Science.gov

Sample records for 2d fluorescence difference

  1. Fluorescence2D: Software for Accelerated Acquisition and Analysis of Two-Dimensional Fluorescence Spectra

    PubMed Central

    Kovrigin, Evgenii L.

    2014-01-01

    The Fluorescence2D is free software that allows analysis of two-dimensional fluorescence spectra obtained using the accelerated “triangular” acquisition schemes. The software is a combination of Python and MATLAB-based programs that perform conversion of the triangular data, display of the two-dimensional spectra, extraction of 1D slices at different wavelengths, and output in various graphic formats. PMID:24984078

  2. Solution conformation of 2-aminopurine (2-AP) dinucleotide determined by ultraviolet 2D fluorescence spectroscopy (UV-2D FS)

    PubMed Central

    Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.

    2013-01-01

    We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491

  3. Quantum process tomography by 2D fluorescence spectroscopy

    SciTech Connect

    Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán

    2015-06-07

    Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.

  4. Decorating the Edges of a 2D Polymer with a Fluorescence Label.

    PubMed

    Zhao, Yingjie; Bernitzky, Richard H M; Kory, Max J; Hofer, Gregor; Hofkens, Johan; Schlüter, A Dieter

    2016-07-20

    This work proves the existence and chemical addressability of defined edge groups of a 2D polymer. Pseudohexagonally prismatic single crystals consisting of layered stacks of a 2D polymer are used. They should expose anthracene-based edge groups at the six (100) but not at the two pseudohexagonal (001) and (001̅) faces. The crystals are reacted with the isotopically enriched dienophiles maleic anhydride and a C18-alkyl chain-modified maleimide. In both cases the corresponding Diels-Alder adducts between these reagents and the edge groups are formed as confirmed by solid state NMR spectroscopy. The same applies to a maleimide derivative carrying a BODIPY dye which was chosen for its fluorescence to be out of the range of the self-fluorescence of the 2D polymer crystals stemming from contained template molecules. If the crystals are excited at λ = 633 nm, their (100) faces and thus their rims fluoresce brightly, while the pseudohexagonal faces remain silent. This is visible when the crystals lie on a pseudohexagonal face. Lambda-mode laser scanning microscopy confirms this fluorescence to originate from the BODIPY dye. Micromechanical exfoliation of the dye-modified crystals results in thinner sheet packages which still exhibit BODIPY fluorescence right at the rim of these packages. This work establishes the chemical nature of the edge groups of a 2D polymer and is also the first implementation of an edge group modification similar to end group modifications of linear polymers. PMID:27347597

  5. 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs

    PubMed Central

    Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger

    2015-01-01

    We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256

  6. AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode

    SciTech Connect

    Toomey, Aoife

    2005-01-06

    This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.

  7. 2D fluorescence spectroscopy for monitoring ion-exchange membrane based technologies - Reverse electrodialysis (RED).

    PubMed

    Pawlowski, Sylwin; Galinha, Claudia F; Crespo, João G; Velizarov, Svetlozar

    2016-01-01

    Reverse electrodialysis (RED) is one of the emerging, membrane-based technologies for harvesting salinity gradient energy. In RED process, fouling is an undesirable operation constraint since it leads to a decrease of the obtainable net power density due to increasing stack electric resistance and pressure drop. Therefore, early fouling detection is one of the main challenges for successful RED technology implementation. In the present study, two-dimensional (2D) fluorescence spectroscopy was used, for the first time, as a tool for fouling monitoring in RED. Fluorescence excitation-emission matrices (EEMs) of ion-exchange membrane surfaces and of natural aqueous streams were acquired during one month of a RED stack operation. Fouling evolvement on the ion-exchange membrane surfaces was successfully followed by 2D fluorescence spectroscopy and quantified using principal components analysis (PCA). Additionally, the efficiency of cleaning strategy was assessed by measuring the membrane fluorescence emission intensity before and after cleaning. The anion-exchange membrane (AEM) surface in contact with river water showed to be significantly affected due to fouling by humic compounds, which were found to cross through the membrane from the lower salinity (river water) to higher salinity (sea water) stream. The results obtained show that the combined approach of using 2D fluorescence spectroscopy and PCA has a high potential for studying fouling development and membrane cleaning efficiency in ion exchange membrane processes. PMID:26497936

  8. Comparison of 2D and 3D flame topography measured by planar laser-induced fluorescence and tomographic chemiluminescence.

    PubMed

    Ma, Lin; Wu, Yue; Xu, Wenjiang; Hammack, Stephen D; Lee, Tonghun; Carter, Campbell D

    2016-07-10

    The goal of this work was to contrast and compare the 2D and 3D flame topography of a turbulent flame. The 2D measurements were obtained using CH-based (methylidyne radical-based) planar laser-induced fluorescence (PLIF), and the 3D measurements were obtained through a tomographic chemiluminescence (TC) technique. Both PLIF and TC were performed simultaneously on a turbulent premixed Bunsen flame. The PLIF measurements were then compared to a cross section of the 3D TC measurements, both to provide a validation to the 3D measurements and also to illustrate the differences in flame structures inferred from the 2D and 3D measurements. PMID:27409304

  9. 2D to 3D conversion implemented in different hardware

    NASA Astrophysics Data System (ADS)

    Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli

    2015-02-01

    Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.

  10. Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs

    NASA Astrophysics Data System (ADS)

    De Vylder, Jonas; Philips, Wilfried

    2011-02-01

    This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.

  11. Targeted fluorescence imaging enhanced by 2D materials: a comparison between 2D MoS2 and graphene oxide.

    PubMed

    Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng

    2016-08-01

    Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648

  12. Low-frequency phased-array 2D fluorescence localization in breast cancer detection

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Chen, Yu; Chance, Britton; Luo, Qingming

    2003-12-01

    A method for rapid, non-invasive 2D fluorescence localization of breast cancer using low frequency phased array near-infrared technique is presented in this article. In our study, we have developed a dual-channel fluorescence detection system to locate breast cancer. This system consists two pair of in-phase and out-of-phase light emitting diodes (LEDs) as the light sources and Photomultiplier Tube (PMT) as the detector. Two null planes generated by cancellation of diffusion photon density waves (DPDW) will indicate the 2D position of breast cancer with exogenous contrast agents. The fluorescent contrast agent used in this study is Indocyanine Green (ICG) and the minimum amount of ICG detected by our system is 0.5 μM. With the 2 cm separation of sources and detector, the maximum depth our system can detect is 10 mm. The whole system is in compact size and portable. Phantom experiments show that the system can provide real time detection and localization of small hidden absorbing-fluorescent objects inside the highly scattering medium with high accuracy of +/-3 mm. The potential application is that it is low-cost and can be used for breast cancer localization as operation aid and self-examination.

  13. Identification of olive pollen allergens using a fluorescence-based 2D multiplex method.

    PubMed

    Zienkiewicz, Krzysztof; Alché, Juan de Dios; Zienkiewicz, Agnieszka; Tormo, Alejandro; Castro, Antonio Jesús

    2015-04-01

    Olive (Olea europaea L.) pollen is a major health concern in the Mediterranean countries and some olive growing regions in America and Australia. The molecular variability of pollen allergens constitutes a handicap for commercial extract standardization, which is the base of current diagnosis and vaccination procedures. In this paper, we report a time-saving and plant material saving multiplex detection method for the rapid and simultaneous analysis of Ole e 1, Ole e 2, and Ole e 5 allergen polymorphism on a single blot. This method combines high-resolution 2DE techniques with high-sensitive fluorescence-based detection methods. Using this strategy, we were capable to identify a higher number of allergen forms compared with classical 1D approach. The use of fluorescent probes and the increased resolution of 2D blots avoided overlapping effects, and allow estimating the amount of individual allergen forms. In addition, the pattern and identity of the IgE-reactive proteins of either a population or individual patients allergic to olive pollen was also effortlessly determined in a single additional step. This flexible method might be extended to a higher number of olive allergens and cultivars, and is also applicable to other allergogenic plant species and sources. PMID:25640071

  14. CYP2D6 Genetic Polymorphisms and Phenotypes in Different Ethnicities of Malaysian Breast Cancer Patients.

    PubMed

    Chin, Fee Wai; Chan, Soon Choy; Abdul Rahman, Sabariah; Noor Akmal, Sharifah; Rosli, Rozita

    2016-01-01

    The cytochrome P450, family 2, subfamily D, polypeptide 6 (CYP2D6) is an enzyme that is predominantly involved in the metabolism of tamoxifen. Genetic polymorphisms of the CYP2D6 gene may contribute to inter-individual variability in tamoxifen metabolism, which leads to the differences in clinical response to tamoxifen among breast cancer patients. In Malaysia, the knowledge on CYP2D6 genetic polymorphisms as well as metabolizer status in Malaysian breast cancer patients remains unknown. Hence, this study aimed to comprehensively identify CYP2D6 genetic polymorphisms among 80 Malaysian breast cancer patients. The genetic polymorphisms of all the 9 exons of CYP2D6 gene were identified using high-resolution melting analysis and confirmed by DNA sequencing. Seven CYP2D6 alleles consisting of CYP2D6*1, CYP2D6*2, CYP2D6*4, CYP2D6*10, CYP2D6*39, CYP2D6*49, and CYP2D6*75 were identified in this study. Among these alleles, CYP2D6*10 is the most common allele in both Malaysian Malay (54.8%) and Chinese (71.4%) breast cancer patients, whereas CYP2D6*4 in Malaysian Indian (28.6%) breast cancer patients. In relation to CYP2D6 genotype, CYP2D6*10/*10 is more frequently observed in both Malaysian Malay (28.9%) and Chinese (57.1%) breast cancer patients, whereas CYP2D6*4/*10 is more frequently observed in Malaysian Indian (42.8%) breast cancer patients. In terms of CYP2D6 phenotype, 61.5% of Malaysian Malay breast cancer patients are predicted as extensive metabolizers in which they are most likely to respond well to tamoxifen therapy. However, 57.1% of Chinese as well as Indian breast cancer patients are predicted as intermediate metabolizers and they are less likely to gain optimal benefit from the tamoxifen therapy. This is the first report of CYP2D6 genetic polymorphisms and phenotypes in Malaysian breast cancer patients for different ethnicities. These data may aid clinicians in selecting an optimal drug therapy for Malaysian breast cancer patients, hence improve the

  15. Differential proteomic profiles from distinct Toxoplasma gondii strains revealed by 2D-difference gel electrophoresis.

    PubMed

    Zhou, Huaiyu; Zhao, Qunli; Das Singla, Lachhman; Min, Juan; He, Shenyi; Cong, Hua; Li, Ying; Su, Chunlei

    2013-04-01

    Toxoplasma gondii is an obligate intracellular protozoan that infects mammals and birds. Human infection during pregnancy may cause severe damage to the fetus. Reactivation of latent infection in immunocompromised patients can cause life-threatening encephalitis. T. gondii strains are highly diverse but only a few lineages (Type I, II and III) are widely spread. In mouse model, Type I strains are highly virulent, whereas Type II and III strains are intermediately or non virulent. It is not clear how much quantitative difference exists in proteomic profiles among these distinct T. gondii lineages. In the present study, the proteomic profiles of T. gondii tachyzoites from these lineages were investigated by two dimensional fluorescence difference gel electrophoresis (2D-DIGE) and mass spectrometry (MS) technologies. A total of 2321 protein spots were detected. Overall, the GT1 strain of Type I lineage and the strain PTG of Type II lineage have highly similar proteomic profiles and both are different from that of the CTG strain of Type III lineage. Eighty-four protein spots were differentially expressed by greater than 1.5-fold in relative abundance and 10 of them were identified to 7 T. gondii proteins in existing database. Investigation of the quantitative differences in proteomics among distinct T. gondii strains should facilitate our understanding of difference in biological processes and pathogenesis of distinct T. gondii genotypes, which will provide basic information to determine treatment regimen for different manifestation of toxoplasmosis. PMID:23340323

  16. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy.

    PubMed

    Singh, Anand Pratap; Krieger, Jan Wolfgang; Buchholz, Jan; Charbon, Edoardo; Langowski, Jörg; Wohland, Thorsten

    2013-04-01

    Single plane illumination microscopy based fluorescence correlation spectroscopy (SPIM-FCS) is a new method for imaging FCS in 3D samples, providing diffusion coefficients, transport, flow velocities and concentrations in an imaging mode. SPIM-FCS records correlation functions over a whole plane in a sample, which requires array detectors for recording the fluorescence signal. Several types of image sensors are suitable for FCS. They differ in properties such as effective area per pixel, quantum efficiency, noise level and read-out speed. Here we compare the performance of several low light array detectors based on three different technologies: (1) Single-photon avalanche diode (SPAD) arrays, (2) passive-pixel electron multiplying charge coupled device (EMCCD) and (3) active-pixel scientific-grade complementary metal oxide semiconductor cameras (sCMOS). We discuss the influence of the detector characteristics on the effective FCS observation volume, and demonstrate that light sheet based SPIM-FCS provides absolute diffusion coefficients. This is verified by parallel measurements with confocal FCS, single particle tracking (SPT), and the determination of concentration gradients in space and time. While EMCCD cameras have a temporal resolution in the millisecond range, sCMOS cameras and SPAD arrays can extend the time resolution of SPIM-FCS down to 10 μs or lower. PMID:23571955

  17. Cloning and characterization of a novel human phosphatidic acid phosphatase type 2, PAP2d, with two different transcripts PAP2d_v1 and PAP2d_v2.

    PubMed

    Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin

    2005-04-01

    This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976

  18. An algorithm to correct 2D near-infrared fluorescence signals using 3D intravascular ultrasound architectural information

    NASA Astrophysics Data System (ADS)

    Mallas, Georgios; Brooks, Dana H.; Rosenthal, Amir; Vinegoni, Claudio; Calfon, Marcella A.; Razansky, R. Nika; Jaffer, Farouc A.; Ntziachristos, Vasilis

    2011-03-01

    Intravascular Near-Infrared Fluorescence (NIRF) imaging is a promising imaging modality to image vessel biology and high-risk plaques in vivo. We have developed a NIRF fiber optic catheter and have presented the ability to image atherosclerotic plaques in vivo, using appropriate NIR fluorescent probes. Our catheter consists of a 100/140 μm core/clad diameter housed in polyethylene tubing, emitting NIR laser light at a 90 degree angle compared to the fiber's axis. The system utilizes a rotational and a translational motor for true 2D imaging and operates in conjunction with a coaxial intravascular ultrasound (IVUS) device. IVUS datasets provide 3D images of the internal structure of arteries and are used in our system for anatomical mapping. Using the IVUS images, we are building an accurate hybrid fluorescence-IVUS data inversion scheme that takes into account photon propagation through the blood filled lumen. This hybrid imaging approach can then correct for the non-linear dependence of light intensity on the distance of the fluorescence region from the fiber tip, leading to quantitative imaging. The experimental and algorithmic developments will be presented and the effectiveness of the algorithm showcased with experimental results in both saline and blood-like preparations. The combined structural and molecular information obtained from these two imaging modalities are positioned to enable the accurate diagnosis of biologically high-risk atherosclerotic plaques in the coronary arteries that are responsible for heart attacks.

  19. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  20. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGESBeta

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  1. Non-equilibrium partitioning tracer transport in porous media: 2-D physical modelling and imaging using a partitioning fluorescent dye.

    PubMed

    Jones, Edward H; Smith, Colin C

    2005-12-01

    This paper describes an investigation into non-equilibrium partitioning tracer transport and interaction with non-aqueous-phase liquid (NAPL) contaminated water-saturated porous media using a two-dimensional (2-D) physical modelling methodology. A fluorescent partitioning tracer is employed within a transparent porous model which when imaged by a CCD digital camera can provide full spatial tracer concentrations and tracer breakthrough curves. Quasi one-dimensional (1-D) benchmarking tests in models packed with various combinations of clean quartz sand and NAPL are described. These modelled residual NAPL saturations, S(n), of 0-15%. Results demonstrated that the fluorescent partitioning tracer was able to detect and quantify the presence of NAPL at low flow rates. At larger flow rates and/or higher NAPL saturations, the tracer increasingly underpredicted the NAPL volume as expected and this is attributed primarily to non-equilibrium partitioning. Despite little change in permeability, change in NAPL saturations from 4% to 8% resulted in significant NAPL saturation underestimates at the same flow rates implying coalescence of NAPL into wider separated but larger ganglia. A 2-D investigation of an idealised heterogeneous residual NAPL contaminated flow field indicated little permeability change in the NAPL contaminated zone and thus little flow bypassing, leading to reduced underpredictions of NAPL saturations than for equivalent quasi 1-D cases. This was attributed to increased 'sampling' of the NAPL by the tracer. The process is clearly visually identifiable from the experimental images. This rapid and relatively inexpensive experimental method is of value in laboratory studies of partitioning tracer behaviour in porous media; in particular, the ability to observe full field concentrations makes it valuable for the study of complex heterogeneous systems. PMID:16298415

  2. Interpreting digit ratio (2D:4D)-behavior correlations: 2D:4D sex difference, stability, and behavioral correlates and their replicability in young children.

    PubMed

    Wong, Wang I; Hines, Melissa

    2016-02-01

    The popularity of using the ratio of the second to the fourth digit (2D:4D) to study influences of early androgen exposure on human behavior relies, in part, on a report that the ratio is sex-dimorphic and stable from age 2 years (Manning etal., 1998). However, subsequent research has rarely replicated this finding. Moreover, although 2D:4D has been correlated with many behaviors, these correlations are often inconsistent. Young children's 2D:4D-behavior correlations may be more consistent than those of older individuals, because young children have experienced fewer postnatal influences. To evaluate the usefulness of 2D:4D as a biomarker of prenatal androgen exposure in studies of 2D:4D-behavior correlations, we assessed its sex difference, temporal stability, and behavioral correlates over a 6- to 8-month period in 126, 2- to 3-year-old children, providing a rare same-sample replicability test. We found a moderate sex difference on both hands and high temporal stability. However, between-sex overlap and within-sex variability were also large. Only 3 of 24 correlations with sex-typed behaviors-scores on the Preschool Activities Inventory (PSAI), preference for a boy-typical toy, preference for a girl-typical toy, were significant and in the predicted direction, all of which involved the PSAI, partially confirming findings from another study. Correlation coefficients were larger for behaviors that showed larger sex differences. But, as in older samples, the overall pattern showed inconsistency across time, sex, and hand. Therefore, although sex-dimorphic and stable, 2D:4D-behavior correlations are no more consistent for young children than for older samples. Theoretical and methodological implications are discussed. PMID:26542674

  3. A nearly analytic exponential time difference method for solving 2D seismic wave equations

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, Dinghui; Song, Guojie

    2014-02-01

    In this paper, we propose a nearly analytic exponential time difference (NETD) method for solving the 2D acoustic and elastic wave equations. In this method, we use the nearly analytic discrete operator to approximate the high-order spatial differential operators and transform the seismic wave equations into semi-discrete ordinary differential equations (ODEs). Then, the converted ODE system is solved by the exponential time difference (ETD) method. We investigate the properties of NETD in detail, including the stability condition for 1-D and 2-D cases, the theoretical and relative errors, the numerical dispersion relation for the 2-D acoustic case, and the computational efficiency. In order to further validate the method, we apply it to simulating acoustic/elastic wave propagation in multilayer models which have strong contrasts and complex heterogeneous media, e.g., the SEG model and the Marmousi model. From our theoretical analyses and numerical results, the NETD can suppress numerical dispersion effectively by using the displacement and gradient to approximate the high-order spatial derivatives. In addition, because NETD is based on the structure of the Lie group method which preserves the quantitative properties of differential equations, it can achieve more accurate results than the classical methods.

  4. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  5. 2D:4D Asymmetry and Gender Differences in Academic Performance

    PubMed Central

    Nye, John V. C.; Androuschak, Gregory; Desierto, Desirée; Jones, Garett; Yudkevich, Maria

    2012-01-01

    Exposure to prenatal androgens affects both future behavior and life choices. However, there is still relatively limited evidence on its effects on academic performance. Moreover, the predicted effect of exposure to prenatal testosterone (T)–which is inversely correlated with the relative length of the second to fourth finger lengths (2D:4D)–would seem to have ambiguous effects on academic achievement since traits like aggressiveness or risk-taking are not uniformly positive for success in school. We provide the first evidence of a non-linear, quadratic, relationship between 2D:4D and academic achievement using samples from Moscow and Manila. We also find that there is a gender differentiated link between various measures of academic achievement and measured digit ratios. These effects are different depending on the field of study, choice of achievement measure, and use of the right hand or left digit ratios. The results seem to be asymmetric between Moscow and Manila where the right (left) hand generates inverted-U (U-shaped) curves in Moscow while the pattern for hands reverses in Manila. Drawing from unusually large and detailed samples of university students in two countries not studied in the digit literature, our work is the first to have a large cross country comparison that includes two groups with very different ethnic compositions. PMID:23056282

  6. Impact of Structural Differences in Galactocerebrosides on the Behavior of 2D Monolayers.

    PubMed

    Stefaniu, Cristina; Ries, Annika; Gutowski, Olof; Ruett, Uta; Seeberger, Peter H; Werz, Daniel B; Brezesinski, Gerald

    2016-03-15

    The molecular interactions of three biologically important galactocerebrosides have been studied in monolayers formed at the soft air/water interface as 2D model membranes. Highly surface-sensitive techniques as GIXD (grazing incidence X-ray diffraction), IRRAS (infrared reflection-absorption spectroscopy), and BAM (Brewster angle microscopy) have been used. The study reveals that small differences in the chemical structure have a relevant impact on the physical-chemical properties and intermolecular interactions. The presence of a 2-d-hydroxyl group in the fatty acid favored for GalCer C24:0 (2-OH) monolayers a higher hydration state of the headgroup at low lateral pressures (<25 mN/m) and a higher condensation effect above 30 mN/m. An opposite behavior was recorded for GalCer C24:0 and GalCer C24:1, for which the intermolecular interactions are defined by the weakly hydrated but strong H-bonded interconnected head groups. Additionally, the 15-cis-double bond in the fatty acid chain (nervonic acid) of GalCer C24:1 stabilized the LE phase but did not disturb the packing parameters of the LC phase as compared with the saturated compound GalCer C24:0. PMID:26907993

  7. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.

    PubMed

    García-Usach, F; Ferrer, J; Bouzas, A; Seco, A

    2006-01-01

    In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour. PMID:16889256

  8. Chirality-dependent densities of carbon nanotubes by in situ 2D fluorescence-excitation and Raman characterisation in a density gradient after ultracentrifugation

    NASA Astrophysics Data System (ADS)

    Cambré, Sofie; Muyshondt, Pieter; Federicci, Remi; Wenseleers, Wim

    2015-11-01

    Density gradient ultracentrifugation (DGU) becomes increasingly important for the sorting of nanomaterials according to the particles' density, hence structure and dimensions, which determine their unique properties, but the further development of this separation technique is hindered by the limited precision with which the densities could be characterized. In this work, we determine these densities by position-dependent 2D wavelength-dependent IR fluorescence-excitation and resonant Raman spectroscopy measured directly in the density gradient after ultracentrifugation. We apply this method to study the diameter and chirality-dependent sorting of empty and water-filled single-walled carbon nanotubes coated with two different surfactants, sodium cholate (SC) and sodium deoxycholate (DOC). The results elucidate the long standing contradiction that SC would provide better diameter sorting, while DOC is the most efficient surfactant to solubilise the nanotubes. A more predictable separation is obtained for empty DOC-coated nanotubes since their density is found to vary very smoothly with diameter. The accurate and chirality-dependent densities furthermore provide information on the surfactant coating, which is also important for other separation techniques, and allow to determine the mass percentage of water encapsulated inside the nanotubes.Density gradient ultracentrifugation (DGU) becomes increasingly important for the sorting of nanomaterials according to the particles' density, hence structure and dimensions, which determine their unique properties, but the further development of this separation technique is hindered by the limited precision with which the densities could be characterized. In this work, we determine these densities by position-dependent 2D wavelength-dependent IR fluorescence-excitation and resonant Raman spectroscopy measured directly in the density gradient after ultracentrifugation. We apply this method to study the diameter and chirality

  9. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  10. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-05-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  11. Full 2D observation of water surface elevation from SWOT under different flow conditions

    NASA Astrophysics Data System (ADS)

    Domeneghetti, Alessio; Schumann, Guy; Rui, Wei; Durand, Michael; Pavelsky, Tamlin

    2016-04-01

    The upcoming Surface Water and Ocean Topography (SWOT) satellite mission is a joint project of NASA, Centre National d'Etudes Spatiales (CNES, France), the Canadian Space Agency, and the Space Agency of the UK that will provide a first global, high-resolution observation of ocean and terrestrial water surface heights. Characterized by an observation swath of 120 km and an orbit repeat interval of about 21 days, SWOT will provide unprecedented bi-dimensional observations of rivers wider than 50-100 m. Despite many research activities that have investigated potential uses of remotely sensed data from SWOT, potentials and limitations of the spatial observations provided by the satellite mission for flood modeling still remain poorly understood and investigated. In this study we present a first analysis of the spatial observation of water surface elevation that is expected from SWOT for a 140 km reach of the middle-lower portion of the Po River, in Northern Italy. The river stretch is characterized by a main channel varying from 200-500 m in width and a floodplain that can be as wide as 5 km and that is delimited by a system of major embankments. The reconstruction of the hydraulic behavior of the Po River is performed by means of a quasi-2d model built with detailed topographic and bathymetric information (LiDAR, 2 m resolution), while the simulation of the spatial observation sensed by SWOT is performed with a SWOT simulator that mimics the satellite sensor characteristics. Referring to water surface elevations associated with different flow conditions (maximum, minimum and average flow reproduced by means of the quasi-2d numerical model) this work provides a first characterization of the spatial observations provided by SWOT and highlights the strengths and limitations of the expected products. By referring to a real river reach the analysis provides a credible example of the type of spatial observations that will be available after launch of SWOT and offers a first

  12. Simulations of SH wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawahara, J.; Okamoto, T.; Miyashita, K.

    2006-05-01

    We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media in cluding traction-freecracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based oncomparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 01. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.

  13. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  14. Binding of 7-methoxy-4-(aminomethyl)-coumarin to wild-type and W128F mutant cytochrome P450 2D6 studied by time-resolved fluorescence spectroscopy

    PubMed Central

    Stortelder, Aike; Keizers, Peter H. J.; Oostenbrink, Chris; De Graaf, Chris; De Kruijf, Petra; Vermeulen, Nico P. E.; Gooijer, Cees; Commandeur, Jan N. M.; Van Der Zwan, Gert

    2005-01-01

    Enzyme structure and dynamics may play a main role in substrate binding and the subsequent steps in the CYP (cytochrome P450) catalytic cycle. In the present study, changes in the structure of human CYP2D6 upon binding of the substrate are studied using steady-state and time-resolved fluorescence methods, focusing not only on the emission of the tryptophan residues, but also on emission of the substrate. As a substrate, MAMC [7-methoxy-4-(aminomethyl)-coumarin] was selected, a compound exhibiting native fluorescence. As well as the wild-type, the W128F (Trp128→Phe) mutant of CYP2D6 was studied. After binding, a variety of energy transfer possibilities exist, and molecular dynamics simulations were performed to calculate distances and relative orientations of donors and acceptors. Energy transfer from Trp128 to haem appeared to be important; its emission was related to the shortest of the three average tryptophan fluorescence lifetimes observed for CYP2D6. MAMC to haem energy transfer was very efficient as well: when bound in the active site, the emission of MAMC was fully quenched. Steady-state anisotropy revealed that besides the MAMC in the active site, another 2.4% of MAMC was bound outside of the active site to wild-type CYP2D6. The tryptophan residues in CYP2D6 appeared to be less accessible for the external quenchers iodide and acrylamide in presence of MAMC, indicating a tightening of the enzyme structure upon substrate binding. However, the changes in the overall enzyme structure were not very large, since the emission characteristics of the enzyme were not very different in the presence of MAMC. PMID:16190863

  15. Two-dimensional fluorescence difference gel electrophoresis for comparative proteomics profiling

    PubMed Central

    Tannu, Nilesh S; Hemby, Scott E

    2007-01-01

    Quantitative proteomics is the workhorse of the modern proteomics initiative. The gel-based and MuDPIT approaches have facilitated vital advances in the measurement of protein expression alterations in normal and disease phenotypic states. The methodological advance in two-dimensional gel electrophoresis (2DGE) has been the multiplexing fluorescent two-dimensional fluorescence difference gel electrophoresis (2D-DIGE). 2D-DIGE is based on direct labeling of lysine groups on proteins with cyanine CyDye DIGE Fluor minimal dyes before isoelectric focusing, enabling the labeling of 2–3 samples with different dyes and electrophoresis of all the samples on the same 2D gel. This capability minimizes spot pattern variability and the number of gels in an experiment while providing simple, accurate and reproducible spot matching. This protocol can be completed in 3–5 weeks depending on the sample size of the experiment and the level of expertise of the investigator. PMID:17487156

  16. Finite Temperature Response of a 2D Dipolar Bose Gas at Different Dipolar Tilt Angles

    NASA Astrophysics Data System (ADS)

    Shen, Pengtao; Quader, Khandker

    We calculate finite temperature (T) response of a 2D Bose gas, subject to dipolar interaction, within the random phase approximation (RPA). We evaluate the appropriate 2D finite-T pair bubble diagram needed in RPA, and explore ranges of density and temperature for various dipolar tilt angles. We find the system to exhibit a collapse transition and a finite momentum instability, signaling a density wave or striped phase. We construct phase diagrams depicting these instabilities and resulting phases, including a normal Bose gas phase. We also consider the finite-T response of a quasi-2D dipolar Bose gas. We discuss how our results may apply to ultracold dense Bose gas of polar molecules, such as 41K87Rb, that has been realized experimentally. Acknowledge partial support from Institute for Complex Adaptive Matter (ICAM).

