Science.gov

Sample records for 2d heisenberg model

  1. Dynamics of non-planar vortices in the classical 2D anisotropic heisenberg model at finite temperatures

    NASA Astrophysics Data System (ADS)

    Kamppeter, T.; Mertens, F. G.; Sánchez, Angel; Gronbech-Jensen, N.; Bishop, A. R.; Dominguez-Adame, F.

    The 2-dimensional anisotropic Heisenberg model with XY- or easy-plane symmetry bears non-planar vortices which exhibit a localized structure of the z-components of the spins around the vortex center. In order to study the dynamics of these vortices under thermal fluctuations we use the Landau-Lifshitz equation and add white noise and Gilbert damping. Using a collective variable theory we derive an equation of motion with stochastic forces which are shown to represent white noise with an effective diffusion constant. We compare the results with Langevin dynamics simulations for the Landau-Lifshitz equation and find three temperature regimes: For low temperatures the dynamics is described by a 3rd-order equation of motion, for intermediate temperatures by a 1st-order equation. For higher temperatures, but still below the Kosterlitz-Thouless transition temperature, the spontaneous appearance of vortex-antivortex pairs does not allow a single-particle description.

  2. Rotated Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2015-03-01

    We show that Rotated Heisenberg (RH) model is a new class of quantum spin models to describe magnetic materials with strong spin-orbit couplings (SOC). We introduce Wilson loops to characterize frustrations and gauge equivalent class. For a special equivalent class, we identify a new spin-orbital entangled commensurate ground state. It supports a novel gapped elementary excitation named as in-commensurate magnons which have two gap minima continuously tuned by the SOC strength. At low temperatures, the in-commensurate magnons lead to dramatic effects in all physical quantities such as density of states, specific heat, magnetization and various spin correlation functions. At high temperatures, the specific heat and transverse spin structure factors depend on the SOC strength explicitly. We argue that one gauge may be realized in current experiments and other gauges may also be realized in near future experiments. Various experimental detections are discussed. This work is supported by NSF-DMR-1161497, NSFC-11174210.

  3. Emergent Power-Law Phase in the 2D Heisenberg Windmill Antiferromagnet: A Computational Experiment.

    PubMed

    Jeevanesan, Bhilahari; Chandra, Premala; Coleman, Piers; Orth, Peter P

    2015-10-23

    In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z(6) order. PMID:26551137

  4. THE 2D HEISENBERG ANTIFERROMAGNET IN HIGH-Tc SUPERCONDUCTIVITY:. A Review of Numerical Techniques and Results

    NASA Astrophysics Data System (ADS)

    Barnes, T.

    In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.

  5. Thermal entanglement in a four-qubit Heisenberg spin model with external magnetic fields

    NASA Astrophysics Data System (ADS)

    Wu, Ke-Dong; Zhou, Bin; Cao, Wan-Qiang

    2007-03-01

    The entanglement properties both in the four-qubit anisotropic Heisenberg XY chain with uniform external magnetic fields and in the Heisenberg XX model with two external fields are investigated. The analytical expressions for the measures of entanglement are obtained. In Heisenberg XY chain, the effects of the anisotropy on the thermal entanglement are studied. In the Heisenberg XX ring with two external fields, it is found that a high pair entanglement can be obtained.

  6. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  7. Type-I integrable quantum impurities in the Heisenberg model

    NASA Astrophysics Data System (ADS)

    Doikou, Anastasia

    2013-12-01

    Type-I quantum impurities are investigated in the context of the integrable Heisenberg model. This type of defects is associated to the (q)-harmonic oscillator algebra. The transmission matrices associated to this particular type of defects are computed via the Bethe ansatz methodology for the XXX model, as well as for the critical and non-critical XXZ spin chain. In the attractive regime of the critical XXZ spin chain the transmission amplitudes for the breathers are also identified.

  8. Global phase diagram of a doped Kitaev-Heisenberg model

    SciTech Connect

    Okamoto, Satoshi

    2013-01-01

    The global phase diagram of a doped Kitaev-Heisenberg model is studied using an $SU(2)$ slave-boson mean-field method. Near the Kitaev limit, $p$-wave superconducting states which break the time-reversal symmetry are stabilized as reported by You {\\it et al.} [Phys. Rev. B {\\bf 86}, 085145 (2012)] irrespective of the sign of the Kitaev interaction. By further doping, a $d$-wave superconducting state appears when the Kitaev interaction is antiferromagnetic, while another $p$-wave superconducting state appears when the Kitaev interaction is ferromagnetic. This $p$-wave superconducting state does not break the time-reversal symmetry as reported by Hyart {\\it et al.} [Phys. Rev. B {\\bf 85}, 140510 (2012)], and such a superconducting state also appears when the antiferromagnetic Kitaev interaction and the ferromagnetic Heisenberg interaction compete. This work, thus, demonstrates the clear difference between the antiferromagnetic Kitaev model and the ferromagnetic Kitaev model when carriers are doped while these models are equivalent in the undoped limit, and how novel superconducting states emerge when the Kitaev interaction and the Heisenberg interaction compete.

  9. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  10. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  11. Decay of transverse correlations in quantum Heisenberg models

    SciTech Connect

    Björnberg, Jakob E. E-mail: daniel@ueltschi.org; Ueltschi, Daniel E-mail: daniel@ueltschi.org

    2015-04-15

    We study a class of quantum spin systems that include the S=1/2 Heisenberg and XY-models and prove that two-point correlations exhibit exponential decay in the presence of a transverse magnetic field. The field is not necessarily constant, it may be random, and it points in the same direction. Our proof is entirely probabilistic and it relies on a random loop representations of the correlation functions, on stochastic domination and on first-passage percolation.

  12. A Symmetrized Basis for Transitions in the Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Haydock, Roger; Nex, C. M. M.

    2013-03-01

    The spin-S Heisenberg model has 2S+1 states on each site, for which there are (2S+1)2 possible transitions between these states. For N sites there are (2S+1)N states and (2S+1)2N transitions between states. This rapid increase in the number of transitions with sites appears to limit calculations to just a few sites. However for transitions induced by spin-spin interactions, we construct a symmetrized basis which only grows as 2N-3, making possible computations for much larger systems. Supported by the Richmond F. Snyder Fund.

  13. Chiral Spin Liquid in a Frustrated Anisotropic Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    He, Yin-Chen; Sheng, D. N.; Chen, Yan

    2014-04-01

    Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor—anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.

  14. Nonequilibrium behaviors of the three-dimensional Heisenberg model in the Swendsen-Wang algorithm

    NASA Astrophysics Data System (ADS)

    Nonomura, Yoshihiko; Tomita, Yusuke

    2016-01-01

    Recently, it was shown [Y. Nonomura, J. Phys. Soc. Jpn. 83, 113001 (2014), 10.7566/JPSJ.83.113001] that the nonequilibrium critical relaxation of the two-dimensional (2D) Ising model from a perfectly ordered state in the Wolff algorithm is described by stretched-exponential decay, and a universal scaling scheme was found to connect nonequilibrium and equilibrium behaviors. In the present study we extend these findings to vector spin models, and the 3D Heisenberg model could be a typical example. To evaluate the critical temperature and critical exponents precisely using the above scaling scheme, we calculate nonequilibrium ordering from the perfectly disordered state in the Swendsen-Wang algorithm, and we find that the critical ordering process is described by stretched-exponential growth with a comparable exponent to that of the 3D X Y model. The critical exponents evaluated in the present study are consistent with those in previous studies.

  15. Spin Liquid in the Triangular Lattice Heisenberg Model

    NASA Astrophysics Data System (ADS)

    McCulloch, Ian; Saadatmand, Seyed

    We report the results of a large-scale numerical study of the spin-1/2 Heisenberg model on the triangular lattice, with nearest- and next-nearest neighbor interactions. Using SU(2)-invariant iDMRG for infinite cylinders, we focus on the YC12 structure (with a circumference of 12 sites), and obtain 4 candidate groundstates, corresponding to even/odd spinon sectors, each with linear and projective representations of the cylinder geometry. The momentum-resolved entanglement spectrum reveals the structure of the low-lying spinon excitations. Contrary to some recent works, we find no evidence for chiral symmetry breaking. Supported by the ARC Centre for Engineered Quantum Systems.

  16. Density matrix renormalization group study of triangular Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Sota, Shigetoshi; Sjinjo, Kazuya; Shirakawa, Tomonori; Tohyama, Takami; Yunoki, Seiji

    2015-03-01

    Topological insulator has been one of the most active subjects in the current condensed matter physics. For most of topological insulators electron correlations are considered to be not essential. However, in the case where electron correlations are strong, novel phases such as a spin liquid phase can emerge in competition with a spin-orbit coupling. Here, using the density matrix renormalization group method, we investigate magnetic phase of a triangular Kitaev-Heisenberg (quantum compass) model that contains a spin-orbital interaction and spin frustration in the antiferromagnetic region. The triangular Kitaev-Heisenberg model is regarded as a dual model of the honeycomb Kitaev-Heisenberg model that is usually employed to discuss A2CuO3 (A=Na, K). Systematically calculating ground state energy, entanglement entropy, entanglement spectrum, and spin-spin correlation functions, we discuss the duality between the triangular and the honeycomb Kitaev-Heisenberg model as well as the ground state magnetic phases.

  17. Monte Carlo Simulations of inter- and intra-grain spin structure of Ising and Heisenberg models

    NASA Astrophysics Data System (ADS)

    Leblanc, Martin

    In order to keep supplying computer hard disk drives with more and more storage space, it is essential to have smaller bits. With smaller bits, superparamagnetism, the spontaneous flipping of the magnetic moments in a bit caused by thermal fluctuations, becomes increasingly important and impacts the stability of stored data. Recording media is composed of magnetic grains (usually made of CoCrPt alloys) roughly 10 nm in size from which bits are composed. Most modeling efforts that study magnetic recording media treat the grains as weakly interacting uniformly magnetized objects. In this work, the spin structure internal to a grain is examined along with the impact of varying the relative strengths of intrar-grain and inter-grain exchange interactions. The interplay between these two effects needs to be examined for a greater understanding of superparamagnetism as well as for the applications of the proposed Heat Assisted Magnetic Recording (HAMR) technology where thermal fluctuations facilitate head-field induced bit reversal in high anisotropy media. Simulations using the Monte Carlo method (with cluster-flipping algorithms) are performed on a 2D single-layer and multilayer Ising model with a strong intrar-grain exchange interaction J as well as a weak inter-grain exchange J'. A strong deviation from traditional behavior is found when J'/J is significant. M-H hysteresis loops are also calculated and the coercivity, H c is estimated. A large value represents a strong resilience to the superparamagnetic effect. It is found that taking into account the internal degrees of freedom has a significant effect on Hce. As the Ising model serves only as an approximation, preliminary simulations are also reported on a more realistic Heisenberg model with uniaxial anisotropy. Key Words: Ising model, Heisenberg model, Monte Carlo Simulation

  18. Frustrated square lattice Heisenberg model and magnetism in Iron Telluride

    NASA Astrophysics Data System (ADS)

    Zaliznyak, Igor; Xu, Zhijun; Gu, Genda; Tranquada, John; Stone, Matthew

    2011-03-01

    We have measured spin excitations in iron telluride Fe1.1Te, the parent material of (1,1) family of iron-based superconductors. It has been recognized that J1-J2-J3 frustrated Heisenberg model on a square lattice might be relevant for the unusual magnetism and, perhaps, the superconductivity in cuprates [1,2]. Recent neutron scattering measurements show that similar frustrated model might also provide reasonable account for magnetic excitations in iron pnictide materials. We find that it also describes general features of spin excitations in FeTe parent compound observed in our recent neutron measurements, as well as in those by other groups. Results imply proximity of magnetic system to the limit of extreme frustration. Selection of spin ground state under such conditions could be driven by weak extrinsic interactions, such as lattice distortion, or strain. Consequently, different nonuniversal types of magnetic order could arise, both commensurate and incommensurate. These are not necessarily intrinsic to an ideal J1-J2-J3 model, but might result from lifting of its near degeneracy by weak extrinsic perturbations.

  19. Landau-Heisenberg Hamiltonian model for FeRh

    NASA Astrophysics Data System (ADS)

    Derlet, P. M.

    2012-05-01

    An empirical model is developed for the FeRh system with the view of gaining further insight into the first-order antiferromagnetic-ferromagnetic (AFM-FM) and volume phase transition known to occur at 370 K. A volume-per-atom dependent minimal nearest neighbor Landau-Heisenberg Hamiltonian is employed in which longitudinal and transverse moment fluctuations are considered for both the Fe and Rh atoms. As a function of volume-per-atom, the corresponding onsite Landau function coefficients and the nearest-neighbor exchange parameters are fitted directly to a wide range of existing colinear and noncolinear density functional theory calculations. Using a developed Monte Carlo strategy the thermal properties of the AFM and FM phases are investigated, as well as the phase transition. It is found that the model is able to describe well the thermal expansion, heat capacities and the associated entropy increase that accompanies the magnetic/volume phase transition. The model suggests an equally important role for the magnetic and volume fluctuations in driving the phase transition.

  20. Stapp's quantum dualism: The James and Heisenberg model of consciousness

    NASA Astrophysics Data System (ADS)

    Noyes, H. P.

    1994-02-01

    Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James' description of conscious events and for matter from Werner Heisenberg's ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author's opinion fails to establish a monistic, scientific theory. The author traces Stapp's failure to his adamant rejection of arbitrariness, or 'randomness.' This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin's explanation of biology, let alone the triumphs of modern 'neo-Darwinism.' The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp's views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.

