis routine used to compute thermodynamic properties of 20 different refrigerants. Source code written in FORTRAN 77.
Breaker system for high viscosity fluids
Hinkel, J.J.
1981-02-10
A tertiary amine/persulfate breaker system is disclosed which effects complete breaks of polysaccharide based water-gels or fluids in the ambient temperature range. Induction time may be controlled over wide permissible limits. The invention claims improved compositions and methods, particularly advantageously applied to the treatment and stimulation of shallow oil and gas wells (Formation temperatures from about 50 to 125/sup 0/F.).
Breaker system for high viscosity fluids
Hinkel, J. J.
1985-12-24
A tertiary amine/persulfate breaker system is disclosed which effects complete breaks of polysaccharide based water-gels or fluids in the ambient temperature range. Induction time may be controlled over wide permissible limits. The invention claims improved compositions and methods, particularly advantageously applied to the treatment and stimulation of shallow oil and gas wells (formation temperatures from about 50/sup 0/ to 125/sup 0/ F.).
Testing of the Automated Fluid Interface System
NASA Technical Reports Server (NTRS)
Johnston, A. S.; Tyler, Tony R.
1998-01-01
The Automated Fluid Interface System (AFIS) is an advanced development prototype satellite servicer. The device was designed to transfer consumables from one spacecraft to another. An engineering model was built and underwent development testing at Marshall Space Flight Center. While the current AFIS is not suitable for spaceflight, testing and evaluation of the AFIS provided significant experience which would be beneficial in building a flight unit.
A systems approach to theoretical fluid mechanics: Fundamentals
NASA Technical Reports Server (NTRS)
Anyiwo, J. C.
1978-01-01
A preliminary application of the underlying principles of the investigator's general system theory to the description and analyses of the fluid flow system is presented. An attempt is made to establish practical models, or elements of the general fluid flow system from the point of view of the general system theory fundamental principles. Results obtained are applied to a simple experimental fluid flow system, as test case, with particular emphasis on the understanding of fluid flow instability, transition and turbulence.
Increase of spin dephasing times in a 2D electron system with degree of initial spin polarization
NASA Astrophysics Data System (ADS)
Stich, D.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Schüller, C.
2008-03-01
We report on time-resolved Faraday/Kerr rotation measurements on a high-mobility 2D electron system. A variable initial spin polarization is created in the sample by a circularly polarized pump pulse, and the spin polarization is tracked by measuring the Faraday/Kerr rotation of a time-delayed probe pulse. By varying the pump intensity, the initial spin polarization is changed from the low-polarization limit to a polarization degree of several percent. The observed spin dephasing time increases from less than 20 ps to more than 200 ps as the initial spin polarization is increased. To exclude sample heating effects, additional measurements with constant pump intensity and variable degree of circular polarization are performed. The results confirm the theoretical prediction by Weng and Wu [Phys. Rev. B 68 (2003) 075312] that the spin dephasing strongly depends on the initial spin polarization degree. The microscopic origin for this is the Hartree-Fock term in the Coulomb interaction, which acts as an effective out-of plane magnetic field.
Zhang, Yuning; Lundberg, Pontus; Diether, Maren; Porsch, Christian; Janson, Caroline; Lynd, Nathaniel A.; Ducani, Cosimo; Malkoch, Michael; Malmström, Eva; Hawker, Craig J.; Nyström, Andreas M.
2015-01-01
Histamine functionalized block copolymers based on poly(allyl glycidyl ether)-b-poly(ethylene oxide) (PAGE-b-PEO) were prepared with different ratios of histamine and octyl or benzyl groups using UV-initiated thiol-ene click chemistry. At neutral pH, the histamine units are uncharged and hydrophobic, while in acidic environments, such as in the endosome, lysosomes, or extracellular sites of tumours, the histamine groups are positively charged and hydrophilic. pH responsible polymer drug delivery systems is a promising route to site specific delivery of drugs and offers the potential to avoid side effects of systemic treatment. Our detailed in vitro experiments of the efficacy of drug delivery and the intracellular localization characteristics of this library of NPs in 2D and 3D cultures of breast cancer revealed that the 50% histamine-modified polymer loaded with DOX exhibited rapid accumulation in the nucleus of free DOX within 2 h. Confocal studies showed enhanced mitochondrial localization and lysosomal escape when compared to controls. From these combined studies, it was shown that by accurately tuning the structure of the initial block copolymers, the resulting self-assembled NPs can be designed to exploit histamine as an endosomal escape trigger and the octyl/benzyl units give rise to a hydrophobic core resulting in highly efficacious drug delivery systems (DDS) with control over intracellular localization. Optimization and rational control of the intracellular localization of both DDS and the parent drug can give nanomedicines a substantial increase in efficacy and should be explored in future studies. PMID:26257912
Fluid flow dynamics in MAS systems
NASA Astrophysics Data System (ADS)
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3 mm-rotor diameter has been analyzed for spinning rates up to 67 kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3 mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7 mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor.