  17. Crystal structures and fluorescence properties of two 2D MnII/CdII trimellitic complexes containing terpyridine

    NASA Astrophysics Data System (ADS)

    Ren, Yixia; Chai, Hongmei; Hou, Xiangyang; Wang, Jijiang; Fu, Feng

    2015-12-01

    Hydrothermal reactions of manganese (II)/cadmium(II) salts with 1,2,4-trimellitic acid (H3tma) and 2,2‧:6‧,2-terpyridine (tpy) result in two novel complexes formulated with [M(Htma)(tpy)]·H2O (M = Mn(1) and Cd(2)). X-ray diffraction structural analyses of two complexes reveal they are isomorphic except for the different center metal ions and crystallize in the monoclinic crystal system of P(2)/n space group. The metal ion lies in a six-coordinated distorted octahedral environment coordinated with three Htma2- anions and one tpy ligand. There is an infinite two-dimensional rhombic network based on the metallic dimmers and Htma2- anions with the tpy ligands in void. Furthermore, the tpy ligands from the adjacent network weakly interact each other by π⋯π packing interactions into 3D supramolecular structure. The fluorescence properties could be assigned to the π - π* transition of organic ligands.

  18. Comparison of different nonlinear solvers for 2D time-implicit stellar hydrodynamics

    NASA Astrophysics Data System (ADS)

    Viallet, M.; Baraffe, I.; Walder, R.

    2013-07-01

    Time-implicit schemes are attractive since they allow numerical time steps that are much larger than those permitted by the Courant-Friedrich-Lewy criterion characterizing time-explicit methods. This advantage comes, however, at a cost: the solution of a system of nonlinear equations is required at each time step. In this work, the nonlinear system results from the discretization of the hydrodynamical equations with the Crank-Nicholson scheme. We compare the cost of different methods, based on Newton-Raphson iterations, to solve this nonlinear system, and benchmark their performances against time-explicit schemes. Since our general scientific objective is to model stellar interiors, we use as test cases two realistic models for the convective envelope of a red giant and a young Sun. Focusing on 2D simulations, we show that the best performances are obtained with the quasi-Newton method proposed by Broyden. Another important concern is the accuracy of implicit calculations. Based on the study of an idealized problem, namely the advection of a single vortex by a uniform flow, we show that there are two aspects: i) the nonlinear solver has to be accurate enough to resolve the truncation error of the numerical discretization; and ii) the time step has be small enough to resolve the advection of eddies. We show that with these two conditions fulfilled, our implicit methods exhibit similar accuracy to time-explicit schemes, which have lower values for the time step and higher computational costs. Finally, we discuss in the conclusion the applicability of these methods to fully implicit 3D calculations.

  19. 2D wavelet transform with different adaptive wavelet bases for texture defect inspection based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Liu, Hong; Mo, Yu L.

    1998-08-01

    There are many textures such as woven fabrics having repeating Textron. In order to handle the textural characteristics of images with defects, this paper proposes a new method based on 2D wavelet transform. In the method, a new concept of different adaptive wavelet bases is used to match the texture pattern. The 2D wavelet transform has two different adaptive orthonormal wavelet bases for rows and columns which differ from Daubechies wavelet bases. The orthonormal wavelet bases for rows and columns are generated by genetic algorithm. The experiment result demonstrate the ability of the different adaptive wavelet bases to characterize the texture and locate the defects in the texture.

  20. 2D warp-and-woof interwoven networks constructed by helical chains with different chirality.

    PubMed

    Feng, Yuhua; Guo, Yang; OuYang, Yan; Liu, Zhanquan; Liao, Daizheng; Cheng, Peng; Yan, Shiping; Jiang, Zonghui

    2007-09-21

    Two unprecedented 2D entangled layers of warp-and-woof threads interwoven by left- and right-handed helical chains, {[Mn(salen)Au(CN)2]4(H2O)}n (salen = N,N'-ethylenebis(salicylideneaminato)) and {Mn(acacen)Ag(CN)2}n (acacen = N,N'-ethylenebis(acetylacetonylideneiminate)) 2, have been synthesized and characterized. PMID:17728880

  1. Nuclear Resonance Fluorescence Using Different Photon Sources

    SciTech Connect

    Warren, Glen A.; Caggiano, Joseph A.; Ahmed, Mohammad; Bertozzi, William; Hunt, Alan W.; Johnson, James; Jones, James L.; Korbly, Steve; Reedy, Edward; Seipel, Heather; Stave, Sean; Watson, Scott; Weller, Henry

    2008-11-14

    Abstract–Nuclear resonance fluorescence (NRF) is a photon-based active interrogation approach that provides isotope-specific signatures that can be used to detect and characterize samples. As NRF systems are designed to address specific appli¬cations, an obvious first question to address is the type of photon source to be employed for the application. Our collaboration has conducted a series of NRF measurements using different photon sources to begin to examine this issue. The measurements were designed to be as similar as possible to facilitate a straightforward comparison of the different sources. Measurements were conducted with a high-duty factor electron accelerator using bremsstrahlung photons, with a pulsed linear accelerator using bremsstrahlung photons, and with a narrow bandwidth photon source using Compton backscattered photons. We present our observations on the advantages and disadvantages of each photon source type. Issues such as signal rate, the signal-to-noise ratio, and absorbed dose are discussed.

  2. 2D/3D cryo x-ray fluorescence imaging at the bionanoprobe at the advanced photon source

    NASA Astrophysics Data System (ADS)

    Chen, S.; Paunesku, T.; Yuan, Y.; Deng, J.; Jin, Q.; Hong, Y. P.; Vine, D. J.; Lai, B.; Flachenecker, C.; Hornberger, B.; Brister, K.; Jacobsen, C.; Woloschak, G. E.; Vogt, S.

    2016-01-01

    Trace elements, particularly metals, play very important roles in biological systems. Synchrotron-based hard X-ray fluorescence microscopy offers the most suitable capabilities to quantitatively study trace metals in thick biological samples, such as whole cells and tissues. In this manuscript, we have demonstrated X-ray fluorescence imaging of frozen-hydrated whole cells using the recent developed Bionanoprobe (BNP). The BNP provides spatial resolution down to 30 nm and cryogenic capabilities. Frozen-hydrated biological cells have been directly examined on a sub-cellular level at liquid nitrogen temperatures with minimal sample preparation.

  3. Effect of Different Doses of Oral Cholecalciferol on Serum 1,25(OH)2D in Vitamin D Deficient Schoolchildren.

    PubMed

    Ghazi, A A; Hosseinpanah, F; Abdi, H; Hedayati, M; Hasheminia, M; Ghazi, S; Azizi, F

    2016-06-01

    Data regarding 1,25-dihydroxycholecalciferol in adolescents are limited. We aimed to determine serum levels of this active metabolite of vitamin D and the effects of different doses of vitamin D on its concentration in schoolchildren with high prevalence of vitamin D deficiency. In a previously published randomized double-blind, placebo-controlled trial, 210 subjects, aged 14-20 years, were assigned to 3 regimens of vitamin D treatment: group A (n=70) received 50 000 U oral cholecalciferol monthly, group B (n=70), 50 000 U bimonthly, and group C (n=70), placebo. Serum 25(OH)D, calcium, parathyroid hormone, and bone markers were measured at baseline and after 2 and 5 months of treatment. In the present study, serum levels of 1,25(OH)2D were measured in 97 boys and 95 girls. At baseline, girls had significantly higher concentrations of 1,25(OH)2D than boys (36, IQR: 24, 63 vs. 30, IQR: 15, 57.5 pmol/l; p<0.01). There was no significant correlation between serum levels of 25(OH)D and 1,25(OH)2D in the total population (Spearman rho=- 0.111; p=0.126), boys (Spearman rho=0.008; p=0.941), and girls (Spearman rho=0.036; p=0.729). Also, 1,25(OH)2D values did not change over time in different study groups. Moreover, total and sex-stratified analysis did not show any significant difference between different groups at different times of the study period. In an adolescent population with high prevalence of hypovitaminosis D especially in girls, 1,25(OH)2D values were higher in girls than boys. There was no significant change in 1,25(OH)2D concentrations with different doses of vitamin D. PMID:26975346

  4. Electron momentum distribution and singlet-singlet annihilation in the organic anthracene molecular crystals using positron 2D-ACAR and fluorescence spectroscopy.

    PubMed

    Selvakumar, Sellaiyan; Sivaji, Krishnan; Arulchakkaravarthi, Arjunan; Sankar, Sambasivam

    2014-08-14

    We present the mapping of electron momentum distribution (EMD) in a single crystal of anthracene by two-dimensional angular correlation of positron annihilation radiation (2D-ACAR). The projected EMD is explained on the basis of the crystallographic features of the material. The EMD spectra provide information about the positron states and their behavior and also about the hindrance of the positronium (Ps) formation in this material. The EMD has exhibited evidence for the absence of free volume defects. The characteristic EMD features regarding the delocalized electronic states are explained. Further, scintillation characteristics such as fluorescence and time-correlated single photon counting have also been studied. The emission peaks are attributed to vibrational bands of fluorescence emission from the singlet excitons and lifetime components are observed to be due to singlet fission and the singlet-singlet excitons annihilation. PMID:24963608

  5. Combining different design strategies for rational affinity maturation of the MICA-NKG2D interface

    PubMed Central

    Henager, Samuel H; Hale, Melissa A; Maurice, Nicholas J; Dunnington, Erin C; Swanson, Carter J; Peterson, Megan J; Ban, Joseph J; Culpepper, David J; Davies, Luke D; Sanders, Lisa K; McFarland, Benjamin J

    2012-01-01

    We redesigned residues on the surface of MICA, a protein that binds the homodimeric immunoreceptor NKG2D, to increase binding affinity with a series of rational, incremental changes. A fixed-backbone RosettaDesign protocol scored a set of initial mutations, which we tested by surface plasmon resonance for thermodynamics and kinetics of NKG2D binding, both singly and in combination. We combined the best four mutations at the surface with three affinity-enhancing mutations below the binding interface found with a previous design strategy. After curating design scores with three cross-validated tests, we found a linear relationship between free energy of binding and design score, and to a lesser extent, enthalpy and design score. Multiple mutants bound with substantial subadditivity, but in at least one case full additivity was observed when combining distant mutations. Altogether, combining the best mutations from the two strategies into a septuple mutant enhanced affinity by 50-fold, to 50 nM, demonstrating a simple, effective protocol for affinity enhancement. PMID:22761154

  6. 2D/3D Quantification of bone morphometric parameter changes using X-ray microtomograpphy with different pixel sizes

    NASA Astrophysics Data System (ADS)

    Vidal, F.; de Assis, J. T.; Lopes, R. T.; Lima, I.

    2014-02-01

    In recent years, bone quantification led to a deeper knowledge of the 3D microarchitecture. In this study the bone architecture of rats was investigated based on 2D/3D morphometric analysis using microcomputed tomography, aiming at determining the effect of the image acquisition pixel on the quality of some 2D/3D morphometric parameters, such as porosity and trabecular density.Six pairs of bone samples were used and the scans were carried out using high microcomputed tomography system, operating at three different pixel sizes of 33.3 μm, 15.0 μm and 9.5 μm. The results showed 2D parameters values lower than those obtained in the 3D analysis, mainly for trabecular density, separation and thickness.

  7. Pharmacokinetics and bioequivalence evaluation of risperidone in healthy male subjects with different CYP2D6 genotypes.

    PubMed

    Cho, Hea-Young; Lee, Yong-Bok

    2006-06-01

    The aim of this study was to evaluate the bioequivalence of risperidone in healthy male subjects representing different CYP2D6 genotypes with respect to risperidone, 9-hydroxyrisperidone (9-OH-risperidone), and active moiety. A total of 506 Korean subjects were genotyped for CYP2D6*10 by means of allele-specific polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Based on the genotype analysis, 24 subjects, 7 homozygous for CYP2D6*1, 10 for *10, and 7 heterozygous for *10, were recruited and received a single oral dose of 2 mg risperidone tablet in this study. Serum concentrations of risperidone and 9-OHrisperidone up to 48 h were simultaneously determined. There were no significant differences of the active moiety, risperidone, and 9-OH-risperidone between the two preparations in AUC0-proportinal to, and Cmax. The 90% confidence intervals (CIs) for the ratio of means of the log-transformed AUC0-proportional to. and Cmax for the active moiety, risperidone, and 9-OH-risperidone were all within the bioequivalence acceptance criteria of 0.80-1.25. The CYP2D6*10 allele particularly was associated with higher serum concentrations of risperidone and the risperidone/9-OH-risperidone ratio compared with the CYP2D6*1 allele. The results demonstrate that the two preparations of risperidone are bioequivalent and it can be assumed that they are therapeutically equivalent and exchangeable in clinical practice. Furthermore, the pharmacokinetic parameters of risperidone and the risperidone/9-OH-risperidone ratio are highly dependent on the CYP2D6 genotypes. PMID:16833023

  8. Comparison of 2D transmon coherence for different capacitive shunt fabrication methods

    NASA Astrophysics Data System (ADS)

    Yoder, Jonilyn; Kamal, Archana; Yan, Fei; Gudmundsen, Theodore; Welander, Paul; Gustavsson, Simon; Hover, David; Kerman, Andrew; Sears, Adam; Oliver, William

    2015-03-01

    Improvements in superconducting qubit coherence times and reproducibility have been demonstrated using capacitive shunting. In this study, we present a side-by-side comparison of two distinct methods for preparing the aluminum shunt capacitor material for 2D transmon superconducting qubit devices. The first method involved in situ wafer outgassing prior to molecular beam epitaxy aluminum evaporation. The second method involved ex situ wafer annealing prior to electron gun aluminum evaporation. Materials analysis for each process will be detailed. Experimental results, including qubit coherence times and superconducting coplanar waveguide resonator internal quality factors, will be presented for representative devices prepared using both methods. This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract FA8721-05-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

  9. Diverse 2D structures obtained by adsorption of charged ABA triblock copolymer on different surfaces

    NASA Astrophysics Data System (ADS)

    Kontturi, Katri S.; Vesterinen, Arja-Helena; Seppälä, Jukka; Laine, Janne

    2012-11-01

    In the larger context of 2D polymeric structures, the morphologies obtained by adsorption and subsequent drying of charged, ABA type amphiphilic triblock copolymer of poly[2-(dimethylamino)ethyl metacrylate] (PDMAEMA) and poly(propylene oxide) (PPO) were investigated with atomic force microscopy and X-ray photoelectron spectroscopy as well as in situ adsorption analysis with quartz crystal microbalance with dissipation monitoring. Hydrophilic silica and hydrophobic polystyrene (PS) were used as substrates for adsorption. The structures emerging from the self-assembly of adsorbing polymer were profoundly influenced by composition of the aqueous solution and the choice of substrate. When adsorbed from dilute polymer solution where the concentration is so low that the polymer does not yet show surface-active behavior, the triblock copolymer unimers associated on hydrophilic silica surface forming large, irregular clustered aggregates, with sizes increasing with electrolyte concentration of the solution. On a hydrophobic PS substrate, on the other hand, unimers spread much more evenly, forming clear surface patterns. The roughness of these patterned structures was tuned with the electrolyte concentration of the solution. Adsorption from a more concentrated polymer solution, where the surface-activity of the polymer is perceptible, resulted in the formation of a smooth film with complete coverage over the hydrophilic silica substrate when the electrolyte concentration was high. On PS, on the other hand, nucleation of evenly scattered globular, disk-like micelles was induced. Besides the dry film morphology, the even distribution of the irreversibly adsorbed polymer over the PS surface was likely to serve as an optimal platform for the build-up of reversible hydrophobically bound multilayers at high electrolyte concentration. The multilayer formation was reversible because a decrease in the electrolyte concentration of the solution re-introduces strong electrostatic

  10. Crystal structure and temperature-dependent fluorescent property of a 2D cadmium (II) complex based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid

    NASA Astrophysics Data System (ADS)

    Zhang, Liang-Liang; Guo, Yu; Wei, Yan-Hui; Guo, Jie; Wang, Xing-Po; Sun, Dao-Feng

    2013-04-01

    A new cadmium (II) organic coordination polymers [Cd(dbtec)0.5(H2O)3]·H2O (1), has been constructed based on 3,6-dibromobenzene-1,2,4,5-tetracarboxylic acid (H4dbtec), and characterized by elemental analysis (EA), infrared spectroscopy (IR), powder X-ray diffraction (PXRD), and single crystal X-ray diffraction. In 1, μ2-η1:η1 and μ4-η2:η2 dbtec ligands link four hepta-coordinated CdII ions to form a 2D 44 topological layer structure, which is further connected into an interesting 3D network by hydrogen bond and Br⋯O halogen bond. Moreover, the thermal stabilities, solid ultraviolet spectroscopy and temperature-dependent fluorescent properties of 1 were investigated.

  11. Two-Dimensional Fluorescence Difference Spectroscopy to Characterize Nanoparticles and their Interactions.

    PubMed

    Hurst, Miranda N; DeLong, Robert K

    2016-01-01

    Two dimensional fluorescence difference spectroscopy (2D FDS) detects nanoparticle interactions following surface functionalization and biomolecule loading by generating a spectral signature of the fluorescent intensity per excitation and emission wavelengths. Comparing metal oxide nanoparticles revealed a unique spectral signature per material composition. 2D FDS showed to be sensitive to changes in surface properties between ZnO NPs synthesized by different methods. ZnO NP loaded with glycol chitosan, polyacrylic acid (PAA), or methoxy polyethylene glycol (mPEG) exhibited a distinct spectral signature shift. ZnO NP loaded with Torula Yeast RNA (TYRNA)(640 nm), polyinosinic: polycytidylic acid (pIC)(680 nm), or splice switching oligonucleotide (SSO)(650 nm) each revealed a shift in emission. Ras-Binding domain (RBD) at three concentrations (25, 37.5, 50 μg/mL) showed that fluorescent intensity was inversely related to the concentration of protein loaded. These data support 2D FDS as a novel technique in identifying nanoparticles and their surface interactions as a quality assurance tool. PMID:27624316

  12. High Order Finite Difference Methods with Subcell Resolution for 2D Detonation Waves

    NASA Technical Reports Server (NTRS)

    Wang, W.; Shu, C. W.; Yee, H. C.; Sjogreen, B.

    2012-01-01

    In simulating hyperbolic conservation laws in conjunction with an inhomogeneous stiff source term, if the solution is discontinuous, spurious numerical results may be produced due to different time scales of the transport part and the source term. This numerical issue often arises in combustion and high speed chemical reacting flows.

  13. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes

    PubMed Central

    Maximov, Philipp Y; McDaniel, Russell E; Fernandes, Daphne J; Korostyshevskiy, Valeriy R; Bhatta, Puspanjali; Mürdter, Thomas E; Flockhart, David A; Jordan, V Craig

    2014-01-01

    Background and Purpose Tamoxifen is a prodrug that is metabolically activated by 4-hydroxylation to the potent primary metabolite 4-hydroxytamoxifen (4OHT) or via another primary metabolite N-desmethyltamoxifen (NDMTAM) to a biologically active secondary metabolite endoxifen through a cytochrome P450 2D6 variant system (CYP2D6). To elucidate the mechanism of action of tamoxifen and the importance of endoxifen for its effect, we determined the anti-oestrogenic efficacy of tamoxifen and its metabolites, including endoxifen, at concentrations corresponding to serum levels measured in breast cancer patients with various CYP2D6 genotypes (simulating tamoxifen treatment). Experimental Approach The biological effects of tamoxifen and its metabolites on cell growth and oestrogen-responsive gene modulation were evaluated in a panel of oestrogen receptor-positive breast cancer cell lines. Actual clinical levels of tamoxifen metabolites in breast cancer patients were used in vitro along with actual levels of oestrogens observed in premenopausal patients taking tamoxifen. Key Results Tamoxifen and its primary metabolites (4OHT and NDMTAM) only partially inhibited the stimulant effects of oestrogen on cells. The addition of endoxifen at concentrations corresponding to different CYP2D6 genotypes was found to enhance the anti-oestrogenic effect of tamoxifen and its metabolites with an efficacy that correlated with the concentration of endoxifen; at concentrations corresponding to the extensive metabolizer genotype it further inhibited the actions of oestrogen. In contrast, lower concentrations of endoxifen (intermediate and poor metabolizers) had little or no anti-oestrogenic effects. Conclusions and Implications Endoxifen may be a clinically relevant metabolite in premenopausal patients as it provides additional anti-oestrogenic actions during tamoxifen treatment. PMID:25073551

  14. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  15. Matrix Cracking in Four Different 2D SiC/SiC Composite Systems

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2003-01-01

    Silicon carbide fiber reinforced, silicon carbide matrix composites are some of the most advanced composite systems for high-temperature, high-stress applications in oxidizing environments. A basic area that needs to be understood for the purpose of material behavior modeling and optimization is the architectural, constituent, and mechanistic factors that contribute to non-linear stress-strain behavior. The mechanism that causes non-linear stress-strain in dense-matrix composites is the formation and propagation of bridged matrix cracks. In addition, the occurrence and propagation of matrix cracks controls the time-dependent strength-properties of these materials in oxidizing environments at elevated temperatures. A modal acoustic emission technique has been used to monitor and estimate the stress-dependent matrix cracking. Two different SiC matrix systems, chemical vapor infiltrated (CVI) and melt-infiltrated (MI), with two different SiC fiber reinforcement, Hi-Nicalon (trademark) and Sylramic (trademark) were compared. Even though the averages of the range where matrix cracking occurred for the composites varied by more than 0.1% in strain and almost 200 MPa in stress, the range or distribution for matrix cracking could be reduced to a narrow band of stress for CVI SiC and MI SiC composites if it were assumed that all matrix cracks emanate outside of the load-bearing fiber, interphase, CVI preform minicomposite. A simple relationship was determined to describe stress-dependent matrix cracking which can then be used to estimate the onset of large, bridged matrix cracks or for material behavior models.

  16. Native N-terminus nitrophorin 2 from the kissing bug: similarities to and differences from NP2(D1A).

    PubMed

    Berry, Robert E; Muthu, Dhanasekaran; Shokhireva, Tatiana K; Garrett, Sarah A; Zhang, Hongjun; Walker, F Ann

    2012-09-01

    The first amino acid of mature native nitrophorin 2 is aspartic acid, and when expressed in E. coli, the wild-type gene of the mature protein retains the methionine-0, which is produced by translation of the start codon. This form of NP2, (M0)NP2, has been found to have different properties from its D1A mutant, for which the Met0 is cleaved by the methionine aminopeptidase of E. coli (R. E. Berry, T. K. Shokhireva, I. Filippov, M. N. Shokhirev, H. Zhang, F. A. Walker, Biochemistry 2007, 46, 6830). Native N-terminus nitrophorin 2 ((ΔM0)NP2) has been prepared by employing periplasmic expression of NP2 in E. coli using the pelB leader sequence from Erwinia carotovora, which is present in the pET-26b expression plasmid (Novagen). This paper details the similarities and differences between the three different N-terminal forms of nitrophorin 2, (M0)NP2, NP2(D1A), and (ΔM0)NP2. It is found that the NMR spectra of high- and low-spin (ΔM0)NP2 are essentially identical to those of NP2(D1A), but the rate and equilibrium constants for histamine and NO dissociation/association of the two are different. PMID:22976966

  17. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar

    PubMed Central

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  18. A Pedestrian Detection Scheme Using a Coherent Phase Difference Method Based on 2D Range-Doppler FMCW Radar.

    PubMed

    Hyun, Eugin; Jin, Young-Seok; Lee, Jong-Hun

    2016-01-01

    For an automotive pedestrian detection radar system, fast-ramp based 2D range-Doppler Frequency Modulated Continuous Wave (FMCW) radar is effective for distinguishing between moving targets and unwanted clutter. However, when a weak moving target such as a pedestrian exists together with strong clutter, the pedestrian may be masked by the side-lobe of the clutter even though they are notably separated in the Doppler dimension. To prevent this problem, one popular solution is the use of a windowing scheme with a weighting function. However, this method leads to a spread spectrum, so the pedestrian with weak signal power and slow Doppler may also be masked by the main-lobe of clutter. With a fast-ramp based FMCW radar, if the target is moving, the complex spectrum of the range- Fast Fourier Transform (FFT) is changed with a constant phase difference over ramps. In contrast, the clutter exhibits constant phase irrespective of the ramps. Based on this fact, in this paper we propose a pedestrian detection for highly cluttered environments using a coherent phase difference method. By detecting the coherent phase difference from the complex spectrum of the range-FFT, we first extract the range profile of the moving pedestrians. Then, through the Doppler FFT, we obtain the 2D range-Doppler map for only the pedestrian. To test the proposed detection scheme, we have developed a real-time data logging system with a 24 GHz FMCW transceiver. In laboratory tests, we verified that the signal processing results from the proposed method were much better than those expected from the conventional 2D FFT-based detection method. PMID:26805835

  19. An energy stable, hexagonal finite difference scheme for the 2D phase field crystal amplitude equations

    NASA Astrophysics Data System (ADS)

    Guan, Zhen; Heinonen, Vili; Lowengrub, John; Wang, Cheng; Wise, Steven M.

    2016-09-01

    In this paper we construct an energy stable finite difference scheme for the amplitude expansion equations for the two-dimensional phase field crystal (PFC) model. The equations are formulated in a periodic hexagonal domain with respect to the reciprocal lattice vectors to achieve a provably unconditionally energy stable and solvable scheme. To our knowledge, this is the first such energy stable scheme for the PFC amplitude equations. The convexity of each part in the amplitude equations is analyzed, in both the semi-discrete and fully-discrete cases. Energy stability is based on a careful convexity analysis for the energy (in both the spatially continuous and discrete cases). As a result, unique solvability and unconditional energy stability are available for the resulting scheme. Moreover, we show that the scheme is point-wise stable for any time and space step sizes. An efficient multigrid solver is devised to solve the scheme, and a few numerical experiments are presented, including grain rotation and shrinkage and grain growth studies, as examples of the strength and robustness of the proposed scheme and solver.

  20. Assessing HYDRUS-2D model to estimate soil water contents and olive tree transpiration fluxes under different water distribution systems

    NASA Astrophysics Data System (ADS)

    Autovino, Dario; Negm, Amro; Rallo, Giovanni; Provenzano, Giuseppe

    2016-04-01

    In Mediterranean countries characterized by limited water resources for agricultural and societal sectors, irrigation management plays a major role to improve water use efficiency at farm scale, mainly where irrigation systems are correctly designed to guarantee a suitable application efficiency and the uniform water distribution throughout the field. In the last two decades, physically-based agro-hydrological models have been developed to simulate mass and energy exchange processes in the soil-plant-atmosphere (SPA) system. Mechanistic models like HYDRUS 2D/3D (Šimunek et al., 2011) have been proposed to simulate all the components of water balance, including actual crop transpiration fluxes estimated according to a soil potential-dependent sink term. Even though the suitability of these models to simulate the temporal dynamics of soil and crop water status has been reported in the literature for different horticultural crops, a few researches have been considering arboreal crops where the higher gradients of root water uptake are the combination between the localized irrigation supply and the three dimensional root system distribution. The main objective of the paper was to assess the performance of HYDRUS-2D model to evaluate soil water contents and transpiration fluxes of an olive orchard irrigated with two different water distribution systems. Experiments were carried out in Castelvetrano (Sicily) during irrigation seasons 2011 and 2012, in a commercial farm specialized in the production of table olives (Olea europaea L., var. Nocellara del Belice), representing the typical variety of the surrounding area. During the first season, irrigation water was provided by a single lateral placed along the plant row with four emitters per plant (ordinary irrigation), whereas during the second season a grid of emitters laid on the soil was installed in order to irrigate the whole soil surface around the selected trees. The model performance was assessed based on the

  1. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    SciTech Connect

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  2. Fluorescence spectroscopy of individual semiconductor nanoparticles in different ethylene glycols.

