Science.gov

Sample records for 2d ising model

  1. Duality Between Spin Networks and the 2D Ising Model

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.

    2016-06-01

    The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.

  2. Canonical vs. micro-canonical sampling methods in a 2D Ising model

    SciTech Connect

    Kepner, J.

    1990-12-01

    Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.

  3. Complex zeros of the 2 d Ising model on dynamical random lattices

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    1998-04-01

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.

  4. Singularities of the Partition Function for the Ising Model Coupled to 2D Quantum Gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.

    We study the zeros in the complex plane of the partition function for the Ising model coupled to 2D quantum gravity for complex magnetic field and real temperature, and for complex temperature and real magnetic field, respectively. We compute the zeros by using the exact solution coming from a two-matrix model and by Monte-Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional curves in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of the singularities near the critical point. Despite the small size of the systems studied, we can obtain a reasonable estimate of the (known) critical exponents.

  5. Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model

    NASA Astrophysics Data System (ADS)

    Honecker, A.; Picco, M.; Pujol, P.

    2001-07-01

    We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.

  6. Universality class of the Nishimori point in the 2D +/- J random-bond Ising model.

    PubMed

    Honecker, A; Picco, M; Pujol, P

    2001-07-23

    We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p(c) = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point. PMID:11461639

  7. Spot size variation FCS in simulations of the 2D Ising model

    NASA Astrophysics Data System (ADS)

    Burns, Margaret C.; Nouri, Mariam; Veatch, Sarah L.

    2016-06-01

    Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.

  8. Interface localization in the 2D Ising model with a driven line

    NASA Astrophysics Data System (ADS)

    Cohen, O.; Mukamel, D.

    2016-04-01

    We study the effect of a one-dimensional driving field on the interface between two coexisting phases in a two dimensional model. This is done by considering an Ising model on a cylinder with Glauber dynamics in all sites and additional biased Kawasaki dynamics in the central ring. Based on the exact solution of the two-dimensional Ising model, we are able to compute the phase diagram of the driven model within a special limit of fast drive and slow spin flips in the central ring. The model is found to exhibit two phases where the interface is pinned to the central ring: one in which it fluctuates symmetrically around the central ring and another where it fluctuates asymmetrically. In addition, we find a phase where the interface is centered in the bulk of the system, either below or above the central ring of the cylinder. In the latter case, the symmetry breaking is ‘stronger’ than that found in equilibrium when considering a repulsive potential on the central ring. This equilibrium model is analyzed here by using a restricted solid-on-solid model.

  9. Performance of Replica-Exchange Wang-Landau Sampling for the 2D Ising Model: A Brief Survey

    SciTech Connect

    Zhao, Yiwei; Cheung, Siu Wun; Li, Ying Wai; Eisenbach, Markus

    2014-01-01

    We report a brief performance study of the replica-exchange Wang-Landau algorithm, a recently proposed parallel realization of Wang-Landau sampling, using the 2D Ising model as a test case. The simulation time is found to scale inversely with the square root of the number of subwindows (and thus number of processors) used to span the global parameter space. We also investigate the time profiles for random walkers in dierent subwindows to complete iterations, which will aid the development of and adaptive load-balancing scheme.

  10. Form factor expansions in the 2D Ising model and Painlevé VI

    NASA Astrophysics Data System (ADS)

    Mangazeev, Vladimir V.; Guttmann, Anthony J.

    2010-10-01

    We derive a Toda-type recurrence relation, in both high- and low-temperature regimes, for the λ-extended diagonal correlation functions C(N,N;λ) of the two-dimensional Ising model, using an earlier connection between diagonal form factor expansions and tau-functions within Painlevé VI (PVI) theory, originally discovered by Jimbo and Miwa. This greatly simplifies the calculation of the diagonal correlation functions, particularly their λ-extended counterparts. We also conjecture a closed form expression for the simplest off-diagonal case C(0,1;λ) where a connection to PVI theory is not known. Combined with the results for diagonal correlations these give all the initial conditions required for the λ-extended version of quadratic difference equations for the correlation functions discovered by McCoy, Perk and Wu. The results obtained here should provide a further potential algorithmic improvement in the λ-extended case, and facilitate other developments.

  11. The hypergeometric series for the partition function of the 2D Ising model

    NASA Astrophysics Data System (ADS)

    Viswanathan, G. M.

    2015-07-01

    In 1944 Onsager published the formula for the partition function of the Ising model for the infinite square lattice. He was able to express the internal energy in terms of a special function, but he left the free energy as a definite integral. Seven decades later, the partition function and free energy have yet to be written in closed form, even with the aid of special functions. Here we evaluate the definite integral explicitly, using hypergeometric series. Let β denote the reciprocal temperature, J the coupling and f the free energy per spin. We prove that - β f = \\ln(2 \\cosh 2K) - κ2 ~ {_4F_3} \\big[~ 1,~1,~3/2,~3/2 ~~~2,~2,~2 ;16 κ2 ~\\big] ~ , where pFq is the generalized hypergeometric function, K = βJ, and 2κ = tanh 2K sech 2K.

  12. Almost Gibbsianness and Parsimonious Description of the Decimated 2d-Ising Model

    NASA Astrophysics Data System (ADS)

    Le Ny, Arnaud

    2013-07-01

    In this paper, we complete and provide details for the existing characterizations of the decimation of the Ising model on {Z}2 in the generalized Gibbs context. We first recall a few features of the Dobrushin program of restoration of Gibbsianness and present the construction of global specifications consistent with the extremal decimated measures. We use them to prove that these renormalized measures are almost Gibbsian at any temperature and to analyse in detail its convex set of DLR measures. We also recall the weakly Gibbsian description and complete it using a potential that admits a quenched correlation decay, i.e. a well-defined configuration-dependent length beyond which this potential decays exponentially. We use these results to incorporate these decimated measures in the new framework of parsimonious random fields that has been recently developed to investigate probability aspects related to neurosciences.

  13. ADDENDUM: Addendum to `On the singularity structure of the 2D Ising model susceptibility'

    NASA Astrophysics Data System (ADS)

    Nickel, Bernie

    2000-03-01

    A remarkable product formula first derived by Palmer and Tracy (1981 Adv. Appl. Math. 2 329) for the integrand of the two-dimensional Ising model susceptibility expansion coefficients icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> (2n ) for temperatures T less than the critical T c is shown to apply equally for icons/Journals/Common/chi" ALT="chi" ALIGN="TOP"/> (2n +1) for T >T c and agrees with formulae derived by Yamada (1984 Prog. Theor. Phys. 71 1416). This new representation simplifies the derivation of the results in the original paper of this title (1999 J. Phys. A: Math. Gen. 32 3889) to the extent that the leading series behaviour and the singularity structure can be deduced almost by inspection. The derivation of series is also simplified and I show, using extended series and knowledge of the singularity structure, that there is now unambiguous evidence for correction to scaling terms in the susceptibility beyond those inferred from a nonlinear scaling field analysis.

  14. Finite-size effects for anisotropic 2D Ising model with various boundary conditions

    NASA Astrophysics Data System (ADS)

    Izmailian, N. Sh

    2012-12-01

    We analyze the exact partition function of the anisotropic Ising model on finite M × N rectangular lattices under four different boundary conditions (periodic-periodic (pp), periodic-antiperiodic (pa), antiperiodic-periodic (ap) and antiperiodic-antiperiodic (aa)) obtained by Kaufman (1949 Phys. Rev. 76 1232), Wu and Hu (2002 J. Phys. A: Math. Gen. 35 5189) and Kastening (2002 Phys. Rev. E 66 057103)). We express the partition functions in terms of the partition functions Zα, β(J, k) with (α, β) = (0, 0), (1/2, 0), (0, 1/2) and (1/2, 1/2), J is an interaction coupling and k is an anisotropy parameter. Based on such expressions, we then extend the algorithm of Ivashkevich et al (2002 J. Phys. A: Math. Gen. 35 5543) to derive the exact asymptotic expansion of the logarithm of the partition function for all boundary conditions mentioned above. Our result is f = fbulk + ∑∞p = 0fp(ρ, k)S-p - 1, where f is the free energy of the system, fbulk is the free energy of the bulk, S = MN is the area of the lattice and ρ = M/N is the aspect ratio. All coefficients in this expansion are expressed through analytical functions. We have introduced the effective aspect ratio ρeff = ρ/sinh 2Jc and show that for pp and aa boundary conditions all finite size correction terms are invariant under the transformation ρeff → 1/ρeff. This article is part of ‘Lattice models and integrability’, a special issue of Journal of Physics A: Mathematical and Theoretical in honour of F Y Wu's 80th birthday.

  15. On the Mixing Time of the 2D Stochastic Ising Model with ``Plus'' Boundary Conditions at Low Temperature

    NASA Astrophysics Data System (ADS)

    Martinelli, Fabio; Toninelli, Fabio Lucio

    2010-05-01

    We consider the Glauber dynamics for the 2D Ising model in a box of side L, at inverse temperature β and random boundary conditions τ whose distribution P either stochastically dominates the extremal plus phase (hence the quotation marks in the title) or is stochastically dominated by the extremal minus phase. A particular case is when P is concentrated on the homogeneous configuration identically equal to + (equal to -). For β large enough we show that for any {\\varepsilon >0 } there exists {c=c(β,\\varepsilon)} such that the corresponding mixing time T mix satisfies {lim_{Ltoinfty} {P}left(T_mixge exp({cL^\\varepsilon})right) =0}. In the non-random case τ ≡ + (or τ ≡ -), this implies that {T_mixle exp({cL^\\varepsilon})}. The same bound holds when the boundary conditions are all + on three sides and all - on the remaining one. The result, although still very far from the expected Lifshitz behavior T mix = O( L 2), considerably improves upon the previous known estimates of the form {T_mixle exp({c L^{frac 12 + \\varepsilon}})}. The techniques are based on induction over length scales, combined with a judicious use of the so-called “censoring inequality” of Y. Peres and P. Winkler, which in a sense allows us to guide the dynamics to its equilibrium measure.

  16. Complete analyticity for 2D Ising completed

    NASA Astrophysics Data System (ADS)

    Schonmann, Roberto H.; Shlosman, Senya B.

    1995-06-01

    We study the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h. We extend to every subcritical value of the temperature a result previously proven by Martirosyan at low enough temperature, and which roughly states that for finite systems with — boundary conditions under a positive external field, the boundary effect dominates in the bulk if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the bulk. As a consequence we are able to complete the proof that “complete analyticity for nice sets” holds for every value of the temperature and external field in the interior of the uniqueness region in the phase diagram of the model. The main tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, and recently extended to all temperatures below the critical one by Ioffe.

  17. Size effects in spin-crossover nanoparticles in framework of 2D and 3D Ising-like breathing crystal field model

    NASA Astrophysics Data System (ADS)

    Gudyma, Iu.; Maksymov, A.; Spinu, L.

    2015-10-01

    The spin-crossover nanoparticles of different sizes and stochastic perturbations in external field taking into account the influence of the dimensionality of the lattice was studied. The analytical tools used for the investigation of spin-crossover system are based on an Ising-like model described using of the breathing crystal field concept. The changes of transition temperatures characterizing the systems' bistable properties for 2D and 3D lattices, and their dependence on its size and fluctuations strength were obtained. The state diagrams with hysteretic and non-hysteretic behavior regions have also been determined.

  18. Nonlinear scaling variable at the lower critical dimension: Scaling in the 2D random field Ising model

    NASA Astrophysics Data System (ADS)

    Hayden, Lorien; Sethna, James

    We systematically analyze the nonlinear invariant scaling variables at bifurcations in the renormalization-group flow, and apply our methods to the two-dimensional random-field Ising model (RFIM). At critical points, the universal scaling functions are usually written in terms of homogeneous invariant combinations of variables, like Ltν in the finite-size scaling form for the magnetization M (T | L) ~t-β M (Ltν) , where t ~Tc - T . The renormalization-group flow for the RFIM has a pitchfork bifurcation in two dimensions, where the correlation length has been argued to diverge exponentially, ξ ~ exp 1 / 2 At2 , leading to the invariant scaling combination L / ξ ~ L / exp 1 / 2 At2 . Our analysis, inspired by normal-form theory, suggests that this exponential divergence can take a richer, more general scaling form at a generic pitchfork bifurcation. We explore possible consequences for simulations. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. . DGE-1144153.

  19. CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm: 2D and 3D Ising, Potts, and XY models

    NASA Astrophysics Data System (ADS)

    Komura, Yukihiro; Okabe, Yutaka

    2014-03-01

    We present sample CUDA programs for the GPU computing of the Swendsen-Wang multi-cluster spin flip algorithm. We deal with the classical spin models; the Ising model, the q-state Potts model, and the classical XY model. As for the lattice, both the 2D (square) lattice and the 3D (simple cubic) lattice are treated. We already reported the idea of the GPU implementation for 2D models (Komura and Okabe, 2012). We here explain the details of sample programs, and discuss the performance of the present GPU implementation for the 3D Ising and XY models. We also show the calculated results of the moment ratio for these models, and discuss phase transitions. Catalogue identifier: AERM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERM_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5632 No. of bytes in distributed program, including test data, etc.: 14688 Distribution format: tar.gz Programming language: C, CUDA. Computer: System with an NVIDIA CUDA enabled GPU. Operating system: System with an NVIDIA CUDA enabled GPU. Classification: 23. External routines: NVIDIA CUDA Toolkit 3.0 or newer Nature of problem: Monte Carlo simulation of classical spin systems. Ising, q-state Potts model, and the classical XY model are treated for both two-dimensional and three-dimensional lattices. Solution method: GPU-based Swendsen-Wang multi-cluster spin flip Monte Carlo method. The CUDA implementation for the cluster-labeling is based on the work by Hawick et al. [1] and that by Kalentev et al. [2]. Restrictions: The system size is limited depending on the memory of a GPU. Running time: For the parameters used in the sample programs, it takes about a minute for each program. Of course, it depends on the system size, the number of Monte Carlo steps, etc. References: [1] K

  20. Learning planar ising models

    SciTech Connect

    Johnson, Jason K; Chertkov, Michael; Netrapalli, Praneeth

    2010-11-12

    Inference and learning of graphical models are both well-studied problems in statistics and machine learning that have found many applications in science and engineering. However, exact inference is intractable in general graphical models, which suggests the problem of seeking the best approximation to a collection of random variables within some tractable family of graphical models. In this paper, we focus our attention on the class of planar Ising models, for which inference is tractable using techniques of statistical physics [Kac and Ward; Kasteleyn]. Based on these techniques and recent methods for planarity testing and planar embedding [Chrobak and Payne], we propose a simple greedy algorithm for learning the best planar Ising model to approximate an arbitrary collection of binary random variables (possibly from sample data). Given the set of all pairwise correlations among variables, we select a planar graph and optimal planar Ising model defined on this graph to best approximate that set of correlations. We present the results of numerical experiments evaluating the performance of our algorithm.