  1. The infinite range Heisenberg model and high temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil

    1992-01-01

    The thesis deals with the theory of high temperature superconductivity from the standpoint of three-band Hubbard models.Chapter 1 of the thesis proposes a strongly coupled variational wavefunction that has the three-spin system of an oxygen hole and its two neighboring copper spins in a doublet and the background Cu spins in an eigenstate of the infinite range antiferromagnet. This wavefunction is expected to be a good "zeroth order" wavefunction in the superconducting regime of dopings. The three-spin polaron is stabilized by the hopping terms rather than the copper-oxygen antiferromagnetic coupling Jpd. Considering the effect of the copper-copper antiferromagnetic coupling Jdd, we show that the three-spin polaron cannot be pure Emery (Dg), but must have a non-negligible amount of doublet-u (Du) character for hopping stabilization. Finally, an estimate is made for the magnitude of the attractive coupling of oxygen holes.Chapter 2 presents an exact solution to a strongly coupled Hamiltonian for the motion of oxygen holes in a 1-D Cu-O lattice. The Hamiltonian separates into two pieces: one for the spin degrees of freedom of the copper and oxygen holes, and the other for the charge degrees of freedom of the oxygen holes. The spinon part becomes the Heisenberg antiferromagnet in 1-D that is soluble by the Bethe Ansatz. The holon piece is also soluble by a Bethe Ansatz with simple algebraic relations for the phase shifts.Finally, we show that the nearest neighbor Cu-Cu spin correlation increases linearly with doping and becomes positive at x [...] 0.70.

  2. Infinite-range Heisenberg model and high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Tahir-Kheli, Jamil; Goddard, William A., III

    1993-11-01

    A strongly coupled variational wave function, the doublet spin-projected Néel state (DSPN), is proposed for oxygen holes in three-band models of high-temperature superconductors. This wave function has the three-spin system of the oxygen hole plus the two neighboring copper atoms coupled in a spin-1/2 doublet. The copper spins in the neighborhood of a hole are in an eigenstate of the infinite-range Heisenberg antiferromagnet (SPN state). The doublet three-spin magnetic polaron or hopping polaron (HP) is stabilized by the hopping terms tσ and tτ, rather than by the copper-oxygen antiferromagnetic coupling Jpd. Although, the HP has a large projection onto the Emery (Dg) polaron, a non-negligible amount of doublet-u (Du) character is required for optimal hopping stabilization. This is due to Jdd, the copper-copper antiferromagnetic coupling. For the copper spins near an oxygen hole, the copper-copper antiferromagnetic coupling can be considered to be almost infinite ranged, since the copper-spin-correlation length in the superconducting phase (0.06-0.25 holes per in-plane copper) is approximately equal to the mean separation of the holes (between 2 and 4 lattice spacings). The general DSPN wave function is constructed for the motion of a single quasiparticle in an antiferromagnetic background. The SPN state allows simple calculations of various couplings of the oxygen hole with the copper spins. The energy minimum is found at symmetry (π/2,π/2) and the bandwidth scales with Jdd. These results are in agreement with exact computations on a lattice. The coupling of the quasiparticles leads to an attraction of holes and its magnitude is estimated.

  3. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  4. The J1-J2 Heisenberg model on the triangular lattice

    NASA Astrophysics Data System (ADS)

    McCulloch, Ian; Saadatmand, Seyed; Powell, Ben

    2015-03-01

    We study the J1-J2 spin-1/2 Heisenberg model on triangular cylinders using non-abelian DMRG techniques. This model exhibits a rich phase diagram in the J1-J2 plane with a quasi-long-range 120° order, valence-bond crystal and columnar phases. ARC Centre for Engineered Quantum Systems.

  5. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Yao, Xiaoyan; Dong, Shuai

    2016-05-01

    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings.

  6. Long-range order for the spin-1 Heisenberg model with a small antiferromagnetic interaction

    SciTech Connect

    Lees, Benjamin

    2014-09-15

    We look at the general SU(2) invariant spin-1 Heisenberg model. This family includes the well-known Heisenberg ferromagnet and antiferromagnet as well as the interesting nematic (biquadratic) and the largely mysterious staggered-nematic interaction. Long range order is proved using the method of reflection positivity and infrared bounds on a purely nematic interaction. This is achieved through the use of a type of matrix representation of the interaction making clear several identities that would not otherwise be noticed. Using the reflection positivity of the antiferromagnetic interaction one can then show that the result is maintained if we also include an antiferromagnetic interaction that is sufficiently small.

  7. Topological triple-vortex lattice stabilized by mixed frustration in expanded honeycomb Kitaev-Heisenberg model

    PubMed Central

    Yao, Xiaoyan; Dong, Shuai

    2016-01-01

    The expanded classical Kitaev-Heisenberg model on a honeycomb lattice is investigated with the next-nearest-neighboring Heisenberg interaction considered. The simulation shows a rich phase diagram with periodic behavior in a wide parameter range. Beside the double 120° ordered phase, an inhomogeneous phase is uncovered to exhibit a topological triple-vortex lattice, corresponding to the hexagonal domain structure of vector chirality, which is stabilized by the mixed frustration of two sources: the geometrical frustration arising from the lattice structure as well as the frustration from the Kitaev couplings. PMID:27229486

  8. Homogenization models for 2-D grid structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  9. 2D model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  10. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  11. Topological basis realization for BMW algebra and Heisenberg XXZ spin chain model

    NASA Astrophysics Data System (ADS)

    Liu, Bo; Xue, Kang; Wang, Gangcheng; Liu, Ying; Sun, Chunfang

    2015-04-01

    In this paper, we study three-dimensional (3D) reduced Birman-Murakami-Wenzl (BMW) algebra based on topological basis theory. Several examples of BMW algebra representations are reviewed. We also discuss a special solution of BMW algebra, which can be used to construct Heisenberg XXZ model. The theory of topological basis provides a useful method to solve quantum spin chain models. It is also shown that the ground state of XXZ spin chain is superposition state of topological basis.

  12. Second-order Peierls transition in the spin-orbital Kumar-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Brzezicki, Wojciech; Hagymási, Imre; Dziarmaga, Jacek; Legeza, Örs

    2015-05-01

    We add a Heisenberg interaction term ∝λ in the one-dimensional SU(2 )⊗XY spin-orbital model introduced by Kumar. At λ =0 the spin and orbital degrees of freedom can be separated by a unitary transformation leading to an exact solution of the model. We show that a finite λ >0 leads to spontaneous dimerization of the system which in the thermodynamic limit becomes a smooth phase transition at λ →0 , whereas it remains discontinuous within the first-order perturbation approach. We present the behavior of the entanglement entropy, energy gap, and dimerization order parameter in the limit of λ →0 confirming the critical behavior. Finally, we show the evidence of another phase transition in the Heisenberg limit, λ →∞ , and give a qualitative analytical explanation of the observed dimerized states both in the limit of small and large λ .

  13. Nontrivial ferrimagnetism of the Heisenberg model on the Union Jack strip lattice

    NASA Astrophysics Data System (ADS)

    Shimokawa, Tokuro; Nakano, Hiroki

    2013-08-01

    We study the ground-state properties of the S = 1/2 antiferromagnetic Heisenberg model on the Union Jack strip lattice by using the exact-diagonalization and density matrix renormalization group methods. We confirm a region of a magnetization state intermediate between the Néel-like spin liquid state and the conventional ferrimagnetic state of a Lieb-Mattis type. In the intermediate state, we find that the spontaneous magnetization changes gradually with respect to the strength of the inner interaction. In addition, the local magnetization clearly shows an incommensurate modulation with long-distance periodicity in the intermediate magnetization state. These characteristic behaviors lead to the conclusion that the intermediate magnetization state is a non-Lieb-Mattis ferrimagnetic one. We also discuss the relationship between the ground-state properties of the S = 1/2 antiferromagnetic Heisenberg model on the original Union Jack lattice and those on our strip lattice.

  14. Role of Topological Defects in the Phase Transition of the Three-Dimensional Heisenberg Model.

    NASA Astrophysics Data System (ADS)

    Lau, Manhot

    The role of topological point defects (hedgehogs) in the phase transition of the classical Heisenberg model in three dimensions is investigated by using Monte Carlo simulations. Simulations of the behavior of the defects near the phase transition show that the number density of defects increases sharply and defect pairs with separations comparable to the sample size begin to appear as the temperature is increased through the transition temperature. In simulations in a restricted ensemble in which spin configurations containing defects are not allowed, the system appears to remain ordered at all temperatures. Simulations in which the spin-spin interaction is set equal to zero and the number density of defects is controlled by varying a 'chemical potential' term indicate that the system is ordered if the number density of defect pairs is sufficiently small. These results show that topological defects play a crucial role in the three-dimensional Heisenberg transition in the sense that configurations containing defect pairs are necessary for the transition from the ferromagnetic to paramagnetic phase to occur. Such a conclusion is also consistent with a Renormalization Group study of the O(n) model, which suggests that topological defects should be explicitly taken into account for a correct description of the critical behavior in models including the three-dimensional Heisenberg model.

  15. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  16. {\\varvec{Φ -Ψ }} model for electrodynamics in dielectric media: exact quantisation in the Heisenberg representation

    NASA Astrophysics Data System (ADS)

    Belgiorno, Francesco; Cacciatori, Sergio L.; Dalla Piazza, Francesco; Doronzo, Michele

    2016-06-01

    We investigate the quantisation in the Heisenberg representation of a model which represents a simplification of the Hopfield model for dielectric media, where the electromagnetic field is replaced by a scalar field φ and the role of the polarisation field is played by a further scalar field ψ . The model, which is quadratic in the fields, is still characterised by a non-trivial physical content, as the physical particles correspond to the polaritons of the standard Hopfield model of condensed matter physics. Causality is also taken into account and a discussion of the standard interaction representation is also considered.

  17. Classification of magnons in rotated ferromagnetic Heisenberg model and their competing responses in transverse fields

    NASA Astrophysics Data System (ADS)

    Sun, Fadi; Ye, Jinwu; Liu, Wu-Ming

    2016-07-01

    In this paper, we study the rotated ferromagnetic Heisenberg model (RFHM) in two different transverse fields, hx and hz, which can be intuitively visualized as studying spin-orbit coupling (SOC) effects in two-dimensional (2D) Ising or anisotropic X Y model in a transverse field. At a special SOC class, it was found in our previous work [Phys. Rev. A 92, 043609 (2015), 10.1103/PhysRevA.92.043609] that the RFHM at a zero field owns an exact spin-orbit coupled ground state called the Y -x state. It supports not only the commensurate magnons (called C -C0 and C -Cπ ), but also the incommensurate magnons (called C-IC). These magnons are nonrelativistic, not embedded in the exact ground state, so need to be thermally excited or generated by various external probes. Their dramatic response under a longitudinal hy field was recently worked out by Sun et al. [arXiv:1502.05338]. Here we find they respond very differently under the two transverse fields. Any hx (hz) introduces quantum fluctuations to the ground state and changes the collinear Y -x state to a canted coplanar Y X -x (Y Z -x ) state. The C -C0,C -Cπ , and C-IC magnons become relativistic and sneak into the quantum ground state. We determine the competing boundaries among the C -C0,C -Cπ , and C-IC magnons, especially the detailed dispersions of the C-IC magnons inside the canted phases, which can be mapped out by the transverse spin structure factors. As hx (hz) increases further, the C -C0 magnons always win the competition and emerge as the seeds to drive a transition from the Y X -x (or Y Z -x ) to the ferromagnetic along the X (orZ ) direction called the X -FM (or Z -FM) phase. We show that the transition is in the 3D Ising universality class and it becomes the 3D X Y transition at the two Abelian points. We evaluate these magnons' contributions to magnetization and specific heat at low temperatures which can be measured by various established experimental techniques. The nature of the finite

  18. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  19. Magnetic order and spin excitations in layered Heisenberg antiferromagnets with compass-model anisotropies

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. A.; Ihle, D.; Plakida, N. M.

    2015-02-01

    The spin-wave excitation spectrum, magnetization, and Néel temperature for the quasi-two-dimensional spin-1/2 antiferromagnetic Heisenberg model with the compass-model interaction in the plane proposed for iridates are calculated in the random phase approximation. The spin-wave spectrum agrees well with data of Lanczos diagonalization. We find that the Néel temperature is enhanced by the compass-model interaction and is close to the experimental value for Ba2IrO4.

  20. 2 1/2 -D compressible reconnection model

    NASA Astrophysics Data System (ADS)

    Skender, M.; Vršnak, B.

    The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.

  1. Ultracold few fermionic atoms in needle-shaped double wells: spin chains and resonating spin clusters from microscopic Hamiltonians emulated via antiferromagnetic Heisenberg and t–J models

    NASA Astrophysics Data System (ADS)

    Yannouleas, Constantine; Brandt, Benedikt B.; Landman, Uzi

    2016-07-01

    Advances with trapped ultracold atoms intensified interest in simulating complex physical phenomena, including quantum magnetism and transitions from itinerant to non-itinerant behavior. Here we show formation of antiferromagnetic ground states of few ultracold fermionic atoms in single and double well (DW) traps, through microscopic Hamiltonian exact diagonalization for two DW arrangements: (i) two linearly oriented one-dimensional, 1D, wells, and (ii) two coupled parallel wells, forming a trap of two-dimensional, 2D, nature. The spectra and spin-resolved conditional probabilities reveal for both cases, under strong repulsion, atomic spatial localization at extemporaneously created sites, forming quantum molecular magnetic structures with non-itinerant character. These findings usher future theoretical and experimental explorations into the highly correlated behavior of ultracold strongly repelling fermionic atoms in higher dimensions, beyond the fermionization physics that is strictly applicable only in the 1D case. The results for four atoms are well described with finite Heisenberg spin-chain and cluster models. The numerical simulations of three fermionic atoms in symmetric DWs reveal the emergent appearance of coupled resonating 2D Heisenberg clusters, whose emulation requires the use of a t–J-like model, akin to that used in investigations of high T c superconductivity. The highly entangled states discovered in the microscopic and model calculations of controllably detuned, asymmetric, DWs suggest three-cold-atom DW quantum computing qubits.