    PubMed

    Flessau, Sandra; Wolter, Christopher; Pöselt, Elmar; Kröger, Elvira; Mews, Alf; Kipp, Tobias

    2014-06-14

    The optical properties of single colloidal semiconductor nanoparticles (NPs) are considerably influenced by the direct environment of the NPs. Here, the influence of different liquid and solid glycol matrices on CdSe-based NPs is investigated. Since the fluorescence of individual NPs varies from one NP to another, it is highly desirable to study the very same individual NPs in different matrices. This was accomplished by immobilizing NPs in a liquid cell sample holder or in microfluidic devices. The samples have been investigated by space-resolved wide-field fluorescence microscopy and energy- and time-resolved confocal scanning fluorescence microscopy with respect to fluorescence intensities, emission energies, blinking behavior, and fluorescence decay dynamics of individual NPs. During the measurements the NPs were exposed to air, to liquid ethylene glycols H(OCH2CH2)nOH (also called EGn) with different chain lengths (1 ≤ n ≤ 7), to liquid 2-methylpentane-2,3-diol, or to solid polyethylene oxide. It was found that EG6-7 (also known as PEG 300) is very well suited as a liquid matrix or solvent for experiments that correlate chemical and physical modifications of the surface and of the immediate environment of individual NPs to their fluorescence properties since it leads to intense and stable fluorescence emission of the NPs. PMID:24788878

  3. SWAT and River-2D Modelling of Pinder River for Analysing Snow Trout Habitat under Different Flow Abstraction Scenarios

    NASA Astrophysics Data System (ADS)

    Nale, J. P.; Gosain, A. K.; Khosa, R.

    2015-12-01

    Pinder River, one of major headstreams of River Ganga, originates in Pindari Glaciers of Kumaon Himalayas and after passing through rugged gorges meets Alaknanda at Karanprayag forming one of the five celestial confluences of Upper Ganga region. While other sub-basins of Upper Ganga are facing severe ecological losses, Pinder basin is still in its virginal state and is well known for its beautiful valleys besides being host to unique and rare biodiversity. A proposed 252 MW run-of-river hydroelectric project at Devsari on this river has been a major concern on account of its perceived potential for egregious environmental and social impacts. In this context, the study presented tries to analyse the expected changes in aquatic habitat conditions after this project is operational (with different operation policies). SWAT hydrological modelling platform has been used to derive stream flow simulations under various scenarios ranging from the present to the likely future conditions. To analyse the habitat conditions, a two dimensional hydraulic-habitat model 'River-2D', a module of iRIC software, is used. Snow trout has been identified as the target keystone species and its habitat preferences, in the form of flow depths, flow velocity and substrate condition, are obtained from diverse sources of related literature and are provided as Habitat Suitability Indices to River-2D. Bed morphology constitutes an important River-2D input and has been obtained, for the designated 1 km long study reach of Pinder upto Karanprayag, from a combination of actual field observations and supplemented by SRTM 1 Arc-Second Global digital elevation data. Monthly Weighted Usable Area for three different life stages (Spawning, Juvenile and Adult) of Snow Trout are obtained corresponding to seven different flow discharges ranging from 10 cumec to 1000 cumec. Comparing the present and proposed future river flow conditions obtained from SWAT modelling, losses in Weighted Usable Area, for the

  4. Characterization of eight different tetracyclines: advances in fluorescence bone labeling

    PubMed Central

    Pautke, Christoph; Vogt, Stephan; Kreutzer, Kilian; Haczek, Cornelia; Wexel, Gabriele; Kolk, Andreas; Imhoff, Andreas B; Zitzelsberger, Horst; Milz, Stefan; Tischer, Thomas

    2010-01-01

    Polychrome sequential labeling with fluorochromes is a standard technique for the investigation of bone formation and regeneration processes in vivo. However, for human application, only tetracycline and its derivates are approved as fluorochromes. Therefore, the aim of this study was to determine the fluorescence characteristics of the different tetracycline derivates to assess the feasibility of sequential in vivo bone labeling using distinguishable fluorochromes. Eight different tetracycline derivates were injected subcutaneously into growing rats as a single dose or sequentially in different combinations. After preparation of resin-embedded undecalcified bone sections, the fluorescence properties of the tetracycline derivates in bone were analyzed using conventional fluorescence microscopy, spectral image analysis and confocal laser scanning microscopy. Each tetracycline derivate exhibited a characteristic fluorescence spectrum, but the differences between them were small. Chlortetracycline could be discriminated reliably from all other derivates and could therefore be combined with any other tetracycline derivate for reliably distinguishable double labeling. Tetracycline itself exhibited the brightest fluorescence of all the investigated derivates. Interestingly, in conventional microscopy the same tetracycline derivative can appear in different colours to the human eye, even if spectral analysis confirmed identical emission peaks. In conclusion, the data suggest that fluorescence double labeling of bone is feasible using appropriate tetracycline derivates in combination with spectral imaging modalities. PMID:20456523

  5. EFM data mapped into 2D images of tip-sample contact potential difference and capacitance second derivative

    PubMed Central

    Lilliu, S.; Maragliano, C.; Hampton, M.; Elliott, M.; Stefancich, M.; Chiesa, M.; Dahlem, M. S.; Macdonald, J. E.

    2013-01-01

    We report a simple technique for mapping Electrostatic Force Microscopy (EFM) bias sweep data into 2D images. The method allows simultaneous probing, in the same scanning area, of the contact potential difference and the second derivative of the capacitance between tip and sample, along with the height information. The only required equipment consists of a microscope with lift-mode EFM capable of phase shift detection. We designate this approach as Scanning Probe Potential Electrostatic Force Microscopy (SPP-EFM). An open-source MATLAB Graphical User Interface (GUI) for images acquisition, processing and analysis has been developed. The technique is tested with Indium Tin Oxide (ITO) and with poly(3-hexylthiophene) (P3HT) nanowires for organic transistor applications. PMID:24284731

  6. SU-E-T-422: Correlation Between 2D Passing Rates and 3D Dose Differences for Pretreatment VMAT QA

    SciTech Connect

    Jin, X; Xie, C

    2014-06-01

    Purpose: Volumetric modulated arc therapy (VMAT) quality assurance (QA) is typically using QA methods and action levels taken from fixedbeam intensity-modulated radiotherapy (IMRT) QA methods. However, recent studies demonstrated that there is no correlation between the percent gamma passing rate (%GP) and the magnitude of dose discrepancy between the planned dose and the actual delivered dose for IMRT. The purpose of this study is to investigate whether %GP is correlated with clinical dosimetric difference for VMAT. Methods: Twenty nasopharyngeal cancer (NPC) patients treated with dual-arc simultaneous integrated boost VMAT and 20 esophageal cancer patients treated with one-arc VMAT were enrolled in this study. Pretreatment VMAT QA was performed by a 3D diode array ArcCheck. Acceptance criteria of 2%/2mm, 3%/3mm, and 4%/4mm were applied for 2D %GP. Dose values below 10% of the per-measured normalization maximum dose were ignored.Mean DVH values obtained from 3DVH software and TPS were calculated and percentage dose differences were calculated. Statistical correlation between %GP and percent dose difference was studied by using Pearson correlation. Results: The %GP for criteria 2%/2mm, 3%/3mm, and 4%/4mm were 82.33±4.45, 93.47±2.31, 97.13±2.41, respectively. Dose differences calculated from 3DVH and TPS for beam isocenter, mean dose of PTV, maximum dose of PTV, D2 of PTV and D98 of PTV were -1.04±3.24, -0.74±1.71, 2.92±3.62, 0.89±3.29, -1.46±1.97, respectively. No correction were found between %GP and dose differences. Conclusion: There are weak correlations between the 2D %GP and dose differences calculated from 3DVH. The %GP acceptance criteria of 3%/3mm usually applied for pretreatment QA of IMRT and VMAT is not indicating strong clinical correlation with 3D dose difference. 3D dose reconstructions on patient anatomy may be necessary for physicist to predict the accuracy of delivered dose for VMAT QA.

  7. Where is uphill? Exploring sex differences when reorienting on a sloped environment presented through 2-D images.

    PubMed

    Nardi, Daniele; Meloni, Roberta; Orlandi, Marco; Olivetti-Belardinelli, Marta

    2014-01-01

    One of the spatial abilities that has recently revealed a remarkable variability in performance is that of using terrain slope to reorient. Previous studies have shown a very large disadvantage for females when the slope of the floor is the only information useful for encoding a goal location. However, the source of this sex difference is still unclear. The slope of the environment provides a directional source of information that is perceived through dissociable visual and kinesthetic sensory modalities. Here we focused on the visual information, and examined whether there are sex differences in the perception of a slope presented through 2-D images with a desktop computer connected to an eye-tracking device. Participants had to identify and point to the uphill direction by looking at different orientations of two virtual, slanted environments (one indoor and one outdoor). Men were quicker and more accurate than women, indicating that the female difficulty with slope emerges at an early, unisensory, perceptual level. However, the eye-tracking data revealed no sex differences in the slope cues used, providing no support to the hypothesis of sex-specific, visual-processing strategies. Interestingly, performance correlated with a test of mental rotation, and we speculate that the disadvantage in mental rotation ability might be an important factor responsible for females' difficulty using slope. PMID:25109016

  8. Measuring and Sorting Cell Populations Expressing Isospectral Fluorescent Proteins with Different Fluorescence Lifetimes

    PubMed Central

    Naivar, Mark; Houston, Jessica P.; Brent, Roger

    2014-01-01

    Study of signal transduction in live cells benefits from the ability to visualize and quantify light emitted by fluorescent proteins (XFPs) fused to different signaling proteins. However, because cell signaling proteins are often present in small numbers, and because the XFPs themselves are poor fluorophores, the amount of emitted light, and the observable signal in these studies, is often small. An XFP's fluorescence lifetime contains additional information about the immediate environment of the fluorophore that can augment the information from its weak light signal. Here, we constructed and expressed in Saccharomyces cerevisiae variants of Teal Fluorescent Protein (TFP) and Citrine that were isospectral but had shorter fluorescence lifetimes, ∼1.5 ns vs ∼3 ns. We modified microscopic and flow cytometric instruments to measure fluorescence lifetimes in live cells. We developed digital hardware and a measure of lifetime called a “pseudophasor” that we could compute quickly enough to permit sorting by lifetime in flow. We used these abilities to sort mixtures of cells expressing TFP and the short-lifetime TFP variant into subpopulations that were respectively 97% and 94% pure. This work demonstrates the feasibility of using information about fluorescence lifetime to help quantify cell signaling in living cells at the high throughput provided by flow cytometry. Moreover, it demonstrates the feasibility of isolating and recovering subpopulations of cells with different XFP lifetimes for subsequent experimentation. PMID:25302964

  9. Optimizing the Precision for Localizing Fluorescent Proteins in Living Cells by 2D Gaussian Fitting of Digital Images: Application to COPII-Coated Endoplasmic Reticulum Exit Sites

    PubMed Central

    Spence, Peter; Gupta, Vijay; Stephens, David J.; Hudson, Andrew J.

    2008-01-01

    An insight into the operation of molecular motors has already been obtained under in vitro conditions from single-molecule tracking of proteins. It remains to analyze the effects of these motors on the position and secretion of specific organelles in the environment of the cell. For this purpose, we have investigated the accuracy of a standard algorithm to enable the tracking of particles in live-cell microscopy. The results have been applied to an example study into the role of the microtubule-motor kinesin on the function of COPII-coated secretory-cargo exit sites forming part of the mammalian endoplasmic reticulum. These exit sites are marked with multiple EYFP-tagged proteins to produce bright fluorescent particles, and a demonstration of the motility of vesicles, under different conditions in the cell, is described here. It is essential to use a low-level expression of fluorescent protein-tagged cellular components to ensure faithful replication for the behaviour of endogenous protein. However, this leads to a lower ratio for the signal-to-noise than is desired for the sub-pixel tracking of objects in digital images. This has driven the present effort to develop a computational model of the experiment in order to estimate the precision for localization of a fluorescent particle. Our work gives a greater insight, than has been managed in the past, into the accuracy and precision of particle tracking from live-cell imaging under a variety of different conditions, and it takes into consideration the current standards in digital technology for optical microscopy. PMID:18504570

  10. Effective finite-difference modelling methods with 2D acoustic wave equation using a combination of cross and rhombus stencils

    NASA Astrophysics Data System (ADS)

    Wang, Enjiang; Liu, Yang; Sen, Mrinal K.

    2016-07-01

    The 2D acoustic wave equation is commonly solved numerically by finite-difference (FD) methods in which the accuracy of solution is significantly affected by the FD stencils. The commonly used cross stencil can reach either only second-order accuracy for space domain dispersion-relation-based FD method or (2 M)th-order accuracy along eight specific propagation directions for time-space domain dispersion-relation-based FD method, if the conventional (2 M)th-order spatial FD and second-order temporal FD are used to discretize the equation. One other newly developed rhombus stencil can reach arbitrary even-order accuracy. However, this stencil adds significantly computational cost when the operator length is large. To achieve a balance between the solution accuracy and efficiency, we develop a new FD stencil to solve the 2D acoustic wave equation. This stencil is a combination of the cross stencil and rhombus stencil. A cross stencil with an operator length parameter M is used to approximate the spatial partial derivatives while a rhombus stencil with an operator length parameter N together with the conventional 2nd-order temporal FD is employed in approximating the temporal partial derivatives. Using this stencil, a new FD scheme is developed; we demonstrate that this scheme can reach (2 M)th-order accuracy in space and (2 N)th-order accuracy in time when spatial FD coefficients and temporal FD coefficients are derived from respective dispersion relation using Taylor-series expansion (TE) method. To further increase the accuracy, we derive the FD coefficients by employing the time-space domain dispersion relation of this FD scheme using TE. We also use least-squares (LS) optimization method to reduce dispersion at high wavenumbers. Dispersion analysis, stability analysis and modelling examples demonstrate that our new scheme has greater accuracy and better stability than conventional FD schemes, and thus can adopt large time steps. To reduce the extra computational

  11. Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru

    2013-12-01

    We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.

  12. A nonlocal finite difference scheme for simulation of wave propagation in 2D models with reduced numerical dispersion

    NASA Astrophysics Data System (ADS)

    Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.

    2014-03-01

    The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.

  13. A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides with Different Fluorescence Signals.

    PubMed

    Chen, Wei; Pacheco, Armando; Takano, Yoko; Day, Jacob J; Hanaoka, Kenjiro; Xian, Ming

    2016-08-16

    Hydrogen sulfide (H2 S) and hydrogen polysulfides (H2 Sn , n>1) are endogenous regulators of many physiological processes. In order to better understand the symbiotic relationship and cellular cross-talk between H2 S and H2 Sn , it is highly desirable to develop single fluorescent probes which enable dual-channel discrimination between H2 S and H2 Sn . Herein, we report the rational design, synthesis, and evaluation of the first dual-detection fluorescent probe DDP-1 that can visualize H2 S and H2 Sn with different fluorescence signals. The probe showed high selectivity and sensitivity to H2 S and H2 Sn in aqueous media and in cells. PMID:27410794

  14. Subtraction threshold for an isotropic fluorescence emission difference microscope

    NASA Astrophysics Data System (ADS)

    Wang, Nan; Kobayashi, Takayoshi

    2015-12-01

    Isotropic fluorescence emission difference microscopy proposed recently provides a simple method to enhance the spatial resolution in three-dimensions (3D) for fluorescence imaging. However, the subtraction threshold to achieve the condition for appropriately resolving the sample in 3D have not been studied. Then the subtraction factors used in this type of microscopes are still experientially chosen. Based on vector diffraction theory and a 3D numerical model developed here, the subtraction threshold is numerically investigated for the isotropic fluorescence subtraction microscopy. The subtraction factors and peak intensities at the threshold are obtained and comparied both in lateral and axial planes for achieving most appropriate subtraction and inspecting the isotropic characteristic. The effects of radius ratios of implemented 0-π annular phase plate for generating three dimensional donut spot on the subtracted resolution, peak intensity and negative sidebands are also discussed.

  15. Multiplexed Spectral Imaging of 120 Different Fluorescent Labels

    PubMed Central

    Valm, Alex M.; Oldenbourg, Rudolf; Borisy, Gary G.

    2016-01-01

    The number of fluorescent labels that can unambiguously be distinguished in a single image when acquired through band pass filters is severely limited by the spectral overlap of available fluorophores. The recent development of spectral microscopy and the application of linear unmixing algorithms to spectrally recorded image data have allowed simultaneous imaging of fluorophores with highly overlapping spectra. However, the number of distinguishable fluorophores is still limited by the unavoidable decrease in signal to noise ratio when fluorescence signals are fractionated over multiple wavelength bins. Here we present a spectral image analysis algorithm to greatly expand the number of distinguishable objects labeled with binary combinations of fluorophores. Our algorithm utilizes a priori knowledge about labeled specimens and imposes a binary label constraint on the unmixing solution. We have applied our labeling and analysis strategy to identify microbes labeled by fluorescence in situ hybridization and here demonstrate the ability to distinguish 120 differently labeled microbes in a single image. PMID:27391327

  16. Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists.

    PubMed

    Dastmalchi, Siavoush; Hamzeh-Mivehroud, Maryam; Asadpour-Zeynali, Karim

    2012-01-01

    Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression (MLR), artificial neural network (ANN), and HASL as a 3D QSAR method, in predicting the receptor binding affinities of arylbenzofuran histamine H3 receptor antagonists. Genetic algorithm coupled partial least square as well as stepwise multiple regression methods were used to select a number of calculated molecular descriptors to be used in MLR and ANN-based QSAR studies. Using the leave-group-out cross-validation technique, the performances of the MLR and ANN methods were evaluated. The calculated values for the mean absolute percentage error (MAPE), ranging from 2.9 to 3.6, and standard deviation of error of prediction (SDEP), ranging from 0.31 to 0.36, for both MLR and ANN methods were statistically comparable, indicating that both methods perform equally well in predicting the binding affinities of the studied compounds toward the H3 receptors. On the other hand, the results from 3D-QSAR studies using HASL method were not as good as those obtained by 2D methods. It can be concluded that simple traditional approaches such as MLR method can be as reliable as those of more advanced and sophisticated methods like ANN and 3D-QSAR analyses. PMID:25317190

  17. Individual Recognition in Domestic Cattle (Bos taurus): Evidence from 2D-Images of Heads from Different Breeds

    PubMed Central

    Coulon, Marjorie; Deputte, Bertrand L.; Heyman, Yvan; Baudoin, Claude

    2009-01-01

    Background In order to maintain cohesion of groups, social animals need to process social information efficiently. Visual individual recognition, which is distinguished from mere visual discrimination, has been studied in only few mammalian species. In addition, most previous studies used either a small number of subjects or a few various views as test stimuli. Dairy cattle, as a domestic species allow the testing of a good sample size and provide a large variety of test stimuli due to the morphological diversity of breeds. Hence cattle are a suitable model for studying individual visual recognition. This study demonstrates that cattle display visual individual recognition and shows the effect of both familiarity and coat diversity in discrimination. Methodology/Principal Findings We tested whether 8 Prim'Holstein heifers could recognize 2D-images of heads of one cow (face, profiles, ¾ views) from those of other cows. Experiments were based on a simultaneous discrimination paradigm through instrumental conditioning using food rewards. In Experiment 1, all images represented familiar cows (belonging to the same social group) from the Prim'Holstein breed. In Experiments 2, 3 and 4, images were from unfamiliar (unknown) individuals either from the same breed or other breeds. All heifers displayed individual recognition of familiar and unfamiliar individuals from their own breed. Subjects reached criterion sooner when recognizing a familiar individual than when recognizing an unfamiliar one (Exp 1: 3.1±0.7 vs. Exp 2: 5.2±1.2 sessions; Z = 1.99, N = 8, P = 0.046). In addition almost all subjects recognized unknown individuals from different breeds, however with greater difficulty. Conclusions/Significance Our results demonstrated that cattle have efficient individual recognition based on categorization capacities. Social familiarity improved their performance. The recognition of individuals with very different coat characteristics from the subjects was

  18. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  19. SEX DIFFERENCES IN DIGIT RATIO (2D:4D) AMONG MILITARY AND CIVIL COHORTS AT A MILITARY ACADEMY IN WROCŁAW, POLAND.

    PubMed

    Kociuba, Marek; Kozieł, Slawomir; Chakraborty, Raja

    2016-09-01

    The ratio of second-to-fourth digit length (2D:4D), which is generally higher in women compared with men, is a putative marker of prenatal testosterone (PT) exposure. Lower 2D:4D is linked with greater physical ability and strength, better sporting performance and a propensity towards jobs demanding greater physical ability. The objectives of this paper were to examine the sexual dimorphism in 2D:4D in both hands 1and compare this dimorphism in the students of military and civil courses at the General Kuściuszko Military Academy of Land Forces in Wrocław. The cross-sectional study compared 59 female and 118 male students from the military courses and 53 females and 64 male students from the civil courses. Besides calculating 2D:4D (2D/4D) for each hand, height and weight were also recorded. Physical fitness and endurance were assessed using Eurofit tests. Handgrip strength was measured using a standardized isometric dynamometer. In almost all physical tests, students in the military cohort showed highly significant greater physical ability and strength (e.g. handgrip strength) when compared with the civil cohort. Male participants had a significantly lower 2D:4D than females for each hand, as well as for the average value for both hands. The sexual dimorphism was, however, a little more pronounced in the right hand than in the left. Both sex and course type were significant predictors of 2D:4D. There were significant interactions between sex and the student type. Among females, but not in males, the military cohort had a significantly lower, i.e. more 'masculine', 2D:4D for the left hand and right hand and average for both hands (t=3.290, p<0.001) than the civil cohort. This was not the case in males. However, the sex difference in 2D:4D was only significant among the civil students, and not among the military cadets. In conclusion, higher PT exposure, as represented by a lower 2D:4D, among the Polish females might be an indicator of relatively increased physical

  20. Effects of Spatial Ability, Gender Differences, and Pictorial Training on Children Using 2-D and 3-D Environments to Recall Landmark Locations from Memory

    ERIC Educational Resources Information Center

    Kopcha, Theodore J.; Otumfuor, Beryl A.; Wang, Lu

    2015-01-01

    This study examines the effects of spatial ability, gender differences, and pictorial training on fourth grade students' ability to recall landmark locations from memory. Ninety-six students used Google Earth over a 3-week period to locate landmarks (3-D) and mark their location on a 2-D topographical map. Analysis of covariance on posttest scores…

  1. Fluorescence lifetime images of different green fluorescent proteins in fly brain

    NASA Astrophysics Data System (ADS)

    Lai, Sih-Yu; Lin, Y. Y.; Chiang, A. S.; Huang, Y. C.

    2009-02-01

    The mechanisms of learning and memory are the most important functions in an animal brain. Investigating neuron circuits and network maps in a brain is the first step toward understanding memory and learning behavior. Since Drosophila brain is the major model for understanding brain functions, we measure the florescence lifetimes of different GFP-based reporters expressed in a fly brain. In this work, two Gal4 drivers, OK 107 and MZ 19 were used. Intracellular calcium ([Ca2+]) concentration is an importation indicator of neuronal activity. Therefore, several groups have developed GFP-based calcium sensors, among which G-CaMP is the most popular and reliable. The fluorescence intensity of G-CaMP will increase when it binds to calcium ion; however, individual variation from different animals prevents quantitative research. In this work, we found that the florescence lifetime of G-CaMP will shrink from 1.8 ns to 1.0 ns when binding to Ca2+. This finding can potentially help us to understand the neuron circuits by fluorescence lifetime imaging microscopy (FLIM). Channelrhodopsin-2 (ChR2) is a light-activated ion-channel protein on a neuron cell membrane. In this work, we express ChR2 and G-CaMP in a fly brain. Using a pulsed 470-nm laser to activate the neurons, we can also record the fluorescence lifetime changes in the structure. Hence, we can trace and manipulate a specific circuit in this animal. This method provides more flexibility in brain research.

  2. Virtual fluorescence emission difference microscopy based on photon reassignment.

    PubMed

    Ma, Ye; Kuang, Cuifang; Fang, Yue; Ge, Baoliang; Li, Dian; Liu, Xu

    2015-10-15

    A method for high-resolution imaging that we call virtual fluorescence emission difference microscopy (vFED) is presented. In vFED the analyzed samples are scanned only by a doughnut-shaped pattern and imaged by a detector array, which is very different from the previous FED system. By using photon reassignment, we can obtain imaging results with matched solid and hollow point spread functions, and the difference between them is used to estimate the spatial distribution of the analyzed sample. This method results in greatly simplified equipment in the configuration and enhanced imaging speed. Results show that the resolution can be enhanced by at least 27% compared with that in confocal microscopy with a point detector, or is 1.8-2-fold higher than that in wide-field microscopy. Plus, negative intensities can be avoided by using vFED during the subtraction process, leading to the elimination of the deformation in reconstructed images. PMID:26469580

  3. Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells

    NASA Astrophysics Data System (ADS)

    Jones, M. W. M.; Elgass, K. D.; Junker, M. D.; de Jonge, M. D.; van Riessen, G. A.

    2016-04-01

    Recent developments in biological X-ray microscopy have allowed structural information and elemental distribution to be simultaneously obtained by combining X-ray ptychography and X-ray fluorescence microscopy. Experimentally, these methods can be performed simultaneously; however, the optimal conditions for each measurement may not be compatible. Here, we combine two distinct measurements of ultrastructure and elemental distribution, with each measurement performed under optimised conditions. By combining optimised ptychography and fluorescence information we are able to determine molar concentrations from two-dimensional images, allowing an investigation into the interactions between the environment sensing filopodia in fibroblasts and extracellular calcium. Furthermore, the biological ptychography results we present illustrate a point of maturity where the technique can be applied to solve significant problems in structural biology.

  4. Molar concentration from sequential 2-D water-window X-ray ptychography and X-ray fluorescence in hydrated cells

    PubMed Central

    Jones, M. W. M.; Elgass, K. D.; Junker, M. D.; de Jonge, M. D.; van Riessen, G. A.

    2016-01-01

    Recent developments in biological X-ray microscopy have allowed structural information and elemental distribution to be simultaneously obtained by combining X-ray ptychography and X-ray fluorescence microscopy. Experimentally, these methods can be performed simultaneously; however, the optimal conditions for each measurement may not be compatible. Here, we combine two distinct measurements of ultrastructure and elemental distribution, with each measurement performed under optimised conditions. By combining optimised ptychography and fluorescence information we are able to determine molar concentrations from two-dimensional images, allowing an investigation into the interactions between the environment sensing filopodia in fibroblasts and extracellular calcium. Furthermore, the biological ptychography results we present illustrate a point of maturity where the technique can be applied to solve significant problems in structural biology. PMID:27067957

  5. Rapid authentication of different ages of tissue-cultured and wild Dendrobium huoshanense as well as wild Dendrobium henanense using FTIR and 2D-COS IR

    NASA Astrophysics Data System (ADS)

    Chen, Nai-Dong; Chen, Nai-Fu; Li, Jun; Cao, Cai-Yun; Wang, Jin-Mei

    2015-12-01

    The accumulating of pharmaceutical chemicals in medicinal plants would greatly be affected by their ages and establishing a fast quality-identification method to evaluate the similarity of medicinal herbs at different cultivated ages is a critical step for assurance of quality and safety in the TCM industry. In this work, tri-step IR macro-fingerprinting and 2D-COS IR spectrum techniques combined with statistical pattern recognition were applied for discrimination and similarity evaluation of different ages of tissue-cultured and wild Dendrobium huoshanense C. Z. Tang et S. J. Cheng as well as Dendrobium henanense J.L.Lu et L.X Gao. Both tissue-cultured and wild D. huoshanense were easily differentiated from D. henanense by FTIR and SD-IR spectra, while it's quite difficult to discriminate different cultivated years of the three investigated Dendrobiums. In 2D-COS IR spectra, 1-5 auto-peaks with different indensity and positions were located in the region 1160-1030 cm-1 of the twelve Dendrobium samples and thus could be used to identify Dendrobium samples at different ages. Principle component analysis (PCA) of synchronous 2D-COS data showed that the twelve samples were effectively identified and evaluated. The results indicated that the tri-step infrared macro-fingerprinting combined with PCA method was suitable to differentiate the cultivated ages of Dendrobiums with species and orgins rapidly and nondestructively.

  6. Comparison of the effect of simple and complex acquisition trajectories on the 2D SPR and 3D voxelized differences for dedicated breast CT imaging

    NASA Astrophysics Data System (ADS)

    Shah, Jainil P.; Mann, Steve D.; McKinley, Randolph L.; Tornai, Martin P.

    2014-03-01

    The 2D scatter-to-primary (SPR) ratios and 3D voxelized difference volumes were characterized for a cone beam breast CT scanner capable of arbitrary (non-traditional) 3D trajectories. The CT system uses a 30x30cm2 flat panel imager with 197 micron pixellation and a rotating tungsten anode x-ray source with 0.3mm focal spot, with an SID of 70cm. Data were acquired for two cylindrical phantoms (12.5cm and 15cm diameter) filled with three different combinations of water and methanol yielding a range of uniform densities. Projections were acquired with two acquisition trajectories: 1) simple-circular azimuthal orbit with fixed tilt; and 2) saddle orbit following a +/-15° sinusoidal trajectory around the object. Projection data were acquired in 2x2 binned mode. Projections were scatter corrected using a beam stop array method, and the 2D SPR was measured on the projections. The scatter corrected and uncorrected data were then reconstructed individually using an iterative ordered subsets convex algorithm, and the 3D difference volumes were calculated as the absolute difference between the two. Results indicate that the 2D SPR is ~7-15% higher on projections with greatest tilt for the saddle orbit, due to the longer x-ray path length through the volume, compared to the 0° tilt projections. Additionally, the 2D SPR increases with object diameter as well as density. The 3D voxelized difference volumes are an estimate of the scatter contribution to the reconstructed attenuation coefficients on a voxel level. They help visualize minor deficiencies and artifacts in the volumes due to correction methods.