Fluid flow dynamics in MAS systems.
Wilhelm, Dirk; Purea, Armin; Engelke, Frank
2015-08-01
The turbine system and the radial bearing of a high performance magic angle spinning (MAS) probe with 1.3mm-rotor diameter has been analyzed for spinning rates up to 67kHz. We focused mainly on the fluid flow properties of the MAS system. Therefore, computational fluid dynamics (CFD) simulations and fluid measurements of the turbine and the radial bearings have been performed. CFD simulation and measurement results of the 1.3mm-MAS rotor system show relatively low efficiency (about 25%) compared to standard turbo machines outside the realm of MAS. However, in particular, MAS turbines are mainly optimized for speed and stability instead of efficiency. We have compared MAS systems for rotor diameter of 1.3-7mm converted to dimensionless values with classical turbomachinery systems showing that the operation parameters (rotor diameter, inlet mass flow, spinning rate) are in the favorable range. This dimensionless analysis also supports radial turbines for low speed MAS probes and diagonal turbines for high speed MAS probes. Consequently, a change from Pelton type MAS turbines to diagonal turbines might be worth considering for high speed applications. CFD simulations of the radial bearings have been compared with basic theoretical values proposing considerably smaller frictional loss values. The discrepancies might be due to the simple linear flow profile employed for the theoretical model. Frictional losses generated inside the radial bearings result in undesired heat-up of the rotor. The rotor surface temperature distribution computed by CFD simulations show a large temperature gradient over the rotor. PMID:26073599
Precision Clean Hardware: Maintenance of Fluid Systems Cleanliness
NASA Technical Reports Server (NTRS)
Sharp, Sheila; Pedley, Mike; Bond, Tim; Quaglino, Joseph; Lorenz, Mary Jo; Bentz, Michael; Banta, Richard; Tolliver, Nancy; Golden, John; Levesque, Ray
2003-01-01
The ISS fluid systems are so complex that fluid system cleanliness cannot be verified at the assembly level. A "build clean / maintain clean" approach was used by all major fluid systems: Verify cleanliness at the detail and subassembly level. Maintain cleanliness during assembly.
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...
14 CFR 23.1097 - Carburetor deicing fluid system capacity.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Carburetor deicing fluid system capacity... Powerplant Induction System § 23.1097 Carburetor deicing fluid system capacity. (a) The capacity of each carburetor deicing fluid system— (1) May not be less than the greater of— (i) That required to provide...
NASA Astrophysics Data System (ADS)
LeVoir, M. A.; Gulick, S. P.; Reece, R.; Barth, G. A.; Childs, J. R.; Everson, E. D.; Hart, P. E.; Johnson, K. M.; Lester, W. R.; Sliter, R. W.
2011-12-01
The Baranof Fan is a large marine sedimentary system in the eastern Gulf of Alaska, straddling the border between the U.S. and Canada. The volume of the Fan is estimated to be > 200,000 km3. Little is known about the depositional timing, the tectonic and morphologic processes influencing its development, or the role of channel aggradation and avulsion in its progression. Both tectonic and climatic transitions likely influenced the formation and evolution of the Fan, with events including the onset of northern hemisphere glaciation, the Mid-Pleistocene transition, the transport of the Yakutat Terrane along the southeast Alaskan margin, and the uplift of the Coast Mountains. 2D seismic reflection and multibeam bathymetry data were collected in the Gulf of Alaska in June 2011 aboard the R/V Marcus G. Langseth as a part of the U.S. Extended Continental Shelf (ECS) program assessing potential opportunities under the United Nations Law of the Sea Convention. The purpose of the 2011 survey was to determine sediment thickness, velocity structure, stratigraphic architecture, and crustal structure on of the Gulf of Alaska seafloor in support of U.S. continental shelf maritime zone definition. The surveyed geologic features include the Surveyor and Baranof sedimentary systems, which control active sediment distribution in the Gulf of Alaska. Preliminary analysis of these data show four distinct buried channels throughout the mid to distal Baranof Fan, ranging in width from 5 - 9 km, which may have evolved into modern surface channels (ranging in width from 2 - 7 km) visible in both the seismic data and multibeam bathymetry. The location and trajectory of these buried channels, however, appears distinct from the modern Horizon and Mukluk Channels; the buried channels may have avulsed into the modern channel systems, or could possibly be older and now abandoned branches instrumental in building the westward part of the Fan. All of the imaged channels appear to be depositional
Telerobotic on-orbit remote fluid resupply system
NASA Technical Reports Server (NTRS)
1990-01-01
The development of a telerobotic on-orbit fluid resupply demonstration system is described. A fluid transfer demonstration system was developed which functionally simulates operations required to remotely transfer fluids (liquids or gases) from a servicing spacecraft to a receiving spacecraft through the use of telerobotic manipulations. The fluid system is representative of systems used by current or planned spacecraft and propulsion stages requiring on-orbit remote resupply. The system was integrated with an existing MSFC remotely controlled manipulator arm to mate/demate couplings for demonstration and evaluation of a complete remotely operated fluid transfer system.