  2. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  3. Magnetic order and spin excitations in the Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Vladimirov, A. A.; Ihle, D.; Plakida, N. M.

    2016-06-01

    We consider the quasi-two-dimensional pseudo-spin-1/2 Kitaev-Heisenberg model proposed for A2IrO3 (A = Li, Na) compounds. The spin-wave excitation spectrum, the sublattice magnetization, and the transition temperatures are calculated in the random phase approximation for four different ordered phases observed in the parameter space of the model: antiferromagnetic, stripe, ferromagnetic, and zigzag phases. The Néel temperature and temperature dependence of the sublattice magnetization are compared with the experimental data on Na2IrO3.

  4. Unconventional pairing and electronic dimerization instabilities in the doped Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Scherer, Daniel D.; Scherer, Michael M.; Khaliullin, Giniyat; Honerkamp, Carsten; Rosenow, Bernd

    2014-07-01

    We study the quantum many-body instabilities of the t-JK-JH Kitaev-Heisenberg Hamiltonian on the honeycomb lattice as a minimal model for a doped spin-orbit Mott insulator. This spin-1/2 model is believed to describe the magnetic properties of the layered transition-metal oxide Na2IrO3. We determine the ground state of the system with finite charge-carrier density from the functional renormalization group (fRG) for correlated fermionic systems. To this end, we derive fRG flow equations adapted to the lack of full spin-rotational invariance in the fermionic interactions, here represented by the highly frustrated and anisotropic Kitaev exchange term. Additionally employing a set of the Ward identities for the Kitaev-Heisenberg model, the numerical solution of the flow equations suggests a rich phase diagram emerging upon doping charge carriers into the ground-state manifold (Z2 quantum spin liquids and magnetically ordered phases). We corroborate superconducting triplet p-wave instabilities driven by ferromagnetic exchange and various singlet pairing phases. For filling δ >1/4, the p-wave pairing gives rise to a topological state with protected Majorana edge modes. For antiferromagnetic Kitaev and ferromagnetic Heisenberg exchanges, we obtain bond-order instabilities at van Hove filling supported by nesting and density-of-states enhancement, yielding dimerization patterns of the electronic degrees of freedom on the honeycomb lattice. Further, our flow equations are applicable to a wider class of model Hamiltonians.

  5. Interplay of localized and itinerant behavior in the one-dimensional Kondo-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Xie, Neng; Yang, Yi-feng

    2015-05-01

    We use the density matrix renormalization group method to study the interplay of the localized and itinerant behaviors in the one-dimensional Kondo-Heisenberg model. We find signatures of simultaneously localized and itinerant behaviors of the local spins and attribute this duality to their simultaneous entanglement within the spin chain and with conduction electrons due to incomplete hybridization. We propose a microscopic definition of the hybridization parameter that measures this "partial" itinerancy. Our results provide a microscopic support for the dual nature of f electrons and the resulting two-fluid behavior widely observed in heavy electron materials.

  6. Random exchange interaction effects on the phase transitions in frustrated classical Heisenberg model

    SciTech Connect

    Li, W. C.; Song, X.; Feng, J. J.; Zeng, M.; Gao, X. S.; Qin, M. H.; Jia, X. T.

    2015-07-07

    In this work, the effects of the random exchange interaction on the phase transitions and phase diagrams of classical frustrated Heisenberg model are investigated by Monte Carlo simulation in order to simulate the chemical doping effect in real materials. It is observed that the antiferromagnetic transitions shift toward low temperature with the increasing magnitude of the random exchange interaction, which can be qualitatively understood from the competitions among local spin states. This study is related to the magnetic properties in the doped iron-based superconductors.

  7. The Quantum Refrigerator in a Two-Qubit Xxz Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Albayrak, Erhan

    2013-05-01

    The four-level entangled quantum refrigerator (QR) is studied in the XXZ Heisenberg model for the two-qubits. The Hamiltonian of the problem includes the exchange parameters Jx = Jy = J and Jz = αJ along the x-, y- and z-directions, respectively, and constant external magnetic field B in the z-direction. The parameter α is introduced into the model which controls the strength of the exchange parameter Jz in comparison to Jx and Jy, thus, our investigation of QR includes the XX (α = 0.0), XXX (α = 1.0) and XXZ (for other α's) Heisenberg models. The two-qubits are assumed to be in contact with two heat reservoirs at different temperatures. The concurrences for a two-qubit are used as a measure of entanglement and then the expressions for the amount of heat transferred, the work performed and the efficiency are derived. The contour, i.e., the isoline maps, and some two-dimensional plots of the above mentioned thermodynamic quantities are illustrated.

  8. The Design of Control Pulses for Heisenberg Always-On Qubit Models

    NASA Astrophysics Data System (ADS)

    Magyar, Rudolph

    2015-03-01

    One model for a universal quantum computer is a spin array with constant nearest neighbor interactions and a controlled unidirectional site-specific magnetic field to generate unitary transformations. This system can be described by a Heisenberg spin Hamiltonian and can be simulated for on the order of 50 spins. It has recently been shown that time-dependent density functional inspired methods may be used to relate various spin models of qubits to ones that may be easier to compute numerically allowing potentially the efficient simulation of greater numbers of spins. One of the challenges of such an agenda is the identification of control pulses that produce desired gate operations (CNOT and single qubit phase gates). We apply control theory to design a universal set of pulses for a Heisenberg always-on model Hamiltonian for a few qubits and compare to known pulses when available. We suggest how this approach may be useful to design control pulses in other realistic designs. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Security Administration under contract DE-AC04-94AL85000.

  9. Modified Heisenberg model for the zig-zag structure in multiferroic RMn2O5

    NASA Astrophysics Data System (ADS)

    Bahoosh, Safa Golrokh; Wesselinowa, Julia M.; Trimper, Steffen

    2015-08-01

    The class of RMn2O5 (R = Ho, Tb, Y, Eu) compounds offers multiferroic properties where the refined magnetic zig-zag order breaks the inversion symmetry. Varying the temperature, the system undergoes a magnetic and a subsequent ferroelectric phase transition where the ferroelectricity is magnetically induced. We propose a modified anisotropic Heisenberg model that can be used as a tractable analytical model studying the properties of those antiferromagnetic zig-zag spin chains. Based on a finite temperature Green's function method, it is shown that the polarization is induced solely by different exchange couplings of the two different Mn4+ and Mn3+ magnetic ions. We calculate the excitation energy of the spin system for finite temperatures, which for its part determines the temperature dependent magnetization and polarization. The ferroelectric phase transition is manifested as a kink in the excitation energy. The variation of the polarization by an external magnetic field depends strongly on the direction of that field. Whereas, the polarization in b-direction increases with an external magnetic field as well in b-direction it can be switched for strong fields in a-direction. The results based on that modified Heisenberg model are in qualitative agreement with experimental data.

  10. Density-matrix renormalization group study of the extended Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Shinjo, Kazuya; Sota, Shigetoshi; Tohyama, Takami

    2015-02-01

    We study an extended Kitaev-Heisenberg model including additional anisotropic couplings by using the two-dimensional density-matrix renormalization group method. Calculating the ground-state energy, entanglement entropy, and spin-spin correlation functions, we make a phase diagram of the extended Kitaev-Heisenberg model around the spin-liquid phase. We find a zigzag antiferromagnetic phase, a ferromagnetic phase, a 120∘ antiferromagnetic phase, and two kinds of incommensurate phases around the Kitaev spin-liquid phase. Furthermore, we study the entanglement spectrum of the model, and we find that entanglement levels in the Kitaev spin-liquid phase are degenerate forming pairs, but those in the magnetically ordered phases are nondegenerate. The Schmidt gap defined as the energy difference between the lowest two levels changes at the phase boundary adjacent to the Kitaev spin-liquid phase. However, we find that phase boundaries between magnetically ordered phases do not necessarily agree with the change of the Schmidt gap.

  11. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  12. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  13. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    NASA Astrophysics Data System (ADS)

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-09-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids.

  14. Emergent Chiral Spin Liquid: Fractional Quantum Hall Effect in a Kagome Heisenberg Model

    PubMed Central

    Gong, Shou-Shu; Zhu, Wei; Sheng, D. N.

    2014-01-01

    The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids. PMID:25204626

  15. Stapp`s quantum dualism: The James/Heisenberg model of consciousness

    SciTech Connect

    Noyes, H.P.

    1994-02-18

    Henry Stapp attempts to resolve the Cartesian dilemma by introducing what the author would characterize as an ontological dualism between mind and matter. His model for mind comes from William James` description of conscious events and for matter from Werner Heisenberg`s ontological model for quantum events (wave function collapse). His demonstration of the isomorphism between the two types of events is successful, but in the author`s opinion fails to establish a monistic, scientific theory. The author traces Stapp`s failure to his adamant rejection of arbitrariness, or `randomness`. This makes it impossible for him (or for Bohr and Pauli before him) to understand the power of Darwin`s explanation of biology, let along the triumphs of modern `neo-Darwinism`. The author notes that the point at issue is a modern version of the unresolved opposition between Leucippus and Democritus on one side and Epicurus on the other. Stapp`s views are contrasted with recent discussions of consciousness by two eminent biologists: Crick and Edelman. They locate the problem firmly in the context of natural selection on the surface of the earth. Their approaches provide a sound basis for further scientific work. The author briefly examines the connection between this scientific (rather than ontological) framework and the new fundamental theory based on bit-strings and the combinatorial hierarchy.

  16. Anomaly in the phase diagram of the spin quantum 1/2 anisotropic Heisenberg antiferromagnet model with Dzyaloshinskii-Moriya interaction: A low temperature analysis

    NASA Astrophysics Data System (ADS)

    Parente, Walter E. F.; Pacobahyba, J. T. M.; Araújo, Ijanílio G.; Neto, Minos A.; Ricardo de Sousa, J.

    2015-11-01

    We will study phase diagram the quantum spin-1/2 anisotropic Heisenberg antiferromagnet model in the presence of a Dzyaloshinskii-Moriya interaction (D) and a uniform longitudinal (H) magnetic field, where we have observed an anomaly at low temperatures. Using the effective-field theory with a finite cluster N=2 spin (EFT-2) we calculate the phase diagram in the H - D plane on a simple cubic lattice (z=6). We analyzed the cases: anisotropic Heisenberg - case I: (Δ = 1), anisotropic Heisenberg - case II: (Δ = 0.5) and anisotropic Heisenberg - case III: (Δ = 0), where only second order phase transitions are observed.

  17. Unitary matrix models and 2D quantum gravity

    SciTech Connect

    Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )

    1992-09-21

    In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.

  18. Ground and Excited States of Spinor Fermi Gases in Tight Waveguides and the Lieb-Liniger-Heisenberg Model

    SciTech Connect

    Girardeau, M. D.

    2006-11-24

    The ground and excited states of a one-dimensional (1D) spin-(1/2) Fermi gas (SFG) with both attractive zero-range odd-wave interactions and repulsive zero-range even-wave interactions are mapped exactly to a 1D Lieb-Liniger-Heisenberg (LLH) model with delta-function repulsions depending on isotropic Heisenberg spin-spin interactions, such that the complete SFG and LLH energy spectra are identical. The ground state in the ferromagnetic phase is given exactly by the Lieb-Liniger (LL) Bethe ansatz, and that in the antiferromagnetic phase by a variational method combining Bethe ansatz solutions of the LL and 1D Heisenberg models. There are excitation branches corresponding to LL type I and II phonons and spin waves, the latter behaving quadratically for small wave numbers in the ferromagnetic phase and linearly in the antiferromagnetic phase.

  19. Brane brick models and 2 d (0 , 2) triality

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-05-01

    We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  20. 2D numerical modelling of meandering channel formation

    NASA Astrophysics Data System (ADS)

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  1. Experimental validation of 2D profile photoresist shrinkage model

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex

    2011-03-01

    For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary

  2. Plaquette order in the SU(6) Heisenberg model on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Nataf, Pierre; Lajkó, Miklós; Corboz, Philippe; Läuchli, Andreas M.; Penc, Karlo; Mila, Frédéric

    2016-05-01

    We revisit the SU(6) Heisenberg model on the honeycomb lattice, which has been predicted to be a chiral spin liquid by mean-field theory [G. Szirmai et al., Phys. Rev. A 84, 011611(R) (2011), 10.1103/PhysRevA.84.011611]. Using exact diagonalizations of finite clusters, infinite projected entangled pair state simulations, and variational Monte Carlo simulations based on Gutzwiller projected wave functions, we provide strong evidence that the model with one particle per site and nearest-neighbor exchange actually develops plaquette order. This is further confirmed by the investigation of the model with a ring-exchange term, which shows that there is a transition between the plaquette state and the chiral state at a finite value of the ring-exchange term.

  3. Thermal entanglement in the Heisenberg XXZ model with Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Li, Sha-Sha; Ren, Ting-Qi; Kong, Xiang-Mu; Liu, Kai

    2012-01-01

    By the concept of negativity, we investigate the thermal entanglement in the two-spin (1/2 >,s) Heisenberg XXX and XXZ models in the presence of Dzyaloshinskii-Moriya (DM) interactions respectively. Through calculation, we know that for the XXZ model, the Δ and s can be used together to control the extent of entanglement and, in particular, to obtain large entanglement. The effect of spin in both models shows that it can increase the critical temperature and the negativity decreases as the spin increases. We found that the DM interaction has different effects on Fermi and Bose systems so it can not only excite entanglement but also affect the entanglement in different spin systems.