  1. Revisiting 2D Lattice Based Spin Flip-Flop Ising Model: Magnetic Properties of a Thin Film and Its Temperature Dependence

    ERIC Educational Resources Information Center

    Singh, Satya Pal

    2014-01-01

    This paper presents a brief review of Ising's work done in 1925 for one dimensional spin chain with periodic boundary condition. Ising observed that no phase transition occurred at finite temperature in one dimension. He erroneously generalized his views in higher dimensions but that was not true. In 1941 Kramer and Wannier obtained…

  2. Observation of 2D Ising criticality of liquid-gas transition by the flowgram method

    NASA Astrophysics Data System (ADS)

    Yarmolinsky, Max; Kuklov, Anatoly

    We study the critical properties of the transition in 2D liquid-gas system with the square-well potential interaction by Monte Carlo simulations in the grand canonical ensemble. Due to lack of the underlying Ising symmetry, the analysis cannot be done reliably by the standard methods applicable to lattice systems. In contrast, the analysis based on the flowgram method allowed us to find the critical point to significantly higher (and controllable) accuracy than in previous studies by other authors. Simulations were performed in a progression of sizes L up to size L = 84 , with the particle numbers varying over 3 orders of magnitude and the subcritical behavior not extending beyond L = 10 - 15 . The finite size scaling analysis of the critical exponents and their ratio, μ and γ / ν , gives values consistent with the 2D Ising universality class within 1-2% of errors. Our result essentially closes proposals that the nature of the liquid-gas transition might be different from the Ising model in systems with short-range interactions. This work was supported by the NSF Grant PHY1314469.

  3. One-dimensional Ising model with multispin interactions

    NASA Astrophysics Data System (ADS)

    Turban, Loïc

    2016-09-01

    We study the spin-1/2 Ising chain with multispin interactions K involving the product of m successive spins, for general values of m. Using a change of spin variables the zero-field partition function of a finite chain is obtained for free and periodic boundary conditions and we calculate the two-spin correlation function. When placed in an external field H the system is shown to be self-dual. Using another change of spin variables the one-dimensional Ising model with multispin interactions in a field is mapped onto a zero-field rectangular Ising model with first-neighbour interactions K and H. The 2D system, with size m × N/m, has the topology of a cylinder with helical BC. In the thermodynamic limit N/m\\to ∞ , m\\to ∞ , a 2D critical singularity develops on the self-duality line, \\sinh 2K\\sinh 2H=1.

  4. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls.

    PubMed

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-14

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force. PMID:25134587

  5. Lateral critical Casimir force in 2D Ising strip with inhomogeneous walls

    NASA Astrophysics Data System (ADS)

    Nowakowski, Piotr; Napiórkowski, Marek

    2014-08-01

    We analyze the lateral critical Casimir force acting between two planar, chemically inhomogeneous walls confining an infinite 2D Ising strip of width M. The inhomogeneity of each of the walls has size N1; they are shifted by the distance L along the strip. Using the exact diagonalization of the transfer matrix, we calculate the lateral critical Casimir force and discuss its properties, in particular its scaling close to the 2D bulk critical point, as a function of temperature, surface magnetic field, and the geometric parameters M, N1, L. We determine the magnetization profiles which display the formation of the bridge joining the inhomogeneities on the walls and establish the relation between the characteristic properties of the lateral Casimir force and magnetization morphologies. We check numerically that breaking of the bridge is related to the inflection point of the lateral force.

  6. Topological Characterization of Extended Quantum Ising Models

    NASA Astrophysics Data System (ADS)

    Zhang, G.; Song, Z.

    2015-10-01

    We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic X Y model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the X Y model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram.

  7. Topological Characterization of Extended Quantum Ising Models.

    PubMed

    Zhang, G; Song, Z

    2015-10-23

    We show that a class of exactly solvable quantum Ising models, including the transverse-field Ising model and anisotropic XY model, can be characterized as the loops in a two-dimensional auxiliary space. The transverse-field Ising model corresponds to a circle and the XY model corresponds to an ellipse, while other models yield cardioid, limacon, hypocycloid, and Lissajous curves etc. It is shown that the variation of the ground state energy density, which is a function of the loop, experiences a nonanalytical point when the winding number of the corresponding loop changes. The winding number can serve as a topological quantum number of the quantum phases in the extended quantum Ising model, which sheds some light upon the relation between quantum phase transition and the geometrical order parameter characterizing the phase diagram. PMID:26551140

  8. Ising model for distribution networks

    NASA Astrophysics Data System (ADS)

    Hooyberghs, H.; Van Lombeek, S.; Giuraniuc, C.; Van Schaeybroeck, B.; Indekeu, J. O.

    2012-01-01

    An elementary Ising spin model is proposed for demonstrating cascading failures (breakdowns, blackouts, collapses, avalanches, etc.) that can occur in realistic networks for distribution and delivery by suppliers to consumers. A ferromagnetic Hamiltonian with quenched random fields results from policies that maximize the gap between demand and delivery. Such policies can arise in a competitive market where firms artificially create new demand, or in a solidarity environment where too high a demand cannot reasonably be met. Network failure in the context of a policy of solidarity is possible when an initially active state becomes metastable and decays to a stable inactive state. We explore the characteristics of the demand and delivery, as well as the topological properties, which make the distribution network susceptible of failure. An effective temperature is defined, which governs the strength of the activity fluctuations which can induce a collapse. Numerical results, obtained by Monte Carlo simulations of the model on (mainly) scale-free networks, are supplemented with analytic mean-field approximations to the geometrical random field fluctuations and the thermal spin fluctuations. The role of hubs versus poorly connected nodes in initiating the breakdown of network activity is illustrated and related to model parameters.

  9. 2D-Ising critical behavior in mixtures of water and 3-methylpyridine

    SciTech Connect

    Sadakane, Koichiro; Iguchi, Kazuya; Nagao, Michihiro; Seto, Hideki

    2011-01-01

    The effect of an antagonistic salt on the phase behavior and nanoscale structure of a mixture of D{sub 2}O and 3-methylpyridine was investigated by visual inspection and small-angle neutron scattering (SANS). The addition of the antagonistic salt, namely sodium tetraphenylborate (NaBPh{sub 4}), induces the shrinking of the two-phase region in contrast to the case in which a normal (hydrophilic) salt is added. Below the phase separation point, the SANS profiles cannot be described by the Ornstein-Zernike function owing to the existence of a long-range periodic structure. With increasing salt concentration, the critical exponents change from the values of 3D-Ising and approach those of 2D-Ising. These results suggest that the concentration fluctuation of the mixture of solvents is limited to a quasi two-dimensional space by the periodic structure induced by the adding the salt. The same behaviors were also observed in mixtures composed of water, 3-methylpyridine, and ionic surfactant.

  10. Algorithmic proof for the completeness of the two-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Karimipour, Vahid; Zarei, Mohammad Hossein

    2012-11-01

    We show that the two-dimensional (2D) Ising model is complete, in the sense that the partition function of any lattice model on any graph is equal to the partition function of the 2D Ising model with complex coupling. The latter model has all its spin-spin coupling equal to i(π)/(4) and all parameters of the original model are contained in the local magnetic fields of the Ising model. This result has already been derived by using techniques from quantum information theory and by exploiting the universality of cluster states. Here we do not use the quantum formalism and hence make the completeness result accessible to a wide audience. Furthermore, our method has the advantage of being algorithmic in nature so that, by following a set of simple graphical transformations, one is able to transform any discrete lattice model to an Ising model defined on a (polynomially) larger 2D lattice.

  11. Numerical tests of nucleation theories for the Ising models

    NASA Astrophysics Data System (ADS)

    Ryu, Seunghwa; Cai, Wei

    2010-07-01

    The classical nucleation theory (CNT) is tested systematically by computer simulations of the two-dimensional (2D) and three-dimensional (3D) Ising models with a Glauber-type spin flip dynamics. While previous studies suggested potential problems with CNT, our numerical results show that the fundamental assumption of CNT is correct. In particular, the Becker-Döring theory accurately predicts the nucleation rate if the correct droplet free energy function is provided as input. This validates the coarse graining of the system into a one dimensional Markov chain with the largest droplet size as the reaction coordinate. Furthermore, in the 2D Ising model, the droplet free energy predicted by CNT matches numerical results very well, after a logarithmic correction term from Langer’s field theory and a constant correction term are added. But significant discrepancies are found between the numerical results and existing theories on the magnitude of the logarithmic correction term in the 3D Ising model. Our analysis underscores the importance of correctly accounting for the temperature dependence of surface energy when comparing numerical results and nucleation theories.

  12. Thermodynamics of trajectories of the one-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Loscar, Ernesto S.; Mey, Antonia S. J. S.; Garrahan, Juan P.

    2011-12-01

    We present a numerical study of the dynamics of the one-dimensional Ising model by applying the large-deviation method to describe ensembles of dynamical trajectories. In this approach trajectories are classified according to a dynamical order parameter and the structure of ensembles of trajectories can be understood from the properties of large-deviation functions, which play the role of dynamical free-energies. We consider both Glauber and Kawasaki dynamics, and also the presence of a magnetic field. For Glauber dynamics in the absence of a field we confirm the analytic predictions of Jack and Sollich about the existence of critical dynamical, or space-time, phase transitions at critical values of the 'counting' field s. In the presence of a magnetic field the dynamical phase diagram also displays first order transition surfaces. We discuss how these non-equilibrium transitions in the 1d Ising model relate to the equilibrium ones of the 2d Ising model. For Kawasaki dynamics we find a much simpler dynamical phase structure, with transitions reminiscent of those seen in kinetically constrained models.

  13. Antiferromagnetic Ising Model in Hierarchical Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Xiang; Boettcher, Stefan

    2015-03-01

    The Ising antiferromagnet is a convenient model of glassy dynamics. It can introduce geometric frustrations and may give rise to a spin glass phase and glassy relaxation at low temperatures [ 1 ] . We apply the antiferromagnetic Ising model to 3 hierarchical networks which share features of both small world networks and regular lattices. Their recursive and fixed structures make them suitable for exact renormalization group analysis as well as numerical simulations. We first explore the dynamical behaviors using simulated annealing and discover an extremely slow relaxation at low temperatures. Then we employ the Wang-Landau algorithm to investigate the energy landscape and the corresponding equilibrium behaviors for different system sizes. Besides the Monte Carlo methods, renormalization group [ 2 ] is used to study the equilibrium properties in the thermodynamic limit and to compare with the results from simulated annealing and Wang-Landau sampling. Supported through NSF Grant DMR-1207431.

  14. Ising and dimer models in two and three dimensions

    NASA Astrophysics Data System (ADS)

    Moessner, R.; Sondhi, S. L.

    2003-08-01

    Motivated by recent interest in 2+1 dimensional quantum dimer models, we revisit Fisher’s mapping of two-dimensional Ising models to hardcore dimer models. First, we note that the symmetry breaking transition of the ferromagnetic Ising model maps onto a non-symmetry breaking transition in dimer language—instead it becomes a deconfinement transition for test monomers. Next, we introduce a modification of Fisher’s mapping in which a second dimer model, also equivalent to the Ising model, is defined on a generically different lattice derived from the dual. In contrast to Fisher’s original mapping, this enables us to reformulate frustrated Ising models as dimer models with positive weights and we illustrate this by providing a new solution of the fully frustrated Ising model on the square lattice. Finally, by means of the modified mapping we show that a large class of three-dimensional Ising models are precisely equivalent, in the time continuum limit, to particular quantum dimer models. As Ising models in three dimensions are dual to Ising gauge theories, this further yields an exact map between the latter and the quantum dimer models. The paramagnetic phase in Ising language maps onto a deconfined, topologically ordered phase in the dimer models. Using this set of ideas, we also construct an exactly soluble quantum eight vertex model.

  15. Engineering 2D Ising Interactions in a Large (N>100) Ensemble of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Sawyer, Brian; Britton, Joseph; Keith, Adam; Wang, Joseph; Freericks, James; Uys, Hermann; Biercuk, Michael; Bollinger, John

    2012-06-01

    Experimental progress in atomic, molecular, and optical physics has enabled exquisite control over ensembles of cold trapped ions. We have recently engineered long-range Ising interactions in a two-dimensional, 1-mK Coulomb crystal of hundreds of ^9Be^+ ions confined within a Penning trap. Interactions between the ^9Be^+ valence spins are mediated via spin-dependent optical dipole forces (ODFs) coupling to transverse motional modes of the planar crystal. A continuous range of inverse power-law spin-spin interactions from infinite (1/r^0) to dipolar (1/r^3) are accessible by varying the ODF drive frequency relative to the transverse modes. The ions naturally form a triangular lattice structure within the planar array, allowing for simulation of spin frustration using our generated antiferromagnetic couplings. We report progress toward simulating the ferromagnetic/antiferromagnetic transverse quantum Ising Hamiltonians in this large ensemble. We also report spectroscopy, thermometry, and sensitive displacement detection (˜100 pm) via entanglement of valence spin and drumhead oscillations.

  16. Networked Ising-Sznajd AR-β Model

    NASA Astrophysics Data System (ADS)

    Nagao, Tomonori; Ohmiya, Mayumi

    2009-09-01

    The modified Ising-Sznajd model is studied to clarify the machanism of price formation in the stock market. The conventional Ising-Sznajd model is improved as a small world network with the rewireing probability β(t) which depends on the time. Numerical experiments show that phase transition, regarded as a economical crisis, is inevitable in this model.

  17. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  18. The Worm Process for the Ising Model is Rapidly Mixing

    NASA Astrophysics Data System (ADS)

    Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel

    2016-07-01

    We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.

  19. The Worm Process for the Ising Model is Rapidly Mixing

    NASA Astrophysics Data System (ADS)

    Collevecchio, Andrea; Garoni, Timothy M.; Hyndman, Timothy; Tokarev, Daniel

    2016-09-01

    We prove rapid mixing of the worm process for the zero-field ferromagnetic Ising model, on all finite connected graphs, and at all temperatures. As a corollary, we obtain a fully-polynomial randomized approximation scheme for the Ising susceptibility, and for a certain restriction of the two-point correlation function.