  7. Volatility-dependent 2D IR correlation analysis of traditional Chinese medicine ‘Red Flower Oil’ preparation from different manufacturers

    NASA Astrophysics Data System (ADS)

    Wu, Yan-Wen; Sun, Su-Qin; Zhou, Qun; Tao, Jia-Xun; Noda, Isao

    2008-06-01

    As a traditional Chinese medicine (TCM), 'Red Flower Oil' preparation is widely used as a household remedy in China and Southeast Asia. Usually, the preparation is a mixture of several plant essential oils with different volatile features, such as wintergreen oil, turpentine oil and clove oil. The proportions of these plant essential oils in 'Red Flower Oil' vary from different manufacturers. Thus, it is important to develop a simple and rapid evaluation method for quality assurance of the preparations. Fourier transform infrared (FT-IR) was applied and two-dimensional correlation infrared spectroscopy (2D IR) based on the volatile characteristic of samples was used to enhance the resolution of FT-IR spectra. 2D IR technique could, not only easily provide the composition and their volatile sequences in 'Red flower Oil' preparations, but also rapidly discriminate the subtle differences in products from different manufacturers. Therefore, FT-IR combined with volatility-dependent 2D IR correlation analysis provides a very fast and effective method for the quality control of essential oil mixtures in TCM.

  8. Dibenzosiloles and 12H-indololo[3,2-d]naphtho[1,2-b][1]siloles: exploration of organic chromophores exhibiting efficient solid-state fluorescence.

    PubMed

    Shimizu, Masaki

    2015-02-01

    The construction of a diorganosilylene bridge over a biaryl moiety at the 2,2'-positions is a versatile strategy for fine-tuning its HOMO-LUMO energy gap, which is closely linked to the electronic and optical properties of the compounds. Therefore, there is growing interest in the use of silicon-bridged biaryl motifs as key cores of various types of advanced functional materials, such as light-emitting, semiconducting, photovoltaic, and sensing materials. To accelerate the advances of materials based on silicon-bridged biaryls, it is essential to create new classes of biaryls and explore their functions and properties. This Personal Account describes recent research on the development of organic chromophores based on functionalized dibenzosiloles and 12H-indololo[3,2-d]naphtho[1,2-b][1]siloles as solid-state emitters. PMID:25504808

  9. Correlation between gamma index passing rate and clinical dosimetric difference for pre-treatment 2D and 3D volumetric modulated arc therapy dosimetric verification

    PubMed Central

    Jin, X; Yan, H; Han, C; Zhou, Y; Yi, J

    2015-01-01

    Objective: To investigate comparatively the percentage gamma passing rate (%GP) of two-dimensional (2D) and three-dimensional (3D) pre-treatment volumetric modulated arc therapy (VMAT) dosimetric verification and their correlation and sensitivity with percentage dosimetric errors (%DE). Methods: %GP of 2D and 3D pre-treatment VMAT quality assurance (QA) with different acceptance criteria was obtained by ArcCHECK® (Sun Nuclear Corporation, Melbourne, FL) for 20 patients with nasopharyngeal cancer (NPC) and 20 patients with oesophageal cancer. %DE were calculated from planned dose–volume histogram (DVH) and patients' predicted DVH calculated by 3DVH® software (Sun Nuclear Corporation). Correlation and sensitivity between %GP and %DE were investigated using Pearson's correlation coefficient (r) and receiver operating characteristics (ROCs). Results: Relatively higher %DE on some DVH-based metrics were observed for both patients with NPC and oesophageal cancer. Except for 2%/2 mm criterion, the average %GPs for all patients undergoing VMAT were acceptable with average rates of 97.11% ± 1.54% and 97.39% ± 1.37% for 2D and 3D 3%/3 mm criteria, respectively. The number of correlations for 3D was higher than that for 2D (21 vs 8). However, the general correlation was still poor for all the analysed metrics (9 out of 26 for 3D 3%/3 mm criterion). The average area under the curve (AUC) of ROCs was 0.66 ± 0.12 and 0.71 ± 0.21 for 2D and 3D evaluations, respectively. Conclusions: There is a lack of correlation between %GP and %DE for both 2D and 3D pre-treatment VMAT dosimetric evaluation. DVH-based dose metrics evaluation obtained from 3DVH will provide more useful analysis. Advances in knowledge: Correlation and sensitivity of %GP with %DE for VMAT QA were studied for the first time. PMID:25494412

  10. 3D reconstruction of 2D fluorescence histology images and registration with in vivo MR images: application in a rodent stroke model.

    PubMed

    Stille, Maik; Smith, Edward J; Crum, William R; Modo, Michel

    2013-09-30

    To validate and add value to non-invasive imaging techniques, the corresponding histology is required to establish biological correlates. We present an efficient, semi-automated image-processing pipeline that uses immunohistochemically stained sections to reconstruct a 3D brain volume from 2D histological images before registering these with the corresponding 3D in vivo magnetic resonance images (MRI). A multistep registration procedure that first aligns the "global" volume by using the centre of mass and then applies a rigid and affine alignment based on signal intensities is described. This technique was applied to a training set of three rat brain volumes before being validated on three normal brains. Application of the approach to register "abnormal" images from a rat model of stroke allowed the neurobiological correlates of the variations in the hyper-intense MRI signal intensity caused by infarction to be investigated. For evaluation, the corresponding anatomical landmarks in MR and histology were defined to measure the registration accuracy. A registration error of 0.249 mm (approximately one in-plane voxel dimension) was evident in healthy rat brains and of 0.323 mm in a rodent model of stroke. The proposed reconstruction and registration pipeline allowed for the precise analysis of non-invasive MRI and corresponding microstructural histological features in 3D. We were thus able to interrogate histology to deduce the cause of MRI signal variations in the lesion cavity and the peri-infarct area. PMID:23816399

  11. Vertical 2D Heterostructures

    NASA Astrophysics Data System (ADS)

    Lotsch, Bettina V.

    2015-07-01

    Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.

  12. One-step construction of two different kinds of pores in a 2D covalent organic framework.

    PubMed

    Zhou, Tian-You; Xu, Shun-Qi; Wen, Qiang; Pang, Zhong-Fu; Zhao, Xin

    2014-11-12

    Covalent organic frameworks (COFs) are crystalline porous materials bearing microporous or mesoporous pores. The type and size of pores play crucial roles in regulating the properties of COFs. In this work, a novel COF, which bears two different kinds of ordered pores with controllable sizes: one within microporous range (7.1 Å) and the other in mesoporous range (26.9 Å), has been constructed via one-step synthesis. The structure of the dual-pore COF was confirmed by PXRD investigation, nitrogen adsorption-desorption study, and theoretical calculations. PMID:25360771

  13. C11449. Native N-Terminus Nitrophorin 2 from the Kissing Bug: Similarities to and Differences from NP2(D1A)

    PubMed Central

    Berry, Robert E.; Muthu, Dhanasekaran; Shokhireva, Tatiana K.; Garrett, Sarah A.; Zhang, Hongjun; Walker, F. Ann

    2012-01-01

    The first amino acid of mature native nitrophorin 2 is aspartic acid, and when expressed in E. coli the wild-type gene of the mature protein retains the methionine-0 which is produced by translation of the start codon. This form of NP2, (M0)NP2, has been found to have different properties from its D1A mutant, for which the Met0 is cleaved by the methionine aminopeptidase of E. coli [R. E. Berry, T. K. Shokhireva, I. Filippov, M. N. Shokhirev, H. Zhang, F. A. Walker, Biochemistry 2007, 46, 6830]. Native N-terminus nitrophorin 2 ((ΔM0)NP2) has been prepared by employing periplasmic expression of NP2 in E. coli using the pelB leader sequence from Erwinia carotovora, which is present in the pET-26b expression plasmid (Novagen). This paper details the similarities and differences between the three different N-terminal forms of nitrophorin 2, (M0)NP2, NP2(D1A), and (ΔM0)NP2. It is found that the NMR spectra of high- and low-spin (ΔM0)NP2 are essentially identical to those of NP2(D1A), but the rate and equilibrium constants for histamine and NO dissociation/association of the two are different. PMID:22976966

  14. [Comparative proteomics study of different processing technology for pilose antler using iTRAQ technology coupled with 2D LC-MS].

    PubMed

    Jin, Meng-ya; Dong, Ling; Luo, Yuan-ming; Yu, Li; Mo, Mei; Hou, Cheng-bo; Li, Zhi-yuan

    2015-12-01

    This study was designed to use iTRAQ technology coupled with 2D LC-MS/MS to study the comparative proteomics of different processing technology for pilose antler. 1015 proteins were identified with 2D LC combined with MOLDI TOF/TOF mass spectrometry. Comparative analysis with Protein Pilot (Version 4.5) revealed that 87 proteins were changed (P ≤ 0.05, the ratio of > 1.50 or < 0.60 as the threshold selection of difference proteins), of which 24 were up regulated and 33 were down regulated in the traditional frying process (TFP) compared with the fresh pilose antler (P ≤ 0.05). 7 significant different proteins (P ≤ 0.001), most of these significantly changed proteins were found to be involved in calcium ion binding and ATP binding associated with human healthy. Freeze drying with protective agent (FDP) (Trehalose) can improve the content of significantly different proteins (P ≤ 0.001) including Collagen alpha-1 (XII) chain (COL12A1) and Collagen alpha-1 (II) chain (COL2A1). The significant function involves in platelets activating, maintenance of spermatogonium, and disorder expression in tumor cells. The functional annotation by Hierarchical clustering and GO (gene ontology) showed that the main molecule functions of the proteins significantly changed in these processes were involved in binding (52.7%), catalytic (25.3%), structural molecule and transporter (6.6%). PMID:27169289

  15. High velocity impact on different hybrid architectures of 2D laminated and 3D warp interlock fabric composite

    NASA Astrophysics Data System (ADS)

    Provost, B.; Boussu, F.; Coutellier, D.; Vallee, D.; Rondot, F.

    2012-08-01

    For decades, conventional amour shield is mainly oriented on metallic materials which are today well-known. Since the use of non conventional threats as IEDs, performances of those protections are required to be upgraded. The expected improvements that manufacturers are looking for are mainly oriented to the weight reduction which is the key parameter to reduce the fuel consumption, increase the payload, and offer more manoeuvrability to vehicles [1]. However, the difficulty is to reduce as cautiously as possible the total mass of the protection solution while ensuring the safety of the vehicle. One of the possible solutions is to use new combinations of materials, able to be more efficient against new threats and lighter than the traditional steel armour. It is in this context that the combination between some well-known ballistic alloys and textile composite material appear as a high potential solution for armour plated protection. Indeed, used as a backing, textile composite material present some interesting properties such as a very low density compared with steel and good behaviour in term of ballistic efficiency. This study proposes to test and compare the behaviour and efficiency of three different textile composite backings.

  16. Effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures-2D FEA.

    PubMed

    Barão, Valentim Adelino Ricardo; Assunção, Wirley Gonçalves; Tabata, Lucas Fernando; de Sousa, Edson Antonio Capello; Rocha, Eduardo Passos

    2008-11-01

    The study aimed to evaluate the effect of different mucosa thickness and resiliency on stress distribution of implant-retained overdentures using a two-dimensional finite element analysis. Models were used in order to simulate two situations. In group A, model represented an edentulous mandible supporting an overdenture retained by two-splinted-implants connected with bar-clip system while in group B, model simulated an edentulous mandible supporting an overdenture retained by two-splinted-implants connected with bar-clip system associated with two-distally placed o'ring system. In each group, mucosa assumed three characteristics of thickness (1, 3 and 5 mm) in the resiliencies: hard, resilient and soft, respectively. Evaluation was performed on Ansys software. Group A showed higher stress values regardless of the mucosa characteristics. Overall, stress decreased at the supporting tissues as mucosa thickness and resiliency increased. Regarding supporting tissues, cortical bone showed the highest stress values. The use of bar-clip attachment system with distally placed o'ring attachment design optimized the stress distribution. PMID:18783845

  17. Tuning the structures based on polyoxometalates from 1-D to 2-D by using different secondary organic ligands.

    PubMed

    Hu, Yang-Yang; Xiao-Zhang; Zhao, De-Chuan; Guo, Hai-Yang; Fu, Li-Wei; Guo, Lan-Lan; Cui, Xiao-Bing; Huo, Qi-Sheng; Xu, Ji-Qing

    2015-09-01

    Six new organic-inorganic hybrid compounds based on [XM12O40](4-) (X = heteroatom, M = metal atom), namely [Cu(pic)2][H2XM12O40]·2Hapy·2apy (X = Si, M = W for , X = Ge, M = W for and X = Si, M = Mo for ), [Cu(2,2'-bpy)2][Cu(2,2'-bpy)(H2O)][Cu(pic)2]0.5[XM12O40]·nH2O (X = Si, M = Mo, n = 0.5 for , X = Ge, M = W, n = 1 for ) and [Cu(phen)(H2O)]2[Cu(pic)2][GeW12O40]·2.5H2O () (pic = deprotonated picolinic acid, apy = 2-aminopyridine, 2,2'-bpy = 2,2'-bipyridine, phen = phenanthroline), have been synthesized and characterized by IR, UV-Vis, XRD, cyclic voltammetric measurements and single crystal X-ray diffraction analysis. Single crystal X-ray analysis reveals that compounds are isomorphous and isostructural, in which each is based on [H2XM12O40](2-) and [Cu(pic)2]. Compounds and are also isomorphous and isostructural, of which the structures are more interesting than those of compounds . Both structures are constructed from [XM12O40](4-) and metal mixed-organic-ligand complexes. Compound is also constructed from Keggin ions and metal mixed-organic-ligand complexes, which are, however, thoroughly different from those of compounds and . The photodegradation properties of compounds have been analyzed. Compounds also exhibit rapid absorption properties for RhB (Rhodamine B). Detailed analysis of the photodegradation properties of compounds reveals that the molybdate POM has stronger degradation ability for RhB than the tungstate one. PMID:26223513

  18. Motion corrected photoacoustic difference imaging of fluorescent contrast agents

    NASA Astrophysics Data System (ADS)

    Märk, Julia; Wagener, Asja; Pönick, Sarah; Grötzinger, Carsten; Zhang, Edward; Laufer, Jan

    2016-03-01

    In fluorophores, such as exogenous dyes and genetically expressed proteins, the excited state lifetime can be modulated using pump-probe excitation at wavelengths corresponding to the absorption and fluorescence spectra. Simultaneous pump-probe pulses induce stimulated emission (SE) which, in turn, modulates the thermalized energy, and hence the photoacoustic (PA) signal amplitude. For time-delayed pulses, by contrast, SE is suppressed. Since this is not observed in endogenous chromophores, the location of the fluorophore can be determined by subtracting images acquired using simultaneous and time-delayed pump-probe excitation. This simple experimental approach exploits a fluorophorespecific contrast mechanism, and has the potential to enable deep-tissue molecular imaging at fluences below the MPE. In this study, some of the challenges to its in vivo implementation are addressed. First, the PA signal amplitude generated in fluorophores in vivo is often much smaller than that in blood. Second, tissue motion can give rise to artifacts that correspond to endogenous chromophores in the difference image. This would not allow the unambiguous detection of fluorophores. A method to suppress motion artifacts based on fast switching between simultaneous and time-delayed pump-probe excitation was developed. This enables the acquisition of PA signals using the two excitation modes with minimal time delay (20 ms), thus minimizing the effects of tissue motion. The feasibility of this method is demonstrated by visualizing a fluorophore (Atto680) in tissue phantoms, which were moved during the image acquisition to mimic tissue motion.

  19. Investigation of native fluorescence spectral difference among prostate cancer cell lines with different risk levels

    NASA Astrophysics Data System (ADS)

    Pu, Yang; Xue, Jianpeng; Xu, Baogang; Wang, Wubao; Gu, Yueqing; Tang, Rui; Achilefu, S.; Ackerstaff, Ellen; Koutcher, Jason A.; Alfano, R. R.

    2013-03-01

    The alteration of native fluorophores among different types of cancer cell lines was investigated by the fluorescence spectroscopy. Different types of cancer cell lines with different risk levels, such as moderate metastatic (DU-145) and advanced metastatic (PC-3) cell lines as well as normal cell line (Fibroblast), were excited by the selective excitation wavelength of 300 nm to explore changes of the relative contents of tryptophan and NADH using principal component analysis (PCA). The higher relative content of tryptophan was observed in the advanced metastatic cancer cell lines in comparison with the moderate metastatic and non aggressive cell lines.

  20. 2D and 3D Stem Cell Models of Primate Cortical Development Identify Species-Specific Differences in Progenitor Behavior Contributing to Brain Size

    PubMed Central

    Otani, Tomoki; Marchetto, Maria C.; Gage, Fred H.; Simons, Benjamin D.; Livesey, Frederick J.

    2016-01-01

    Summary Variation in cerebral cortex size and complexity is thought to contribute to differences in cognitive ability between humans and other animals. Here we compare cortical progenitor cell output in humans and three nonhuman primates using directed differentiation of pluripotent stem cells (PSCs) in adherent two-dimensional (2D) and organoid three-dimensional (3D) culture systems. Clonal lineage analysis showed that primate cortical progenitors proliferate for a protracted period of time, during which they generate early-born neurons, in contrast to rodents, where this expansion phase largely ceases before neurogenesis begins. The extent of this additional cortical progenitor expansion differs among primates, leading to differences in the number of neurons generated by each progenitor cell. We found that this mechanism for controlling cortical size is regulated cell autonomously in culture, suggesting that primate cerebral cortex size is regulated at least in part at the level of individual cortical progenitor cell clonal output. PMID:27049876

  1. Accumulative Difference Image Protocol for Particle Tracking in Fluorescence Microscopy Tested in Mouse Lymphonodes

    PubMed Central

    Villa, Carlo E.; Caccia, Michele; Sironi, Laura; D'Alfonso, Laura; Collini, Maddalena; Rivolta, Ilaria; Miserocchi, Giuseppe; Gorletta, Tatiana; Zanoni, Ivan; Granucci, Francesca; Chirico, Giuseppe

    2010-01-01

    The basic research in cell biology and in medical sciences makes large use of imaging tools mainly based on confocal fluorescence and, more recently, on non-linear excitation microscopy. Substantially the aim is the recognition of selected targets in the image and their tracking in time. We have developed a particle tracking algorithm optimized for low signal/noise images with a minimum set of requirements on the target size and with no a priori knowledge of the type of motion. The image segmentation, based on a combination of size sensitive filters, does not rely on edge detection and is tailored for targets acquired at low resolution as in most of the in-vivo studies. The particle tracking is performed by building, from a stack of Accumulative Difference Images, a single 2D image in which the motion of the whole set of the particles is coded in time by a color level. This algorithm, tested here on solid-lipid nanoparticles diffusing within cells and on lymphocytes diffusing in lymphonodes, appears to be particularly useful for the cellular and the in-vivo microscopy image processing in which few a priori assumption on the type, the extent and the variability of particle motions, can be done. PMID:20808918

  2. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  3. Fluorescence: An Interdisciplinary Phenomenon for Different Education Levels

    ERIC Educational Resources Information Center

    García, J. A.; Moreno, J. M.; Perales, F. J.; Romero, J.; Sánchez, P.; Gómez-Robledo, L.

    2012-01-01

    This paper shows the scientific foundations of a natural phenomenon of undoubted interest and applicability in our day, fluorescence, and its possibilities for teaching at three educational levels: primary, secondary and university. It begins by describing the nature of the phenomenon and continues by explaining how we work with students of the…

  4. AnisWave 2D

    Energy Science and Technology Software Center (ESTSC)

    2004-08-01

    AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.

  5. Synthesis of new thiazolo-celecoxib analogues as dual cyclooxygenase-2/15-lipoxygenase inhibitors: Determination of regio-specific different pyrazole cyclization by 2D NMR.

    PubMed

    Abdelall, Eman K A; Kamel, Gehan M

    2016-08-01

    Two new series of 1,5-diaryl pyrazoles (5a, 5b, 7a, 7b and 10) and 1,5-diaryl pyrazoline (12a and 12b) were prepared as both Cyclooxygenase-2 and 15-lipoxygenase inhibitors. Carrageenan-induced rat paw edema, ulcer index and anti-COX-1/COX-2 and 15-LOX inhibition assays were also included. Cyclization of different pyrazoles was discussed using 2D NMR such as HSQC, HMBC and NOSEY determinations. Compound 5a is more effective with ED50 = 0.98 and 3.98 μM against COX-2 and 15-lipoxygenase respectively, than the references celecoxib (1.54 μM) and meclofenamate sodium (5.64 μM). PMID:27131067

  6. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    NASA Astrophysics Data System (ADS)

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R.; García-Granda, Santiago

    2015-05-01

    Three new zinc(II) coordination polymers, [Zn(HO3PCH2CH2COO)(C12H8N2)(H2O)] (1), [Zn3(O3PCH2CH2COO)2(C12H8N2)](H2O)3.40 (2) and [Zn5(HO3PCH2CH2COO)2(O3PCH2CH2COO)2(C12H8N2)4](H2O)0.32 (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P21/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P-1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds.

  7. The NKG2D Ligands RAE-1δ and RAE-1ε Differ with Respect to Their Receptor Affinity, Expression Profiles and Transcriptional Regulation

    PubMed Central

    Cédile, Oriane; Popa, Natalia; Pollet-Villard, Frédéric; Garmy, Nicolas; Ibrahim, El Chérif; Boucraut, José

    2010-01-01

    Background RAE-1 is a ligand of the activating receptor NKG2D expressed by NK cells, NKT, γδT and some CD8+T lymphocytes. RAE-1 is overexpressed in tumor cell lines and its expression is induced after viral infection and genotoxic stress. We have recently demonstrated that RAE-1 is expressed in the adult subventricular zone (SVZ) from C57BL/6 mice. RAE-1 is also expressed in vitro by neural stem/progenitor cells (NSPCs) and plays a non-immune role in cell proliferation. The C57BL/6 mouse genome contains two rae-1 genes, rae-1δ and rae-1ε encoding two different proteins. The goals of this study are first to characterize the in vivo and in vitro expression of each gene and secondly to elucidate the mechanisms underlying their respective expression, which are far from known. Principal Findings We observed that Rae-1δ and Rae-1ε transcripts are differentially expressed according to tissues, pathological conditions and cell lines. Embryonic tissue and the adult SVZ mainly expressed Rae-1δ transcripts. The NSPCs derived from the SVZ also mainly expressed RAE-1δ. The interest of this result is especially related to the observation that RAE-1δ is a weak NKG2D ligand compared to RAE-1ε. On the contrary, cell lines expressed either similar levels of RAE-1δ and RAE-1ε proteins or only RAE-1ε. Since the protein expression correlated with the level of transcripts for each rae-1 gene, we postulated that transcriptional regulation is one of the main processes explaining the difference between RAE-1δ and RAE-1ε expression. We indeed identified two different promoter regions for each gene: one mainly involved in the control of rae-1δ gene expression and the other in the control of rae-1ε expression. Conclusions/Significance RAE-1δ and RAE-1ε differ with respect to their function and the control of their expression. Immune function would be mainly exerted by RAE-1ε and non-immune function by RAE-1δ. PMID:20976056

  8. A 2D-DIGE-based proteomic analysis reveals differences in the platelet releasate composition when comparing thrombin and collagen stimulations

    PubMed Central

    Vélez, Paula; Izquierdo, Irene; Rosa, Isaac; García, Ángel

    2015-01-01

    Upon stimulation, platelets release a high number of proteins (the releasate). There are clear indications that these proteins are involved in the pathogenesis of several diseases, such as atherosclerosis. In the present study we compared the platelet releasate following platelet activation with two major endogenous agonists: thrombin and collagen. Proteome analysis was based on 2D-DIGE and LC-MS/MS. Firstly, we showed the primary role of thrombin and collagen receptors in platelet secretion by these agonists; moreover, we demonstrated that GPVI is the primary responsible for collagen-induced platelet activation/aggregation. Proteomic analysis allowed the detection of 122 protein spots differentially regulated between both conditions. After excluding fibrinogen spots, down-regulated in the releasate of thrombin-activated platelets, 84 differences remained. From those, we successfully identified 42, corresponding to 37 open-reading frames. Many of the differences identified correspond to post-translational modifications, primarily, proteolysis induced by thrombin. Among others, we show vitamin K-dependent protein S, an anticoagulant plasma protein, is up-regulated in thrombin samples. Our results could have pathological implications given that platelets might be playing a differential role in various diseases and biological processes through the secretion of different subsets of granule proteins and microvesicles following a predominant activation of certain receptors. PMID:25645904

  9. Verification of a non-hydrostatic dynamical core using the horizontal spectral element method and vertical finite difference method: 2-D aspects

    NASA Astrophysics Data System (ADS)

    Choi, S.-J.; Giraldo, F. X.; Kim, J.; Shin, S.

    2014-11-01

    The non-hydrostatic (NH) compressible Euler equations for dry atmosphere were solved in a simplified two-dimensional (2-D) slice framework employing a spectral element method (SEM) for the horizontal discretization and a finite difference method (FDM) for the vertical discretization. By using horizontal SEM, which decomposes the physical domain into smaller pieces with a small communication stencil, a high level of scalability can be achieved. By using vertical FDM, an easy method for coupling the dynamics and existing physics packages can be provided. The SEM uses high-order nodal basis functions associated with Lagrange polynomials based on Gauss-Lobatto-Legendre (GLL) quadrature points. The FDM employs a third-order upwind-biased scheme for the vertical flux terms and a centered finite difference scheme for the vertical derivative and integral terms. For temporal integration, a time-split, third-order Runge-Kutta (RK3) integration technique was applied. The Euler equations that were used here are in flux form based on the hydrostatic pressure vertical coordinate. The equations are the same as those used in the Weather Research and Forecasting (WRF) model, but a hybrid sigma-pressure vertical coordinate was implemented in this model. We validated the model by conducting the widely used standard tests: linear hydrostatic mountain wave, tracer advection, and gravity wave over the Schär-type mountain, as well as density current, inertia-gravity wave, and rising thermal bubble. The results from these tests demonstrated that the model using the horizontal SEM and the vertical FDM is accurate and robust provided sufficient diffusion is applied. The results with various horizontal resolutions also showed convergence of second-order accuracy due to the accuracy of the time integration scheme and that of the vertical direction, although high-order basis functions were used in the horizontal. By using the 2-D slice model, we effectively showed that the combined spatial

  10. Physiologically Based Pharmacokinetic Modeling of Tamoxifen and its Metabolites in Women of Different CYP2D6 Phenotypes Provides New Insight into the Tamoxifen Mass Balance

    PubMed Central

    Dickschen, Kristin; Willmann, Stefan; Thelen, Kirstin; Lippert, Jörg; Hempel, Georg; Eissing, Thomas

    2012-01-01

    Tamoxifen is a first-line endocrine agent in the mechanism-based treatment of estrogen receptor positive (ER+) mammary carcinoma and applied to breast cancer patients all over the world. Endoxifen is a secondary and highly active metabolite of tamoxifen that is formed among others by the polymorphic cytochrome P450 2D6 (CYP2D6). It is widely accepted that CYP2D6 poor metabolizers exert a pronounced decrease in endoxifen steady-state plasma concentrations compared to CYP2D6 extensive metabolizers. Nevertheless, an in-depth understanding of the chain of cause and effect between CYP2D6 genotype, endoxifen steady-state plasma concentration, and subsequent tamoxifen treatment benefit still remains to be evolved. In this study, physiologically based pharmacokinetic (PBPK)-modeling was applied to mechanistically investigate the impact of CYP2D6 phenotype on endoxifen formation in female breast cancer patients undergoing tamoxifen therapy. A PBPK-model of tamoxifen and its pharmacologically important metabolites N-desmethyltamoxifen (NDM-TAM), 4-hydroxytamoxifen (4-OH-TAM), and endoxifen was developed and validated. This model is able to simulate the pharmacokinetics (PK) after single and repeated oral tamoxifen doses in female breast cancer patients in dependence of the CYP2D6 phenotype. A detailed model-based analysis of the mass balance offered support for a recent hypothesis stating a more prominent role for endoxifen formation from 4-OH-TAM. In the future this model provides a good basis to further investigate the linkage of PK, mode of action, and treatment outcome in dependence of factors such as phenotype, ethnicity, or co-treatment with CYP2D6 inhibitors. PMID:22661948

  11. Fluorescently tuned nitrogen-doped carbon dots from carbon source with different content of carboxyl groups

    SciTech Connect

    Wang, Hao; Wang, Yun; Dai, Xiao; Zou, Guifu E-mail: zouguifu@suda.edu.cn; Gao, Peng; Zhang, Ke-Qin E-mail: zouguifu@suda.edu.cn; Du, Dezhuang; Guo, Jun

    2015-08-01

    In this study, fluorescent nitrogen-doped carbon dots (NCDs) were tuned via varying the sources with different number of carboxyl groups. Owing to the interaction between amino and carboxyl, more amino groups conjugate the surface of the NCDs by the source with more carboxyl groups. Fluorescent NCDs were tuned via varying the sources with different content of carboxyl groups. Correspondingly, the nitrogen content, fluorescence quantum yields and lifetime of NCDs increases with the content of carboxyl groups from the source. Furthermore, cytotoxicity assay and cell imaging test indicate that the resultant NCDs possess low cytotoxicity and excellent biocompatibility.