  4. A 2D channel-clogging biofilm model.

    PubMed

    Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G

    2015-09-01

    We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390

  5. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  6. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  7. Spin conductivity of the two-dimensional anisotropic frustrated Heisenberg model in the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties of the two-dimensional anisotropic frustrated Heisenberg model in a honeycomb lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents a single-ion anisotropy and J1 and J2 exchange interactions. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = < tz† > = t. Our results show a metallic spin transport for ω > 0 and a superconductor spin transport in the limit of DC conductivity, ω → 0, where σ(ω) tends to infinity in this limit of ω.

  8. Effect of magnetic field on noncollinear magnetism in classical bilinear-biquadratic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Pasrija, Kanika; Kumar, Sanjeev

    2016-05-01

    We present a Monte Carlo simulation study of a bilinear-biquadratic Heisenberg model on a two-dimensional square lattice in the presence of an external magnetic field. The study is motivated by the relevance of this simple model to the non-collinear magnetism and the consequent ferroelectric behavior in the recently discovered high-temperature multiferroic, cupric oxide (CuO). We show that an external magnetic field stabilizes a non-coplanar magnetic phase, which is characterized by a finite ferromagnetic moment along the direction of the applied magnetic field and a spiral spin texture if projected in the plane perpendicular to the magnetic field. Real-space analysis highlights a coexistence of non-collinear regions with ferromagnetic clusters. The results are also supported by simple variational calculations.

  9. Magnetic order in the two-dimensional compass-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Vladimirov, Artem A.; Ihle, Dieter; Plakida, Nikolay M.

    2015-06-01

    A Green-function theory for the dynamic spin susceptibility in the square-lattice spin-1/2 antiferromagnetic compass-Heisenberg model employing a generalized mean-field approximation is presented. The theory describes magnetic long-range order (LRO) and short-range order (SRO) at arbitrary temperatures. The magnetization, Néel temperature TN, specific heat, and uniform static spin susceptibility χ are calculated self-consistently. As the main result, we obtain LRO at finite temperatures in two dimensions, where the dependence of TN on the compass-model interaction is studied. We find that TN is close to the experimental value for Ba2IrO4. The effects of SRO are discussed in relation to the temperature dependence of χ.

  10. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  11. Renormalization of the global quantum correlation and monogamy relation in the anisotropic Heisenberg XXZ model

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Ren, Zhong-Zhou; Zhang, Xin

    2016-01-01

    In this study, the global quantum correlation, monogamy relation and quantum phase transition of the Heisenberg XXZ model are investigated by the method of quantum renormalization group. We obtain, analytically, the expressions of the global negativity, the global measurement-induced disturbance and the monogamy relation for the system. The result shows that for a three-site block state, the partial transpose of an asymmetric block can get stronger entanglement than that of the symmetric one. The residual entanglement and the difference of the monogamy relation of measurement-induced disturbance show a scaling behavior with the size of the system becoming large. Moreover, the monogamy nature of entanglement measured by negativity exists in the model, while the nonclassical correlation quantified by measurement-induced disturbance violates the monogamy relation and demonstrates polygamy.

  12. Fermionology in the Kondo-Heisenberg model: the case of CeCoIn5

    NASA Astrophysics Data System (ADS)

    Zhong, Yin; Zhang, Lan; Lu, Han-Tao; Luo, Hong-Gang

    2015-09-01

    The Fermi surface of heavy electron systems plays a fundamental role in understanding their variety of puzzling phenomena, for example, quantum criticality, strange metal behavior, unconventional superconductivity and even enigmatic phases with yet unknown order parameters. The spectroscopy measurement of the typical heavy fermion superconductor CeCoIn5 has demonstrated multi-Fermi surface structure, which has not been studied in detail theoretically in a model system like the Kondo-Heisenberg model. In this work, we take a step toward such a theoretical model by revisiting the Kondo-Heisenberg model. It is found that the usual self-consistent calculation cannot reproduce the fermionology of the experimental observation of the system due to the sign binding between the hopping of the conduction electrons and the mean-field valence-bond order. To overcome such inconsistency, the mean-field valence-bond order is considered as a free/fitting parameter to correlate them with real-life experiments as performed in recent experiments [M.P. Allan, F. Massee, D.K. Morr, J. Van Dyke, A.W. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, Nat. Phys. 9, 468 (2013); J. Van Dyke, F. Massee, M.P. Allan, J.C. Davis, C. Petrovic, D.K. Morr, Proc. Natl. Acad. Sci. 111, 11663 (2014)], which also explicitly reflects the intrinsic dispersion of local electrons observed in experimental measurements. Given the fermionology, the calculated effective mass enhancement, entropy, superfluid density and Knight shift are all in qualitative agreement with the experimental results of CeCoIn5, which confirms our assumption. Our result supports a d_{x^2 - y^2 }-wave pairing structure in the heavy fermion material CeCoIn5.

  13. A quantum fidelity study of the anisotropic next-nearest-neighbour triangular lattice Heisenberg model

    NASA Astrophysics Data System (ADS)

    Thesberg, Mischa; Sørensen, Erik S.

    2014-10-01

    Ground- and excited-state quantum fidelities in combination with generalized quantum fidelity susceptibilites, obtained from exact diagonalizations, are used to explore the phase diagram of the anisotropic next-nearest-neighbour triangular Heisenberg model. Specifically, the J‧ - J2 plane of this model, which connects the J1 - J2 chain and the anisotropic triangular lattice Heisenberg model, is explored using these quantities. Through the use of a quantum fidelity associated with the first excited-state, in addition to the conventional ground-state fidelity, the BKT-type transition and Majumdar-Ghosh point of the J1 - J2 chain (J‧ = 0) are found to extend into the J‧ - J2 plane and connect with points on the J2 = 0 axis thereby forming bounded regions in the phase diagram. These bounded regions are then explored through the generalized quantum fidelity susceptibilities χρ, χ120\\circ , χD and χCAF which are associated with the spin stiffness, 120° spiral order parameter, dimer order parameter and collinear antiferromagnetic order parameter respectively. These quantities are believed to be extremely sensitive to the underlying phase and are thus well suited for finite-size studies. Analysis of the fidelity susceptibilities suggests that the J‧, J2 ≪ J phase of the anisotropic triangular model is either a collinear antiferromagnet or possibly a gapless disordered phase that is directly connected to the Luttinger phase of the J1 - J2 chain. Furthermore, the outer region is dominated by incommensurate spiral physics as well as dimer order.

  14. Heisenberg's observability principle

    NASA Astrophysics Data System (ADS)

    Wolff, Johanna

    2014-02-01

    Werner Heisenberg's 1925 paper 'Quantum-theoretical re-interpretation of kinematic and mechanical relations' marks the beginning of quantum mechanics. Heisenberg famously claims that the paper is based on the idea that the new quantum mechanics should be 'founded exclusively upon relationships between quantities which in principle are observable'. My paper is an attempt to understand this observability principle, and to see whether its employment is philosophically defensible. Against interpretations of 'observability' along empiricist or positivist lines I argue that such readings are philosophically unsatisfying. Moreover, a careful comparison of Heisenberg's reinterpretation of classical kinematics with Einstein's argument against absolute simultaneity reveals that the positivist reading does not fit with Heisenberg's strategy in the paper. Instead the appeal to observability should be understood as a specific criticism of the causal inefficacy of orbital electron motion in Bohr's atomic model. I conclude that the tacit philosophical principle behind Heisenberg's argument is not a positivistic connection between observability and meaning, but the idea that a theory should not contain causally idle wheels.

  15. Cascading rainfall uncertainties into 2D inundation impact models

    NASA Astrophysics Data System (ADS)

    Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David

    2013-04-01

    Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is

  16. Phase transition of anisotropic frustrated Heisenberg model on the square lattice.

    PubMed

    Hu, Ai-Yuan; Wang, Huai-Yu

    2016-01-01

    We have investigated the J_{1}-J_{2} Heisenberg model with exchange anisotropy on a square lattice and focused on possible AF1-AF2 phase transition below the Néel point and its dependence on the exchange anisotropy, where AF1 and AF2 represent Néel state and collinear state, respectively. We use the double-time Green's-function method and adopt the random-phase approximation. The less the exchange anisotropy, the stronger the quantum fluctuation of the system will be. Both the Néel state and collinear state can exist and have the same Néel temperature for arbitrary anisotropy and spin quantum number S when J_{2}/J_{1}=0.5. Under such parameters, the calculated free energies show that there may occur a first-order phase transition between the Néel state and collinear state for an arbitrary S when anisotropy is not strong. PMID:26871025

  17. Effect of the site dilution on spin transport in the two-dimensional biquadratic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Lima, L. S.

    2016-05-01

    We use the SU(3) Schwinger's boson theory to study the spin transport in the biquadratic Heisenberg chains in a square lattice with a distribution of non-magnetic impurities on the lattice. We verify the influence of the site dilution in the Ac and Dc spin conductivities of this model in the Bose-Einstein condensation regime in which the bosons t are condensed. Our results show that the decreasing of the gap Δ with -β suffers a change for different concentrations x of non-magnetic impurities, however the point (in the -β axis) where the gap cancels does not change with x. Therefore, the size of the region ω, where the spin conductivity goes to zero decreases with the increase of x until the point where x=0.5, where the size of this region tends to zero.

  18. Sudden death of distillability in a two-qutrit anisotropic Heisenberg spin model

    NASA Astrophysics Data System (ADS)

    Guo, You-neng; Fang, Mao-fa; Zou, Hong-mei; Zhang, Shi-yang; Liu, Xiang

    2015-06-01

    Sudden death of distillability for a two-qutrit anisotropic Heisenberg XX chain with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous magnetic field is studied in detail. By using the negativity and realignment criterion, we show that certain initial prepared free entangled states may become bound entangled or separable states in a finite time. Moreover, the influences of the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter on the possibility of distillability sudden death (DSD) have been studied. The results show, controlling the isotropic bilinear interaction parameter, the external magnetic field strength, the DM interaction parameter, as well as the intrinsic decoherence parameter, can accelerate the possibility of DSD in the present model.

  19. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  20. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  1. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  2. EuCo2P2 : A model molecular-field helical Heisenberg antiferromagnet

    NASA Astrophysics Data System (ADS)

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-01

    The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the a b plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ , high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperature T ≤TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ˜T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2 , respectively. These values are enhanced by a factor of ˜2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the a b plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χa b(T ≤TN) .

  3. EuCo2P2: A model molecular-field helical Heisenberg antiferromagnet

    DOE PAGESBeta

    Sangeetha, N. S.; Cuervo-Reyes, Eduardo; Pandey, Abhishek; Johnston, D. C.

    2016-07-19

    Here, the metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins-7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN=66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization, and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility χ, high-field magnetization, and magnetic heat capacity of EuCo2P2 single crystals at temperaturemore » T ≤ TN with the predictions of our recent formulation of molecular-field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~T3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu–Eu exchange interactions within the ab plane and AFM interactions between Eu spins in nearest- and next-nearest planes, in agreement with the MFT analysis of χab(T ≤ TN).« less

  4. Ab initio modeling of 2D layered organohalide lead perovskites.

    PubMed

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-28

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557

  5. 2-D Inhomogeneous Modeling of the Solar CO Bands

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    1996-05-01

    The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.

  6. Ab initio modeling of 2D layered organohalide lead perovskites

    NASA Astrophysics Data System (ADS)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  7. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  8. Numerical modeling of seismogram envelopes in 2-D random media

    NASA Astrophysics Data System (ADS)

    Fehler, Michael

    2002-11-01

    Several portions of seismograms recorded from regional earthquakes cannot be easily explained as resulting from waves propagating along deterministic paths within the Earth. For example, seismic coda, which is the tail portion of the seismogram of an earthquake recorded at distances of less than 100 km, is considered as resulting from waves that are multiply scattered from random heterogeneities in the Earth's lithosphere. At greater distances, observations that the duration of the initial arriving wave packet is much longer than the source-time duration is explained as being due to multiple forward scattering along the path between the source and the receiver. To investigate these phenomena, we use a finite difference method to numerically simulate 2-D scalar-waves that propagate through random media characterized by a von Karman autocorrelation function. Such media are considered to be appropriate models for the random component of the structure of the Earth's lithosphere. We investigate the characteristics of the resulting wavefields and compare them with those of observed seismograms.

  9. A 2D electrohydrodynamic model for electrorotation of fluid drops.

    PubMed

    Feng, James Q

    2002-02-01

    A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391

  10. VAM2D: Variably saturated analysis model in two dimensions

    SciTech Connect

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.

  11. Our Electron Model vindicates Schr"odinger's Incomplete Results and Require Restatement of Heisenberg's Uncertainty Principle

    NASA Astrophysics Data System (ADS)

    McLeod, David; McLeod, Roger

    2008-04-01

    The electron model used in our other joint paper here requires revision of some foundational physics. That electron model followed from comparing the experimentally proved results of human vision models using spatial Fourier transformations, SFTs, of pincushion and Hermann grids. Visual systems detect ``negative'' electric field values for darker so-called ``illusory'' diagonals that are physical consequences of the lens SFT of the Hermann grid, distinguishing this from light ``illusory'' diagonals. This indicates that oppositely directed vectors of the separate illusions are discretely observable, constituting another foundational fault in quantum mechanics, QM. The SFT of human vision is merely the scaled SFT of QM. Reciprocal space results of wavelength and momentum mimic reciprocal relationships between space variable x and spatial frequency variable p, by the experiment mentioned. Nobel laureate physicist von B'ek'esey, physiology of hearing, 1961, performed pressure input Rect x inputs that the brain always reports as truncated Sinc p, showing again that the brain is an adjunct built by sight, preserves sign sense of EMF vectors, and is hard wired as an inverse SFT. These require vindication of Schr"odinger's actual, but incomplete, wave model of the electron as having physical extent over the wave, and question Heisenberg's uncertainty proposal.