  20. Sheared Ising models in three dimensions

    NASA Astrophysics Data System (ADS)

    Hucht, Alfred; Angst, Sebastian

    2013-03-01

    The nonequilibrium phase transition in sheared three-dimensional Ising models is investigated using Monte Carlo simulations in two different geometries corresponding to different shear normals [A. Hucht and S. Angst, EPL 100, 20003 (2012)]. We demonstrate that in the high shear limit both systems undergo a strongly anisotropic phase transition at exactly known critical temperatures Tc which depend on the direction of the shear normal. Using dimensional analysis, we determine the anisotropy exponent θ = 2 as well as the correlation length exponents ν∥ = 1 and ν⊥ = 1 / 2 . These results are verified by simulations, though considerable corrections to scaling are found. The correlation functions perpendicular to the shear direction can be calculated exactly and show Ornstein-Zernike behavior. Supported by CAPES-DAAD through PROBRAL as well as by the German Research Society (DFG) through SFB 616 ``Energy Dissipation at Surfaces.''

  1. Brittle damage models in DYNA2D

    SciTech Connect

    Faux, D.R.

    1997-09-01

    DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.

  2. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-01-01

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  3. Matrix models of 2d gravity

    SciTech Connect

    Ginsparg, P.

    1991-12-31

    These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.

  4. Scaling functions in the square Ising model

    NASA Astrophysics Data System (ADS)

    Hassani, S.; Maillard, J.-M.

    2015-03-01

    We show and give the linear differential operators Lqscal of order q={{n}2}/4+n+7/8+{{(-1)}n}/8, for the integrals {{I}n}(r) which appear in the two-point correlation scaling function of Ising model \\{{F}+/- }(r)={{lim }scaling}M+/- -2 \\lt {{σ }0,0} {{σ }M,N}\\gt ={{\\sum }n}{{I}n}(r). The integrals {{I}n}(r) are given in expansion around r=0 in the basis of the formal solutions of Lqscal with transcendental combination coefficients. We find that the expression {{r}1/4}exp ({{r}2}/8) is a solution of the Painlevé VI equation in the scaling limit. Combinations of the (analytic at r=0) solutions of Lqscal sum to exp ({{r}2}/8). We show that the expression {{r}1/4}exp ({{r}2}/8) is the scaling limit of the correlation function C(N,N) and C(N,N+1). The differential Galois groups of the factors occurring in the operators Lqscal are given.

  5. Long range Ising model for credit risk modeling

    NASA Astrophysics Data System (ADS)

    Molins, Jordi; Vives, Eduard

    2005-07-01

    Within the framework of maximum entropy principle we show that the finite-size long-range Ising model is the adequate model for the description of homogeneous credit portfolios and the computation of credit risk when default correlations between the borrowers are included. The exact analysis of the model suggest that when the correlation increases a first-order-like transition may occur inducing a sudden risk increase.

  6. Self-overlap as a method of analysis in Ising models.

    PubMed

    Ferrera, A; Luque, B; Lacasa, L; Valero, E

    2007-06-01

    The damage spreading (DS) method provided a useful tool to obtain analytical results of the thermodynamics and stability of the two-dimensional (2D) Ising model--amongst many others--but it suffered both from ambiguities in its results and from large computational costs. In this paper we propose an alternative method, the so-called self-overlap method, based on the study of correlation functions measured at subsequent time steps as the system evolves towards its equilibrium. Applying Markovian and mean-field approximations to a 2D Ising system we obtain both analytical and numerical results on the thermodynamics that agree with the expected behavior. We also provide some analytical results on the stability of the system. Since only a single replica of the system needs to be studied, this method would seem to be free from the ambiguities that afflicted the DS method. It also seems to be numerically more efficient and analytically simpler. PMID:17677216

  7. Periodic Striped Ground States in Ising Models with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Seiringer, Robert

    2016-06-01

    We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c (p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2d and J in a left neighborhood of J c (p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes (d = 2) or slabs (d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.

  8. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

    PubMed

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697

  9. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

  10. Interacting damage models mapped onto ising and percolation models

    SciTech Connect

    Toussaint, Renaud; Pride, Steven R.

    2004-03-23

    The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model

  11. Interacting damage models mapped onto Ising and percolation models.

    PubMed

    Toussaint, Renaud; Pride, Steven R

    2005-04-01

    We introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasi-static fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, we obtain the probability distribution of each damage configuration at any level of the imposed external deformation. We demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, we show that damage models with global load sharing are isomorphic to standard percolation theory and that damage models with a local load sharing rule are isomorphic to the standard Ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. We also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, we also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model to standard

  12. Phase transitions in Ising models on directed networks.

    PubMed

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme. PMID:26651748

  13. Phase transitions in Ising models on directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Ferreira, António Luis; Lipowska, Dorota; Gontarek, Krzysztof

    2015-11-01

    We examine Ising models with heat-bath dynamics on directed networks. Our simulations show that Ising models on directed triangular and simple cubic lattices undergo a phase transition that most likely belongs to the Ising universality class. On the directed square lattice the model remains paramagnetic at any positive temperature as already reported in some previous studies. We also examine random directed graphs and show that contrary to undirected ones, percolation of directed bonds does not guarantee ferromagnetic ordering. Only above a certain threshold can a random directed graph support finite-temperature ferromagnetic ordering. Such behavior is found also for out-homogeneous random graphs, but in this case the analysis of magnetic and percolative properties can be done exactly. Directed random graphs also differ from undirected ones with respect to zero-temperature freezing. Only at low connectivity do they remain trapped in a disordered configuration. Above a certain threshold, however, the zero-temperature dynamics quickly drives the model toward a broken symmetry (magnetized) state. Only above this threshold, which is almost twice as large as the percolation threshold, do we expect the Ising model to have a positive critical temperature. With a very good accuracy, the behavior on directed random graphs is reproduced within a certain approximate scheme.

  14. Ising Model Reprogramming of a Repeat Protein's Equilibrium Unfolding Pathway.

    PubMed

    Millership, C; Phillips, J J; Main, E R G

    2016-05-01

    Repeat proteins are formed from units of 20-40 aa that stack together into quasi one-dimensional non-globular structures. This modular repetitive construction means that, unlike globular proteins, a repeat protein's equilibrium folding and thus thermodynamic stability can be analysed using linear Ising models. Typically, homozipper Ising models have been used. These treat the repeat protein as a series of identical interacting subunits (the repeated motifs) that couple together to form the folded protein. However, they cannot describe subunits of differing stabilities. Here we show that a more sophisticated heteropolymer Ising model can be constructed and fitted to two new helix deletion series of consensus tetratricopeptide repeat proteins (CTPRs). This analysis, showing an asymmetric spread of stability between helices within CTPR ensembles, coupled with the Ising model's predictive qualities was then used to guide reprogramming of the unfolding pathway of a variant CTPR protein. The designed behaviour was engineered by introducing destabilising mutations that increased the thermodynamic asymmetry within a CTPR ensemble. The asymmetry caused the terminal α-helix to thermodynamically uncouple from the rest of the protein and preferentially unfold. This produced a specific, highly populated stable intermediate with a putative dimerisation interface. As such it is the first step in designing repeat proteins with function regulated by a conformational switch. PMID:26947150

  15. Some Fruits of Genius: Lars Onsager and the Ising Model

    NASA Astrophysics Data System (ADS)

    Fisher, Michael E.

    2006-03-01

    The story of the exact solution of the two-dimensional Ising model by Lars Onsager in the 1940's will be sketched and some of the striking developments following from it, especially for the behavior of fluctuating interfaces, will be recounted.

  16. Analytical properties of the anisotropic cubic Ising model

    SciTech Connect

    Hansel, D.; Maillard, J.M.; Oitmaa, J.; Velgakis, M.J.

    1987-07-01

    The authors combine an exact functional relation, the inversion relation, with conventional high-temperature expansions to explore the analytic properties of the anisotropic Ising model on both the square and simple cubic lattice. In particular, they investigate the nature of the singularities that occur in partially resummed expansions of the partition function and of the susceptibility.

  17. Disorder Identification in Hysteresis Data: Recognition Analysis of the Random-Bond-Random-Field Ising Model

    SciTech Connect

    Ovchinnikov, O. S.; Jesse, S.; Kalinin, S. V.; Bintacchit, P.; Trolier-McKinstry, S.

    2009-10-09

    An approach for the direct identification of disorder type and strength in physical systems based on recognition analysis of hysteresis loop shape is developed. A large number of theoretical examples uniformly distributed in the parameter space of the system is generated and is decorrelated using principal component analysis (PCA). The PCA components are used to train a feed-forward neural network using the model parameters as targets. The trained network is used to analyze hysteresis loops for the investigated system. The approach is demonstrated using a 2D random-bond-random-field Ising model, and polarization switching in polycrystalline ferroelectric capacitors.

  18. On the dynamics of the Ising model of cooperative phenomena.

    PubMed

    Montroll, E W

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  19. On the Dynamics of the Ising Model of Cooperative Phenomena

    NASA Astrophysics Data System (ADS)

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions.

  20. On the dynamics of the Ising model of cooperative phenomena

    PubMed Central

    Montroll, Elliott W.

    1981-01-01

    A two-dimensional (and to some degree three-dimensional) version of Glauber's one-dimensional spin relaxation model is described. The model is constructed to yield the Ising model of cooperative phenomena at equilibrium. A complete hierarchy of differential equations for multispin correlation functions is constructed. Some remarks are made concerning the solution of them for the initial value problem of determining the relaxation of an initial set of spin distributions. PMID:16592955

  1. A MATLAB GUI to study Ising model phase transition

    NASA Astrophysics Data System (ADS)

    Thornton, Curtislee; Datta, Trinanjan

    We have created a MATLAB based graphical user interface (GUI) that simulates the single spin flip Metropolis Monte Carlo algorithm. The GUI has the capability to study temperature and external magnetic field dependence of magnetization, susceptibility, and equilibration behavior of the nearest-neighbor square lattice Ising model. Since the Ising model is a canonical system to study phase transition, the GUI can be used both for teaching and research purposes. The presence of a Monte Carlo code in a GUI format allows easy visualization of the simulation in real time and provides an attractive way to teach the concept of thermal phase transition and critical phenomena. We will also discuss the GUI implementation to study phase transition in a classical spin ice model on the pyrochlore lattice.

  2. The Ising Model in Physics and Statistical Genetics

    PubMed Central

    Majewski, Jacek; Li, Hao; Ott, Jurg

    2001-01-01

    Interdisciplinary communication is becoming a crucial component of the present scientific environment. Theoretical models developed in diverse disciplines often may be successfully employed in solving seemingly unrelated problems that can be reduced to similar mathematical formulation. The Ising model has been proposed in statistical physics as a simplified model for analysis of magnetic interactions and structures of ferromagnetic substances. Here, we present an application of the one-dimensional, linear Ising model to affected-sib-pair (ASP) analysis in genetics. By analyzing simulated genetics data, we show that the simplified Ising model with only nearest-neighbor interactions between genetic markers has statistical properties comparable to much more complex algorithms from genetics analysis, such as those implemented in the Allegro and Mapmaker-Sibs programs. We also adapt the model to include epistatic interactions and to demonstrate its usefulness in detecting modifier loci with weak individual genetic contributions. A reanalysis of data on type 1 diabetes detects several susceptibility loci not previously found by other methods of analysis. PMID:11517425

  3. Information cascade, Kirman's ant colony model, and kinetic Ising model

    NASA Astrophysics Data System (ADS)

    Hisakado, Masato; Mori, Shintaro

    2015-01-01

    In this paper, we discuss a voting model in which voters can obtain information from a finite number of previous voters. There exist three groups of voters: (i) digital herders and independent voters, (ii) analog herders and independent voters, and (iii) tanh-type herders. In our previous paper Hisakado and Mori (2011), we used the mean field approximation for case (i). In that study, if the reference number r is above three, phase transition occurs and the solution converges to one of the equilibria. However, the conclusion is different from mean field approximation. In this paper, we show that the solution oscillates between the two states. A good (bad) equilibrium is where a majority of r select the correct (wrong) candidate. In this paper, we show that there is no phase transition when r is finite. If the annealing schedule is adequately slow from finite r to infinite r, the voting rate converges only to the good equilibrium. In case (ii), the state of reference votes is equivalent to that of Kirman's ant colony model, and it follows beta binomial distribution. In case (iii), we show that the model is equivalent to the finite-size kinetic Ising model. If the voters are rational, a simple herding experiment of information cascade is conducted. Information cascade results from the quenching of the kinetic Ising model. As case (i) is the limit of case (iii) when tanh function becomes a step function, the phase transition can be observed in infinite size limit. We can confirm that there is no phase transition when the reference number r is finite.

  4. Information geometry of the ising model on planar random graphs.

    PubMed

    Janke, W; Johnston, D A; Malmini, Ranasinghe P K C

    2002-11-01

    It has been suggested that an information geometric view of statistical mechanics in which a metric is introduced onto the space of parameters provides an interesting alternative characterization of the phase structure, particularly in the case where there are two such parameters, such as the Ising model with inverse temperature beta and external field h. In various two-parameter calculable models, the scalar curvature R of the information metric has been found to diverge at the phase transition point beta(c) and a plausible scaling relation postulated: R approximately |beta-beta(c)|(alpha-2). For spin models the necessity of calculating in nonzero field has limited analytic consideration to one-dimensional, mean-field and Bethe lattice Ising models. In this paper we use the solution in field of the Ising model on an ensemble of planar random graphs (where alpha=-1, beta=1/2, gamma=2) to evaluate the scaling behavior of the scalar curvature, and find R approximately |beta-beta(c)|(-2). The apparent discrepancy is traced back to the effect of a negative alpha. PMID:12513568

  5. Phase transition of the Ising model on a fractal lattice.

    PubMed

    Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi

    2016-01-01

    The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry. PMID:26871057

  6. Precision islands in the Ising and O( N ) models

    NASA Astrophysics Data System (ADS)

    Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro

    2016-08-01

    We make precise determinations of the leading scaling dimensions and operator product expansion (OPE) coefficients in the 3d Ising, O(2), and O(3) models from the conformal bootstrap with mixed correlators. We improve on previous studies by scanning over possible relative values of the leading OPE coefficients, which incorporates the physical information that there is only a single operator at a given scaling dimension. The scaling dimensions and OPE coefficients obtained for the 3d Ising model, (Δ σ , Δ ɛ , λ σσɛ , λ ɛɛɛ ) = (0 .5181489(10) , 1 .412625(10) , 1 .0518537(41) , 1 .532435(19) , give the most precise determinations of these quantities to date.

  7. Phase transition of the Ising model on a fractal lattice

    NASA Astrophysics Data System (ADS)

    Genzor, Jozef; Gendiar, Andrej; Nishino, Tomotoshi

    2016-01-01

    The phase transition of the Ising model is investigated on a planar lattice that has a fractal structure. On the lattice, the number of bonds that cross the border of a finite area is doubled when the linear size of the area is extended by a factor of 4. The free energy and the spontaneous magnetization of the system are obtained by means of the higher-order tensor renormalization group method. The system exhibits the order-disorder phase transition, where the critical indices are different from those of the square-lattice Ising model. An exponential decay is observed in the density-matrix spectrum even at the critical point. It is possible to interpret that the system is less entangled because of the fractal geometry.