  12. Accurate modeling of fluorescence line narrowing difference spectra: Direct measurement of the single-site fluorescence spectrum

    NASA Astrophysics Data System (ADS)

    Reppert, Mike; Naibo, Virginia; Jankowiak, Ryszard

    2010-07-01

    Accurate lineshape functions for modeling fluorescence line narrowing (FLN) difference spectra (ΔFLN spectra) in the low-fluence limit are derived and examined in terms of the physical interpretation of various contributions, including photoproduct absorption and emission. While in agreement with the earlier results of Jaaniso [Proc. Est. Acad. Sci., Phys., Math. 34, 277 (1985)] and Fünfschilling et al. [J. Lumin. 36, 85 (1986)], the derived formulas differ substantially from functions used recently [e.g., M. Rätsep et al., Chem. Phys. Lett. 479, 140 (2009)] to model ΔFLN spectra. In contrast to traditional FLN spectra, it is demonstrated that for most physically reasonable parameters, the ΔFLN spectrum reduces simply to the single-site fluorescence lineshape function. These results imply that direct measurement of a bulk-averaged single-site fluorescence lineshape function can be accomplished with no complicated extraction process or knowledge of any additional parameters such as site distribution function shape and width. We argue that previous analysis of ΔFLN spectra obtained for many photosynthetic complexes led to strong artificial lowering of apparent electron-phonon coupling strength, especially on the high-energy side of the pigment site distribution function.

  13. Aniso2D

    Energy Science and Technology Software Center (ESTSC)

    2005-07-01

    Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.

  14. Mesh2d

    SciTech Connect

    Greg Flach, Frank Smith

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.

  15. Mesh2d

    Energy Science and Technology Software Center (ESTSC)

    2011-12-31

    Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less

  16. Highly Fluorescent dye-nanoclay Hybrid Materials Made from Different Dye Classes.

    PubMed

    Grabolle, Markus; Starke, Marian; Resch-Genger, Ute

    2016-04-12

    Nanoclays like laponites, which are commercially avaible in large quantities for a very moderate price, provide a facile solubilization strategy for hydrophobic dyes without the need for chemical functionalization and can act as a carrier for a high number of dye molecules. This does not require reactive dyes, amplifies fluorescence signals from individual emitters due to the high number of dyes molecules per laponite disk, and renders hydrophobic emitters applicable in aqueous environments. Aiming at the rational design of bright dye-loaded nanoclays as a new class of fluorescent reporters for bioanalysis and material sciences and the identification of dye structure-property relationships, we screened a series of commercial fluorescent dyes, differing in dye class, charge, and character of the optical transitions involved, and studied the changes of their optical properties caused by clay adsorption at different dye loading concentrations. Upon the basis of our dye loading density-dependent absorption and fluorescence measurements with S2105 and Lumogen F Yellow 083, we could identify two promising dye-nanoclay hybrid materials that reveal high fluorescence quantum yields of the nanoclay-adsorbed dyes of at least 0.20 and low dye self-quenching even at high dye-loading densities of up to 50 dye molecules per laponite platelet. PMID:27007448

  17. Fluorescence quenching of 7-amino-4-methylcoumarin by different TEMPO derivatives

    NASA Astrophysics Data System (ADS)

    Żamojć, Krzysztof; Wiczk, Wiesław; Zaborowski, Bartłomiej; Jacewicz, Dagmara; Chmurzyński, Lech

    2015-02-01

    The fluorescence quenching of 7-amino-4-methylcoumarin by different TEMPO derivatives was studied in aqueous solutions with the use of steady-state, time-resolved fluorescence spectroscopy as well as UV-VIS absorption spectroscopy methods. In order to distinguish each TEMPO derivative from the others and to understand the mechanism of quenching, the absorption and fluorescence emission spectra as well as decays of the fluorescence of 7-amino-4-methylcoumarin were registered as a function of each TEMPO derivative concentration. There were no deviations from a linearity in the Stern-Volmer plots (determined from both, steady-state and time-resolved measurements). The fluorescence quenching mechanism was found to be entirely collisional, what was additionally confirmed by the registration of Stern-Volmer plots at 5 temperatures ranging from 15 to 55 °C. Based on theoretical calculations of molecular radii and ionization potentials of all TEMPO derivatives the mechanism of electron transfer was rejected. The fluorescence quenching which was being studied seems to be diffusion-limited and caused by the increase of non-radiative processes, such as an internal conversion and an intersystem crossing. The Stern-Volmer quenching constants and bimolecular quenching constants were determined at the room temperature for all TEMPO derivatives studied. Among all TEMPO derivatives studied TEMPO-4-amino-4-carboxylic acid (TOAC) was found to be the most effective quencher of 7-amino-4-methylcoumarin fluorescence (kq for TOAC was approximately 1.5 higher than kq for other TEMPO compounds studied). The findings demonstrate the possibility of developing an analytical method for the quantitative determination of TOAC, which incorporation into membrane proteins may provide a direct detection of peptide backbone dynamics.

  18. Histologic differences between orthotopic xenograft pancreas models affect Verteporfin uptake measured by fluorescence microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    O'Hara, Julia A.; Samkoe, Kimberley S.; Chen, Alina; Isabelle, Martin; Hoopes, P. J.; Hasan, Tayyaba; Pogue, Brian W.

    2012-02-01

    Photodynamic therapy (PDT) that uses the second generation photosensitizer, verteporfin (VP), is a developing therapy for pancreatic cancer. The optimal timing of light delivery related to VP uptake and distribution in pancreatic tumors will be important information to obtain to improve treatment for this intractable disease. In this work we examined uptake and distribution of VP in two orthotopic pancreatic tumors with different histological structure. ASPC-1 (fast-growing) and Panc-1 (slower growing) tumors were implanted in SCID mice and studied when tumors were approximately 100mm3. In a pilot study, these tumors had been shown to differ in uptake of VP using lightinduced fluorescence spectroscopy (LIFS) in vivo and fluorescence imaging ex vivo and that work is extended here. In vivo fluorescence mean readings of tumor and liver increased rapidly up to 15 minutes after photosensitizer injection for both tumor types, and then continued to increase up to 60 minutes post injection to a higher level in ASPC-1 than in Panc-1. There was variability among animals with the same tumor type, in both liver and tumor uptake and no selectivity of tumor over liver. In this work we further examined VP uptake at multiple time points in relation to microvascular density and perfusion, using DiOC7 (to mark blood vessels) and VP fluorescence in the same tissue slices. Analysis of DiOC7 fluorescence indicates that AsPC-1 and Panc-1 have different vascular densities but AsPC-1 vasculature is more perfusive. Analysis of colocalized DiOC7 and VP fluorescence showed ASPC-1 with higher accumulation of VP 3 hrs after injection and more VP at a distance from blood vessels compared to Panc-1. This work shows the need for techniques to analyze photosensitizer distribution in order to optimize photodynamic therapy as an effective treatment for pancreatic tumors.

  19. Individual variability analysis of fluorescence parameters measured in skin with different levels of nutritive blood flow.

    PubMed

    Dunaev, Andrey V; Dremin, Victor V; Zherebtsov, Evgeny A; Rafailov, Ilya E; Litvinova, Karina S; Palmer, Scott G; Stewart, Neil A; Sokolovski, Sergei G; Rafailov, Edik U

    2015-06-01

    Fluorescence spectroscopy has recently become more common in clinical medicine. However, there are still many unresolved issues related to the methodology and implementation of instruments with this technology. In this study, we aimed to assess individual variability of fluorescence parameters of endogenous markers (NADH, FAD, etc.) measured by fluorescent spectroscopy (FS) in situ and to analyse the factors that lead to a significant scatter of results. Most studied fluorophores have an acceptable scatter of values (mostly up to 30%) for diagnostic purposes. Here we provide evidence that the level of blood volume in tissue impacts FS data with a significant inverse correlation. The distribution function of the fluorescence intensity and the fluorescent contrast coefficient values are a function of the normal distribution for most of the studied fluorophores and the redox ratio. The effects of various physiological (different content of skin melanin) and technical (characteristics of optical filters) factors on the measurement results were additionally studied. The data on the variability of the measurement results in FS should be considered when interpreting the diagnostic parameters, as well as when developing new algorithms for data processing and FS devices. PMID:25922293

  20. Intracellular distribution of fluorescent probes delivered by vesicles of different lipidic composition.

    PubMed

    Manconi, Maria; Isola, Raffaella; Falchi, Angela Maria; Sinico, Chiara; Fadda, Anna Maria

    2007-06-15

    In order to study mechanisms involved in liposome-cell interaction, this work attempted to assess the influence of vesicle composition on the delivery of liposomal content to Hela cells. In particular, to evaluate pH-sensitive properties and cell interaction of the prepared liposomes, the lipid formulations contained cholesterol (Chol) and they were varied by using phosphatidylcholines with different purity degree: soy lecithin (SL; 80% phosphatidylcholine), a commercial mixture of soy phosphatidylcholine (P90; 90% phosphatidylcholine) or dipalmitoylphosphatidylcholine (DPPC; 99% of purity). A second series of liposomes also contained stearylamine (SA). Dehydration-rehydration vesicles (DRV) were prepared and then sonicated to decrease vesicle size. Vesicle-cell interactions and liposomal uptake were examined by fluorescence microscopy using carboxyfluorescein (CF) and phosphatidylethanolamine-dioleoyl-sulforhodamine B (Rho-PE) as fluorescent markers. Fluorescence dequenching assay was used to study the influence of pH on CF release from the liposomal formulations. Liposome adhesion on the cell surface and internalization were strongly dependent on vesicle bilayer composition. SA vesicles were not endocytosed. DPPC/Chol liposomes were endocytosed but did not release their fluorescent content into the cytosol. SL/Chol and P90/Chol formulations displayed a diffuse cytoplasmic fluorescence of liposomal marker. PMID:17339103

  1. Fluorescence of Dendrons based on Donors and Accepter with Different Linkages

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Wu, Y.; Modarelli, D. A.; Parquette, J. R.; Epstein, A. J.

    2007-03-01

    Earlier indirect studies utilizing wavelength and bias spectra of photocurrent in simple photovoltaic cells demonstrated charge transfer (CT) in 1st generation dendritic macromolecules prepared using two different donor (tetraphenylporphyrin) groups bound to an accepter (naphthalenediimide) group. We report here fluorescence for solid-state films and solutions of these donor and dendrons. Using 460nm excitation, fluorescence (660nm, 715nm) in solution samples can be observed for both donor and dendron but fluorescence in the solid state can be observable only in donor sample due to fluorescence quenching within the dendron. This demonstrates intermolecular CT from donor to accepter. Fluorescence lifetime measurements (460nm 1.5nsec FWHM pulse excitation) of donor and dendron solutions show that it depends on length of the linkage between donor and accepter. This shows a direct relaxation path from donor to accepter (intramolecular CT). The separation of the exciton to separate electron and on the donor and acceptor portions of the dendron would open the potential for its use in photovoltaic application. Supported in part by DOE #DE-FG02-01ER45931

  2. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles

    NASA Astrophysics Data System (ADS)

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-07-01

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases.Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide

  3. Different scenarios for inverse estimation of soil hydraulic parameters from double-ring infiltrometer data using HYDRUS-2D/3D

    NASA Astrophysics Data System (ADS)

    Mashayekhi, Parisa; Ghorbani-Dashtaki, Shoja; Mosaddeghi, Mohammad Reza; Shirani, Hossein; Nodoushan, Ali Reza Mohammadi

    2016-04-01

    In this study, HYDRUS-2D/3D was used to simulate ponded infiltration through double-ring infiltrometers into a hypothetical loamy soil profile. Twelve scenarios of inverse modelling (divided into three groups) were considered for estimation of Mualem-van Genuchten hydraulic parameters. In the first group, simulation was carried out solely using cumulative infiltration data. In the second group, cumulative infiltration data plus water content at h = -330 cm (field capacity) were used as inputs. In the third group, cumulative infiltration data plus water contents at h = -330 cm (field capacity) and h = -15 000 cm (permanent wilting point) were used simultaneously as predictors. The results showed that numerical inverse modelling of the double-ring infiltrometer data provided a reliable alternative method for determining soil hydraulic parameters. The results also indicated that by reducing the number of hydraulic parameters involved in the optimization process, the simulation error is reduced. The best one in infiltration simulation which parameters α, n, and Ks were optimized using the infiltration data and field capacity as inputs. Including field capacity as additional data was important for better optimization/definition of soil hydraulic functions, but using field capacity and permanent wilting point simultaneously as additional data increased the simulation error.

  4. Detection of malformations in sea urchin plutei exposed to mercuric chloride using different fluorescent techniques.

    PubMed

    Buttino, Isabella; Hwang, Jiang-Shiou; Romano, Giovanna; Sun, Chi-Kuang; Liu, Tzu-Ming; Pellegrini, David; Gaion, Andrea; Sartori, Davide

    2016-01-01

    Embryos of Mediterranean sea urchin Paracentrotus lividus and subtropical Echinometra mathaei were exposed to 5,10, 15 and 20µgL(-1), and to 1, 2, 3 and 4µgL(-1) mercuric chloride (HgCl2), respectively. The effective concentration (EC50) inducing malformation in 50% of 4-arm pluteus stage (P4) was 16.14µgL(-1) for P. lividus and 2.41µgL(-1) for E. mathaei. Two-photon (TP), second (SHG) and third harmonic generation (THG) microscopy techniques, TUNEL staining, propidium iodide (PI) and Hoechst 33342 probes were used to detect light signals or to stain apoptotic and necrotic cells in fixed and alive plutei. Signals were detected differently in the two species: TP fluorescence, commonly associated with apoptotic cells, did not increase with increasing HgCl2 concentrations in P. lividus and in fact, the TUNEL did not reveal induction of apoptosis. PI fluorescence increased in P. lividus in a dose-dependent manner, suggesting a loss of cell permeability. In E. mathaei plutei TP fluorescence increased at increasing HgCl2 concentrations. THG microscopy revealed skeletal rods in both species. Different fluorescent techniques, used in this study, are proposed as early-warning systems to visualize malformations and physiological responses in sea urchin plutei. PMID:26254716

  5. Tuning zinc(II) coordination architectures by rigid long bis(triazole) and different carboxylates: Synthesis, structures and fluorescence properties

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiao; Li, Zuo-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-10-01

    Three metal-organic coordination polymers containing rigid bis(triazole) ligand, namely, [Zn1.5(btb)(nbta)(H2O)]n (1), {[Zn(btb)(3-nph)]·(H2O)}n (2) and [Zn(btb)(4-nph)]n (3) (btb = 4,4‧-bis(1,2,4-triazolyl-1-yl)-biphenyl, 3-H2nph = 3-nitrophthalic acid, H3nbta = 5-nitro-1,2,3-benzenetricarboxylic acid, and 4-H2nph = 4-nitrophthalic acid) were synthesized under hydrothermal conditions and structurally characterized by X-ray single-crystal diffraction. Complex 1 possesses an interesting 3D coordination framework with a rarely binodal (4,4)-connected frl topological structure. Complexes 2 and 3 exhibit similiar 2D (4,4) grid layers with different point symbol (44 · 64) in 2 and (44 · 62) in 3. Furthermore, thermal stability of these compounds has been discussed. Complexes 1-3 exhibit strong solid-state fluorescence at room temperature in solid state.

  6. Comparative proteomic analysis of Dan'er malts produced from distinct malting processes by two-dimensional fluorescence difference in gel electrophoresis (2D-DIGE).

    PubMed

    Li, Xiaomin; Jin, Zhao; Gao, Fei; Lu, Jian; Cai, Guolin; Dong, Jianjun; Yu, Junhong; Yang, Mei

    2014-09-24

    The malting process is the controlled germination, followed by drying, of the barley grain. For brewing beer, the malting process is modified according to the features of the barley variety being malted. In China, there are two schedules routinely used for malting the widely grown Dan'er cultivar, processes I and II. The quality of malt produced with process II is considered to be superior to that from process I for Dan'er by maltsters and brewers. In the present study, comparative proteomic analysis was performed between Dan'er malts produced by malting processes I and II. The data showed that enzymes and proteins responsible for cell wall polysaccharide degradation and starch and protein hydrolysis were more abundant in malt produced by process II, leading to improved quality, especially for the commercially important filterability, saccharification time, and diastatic power (DP) quality traits. In addition, to verify the proteomic results, the activities of several key enzymes (α-amylase, β-amylase, and limit dextrinase) were compared between the two malts. This enabled the influence of malting process on malt quality to be determined and suggested malting process schedule changes to optimize the malting process for the Dan'er cultivar, especially for improving filterability, which is often deemed as suboptimal by maltsters and brewers. PMID:25190622

  7. Characterization of the fluorescence emission properties of prodan in different reverse micellar environments

    NASA Astrophysics Data System (ADS)

    Sengupta, Bidisa; Guharay, Jayanti; Sengupta, Pradeep K.

    2000-06-01

    We have examined the steady state and time resolved fluorescence emission properties of the hydrophobic fluorescence probe, prodan, in three representative reverse micellar systems formed by the surfactants poly(oxyethylene) (tetramethylbutyl) phenylether (Triton X-100, neutral), cetyl trimethylammonium bromide (CTAB, cationic) and sodium bis-(2-ethylhexyl) sulfosuccinate (AOT, anionic) in organic solvent media containing different concentrations of water. The results obtained from the experiments indicate conspicuous dependence of the emission behaviour of prodan on the type of surfactant used and the water/surfactant molar ratio ( w0). The nature of the emission profiles, along with relevant parameters namely emission maximum ( λemmax), anisotropy ( r) and lifetime ( τ) data are used to infer the distribution and microenvironments of the prodan molecules in the reverse micelles at different w0 values. Furthermore, quantitative estimates have been obtained for the polarities (in terms of the empirical polarity parameter ET(30)) of the sites of solubilization of the fluorophore in different reverse micellar systems.

  8. Detection of hyphal fusion in filamentous fungi using differently fluorescence-labeled histones.

    PubMed

    Rech, Christine; Engh, Ines; Kück, Ulrich

    2007-11-01

    Cell fusion occurs regularly during the vegetative and sexual phases of the life cycle in filamentous fungi. Here, we present a simple and efficient method that can detect even rare hyphal fusion events. Using the homothallic ascomycete Sordaria macrospora as an experimental system, we developed a histone-assisted merged fluorescence (HAMF) assay for the investigation of hyphal fusion between vegetative mycelia. For this purpose, two reporter vectors were constructed encoding the histone proteins HH2B or HH2A fused at their C terminus either with the cyan or yellow fluorescent protein, respectively. The chimeric proteins generate fluorescently labeled nuclei and thus enable the distinction between different strains in a mycelial mixture. For example, hyphae with nuclei that show both cyan as well as yellow fluorescence indicate the formation of a heterokaryon as a result of hyphal fusion. To test the applicability of our HAMF assay, we used two S. macrospora developmental mutants that are supposed to have reduced hyphal fusion rates. The simple and efficient HAMF assay described here could detect even rare fusion events and should be applicable to a broad range of diverse fungal species including those lacking male or female reproductive structures or asexual spores. PMID:17929020

  9. Precise diagnosis in different scenarios using photoacoustic and fluorescence imaging with dual-modality nanoparticles.

    PubMed

    Peng, Dong; Du, Yang; Shi, Yiwen; Mao, Duo; Jia, Xiaohua; Li, Hui; Zhu, Yukun; Wang, Kun; Tian, Jie

    2016-08-14

    Photoacoustic imaging and fluorescence molecular imaging are emerging as important research tools for biomedical studies. Photoacoustic imaging offers both strong optical absorption contrast and high ultrasonic resolution, and fluorescence molecular imaging provides excellent superficial resolution, high sensitivity, high throughput, and the ability for real-time imaging. Therefore, combining the imaging information of both modalities can provide comprehensive in vivo physiological and pathological information. However, currently there are limited probes available that can realize both fluorescence and photoacoustic imaging, and advanced biomedical applications for applying this dual-modality imaging approach remain underexplored. In this study, we developed a dual-modality photoacoustic-fluorescence imaging nanoprobe, ICG-loaded Au@SiO2, which was uniquely designed, consisting of gold nanorod cores and indocyanine green with silica shell spacer layers to overcome fluorophore quenching. This nanoprobe was examined by both PAI and FMI for in vivo imaging on tumor and ischemia mouse models. Our results demonstrated that the nanoparticles can specifically accumulate at the tumor and ischemic areas and be detected by both imaging modalities. Moreover, this dual-modality imaging strategy exhibited superior advantages for a precise diagnosis in different scenarios. The new nanoprobe with the dual-modality imaging approach holds great potential for diagnosis and stage classification of tumor and ischemia related diseases. PMID:27406825

  10. The Effective of Different Excitation Wavelengths on the Identification of Plant Species Based on Fluorescence LIDAR

    NASA Astrophysics Data System (ADS)

    Yang, Jian; Gong, Wei; Shi, Shuo; Du, Lin; Sun, Jia; Song, Shalei

    2016-06-01

    Laser-induced fluorescence (LIF) served as an active technology has been widely used in many field, and it is closely related to excitation wavelength (EW). The objective of this investigation is to discuss the performance of different EWs of LIF LiDAR in identifying plant species. In this study, the 355, 460 and 556 nm lasers were utilized to excite the leaf fluorescence and the fluorescence spectra were measured by using the LIF LiDAR system built in the laboratory. Subsequently, the principal component analysis (PCA) with the help of support vector machine (SVM) was utilized to analyse fluorescence spectra. For the three EWs, the overall identification rates of the six plant species were 80 %, 83.3 % and 90 %. Experimental results demonstrated that 556 nm excitation light source is superior to 355 and 460 nm for the classification of the plant species for the same genus in this study. Thus, an appropriate excitation wavelength should be considered when the LIF LiDAR was utilized in the field of remote sensing based on the LIF technology.

  11. Fluorescent sensing and electrocatalytic properties of three Zn(II)/Co(II) coordination complexes containing two different dicarboxylates and two various bis(pyridyl)-bis(amide) ligands

    NASA Astrophysics Data System (ADS)

    Lin, Hongyan; Rong, Xing; Liu, Guocheng; Wang, Xiang; Wang, Xiuli; Duan, Surui

    2016-09-01

    Three new transition metal(II) coordination complexes constructed from two different dicarboxylates (1,3-H2BDC = 1,3-benzenedicarboxylic acid, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid) and two bis(pyridyl)-bis(amide) ligands (3-bpcd = N,N‧-bis(3-pyridyl)cyclohexane-1,4-dicarboxamide, 3-bpod = N,N‧-bis(3-pyridyl)octandiamide), [Zn(1,3-BDC)(3-bpcd)0.5(H2O)]·H2O (1), [Zn(1,3-BDC)(3-bpod)0.5(H2O)] (2) and [Co(1,4-NDC)(3-bpod)1.5(H2O)] (3) have been synthesized in the hydrothermal environments and structurally characterized by IR, TG and single crystal X-ray diffraction. Complexes 1 and 2 possess the similar 1D ladder-like chain based on [Zn(1,3-BDC)]n zigzag chain and the bidentate ligands 3-bpcd/or 3-bpod. Complex 3 shows a 2D layered structure with a 5-connected {410} topology, which consists of 1D linear [Co(1,4-NDC)]n chain and [Co(3-bpod)1.5]n chain with alternating arrangement of 3-bpod ligands and Co2(3-bpod)2 dinuclear loops. The adjacent 1D chains for 1-2 or the 2D layers for 3 are further extended into 2D or 3D supramolecular frameworks through the hydrogen bonding interactions. Additionally, the solid state fluorescent properties for the title complexes 1-3, the fluorescent sensing behaviors of complexes 1-2 and the electrochemical behaviour of complex 3 have been investigated.

  12. Can Sex Differences in Science Be Tied to the Long Reach of Prenatal Hormones? Brain Organization Theory, Digit Ratio (2D/4D), and Sex Differences in Preferences and Cognition.

    PubMed

    Valla, Jeffrey; Ceci, Stephen J

    2011-03-01

    Brain organization theory posits a cascade of physiological and behavioral changes initiated and shaped by prenatal hormones. Recently, this theory has been associated with outcomes including gendered toy preference, 2D/4D digit ratio, personality characteristics, sexual orientation, and cognitive profile (spatial, verbal, and mathematical abilities). We examine the evidence for this claim, focusing on 2D/4D and its putative role as a biomarker for organizational features that influence cognitive abilities/interests predisposing males toward mathematically and spatially intensive careers. Although massive support exists for early brain organization theory overall, there are myriad inconsistencies, alternative explanations, and outright contradictions that must be addressed while still taking the entire theory into account. Like a fractal within the larger theory, the 2D/4D hypothesis mirrors this overall support on a smaller scale while likewise suffering from inconsistencies (positive, negative, and sex-dependent correlations), alternative explanations (2D/4D related to spatial preferences rather than abilities per se), and contradictions (feminine 2D/4D in men associated with higher spatial ability). Using the debate over brain organization theory as the theoretical stage, we focus on 2D/4D evidence as an increasingly important player on this stage, a demonstrative case in point of the evidential complexities of the broader debate, and an increasingly important topic in its own right. PMID:22164187

  13. Can Sex Differences in Science Be Tied to the Long Reach of Prenatal Hormones? Brain Organization Theory, Digit Ratio (2D/4D), and Sex Differences in Preferences and Cognition

    PubMed Central

    Valla, Jeffrey; Ceci, Stephen J.

    2011-01-01

    Brain organization theory posits a cascade of physiological and behavioral changes initiated and shaped by prenatal hormones. Recently, this theory has been associated with outcomes including gendered toy preference, 2D/4D digit ratio, personality characteristics, sexual orientation, and cognitive profile (spatial, verbal, and mathematical abilities). We examine the evidence for this claim, focusing on 2D/4D and its putative role as a biomarker for organizational features that influence cognitive abilities/interests predisposing males toward mathematically and spatially intensive careers. Although massive support exists for early brain organization theory overall, there are myriad inconsistencies, alternative explanations, and outright contradictions that must be addressed while still taking the entire theory into account. Like a fractal within the larger theory, the 2D/4D hypothesis mirrors this overall support on a smaller scale while likewise suffering from inconsistencies (positive, negative, and sex-dependent correlations), alternative explanations (2D/4D related to spatial preferences rather than abilities per se), and contradictions (feminine 2D/4D in men associated with higher spatial ability). Using the debate over brain organization theory as the theoretical stage, we focus on 2D/4D evidence as an increasingly important player on this stage, a demonstrative case in point of the evidential complexities of the broader debate, and an increasingly important topic in its own right. PMID:22164187

  14. Quality assessment of fluoxetine and fluvoxamine pharmaceutical formulations purchased in different countries or via the Internet by 19F and 2D DOSY 1H NMR.

    PubMed

    Trefi, Saleh; Gilard, Véronique; Balayssac, Stéphane; Malet-Martino, Myriam; Martino, Robert

    2008-03-13

    A simple and selective (19)F NMR method has been validated for the quantitation of fluoxetine (FLX) and fluvoxamine (FLV) in methanol solutions and in human plasma and urine. The regression equations for FLX and FLV showed a good linearity in the range of 1.4-620 microg mL(-1) (3.3 x 10(-6)-1.8 x 10(-3) mol L(-1)) with a limit of detection of approximately 0.5 microg mL(-1) (1.3 x 10(-6) mol L(-1)) and a limit of quantification of approximately 2 microg mL(-1) (4.6 x 10(-6) mol L(-1)). The precision of the assay depends on the concentrations and is comprised between 1.5 and 9.5% for a range of concentrations between 1.2 x 10(-3) and 3.2 x 10(-6) mol L(-1). The accuracy evaluated through recovery studies ranged from approximately 96 to 103% in methanol solutions and in urine, and from approximately 93 to 104% in plasma, with standard deviations <7.5%. The low sensitivity of the method precludes its use for the assay of these antidepressants in biofluids at least at therapeutic doses as the ranges of FLX and FLV plasma levels are 0.15-0.5 microg mL(-1) and 0.15-0.25 microg mL(-1), respectively. The method was applied successfully to the determination of FLX and FLV contents in pharmaceutical samples (brand-named and generic) purchased in several countries or via the Internet. All the commercial formulations contain the active ingredient in the range 94-103% of stated concentration. A "signature" of the formulations (solid and liquid) was obtained with 2D Diffusion-Ordered SpectroscopY (DOSY) (1)H NMR which allowed the characterisation of the active ingredient and excipients present in the formulations studied. Finally, the DOSY separation of FLX and FLV whose molecular weights are very close was obtained by using beta-cyclodextrin as host-guest complexing agent. PMID:18206329

  15. Inertial solvation in femtosecond 2D spectra

    NASA Astrophysics Data System (ADS)

    Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David

    2001-03-01

    We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.