  12. A 2-D modeling contribution to river training design

    NASA Astrophysics Data System (ADS)

    Anselmo, V.; Coccato, M.; Frank, E.; Guiot, E.

    2003-04-01

    In the last ten years, two major floods (1994 and 2000) occurred in North-western Italy and a few questions arose about the hydraulic behavior of the streams as well about the choice and design of protection works. The River Po Authority is oriented to assign "design flows" in selected cross sections of the main rivers, as a design constraint to land management and river training in the upstream areas. Since the region has been fully developed in the last century and somewhere it is overcrowded, space for spreading flood flows is strongly reduced, while large partially developed areas are prone to flooding and residents ask for being protected. A first question regards the contribution to flood peak reduction of the still existing flood prone undeveloped areas beside the main channels, and a second question is about the best way to improve such a behavior. A 2-D unsteady model (Sobek, originated by Delft Hydraulics) was applied to a 25 km reach of the upper River Po. The effects of major floods was investigated, proving that the reduction of the peak flow is minor mainly because of the rather high slope (0.0015) and of the flood volume (500·106 m3). Aiming to enhance the role of the flooded areas, a few types of river training schemes were checked, with particular attention to the so called "Po system". Depth and extension of compartments are the main variables. Results are interesting, but must be evaluated in front of the cost-benefit analysis. The investigation is being extended to more steep stream reaches (up to 0.01), which are representative of the main upper Po tributaries.

  13. Predicting Fracture Using 2D Finite Element Modeling

    PubMed Central

    MacNeil, J.A.M.; Adachi, J.D; Goltzman, D; Josse, R.G; Kovacs, C.S; Prior, J.C; Olszynski, W; Davison, K.S.; Kaiser, S.M

    2013-01-01

    A decrease in bone density at the hip or spine has been shown to increase the risk of fracture. A limitation of the bone mineral density (BMD) measurement is that it provides only a measure of a bone samples average density when projected onto a 2D surface. Effectively, what determines bone fracture is whether an applied load exceeds ultimate strength, with both bone tissue material properties (can be approximated through bone density), and geometry playing a role. The goal of this project was to use bone geometry and BMD obtained from radiographs and DXA measurements respectively to estimate fracture risk, using a two-dimensional finite element model (FEM) of the sagittal plane of lumbar vertebrae. The Canadian Multicenter Osteoporosis Study (CaMos) data was used for this study. There were 4194 men and women over the age of 50 years, with 786 having fractures. Each subject had BMD testing and radiographs of their lumbar vertebrae. A single two dimensional FEM of the first to fourth lumbar vertebra was automatically generated for each subject. Bone tissue stiffness was assigned based on the BMD of the individual vertebrae, and adjusted for patient age. Axial compression boundary conditions were applied with a force proportional to body mass. The resulting overall strain from the applied force was found. Men and women were analyzed separately. At baseline, the sensitivity of BMD to predict fragility fractures in women and men was 3.77 % and 0.86 %, while the sensitivity of FEM to predict fragility fractures for women and men was 10.8 % and 11.3 %. The FEM ROC curve demonstrated better performance compared to BMD. The relative risk of being considered at high fracture risk using FEM at baseline, was a better predictor of 5 year incident fragility fracture risk compared to BMD. PMID:21959170

  14. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  15. Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field

    NASA Astrophysics Data System (ADS)

    Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan

    2012-06-01

    By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field hc = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.

  16. The phase transition in the anisotropic Heisenberg model with long range dipolar interactions

    NASA Astrophysics Data System (ADS)

    Mól, L. A. S.; Costa, B. V.

    2014-03-01

    In this work we have used extensive Monte Carlo calculations to study the planar to paramagnetic phase transition in the two-dimensional anisotropic Heisenberg model with dipolar interactions (AHd) considering the true long-range character of the dipolar interactions by means of the Ewald summation. Our results are consistent with an order-disorder phase transition with unusual critical exponents in agreement with our previous results for the Planar Rotator model with dipolar interactions. Nevertheless, our results disagree with the Renormalization Group results of Maier and Schwabl [Phys. Rev. B, 70, 134430 (2004)] [13] and the results of Rapini et al. [Phys. Rev. B, 75, 014425 (2007)] [12], where the AHd was studied using a cut-off in the evaluation of the dipolar interactions. We argue that besides the long-range character of dipolar interactions their anisotropic character may have a deeper effect in the system than previously believed. Besides, our results show that the use of a cut-off radius in the evaluation of dipolar interactions must be avoided when analyzing the critical behavior of magnetic systems, since it may lead to erroneous results.

  17. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  18. Obtaining model parameters for real materials from ab-initio calculations: Heisenberg exchange

    NASA Astrophysics Data System (ADS)

    Korotin, Dmitry; Mazurenko, Vladimir; Anisimov, Vladimir; Streltsov, Sergey

    An approach to compute exchange parameters of the Heisenberg model in plane-wave based methods is presented. This calculation scheme is based on the Green's function method and Wannier function projection technique. It was implemented in the framework of the pseudopotential method and tested on such materials as NiO, FeO, Li2MnO3, and KCuF3. The obtained exchange constants are in a good agreement with both the total energy calculations and experimental estimations for NiO and KCuF3. In the case of FeO our calculations explain the pressure dependence of the Néel temperature. Li2MnO3 turns out to be a Slater insulator with antiferromagnetic nearest neighbor exchange defined by the spin splitting. The proposed approach provides a unique way to analyze magnetic interactions, since it allows one to calculate orbital contributions to the total exchange coupling and study the mechanism of the exchange coupling. The work was supported by a grant from the Russian Scientific Foundation (Project No. 14-22-00004).

  19. Exact solution of Heisenberg model with site-dependent exchange couplings and Dzyloshinsky-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Yang, Li-Jun; Cao, Jun-Peng; Yang, Wen-Li

    2015-10-01

    We propose an integrable spin-1/2 Heisenberg model where the exchange couplings and Dzyloshinky-Moriya interactions are dependent on the sites. By employing the quantum inverse scattering method, we obtain the eigenvalues and the Bethe ansatz equation of the system with the periodic boundary condition. Furthermore, we obtain the exact solution and study the boundary effect of the system with the anti-periodic boundary condition via the off-diagonal Bethe ansatz. The operator identities of the transfer matrix at the inhomogeneous points are proved at the operator level. We construct the T-Q relation based on them. From which, we obtain the energy spectrum of the system. The corresponding eigenstates are also constructed. We find an interesting coherence state that is induced by the topological boundary. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174335, 11375141, 11374334, and 11434013) and the National Program for Basic Research of China and the Fund from the Chinese Academy of Sciences.

  20. Quantum correlation dynamics in a two-qubit Heisenberg XYZ model with decoherence

    NASA Astrophysics Data System (ADS)

    Yang, Guo-Hui; Zhang, Bing-Bing; Li, Lei

    2015-06-01

    Quantum correlation dynamics in an anisotropic Heisenberg XYZ model under decoherence is investigated by making use of concurrence C and quantum discord (QD). Firstly, we show that both the concurrence and QD exhibit oscillation with time whereas a remarkable difference between them is presented: there is an “entanglement intermittently sudden death” phenomenon in the concurrence but not in the QD, which is valid for all the initial states of this system. Also, the interval time of entanglement sudden death is found to be strongly dependent on the initial states, the inhomogeneous magnetic field b and the anisotropic parameter Δ. Then, it implies that the steady concurrence and QD can be obtained in the long-time limit, which means that the environmental decoherence cannot entirely destroy the quantum correlation, the variation of the uniform magnetic field B and the anisotropic parameter can change the magnitude of the steady concurrence and QD evidently whereas the parameter b cannot. In addition, based on the analysis of the steady concurrence and QD with t →∞, we give the reason why the magnitude of the steady concurrence and QD is so complicated with the change of the parameters B and Δ, whereas the parameter b is independent of the steady concurrence and QD. Project supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the Special Funds of the National Natural Science Foundation of China (Grant No. 11247247).

  1. Spin locking and freezing phenomena in the antiferromagnetic Heisenberg model on the three-leg ladder

    NASA Astrophysics Data System (ADS)

    Azzouz, M.; Asante, K. A.

    2005-09-01

    The antiferromagnetic Heisenberg model on the three-leg ladder is studied using the generalized Jordan-Wigner transformation in dimensions higher than 1, and the bond-mean-field theory. The magnetic susceptibility and other thermodynamic quantities are analyzed as a function of the rung-to-leg coupling ratio α and temperature T . We fit the experimental susceptibility data of the three-leg material Sr2Cu3O5 of Azuma and co-workers with good agreement. One of the main findings of this work is the proposal that close to two-thirds of the spin degrees of freedom on each of the rungs of the ladder lock at low T for small α , then collectively almost 2/3 of the spin degrees of freedom on all the rungs freeze completely at low T for α greater than a threshold value. The approach developed here can be used to study the three-leg ladder for all values of α , and is thus suitable for the description of the crossover regime between the weak- and strong-coupling regimes.

  2. Z2-vortex lattice in the ground state of the triangular Kitaev-Heisenberg model

    NASA Astrophysics Data System (ADS)

    Daghofer, Maria; Rousochatzakis, Ioannis; Roessler, Ulrich K.; van den Brink, Jeroen

    2013-03-01

    Investigating the classical Kitaev-Heisenberg Hamiltonian on a triangular lattice, we establish the presence of an incommensurate non-coplanar magnetic phase, which is identified as a lattice of Z2 vortices. The vortices, topological point defects in the SO(3) order parameter of the nearby Heisenberg antiferromagnet, are not thermally excited but due to the spin-orbit coupling and arise at temperature T --> 0 . This Z2-vortex lattice is stable in a parameter regime relevant to iridates. We show that in the other, strongly anisotropic, limit a robust nematic phase emerges. Sponsored by the DFG (Emmy-Noether program).

  3. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    ERIC Educational Resources Information Center

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  4. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  5. Exact Realization of a Quantum-Dimer Model in Heisenberg Antiferromagnets on a Diamond-Like Decorated Lattice

    NASA Astrophysics Data System (ADS)

    Hirose, Yuhei; Oguchi, Akihide; Fukumoto, Yoshiyuki

    2016-09-01

    We study Heisenberg antiferromagnets on a diamond-like decorated square lattice perturbed by further neighbor couplings. The second-order effective Hamiltonian is calculated and the resultant Hamiltonian is found to be a square-lattice quantum-dimer model with a finite hopping amplitude and no repulsion, which suggests the stabilization of the plaquette phase. Our recipe for constructing quantum-dimer models can be adopted for other lattices and provides a route for the experimental realization of quantum-dimer models.

  6. 2-D model of the streamer zone of a leader

    NASA Astrophysics Data System (ADS)

    Milikh, G. M.; Likhanskii, A. V.; Shneider, M. N.; Raina, A.; George, A.

    2016-02-01

    Formation of the streamer zone of a leader is an outstanding problem in the physics of electric discharges which is relevant to laboratory leaders, as well as to the leaders formed by lightning. Despite substantial progress in the theoretical understanding of this complicated phenomenon, significant puzzles, such as the low propagation velocity of a leader compared to the fast streamers, remain. The objective of this paper is to present 2-D plasma simulations of the formation and propagation of the streamer zone of a leader. In these simulations we will generate a group of streamers that propagate in a discharge gap while interacting with each other. It is shown that interaction between the streamers significantly reduces their propagation velocity. This explains why the leader, which consists of many streamers, is much slower than a single streamer formed in the same discharge gap. It is shown that the mean velocity suppression of the group of streamers is determined by the inter-streamer distance. The critical value of the packing factor of the streamers at which the interactions between them can be neglected, and thus the discussed process can be treated as caused by a single streamer, is obtained.

  7. Existence of Néel Order in the S=1 Bilinear-Biquadratic Heisenberg Model via Random Loops

    NASA Astrophysics Data System (ADS)

    Lees, Benjamin

    2016-05-01

    We consider the general spin-1 SU(2) invariant Heisenberg model with a two-body interaction. A random loop model is introduced and relation to quantum spin systems is proved. Using this relation it is shown that for dimensions 3 and above Néel order occurs for a large range of values of the relative strength of the bilinear (-J 1) and biquadratic (-J 2) interaction terms. The proof uses the method of reflection positivity and infrared bounds. Links between spin correlations and loop correlations are proved.

  8. Entanglement and teleportation through a two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya interaction

    NASA Astrophysics Data System (ADS)

    Guo, J. L.; Song, H. S.

    2010-01-01

    We study the thermal entanglement in the two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya (DM) interaction, and teleport an unknown state using the model in thermal equilibrium state as a quantum channel. The effects of DM interaction, including Dx and Dz interaction, the anisotropy and temperature on the entanglement and fully entangled fraction are considered. What deserves mentioning here is that for the antiferromagnetic case, the Dx interaction can be more helpful for increasing the entanglement and critical temperature than Dz, but this cannot for teleportation.

  9. Coherent States and Schwinger Models for Pseudo Generalization of the Heisenberg Algebra

    NASA Astrophysics Data System (ADS)

    Fakhri, H.; Mojaveri, B.; Dehghani, A.

    We show that the non-Hermitian Hamiltonians of the simple harmonic oscillator with {PT} and {C} symmetries involve a pseudo generalization of the Heisenberg algebra via two pairs of creation and annihilation operators which are {T}-pseudo-Hermiticity and {P}-anti-pseudo-Hermiticity of each other. The non-unitary Heisenberg algebra is represented by each of the pair of the operators in two different ways. Consequently, the coherent and the squeezed coherent states are calculated in two different approaches. Moreover, it is shown that the approach of Schwinger to construct the su(2), su(1, 1) and sp(4, ℝ) unitary algebras is promoted so that unitary algebras with more linearly dependent number of generators are made.