  8. Ising model observables and non-backtracking walks

    SciTech Connect

    Helmuth, Tyler

    2014-08-15

    This paper presents an alternative proof of the connection between the partition function of the Ising model on a finite graph G and the set of non-backtracking walks on G. The techniques used also give formulas for spin-spin correlation functions in terms of non-backtracking walks. The main tools used are Viennot's theory of heaps of pieces and turning numbers on surfaces.

  9. Magnetization of the Ising model on the generalized checkerboard lattice

    NASA Astrophysics Data System (ADS)

    Lin, K. Y.; Wu, F. Y.

    1988-08-01

    We consider the Ising model on the generalized checkerboard lattice. Using a recent result by Baxter and Choy, we derive exact expressions for the magnetization of nodal spins at two values of the magnetic field, H=0 and H=i1/2 πkT. Our results are given in terms of Boltzmann weights of a unit cell of the checkerboard lattice without specifying its cell structures.

  10. Ising spin network states for loop quantum gravity: a toy model for phase transitions

    NASA Astrophysics Data System (ADS)

    Feller, Alexandre; Livine, Etera R.

    2016-03-01

    Non-perturbative approaches to quantum gravity call for a deep understanding of the emergence of geometry and locality from the quantum state of the gravitational field. Without background geometry, the notion of distance should emerge entirely from the correlations between the gravity fluctuations. In the context of loop quantum gravity, quantum states of geometry are defined as spin networks. These are graphs decorated with spin and intertwiners, which represent quantized excitations of areas and volumes of the space geometry. Here, we develop the condensed-matter point of view on extracting the physical and geometrical information from spin network states: we introduce new Ising spin network states, both in 2d on a square lattice and in 3d on a hexagonal lattice, whose correlations map onto the usual Ising model in statistical physics. We construct these states from the basic holonomy operators of loop gravity and derive a set of local Hamiltonian constraints that entirely characterize our states. We discuss their phase diagram and show how the distance can be reconstructed from the correlations in the various phases. Finally, we propose generalizations of these Ising states, which open the perspective to study the coarse-graining and dynamics of spin network states using well-known condensed-matter techniques and results.

  11. Some results on hyperscaling in the 3D Ising model

    SciTech Connect

    Baker, G.A. Jr.; Kawashima, Naoki

    1995-09-01

    The authors review exact studies on finite-sized 2 dimensional Ising models and show that the point for an infinite-sized model at the critical temperature is a point of nonuniform approach in the temperature-size plane. They also illuminate some strong effects of finite-size on quantities which do not diverge at the critical point. They then review Monte Carlo studies for 3 dimensional Ising models of various sizes (L = 2--100) at various temperatures. From these results they find that the data for the renormalized coupling constant collapses nicely when plotted against the correlation length, determined in a system of edge length L, divided by L. They also find that {zeta}{sub L}/L {ge} 0.26 is definitely too large for reliable studies of the critical value, g*, of the renormalized coupling constant. They have reasonable evidence that {zeta}{sub L}/L {approx} 0.1 is adequate for results that are within one percent of those for the infinite system size. On this basis, they have conducted a series of Monte Carlo calculations with this condition imposed. These calculations were made practical by the development of improved estimators for use in the Swendsen-Wang cluster method. The authors found from these results, coupled with a reversed limit computation (size increases with the temperature fixed at the critical temperature), that g* > 0, although there may well be a sharp downward drop in g as the critical temperature is approached in accord with the predictions of series analysis. The results support the validity of hyperscaling in the 3 dimensional Ising model.

  12. Vector chiral phases in the frustrated 2D XY model and quantum spin chains.

    PubMed

    Schenck, H; Pokrovsky, V L; Nattermann, T

    2014-04-18

    The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067

  13. WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation

    NASA Astrophysics Data System (ADS)

    Shen, Yanfeng; Giurgiutiu, Victor

    2014-03-01

    This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.

  14. Ising-like models on arbitrary graphs: The Hadamard way

    NASA Astrophysics Data System (ADS)

    Mosseri, Rémy

    2015-01-01

    We propose a generic framework to describe classical Ising-like models defined on arbitrary graphs. The energy spectrum is shown to be the Hadamard transform of a suitably defined sparse "coding" vector associated with the graph. We expect that the existence of a fast Hadamard transform algorithm (used, for instance, in image compression processes), together with the sparseness of the coding vector, may provide ways to fasten the spectrum computation. Applying this formalism to regular graphs, such as hypercubic graphs, we obtain a simple recurrence relation for the spectrum, which significantly speeds up its determination. First attempts to analyze partition functions and transfer matrices are also presented.

  15. Simulation of financial market via nonlinear Ising model

    NASA Astrophysics Data System (ADS)

    Ko, Bonggyun; Song, Jae Wook; Chang, Woojin

    2016-09-01

    In this research, we propose a practical method for simulating the financial return series whose distribution has a specific heaviness. We employ the Ising model for generating financial return series to be analogous to those of the real series. The similarity between real financial return series and simulated one is statistically verified based on their stylized facts including the power law behavior of tail distribution. We also suggest the scheme for setting the parameters in order to simulate the financial return series with specific tail behavior. The simulation method introduced in this paper is expected to be applied to the other financial products whose price return distribution is fat-tailed.

  16. Monte Carlo Simulations of inter- and intra-grain spin structure of Ising and Heisenberg models

    NASA Astrophysics Data System (ADS)

    Leblanc, Martin

    In order to keep supplying computer hard disk drives with more and more storage space, it is essential to have smaller bits. With smaller bits, superparamagnetism, the spontaneous flipping of the magnetic moments in a bit caused by thermal fluctuations, becomes increasingly important and impacts the stability of stored data. Recording media is composed of magnetic grains (usually made of CoCrPt alloys) roughly 10 nm in size from which bits are composed. Most modeling efforts that study magnetic recording media treat the grains as weakly interacting uniformly magnetized objects. In this work, the spin structure internal to a grain is examined along with the impact of varying the relative strengths of intrar-grain and inter-grain exchange interactions. The interplay between these two effects needs to be examined for a greater understanding of superparamagnetism as well as for the applications of the proposed Heat Assisted Magnetic Recording (HAMR) technology where thermal fluctuations facilitate head-field induced bit reversal in high anisotropy media. Simulations using the Monte Carlo method (with cluster-flipping algorithms) are performed on a 2D single-layer and multilayer Ising model with a strong intrar-grain exchange interaction J as well as a weak inter-grain exchange J'. A strong deviation from traditional behavior is found when J'/J is significant. M-H hysteresis loops are also calculated and the coercivity, H c is estimated. A large value represents a strong resilience to the superparamagnetic effect. It is found that taking into account the internal degrees of freedom has a significant effect on Hce. As the Ising model serves only as an approximation, preliminary simulations are also reported on a more realistic Heisenberg model with uniaxial anisotropy. Key Words: Ising model, Heisenberg model, Monte Carlo Simulation

  17. Ising tricriticality in the extended Hubbard model with bond dimerization

    NASA Astrophysics Data System (ADS)

    Ejima, Satoshi; Essler, Fabian H. L.; Lange, Florian; Fehske, Holger

    2016-06-01

    We explore the quantum phase transition between Peierls and charge-density-wave insulating states in the one-dimensional, half-filled, extended Hubbard model with explicit bond dimerization. We show that the critical line of the continuous Ising transition terminates at a tricritical point, belonging to the universality class of the tricritical Ising model with central charge c =7 /10 . Above this point, the quantum phase transition becomes first order. Employing a numerical matrix-product-state based (infinite) density-matrix renormalization group method we determine the ground-state phase diagram, the spin and two-particle charge excitations gaps, and the entanglement properties of the model with high precision. Performing a bosonization analysis we can derive a field description of the transition region in terms of a triple sine-Gordon model. This allows us to derive field theory predictions for the power-law (exponential) decay of the density-density (spin-spin) and bond-order-wave correlation functions, which are found to be in excellent agreement with our numerical results.

  18. Oscillating hysteresis in the q -neighbor Ising model

    NASA Astrophysics Data System (ADS)

    JÈ©drzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna

    2015-11-01

    We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q ≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q . Moreover, we show that for q =3 the phase transition is continuous and that it is discontinuous for larger values of q . For q >3 , the hysteresis exhibits oscillatory behavior—expanding for even values of q and shrinking for odd values of q . Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q =5 , which might be taken as evidence for the so-called mixed-order phase transition.

  19. Oscillating hysteresis in the q-neighbor Ising model.

    PubMed

    Jȩdrzejewski, Arkadiusz; Chmiel, Anna; Sznajd-Weron, Katarzyna

    2015-11-01

    We modify the kinetic Ising model with Metropolis dynamics, allowing each spin to interact only with q spins randomly chosen from the whole system, which corresponds to the topology of a complete graph. We show that the model with q≥3 exhibits a phase transition between ferromagnetic and paramagnetic phases at temperature T*, which linearly increases with q. Moreover, we show that for q=3 the phase transition is continuous and that it is discontinuous for larger values of q. For q>3, the hysteresis exhibits oscillatory behavior-expanding for even values of q and shrinking for odd values of q. Due to the mean-field-like nature of the model, we are able to derive the analytical form of transition probabilities and, therefore, calculate not only the probability density function of the order parameter but also precisely determine the hysteresis and the effective potential showing stable, unstable, and metastable steady states. Our results show that a seemingly small modification of the kinetic Ising model leads not only to the switch from a continuous to a discontinuous phase transition, but also to an unexpected oscillating behavior of the hysteresis and a puzzling phenomenon for q=5, which might be taken as evidence for the so-called mixed-order phase transition. PMID:26651645

  20. Toward an Ising model of cancer and beyond.

    PubMed

    Torquato, Salvatore

    2011-02-01

    The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review the research work that we have done toward the development of an 'Ising model' of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which cells transition between states (proliferative, hypoxic and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to study the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. We then describe how to incorporate angiogenesis as well as the heterogeneous and confined environment in which a tumor grows in the CA model. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently discussed. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility

  1. Toward an Ising Model of Cancer and Beyond

    PubMed Central

    Torquato, Salvatore

    2011-01-01

    The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review resarch work that we have done toward the development of an “Ising model” of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which healthy cells transition between states (proliferative, hypoxic, and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to model the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. How angiogenesis as well as the heterogeneous and confined environment in which a tumor grows is incorporated in the CA model is discussed. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently described. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell

  2. Toward an Ising model of cancer and beyond

    NASA Astrophysics Data System (ADS)

    Torquato, Salvatore

    2011-02-01

    The holy grail of tumor modeling is to formulate theoretical and computational tools that can be utilized in the clinic to predict neoplastic progression and propose individualized optimal treatment strategies to control cancer growth. In order to develop such a predictive model, one must account for the numerous complex mechanisms involved in tumor growth. Here we review the research work that we have done toward the development of an 'Ising model' of cancer. The Ising model is an idealized statistical-mechanical model of ferromagnetism that is based on simple local-interaction rules, but nonetheless leads to basic insights and features of real magnets, such as phase transitions with a critical point. The review begins with a description of a minimalist four-dimensional (three dimensions in space and one in time) cellular automaton (CA) model of cancer in which cells transition between states (proliferative, hypoxic and necrotic) according to simple local rules and their present states, which can viewed as a stripped-down Ising model of cancer. This model is applied to study the growth of glioblastoma multiforme, the most malignant of brain cancers. This is followed by a discussion of the extension of the model to study the effect on the tumor dynamics and geometry of a mutated subpopulation. A discussion of how tumor growth is affected by chemotherapeutic treatment, including induced resistance, is then described. We then describe how to incorporate angiogenesis as well as the heterogeneous and confined environment in which a tumor grows in the CA model. The characterization of the level of organization of the invasive network around a solid tumor using spanning trees is subsequently discussed. Then, we describe open problems and future promising avenues for future research, including the need to develop better molecular-based models that incorporate the true heterogeneous environment over wide range of length and time scales (via imaging data), cell motility

  3. The Ising Model Applied on Chronification of Pain

    PubMed Central

    2016-01-01

    This is a hypothesis-article suggesting an entirely new framework for understanding and treating longstanding pain. Most medical and psychological models are described with boxes and arrows. Such models are of little clinical and explanatory use when describing the phenomenon of chronification of pain due to unknown causes. To date no models that have been provided - and tested in a scientific satisfactory way - lays out a plan for specific assessment due to a specific causal explanation, and in the end serves the clinicians, patients and researcher with tools on how to address the specific pain condition to every individual pain patient's condition. By applying the Ising model (from physics) on the phenomenon of chronification of pain, one is able to detangle all these factors, and thus have a model that both suggests an explanation of the condition and outlines how one might target the treatment of chronic pain patients with the use of network science. PMID:26398917

  4. Quantum cluster algorithm for frustrated Ising models in a transverse field

    NASA Astrophysics Data System (ADS)

    Biswas, Sounak; Rakala, Geet; Damle, Kedar

    2016-06-01

    Working within the stochastic series expansion framework, we introduce and characterize a plaquette-based quantum cluster algorithm for quantum Monte Carlo simulations of transverse field Ising models with frustrated Ising exchange interactions. As a demonstration of the capabilities of this algorithm, we show that a relatively small ferromagnetic next-nearest-neighbor coupling drives the transverse field Ising antiferromagnet on the triangular lattice from an antiferromagnetic three-sublattice ordered state at low temperature to a ferrimagnetic three-sublattice ordered state.

  5. Planar ordering in the plaquette-only gonihedric Ising model

    NASA Astrophysics Data System (ADS)

    Mueller, Marco; Janke, Wolfhard; Johnston, Desmond A.

    2015-05-01

    In this paper we conduct a careful multicanonical simulation of the isotropic 3d plaquette ("gonihedric") Ising model and confirm that a planar, fuki-nuke type order characterises the low-temperature phase of the model. From consideration of the anisotropic limit of the model we define a class of order parameters which can distinguish the low- and high-temperature phases in both the anisotropic and isotropic cases. We also verify the recently voiced suspicion that the order parameter like behaviour of the standard magnetic susceptibility χm seen in previous Metropolis simulations was an artefact of the algorithm failing to explore the phase space of the macroscopically degenerate low-temperature phase. χm is therefore not a suitable order parameter for the model.

  6. Driven-dissipative Ising model: Mean-field solution

    NASA Astrophysics Data System (ADS)

    Goldstein, G.; Aron, C.; Chamon, C.