  16. Internal Photoemission Spectroscopy of 2-D Materials

    NASA Astrophysics Data System (ADS)

    Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin

    Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.

  17. Photosensitizer fluorescence dynamics at its diffusion in blood flow for different means of cells concentrations

    NASA Astrophysics Data System (ADS)

    Maryakhina, V. S.; Gun'kov, V. V.

    2016-04-01

    In the paper the mathematical model of kinetics of interaction of the injected compound with biological liquid flow has been described for different means of cells concentrations connected on packed cell volume. It is considered that biological liquid contains a three phases such as water, peptides and cells. At the time, the injected compound can interact with peptides and cells which are "trap" for him. The obtained distribution of the compound connects on changes of its fluorescence spectra. It is shown that fluorescence intensivity change is different at 560, 580 and 590 nm. The curves do not have monotonic nature. There is a sharp curves decline in the first few seconds, next, it are increasing. Curves inflection time slightly depends on the cells concentration and is 7-9 seconds. At the time stationary concentration significantly depends on this parameter in contrast to blood viscosity. As long s cells concentration is primarily mean of the packed cell volume, the model can be important for pharmacokinetics and preparations delivery. It can be also used for fluorescent biomedical diagnostics of cancer tumour.

  18. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  19. Identification of glycoprotein receptors within the human salivary proteome for the lectin-like BabA and SabA adhesins of Helicobacter pylori by fluorescence-based 2-D bacterial overlay.

    PubMed

    Walz, Anke; Odenbreit, Stefan; Stühler, Kai; Wattenberg, Andreas; Meyer, Helmut E; Mahdavi, Jafar; Borén, Thomas; Ruhl, Stefan

    2009-03-01

    Because gastric infection by Helicobacter pylori takes place via the oral route, possible interactions of this bacterium with human salivary proteins could occur. By using modified 1- and 2-D bacterial overlay, binding of H. pylori adhesins BabA and SabA to the whole range of salivary proteins was explored. Bound salivary receptor molecules were identified by MALDI-MS and by comparison to previously established proteome maps of whole and glandular salivas. By use of adhesin-deficient mutants, binding of H. pylori to MUC7 and gp-340 could be linked to the SabA and BabA adhesins, respectively, whereas binding to MUC5B was associated with both adhesins. Binding of H. pylori to the proline-rich glycoprotein was newly detected and assigned to BabA adhesin whereas the SabA adhesin was found to mediate binding to newly detected receptor molecules, including carbonic anhydrase VI, secretory component, heavy chain of secretory IgA1, parotid secretory protein and zinc-alpha(2)-glycoprotein. Some of these salivary glycoproteins are known to act as scavenger molecules or are involved in innate immunity whereas others might come to modify the pathogenetic properties of this organism. In general, this 2-D bacterial overlay technique represents a useful supplement in adhesion studies of bacteria with complex protein mixtures. PMID:19253298

  20. The mutual influence of two different dyes on their sensitized fluorescence (cofluorescence) in nanoparticles from complexes

    NASA Astrophysics Data System (ADS)

    Mironov, L. Yu.; Sveshnikova, E. B.; Ermolaev, V. L.

    2013-10-01

    We have studied the fluorescence sensitization and quenching for pairs of different dyes simultaneously incorporated into nanoparticles from complexes M(diketone)3phen, where M(III) is La(III), Lu(III), or Sc(III); diketone is p-phenylbenzoyltrifluoroacetone (PhBTA) or naphthoyltrifluoroacetone (NTA); and phen is 1,10-phenanthroline. We have shown that, upon formation of nanoparticles in the solution in the presence of two dyes the concentrations of which are either comparable with or lower than the concentration of nanoparticles (<20 nM), the intensities of the sensitized fluorescence of dyes in nanoparticles in binary solutions and in solutions of either of the dyes coincide. We have found that the intensity of sensitized fluorescence of small (<20 nM) concentrations of rhodamine 6G (R6G) or Nile blue (NB) increases by an order of magnitude upon simultaneous introduction into nanoparticles of 1 μM of coumarin 30 (C30), while the intensity of fluorescence of C30 sensitized by complexes decreases by an order of magnitude. The same effect is observed as 1 μM of R6G are introduced into nanoparticles with NB ([NB] ≤ 20 nM). The increase in the fluorescence of dye molecules upon their incorporation from the solution into nanoparticles from complexes is noticeably lower than that expected from the proposed ratio of concentrations of complexes and dyes in nanoparticles. Analysis of the obtained data indicates that the introduction of large concentrations of C30 or R6G dyes into nanoparticles makes it possible to prevent large energy losses due to impurities or upon transition to a triplet state that arises during the migration of the excitation energy over S 1 levels of complexes. Energy accumulated by these dyes is efficiently transferred to another dye that is present in the solution at lower concentrations and that has a lower-lying S 1 level, which makes it possible to increase its fluorescence by an order of magnitude upon its incorporation into nanoparticles.

  1. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  2. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study.

    PubMed

    Islam, Mullah Muhaiminul; Sonu, Vikash K; Gashnga, Pynsakhiat Miki; Moyon, N Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0×10(4)M(-1)) in comparison with CAF (∼9.3×10(2)M(-1)) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure. PMID:26186394

  3. Caffeine and sulfadiazine interact differently with human serum albumin: A combined fluorescence and molecular docking study

    NASA Astrophysics Data System (ADS)

    Islam, Mullah Muhaiminul; Sonu, Vikash K.; Gashnga, Pynsakhiat Miki; Moyon, N. Shaemningwar; Mitra, Sivaprasad

    2016-01-01

    The interaction and binding behavior of the well-known drug sulfadiazine (SDZ) and psychoactive stimulant caffeine (CAF) with human serum albumin (HSA) was monitored by in vitro fluorescence titration and molecular docking calculations under physiological condition. The quenching of protein fluorescence on addition of CAF is due to the formation of protein-drug complex in the ground state; whereas in case of SDZ, the experimental results were explained on the basis of sphere of action model. Although both these compounds bind preferentially in Sudlow's site 1 of the protein, the association constant is approximately two fold higher in case of SDZ (∼4.0 × 104 M-1) in comparison with CAF (∼9.3 × 102 M-1) and correlates well with physico-chemical properties like pKa and lipophilicity of the drugs. Temperature dependent fluorescence study reveals that both SDZ and CAF bind spontaneously with HSA. However, the binding of SDZ with the protein is mainly governed by the hydrophobic forces in contrast with that of CAF; where, the interaction is best explained in terms of electrostatic mechanism. Molecular docking calculation predicts the binding of these drugs in different location of sub-domain IIA in the protein structure.

  4. The antioxidative power AP—A new quantitative time dependent (2D) parameter for the determination of the antioxidant capacity and reactivity of different plants

    NASA Astrophysics Data System (ADS)

    Jung, Katinka; Richter, J.; Kabrodt, K.; Lücke, I. M.; Schellenberg, I.; Herrling, Th.

    2006-03-01

    In the last decade, naturally occurring antioxidants continue to play an important role in the food-supplement industry. The content of antioxidants in a plant depends on the species, temperature, humidity, period of growth, harvest month, part of the plant used and many other variables. Herein, we present a new method able to determine the all over antioxidative power (AP) of plant extracts or lyophilised plant parts based on the reducing activity against a stable test radical. The method is performed by ESR spectroscopy and is based on the well-known 1,1-diphenyl-2-picryl-hydrazil (DPPH) method with the major difference that both the antioxidative capacity and the antioxidative activity are used to characterise an antioxidant. The resulting antioxidative power is expressed in antioxidative units (AU), where 1 AU corresponds to the activity of a 1 ppm solution of Vitamin C as a benchmark. This method allows a rapid, unexpensive and general applicable technique for the measurement of the antioxidative power of very different kinds of substances. The inclusion of the kinetic behaviour of the reducing process of the antioxidant for the determination of the AP allows the identification of the main antioxidant present in a sample. Herein, we present the application example of seeds, sprouts and adult parts of dandelion, amaranth, quinoa, fenugreek, broccoli, red clover and mugwort, where the AP method permits to characterise the plants with the highest antioxidant capacity and reaction velocity. The method permits to select active plant extracts for the food and nutrition industry.

  5. The antioxidative power AP--A new quantitative time dependent (2D) parameter for the determination of the antioxidant capacity and reactivity of different plants.

    PubMed

    Jung, Katinka; Richter, J; Kabrodt, K; Lücke, I M; Schellenberg, I; Herrling, Th

    2006-03-13

    In the last decade, naturally occurring antioxidants continue to play an important role in the food-supplement industry. The content of antioxidants in a plant depends on the species, temperature, humidity, period of growth, harvest month, part of the plant used and many other variables. Herein, we present a new method able to determine the all over antioxidative power (AP) of plant extracts or lyophilised plant parts based on the reducing activity against a stable test radical. The method is performed by ESR spectroscopy and is based on the well-known 1,1-diphenyl-2-picryl-hydrazil (DPPH) method with the major difference that both the antioxidative capacity and the antioxidative activity are used to characterise an antioxidant. The resulting antioxidative power is expressed in antioxidative units (AU), where 1AU corresponds to the activity of a 1 ppm solution of Vitamin C as a benchmark. This method allows a rapid, unexpensive and general applicable technique for the measurement of the antioxidative power of very different kinds of substances. The inclusion of the kinetic behaviour of the reducing process of the antioxidant for the determination of the AP allows the identification of the main antioxidant present in a sample. Herein, we present the application example of seeds, sprouts and adult parts of dandelion, amaranth, quinoa, fenugreek, broccoli, red clover and mugwort, where the AP method permits to characterise the plants with the highest antioxidant capacity and reaction velocity. The method permits to select active plant extracts for the food and nutrition industry. PMID:16490383

  6. Effect of different agents onto multidrug resistant cells revealed by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Boutin, C.; Roche, Y.; Jaffiol, R.; Millot, J.-M.; Millot, C.; Plain, J.; Deturche, R.; Jeannesson, P.; Manfait, M.; Royer, P.

    Fluorescence correlation spectroscopy (FCS), which is a sensitive and non invasive technique, has been used to characterize the plasma membrane fluidity and heterogeneity of multidrug resistant living cells. At the single cell level, the effects of different membrane agents present in the extra-cellular medium have been analyzed. Firstly, we reveal a modification of plasma membrane microviscosity according to the addition of a fluidity modulator, benzyl alcohol. In the other hand, revertant such as verapamil and cyclosporin-A appears to act more specifically on the slow diffusion sites as microdomains.

  7. Classification of Sherry vinegars by combining multidimensional fluorescence, parafac and different classification approaches.

    PubMed

    Callejón, Raquel M; Amigo, José Manuel; Pairo, Erola; Garmón, Sergio; Ocaña, Juan Antonio; Morales, Maria Lourdes

    2012-01-15

    Sherry vinegar is a much appreciated product from Jerez-Xérès-Sherry, Manzanilla de Sanlúcar and Vinagre de Jerez Protected Designation in southwestern Spain. Its complexity and the extraordinary organoleptic properties are acquired thanks to the method of production followed, the so-called "criaderas y solera" ageing system. Three qualities for Sherry vinegar are considered according to ageing time in oak barrels: "Vinagre de Jerez" (minimum of 6 months), "Reserva" (at least 2 years) and "Gran Reserva" (at least 10 years). In the last few years, there has been an increasing need to develop rapid, inexpensive and effective analytical methods, as well as requiring low sample manipulation for the analysis and characterization of Sherry vinegar. Fluorescence spectroscopy is emerging as a competitive technique for this purpose, since provides in a few seconds an excitation-emission landscape that may be used as a fingerprint of the vinegar. Multi-way analysis, specifically Parallel Factor Analysis (PARAFAC), is a powerful tool for simultaneous determination of fluorescent components, because they extract the most relevant information from the data and allow building robust models. Moreover, the information obtained by PARAFAC can be used to build robust and reliable classification and discrimination models (e.g. by using Support Vector Machines and Partial Least Squares-Discriminant Analysis models). In this context, the aim of this work was to study the possibilities of multi-way fluorescence linked to PARAFAC and to classify the different Sherry vinegars accordingly to their ageing. The results demonstrated that the use of the proposed analytical and chemometric tools are a perfect combination to extract relevant chemical information about the vinegars as well as to classify and discriminate them considering the different ageing. PMID:22265526

  8. On 2D graphical representation of DNA sequence of nondegeneracy

    NASA Astrophysics Data System (ADS)

    Zhang, Yusen; Liao, Bo; Ding, Kequan

    2005-08-01

    Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.

  9. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology

    PubMed Central

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  10. Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.

    PubMed

    Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr

    2016-01-01

    The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346

  11. Method for determining surface coverage by materials exhibiting different fluorescent properties

    NASA Technical Reports Server (NTRS)

    Chappelle, Emmett W. (Inventor); Daughtry, Craig S. T. (Inventor); Mcmurtrey, James E., III (Inventor)

    1995-01-01

    An improved method for detecting, measuring, and distinguishing crop residue, live vegetation, and mineral soil is presented. By measuring fluorescence in multiple bands, live and dead vegetation are distinguished. The surface of the ground is illuminated with ultraviolet radiation, inducing fluorescence in certain molecules. The emitted fluorescent emission induced by the ultraviolet radiation is measured by means of a fluorescence detector, consisting of a photodetector or video camera and filters. The spectral content of the emitted fluorescent emission is characterized at each point sampled, and the proportion of the sampled area covered by residue or vegetation is calculated.

  12. The importance of humin in soil characterisation: A study on Amazonian soils using different fluorescence techniques.

    PubMed

    Tadini, Amanda Maria; Nicolodelli, Gustavo; Mounier, Stephane; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira

    2015-12-15

    Soil organic matter (SOM) is a complex mixture of molecules with different physicochemical properties, with humic substances (HS) being the main component as it represents around 20-50% of SOM structure. Soil of the Amazon region is considered one of the larger carbon pools of the world; thus, studies of the humic fractions are important for understanding the dynamics of organic matter (OM) in these soils. The aim of this study was to use laser-induced fluorescence spectroscopy (LIFS) and a combination of excitation-emission matrix (EEM) fluorescence with Parallel Factor Analysis (CP/PARAFAC) to assess the characteristics of humin (HU) extracted from Amazonian soils. The results obtained using LIFS showed that there was an increasing gradient of humification degree with depth, the deeper horizon presenting a higher amount of aromatic groups in the structure of HU. From the EEM, the contribution of two fluorophores with similar behaviour in the structures of HU and whole soil was assessed. Additionally, the results showed that the HU fraction might represent a larger fraction of SOM than previously thought: about 80-93% of some Amazon soils. Therefore, HU is an important humic fraction, thus indicating its role in environmental analysis, mainly in soil analysis. PMID:26282749

  13. Short communication: Suitability of fluorescence spectroscopy for characterization of commercial milk of different composition and origin.

    PubMed

    Ntakatsane, M P; Yang, X Q; Lin, M; Liu, X M; Zhou, P

    2011-11-01

    Thirteen milk brands comprising 76 pasteurized and UHT milk samples of various compositions (whole, reduced fat, skimmed, low lactose, and high protein) were obtained from local supermarkets, and milk samples manufactured in various countries were discriminated using front-face fluorescence spectroscopy (FFFS) coupled with chemometric tools. The emission spectra of Maillard reaction products and riboflavin (MRP/RF; 400 to 600 nm) and tryptophan (300 to 400 nm) were recorded using FFFS, and the excitation wavelengths were set at 360 nm for MRP/RF and 290 nm for tryptophan. Principal component analysis (PCA) was applied to analyze the normalized spectra. The PCA of spectral information from MRP/RF discriminated the milk samples originating in different countries, and PCA of spectral information from tryptophan discriminated the samples according to composition. The fluorescence spectral data were compared with liquid chromatography-mass spectrometry results for the glycation extent of the milk samples, and a positive association (R(2)=0.84) was found between the degree of glycation of α-lactalbumin and the MRP/RF spectral data. This study demonstrates the ability and sensitivity of FFFS to rapidly discriminate and classify commercial milk with various compositions and processing conditions. PMID:22032360

  14. Theoretical investigation on ESIPT mechanism of a new fluorescent sensor in different solvents.

    PubMed

    Yang, Dapeng; Zheng, Rui; Wang, Yusheng; Lv, Jian

    2016-04-15

    In the present work, a new phenylbenzimidazole derivatized fluorescent sensor (L) (J. Lumin. 147 (2014) 179), has been investigated on the excited state proton transfer (ESPT) based on the time-dependent density functional theory (TDDFT) method. The calculated absorption and fluorescence spectra based on the TDDFT method are in agreement with the experimental results. Two kinds of structures of L chromophore are found in the first excited (S1) state, which may be due to the proton transfer reactive. Hydrogen bond strengthening has been testified in the S1 state based on comparing staple bond lengths and bond angles involved in hydrogen bonding between the S0 state and the S1 state. In addition, the calculated infrared spectra at the N-H stretching vibrational region and calculated hydrogen bond energy also declare the phenomenon of hydrogen bond strengthening. The frontier molecular orbitals (MOs) and Mulliken's charge distribution analysis method as well as natural bond orbital (NBO) demonstrate the charge distribution, which provides the tendency of ESIPT reaction. The potential energy surfaces of the S0 and S1 states are constructed to explain the mechanism of the proton transfer in the excited state in detail. In addition, the ESIPT process of sensor L is dependent on different solvents. PMID:26827174

  15. Performance comparison of different compact NIR fluorescent imaging systems with goggle display for intraoperative image-guidance

    NASA Astrophysics Data System (ADS)

    Gao, Shengkui; Mondal, Suman; Zhu, Nan; Liang, Rongguang; Achilefu, Samuel; Gruev, Viktor

    2015-03-01

    Near-infrared (NIR) fluorescent imaging system has been widely used for intraoperative image-guided application. In this paper, we present performance comparison from three compact NIR fluorescence imaging system prototypes with goggle display that we developed for intraoperative guidance: threshold detection based two camera system, feature matching based three cameras system and miniature beam-splitter single camera system. Their performance is evaluated according to sensitivity regarding different ICG concentrations, accuracy of image overlay between NIR-visible channels, compactness and practicability in intraoperative use. The comparison results show great potentials of using these NIR fluorescence imaging systems to improve user experience and surgical outcomes in intraoperative use.

  16. The mouse ruby-eye 2(d) (ru2(d) /Hps5(ru2-d) ) allele inhibits eumelanin but not pheomelanin synthesis.

    PubMed

    Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa

    2013-09-01

    The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590

  17. Sensitivity of detection of bacteria with fluorescent and luminescent phenotypes using different instruments

    NASA Astrophysics Data System (ADS)

    Brovko, Lubov Y.; Griffiths, Mansel W.

    2000-04-01

    The problem of bacterial enumeration in different samples is of great importance in many fields of research. Construction of recombinant fluorescent and luminescent bacteria that can be easily detected by nondestructive instrumental methods proves us with an opportunity to monitor bacteria in a wide variety of clinical, environmental and food samples in real time. Three different labels were employed: Green Fluorescent Protein (GFP), Bacterial luciferase (BL) and Firefly Luciferase (FFL). Both plasmid and chromosomal transformants of different strains of E. coli, P. putida and S. enteritidis were used. For the detection of the in vivo GFP the Shimadzu RF 540 spectrofluorimeter, Labsystems FL- 500 plate fluorimeter and Night Owl LB 98 CCD-camera from EG and G Berthold supplied with excitation light source and proper spectral filters both in macroscopic and microscopic mode were used. For the detection of in vivo luminescence of BL and FFL, tube luminometer BG-P from GEM Biomedical Inc., luminometric plate reader from BioOrbit, BIQ Bioview CCD camera from Cambridge Imaging Ltd and Night Owl LB 98 CCD camera both in macroscopic and microscopic mode were used. The expression levels of the labels, their stability, stability of the signal and detection limits of tagged bacteria were investigated. The detection limits for GFP tagged bacteria were 5 X 104 - 6 X 106, for BL tagged bacteria 5 X 102 - 2 X 105, and for FFL tagged bacteria - 4 X 103 - 106 CFU/ml, depending on the instrument used. Single bacteria could be detected with the help of the Night Owl in the microscopic mode.

  18. Genetically encoded fluorescent indicator for imaging NAD+/NADH ratio changes in different cellular compartments

    PubMed Central

    Bilan, Dmitry S.; Matlashov, Mikhail E.; Gorokhovatsky, Andrey Yu.; Schultz, Carsten; Enikolopov, Grigori; Belousov, Vsevolod V.

    2014-01-01

    Background The ratio of NAD+/NADH is a key indicator that reflects the overall redox state of the cells. Until recently, there were no methods for real time NAD+/NADH monitoring in living cells. Genetically encoded fluorescent probes for NAD+/NADH are fundamentally new approach for studying the NAD+/NADH dynamics. Methods We developed a genetically encoded probe for the nicotinamide adenine dinucleotide, NAD(H), redox state changes by inserting circularly permuted YFP into redox sensor T-REX from Thermus aquaticus. We characterized the sensor in vitro using spectrofluorometry and in cultured mammalian cells using confocal fluorescent microscopy. Results The sensor, named RexYFP, reports changes in the NAD+/NADH ratio in different compartments of living cells. Using RexYFP, we were able to track changes in NAD+/NADH in cytoplasm and mitochondrial matrix of cells under a variety of conditions. The affinity of the probe enables comparison of NAD+/NADH in compartments with low (cytoplasm) and high (mitochondria) NADH concentration. We developed a method of eliminating pH-driven artifacts by normalizing the signal to the signal of the pH sensor with the same chromophore. Conclusion RexYFP is suitable for detecting the NAD(H) redox state in different cellular compartments. General significance RexYFP has several advantages over existing NAD+/NADH sensors such as smallest size and optimal affinity for different compartments. Our results show that normalizing the signal of the sensor to the pH changes is a good strategy for overcoming pH-induced artifacts in imaging. PMID:24286672

  19. Two-dimensional fluorescence lifetime correlation spectroscopy. 2. Application.

    PubMed

    Ishii, Kunihiko; Tahara, Tahei

    2013-10-01

    In the preceding article, we introduced the theoretical framework of two-dimensional fluorescence lifetime correlation spectroscopy (2D FLCS). In this article, we report the experimental implementation of 2D FLCS. In this method, two-dimensional emission-delay correlation maps are constructed from the photon data obtained with the time-correlated single photon counting (TCSPC), and then they are converted to 2D lifetime correlation maps by the inverse Laplace transform. We develop a numerical method to realize reliable transformation, employing the maximum entropy method (MEM). We apply the developed actual 2D FLCS to two real systems, a dye mixture and a DNA hairpin. For the dye mixture, we show that 2D FLCS is experimentally feasible and that it can identify different species in an inhomogeneous sample without any prior knowledge. The application to the DNA hairpin demonstrates that 2D FLCS can disclose microsecond spontaneous dynamics of biological molecules in a visually comprehensible manner, through identifying species as unique lifetime distributions. A FRET pair is attached to the both ends of the DNA hairpin, and the different structures of the DNA hairpin are distinguished as different fluorescence lifetimes in 2D FLCS. By constructing the 2D correlation maps of the fluorescence lifetime of the FRET donor, the equilibrium dynamics between the open and the closed forms of the DNA hairpin is clearly observed as the appearance of the cross peaks between the corresponding fluorescence lifetimes. This equilibrium dynamics of the DNA hairpin is clearly separated from the acceptor-missing DNA that appears as an isolated diagonal peak in the 2D maps. The present study clearly shows that newly developed 2D FLCS can disclose spontaneous structural dynamics of biological molecules with microsecond time resolution. PMID:23977902

  20. Differences in in vivo fluorescence yield between three phytoplankton size classes

    USGS Publications Warehouse

    Alpine, Andrea E.; Cloern, James E.

    1985-01-01

    The size-dependent relationship between in vivo fluorescence (IVF) and chlorophyll a was determined for monthly phytoplankton samples from the San Francisco Bay estuary. Chlorophyll a and IVF were both measured on netplankton (>22 μm), nanoplankton (5–22 μm), and ultraplankton (<5 μm) samples that were separated with screens. IVF and chlorophyll a were linearly related for each size class, but the IVF per unit chlorophyll a (R) was significantly different between these three size classes. The ultraplankton R was twice that of the nanoplankton which was in turn twice the netplankton R. Hence, accurate size fractionation of phytoplankton biomass from measures of IVF requires correction for size-dependent variations in R.

  1. Fluorescence emission difference with defocused surface plasmon-coupled emission microscopy.

    PubMed

    Ge, Baoliang; Zhu, Liangfu; Kuang, Cuifang; Zhang, Douguo; Fang, Yue; Ma, Ye; Liu, Xu

    2015-12-14

    A novel fluorescence emission difference method is proposed to improve the lateral resolution of SPCEM without increasing instrument complexity. We discovered the profile of transverse PSF in SPCEM will dramatically change from a hollow spot to a solid spot, when the axial position of sample varies within one wavelength in the vicinity of the focal plane. The subtraction of an image whose PSF is hollow spot and an image with solid PSF will greatly enhance the resolution and contrast of SPCEM images. The mechanism of the distinctive PSF is demonstrated through basic optics theories, and the improvement of lateral resolution is verified by theoretical simulations and experimental results. It is believed that our method will stand out for its pleasant resolution enhancement and its instruments' simplicity to facilitate many biological cellular observations. PMID:26699046

  2. The Application of Fluorescence In Situ Hybridization in Different Ploidy Levels Cross-Breeding of Lily

    PubMed Central

    Wang, Qing; Wang, Jingmao; Zhang, Yiying; Zhang, Yue; Xu, Shunchao; Lu, Yingmin

    2015-01-01

    21 crossing were conducted between Asiatic Lily with different ploidy levels, the results showed that the interploidy hybridization between diploid and tetraploid lilies was not as successful as intraploidy hybridization. Regardless of male sterility, triploid lilies could be used as female parents in the hybridization which the progenies were aneuploidy. 3x×4x crosses could be cultured more successfully than 3x×2x crosses. 45S rDNA was mapped on the chromosomes of seven Lilium species and their progenies using fluorescence in situ hybridization (FISH). FISH revealed six to sixteen 45S rDNA gene loci, and normally the sites were not in pairs. The asymmetry indexes of LA (Longiflorum hybrids × Asiatic hybrids) hybrids was higher than Asiatic hybrids, the evolution degree was LA hybrids > Asiatic hybrids. 45S rDNA distributed variably on chromosome 1-10 and 12 among Asiatic hybrids. Chromosome 1 had invariable sites of 45S rDNA in all Asiatic hybrids, which could be considered as the characteristic of Asiatic hybrids. LA hybrid ‘Freya’ had two sites of 45S rDNA on one homologous chromosome 5, and also it could be found in the progenies. The karyotype and fluorescence in situ hybridization with 45S rDNA as probe were applied to identify the different genotypes of 9 hybrids. Typical chromosomes with parental signal sites could be observed in all the genotypes of hybrids, it was confirmed that all the hybrids were true. PMID:26010356

  3. Nanoscale Packing Differences in Sphingomyelin and Phosphatidylcholine Revealed by BODIPY Fluorescence in Monolayers: Physiological Implications

    PubMed Central

    2015-01-01

    Phosphatidycholines (PC) with two saturated acyl chains (e.g., dipalmitoyl) mimic natural sphingomyelin (SM) by promoting raft formation in model membranes. However, sphingoid-based lipids, such as SM, rather than saturated-chain PCs have been implicated as key components of lipid rafts in biomembranes. These observations raise questions about the physical packing properties of the phase states that can be formed by these two major plasma membrane lipids with identical phosphocholine headgroups. To investigate, we developed a monolayer platform capable of monitoring changes in surface fluorescence by acquiring multiple spectra during measurement of a lipid force–area isotherm. We relied on the concentration-dependent emission changes of 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-labeled PC to detect nanoscale alterations in lipid packing and phase state induced by monolayer lateral compression. The BODIPY-PC probe contained an indacene ring with four symmetrically located methyl (Me) substituents to enhance localization to the lipid hydrocarbon region. Surface fluorescence spectra indicated changes in miscibility even when force–area isotherms showed no deviation from ideal mixing behavior in the surface pressure versus cross-sectional molecular area response. We detected slightly better mixing of Me4-BODIPY-8-PC with the fluid-like, liquid expanded phase of 1-palmitoyl-2-oleoyl-PC compared to N-oleoyl-SM. Remarkably, in the gel-like, liquid condensed phase, Me4-BODIPY-8-PC mixed better with N-palmitoyl-SM than dipalmitoyl-PC, suggesting naturally abundant SMs with saturated acyl chains form gel-like lipid phase(s) with enhanced ability to accommodate deeply embedded components compared to dipalmitoyl-PC gel phase. The findings reveal a fundamental difference in the lateral packing properties of SM and PC that occurs even when their acyl chains match. PMID:24564829

  4. Stacking up 2D materials

    NASA Astrophysics Data System (ADS)

    Mayor, Louise

    2016-05-01

    Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.