  10. 2D quantum double models from a 3D perspective

    NASA Astrophysics Data System (ADS)

    Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo

    2014-09-01

    In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.

  11. Magnetic correlations beyond the Heisenberg model in an Fe monolayer on Rh(0 0 1)

    NASA Astrophysics Data System (ADS)

    Deák, A.; Palotás, K.; Szunyogh, L.; Szabó, I. A.

    2015-04-01

    Motivated by a recent experimental observation of a complex magnetic structure (Takada et al 2013 J. Magn. Magn. Mater. 329 95) we present a theoretical study of the magnetic structure of an Fe monolayer deposited on Rh(0 0 1). We use a classical spin Hamiltonian with parameters obtained from ab initio calculations and go beyond the usual anisotropic Heisenberg model by including isotropic biquadratic interactions. Zero-temperature Landau-Lifshitz-Gilbert spin dynamics simulations lead to a complex collinear spin configuration that, however, contradicts experimental findings. We thus conclude that higher order multi-spin interactions are likely needed to account for the magnetic ordering of the system.

  12. Entanglement in Mixed-Spin (1/2, 3/2) Heisenberg XXZ Model with Dzyaloshinskii-Moriya Interaction

    NASA Astrophysics Data System (ADS)

    Zhou, Chao-Biao; Xiao, Shu-Yuan; Zhang, Shao-Wu; Ran, Yang-Qiang

    2016-02-01

    In this paper, the entanglement in a mixed-spin (1/2, 3/2) Heisenberg XXZ model with Dzyaloshinskii-Moriya (DM) interaction in an inhomogeneous external magnetic field is studied. We not only calculate the ground-state entanglement but also investigate the behaviors of quantum phase transition following the changes of DM interaction and nonuniform magnetic field. More importantly, we note that the DM interaction improves the critical magnetic field B c , the critical temperature T c and broadens the region of entanglement.

  13. A fully coupled 2D model of equiaxed eutectic solidification

    SciTech Connect

    Charbon, Ch.; LeSar, R.

    1995-12-31

    We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.

  14. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  15. Stratosphere chemistry in a 2-D model with residual circulation

    NASA Technical Reports Server (NTRS)

    Guthrie, Paul D.; Jackman, Charles H.

    1990-01-01

    The objective of this research was to examine the effects of chemical perturbations on the stratosphere using models which can incorporate fully interactive radiative, chemical, and dynamical responses, in the context of a zonally averaged model. Model runs for the unperturbed, chlorine-perturbed and simultaneously chlorine-and CO2-perturbed cases were completed using the JPL-87 chemical kinetics data. The base case was analyzed and submitted for publication. The perturbed cases show substantial sensitivity of the predicted column ozone depletion to the perturbations affecting lower stratosphere temperature, but less to far dynamical perturbations. The column ozone distribution changed substantially when the kinetics data was changed. This implies a greater-than-expected uncertainty in predicted latitude distributions of ozone depletion, due to uncertainty about the accuracy and completeness of the chemical kinetics data set.

  16. Development of CCHE2D embankment break model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...

  17. Phase Structure of the Random Zq Models in 2D

    NASA Astrophysics Data System (ADS)

    Sasamoto, T.; Nishimori, H.

    We discuss the phase diagram of the random Zq models in two dimensions. It is argued that, when q is large enough, there exist three phases in the phase diagram with two axes being the temperature and the strength of randomness. Our conlusions are derived based on the application of the duality arguments for random systems, which have been formulated recently by Maillard et al.

  18. Modified Heisenberg model for the zig-zag structure in multiferroic RMn{sub 2}O{sub 5}

    SciTech Connect

    Bahoosh, Safa Golrokh; Wesselinowa, Julia M.; Trimper, Steffen

    2015-08-28

    The class of RMn{sub 2}O{sub 5} (R = Ho, Tb, Y, Eu) compounds offers multiferroic properties where the refined magnetic zig-zag order breaks the inversion symmetry. Varying the temperature, the system undergoes a magnetic and a subsequent ferroelectric phase transition where the ferroelectricity is magnetically induced. We propose a modified anisotropic Heisenberg model that can be used as a tractable analytical model studying the properties of those antiferromagnetic zig-zag spin chains. Based on a finite temperature Green's function method, it is shown that the polarization is induced solely by different exchange couplings of the two different Mn{sup 4+} and Mn{sup 3+} magnetic ions. We calculate the excitation energy of the spin system for finite temperatures, which for its part determines the temperature dependent magnetization and polarization. The ferroelectric phase transition is manifested as a kink in the excitation energy. The variation of the polarization by an external magnetic field depends strongly on the direction of that field. Whereas, the polarization in b-direction increases with an external magnetic field as well in b-direction it can be switched for strong fields in a-direction. The results based on that modified Heisenberg model are in qualitative agreement with experimental data.

  19. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.

    PubMed

    Strečka, Jozef; Ekiz, Cesur

    2015-05-01

    The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice. PMID:26066155

  20. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  1. Analytic Differentiation of Barlat's 2D Criteria for Inverse Modeling

    SciTech Connect

    Endelt, Benny; Nielsen, Karl Brian; Danckert, Joachim

    2005-08-05

    The demand for alternative identification schemes for identification of constitutive parameters is getting more pronounced as the complexity of the constitutive equations increases, i.e. the number of parameters subject to identification. A general framework for inverse identification of constitutive parameters associated with sheet metal forming is proposed in the article. The inverse problem is solved, through minimization of the least square error between an experimental punch force sampled from a deep drawing and a predicted punch force produced from a coherent finite element model.

  2. Conservation laws and LETKF with 2D Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Zeng, Yuefei; Janjic, Tijana

    2016-04-01

    Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.

  3. Google Earth as a tool in 2-D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Chien, Nguyen Quang; Keat Tan, Soon

    2011-01-01

    A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.

  4. Phase structure of the anisotropic antiferromagnetic Heisenberg model on a layered triangular lattice: Spiral state and deconfined spin liquid

    SciTech Connect

    Nakane, Kazuya; Kamijo, Takeshi; Ichinose, Ikuo

    2011-02-01

    In the present paper, we study a spin-1/2 antiferromagnetic (AF) Heisenberg model on layered anisotropic triangular lattice and obtain its phase structure. We use the Schwinger bosons for representing spin operators and also a coherent-state path integral for calculating physical quantities. Finite-temperature properties of the system are investigated by means of the numerical Monte-Carlo simulations. A detailed phase diagram of the system is obtained by calculating internal energy, specific heat, spin correlation functions, etc. There are AF Neel, paramagnetic, and spiral states. Turning on the plaquette term (i.e., the Maxwell term on a lattice) of an emergent U(1) gauge field that flips a pair of parallel spin-singlet bonds, we found that there appears a phase that is regarded as a deconfined spin-liquid state, though 'transition' to this phase from the paramagnetic phase is not of second order but a crossover. In that phase, the emergent gauge boson is a physical gapless excitation coupled with spinons. These results support our previous study on an AF Heisenberg model on a triangular lattice at vanishing temperature.

  5. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  6. A 2D model to design MHD induction pumps

    NASA Astrophysics Data System (ADS)

    Stieglitz, R.; Zeininger, J.

    2006-09-01

    Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.

  7. Born-Infeld Electrodynamics and Euler-Heisenberg Model:. Outstanding Examples of the Lack of Commutativity among Quantized Truncated Actions and Truncated Quantized Actions

    NASA Astrophysics Data System (ADS)

    Accioly, Antonio; Gaete, Patricio; Helaÿel-Neto, José A.

    We calculate the lowest-order corrections to the static potential for both the generalized Born-Infeld electrodynamics and an Euler-Heisenberg-like model, in the presence of a constant external magnetic field. Our analysis is carried out within the framework of the gauge-invariant but path-dependent variables formalism. The calculation reveals a long-range correction ((1)/(r5)-type) to the Coulomb potential for the generalized Born-Infeld electrodynamics. Interestingly enough, in the Euler-Heisenberg-like model, the static potential remains Coulombian. Therefore, contrary to popular belief, the quantized truncated action and the truncated quantized action do not commute at all.

  8. Heisenberg XXX Model with General Boundaries: Eigenvectors from Algebraic Bethe Ansatz

    NASA Astrophysics Data System (ADS)

    Belliard, Samuel; Crampé, Nicolas

    2013-11-01

    We propose a generalization of the algebraic Bethe ansatz to obtain the eigenvectors of the Heisenberg spin chain with general boundaries associated to the eigenvalues and the Bethe equations found recently by Cao et al. The ansatz takes the usual form of a product of operators acting on a particular vector except that the number of operators is equal to the length of the chain. We prove this result for the chains with small length. We obtain also an off-shell equation (i.e. satisfied without the Bethe equations) formally similar to the ones obtained in the periodic case or with diagonal boundaries.

  9. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  10. Phase transition in ultrathin magnetic films with long-range interactions: Monte Carlo simulation of the anisotropic Heisenberg model

    NASA Astrophysics Data System (ADS)

    Rapini, M.; Dias, R. A.; Costa, B. V.

    2007-01-01

    Ultrathin magnetic films can be modeled as an anisotropic Heisenberg model with long-range dipolar interactions. It is believed that the phase diagram presents three phases: An ordered ferromagnetic phase (I), a phase characterized by a change from out-of-plane to in-plane in the magnetization (II), and a high-temperature paramagnetic phase (III). It is claimed that the border lines from phase I to III and II to III are of second order and from I to II is first order. In the present work we have performed a very careful Monte Carlo simulation of the model. Our results strongly support that the line separating phases II and III is of the BKT type.

  11. Interlayer-interaction dependence of latent heat in the Heisenberg model on a stacked triangular lattice with competing interactions

    NASA Astrophysics Data System (ADS)

    Tamura, Ryo; Tanaka, Shu

    2013-11-01

    We study the phase transition behavior of a frustrated Heisenberg model on a stacked triangular lattice by Monte Carlo simulations. The model has three types of interactions: the ferromagnetic nearest-neighbor interaction J1 and antiferromagnetic third nearest-neighbor interaction J3 in each triangular layer and the ferromagnetic interlayer interaction J⊥. Frustration comes from the intralayer interactions J1 and J3. We focus on the case that the order parameter space is SO(3)×C3. We find that the model exhibits a first-order phase transition with breaking of the SO(3) and C3 symmetries at finite temperature. We also discover that the transition temperature increases but the latent heat decreases as J⊥/J1 increases, which is opposite to the behavior observed in typical unfrustrated three-dimensional systems.

  12. Effects of a space modulation on the behavior of a 1D alternating Heisenberg spin-1/2 model.

    PubMed

    Mahdavifar, Saeed; Abouie, Jahanfar

    2011-06-22

    The effects of a magnetic field (h) and a space modulation (δ) on the magnetic properties of a one-dimensional antiferromagnetic-ferromagnetic Heisenberg spin-1/2 model have been studied by means of numerical exact diagonalization of finite size systems, the nonlinear σ model, and a bosonization approach. The space modulation is considered on the antiferromagnetic couplings. At δ = 0, the model is mapped to a gapless Lüttinger liquid phase by increasing the magnetic field. However, the space modulation induces a new gap in the spectrum of the system and the system experiences different quantum phases which are separated by four critical fields. By opening the new gap, a magnetization plateau appears at ½M(sat). The effects of the space modulation are reflected in the emergence of a plateau in other physical functions such as the F-dimer and the bond-dimer order parameters, and the pair-wise entanglement. PMID:21613724

  13. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  14. Berry phase in Heisenberg representation

    NASA Technical Reports Server (NTRS)

    Andreev, V. A.; Klimov, Andrei B.; Lerner, Peter B.

    1994-01-01

    We define the Berry phase for the Heisenberg operators. This definition is motivated by the calculation of the phase shifts by different techniques. These techniques are: the solution of the Heisenberg equations of motion, the solution of the Schrodinger equation in coherent-state representation, and the direct computation of the evolution operator. Our definition of the Berry phase in the Heisenberg representation is consistent with the underlying supersymmetry of the model in the following sense. The structural blocks of the Hamiltonians of supersymmetrical quantum mechanics ('superpairs') are connected by transformations which conserve the similarity in structure of the energy levels of superpairs. These transformations include transformation of phase of the creation-annihilation operators, which are generated by adiabatic cyclic evolution of the parameters of the system.

  15. Incommensurate phase of a triangular frustrated Heisenberg model studied via Schwinger-boson mean-field theory

    NASA Astrophysics Data System (ADS)

    Li, Peng; Su, Haibin; Dong, Hui-Ning; Shen, Shun-Qing

    2009-08-01

    We study a triangular frustrated antiferromagnetic Heisenberg model with nearest-neighbor interactions J1 and third-nearest-neighbor interactions J3 by means of Schwinger-boson mean-field theory. By setting an antiferromagnetic J3 and varying J1 from positive to negative values, we disclose the low-temperature features of its interesting incommensurate phase. The gapless dispersion of quasiparticles leads to the intrinsic T2 law of specific heat. The magnetic susceptibility is linear in temperature. The local magnetization is significantly reduced by quantum fluctuations. We address possible relevance of these results to the low-temperature properties of NiGa2S4. From a careful analysis of the incommensurate spin wavevector, the interaction parameters are estimated as J1≈-3.8755 K and J3≈14.0628 K, in order to account for the experimental data.