Meijer, Marrigje F.; Velleman, Ton; Boerboom, Alexander L.; Bulstra, Sjoerd K.; Otten, Egbert; Stevens, Martin; Reininga, Inge H. F.
2016-01-01
Introduction The EOS stereoradiography system has shown to provide reliable varus/valgus (VV) measurements of the lower limb in 2D (VV2D) and 3D (VV3D) after total knee arthroplasty (TKA). Validity of these measurements has not been investigated yet, therefore the purpose of this study was to determine validity of EOS VV2D and VV3D. Methods EOS images were made of a lower limb phantom containing a knee prosthesis, while varying VV angle from 15° varus to 15° valgus and flexion angle from 0° to 20°, and changing rotation from 20° internal to 20° external rotation. Differences between the actual VV position of the lower limb phantom and its position as measured on EOS 2D and 3D images were investigated. Results Rotation, flexion or VV angle alone had no major impact on VV2D or VV3D. Combination of VV angle and rotation with full extension did not show major differences in VV2D measurements either. Combination of flexion and rotation with a neutral VV angle showed variation of up to 7.4° for VV2D; maximum variation for VV3D was only 1.5°. A combination of the three variables showed an even greater distortion of VV2D, while VV3D stayed relatively constant. Maximum measurement difference between preset VV angle and VV2D was 9.8°, while the difference with VV3D was only 1.9°. The largest differences between the preset VV angle and VV2D were found when installing the leg in extreme angles, for example 15° valgus, 20° flexion and 20° internal rotation. Conclusions After TKA, EOS VV3D were more valid than VV2D, indicating that 3D measurements compensate for malpositioning during acquisition. Caution is warranted when measuring VV angle on a conventional radiograph of a knee with a flexion contracture, varus or valgus angle and/or rotation of the knee joint during acquisition. PMID:26771177
NASA Astrophysics Data System (ADS)
Stefansson, A.; Keller, N. S.; Gunnarsson Robin, J.; Kjartansdottir, R.; Ono, S.; Sveinbjörnsdottir, A. E.
2014-12-01
Carbon and sulfur are among major components in geothermal systems. They are found in various oxidation state and present in solid phases and fluids (water and vapor). In order to study the reactions and mass movement within multiphase geothermal systems, we have combined geochemical fluid-fluid and fluid-rock modelling with sulfur and carbon isotope fractionation modelling and compared the results with measured carbon and sulfur isotopes in geothermal fluids (water and vapor) for selected low- and high-enthalpy geothermal systems in Iceland. In this study we have focused on δ34S for H2S in vapor and water and SO4 in water as well as δ13C for CO2 in vapor and water phases. Isotope fractionations for CO2 and H2S between vapor and liquid water, upon aqueous speciation and upon carbonate and sulfide mineral formation were revised. These were combined with reaction modelling involving closed system boiling and progressive water-rock interaction to constrain the mass movement and isotope abundance between various phases. The results indicate that for a closed system, carbon and sulfur isotope abundance is largely dependent on progressive fluid-fluid and fluid-rock interaction and the initial total δ34S and δ13C value of the system. Initially, upon progressive fluid rock interaction the δ34S and δ13C values for the bulk aqueous phase approach that of the host rocks. Secondary mineral formation may alter these values, the exact isotope value of the mineral and resulting aqueous phase depending on aqueous speciation and isotope fractionation factor. In turn, aqueous speciation and mineral saturation depends on progressive fluid-rock interaction, fluid-fluid interaction, temperature and acid supply to the system. Depressurization boiling also results in isotope fractionation, the exact isotope value of the vapor and aqueous phase depending on aqueous speciation and isotope fractionation fractor. In this way, carbon and sulfur isotopes may be used combined with