  5. Laser-induced fluorescence in malignant and normal tissue in mice injected with two different carotenoporphyrins.

    PubMed Central

    Nilsson, H.; Johansson, J.; Svanberg, K.; Svanberg, S.; Jori, G.; Reddi, E.; Segalla, A.; Gust, D.; Moore, A. L.; Moore, T. A.

    1994-01-01

    Laser-induced fluorescence (LIF) was used to characterise the localisation of an intravenously administered trimethylated carotenoporphyrin [CP(Me)3] and a trimethoxylated carotenoporphyrin [CP(OMe)3] in an intramuscularly transplanted malignant tumour (MS-2 fibrosarcoma) and healthy muscle in female Balb/c mice, 3, 24, 48 and 96 h post injection. The fluorescence was induced with a dye laser pumped by a nitrogen laser, emitting light at 425 nm. The fluorescence spectra were recorded in the region 455-760 nm using a polychromator equipped with an image-intensified CCD camera. The tumour/peritumoral muscle ratio was about 5:1 for CP(Me)3 and about 6:1 for CP(OMe)3 in terms of the background-free fluorescence intensity, which peaked at about 655 nm. By including the endogenous tissue fluorescence, the contrast was further enhanced by a factor of approximately 2. PMID:7947092

  6. Monitoring the Photosynthetic Apparatus During Space Flight: Interspecific Variation in Chlorophyll Fluorescence Signatures Induced by Different Root Zone Stresses

    NASA Technical Reports Server (NTRS)

    Bubenheim, David L.; Patterson, Mark T.; Kliss, Mark H. (Technical Monitor)

    1996-01-01

    Chlorophyll fluorescence has been used extensively as a tool to indicate stress to the photosynthetic apparatus in green plants. A rise in fluorescence has been attributed to the blockage of photosystem II photochemistry, and patterns of fluorescence decay (quenching) from dark adapted leaves can be related to specific photochemical and non-photochemical deexcitation pathways of light trapped by the photosynthetic apparatus and thus result in characteristically different fluorescence signatures. Four distantly related plant species, Hypocharis radicata (Asteraceae), Brassica rapa (Brassicaceae), Spinacea oleracea (Chenopodiaceae) and Triticum aestivum (Poaceae), were grown hydroponically for three weeks before the initiation of three different root zone stresses (10 mM Cu, 100 mM NaCl and nitrogen deficient nutrition). After 10 days, characteristic fluorescence signatures for each stress could be noted although the degree varied between species. Fast kinetics analysis showed a reduction in plastoquinone pool size for copper and nitrogen stress for all species but a more species specific result with NaCl stress. Photochemical quenching kinetics varied between species and stress treatments from no quenching in S. oleracea in copper treatments to increased photochemical quenching in NaCl treatments. Non-photochemical quenching kinetics demonstrated a distinct pattern between stresses for all species. Copper treatments characteristically exhibited a shallow, flat non-photochemical quenching profile suggesting a general blockage of electron transport whereas NaCl treatments exhibited a slow rising profile that suggested damage to thylakoid acidification kinetics and nitrogen deficiency exhibited a fast rising and declining profile that suggested an altered state 1-state 2 transition regulated by the phosphorylation of LHCII. These results demonstrate characteristic fluorescence signatures for specific plant stresses that may be applied to different, unrelated plant

  7. Performance differences in the detection of subgingival calculus by laser fluorescence devices.

    PubMed

    Shakibaie, Fardad; Walsh, Laurence J

    2015-12-01

    This study compared the performance of three laser fluorescence (LF) devices (DIAGNOdent Classic, DIAGNOdent Pen and KEY3 laser) under standardized laboratory conditions for detecting subgingival deposits of calculus on root surfaces of extracted teeth in typodonts. While some studies show the efficacy of LF devices for calculus detection compared with conventional periodontal probes, little is known regarding the differential performance of different LF devices. In this laboratory study, extracted teeth were set in an anatomical configuration in stone typodont models in a phantom head and impression material used to replicate periodontal soft tissues. A total of 240 sites were assessed on three occasions using the three different LF devices and results compared to direct microscopic examination of the roots of the extracted teeth under magnification. The KEY3 showed greater accuracy (86.4 %) than the DIAGNOdent Pen (84 %) and DIAGNOdent Classic (80.2 %). The intra-examiner reproducibility was also higher for the KEY3 (mean Cohen kappa 0.74) than the DIAGNOdent Pen (0.66) and DIAGNOdent Classic (0.6). Of the three LF devices, the KEY3 has greater accuracy and reproducibility. PMID:26396103

  8. Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics

    PubMed Central

    Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.

    2015-01-01

    Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856

  9. GBL-2D Version 1.0: a 2D geometry boolean library.

    SciTech Connect

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.

    2006-11-01

    This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.

  10. MOSS2D V1

    Energy Science and Technology Software Center (ESTSC)

    2001-01-31

    This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.

  11. [Vermicomposting of different organic materials and three-dimensional excitation emission matrix fluorescence spectroscopic characterization of their dissolved organic matter].

    PubMed

    Yang, Wei; Wang, Dong-sheng; Liu, Man-qiang; Hu, Feng; Li, Hui-xin; Huang, Zhong-yang; Chang, Yi-jun; Jiao, Jia-guo

    2015-10-01

    In this experiment, different proportions of the cattle manure, tea-leaf, herb and mushroom residues, were used as food for earthworm (Eisenia fetida) to study the growth of the earth-worm. Then the characteristics and transformation of nutrient content and three-dimensional excitation emission matrix fluorescence (3DEEM) of dissolved organic matter (DOM) during vermistabilization were investigated by means of chemical and spectroscopic methods. The result showed that the mixture of different ratios of cattle manure with herb residue, and cattle manure with tea-leaf were conducive to the growth of earthworm, while the materials compounded with mushroom residue inhibited the growth of earthworm. With the increasing time of verimcomposting, the pH in vermicompost tended to be circumneutral and weakly acidic, and there were increases in electrical conductivity, and the contents of total nitrogen, total phosphorus, available nitrogen, and available phosphorus, while the total potassium and available potassium increased first and then decreased, and the organic matter content decreased. 3DEEM and fluorescence regional integration results indicated that, the fluorescence of protein-like fluorescence peaks declined significantly, while the intensity of humic-like fluorescence peak increased significantly in DOM. Vermicomposting process might change the compositions of DOM with elevated concentrations of humic acid and fulvic acid in the organics. In all, this study suggested the suitability of 3DEEM for monitoring the organics transformation and assessing the maturity in the vermicomposting. PMID:26995929

  12. Different binarization processes validated against manual counts of fluorescent bacterial cells.

    PubMed

    Tamminga, Gerrit G; Paulitsch-Fuchs, Astrid H; Jansen, Gijsbert J; Euverink, Gert-Jan W

    2016-09-01

    State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass). PMID:27380963

  13. Layer Engineering of 2D Semiconductor Junctions.

    PubMed

    He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel

    2016-07-01

    A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275

  14. Fluorescence and phosphorescence of tryptophan in peptides of different length and sequence.

    PubMed

    Radotić, Ksenija; Melø, Thor Bernt; Leblanc, Roger M; Yousef, Yaser A; Naqvi, K Razi

    2016-04-01

    To interpret accurately protein fluorescence and phosphorescence, it is essential to achieve a better understanding of the luminescence properties of tryptophan (Trp, or W) in peptides. In published literature data on luminescence of peptides of varied length are scarce. This article describes studies of fluorescence and phosphorescence properties of the eight Trp-containing synthetic peptides: WAK, AWK, SWA, KYLWE, AVSWK, WVSWAK, WAKLAWE, and AVSWAKLARE. The aim was to investigate which factors influence the fluorescence yield and phosphorescence-spectra and lifetimes. Absorption spectra, room temperature fluorescence emission and corresponding excitation spectra and time-resolved phosphorescence spectra (77K) have been recorded; the dependence of the fluorescence quantum yield on the specific peptide and its variation with the wavelength of excitation has been studied. The changes in fluorescence yield and shape of phosphorescence spectra are explained in terms of internal electron and proton transfer. The structured phosphorescence spectrum originates from proton transfer occurring upon excitation of Trp, while electron transfer gives rise to a non-structured luminescence spectrum. There is also electron transfer from higher vibronic S1 states. In the peptides there is higher probability of electron transfer than in Trp alone. The obtained data are interpreted in light of the peptides' sequence, length and conformation. PMID:26916609

  15. Nanoimprint lithography: 2D or not 2D? A review

    NASA Astrophysics Data System (ADS)

    Schift, Helmut

    2015-11-01

    Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.

  16. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments.

    PubMed

    Cendrero-Mateo, M Pilar; Moran, M Susan; Papuga, Shirley A; Thorp, K R; Alonso, L; Moreno, J; Ponce-Campos, G; Rascher, U; Wang, G

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  17. Plant chlorophyll fluorescence: active and passive measurements at canopy and leaf scales with different nitrogen treatments

    PubMed Central

    Cendrero-Mateo, M. Pilar; Moran, M. Susan; Papuga, Shirley A.; Thorp, K.R.; Alonso, L.; Moreno, J.; Ponce-Campos, G.; Rascher, U.; Wang, G.

    2016-01-01

    Most studies assessing chlorophyll fluorescence (ChlF) have examined leaf responses to environmental stress conditions using active techniques. Alternatively, passive techniques are able to measure ChlF at both leaf and canopy scales. However, the measurement principles of both techniques are different, and only a few datasets concerning the relationships between them are reported in the literature. In this study, we investigated the potential for interchanging ChlF measurements using active techniques with passive measurements at different temporal and spatial scales. The ultimate objective was to determine the limits within which active and passive techniques are comparable. The results presented in this study showed that active and passive measurements were highly correlated over the growing season across nitrogen treatments at both canopy and leaf-average scale. At the single-leaf scale, the seasonal relation between techniques was weaker, but still significant. The variability within single-leaf measurements was largely related to leaf heterogeneity associated with variations in CO2 assimilation and stomatal conductance, and less so to variations in leaf chlorophyll content, leaf size or measurement inputs (e.g. light reflected and emitted by the leaf and illumination conditions and leaf spectrum). This uncertainty was exacerbated when single-leaf analysis was limited to a particular day rather than the entire season. We concluded that daily measurements of active and passive ChlF at the single-leaf scale are not comparable. However, canopy and leaf-average active measurements can be used to better understand the daily and seasonal behaviour of passive ChlF measurements. In turn, this can be used to better estimate plant photosynthetic capacity and therefore to provide improved information for crop management. PMID:26482242

  18. Resolution of fluorescence signals from cells labeled with fluorochromes having different lifetimes by phase-sensitive flow cytometry

    SciTech Connect

    Steinkamp, J.A.; Crissman, H.A. )

    1993-01-01

    A flow cytometric method has been developed that uses phase-sensitive detection to separate signals from simultaneous fluorescence emissions in cells labeled with fluorochromes having different fluorescence decay lifetimes. CHO cells were stained with propidium iodide (PI) and fluorescein isothiocyanate (FITC). These dyes bind to DNA and protein and the fluorescence lifetimes of the bound dyes are 15.0 and 3.6 ns, respectively. Cells were analyzed as they passed through a modulated (sinusoidal) laser excitation beam. Fluorescence was measured using only a long-pass filter to block scattered laser excitation light and a single photomultiplier tube detector. The fluorescence detector output signals were processed by dual-channel phase-sensitive detection electronics and the phase-resolved PI and FITC signals were displayed as frequency distribution histograms and bivariate plots. By shifting the phase of one detector channel reference signal by [pi]/2 + [phi][sub 1] degrees and the phase of the other detector channel reference signal by -[pi]/2 + [phi][sub 2] degrees, where [phi][sub 1] and [phi][sub 2] are the phase shifts associated with the PI and FITC lifetimes, the PI and FITC signals were separately resolved at their respective phase-sensitive detector outputs. This technology is also applicable to suppressing by cellular autofluorescence, unbound/free dye, nonspecific dye binding, and Raman and Rayleigh scattering. 21 refs., 2 figs.

  19. Fabrication of 2D sheet-like BiOCl/carbon quantum dot hybrids via a template-free coprecipitation method and their tunable visible-light photocatalytic activities derived from different size distributions of carbon quantum dots.

    PubMed

    Deng, Fang; Lu, Xiaoying; Zhong, Fei; Pei, Xule; Luo, Xubiao; Luo, Shenglian; Dionysiou, Dionysios D; Au, Chaktong

    2016-02-12

    A series of two-dimensional (2D) interlaced BiOCl/carbon quantum dot composites (denoted as BiOCl/CQD composites) were synthesized by a template-free coprecipitation method at room temperature, and the influence of different particle size distributions of the CQDs on the physiochemical properties and photocatalytic activities of the BiOCl/CQD composites was studied. CQDs can change the morphology and increase the specific surface area of the BiOCl/CQD composites. Moreover, the particle size distribution of the CQDs (CQD loading amount) has some effect on the light absorption, separation of photogenerated charge carriers, and photocatalytic performance of  the BiOCl/CQD composites. The optimized size distribution of the CQDs is 50-150 nm. BiOCl/CQD (50-150 nm) composites showed the best improvement of light absorption and the highest photocurrent density of 0.44 μA cm(-2), and exhibited the highest photocatalytic activity with almost 100% 2-nitrophenol removal under visible-light irradiation. The high efficacy of BiOCl/CQD (50-150 nm) composites could be attributed to their excellent light absorption and highly effective separation of photogenerated charge carriers. PMID:26684911

  20. Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics

    PubMed Central

    Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan

    2015-01-01

    Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069

  1. The Fluorescent Properties of Dissolved Organic Matter and Assessment of Total Nitrogen in Overlying Water with Different Dissolved Oxygen Conditions.

    PubMed

    Zhang Hua; Kuan, Wang; Song, Jian; Zhang, Yong; Huang, Ming; Huang, Jian; Zhu, Jing; Huang, Shan; Wang, Meng

    2016-03-01

    This paper used excitation-emission matrix spectroscopy (EEMs) to probe the fluorescence properties of dissolved organic matter (DOM) in the overlying water with different dissolved oxygen (DO) conditions, investigating the relationship between protein-like fluorescence intensity and total nitrogen concentration. The resulting fluorescence spectra revealed three protein-like components (high-excitation wavelength tyrosine, low-excitation wavelength tyrosine, low-excitation wavelength tryptophan) and two fulvic-like components (ultraviolet fulvic-like components, visible fulvic-like components) in the overlying water. Moreover, the protein-like components were dominant in the overlying water's DOM. The fluorescence intensity of the protein-like components decreased significantly after aeration. Two of the protein-like components--the low-excitation wavelength tyrosine and the low-excitation wavelength tryptophan--were more susceptible to degradation by microorganisms within the degradable organic matter with respect to the high-excitation wavelength tyrosine. In contrast, the ultraviolet and visible fulvic-like fluorescence intensity increased along with increasing DO concentration, indicating that the fulvic-like components were part of the refractory organics. The fluorescence indices of the DOM in the overlying water were between 1.65-1.80, suggesting that the sources of the DOM were related to terrigenous sediments and microbial metabolic processes, with the primary source being the contribution from microbial metabolism. The fluorescence indices increased along with DO growth, which showed that microbial biomass and microbial activity gradually increased with increasing DO while microbial metabolism also improved, which also increased the biogenic components in the overlying water. The fluorescence intensity of the high-excitation wavelength tyrosine peak A showed a good linear relationship with the total nitrogen concentration at higher DO concentrations of 2

  2. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2005-01-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  3. 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale

    2004-12-01

    We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.

  4. A Geometric Boolean Library for 2D Objects

    Energy Science and Technology Software Center (ESTSC)

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less

  5. A Geometric Boolean Library for 2D Objects

    SciTech Connect

    McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig

    2006-01-05

    The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.

  6. Fluorescent Beads Are a Versatile Tool for Staging Caenorhabditis elegans in Different Life Histories

    PubMed Central

    Nika, Liberta; Gibson, Taylor; Konkus, Rebecca; Karp, Xantha

    2016-01-01

    Precise staging of Caenorhabditis elegans is essential for developmental studies in different environmental conditions. In favorable conditions, larvae develop continuously through four larval stages separated by molting periods. Distinguishing molting from intermolt larvae has been achieved using transgenes with molting reporters, therefore requiring strain constructions, or careful observation of individuals for pharyngeal pumping or behavioral quiescence. In unfavorable conditions, larvae can enter the stress-resistant and developmentally arrested dauer larva stage. Identifying dauer larvae has been based on their ability to withstand detergent selection, precluding identification of recovering animals or of mutants with defects in dauer morphogenesis. Here, we describe a simple method to distinguish molting larvae or dauer larvae from intermolt larvae that bypasses the limitations of current methods. Fluorescent latex beads are mixed with the bacterial food source and ingested by intermolt larvae and adults. Molting and dauer larvae do not feed, and therefore lack beads in their digestive tract. The presence of beads can be determined using a dissecting microscope at magnifications as low as 100 ×, or by using a wormsorter for high-throughput experiments. We find that continuously developing bead-lacking larvae display hallmarks of molting, including expression of the mlt-10::gfp molting marker and a lack of pharyngeal pumping. Furthermore, wild-type and mutant dauer larvae produced by any of three common methods are accurately identified by a lack of beads. Importantly, this method is effective in SDS-sensitive mutant backgrounds and can identify recovering dauer larvae, a stage for which there is no other method of positive selection. PMID:27172224

  7. Fluorescent Beads Are a Versatile Tool for Staging Caenorhabditis elegans in Different Life Histories.

    PubMed

    Nika, Liberta; Gibson, Taylor; Konkus, Rebecca; Karp, Xantha

    2016-01-01

    Precise staging of Caenorhabditis elegans is essential for developmental studies in different environmental conditions. In favorable conditions, larvae develop continuously through four larval stages separated by molting periods. Distinguishing molting from intermolt larvae has been achieved using transgenes with molting reporters, therefore requiring strain constructions, or careful observation of individuals for pharyngeal pumping or behavioral quiescence. In unfavorable conditions, larvae can enter the stress-resistant and developmentally arrested dauer larva stage. Identifying dauer larvae has been based on their ability to withstand detergent selection, precluding identification of recovering animals or of mutants with defects in dauer morphogenesis. Here, we describe a simple method to distinguish molting larvae or dauer larvae from intermolt larvae that bypasses the limitations of current methods. Fluorescent latex beads are mixed with the bacterial food source and ingested by intermolt larvae and adults. Molting and dauer larvae do not feed, and therefore lack beads in their digestive tract. The presence of beads can be determined using a dissecting microscope at magnifications as low as 100 ×, or by using a wormsorter for high-throughput experiments. We find that continuously developing bead-lacking larvae display hallmarks of molting, including expression of the mlt-10::gfp molting marker and a lack of pharyngeal pumping. Furthermore, wild-type and mutant dauer larvae produced by any of three common methods are accurately identified by a lack of beads. Importantly, this method is effective in SDS-sensitive mutant backgrounds and can identify recovering dauer larvae, a stage for which there is no other method of positive selection. PMID:27172224

  8. Comparison of Fluorescence Microscopy and Different Growth Media Culture Methods for Acanthamoeba Keratitis Diagnosis

    PubMed Central

    Peretz, Avi; Geffen, Yuval; Socea, Soergiu D.; Pastukh, Nina; Graffi, Shmuel

    2015-01-01

    Acanthamoeba keratitis (AK), a potentially blinding infection of the cornea, is caused by a free-living protozoan. Culture and microscopic examination of corneal scraping tissue material is the conventional method for identifying Acanthamoeba. In this article, we compared several methods for AK diagnosis of 32 patients: microscopic examination using fluorescent dye, specific culture on growth media—non-nutrient agar (NNA), culture on liquid growth media—peptone yeast glucose (PYG), and TYI-S-33. AK was found in 14 patients. Thirteen of the specimens were found AK positive by fluorescence microscopic examination, 11 specimens were found AK positive on PYG growth media, and 9 specimens were found AK positive on TYI-S-33 growth media. Only five specimens were found AK positive on NNA growth media. Therefore, we recommend using fluorescence microscopy technique and culture method, especially PYG liquid media. PMID:25962772

  9. A dual-site two-photon fluorescent probe for visualizing lysosomes and tracking lysosomal hydrogen sulfide with two different sets of fluorescence signals in the living cells and mouse liver tissues.

    PubMed

    Liu, Yong; Meng, Fangfang; He, Longwei; Liu, Keyin; Lin, Weiying

    2016-05-19

    Herein, we have developed a novel dual-site two-photon fluorescent probe as the first paradigm of the probes, which can concurrently report lysosomes and lysosomal H2S with two different sets of fluorescence signals in the living cells and tissues. PMID:27159054

  10. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  11. A new inversion method for (T2, D) 2D NMR logging and fluid typing

    NASA Astrophysics Data System (ADS)

    Tan, Maojin; Zou, Youlong; Zhou, Cancan

    2013-02-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.

  12. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed Central

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-01-01

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  13. Structural investigation of nuclear RNP particles containing pre-mRNA by different fluorescence techniques.

    PubMed

    Borissova, O F; Krichevskaya, A A; Samarina, O P

    1981-02-11

    Ethidium bromide (EB) adsorption isotherms on 30S nuclear RNP particles isolated from liver nuclei has revealed 6% of double-stranded regions in pre-mRNA (dsRNA). It has been established by measurements of the EB fluorescence polarization that the bulk of dsRNA regions in RNP is rigidly attached to RNP. They are longer than 45 degree A. The increase of NaCl concentration from 0.1 up to 0.4 M causes a significant loosening of dsRNA-protein bonds. As a result the dsRNA segments become more flexible. Measurements of energy transfer from fluorescamine (covalently bound to the protein) to EB (adsorbed on dsRNA) have yielded information about dsRNA location. The fact that absorbtion of exciting light by fluorescamine causes pronounced increase of EB fluorescence is consistent with the idea that helical regions of RNA are located outside the RNP particles. PMID:7220348

  14. Fluorescence enhancement of dyes embedded in nanoparticles of Lu, Eu, Al, and Sc diketonates of different composition and concentration

    NASA Astrophysics Data System (ADS)

    Mironov, L. Yu.; Sveshnikova, E. B.; Ermolaev, V. L.

    2014-12-01

    We have studied the effect of central ions (Lu(III), Eu(III), Sc(III), and Al(III)), organic ligands (2-naphthoyltrifluoroacetone (NTA) and p-phenylbenzoyltrifluoroacetone (PhBTA)), and their concentration in a water-alcohol solution on the fluorescence of β-diketonate complexes formed and nanoparticles (NPs) generated by the self-assembly of these complexes. The fluorescence quenching of ligands of the complexes of nanoparticles because of the introduction of molecules of dyes, such as Nile Blue (NB), Lissamine Rhodamine RB-200 (RB), and Crystal Violet (CV), in these nanoparticles is investigated, and the NP-sensitization of the fluorescence of these dyes is explored. The dependence of the intensity of the NP-sensitized fluorescence of NB on its concentration in nanoparticles consisting of complexes that differ in composition and concentration is studied. By analyzing this dependence for the nanoparticles consisting of Sc(NTA)3, the size of the studied nanoparticles is evaluated. It is shown that the nature of this dependence is determined by a competition of two processes: the migration of the excitation energy over complexes to dyes and the migration of the excitation energy of dyes to impurities or dimer of dyes. The size of nanoparticles is compared to the estimated values of the exciton diffusion length and the critical radius of energy transfer from complexes to NB. An energy transfer of close to 100% from the nanoparticles formed of 10 μM of Sc(NTA)3 to 50 nM of NB molecules embedded therein is observed. The introduction of NB molecules into nanoparticles leads to a 200-fold increase in fluorescence intensity compared to their direct excitation in solution.

  15. Assessment of sperm damages during different stages of cryopreservation in water buffalo by fluorescent probes.

    PubMed

    Kumar, Dharmendra; Kumar, Pradeep; Singh, Pawan; Yadav, S P; Yadav, P S

    2016-05-01

    The present study was designed to investigate the sperm damages occurring in acrosome, plasma membrane, mitochondrial activity, and DNA of fresh, equilibrated and frozen-thawed buffalo semen by fluorescent probes. The stability of sperm acrosome and plasma membrane stability, mitochondrial activity and DNA status were assessed by fluorescein conjugated lectin Pisum sativum agglutinin, Annexin-V/propidium iodide, JC-1 and TUNEL assay, respectively, under the fluorescent microscope. The damages percentage of acrosome integrity was significantly increased during equilibration and freezing-thawing process. The stability of sperm plasma membrane is dependent on stability of phosphatidylserine (PS) on the inner leaflet of plasma membrane. The frozen-thawed sperm showed externalization of PS leading to significant increase in apoptotic, early necrotic and necrotic changes and lowered high mitochondrial membrane potential as compared with the fresh sperm but all these parameters were not affected during equilibration. However, the DNA integrity was not affected during equilibration and freezing-thawing procedure. In conclusion, the present study revealed that plasma membrane and mitochondria of buffalo sperm are more susceptible to damage during cryopreservation. Furthermore, the use of fluorescent probes to evaluate integrity of plasma and acrosome membranes, as well as mitochondrial membrane potential and DNA status increased the accuracy of semen analyses. PMID:25373338

  16. Native fluorescence spectroscopy of cervical tissues: classification by different statistical methods

    NASA Astrophysics Data System (ADS)

    Ganesan, Singaravelu; Vengadesan, Nammalver; Anbupalam, Thalaimuthu; Hemamalini, Srinivasan; Aruna, Prakasa R.; Karkuzhali, P.

    2002-05-01

    Optical Spectroscopy in the diagnosis of diseases has attracted the medical community due to their minimally invasive nature. Among various optical spectroscopic techniques, native fluorescence spectroscopy has emerged as a potential tool in diagnostic oncology. However, still the reasons for the altered spectral signatures between normal and cancer tissues not yet completely understood. Recently, data reported that emission due to the alteration of some proteins is responsible for the transformation of normal in to malignant one. In this regard, the present study is aimed to characterize the native fluorescence spectroscopy of abnormal and normal cervical tissues, at 280nm excitation. From the study, it is observed that the normal and pathologically diseased cervical tissues have their peak emission around 339 and 336nm respectively with a secondary peak around 440nm. The FWHM value of emission spectra of abnormal tissues is lower than that of normal tissues. The fluorescence spectra of normal and various pathological conditions of cancerous tissues were analyzed by various empirical and statistical methods. Among various type of discriminant analysis, combination of ratio values and linear discrimination method provides better discrimination of normal from pre-malignant and malignant tissues.

  17. Comparison of 2D and 3D gamma analyses

    SciTech Connect

    Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer

    2014-02-15

    Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must

  18. CYP2D6 polymorphism in patients with eating disorders.

    PubMed

    Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A

    2012-04-01

    CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302

  19. Dominant 2D magnetic turbulence in the solar wind

    SciTech Connect

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1996-07-20

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.

  20. Stability of curcumin in different solvent and solution media: UV-visible and steady-state fluorescence spectral study.

    PubMed

    Mondal, Satyajit; Ghosh, Soumen; Moulik, Satya P

    2016-05-01

    In aqueous solution, curcumin is photodegradable (light sensitive), it is also self-degradable in the dark. In basic medium, the second process is enhanced. The dark process has been studied in water and also in a number of protic and aprotic solvents, and aqueous solutions of ionic liquids, pluronics, reverse micelles and salt. The kinetics of the process followed the first order rate law; a comparative as well as individual assessment of which has been made. The kinetics of curcumin self-degradation has been found to be fairly dependent on salt (NaCl) concentration. Curcumin molecules in solution may remain in the enol or keto-enol form. From the visible spectral analysis, an estimate of the proportions of these forms in aqueous ethanol medium has been made. The temperature effect on the visible and fluorescence spectra of curcumin has been also studied. The steady state fluorescence anisotropy of the photoactive curcumin has been evaluated in different solvent and solution media. The reversibility of the steady state fluorescence anisotropy of curcumin on heating and cooling conditions has been examined. The results herein presented are new and ought to be useful as the study of physicochemistry of curcumin has been gaining importance in the light of its biological importance. PMID:26985735

  1. Optimization of metal-enhanced fluorescence by different concentrations of gold-silica core-shell nanoparticles

    NASA Astrophysics Data System (ADS)

    Chen, Jiawei; Wang, Kai; Wu, Ke; Qian, Lihua; Long, Hua; Wang, Bing; Lu, Peixiang

    2015-08-01

    Colloidal solutions of Au/SiO2 core-shell nanoparticles (NPs) are synthesized. The diameters of Au core are 40 nm, 60 nm, 80 nm and 110 nm and the thickness of SiO2 shell is 20 nm. The metal-enhanced fluorescence of CdTe quantum dots (QDs) in aqueous solutions is studied by mixing the Au/SiO2 NPs colloidal solutions with different concentrations. As the molar ratio of the Au/SiO2 NPs and the CdTe QDs increases, the fluorescence enhancement factor grows rapidly because of the plasmonic enhancement, and then a reduction of the enhancement factor is observed because of the absorption of Au/SiO2 NPs. The largest fluorescence enhancement factor of 8 is obtained at the optimal molar ratio, when the surface plasmon resonance of the Au/SiO2 NPs (60 nm) matches the emission peak of the CdTe QDs. The results of our theoretical analysis support the experimental results.