  16. Magnetic correlations beyond the Heisenberg model in an Fe monolayer on Rh(0 0 1).

    PubMed

    Deák, A; Palotás, K; Szunyogh, L; Szabó, I A

    2015-04-15

    Motivated by a recent experimental observation of a complex magnetic structure (Takada et al 2013 J. Magn. Magn. Mater. 329 95) we present a theoretical study of the magnetic structure of an Fe monolayer deposited on Rh(0 0 1). We use a classical spin Hamiltonian with parameters obtained from ab initio calculations and go beyond the usual anisotropic Heisenberg model by including isotropic biquadratic interactions. Zero-temperature Landau-Lifshitz-Gilbert spin dynamics simulations lead to a complex collinear spin configuration that, however, contradicts experimental findings. We thus conclude that higher order multi-spin interactions are likely needed to account for the magnetic ordering of the system. PMID:25786735

  17. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  18. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  19. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  20. Fast 2D flood modelling using GPU technology - recent applications and new developments

    NASA Astrophysics Data System (ADS)

    Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul

    2010-05-01

    In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.

  1. 2D face database diversification based on 3D face modeling

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.

    2011-05-01

    Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.

  2. A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro

    2015-03-01

    In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.

  3. A 2-D dynamical model of mesospheric temperature inversions in winter

    SciTech Connect

    Hauchecorne, A.; Maillard, A. )

    1990-11-01

    A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.

  4. Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...

  5. Introducing the R2D2 Model: Online Learning for the Diverse Learners of This World

    ERIC Educational Resources Information Center

    Bonk, Curtis J.; Zhang, Ke

    2006-01-01

    The R2D2 method--read, reflect, display, and do--is a new model for designing and delivering distance education, and in particular, online learning. Such a model is especially important to address the diverse preferences of online learners of varied generations and varied Internet familiarity. Four quadrants can be utilized separately or as part…

  6. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  7. Knight shift and spin relaxation in the single band 2D Hubbard model

    NASA Astrophysics Data System (ADS)

    Leblanc, James; Chen, Xi; Gull, Emanuel

    We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.

  8. Error propagation for velocity and shear stress prediction using 2D models for environmental management

    NASA Astrophysics Data System (ADS)

    Pasternack, Gregory B.; Gilbert, Andrew T.; Wheaton, Joseph M.; Buckland, Evan M.

    2006-08-01

    SummaryResource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with a commercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m 2, was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to ˜20-30%, they can provide a useful tool for river-rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal.

  9. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  10. 2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.

    2016-08-01

    We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.

  11. Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration.

    PubMed

    Baka, N; Metz, C T; Schultz, C J; van Geuns, R-J; Niessen, W J; van Walsum, T

    2014-05-01

    2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration. PMID:24770908

  12. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  13. Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation

    SciTech Connect

    Kinnison, D.E.; Connell, P.S.

    1996-12-01

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored.

  14. Extension and application of the Preissmann slot model to 2D transient mixed flows

    NASA Astrophysics Data System (ADS)

    Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo

    2015-08-01

    This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.

  15. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  16. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  17. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  18. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…

  19. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  20. Nonperturbative linked-cluster expansions for the trimerized ground state of the spin-one kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Ixert, Dominik; Tischler, Tobias; Schmidt, Kai P.

    2015-11-01

    We use nonperturbative linked-cluster expansions to determine the ground-state energy per site of the spin-one Heisenberg model on the kagome lattice. To this end, a parameter is introduced allowing us to interpolate between a fully trimerized state and the isotropic model. The ground-state energy per site of the full graph decomposition up to graphs of six triangles (18 spins) displays a complex behavior as a function of this parameter close to the isotropic model which we attribute to divergencies of partial series in the graph expansion of quasi-1D unfrustrated chain graphs. More concretely, these divergencies can be traced back to a quantum critical point of the one-dimensional unfrustrated chain of coupled triangles. Interestingly, the reorganization of the nonperturbative linked-cluster expansion in terms of clusters with enhanced symmetry yields a ground-state energy per site of the isotropic two-dimensional model that is in quantitative agreement with other numerical approaches in favor of a spontaneous trimerization of the system. Our findings are of general importance for any nonperturbative linked-cluster expansion on geometrically frustrated systems.

  1. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  2. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    PubMed

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769

  3. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  4. The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.

    2004-08-01

    We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.

  5. Ground State Selection and Spin-Liquid Behaviour in the Classical Heisenberg Model on the Breathing Pyrochlore Lattice

    NASA Astrophysics Data System (ADS)

    Benton, Owen; Shannon, Nic

    2015-10-01

    Magnetic pyrochlore oxides, including the spin ice materials, have proved to be a rich field for the study of geometrical frustration in three dimensions. Recently, a new family of magnetic oxides has been synthesised in which half of the tetrahedra in the pyrochlore lattice are inflated relative to the other half, making an alternating array of small and large tetrahedra. These "breathing pyrochlore" materials such as LiGaCr4O8, LiInCr4O8, and Ba3Yb2Zn5O11 provide new opportunities in the study of frustrated magnetism. Here we provide an analytic theory for the ground state phase diagram and spin correlations for the minimal model of magnetism in breathing pyrochlores: a classical nearest neighbour Heisenberg model with different exchange coefficients for the two species of tetrahedra. We find that the phase diagram comprises a Coulombic spin liquid phase, a conventional ferromagnetic phase and an unusual antiferromagnetic phase with lines of soft modes in reciprocal space, stabilised by an order-by-disorder mechanism. We obtain a theory of the spin correlations in this model using the self consistent Gaussian approximation (SCGA) which enables us to discuss the development of correlations in breathing pyrochlores as a function of temperature, and we quantitatively characterise the thermal crossover from the limit of isolated tetrahedra to the strongly correlated limit of the problem. We compare the results of our analysis with the results of recent neutron scattering experiments on LiInCr4O8.

  6. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  7. Topological defects of Néel order and Kondo singlet formation for Kondo-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Si, Qimiao; Goswami, Pallab

    2014-03-01

    Heavy fermion systems represent a prototypical setting to study magnetic quantum phase transitions. In this context, we study the spin one-half Kondo-Heisenberg model on a honeycomb lattice at half filling. The problem is approached from the Kondo destroyed, antiferromagnetically ordered insulating phase. We describe the local moments in terms of a coarse grained quantum non-linear sigma model, and show that the skyrmion defects of the antiferromagnetic order parameter host a number of competing order parameters. In addition to the spin Peierls, charge and current density wave order parameters, we identify for the first time Kondo singlets as the competing dual orders of the antiferromagnetism, which can be related to each other via generalized chiral transformations of the underlying fermions. We also show that the conduction electrons acquire a Berry phase through their coupling to the hedgehog configurations of the Néel order, which cancels the Berry phase of the local moments. Our results demonstrate the competition between the Kondo-singlet formation and spin-Peierls order when the antiferromagnetic order is suppressed, thereby shedding new light on the global phase diagram of heavy fermion systems at zero temperature. NSF.

  8. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  9. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  10. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    NASA Astrophysics Data System (ADS)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  11. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  12. Phase transitions in a frustrated biquadratic Heisenberg model with coupled orbital degrees of freedom for iron-based superconductors

    NASA Astrophysics Data System (ADS)

    Zhuo, W. Z.; Qin, M. H.; Dong, S.; Li, X. G.; Liu, J.-M.

    2016-03-01

    In this paper, we study a biquadratic Heisenberg model with coupled orbital degrees of freedom by using a Monte Carlo simulation to investigate the phase transitions in iron-based superconductors. The antiferroquadrupolar state, which may be related to the magnetism of FeSe [R. Yu and Q. Si, Phys. Rev. Lett. 115, 116401 (2015), 10.1103/PhysRevLett.115.116401], is stabilized by the anisotropic biquadratic interaction induced by a ferro-orbital-ordered state. It is revealed that the orbital and nematic transitions occur at the same temperature for all the cases, supporting the mechanism of the orbital-driven nematicity as revealed in most recent experiments [S. H. Baek, D. V. Efremov, J. M. Ok, J. S. Kim, J. van den Brink, and B. Büchner, Nat. Mater. 14, 210 (2015), 10.1038/nmat4138]. In addition, it is suggested that the orbital interaction may lead to the separation of the structural and magnetic phase transitions, as observed in many families of iron pnictides.

  13. Heisenberg's First Paper

    ERIC Educational Resources Information Center

    Cassidy, David C.

    1978-01-01

    Describes some of the discussion, correspondances and assumptions of Heisenberg. Includes clarifying and defending his explanation of the anomalous Zeeman Effect to the Quantum Physicists of his time. (GA)

  14. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  15. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    NASA Astrophysics Data System (ADS)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  16. 2D density model of the Chinese continental lithosphere along a NW-SE transect

    NASA Astrophysics Data System (ADS)

    Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana

    2015-06-01

    This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.

  17. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  18. TMRPres2D: high quality visual representation of transmembrane protein models.

    PubMed

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  19. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  20. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  1. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  2. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.

    2015-02-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.

  3. Remarks towards the spectrum of the Heisenberg spin chain type models

    NASA Astrophysics Data System (ADS)

    Burdík, Č.; Fuksa, J.; Isaev, A. P.; Krivonos, S. O.; Navrátil, O.

    2015-05-01

    The integrable close and open chain models can be formulated in terms of generators of the Hecke algebras. In this review paper, we describe in detail the Bethe ansatz for the XXX and the XXZ integrable close chain models. We find the Bethe vectors for two-component and inhomogeneous models. We also find the Bethe vectors for the fermionic realization of the integrable XXX and XXZ close chain models by means of the algebraic and coordinate Bethe ansatz. Special modification of the XXZ closed spin chain model ("small polaron model") is considered. Finally, we discuss some questions relating to the general open Hecke chain models.

  4. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  5. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    SciTech Connect

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.

  6. Complex zeros of the 2 d Ising model on dynamical random lattices

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    1998-04-01

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.

  7. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    NASA Astrophysics Data System (ADS)

    Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.

    2009-12-01

    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  8. A 2-D semi-analytical model of double-gate tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Huifang, Xu; Yuehua, Dai; Ning, Li; Jianbin, Xu

    2015-05-01

    A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poisson equation is solved by using a semi-analytical method combined with an eigenfunction expansion method. The expression of the surface potential is obtained, which is a special function for the infinite series expressions. The influence of the mobile charges on the potential profile is taken into account in the proposed model. On the basis of the potential profile, the shortest tunneling length and the average electrical field can be derived, and the drain current is then constructed by using Kane's model. In particular, the changes of the tunneling parameters Ak and Bk influenced by the drain—source voltage are also incorporated in the predicted model. The proposed model shows a good agreement with TCAD simulation results under different drain—source voltages, silicon film thicknesses, gate dielectric layer thicknesses, and gate dielectric layer constants. Therefore, it is useful to optimize the DG TFET and this provides a physical insight for circuit level design. Project supported by the National Natural Science Foundation of China (No. 61376106) and the Graduate Innovation Fund of Anhui University.

  9. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    PubMed

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  10. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  11. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  12. Global regularity for the 2D Oldroyd-B model in the corotational case

    NASA Astrophysics Data System (ADS)

    Ye, Zhuan; Xu, Xiaojing

    2016-09-01

    This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.

  13. A solidification constitutive model for NIKE2D and NIKE3D

    SciTech Connect

    Raboin, P.J.

    1994-03-17

    This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.

  14. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  15. Exact solution of an anisotropic 2D random walk model with strong memory correlations

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; Viswanathan, G. M.; da Silva, M. A. A.

    2013-12-01

    Over the last decade, there has been progress in understanding one-dimensional non-Markovian processes via analytic, sometimes exact, solutions. The extension of these ideas and methods to two and higher dimensions is challenging. We report the first exactly solvable two-dimensional (2D) non-Markovian random walk model belonging to the family of the elephant random walk model. In contrast to Lévy walks or fractional Brownian motion, such models incorporate memory effects by keeping an explicit history of the random walk trajectory. We study a memory driven 2D random walk with correlated memory and stops, i.e. pauses in motion. The model has an inherent anisotropy with consequences for its diffusive properties, thereby mixing the dominant regime along one dimension with a subdiffusive walk along a perpendicular dimension. The anomalous diffusion regimes are fully characterized by an exact determination of the Hurst exponent. We discuss the remarkably rich phase diagram, as well as several possible combinations of the independent walks in both directions. The relationship between the exponents of the first and second moments is also unveiled.

  16. Evaluation of Hydrus-2D model for solute distribution in subsurface drip

    NASA Astrophysics Data System (ADS)

    Souza, Claudinei; Bizari, Douglas; Grecco, Katarina

    2015-04-01

    The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.

  17. Molecular-dynamics of a 2D Model of the Shape Memory Effect

    NASA Astrophysics Data System (ADS)

    Kastner, Oliver

    2006-08-01

    This work investigates the thermodynamic properties of a qualitative atomistic model for austenite martensite transitions. The model, still in 2D, employs Lennard-Jones potentials for the determination of the atomic interactions. By use of two atom species it is possible to identify three stable lattice structures in 2D, interpreted as austenite and two variants of martensite. The model is described in the first part of the work [6] in detail. The present work studies the thermodynamic properties of the model concerning a small, 2-dimensional test assembly consisting of 41 atoms. The phase stability is investigated by exploitation of the condition of minimal free energy. The free energy is calculated from the thermal equation of state, which is measured in numerical tensile tests. In the second part of this work a chain of eleven 41-atom assemblies is investigated. The chain is interpreted as an idealized larger body, where the individual crystallites represent crystallographic layers allowing for the creation of micro structure. By use of tensile tests at various temperature conditions we sketch how such chain may exhibit quasi-plasticity, pseudo-elasticity and the shape memory effect.

  18. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  19. A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs

    NASA Astrophysics Data System (ADS)

    Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.

    2015-11-01

    A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.

  20. Vector chiral phases in the frustrated 2D XY model and quantum spin chains.

    PubMed

    Schenck, H; Pokrovsky, V L; Nattermann, T

    2014-04-18

    The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067

  1. Effect of River Training Project on Hydrodynamics Flow Circumstances by 2D Finite Element Numerical Model

    NASA Astrophysics Data System (ADS)

    Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.

    Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.

  2. Phase diagram of the spin-1/2 triangular J1-J2 Heisenberg model on a three-leg cylinder

    NASA Astrophysics Data System (ADS)

    Saadatmand, S. N.; Powell, B. J.; McCulloch, I. P.

    2015-06-01

    We study the phase diagram of the frustrated Heisenberg model on the triangular lattice with nearest- and next-nearest-neighbor spin-exchange coupling, on three-leg ladders. Using the density-matrix renormalization-group method, we obtain the complete phase diagram of the model, which includes quasi-long-range 120∘ and columnar order, and a Majumdar-Ghosh phase with short-ranged correlations. All these phases are nonchiral and planar. We also identify the nature of phase transitions.

  3. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  4. Kosaki-Longo index and classification of charges in 2D quantum spin models

    NASA Astrophysics Data System (ADS)

    Naaijkens, Pieter

    2013-08-01

    We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.

  5. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.

    PubMed

    Molero, Miguel; Iturrarán-Viveros, Ursula

    2013-03-01

    We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584

  6. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  7. Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model

    NASA Astrophysics Data System (ADS)

    Suzuki, Akio; Konno, Hidetoshi

    2011-09-01

    The dynamics of ventricular fibrillation (VF) has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR) model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS) such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf) for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.

  8. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  9. Computational Studies of Condensed Matter Systems: Manganese Vanadium Oxide and 2D attractive Hubbard model with spin-dependent disorder

    NASA Astrophysics Data System (ADS)

    Nanguneri, Ravindra

    -dependent disorder. Further, the finite temperature phase diagram for the 2D attractive fermion Hubbard model with spin-dependent disorder is also considered within BdG mean field theory. Three types of disorder are studied. In the first, only one species is coupled to a random site energy; in the second, the two species both move in random site energy landscapes which are of the same amplitude, but different realizations; and finally, in the third, the disorder is in the hopping rather than the site energy. For all three cases we find that, unlike the case of spin-symmetric randomness, where the energy gap and average order parameter do not vanish as the disorder strength increases, a critical disorder strength exists separating distinct phases. In fact, the energy gap and the average order parameter vanish at distinct transitions, Vcgap and Vc op, allowing for a gapless superconducting (gSC) phase. The gSC phase becomes smaller with increasing temperature, until it vanishes at a temperature T*.

  10. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  11. Modeling and Control of 2-D Grasping of an Object with Arbitrary Shape under Rolling Contact

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Yoshida, Morio; Sekimoto, Masahiro; Tahara, Kenji

    Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multi-joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry of the object and fingertips. First, a fundamental testbed problem of modeling and control of rolling motion between 2-D rigid bodies with an arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraint induces the Euler equation of motion that is parameterized by a common arclength parameter and constrained onto the kernel space orthogonally complemented to the image space spanned from the constraint gradient. By extending the analysis to the problem of stable grasp of a 2-D object with an arbitrary shape by a pair of robot fingers, the Euler-Lagrange equation of motion of the overall fingers/object system parametrized by arclength parameters is derived, together with a couple of first-order differential equations that express evolutions of contact points in terms of the second fundamental form. It is shown that 2-D rolling constraints are integrable in the sense of Frobonius even if their Pfaffian forms are characterized by arclength parameters. A control signal called “blind grasping” is introduced and shown to be effective in stabilization of grasping without using the details of the object shape and parameters or external sensing. An extension of the Dirichlet-Lagrange stability theorem to a class of systems with DOF-redundancy under constraints is suggested by using a Morse-Bott-Lyapunov function.

  12. SWAP operation in the two-qubit Heisenberg XXZ model: Effects of anisotropy and magnetic field

    SciTech Connect

    Zhou Yue; Yang Fuhua; Feng Songlin; Zhang Guofeng

    2007-06-15

    In this paper we study the SWAP operation in a two-qubit anisotropic XXZ model in the presence of an inhomogeneous magnetic field. We establish the range of anisotropic parameter {lambda} within which the SWAP operation is feasible. The SWAP errors caused by the inhomogeneous field are evaluated.

  13. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  14. The concept models and implementations of multiport neural net associative memory for 2D patterns

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.

    2011-04-01

    The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.

  15. Longtime Well-posedness for the 2D Groma-Balogh Model

    NASA Astrophysics Data System (ADS)

    Wan, Renhui; Chen, Jiecheng

    2016-07-01

    In this paper, we consider the cauchy problem for the 2D Groma-Balogh model (Acta Mater 47:3647-3654, 1999). From the works Cannone et al. (Arch Ration Mech Anal 196:71-96, 2010) and El Hajj (Ann Inst Henri Poincaré Anal Nonlinéaire 27:21-35, 2010), one can see global well-posedness for this model is an open question. However, we can prove longtime well-posedness. In particular, we show that this model admits a unique solution with the lifespan T^star satisfying T^star log ^2(1+T^star )≳ ɛ ^{-2} if the initial data is of size ɛ . To achieve this, we first establish some new decay estimates concerning the operator e^{-{R}_{12}^2t} . Then, we prove the longtime well-posedness by utilizing the weak dissipation to deal with the nonlinear terms.

  16. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    NASA Astrophysics Data System (ADS)

    Imbert-Gérard, Lise-Marie

    2015-12-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  17. Order by disorder in Kitaev-Heisenberg models on the honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Perkins, Natalia; Sizyuk, Yuriy; Ducatman, Samuel; Woelfle, Peter

    Recent diffuse magnetic x-ray scattering data in Na2IrO3 clearly determined the spin orientation in this zigzag state and showed that, unexpectedly, it is along the 44.3 degrees direction with respect to a axis, which is approximately half way in between the cubic x and y axes. This experiment provides an important check of the validity of any model proposed to described the magnetic properties of Na2IrO3 as the model should correctly predict not only the type of the magnetic order but also its orientation in space. We propose that order by disorder mechanism in quantum J1-K1-J2-K2-J3 model gives the experimentally observed direction along cubic face diagonals. Our findings are based on both the calculation of the contribution of thermal fluctuations of quantum spins into free energy obtained by Hubbard-Stratonovich transformation and the zero-point correction to the ground state energy due to quantum spin fluctuations obtained by the spin-wave expansion at zero temperature. Nsf Grant DMR-1511768.

  18. Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling

    NASA Astrophysics Data System (ADS)

    Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad

    2015-10-01

    Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.

  19. Modeling floods in a dense urban area using 2D shallow water equations

    NASA Astrophysics Data System (ADS)

    Mignot, E.; Paquier, A.; Haider, S.

    2006-07-01

    SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.

  20. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  1. 2D and 3D shape based segmentation using deformable models.

    PubMed

    El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A

    2005-01-01

    A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036

  2. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  3. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922

  4. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  5. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    NASA Technical Reports Server (NTRS)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  6. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  7. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  8. A guide to using material model No. 11 in NIKE2D: An internal variable, viscoplasticity model

    SciTech Connect

    Flower, E.C.; Nikkel, D.J. Jr.

    1990-10-30

    The need to accurately model the superplastic forming process which is highly rate and temperature dependent motivated the evaluation of Bammann's internal variable, viscoplasticity material model. The model is based upon the concepts of unified creep plasticity, but employs a yield surface for efficient implementation into large-scale numerical computer codes. It has proven elsewhere to be quite successful in describing large strain, thermal-mechanical behavior of crystalline materials. Features of the model enable it to simulate the apparent strain-rate behavior exhibited by many metals above one half the melt temperature. It is the efficient incorporation of features that make the model attractive for use in finite element modeling of metal deformation processes. Although this model was implemented into the Lawrence Livermore National Laboratory's NIKE2D finite element program in 1986, there have been no known reports of successful use by NIKE2D users. The purpose of this report is to provide the user the proper format to input model parameters, a procedure for determining appropriate values for material constants from experimental data, and supplemental information on the model relevant to the implementation in the NIKE2D finite element program. Detailed accounts of the theoretical aspects of the model can be found in the cited references. 4 refs., 8 figs.

  9. Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.

  10. Comparative modeling of vertical and planar organic phototransistors with 2D drift-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.

    2016-05-01

    Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.

  11. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  12. Neutrino-electron Scattering in 2-D Models of Supernova Convection

    NASA Astrophysics Data System (ADS)

    DeNisco, K. R.; Swesty, F. D.; Myra, E. S.

    2005-12-01

    We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.

  13. Implications of lack-of-ergodicity in 2D Potts model

    NASA Astrophysics Data System (ADS)

    Ota, Smita

    2015-03-01

    Microcanonical Monte Carlo simulation is used to study two dimensional (2D) q state Potts model. We consider a 2D square lattice having NxN spins with periodic boundary condition and simulated the system with N =15 and q =10. The demon energy distribution is found to be exponential for high system energy and large system size. For smaller system size and above the first order transition the demon energy distribution is found to deviate from exp(- βED) and has the form exp(- βED + γ ED2). Here β = 1/kBT and kB is the Boltzmann constant. It is found that γ is finite at higher temperatures. As the system energy is reduced γ becomes zero near the first order transition. It is found that during cooling γ changes sign from negative to positive and then to negative again near the 1st order transition. Therefore the demon energy distribution becomes exp(- βED) (or ergodic) at two values of system energy near the 1st order transition. Further cooling or at still lower temperatures the system shows lack of ergodicity. However, difference in heating cooling curves are apparent in E vs γ. The system energies for which γ is zero during cooling can represent the 'ergodic' states. This can be related to the two-level systems observed in glasses at low temperatures.

  14. GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1980-11-01

    GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

  15. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  16. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  17. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  18. Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings

    NASA Astrophysics Data System (ADS)

    Rosen, Aaron M.

    Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.

  19. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting

  20. On the assimilation of flood extension images into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.

    2012-12-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial

  1. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  2. 2-D modeling of laterally acoustically coupled thin film bulk acoustic wave resonator filters.

    PubMed

    Pensala, Tuomas; Meltaus, Johanna; Kokkonen, Kimmo; Ylilammi, Markku

    2010-11-01

    A 2-D model is developed for calculating lateral acoustical coupling between adjacent thin film BAW resonators forming an electrical N-port. The model is based on solution and superposition of lateral eigenmodes and eigenfrequencies in a structure consisting of adjacent regions with known plate wave dispersion properties. Mechanical and electrical response of the device are calculated as a superposition of eigenmodes according to voltage drive at one electrical port at a time while extracting current induced in the other ports, leading to a full Y-parameter description of the device. Exemplary cases are simulated to show the usefulness of the model in the study of the basic design rules of laterally coupled thin film BAW resonator filters. Model predictions are compared to an experimental 1.9-GHz band-pass filter based on aluminum nitride thin film technology and lateral acoustical coupling. Good agreement is obtained in prediction of passband behavior. The eigenmode-based model forms a useful tool for fast simulation of laterally coupled acoustic devices. It allows one to gain insight into basic device physics in a very intuitive fashion compared with more detailed but heavier finite element method. Shortcomings of this model and possible improvements are discussed. PMID:21041141

  3. The combined effect of attraction and orientation zones in 2D flocking models

    NASA Astrophysics Data System (ADS)

    Iliass, Tarras; Cambui, Dorilson

    2016-01-01

    In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.

  4. Chiral spin liquid emerging between competing magnetic order states in the spin-1/2 J1-J2-J3 kagome Heisenberg model

    NASA Astrophysics Data System (ADS)

    Gong, Shoushu; Zhu, Wei; Balents, Leon; Sheng, Dongning

    2015-03-01

    We studied the extended spin- 1 / 2 kagome model with the first neighbor (J1), the second (J2) and third neighbor (J3) couplings using density matrix renormalization group. We established a quantum phase diagram for 0 <= J 2 <= 0 . 25J1 and 0 <=J3 <=J1 , where we find a q = (0 , 0) Neel phase, a chiral spin liquid (CSL), a cuboc1 phase that breaks both time-reversal and spin rotational symmetries, and a valence-bond solid at the neighbor of the Heisenberg model, where a possible Z2 spin liquid has been previously identified. Interestingly, the classical cuboc1 phase could survive in the spin- 1 / 2 system with strong quantum fluctuations, and the CSL emerges between the q = (0 , 0) and the cuboc1 phases. We discover that the CSL has the short spin correlation pattern consistent with the cuboc1 phase, but the chiral order structure is totally different. The CSL might be understood as a result of the competitions between the q = (0 , 0) and the cuboc1 phases in the presence of strong quantum fluctuations. We further studied the quantum phase transitions from the CSL to the magnetically ordered phases, and to the possible Z2 spin liquid of the Heisenberg kagome model. Interestingly, the exotic continuous topological phase transition might be realized in the system.

  5. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    SciTech Connect

    Dahl, David

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.

  6. Robust autonomous model learning from 2D and 3D data sets.

    PubMed

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets. PMID:18051152

  7. Calibration Of 2D Hydraulic Inundation Models In The Floodplain Region Of The Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestanana, R.; Matias, M.; Canelas, R.; Araujo, A.; Roque, D.; Van Zeller, E.; Trigo-Teixeira, A.; Ferreira, R.; Oliveira, R.; Heleno, S.

    2013-12-01

    In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 2001 and 2006 on a 70-km stretch of the Lower Tagus River. Flood extent maps, derived from ERS SAR and ENVISAT ASAR imagery were compared with the flood extent maps obtained for each simulation, to calibrate roughness coefficients. The combination of the calibration results from the 2001 and 2006 floods provided a preliminary Manning coefficient map of the study area.

  8. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center (ESTSC)

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  9. Surface delta interaction in the g7/2 - d5/2 model space

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofei; Zamick, Larry

    2016-05-01

    Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.

  10. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106