    2015-11-01

    We study the fate of the Ising model and its universal properties when driven by a rapid periodic drive and weakly coupled to a bath at equilibrium. The far-from-equilibrium steady-state regime is accessed by means of a Floquet mean-field approach. We show that, depending on the details of the bath, the drive can strongly renormalize the critical temperature to higher temperatures, modify the critical exponents, or even change the nature of the phase transition from second to first order after the emergence of a tricritical point. Moreover, by judiciously selecting the frequency of the field and by engineering the spectrum of the bath, one can drive a ferromagnetic Hamiltonian to an antiferromagnetically ordered phase and vice versa.

  7. Robust criticality of an Ising model on rewired directed networks

    NASA Astrophysics Data System (ADS)

    Lipowski, Adam; Gontarek, Krzysztof; Lipowska, Dorota

    2015-06-01

    We show that preferential rewiring, which is supposed to mimic the behavior of financial agents, changes a directed-network Ising ferromagnet with a single critical point into a model with robust critical behavior. For the nonrewired random graph version, due to a constant number of out-links for each site, we write a simple mean-field-like equation describing the behavior of magnetization; we argue that it is exact and support the claim with extensive Monte Carlo simulations. For the rewired version, this equation is obeyed only at low temperatures. At higher temperatures, rewiring leads to strong heterogeneities, which apparently invalidates mean-field arguments and induces large fluctuations and divergent susceptibility. Such behavior is traced back to the formation of a relatively small core of agents that influence the entire system.

  8. Reentrance of disorder in the anisotropic shuriken Ising model

    NASA Astrophysics Data System (ADS)

    Pohle, Rico; Benton, Owen; Jaubert, L. D. C.

    2016-07-01

    Frustration is often a key ingredient for reentrance mechanisms. Here we study the frustrated anisotropic shuriken Ising model, where it is possible to extend the notion of reentrance between disordered phases, i.e., in absence of phase transitions. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature, in a classical analogy with a quantum critical point. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau and a multistep Curie law crossover. Our theory is developed based on Monte Carlo simulations, analytical Husimi-tree calculations and an exact decoration-iteration transformation. Its relevance to experiments, in particular, artificial lattices, is discussed.

  9. Droplet model for autocorrelation functions in an Ising ferromagnet

    NASA Technical Reports Server (NTRS)

    Tang, Chao; Nakanishi, Hiizu; Langer, J. S.

    1989-01-01

    The autocorrelation function of Ising spins in an ordered phase is studied via a droplet model. Only noninteracting spherical droplets are considered. The Langevin equation which describes fluctuations in the radius of a single droplet is studied in detail. A general description of the transformation to a Fokker-Planck equations and the ways in which a spectral analysis of that equation can be used to compute the autocorrelation function is given. It is shown that the eigenvalues of the Fokker-Planck operator form (1) a continuous spectrum of relaxation rates starting from zero for d = 2, (2) a continuous spectrum with a finite gap for d = 3, and (3) a discrete spectrum for d greater than 4, where d is the spatial dimensionality. Detailed solutions for various cases are presented.

  10. Homogenization models for 2-D grid structures

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Cioranescu, D.; Rebnord, D. A.

    1992-01-01

    In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.

  11. 2D model of the Nucleus

    NASA Astrophysics Data System (ADS)

    Lach, Theodore M.

    2003-10-01

    The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.

  12. Linear relaxation in large two-dimensional Ising models

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Wang, F.

    2016-02-01

    Critical dynamics in two-dimension Ising lattices up to 2048 ×2048 is simulated on field-programmable-gate-array- based computing devices. Linear relaxation times are measured from extremely long Monte Carlo simulations. The longest simulation has 7.1 ×1016 spin updates, which would take over 37 years to simulate on a general purpose computer. The linear relaxation time of the Ising lattices is found to follow the dynamic scaling law for correlation lengths as long as 2048. The dynamic exponent z of the system is found to be 2.179(12), which is consistent with previous studies of Ising lattices with shorter correlation lengths. It is also found that Monte Carlo simulations of critical dynamics in Ising lattices larger than 512 ×512 are very sensitive to the statistical correlations between pseudorandom numbers, making it even more difficult to study such large systems.

  13. An Ising model of transcription polarity in bacterial chromosomes

    NASA Astrophysics Data System (ADS)

    Baran, Robert H.; Ko, Hanseok

    2006-04-01

    Bacterial genes form clusters of the same transcription polarity and typically exhibit a preference to be coded on the leading strand of replication. An Ising model is proposed to quantify these two phenomena by analogy to the behavior of magnetic dipoles (spins) in a one-dimensional lattice. Corresponding to magnetic forces that co-orient adjacent spins and align them with an externally applied field, we imagine pseudo-forces that influence transcription polarity. Bonds of uniform strength {1}/{2} J between adjacent sites will model the adhesive (or repulsive) interactions while a polarity entraining force of strength H has the direction of replication. Ten bacterial chromosomes are reduced to spin configurations from which the model parameters are estimated by the method of maximum likelihood under the assumption of thermal equilibrium, following the application of established methods to locate replication origins and termini. χ 2-tests show that the model fits the data well in about half the cases but cluster size exhibits excess variance in general. These findings lead to a speculative interpretation of the pseudo-forces as the net effects of numerous insertions and deletions that succeed or fail according to their impact on the motions of enzymatic complexes involved in replication and transcription.

  14. The gonihedric paradigm extension of the Ising model

    NASA Astrophysics Data System (ADS)

    Savvidy, George

    2015-11-01

    In this paper we review a recently suggested generalization of the Feynman path integral to an integral over random surfaces. The proposed action is proportional to the linear size of the random surfaces and is called gonihedric. The convergence and the properties of the partition function are analyzed. The model can also be formulated as a spin system with identical partition functions. The spin system represents a generalization of the Ising model with ferromagnetic, antiferromagnetic and quartic interactions. Higher symmetry of the model allows to construct dual spin systems in three and four dimensions. In three dimensions the transfer matrix describes the propagation of closed loops and we found its exact spectrum. It is a unique exact solution of the three-dimensional statistical spin system. In three and four dimensions, the system exhibits the second-order phase transitions. The gonihedric spin systems have exponentially degenerated vacuum states separated by the potential barriers and can be used as a storage of binary information.

  15. Differential geometry of the space of Ising models

    NASA Astrophysics Data System (ADS)

    Machta, Benjamin; Chachra, Ricky; Transtrum, Mark; Sethna, James

    2012-02-01

    We use information geometry to understand the emergence of simple effective theories, using an Ising model perturbed with terms coupling non-nearest-neighbor spins as an example. The Fisher information is a natural metric of distinguishability for a parameterized space of probability distributions, applicable to models in statistical physics. Near critical points both the metric components (four-point susceptibilities) and the scalar curvature diverge with corresponding critical exponents. However, connections to Renormalization Group (RG) ideas have remained elusive. Here, rather than looking at RG flows of parameters, we consider the reparameterization-invariant flow of the manifold itself. To do this we numerically calculate the metric in the original parameters, taking care to use only information available after coarse-graining. We show that under coarse-graining the metric contracts very anisotropically, leading to a ``sloppy'' spectrum with the metric's Eigenvalues spanning many orders of magnitude. Our results give a qualitative explanation for the success of simple models: most directions in parameter space become fundamentally indistinguishable after coarse-graining.

  16. Modeling Dark Energy Through AN Ising Fluid with Network Interactions

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Tommasini, Damiano

    2014-12-01

    We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.

  17. Topological defects on the lattice: I. The Ising model

    NASA Astrophysics Data System (ADS)

    Aasen, David; Mong, Roger S. K.; Fendley, Paul

    2016-09-01

    In this paper and its sequel, we construct topologically invariant defects in two-dimensional classical lattice models and quantum spin chains. We show how defect lines commute with the transfer matrix/Hamiltonian when they obey the defect commutation relations, cousins of the Yang–Baxter equation. These relations and their solutions can be extended to allow defect lines to branch and fuse, again with properties depending only on topology. In this part I, we focus on the simplest example, the Ising model. We define lattice spin-flip and duality defects and their branching, and prove they are topological. One useful consequence is a simple implementation of Kramers–Wannier duality on the torus and higher genus surfaces by using the fusion of duality defects. We use these topological defects to do simple calculations that yield exact properties of the conformal field theory describing the continuum limit. For example, the shift in momentum quantization with duality-twisted boundary conditions yields the conformal spin 1/16 of the chiral spin field. Even more strikingly, we derive the modular transformation matrices explicitly and exactly.

  18. Technical Review of the UNET2D Hydraulic Model

    SciTech Connect

    Perkins, William A.; Richmond, Marshall C.

    2009-05-18

    The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.

  19. Mathematical structure of the three-dimensional (3D) Ising model

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Dong

    2013-03-01

    An overview of the mathematical structure of the three-dimensional (3D) Ising model is given from the points of view of topology, algebra, and geometry. By analyzing the relationships among transfer matrices of the 3D Ising model, Reidemeister moves in the knot theory, Yang-Baxter and tetrahedron equations, the following facts are illustrated for the 3D Ising model. 1) The complex quaternion basis constructed for the 3D Ising model naturally represents the rotation in a (3+1)-dimensional space-time as a relativistic quantum statistical mechanics model, which is consistent with the 4-fold integrand of the partition function obtained by taking the time average. 2) A unitary transformation with a matrix that is a spin representation in 2n·l·o-space corresponds to a rotation in 2n·l·o-space, which serves to smooth all the crossings in the transfer matrices and contributes the non-trivial topological part of the partition function of the 3D Ising model. 3) A tetrahedron relationship would ensure the commutativity of the transfer matrices and the integrability of the 3D Ising model, and its existence is guaranteed by the Jordan algebra and the Jordan-von Neumann-Wigner procedures. 4) The unitary transformation for smoothing the crossings in the transfer matrices changes the wave functions by complex phases varphix, varphiy, and varphiz. The relationship with quantum field and gauge theories and the physical significance of the weight factors are discussed in detail. The conjectured exact solution is compared with numerical results, and the singularities at/near infinite temperature are inspected. The analyticity in β = 1/(kBT) of both the hard-core and the Ising models has been proved only for β > 0, not for β = 0. Thus the high-temperature series cannot serve as a standard for judging a putative exact solution of the 3D Ising model.

  20. Constrained variational problem with applications to the Ising model

    NASA Astrophysics Data System (ADS)

    Schonmann, Roberto H.; Shlosman, Senya B.

    1996-06-01

    We continue our study of the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h, initiated in our earlier work. We strengthen further a result previously proven by Martirosyan at low enough temperature, which roughly states that for finite systems with (-)-boundary conditions under a positive external field, the boundary effect dominates in the system if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the system. In our earlier work this result was extended to every subcritical value of the temperature. Here for every subcritical value of the temperature we show the existence of a critical value B 0 (T) which separates the two regimes specified above. We also find the asymptotic shape of the region occupied by the (+)-phase in the second regime, which turns out to be a "squeezed Wulff shape". The main step in our study is the solution of the variational problem of finding the curve minimizing the Wulff functional, which curve is constrained to the unit square. Other tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, extended to all temperatures below the critical one.

  1. Critical behavior of the Ising model on random fractals

    NASA Astrophysics Data System (ADS)

    Monceau, Pascal

    2011-11-01

    We study the critical behavior of the Ising model in the case of quenched disorder constrained by fractality on random Sierpinski fractals with a Hausdorff dimension df≃1.8928. This is a first attempt to study a situation between the borderline cases of deterministic self-similarity and quenched randomness. Intensive Monte Carlo simulations were carried out. Scaling corrections are much weaker than in the deterministic cases, so that our results enable us to ensure that finite-size scaling holds, and that the critical behavior is described by a new universality class. The hyperscaling relation is compatible with an effective dimension equal to the Hausdorff one; moreover the two eigenvalues exponents of the renormalization flows are shown to be different from the ones calculated from ɛ expansions, and from the ones obtained for fourfold symmetric deterministic fractals. Although the space dimensionality is not integer, lack of self-averaging properties exhibits some features very close to the ones of a random fixed point associated with a relevant disorder.

  2. Information theoretic aspects of the two-dimensional Ising model.

    PubMed

    Lau, Hon Wai; Grassberger, Peter

    2013-02-01

    We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2H(L)(w)-H(2L)(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the "excess entropy" for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms et al., and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality. PMID:23496480

  3. Information theoretic aspects of the two-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Lau, Hon Wai; Grassberger, Peter

    2013-02-01

    We present numerical results for various information theoretic properties of the square lattice Ising model. First, using a bond propagation algorithm, we find the difference 2HL(w)-H2L(w) between entropies on cylinders of finite lengths L and 2L with open end cap boundaries, in the limit L→∞. This essentially quantifies how the finite length correction for the entropy scales with the cylinder circumference w. Secondly, using the transfer matrix, we obtain precise estimates for the information needed to specify the spin state on a ring encircling an infinitely long cylinder. Combining both results, we obtain the mutual information between the two halves of a cylinder (the “excess entropy” for the cylinder), where we confirm with higher precision but for smaller systems the results recently obtained by Wilms , and we show that the mutual information between the two halves of the ring diverges at the critical point logarithmically with w. Finally, we use the second result together with Monte Carlo simulations to show that also the excess entropy of a straight line of n spins in an infinite lattice diverges at criticality logarithmically with n. We conjecture that such logarithmic divergence happens generically for any one-dimensional subset of sites at any two-dimensional second-order phase transition. Comparing straight lines on square and triangular lattices with square loops and with lines of thickness 2, we discuss questions of universality.

  4. ±J Ising model on homogeneous Archimedean lattices

    NASA Astrophysics Data System (ADS)

    Valdés, J. F.; Lebrecht, W.; Vogel, E. E.

    2012-04-01

    We tackle the problem of finding analytical expressions describing the ground state properties of homogeneous Archimedean lattices over which a generalized Edwards-Anderson model (±J Ising model) is defined. A local frustration analysis is performed based on representative cells for square lattices, triangular lattices and honeycomb lattices. The concentration of ferromagnetic (F) bonds x is used as the independent variable in the analysis (1-x is the concentration for antiferromagnetic (A) bonds), where x spans the range [0.0,1.0]. The presence of A bonds brings frustration, whose clear manifestation is when bonds around the minimum possible circuit of bonds (plaquette) cannot be simultaneously satisfied. The distribution of curved (frustrated) plaquettes within the representative cell is determinant for the evaluation of the parameters of interest such as average frustration segment, energy per bond, and fractional content of unfrustrated bonds. Two methods are developed to cope with this analysis: one based on the direct probability of a plaquette being curved; the other one is based on the consideration of the different ways bonds contribute to the particular plaquette configuration. Exact numerical simulations on a large number of randomly generated samples allow to validate previously described theoretical analysis. It is found that the second method presents slight advantages over the first one. However, both methods give an excellent description for most of the range for x. The small deviations at specific intervals of x for each lattice have to do with the self-imposed limitations of both methods due to practical reasons. A particular discussion for the point x=0.5 for each one of the lattices also shines light on the general trends of the properties described here.