  2. NKG2D ligands as therapeutic targets

    PubMed Central

    Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.

    2013-01-01

    The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565

  3. Fluorescence of dental porcelain.

    PubMed

    Monsénégo, G; Burdairon, G; Clerjaud, B

    1993-01-01

    This study of the fluorescence of natural enamel and of dental ceramics shows the fluorescence of ceramics not containing rare earths decreases when the color saturation increases; the fluorescence of samples of the same shade guide are not homogenous; some guides show a strong green fluorescence; and two shade guides of the same origin can present completely different fluorescence. The cementing medium can affect the fluorescence of a ceramic prosthesis. PMID:8455155

  4. Endogenous and exogenous fluorescence of gastrointestinal tumors: initial clinical observations

    NASA Astrophysics Data System (ADS)

    Borisova, Ekaterina; Plamenova, Lilia; Keremedchiev, Momchil; Vladimirov, Borislav; Avramov, Latchezar

    2013-03-01

    The limitations of standard endoscopy for detection and evaluation of cancerous changes in gastrointestinal tract (GIT) are significant challenge and initiate development of new diagnostic modalities. Therefore many spectral and optical techniques are applied recently into the clinical practice for obtaining qualitatively and quantitatively new data from gastrointestinal neoplasia with different level of clinical applicability and diagnostic success. One of the most promising approaches is fluorescence detection using naturally existing fluorescent molecules or added fluorescent markers. Deltaaminolevulinic acid / protoporphyrin IX is applied for exogenous fluorescent tumor detection in the upper part of gastrointestinal tract. The 5-ALA is administered per os six hours before measurements at dose 20mg/kg weight. Highpower light-emitting diode at 405 nm is used as a source and the excitation light is passed through the light-guide of standard video-endoscopic system to obtain 2-D visualization. Both kinds of spectra - autofluorescence signals and protoporphyrin IX signal are recorded and stored using a fiber-optic microspectrometer, as in endoscopy instrumental channel a fiber is applied to return information about fluorescence signals. In such way 1-D detection and 2-D visualization of the lesions' fluorescence are received. The results from in vivo detection show significant differentiation between normal and abnormal tissues in 1-D spectroscopic regime, but only moderate discrimination in 2-D imaging.

  5. 2D constant-loss taper for mode conversion

    NASA Astrophysics Data System (ADS)

    Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.

    2015-03-01

    Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.

  6. Quantitative determinations and imaging in different structures of buried human bones from the XVIII-XIXth centuries by energy dispersive X-ray fluorescence - Postmortem evaluation.

    PubMed

    Guimarães, D; Dias, A A; Carvalho, M; Carvalho, M L; Santos, J P; Henriques, F R; Curate, F; Pessanha, S

    2016-08-01

    In this work, a non-commercial triaxial geometry energy dispersive X-ray Fluorescence (EDXRF) setup and a benchtop µ-XRF system were used to identify postmortem contamination in buried bones. For two of the individuals, unusually high concentrations of Cu and Pb, but also Zn (in one individual) were observed. The pigments of the burial shroud coverings have been identified as the source of contamination. Accurate and precise quantitative results were obtained by nondestructive process using fundamental parameters method taking into account the matrix absorption effects. A total of 30 bones from 13 individuals, buried between the mid-XVIIIth to early XIXth centuries, were analyzed to study the elemental composition and elemental distribution. The bones were collected from a church in Almada (Portugal), called Ermida do Espírito Santo, located near the Tagus River and at the sea neighbourhood. The triaxial geometry setup was used to quantify Ca, Fe, Cu, Zn, Br, Sr and Pb of powder pressed bone pellets (n=9 for each bone). Cluster analysis was performed considering the elemental concentrations for the different bones. There was a clear association between some bones regarding Fe, Cu, Zn, Br and Pb content but not a categorization between cortical and trabecular bones. The elemental distribution of Cu, Zn and Pb were assessed by the benchtop μ-analysis, the M4 Tornado, based on a polycapillary system which provides multi-elemental 2D maps. The results showed that contamination was mostly on the surface of the bone confirming that it was related to the burial shroud covering the individuals. PMID:27216663

  7. Proteomic expression of microfungal ripening starter Geotrichum candidum submitted to cold stress is strain-dependent: studies using 2d-dige technology and samespots software analysis.

    PubMed

    Missous, Ghalia; Thammavongs, Bouachanh; Dieuleveux, Virginie; Houssin, Maryline; Henry, Joël; Panoff, Jean-Michel

    2012-01-01

    Geotrichum candidum is a micro-fungus widely used as a ripening starter in cheese making. In anthropogenic environments such as dairy industries, this microorganism is subjected to many environmental and technological stresses including low temperature exposure. Our aim was to study the proteomic response of G. candidum to cold stress using a comparative proteomic approach by two-dimensional Differential In Gel Electrophoresis (2D DIGE). This technique consists on the labeling of proteins by specific fluorescent dyes (CyDyes). The results, obtained with G. candidum cells subjected to cold temperature, show significant proteomic patterns differences compared with the standard conditions. Furthermore, this biochemical response seems strain specific. 2D DIGE technology combined with SameSpots™ software analysis support these results through an important statistical validity. The comparative studies in a single gel, using two different fluorescent CyDyes (Cy3 and Cy5), lead to proteins differentiation. Selected spots were treated and analyzed by mass spectrometry. PMID:22987240

  8. 2D vs. 3D mammography observer study

    NASA Astrophysics Data System (ADS)

    Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent

    2011-03-01

    Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.

  9. Phylogenetic tree construction based on 2D graphical representation

    NASA Astrophysics Data System (ADS)

    Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa

    2006-04-01

    A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.

  10. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization

    PubMed Central

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn’t a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993

  11. Revealing Invisible Beauty, Ultra Detailed: The Influence of Low Cost UV Exposure on Natural History Specimens in 2D+ Digitization.

    PubMed

    Brecko, Jonathan; Mathys, Aurore; Dekoninck, Wouter; De Ceukelaire, Marleen; VandenSpiegel, Didier; Semal, Patrick

    2016-01-01

    Digitization of the natural history specimens usually occurs by taking detailed pictures from different sides or producing 3D models. Additionally this is normally limited to imaging the specimen while exposed by light of the visual spectrum. However many specimens can see in or react to other spectra as well. Fluorescence is a well known reaction to the ultraviolet (UV) spectrum by animals, plants, minerals etc. but rarely taken into account while examining natural history specimens. Our tests show that museum specimens still fluoresce when exposed to UV light of 395 nm and 365 nm, even after many years of preservation. When the UV exposure is used in the digitization of specimens using our low cost focus stacking (2D+) setup, the resulting pictures reveal more detail than the conventional 2D+ images. Differences in fluorescence using 395 nm or 365 nm UV lights were noticed, however there isn't a preferred wavelength as some specimens react more to the first, while others have better results with the latter exposure. Given the increased detail and the low cost of the system, UV exposure should be considered while digitizing natural history museum collections. PMID:27536993

  12. Numerical Evaluation of 2D Ground States

    NASA Astrophysics Data System (ADS)

    Kolkovska, Natalia

    2016-02-01

    A ground state is defined as the positive radial solution of the multidimensional nonlinear problem \\varepsilon propto k_ bot 1 - ξ with the function f being either f(u) =a|u|p-1u or f(u) =a|u|pu+b|u|2pu. The numerical evaluation of ground states is based on the shooting method applied to an equivalent dynamical system. A combination of fourth order Runge-Kutta method and Hermite extrapolation formula is applied to solving the resulting initial value problem. The efficiency of this procedure is demonstrated in the 1D case, where the maximal difference between the exact and numerical solution is ≈ 10-11 for a discretization step 0:00025. As a major application, we evaluate numerically the critical energy constant. This constant is defined as a functional of the ground state and is used in the study of the 2D Boussinesq equations.

  13. Perspectives for spintronics in 2D materials

    NASA Astrophysics Data System (ADS)

    Han, Wei

    2016-03-01

    The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.

  14. Evaluation of different synchrotron beamline configurations for X-ray fluorescence analysis of environmental samples.

    PubMed

    Barberie, Sean R; Iceman, Christopher R; Cahill, Catherine F; Cahill, Thomas M

    2014-08-19

    Synchrotron radiation X-ray fluorescence (SR-XRF) is a powerful elemental analysis tool, yet synchrotrons are large, multiuser facilities that are generally not amenable to modification. However, the X-ray beamlines from synchrotrons can be modified by simply including X-ray filters or removing monochromators to improve the SR-XRF analysis. In this study, we evaluated four easily applied beamline configurations for the analysis of three representative environmental samples, namely a thin aerosol sample, an intermediate thickness biological sample, and a thick rare earth mineral specimen. The results showed that the "white beam" configuration, which was simply the full, polychromatic output of the synchrotron, was the optimal configuration for the analysis of thin samples with little mass. The "filtered white beam" configuration removed the lower energy X-rays from the excitation beam so it gave better sensitivity for elements emitting more energetic X-rays. The "filtered white beam-filtered detector" configuration sacrifices the lower energy part of the spectrum (<15 keV) for improved sensitivity in the higher end (∼26 to 48 keV range). The use of a monochromatic beam, which tends to be the standard mode of operation for most SR-XRF analyses reported in the literature, gave the least sensitive analysis. PMID:25025342

  15. Ultrathin 2D Metal-Organic Framework Nanosheets.

    PubMed

    Zhao, Meiting; Wang, Yixian; Ma, Qinglang; Huang, Ying; Zhang, Xiao; Ping, Jianfeng; Zhang, Zhicheng; Lu, Qipeng; Yu, Yifu; Xu, Huan; Zhao, Yanli; Zhang, Hua

    2015-12-01

    A facile surfactant-assisted bottom-up synthetic method to prepare a series of freestanding ultrathin 2D M-TCPP (M = Zn, Cu, Cd or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin) nanosheets with a thickness of sub-10 nm is developed. As a proof-of-concept application, some of them are successfully used as new platforms for DNA detection. The Cu-TCPP nanosheet-based sensor shows excellent fluorescent sensing performance and is used for the simultaneous detection of multiple DNA targets. PMID:26468970

  16. Recent developments in 2D layered inorganic nanomaterials for sensing

    NASA Astrophysics Data System (ADS)

    Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar

    2015-08-01

    Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.

  17. Dominant 2D magnetic turbulence in the solar wind

    NASA Technical Reports Server (NTRS)

    Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.

    1995-01-01

    There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.

  18. Annotated Bibliography of EDGE2D Use

    SciTech Connect

    J.D. Strachan and G. Corrigan

    2005-06-24

    This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.

  19. Staring 2-D hadamard transform spectral imager

    DOEpatents

    Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.

    2006-02-07

    A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.

  20. Application of X-Ray Fluorescence Analysis to Determine the Elemental Composition of Tissues from Different Ovarian Neoplasms

    NASA Astrophysics Data System (ADS)

    Motevich, I. G.; Strekal, N. D.; Papko, N. M.; Glebovich, M. I.; Shulha, A. V.; Maskevich, S. A.

    2015-03-01

    We present the results of x-ray fluorescence analysis of tissues from healthy ovaries and from ovaries with different pathologies: benign and borderline tumors, mucinous and endometrioid cancers, serous carcinomas. We determine the average copper, zinc, calcium, selenium, cadmium, lead, and mercury levels. We observed that in the benign ovarian tumors, we see a significant decrease in the cadmium, mercury, and lead levels compared with healthy tissues. In the borderline neoplasms, the copper level is reduced relative to zinc (Cu/Zn), cadmium, mercury, and lead, and also the zinc concentration is increased. In the ovarian carcinomas, we observed changes in the ratio of the chemical elements in the tumor tissues, depending on the histologic type. The results obtained can be used for differentiation, diagnosis, and adjustment of treatment for different ovarian neoplasms.

  1. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery.

    PubMed

    Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  2. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  3. Different Ligands of the TRPV3 Cation Channel Cause Distinct Conformational Changes as Revealed by Intrinsic Tryptophan Fluorescence Quenching*

    PubMed Central

    Billen, Bert; Brams, Marijke; Debaveye, Sarah; Remeeva, Alina; Alpizar, Yeranddy A.; Waelkens, Etienne; Kreir, Mohamed; Brüggemann, Andrea; Talavera, Karel; Nilius, Bernd; Voets, Thomas; Ulens, Chris

    2015-01-01

    TRPV3 is a thermosensitive ion channel primarily expressed in epithelial tissues of the skin, nose, and tongue. The channel has been implicated in environmental thermosensation, hyperalgesia in inflamed tissues, skin sensitization, and hair growth. Although transient receptor potential (TRP) channel research has vastly increased our understanding of the physiological mechanisms of nociception and thermosensation, the molecular mechanics of these ion channels are still largely elusive. In order to better comprehend the functional properties and the mechanism of action in TRP channels, high-resolution three-dimensional structures are indispensable, because they will yield the necessary insights into architectural intimacies at the atomic level. However, structural studies of membrane proteins are currently hampered by difficulties in protein purification and in establishing suitable crystallization conditions. In this report, we present a novel protocol for the purification of membrane proteins, which takes advantage of a C-terminal GFP fusion. Using this protocol, we purified human TRPV3. We show that the purified protein is a fully functional ion channel with properties akin to the native channel using planar patch clamp on reconstituted channels and intrinsic tryptophan fluorescence spectroscopy. Using intrinsic tryptophan fluorescence spectroscopy, we reveal clear distinctions in the molecular interaction of different ligands with the channel. Altogether, this study provides powerful tools to broaden our understanding of ligand interaction with TRPV channels, and the availability of purified human TRPV3 opens up perspectives for further structural and functional studies. PMID:25829496

  4. A zwitterionic 1D/2D polymer co-crystal and its polymorphic sub-components: a highly selective sensing platform for HIV ds-DNA sequences.

    PubMed

    Zhao, Hai-Qing; Yang, Shui-Ping; Ding, Ni-Ni; Qin, Liang; Qiu, Gui-Hua; Chen, Jin-Xiang; Zhang, Wen-Hua; Chen, Wen-Hua; Hor, T S Andy

    2016-03-15

    Polymorphic compounds {[Cu(dcbb)2(H2O)2]·10H2O}n (, 1D chain), [Cu(dcbb)2]n (, 2D layer) and their co-crystal {[Cu(dcbb)2(H2O)][Cu(dcbb)2]2}n () have been prepared from the coordination reaction of a 2D polymer [Na(dcbb)(H2O)]n (, H2dcbbBr = 1-(3,5-dicarboxybenzyl)-4,4'-bipyridinium bromide) with Cu(NO3)2·3H2O at different temperatures in water. Compounds have an identical metal-to-ligand stoichiometric ratio of 1 : 2, but absolutely differ in structure. Compound features a 2D layer structure with aromatic rings, positively charged pyridinium and free carboxylates on its surface, promoting electrostatic, π-stacking and/or hydrogen-bonding interactions with the carboxyfluorescein (FAM) labeled probe single-stranded DNA (probe ss-DNA, delineates as P-DNA). The resultant P-DNA@ system facilitated fluorescence quenching of FAM via a photoinduced electron transfer process. The P-DNA@ system functions as an efficient fluorescent sensor selective for HIV double-stranded DNA (HIV ds-DNA) due to the formation of a rigid triplex structure with the recovery of FAM fluorescence. The system reported herein also distinguishes complementary HIV ds-DNA from mismatched target DNA sequences with the detection limit of 1.42 nM. PMID:26883749

  5. Change in the amount of epsilon-hexosyllysine, UV absorbance, and fluorescence of collagen with age in different animal species

    SciTech Connect

    Miksik, I.; Deyl, Z. )

    1991-05-01

    Skin and aorta collagen specimens of Wistar rats, white mice, beagle dogs, cats, horses, and human necropsies of different ages were examined with respect to the content of glycated products. The data presented show that (a) glycation and accumulation of the chromophore(s) are comparable in collagen samples from different species of comparable age; (b) glycation and pigmented accumulation increase markedly during the first 5-10 years of age; (c) the extent of glycation is different in different tissues (in particular, glycation of aortal collagen is about twice that of skin collagen); and (d) collagen pigmentation as followed by fluorescence is comparable in aortal and skin collagen (except below 10 years); pigmentation measured by absorbance at 350 nm is, on the contrary, lower in aortal than in skin collagen. Based on the assumption of constant blood glucose level during the life span, it appears feasible to conclude that the degree of nonenzymatic collagen glycation reflects the time period for which the protein was exposed to the action of sugars. This period, because of increased cross-linking, is likely to be extended in older animals. Other factors, such as differences in collagen turnover between different tissues and the intensity of the removal process of the glycated products, should be taken into consideration as well.

  6. Light field morphing using 2D features.

    PubMed

    Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung

    2005-01-01

    We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126

  7. 2D materials for nanophotonic devices

    NASA Astrophysics Data System (ADS)

    Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui

    2015-12-01

    Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.

  8. 2D Radiative Processes Near Cloud Edges

    NASA Technical Reports Server (NTRS)

    Varnai, T.

    2012-01-01

    Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.

  9. Detection of Salmonella Enteriditis from egg components using different immunomagnetic beads and time–resolved fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The types of chemical linkage used to link antibodies to magnetic beads to form immunomagnetic beads (IMB) were compared in the capture and detection of Salmonella Enteriditis from egg components. Egg components were inoculated with outbreak strains of S. Enteriditis. After incubation under differe...

  10. Detection of Salmonella Enteriditis from Egg Components Using Different Immunomagnetic Beads and Time-resolved Fluorescence

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The types of chemical linkage used to link antibodies to magnetic beads to form immunomagnetic beads (IMB) were compared in the capture and detection of Salmonella Enteriditis from egg components. Egg components were inoculated with outbreak strains of S. Enteriditis. After incubation under differe...

  11. Reliability of aneuploidy estimates in human sperm: Results of fluorescence in situ hybridization studies using two different scoring criteria

    SciTech Connect

    Martin, R.H. |; Rademaker, A.

    1994-09-01

    Aneuploidy estimates for individual chromosomes in human sperm have varied more than 10-fold in different laboratories using fluorescence in situ hybridization (FISH). These laboratories use different scoring criteria in the assessment of a disomic sperm. In order to determine reliable estimates of aneuploidy, we have investigated whether scoring criteria affect the aneuploidy frequency in human sperm. Aneuploidy estimates for chromosomes 1(pUC1.77), 12(pBR12), X(XC) and Y(DYZ3Z) were obtained in human sperm from five donors using multicolor FISH analysis to provide an internal control to differentiate between nullisomy and lack of hybridization and between disomy and diploidy. Disomy frequencies were obtained by scoring a minimum of 10,000 sperm for each chromosome probe per donor. This analysis was replicated for two scoring criteria: one scoring criterion used one-half a signal domain as the minimum distance between two signals to be counted as two and thus disomic; the other scoring criterion set one signal domain as the minimum distance between two signals. A total of 120,870 sperm were assessed using one half domain as the scoring criterion and 113,478 were scored using one domain as the criterion. The mean percent disomy for chromosomes 1, 12, X, Y and XY was .18, .16, .15, .19, .25 respectively using the one-half domain criterion and .08, .17, .07, .12, .16 respectively using the one domain criterion. The percent disomy decreased significantly with use of one domain as the minimum distance for signal separation for all chromosomes except chromosome number 12. These lower disomy frequencies correlated well with frequencies derived from human sperm karyotypes analyzed in our laboratory. This suggests that the fluorescent signals for chromosomes 1, X and Y split into more than one domain in decondensed interphase sperm and use of the one-half domain criterion leads to an overestimate of aneuploidy frequencies.

  12. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bandsa)

    NASA Astrophysics Data System (ADS)

    Romano, A.; Pacella, D.; Mazon, D.; Murtas, F.; Malard, P.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Corradi, G.

    2010-10-01

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  13. Characterization of a 2D soft x-ray tomography camera with discrimination in energy bands

    SciTech Connect

    Romano, A.; Pacella, D.; Gabellieri, L.; Tilia, B.; Piergotti, V.; Mazon, D.; Malard, P.

    2010-10-15

    A gas detector with a 2D pixel readout is proposed for a future soft x-ray (SXR) tomography with discrimination in energy bands separately per pixel. The detector has three gas electron multiplier foils for the electron amplification and it offers the advantage, compared with the single stage, to be less sensitive to neutrons and gammas. The energy resolution and the detection efficiency of the detector have been accurately studied in the laboratory with continuous SXR spectra produced by an electronic tube and line emissions produced by fluorescence (K, Fe, and Mo) in the range of 3-17 keV. The front-end electronics, working in photon counting mode with a selectable threshold for pulse discrimination, is optimized for high rates. The distribution of the pulse amplitude has been indirectly derived by means of scans of the threshold. Scans in detector gain have also been performed to assess the capability of selecting different energy ranges.

  14. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  15. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  16. 2-d Finite Element Code Postprocessor

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less

  17. 2D electronic materials for army applications

    NASA Astrophysics Data System (ADS)

    O'Regan, Terrance; Perconti, Philip

    2015-05-01

    The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.

  18. Origin of pronounced differences in 77 K fluorescence of the green alga Chlamydomonas reinhardtii in state 1 and 2.

    PubMed

    Ünlü, Caner; Polukhina, Iryna; van Amerongen, Herbert

    2016-04-01

    In response to changes in the reduction state of the plastoquinone pool in its thylakoid membrane, the green alga Chlamydomonas reinhardtti is performing state transitions: remodelling of its thylakoid membrane leads to a redistribution of excitations over photosystems I and II (PSI and PSII). These transitions are accompanied by marked changes in the 77 K fluorescence spectrum, which form the accepted signature of state transitions. The changes are generally thought to reflect a redistribution of light-harvesting complexes (LHCs) over PSII (fluorescing below 700 nm) and PSI (fluorescing above 700 nm). Here we studied the picosecond fluorescence properties of C. reinhardtti over a broad range of wavelengths with very low excitation intensities (0.2 nJ per laser pulse). Cells were directly used for time-resolved fluorescence measurements at 77 K without further treatment, such as medium exchange with glycerol. It is observed that upon going from state 1 (relatively more fluorescence below 700 nm) to state 2 (relatively more fluorescence above 700 nm), a large part of the fluorescence of LHC/PSII becomes substantially quenched in concurrence with LHC detachment from PSII, whereas the absolute amount of PSI fluorescence hardly changes. These results are in agreement with the recent proposal that the amount of LHC moving from PSII to PSI upon going from state 1 to state 2 is rather limited (Unlu et al. Proc Natl Acad Sci USA 111 (9):3460-3465, 2014). PMID:26518693

  19. Chemical Approaches to 2D Materials.

    PubMed

    Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang

    2016-08-01

    Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083

  20. Extended 2D generalized dilaton gravity theories

    NASA Astrophysics Data System (ADS)

    de Mello, R. O.

    2008-09-01

    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.

  1. Ca3 (PO4 )2 :Eu3+ phosphor preparation with different morphologies and their fluorescence properties.

    PubMed

    Zhou, Xiaochun; Wang, Xiaojun

    2014-03-01

    Ca3(PO4)2:Eu(3+) phosphor was prepared using a facile chemistry method in the presence of surfactants. The effects of surfactants on the morphology and photoluminescence properties of Ca3(PO4)2:Eu(3+) phosphor were investigated. The morphology of the phosphor was significantly influenced by the surfactants employed. When nonionic surfactant glyceryl monostearate and anionic surfactant sodium dodecylbenzene sulfonate were employed, the phosphor powders are composed of a large number of homogeneous spherical particles with sizes of 0.3-0.6 µm and 2-3 µm, respectively. By contrast, when cationic surfactant cetyltrimethylammonium bromide was used, the morphology of the phosphor is completely different. The product is an excellent cuboid, and the phosphor prepared with 2.5 mmol cetyltrimethylammonium bromide showed higher luminescent intensity than phosphors prepared with the other two types of surfactants. PMID:23616256

  2. 2D Turbulence with Complicated Boundaries

    NASA Astrophysics Data System (ADS)

    Roullet, G.; McWilliams, J. C.

    2014-12-01

    We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.

  3. Competing coexisting phases in 2D water

    PubMed Central

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  4. Phase Engineering of 2D Tin Sulfides.

    PubMed

    Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S

    2016-06-01

    Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950

  5. Competing coexisting phases in 2D water.

    PubMed

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-01-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018

  6. Competing coexisting phases in 2D water

    NASA Astrophysics Data System (ADS)

    Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire

    2016-05-01

    The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.

  7. Internalization of RGD peptide conjugates of near-infrared fluorescent probes in different cell lines occurs via different integrin receptor subtypes

    NASA Astrophysics Data System (ADS)

    Bloch, S.; Xu, B.; Ye, Y.; Liang, K.; Achilefu, S.

    2006-02-01

    Expression of integrin α vβ 3 is upregulated in a number of cancers including colon, pancreas, lung and breast. Previous studies demonstrated that near infrared (NIR) fluorescent probes designed to target α vβ 3 accumulated both in vitro and in vivo in α vβ 3-positive tumor cells. To evaluate the selectivity of some NIR-labeled RGD peptides for α vβ 3, the molecular probes were incubated in different cells, including the α vβ 3-positive U87 and A549 cells, and α vβ 3-negative HT29 cells. Whereas the RGD compounds tested internalized in the A549 cells, their uptake by the HT29 cell line, which is positive for α vβ 5 and α vβ 6, was low. The uptake of these probes in U87 depended on the structural features of the compounds. Further studies with functional blocking antibodies showed that the internalization in the α vβ 3-positive cells may be mediated by different integrin receptor subtypes. The preliminary results suggest that the internalization of linear RGD peptides is mediated by the α vβ 3 heterodimer but rearrangement of the peptide sequence could alter the selectivity of the molecular probes for different integrin subunits in the dimeric α and β proteins. Thus, a careful choice of RGD peptides can be used to monitor the functional status of different integrins in cells and tissues.

  8. [Influence of the Experiment Energy Dispersive X-Ray Fluorescence Measurement of Uranium by Different Excitation Source].

    PubMed

    Xiong, Chao; Ge, Liang-quan; Liu, Duan; Zhang, Qing-xian; Gu, Yi; Luo, Yao-yao; Zhao, Jian-kun

    2016-03-01

    Aiming at the self-excitation effect on the interference of measurements which exist in the process of Energy dispersive X-ray fluorescence method for uranium measurement. To solve the problem of radioactive isotopes only used as excitation source in determination of uranium. Utilizing the micro X-ray tube to test Self-excitation effect to get a comparison of the results obtained by three different uranium ore samples--109 Cd, 241 Am and Mirco X-ray tube. The results showed that self-excitation effect produced the area measure of characteristic X-ray peak is less than 1% of active condition, also the interference of measurements can be negligible. Photoelectric effect cross-section excited by 109 Cd is higher, corresponding fluorescence yield is higher than excited by 241 Am as well due to characteristics X-ray energy of 109 Cd, 22.11 & 24.95 KeV adjacent to absorption edge energy of L(α), 21.75 KeV, based on the above, excitation efficiency by 109 Cd is higher than 241 Am; The fact that measurement error excited by 241 Am is significantly greater than by 109 Cd is mainly due to peak region overlap between L energy peaks of uranium and Scattering peak of 241 Am, 26.35 keV, These factors above caused the background of measured Spectrum higher; The error between the uranium content in ore samples which the X-ray tube as the excitation source and the chemical analysis results is within 10%. Conclusion: This paper come to the conclusion that the technical quality of uranium measurement used X-ray tube as excitation source is superior to that in radioactive source excitation mode. PMID:27400534

  9. Evolution of the CYP2D gene cluster in humans and four non-human primates.

    PubMed

    Yasukochi, Yoshiki; Satta, Yoko

    2011-01-01

    The human cytochrome P450 2D6 (CYP2D6) is a primary enzyme involved in the metabolism of about 25% of commonly used therapeutic drugs. CYP2D6 belongs to the CYP2D subfamily, a gene cluster located on chromosome 22, which comprises the CYP2D6 gene and pseudogenes CYP2D7P and CYP2D8P. Although the chemical and physiological properties of CYP2D6 have been extensively studied, there has been no study to date on molecular evolution of the CYP2D subfamily in the human genome. Such knowledge could greatly contribute to the understanding of drug metabolism in humans because it makes us to know when and how the current metabolic system has been constructed. The knowledge moreover can be useful to find differences in exogenous substrates in a particular metabolism between human and other animals such as experimental animals. Here, we conducted a preliminary study to investigate the evolution and gene organization of the CYP2D subfamily, focused on humans and four non-human primates (chimpanzees, orangutans, rhesus monkeys, and common marmosets). Our results indicate that CYP2D7P has been duplicated from CYP2D6 before the divergence between humans and great apes, whereas CYP2D6 and CYP2D8P have been already present in the stem lineages of New World monkeys and Catarrhini. Furthermore, the origin of the CYP2D subfamily in the human genome can be traced back to before the divergence between amniotes and amphibians. Our analyses also show that reported chimeric sequences of the CYP2D6 and CYP2D7 genes in the chimpanzee genome appear to be exchanged in its genome database. PMID:21670550

  10. Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials

    NASA Technical Reports Server (NTRS)

    Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.

    1993-01-01

    Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.