  5. An Intercomparison of 2-D Models Within a Common Framework

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations

  6. Hyperinflation in the Ising model on quasiperiodic chains

    NASA Astrophysics Data System (ADS)

    Odagaki, T.

    1990-02-01

    Using a hyperinflation rule, the free energy of the two component Ising system on a chain with an arbitrary quasiperiodic order is shown to be given by an average of the free energy of each component, in agreement with the result obtained by the transfer matrix formalism.

  7. 2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster

    NASA Technical Reports Server (NTRS)

    Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.

  8. Exact solution of the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice

    NASA Astrophysics Data System (ADS)

    Strečka, Jozef

    2006-01-01

    A star-triangle mapping transformation is used to establish an exact correspondence between the spin-1/2 Ising model on the Shastry Sutherland (orthogonal-dimer) lattice and respectively, the spin-1/2 Ising model on a bathroom tile (4 8) lattice. Exact results for the critical temperature and spontaneous magnetization are obtained and compared with corresponding results on the regular Ising lattices.

  9. 2 1/2 -D compressible reconnection model

    NASA Astrophysics Data System (ADS)

    Skender, M.; Vršnak, B.

    The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.

  10. Cyclic period-3 window in antiferromagnetic potts and Ising models on recursive lattices

    NASA Astrophysics Data System (ADS)

    Ananikian, N. S.; Ananikyan, L. N.; Chakhmakhchyan, L. A.

    2011-09-01

    The magnetic properties of the antiferromagnetic Potts model with two-site interaction and the antiferromagnetic Ising model with three-site interaction on recursive lattices have been studied. A cyclic period-3 window has been revealed by the recurrence relation method in the antiferromagnetic Q-state Potts model on the Bethe lattice (at Q < 2) and in the antiferromagnetic Ising model with three-site interaction on the Husimi cactus. The Lyapunov exponents have been calculated, modulated phases and a chaotic regime in the cyclic period-3 window have been found for one-dimensional rational mappings determined the properties of these systems.

  11. The Critical Z-Invariant Ising Model via Dimers: Locality Property

    NASA Astrophysics Data System (ADS)

    Boutillier, Cédric; de Tilière, Béatrice

    2011-01-01

    We study a large class of critical two-dimensional Ising models, namely critical Z-invariant Ising models. Fisher (J Math Phys 7:1776-1781, 1966) introduced a correspondence between the Ising model and the dimer model on a decorated graph, thus setting dimer techniques as a powerful tool for understanding the Ising model. In this paper, we give a full description of the dimer model corresponding to the critical Z-invariant Ising model, consisting of explicit expressions which only depend on the local geometry of the underlying isoradial graph. Our main result is an explicit local formula for the inverse Kasteleyn matrix, in the spirit of Kenyon (Invent Math 150(2):409-439, 2002), as a contour integral of the discrete exponential function of Mercat (Discrete period matrices and related topics, 2002) and Kenyon (Invent Math 150(2):409-439, 2002) multiplied by a local function. Using results of Boutillier and de Tilière (Prob Theor Rel Fields 147(3-4):379-413, 2010) and techniques of de Tilière (Prob Th Rel Fields 137(3-4):487-518, 2007) and Kenyon (Invent Math 150(2):409-439, 2002), this yields an explicit local formula for a natural Gibbs measure, and a local formula for the free energy. As a corollary, we recover Baxter's formula for the free energy of the critical Z-invariant Ising model (Baxter, in Exactly solved models in statistical mechanics, Academic Press, London, 1982), and thus a new proof of it. The latter is equal, up to a constant, to the logarithm of the normalized determinant of the Laplacian obtained in Kenyon (Invent Math 150(2):409-439, 2002).

  12. Minority-spin dynamics in the nonhomogeneous Ising model: Diverging time scales and exponents

    NASA Astrophysics Data System (ADS)

    Mullick, Pratik; Sen, Parongama

    2016-05-01

    We investigate the dynamical behavior of the Ising model under a zero-temperature quench with the initial fraction of up spins 0 ≤x ≤1 . In one dimension, the known results for persistence probability are verified; it shows algebraic decay for both up and down spins asymptotically with different exponents. It is found that the conventional finite-size scaling is valid here. In two dimensions, however, the persistence probabilities are no longer algebraic; in particular for x ≤0.5 , persistence for the up (minority) spins shows the behavior Pmin(t ) ˜t-γexp[-(t/τ ) δ] with time t , while for the down (majority) spins, Pmaj(t ) approaches a finite value. We find that the timescale τ diverges as (xc-x ) -λ, where xc=0.5 and λ ≃2.31 . The exponent γ varies as θ2 d+c0(xc-x ) β where θ2 d≃0.215 is very close to the persistence exponent in two dimensions; β ≃1 . The results in two dimensions can be understood qualitatively by studying the exit probability, which for different system size is found to have the form E (x ) =f [(x/-xc xc) L1 /ν] , with ν ≈1.47 . This result suggests that τ ˜Lz ˜ , where z ˜=λ/ν =1.57 ±0.11 is an exponent not explored earlier.

  13. Ising-model description of long-range correlations in DNA sequences

    NASA Astrophysics Data System (ADS)

    Colliva, A.; Pellegrini, R.; Testori, A.; Caselle, M.

    2015-05-01

    We model long-range correlations of nucleotides in the human DNA sequence using the long-range one-dimensional (1D) Ising model. We show that, for distances between 103 and 106 bp, the correlations show a universal behavior and may be described by the non-mean-field limit of the long-range 1D Ising model. This allows us to make some testable hypothesis on the nature of the interaction between distant portions of the DNA chain which led to the DNA structure that we observe today in higher eukaryotes.

  14. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models.

    PubMed

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics--from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the 'Emerging Intelligence Market Hypothesis' to reconcile the pervasive presence of 'noise traders' with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets. PMID:24875470

  15. Physics and financial economics (1776-2014): puzzles, Ising and agent-based models

    NASA Astrophysics Data System (ADS)

    Sornette, Didier

    2014-06-01

    This short review presents a selected history of the mutual fertilization between physics and economics—from Isaac Newton and Adam Smith to the present. The fundamentally different perspectives embraced in theories developed in financial economics compared with physics are dissected with the examples of the volatility smile and of the excess volatility puzzle. The role of the Ising model of phase transitions to model social and financial systems is reviewed, with the concepts of random utilities and the logit model as the analog of the Boltzmann factor in statistical physics. Recent extensions in terms of quantum decision theory are also covered. A wealth of models are discussed briefly that build on the Ising model and generalize it to account for the many stylized facts of financial markets. A summary of the relevance of the Ising model and its extensions is provided to account for financial bubbles and crashes. The review would be incomplete if it did not cover the dynamical field of agent-based models (ABMs), also known as computational economic models, of which the Ising-type models are just special ABM implementations. We formulate the ‘Emerging Intelligence Market Hypothesis’ to reconcile the pervasive presence of ‘noise traders’ with the near efficiency of financial markets. Finally, we note that evolutionary biology, more than physics, is now playing a growing role to inspire models of financial markets.

  16. Self-Organizing Two-Temperature Ising Model Describing Human Segregation

    NASA Astrophysics Data System (ADS)

    Ódor, Géza

    A two-temperature Ising-Schelling model is introduced and studied for describing human segregation. The self-organized Ising model with Glauber kinetics simulated by Müller et al. exhibits a phase transition between segregated and mixed phases mimicking the change of tolerance (local temperature) of individuals. The effect of external noise is considered here as a second temperature added to the decision of individuals who consider a change of accommodation. A numerical evidence is presented for a discontinuous phase transition of the magnetization.

  17. Degenerate Ising model for atomistic simulation of crystal-melt interfaces

    SciTech Connect

    Schebarchov, D.; Schulze, T. P.; Hendy, S. C.

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level.

  18. Degenerate Ising model for atomistic simulation of crystal-melt interfaces.

    PubMed

    Schebarchov, D; Schulze, T P; Hendy, S C

    2014-02-21

    One of the simplest microscopic models for a thermally driven first-order phase transition is an Ising-type lattice system with nearest-neighbour interactions, an external field, and a degeneracy parameter. The underlying lattice and the interaction coupling constant control the anisotropic energy of the phase boundary, the field strength represents the bulk latent heat, and the degeneracy quantifies the difference in communal entropy between the two phases. We simulate the (stochastic) evolution of this minimal model by applying rejection-free canonical and microcanonical Monte Carlo algorithms, and we obtain caloric curves and heat capacity plots for square (2D) and face-centred cubic (3D) lattices with periodic boundary conditions. Since the model admits precise adjustment of bulk latent heat and communal entropy, neither of which affect the interface properties, we are able to tune the crystal nucleation barriers at a fixed degree of undercooling and verify a dimension-dependent scaling expected from classical nucleation theory. We also analyse the equilibrium crystal-melt coexistence in the microcanonical ensemble, where we detect negative heat capacities and find that this phenomenon is more pronounced when the interface is the dominant contributor to the total entropy. The negative branch of the heat capacity appears smooth only when the equilibrium interface-area-to-volume ratio is not constant but varies smoothly with the excitation energy. Finally, we simulate microcanonical crystal nucleation and subsequent relaxation to an equilibrium Wulff shape, demonstrating the model's utility in tracking crystal-melt interfaces at the atomistic level. PMID:24559357

  19. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  20. Modelling RF sources using 2-D PIC codes

    SciTech Connect

    Eppley, K.R.

    1993-03-01

    In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.

  1. Unitary matrix models and 2D quantum gravity

    SciTech Connect

    Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )

    1992-09-21

    In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.

  2. 2D numerical modelling of meandering channel formation

    NASA Astrophysics Data System (ADS)

    XIAO, Y.; ZHOU, G.; YANG, F. S.

    2016-03-01

    A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.

  3. Brane brick models and 2 d (0 , 2) triality

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-05-01

    We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.

  4. One-dimensional random field Ising model and discrete stochastic mappings

    SciTech Connect

    Behn, U.; Zagrebnov, V.A.

    1987-06-01

    Previous results relating the one-dimensional random field Ising model to a discrete stochastic mapping are generalized to a two-valued correlated random (Markovian) field and to the case of zero temperature. The fractal dimension of the support of the invariant measure is calculated in a simple approximation and its dependence on the physical parameters is discussed.

  5. Spontaneous magnetization of the Ising model on the union jack and 4-6 lattices

    NASA Astrophysics Data System (ADS)

    Lin, K. Y.; Wang, S. C.

    1988-03-01

    Spontaneous magnetization of the Ising model on the anisotropic Union Jack and 4-6 lattices are derived exactly. The conjecture by Lin and Wang is confirmed. Our result is a generalization of the recent work on the isotropic Union Jack lattice by Choy and Baxter.

  6. Spontaneous magnetization of the Ising model on a 4-8 lattice

    NASA Astrophysics Data System (ADS)

    Lin, K. Y.

    1988-03-01

    Spontaneous magnetization of the Ising model on a 4-8 lattice is derived. The result agrees with the conjecture of Lin, Kao and Chen. Our derivation is closely related to the recent work of Choy and Baxter on the isotropic Union Jack lattice.

  7. Experimental validation of 2D profile photoresist shrinkage model

    NASA Astrophysics Data System (ADS)

    Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex

    2011-03-01

    For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary

  8. A 2D channel-clogging biofilm model.

    PubMed

    Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G

    2015-09-01

    We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390

  9. Mass loss in 2D rotating stellar models

    SciTech Connect

    Lovekin, Caterine; Deupree, Bob

    2010-10-05

    Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.

  10. 2D Quantum Transport Modeling in Nanoscale MOSFETs

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.

  11. An analysis of intergroup rivalry using Ising model and reinforcement learning

    NASA Astrophysics Data System (ADS)

    Zhao, Feng-Fei; Qin, Zheng; Shao, Zhuo

    2014-01-01

    Modeling of intergroup rivalry can help us better understand economic competitions, political elections and other similar activities. The result of intergroup rivalry depends on the co-evolution of individual behavior within one group and the impact from the rival group. In this paper, we model the rivalry behavior using Ising model. Different from other simulation studies using Ising model, the evolution rules of each individual in our model are not static, but have the ability to learn from historical experience using reinforcement learning technique, which makes the simulation more close to real human behavior. We studied the phase transition in intergroup rivalry and focused on the impact of the degree of social freedom, the personality of group members and the social experience of individuals. The results of computer simulation show that a society with a low degree of social freedom and highly educated, experienced individuals is more likely to be one-sided in intergroup rivalry.

  12. Cascading rainfall uncertainties into 2D inundation impact models

    NASA Astrophysics Data System (ADS)

    Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David

    2013-04-01

    Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is

  13. Graphical Representations for Ising and Potts Models in General External Fields

    NASA Astrophysics Data System (ADS)

    Cioletti, Leandro; Vila, Roberto

    2016-01-01

    This work is concerned with the theory of graphical representation for the Ising and Potts models over general lattices with non-translation invariant external field. We explicitly describe in terms of the random-cluster representation the distribution function and, consequently, the expected value of a single spin for the Ising and q-state Potts models with general external fields. We also consider the Gibbs states for the Edwards-Sokal representation of the Potts model with non-translation invariant magnetic field and prove a version of the FKG inequality for the so called general random-cluster model (GRC model) with free and wired boundary conditions in the non-translation invariant case. Adding the amenability hypothesis on the lattice, we obtain the uniqueness of the infinite connected component and the almost sure quasilocality of the Gibbs measures for the GRC model with such general magnetic fields. As a final application of the theory developed, we show the uniqueness of the Gibbs measures for the ferromagnetic Ising model with a positive power-law decay magnetic field with small enough power, as conjectured in Bissacot et al. (Commun Math Phys 337: 41-53, 2015).

  14. Phase diagram of the three-dimensional axial next-nearest-neighbor Ising model

    NASA Astrophysics Data System (ADS)

    Gendiar, A.; Nishino, T.

    2005-01-01

    The three-dimensional axial next-nearest-neighbor Ising model is studied by a modified tensor product variational approach. A global phase diagram is constructed with numerous commensurate and incommensurate magnetic phases. The devil’s stairs behavior for the model is confirmed. The wavelength of the spin modulated phases increases to infinity at the boundary with the ferromagnetic phase. Widths of the commensurate phases are considerably narrower than those calculated by mean-field approximations.

  15. A universal form of slow dynamics in zero-temperature random-field Ising model

    NASA Astrophysics Data System (ADS)

    Ohta, H.; Sasa, S.

    2010-04-01

    The zero-temperature Glauber dynamics of the random-field Ising model describes various ubiquitous phenomena such as avalanches, hysteresis, and related critical phenomena. Here, for a model on a random graph with a special initial condition, we derive exactly an evolution equation for an order parameter. Through a bifurcation analysis of the obtained equation, we reveal a new class of cooperative slow dynamics with the determination of critical exponents.

  16. Dannie Heineman Prize for Mathematical Physics Prize Lecture: Correlation Functions in Integrable Models: Ising Model and Monodromy Preserving Deformation

    NASA Astrophysics Data System (ADS)

    Miwa, Tetsuji

    2013-03-01

    Studies on integrable models in statistical mechanics and quantum field theory originated in the works of Bethe on the one-dimensional quantum spin chain and the work of Onsager on the two-dimensional Ising model. I will talk on the discovery in 1977 of the link between quantum field theory in the scaling limit of the two-dimensional Ising model and the theory of monodromy preserving linear ordinary differential equations. This work was the staring point of our journey with Michio Jimbo in integrable models, the journey which finally led us to the exact results on the correlation functions of quantum spin chains in 1992.

  17. Effects of Agent's Repulsion in 2d Flocking Models

    NASA Astrophysics Data System (ADS)

    Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya

    In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.

  18. 2-D Model for Normal and Sickle Cell Blood Microcirculation

    NASA Astrophysics Data System (ADS)

    Tekleab, Yonatan; Harris, Wesley

    2011-11-01

    Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].

  19. Ab initio modeling of 2D layered organohalide lead perovskites.

    PubMed

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-28

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557

  20. 2-D Inhomogeneous Modeling of the Solar CO Bands

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.

    1996-05-01

    The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.

  1. Ab initio modeling of 2D layered organohalide lead perovskites

    NASA Astrophysics Data System (ADS)

    Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio

    2016-04-01

    A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.

  2. Magnetic and Ising quantum phase transitions in a model for isoelectronically tuned iron pnictides

    NASA Astrophysics Data System (ADS)

    Wu, Jianda; Si, Qimiao; Abrahams, Elihu

    2016-03-01

    Considerations of the observed bad-metal behavior in Fe-based superconductors led to an early proposal for quantum criticality induced by isoelectronic P for As doping in iron arsenides, which has since been experimentally confirmed. We study here an effective model for the isoelectronically tuned pnictides using a large-N approach. The model contains antiferromagnetic and Ising-nematic order parameters appropriate for J1-J2 exchange-coupled local moments on an Fe square lattice, and a damping caused by coupling to itinerant electrons. The zero-temperature magnetic and Ising transitions are concurrent and essentially continuous. The order-parameter jumps are very small, and are further reduced by the interplane coupling; consequently, quantum criticality occurs over a wide dynamical range. Our results reconcile recent seemingly contradictory experimental observations concerning the quantum phase transition in the P-doped iron arsenides.

  3. The Ising Model on a Quenched Ensemble of c=-5 Gravity Graphs

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, K. N.; Bialas, P.; Thorleifsson, G.

    1999-02-01

    We study with Monte Carlo methods an ensemble of c=-5 gravity graphs, generated by coupling a conformal field theory with central charge c=-5 to two-dimensional quantum gravity. We measure the fractal properties of the ensemble, such as the string susceptibility exponent γ s and the intrinsic fractal dimension d H. We find γ s=-1.5(1) and d H=3.36(4), in reasonable agreement with theoretical predictions. In addition, we study the critical behavior of an Ising model on a quenched ensemble of the c=-5 graphs and show that it agrees, within numerical accuracy, with theoretical predictions for the critical behavior of an Ising model coupled dynamically to two-dimensional quantum gravity, with a total central charge of the matter sector c=-5.

  4. Rényi information flow in the Ising model with single-spin dynamics.

    PubMed

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n-index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase. PMID:25615223

  5. Rényi information flow in the Ising model with single-spin dynamics

    NASA Astrophysics Data System (ADS)

    Deng, Zehui; Wu, Jinshan; Guo, Wenan

    2014-12-01

    The n -index Rényi mutual information and transfer entropies for the two-dimensional kinetic Ising model with arbitrary single-spin dynamics in the thermodynamic limit are derived as functions of ensemble averages of observables and spin-flip probabilities. Cluster Monte Carlo algorithms with different dynamics from the single-spin dynamics are thus applicable to estimate the transfer entropies. By means of Monte Carlo simulations with the Wolff algorithm, we calculate the information flows in the Ising model with the Metropolis dynamics and the Glauber dynamics, respectively. We find that not only the global Rényi transfer entropy, but also the pairwise Rényi transfer entropy, peaks in the disorder phase.

  6. Ising-like phase transition of an n-component Eulerian face-cubic model

    NASA Astrophysics Data System (ADS)

    Ding, Chengxiang; Guo, Wenan; Deng, Youjin

    2013-11-01

    By means of Monte Carlo simulations and a finite-size scaling analysis, we find a critical line of an n-component Eulerian face-cubic model on the square lattice and the simple cubic lattice in the region v>1, where v is the bond weight. The phase transition belongs to the Ising universality class independent of n. The critical properties of the phase transition can also be captured by the percolation of the complement of the Eulerian graph.

  7. The magnetic susceptibility on the transverse antiferromagnetic Ising model: Analysis of the reentrant behavior

    NASA Astrophysics Data System (ADS)

    Neto, Minos A.; de Sousa, J. Ricardo; Padilha, Igor T.; Rodriguez Salmon, Octavio D.; Roberto Viana, J.; Dinóla Neto, F.

    2016-06-01

    We study the three-dimensional antiferromagnetic Ising model in both uniform longitudinal (H) and transverse (Ω) magnetic fields by using the effective-field theory (EFT) with finite cluster N = 1 spin (EFT-1). We analyzed the behavior of the magnetic susceptibility to investigate the reentrant phenomena that we have seen in the same phase diagram previously obtained in other papers. Our results shows the presence of two divergences in the susceptibility that indicates the existence of a reentrant behavior.

  8. Smeared quantum phase transition in the dissipative random quantum Ising model

    NASA Astrophysics Data System (ADS)

    Vojta, Thomas; Hoyos, José A.

    2010-01-01

    We investigate the quantum phase transition in the random transverse-field Ising model under the influence of Ohmic dissipation. To this end, we numerically implement a strong-disorder renormalization-group scheme. We find that Ohmic dissipation destroys the quantum critical point and the associated quantum Griffiths phase by smearing. Our results quantitatively confirm a recent theory [J.A. Hoyos, T. Vojta, Phys. Rev. Lett. 100 (2008) 240601] of smeared quantum phase transitions.

  9. Form factors in the Bullough-Dodd-related models: The Ising model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Alekseev, O. V.

    2012-11-01

    We consider a certain modification of the free-field representation of the form factors in the Bullough-Dodd model. The two-particle minimal form factors are eliminated from the construction. We consequently obtain a convenient representation for the multiparticle form factors, establish recurrence relations between them, and study their properties. We use the proposed construction to obtain the free-field representation of form factors for the lightest particles in the Φ 1,2 -perturbed minimal models. As an important example, we consider the Ising model in a magnetic field. We verify that the results obtained in the framework of the proposed free-field representation agree with the corresponding results obtained by solving the bootstrap equations.

  10. Form factors in the Bullough-Dodd related models: The Ising model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Alekseev, O. V.

    2012-04-01

    A particular modification of the free-field representation of the form factors in the Bullough-Dodd model is considered. The two-particles minimal form factors are excluded from the construction. As a consequence, a convenient representation for the multiparticle form factors has been obtained, recurrence relations between them have been established, and their properties have been studied. The proposed construction is used to obtain the free-field representation of the lightest particles form factors in the Φ1, 2 perturbed minimal models. The Ising model in a magnetic field is considered as a significant example. The results obtained in the framework of the proposed free-field representation are in agreement with the corresponding results obtained by solving the bootstrap equations.

  11. The Finite-Size Scaling Relation for the Order-Parameter Probability Distribution of the Six-Dimensional Ising Model

    NASA Astrophysics Data System (ADS)

    Merdan, Ziya; Karakuş, Özlem

    2016-07-01

    The six dimensional Ising model with nearest-neighbor pair interactions has been simulated and verified numerically on the Creutz Cellular Automaton by using five bit demons near the infinite-lattice critical temperature with the linear dimensions L=4,6,8,10. The order parameter probability distribution for six dimensional Ising model has been calculated at the critical temperature. The constants of the analytical function have been estimated by fitting to probability function obtained numerically at the finite size critical point.

  12. A 2D electrohydrodynamic model for electrorotation of fluid drops.

    PubMed

    Feng, James Q

    2002-02-01

    A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391

  13. 2D modeling of electromagnetic waves in cold plasmas

    SciTech Connect

    Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.

    2014-02-12

    The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.

  14. Numerical modeling of seismogram envelopes in 2-D random media

    NASA Astrophysics Data System (ADS)

    Fehler, Michael

    2002-11-01

    Several portions of seismograms recorded from regional earthquakes cannot be easily explained as resulting from waves propagating along deterministic paths within the Earth. For example, seismic coda, which is the tail portion of the seismogram of an earthquake recorded at distances of less than 100 km, is considered as resulting from waves that are multiply scattered from random heterogeneities in the Earth's lithosphere. At greater distances, observations that the duration of the initial arriving wave packet is much longer than the source-time duration is explained as being due to multiple forward scattering along the path between the source and the receiver. To investigate these phenomena, we use a finite difference method to numerically simulate 2-D scalar-waves that propagate through random media characterized by a von Karman autocorrelation function. Such media are considered to be appropriate models for the random component of the structure of the Earth's lithosphere. We investigate the characteristics of the resulting wavefields and compare them with those of observed seismograms.

  15. VAM2D: Variably saturated analysis model in two dimensions

    SciTech Connect

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.

  16. Inference of the sparse kinetic Ising model using the decimation method.

    PubMed

    Decelle, Aurélien; Zhang, Pan

    2015-05-01

    In this paper we study the inference of the kinetic Ising model on sparse graphs by the decimation method. The decimation method, which was first proposed in Decelle and Ricci-Tersenghi [Phys. Rev. Lett. 112, 070603 (2014)] for the static inverse Ising problem, tries to recover the topology of the inferred system by setting the weakest couplings to zero iteratively. During the decimation process the likelihood function is maximized over the remaining couplings. Unlike the ℓ(1)-optimization-based methods, the decimation method does not use the Laplace distribution as a heuristic choice of prior to select a sparse solution. In our case, the whole process can be done auto-matically without fixing any parameters by hand. We show that in the dynamical inference problem, where the task is to reconstruct the couplings of an Ising model given the data, the decimation process can be applied naturally into a maximum-likelihood optimization algorithm, as opposed to the static case where pseudolikelihood method needs to be adopted. We also use extensive numerical studies to validate the accuracy of our methods in dynamical inference problems. Our results illustrate that, on various topologies and with different distribution of couplings, the decimation method outperforms the widely used ℓ(1)-optimization-based methods. PMID:26066148

  17. Field lines and magnetic surfaces in a two-component slab/2D model of interplanetary magnetic fluctuations

    NASA Technical Reports Server (NTRS)

    Matthaeus, W. H.; Pontius, D. H., Jr.; Gray, P. C.; Bieber, J. W.

    1995-01-01

    A two-component model for the spectrum of interplanetary magnetic fluctuations was proposed on the basis of ISEE observations, and has found an intriguing level of application in other solar wind studies. The model fluctuations consist of a fraction of 'slab' fluctuations, varying only in the direction parallel to the locally uniform mean magnetic field B(0) and a complement of 2D (two-dimensional) fluctuations that vary in the directions transverse to B(0). We have developed an spectral method computational algorithm for computing the magnetic flux surfaces (flux tubes) associated with the composite model, based upon a precise analogy with equations for ideal transport of a passive scalar in planar two dimensional geometry. Visualization of various composite models will be presented, including the 80 percent 2D/ 20 percent slab model with delta B/B(0) approximately equals 1 and a minus 5/3 spectral law, that is thought to approximately represent a snapshot of solar wind turbulence. Characteristically, the visualizations show that flux tubes, even when defined as regular on some plane, shred and disperse rapidly as they are viewed along the parallel direction. This diffusive process, which generalizes the standard picture of field line random walk, will be discussed in detail. Evidently, the traditional picture that flux tubes randomize like strands of spaghetti with a uniform tangle along the axial direction is in need of modification.

  18. Predicting Fracture Using 2D Finite Element Modeling

    PubMed Central

    MacNeil, J.A.M.; Adachi, J.D; Goltzman, D; Josse, R.G; Kovacs, C.S; Prior, J.C; Olszynski, W; Davison, K.S.; Kaiser, S.M

    2013-01-01

    A decrease in bone density at the hip or spine has been shown to increase the risk of fracture. A limitation of the bone mineral density (BMD) measurement is that it provides only a measure of a bone samples average density when projected onto a 2D surface. Effectively, what determines bone fracture is whether an applied load exceeds ultimate strength, with both bone tissue material properties (can be approximated through bone density), and geometry playing a role. The goal of this project was to use bone geometry and BMD obtained from radiographs and DXA measurements respectively to estimate fracture risk, using a two-dimensional finite element model (FEM) of the sagittal plane of lumbar vertebrae. The Canadian Multicenter Osteoporosis Study (CaMos) data was used for this study. There were 4194 men and women over the age of 50 years, with 786 having fractures. Each subject had BMD testing and radiographs of their lumbar vertebrae. A single two dimensional FEM of the first to fourth lumbar vertebra was automatically generated for each subject. Bone tissue stiffness was assigned based on the BMD of the individual vertebrae, and adjusted for patient age. Axial compression boundary conditions were applied with a force proportional to body mass. The resulting overall strain from the applied force was found. Men and women were analyzed separately. At baseline, the sensitivity of BMD to predict fragility fractures in women and men was 3.77 % and 0.86 %, while the sensitivity of FEM to predict fragility fractures for women and men was 10.8 % and 11.3 %. The FEM ROC curve demonstrated better performance compared to BMD. The relative risk of being considered at high fracture risk using FEM at baseline, was a better predictor of 5 year incident fragility fracture risk compared to BMD. PMID:21959170

  19. A 2-D modeling contribution to river training design

    NASA Astrophysics Data System (ADS)

    Anselmo, V.; Coccato, M.; Frank, E.; Guiot, E.

    2003-04-01

    In the last ten years, two major floods (1994 and 2000) occurred in North-western Italy and a few questions arose about the hydraulic behavior of the streams as well about the choice and design of protection works. The River Po Authority is oriented to assign "design flows" in selected cross sections of the main rivers, as a design constraint to land management and river training in the upstream areas. Since the region has been fully developed in the last century and somewhere it is overcrowded, space for spreading flood flows is strongly reduced, while large partially developed areas are prone to flooding and residents ask for being protected. A first question regards the contribution to flood peak reduction of the still existing flood prone undeveloped areas beside the main channels, and a second question is about the best way to improve such a behavior. A 2-D unsteady model (Sobek, originated by Delft Hydraulics) was applied to a 25 km reach of the upper River Po. The effects of major floods was investigated, proving that the reduction of the peak flow is minor mainly because of the rather high slope (0.0015) and of the flood volume (500·106 m3). Aiming to enhance the role of the flooded areas, a few types of river training schemes were checked, with particular attention to the so called "Po system". Depth and extension of compartments are the main variables. Results are interesting, but must be evaluated in front of the cost-benefit analysis. The investigation is being extended to more steep stream reaches (up to 0.01), which are representative of the main upper Po tributaries.

  20. Phase diagram and critical behavior of the antiferromagnetic Ising model in an external field

    NASA Astrophysics Data System (ADS)

    Jeferson Lourenço, Bruno; Dickman, Ronald

    2016-03-01

    We study the critical properties of the antiferromagnetic spin-1/2 Ising model in an external field on the square lattice. Using tomographic entropic sampling, a flat-histogram simulation method, we estimate the number of configurations, Ω , and related microcanonical averages in the energy-magnetization space, for system sizes L  =  10-30. The critical line and exponents are calculated using finite-size scaling analysis in the temperature-external field plane. With these estimates in hand, we perform detailed studies of critical behavior using Metropolis sampling of larger systems (L≤slant 320 ). These results are compared to several approximate theoretical methods. Our estimates of critical exponents and Binder’s reduced fourth cumulant along the critical line are in very good agreement with their respective literature values for the two-dimensional Ising universality class. We verify as well that the specific heat scales ˜ \\ln L along the critical line, as expected for an Ising-like critical point.

  1. Phase transition of p-adic Ising λ-model

    SciTech Connect

    Dogan, Mutlay; Akın, Hasan; Mukhamedov, Farrukh

    2015-09-18

    We consider an interaction of the nearest-neighbors and next nearest-neighbors for the mixed type p-adic λ-model with spin values (−1, +1) on a Cayley tree of order two. In the previous work we have proved the existence of the p-adic Gibbs measure for the model. In this work we have proved the existence of the phase transition occurs for the model.

  2. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  3. Ising type models applied to Geophysics and high frequency market data

    NASA Astrophysics Data System (ADS)

    Mariani, M. C.; Bezdek, P.; Serpa, L.; Florescu, I.

    2011-11-01

    The classical Ising model was used to re-create the ferromagnetic phenomenon in statistical mechanics. The model describes the behavior of atoms in a lattice. Each atom may interact only with its neighbors, and has two states called spins. When the atoms polarize their spins, the resulting material exhibits a net magnetization. A similar model has been used before in financial math: the spins correspond to the buy/sell position of a trader and the polarization is equivalent with all the traders in the market wanting to sell. This leads to a market crash. In this work, we present extensions and applications to geophysics and high frequency market data.

  4. Influence of the aspect ratio and boundary conditions on universal finite-size scaling functions in the athermal metastable two-dimensional random field Ising model.

    PubMed

    Navas-Portella, Víctor; Vives, Eduard

    2016-02-01

    This work studies universal finite size scaling functions for the number of one-dimensional spanning avalanches in a two-dimensional (2D) disordered system with boundary conditions of different nature and different aspect ratios. To this end, we will consider the 2D random field Ising model at T=0 driven by the external field H with athermal dynamics implemented with periodic and forced boundary conditions. We have chosen a convenient scaling variable z that accounts for the deformation of the distance to the critical point caused by the aspect ratio. In addition, assuming that the dependence of the finite size scaling functions on the aspect ratio can be accounted for by an additional multiplicative factor, we have been able to collapse data for different system sizes, different aspect ratios, and different types of the boundary conditions into a single scaling function Q̂. PMID:26986310

  5. Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets

    NASA Astrophysics Data System (ADS)

    Sornette, Didier; Zhou, Wei-Xing

    2006-10-01

    Following a long tradition of physicists who have noticed that the Ising model provides a general background to build realistic models of social interactions, we study a model of financial price dynamics resulting from the collective aggregate decisions of agents. This model incorporates imitation, the impact of external news and private information. It has the structure of a dynamical Ising model in which agents have two opinions (buy or sell) with coupling coefficients, which evolve in time with a memory of how past news have explained realized market returns. We study two versions of the model, which differ on how the agents interpret the predictive power of news. We show that the stylized facts of financial markets are reproduced only when agents are overconfident and mis-attribute the success of news to predict return to herding effects, thereby providing positive feedbacks leading to the model functioning close to the critical point. Our model exhibits a rich multifractal structure characterized by a continuous spectrum of exponents of the power law relaxation of endogenous bursts of volatility, in good agreement with previous analytical predictions obtained with the multifractal random walk model and with empirical facts.

  6. Two-dimensional XXZ -Ising model on a square-hexagon lattice

    NASA Astrophysics Data System (ADS)

    Valverde, J. S.; Rojas, Onofre; de Souza, S. M.

    2009-04-01

    We study a two-dimensional XXZ -Ising model on a square-hexagon (denoted for simplicity by 4-6) lattice with spin 1/2. The phase diagram at zero temperature is discussed, where five states are found, two types of ferrimagnetic states, two types of antiferromagnetic states, and one ferromagnetic state. To solve this model, we have mapped onto the eight-vertex model with union Jack interaction term, and it was verified that the model cannot be completely mapped onto eight-vertex model. However, by imposing an exact solution condition, we have found the region where the XXZ -Ising model on 4-6 lattice is exactly soluble with one free parameter, particularly for the case of symmetric eight-vertex model condition. In this manner we have explored the properties of the system and have analyzed the interacting competition parameters which preserve the region where there is an exact solution. Unfortunately the present model does not satisfy the free fermion condition of the eight-vertex model, unless for a trivial solution. Even so, we are able to discuss the critical point region, beyond the region of exact resolvability.

  7. Ultrafast vectorized multispin coding algorithm for the Monte Carlo simulation of the 3D Ising model

    NASA Astrophysics Data System (ADS)

    Wansleben, Stephan

    1987-02-01

    A new Monte Carlo algorithm for the 3D Ising model and its implementation on a CDC CYBER 205 is presented. This approach is applicable to lattices with sizes between 3·3·3 and 192·192·192 with periodic boundary conditions, and is adjustable to various kinetic models. It simulates a canonical ensemble at given temperature generating a new random number for each spin flip. For the Metropolis transition probability the speed is 27 ns per updates on a two-pipe CDC Cyber 205 with 2 million words physical memory, i.e. 1.35 times the cycle time per update or 38 million updates per second.

  8. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  9. LETTER TO THE EDITOR: Frustration in Ising-type spin models on the pyrochlore lattice

    NASA Astrophysics Data System (ADS)

    Bramwell, S. T.; Harris, M. J.

    1998-04-01

    We compare the behaviour of ferromagnetic and antiferromagnetic Ising-type spin models on the cubic pyrochlore lattice. With simple `up - down' Ising spins, the antiferromagnet is highly frustrated and the ferromagnet is not. However, such spin symmetry cannot be realized on the pyrochlore lattice, since it requires a unique symmetry axis, which is incompatible with the cubic symmetry. The only two-state spin symmetry which is compatible is that with four local 0953-8984/10/14/002/img5 anisotropy axes, which direct the spins to point in or out of the tetrahedral plaquettes of the pyrochlore lattice. We show how the local `in - out' magnetic anisotropy reverses the roles of the ferro- and antiferromagnetic exchange couplings with regard to frustration, such that the ferromagnet is highly frustrated and the antiferromagnet is not. The in - out ferromagnet is a magnetic analogue of the ice model, which we have termed the `spin ice model'. It is realized in the material 0953-8984/10/14/002/img6. The up - down antiferromagnet is also an analogue of the ice model, albeit a less direct one, as originally shown by Anderson. Combining these results shows that the up - down spin models map onto the in - out spin models with the opposite sign of the exchange coupling. We present Monte Carlo simulations of the susceptibility for each model, and discuss their relevance to experimental systems.

  10. From Cycle Rooted Spanning Forests to the Critical Ising Model: an Explicit Construction

    NASA Astrophysics Data System (ADS)

    de Tilière, Béatrice

    2013-04-01

    Fisher established an explicit correspondence between the 2-dimensional Ising model defined on a graph G and the dimer model defined on a decorated version {{G}} of this graph (Fisher in J Math Phys 7:1776-1781, 1966). In this paper we explicitly relate the dimer model associated to the critical Ising model and critical cycle rooted spanning forests (CRSFs). This relation is established through characteristic polynomials, whose definition only depends on the respective fundamental domains, and which encode the combinatorics of the model. We first show a matrix-tree type theorem establishing that the dimer characteristic polynomial counts CRSFs of the decorated fundamental domain {{G}_1}. Our main result consists in explicitly constructing CRSFs of {{G}_1} counted by the dimer characteristic polynomial, from CRSFs of G 1, where edges are assigned Kenyon's critical weight function (Kenyon in Invent Math 150(2):409-439, 2002); thus proving a relation on the level of configurations between two well known 2-dimensional critical models.

  11. Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree

    NASA Astrophysics Data System (ADS)

    Mukhamedov, Farrukh; Barhoumi, Abdessatar; Souissi, Abdessatar

    2016-05-01

    The main aim of the present paper is to prove the existence of a phase transition in quantum Markov chain (QMC) scheme for the Ising type models on a Cayley tree. Note that this kind of models do not have one-dimensional analogous, i.e. the considered model persists only on trees. In this paper, we provide a more general construction of forward QMC. In that construction, a QMC is defined as a weak limit of finite volume states with boundary conditions, i.e. QMC depends on the boundary conditions. Our main result states the existence of a phase transition for the Ising model with competing interactions on a Cayley tree of order two. By the phase transition we mean the existence of two distinct QMC which are not quasi-equivalent and their supports do not overlap. We also study some algebraic property of the disordered phase of the model, which is a new phenomena even in a classical setting.

  12. Three-spin interaction Ising model with a nondegenerate ground state at zero applied field

    NASA Astrophysics Data System (ADS)

    Bidaux, R.; Boccara, N.; Forgàcs, G.

    1986-10-01

    The field-temperature phase diagram of a two-dimensional, three-spin interaction Ising model is studied using two different methods: mean field approximation and numerical transfer matrix techniques. The former leads to a rather rich phase diagram in which two separate phases with different symmetries can be found, and which presents first-order transition lines, a triple point, and a critical end point, like the solid-liquid-gas phase diagram of a pure compound. The numerical transfer matrix study confirms part of these results, but does not clearly evidence the existence of the less symmetric phase.

  13. Onsager and Kaufman's Calculation of the Spontaneous Magnetization of the Ising Model

    NASA Astrophysics Data System (ADS)

    Baxter, R. J.

    2011-11-01

    Lars Onsager announced in 1949 that he and Bruria Kaufman had proved a simple formula for the spontaneous magnetization of the square-lattice Ising model, but did not publish their derivation. It was three years later when C.N. Yang published a derivation in Physical Review. In 1971 Onsager gave some clues to his and Kaufman's method, and there are copies of their correspondence in 1950 now available on the Web and elsewhere. Here we review how the calculation appears to have developed, and add a copy of a draft paper, almost certainly by Onsager and Kaufman, that obtains the result.

  14. Condensation of helium in aerogel and athermal dynamics of the random-field Ising model.

    PubMed

    Aubry, Geoffroy J; Bonnet, Fabien; Melich, Mathieu; Guyon, Laurent; Spathis, Panayotis; Despetis, Florence; Wolf, Pierre-Etienne

    2014-08-22

    High resolution measurements reveal that condensation isotherms of (4)He in high porosity silica aerogel become discontinuous below a critical temperature. We show that this behavior does not correspond to an equilibrium phase transition modified by the disorder induced by the aerogel structure, but to the disorder-driven critical point predicted for the athermal out-of-equilibrium dynamics of the random-field Ising model. Our results evidence the key role of nonequilibrium effects in the phase transitions of disordered systems. PMID:25192103

  15. Statics and Dynamics of a Two-Dimensional Ising Spin-Glass Model

    NASA Astrophysics Data System (ADS)

    Young, A. P.

    1983-03-01

    The temperature and field dependence of spatial correlations and relaxation times are investigated in detail by Monte Carlo simulations for a two-dimensional Ising spin-glass model. There is no transition, but, in zero field, barrier heights and correlation range increase smoothly at low temperatures. This increase does not seem to be fast enough to explain experiments. In a field, barrier heights and the correlation length tend to a finite limit as T-->0. Points in the h-T plane with constant relaxation time satisfy T(h)-T(0)~h23 at moderately low temperatures.

  16. Exact results for the site-dilute antiferromagnetic Ising model on finite triangular lattices

    NASA Astrophysics Data System (ADS)

    Farach, H. A.; Creswick, R. J.; Poole, C. P., Jr.

    1988-04-01

    Exact analytical and numerical results for the site-diluted antiferromagnetic Ising model on the triangular lattice (AFIT) are presented. For infinitesimal dilution the change in the free energy of the system is related to the distribution of local fields, and it is shown that for a frustrated system such as the AFIT, dilution lowers the entropy per spin. For lattices of finite size and dilution the transfer matrix for the partition function is evaluated numerically. The entropy per spin shows a marked minimum near a concentration of spins x=0.70, in some disagreement with earlier transfer-matrix results.

  17. An Ising-like model for monolayer-monolayer coupling in lipid bilayers

    NASA Astrophysics Data System (ADS)

    Sornbundit, Kan; Modchang, Charin; Nuttavut, Narin; Ngamsaad, Waipot; Triampo, Darapond; Triampo, Wannapong

    2013-07-01

    We have proposed the Ising bilayer model to study the domain growth dynamics in lipid bilayers. Interactions within and between layers are adopted from recent experimental and theoretical data. We investigate the effects of the mismatch area on the domain coarsening dynamics in both symmetric and asymmetric lipid bilayers. To explore domain coarsening, we used the Monte Carlo (MC) method with a standard Kawasaki dynamics to simulate the systems. The results show that domains on both layers grow following a power-law and that the domains grow slower when the mismatch areas are increased.

  18. Finite-size scaling and the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Bhanot, G.; Duke, D.; Salvador, R.

    1986-06-01

    We give results of an extensive finite-size-scaling analysis of the three-dimensional Ising model on lattices of size up to 443. Contrary to the results of Barber et al.

    [Phys. Rev. B 32, 1720 (1720)]
    , our data show a smooth approach to the thermodynamic limit for all the lattice sizes we studied. We estimate from our data that γ/ν=1.964(3). We also describe a method to implement the Metropolis algorithm using only logical commands. Our program currently achieves a speed of one spin update approximately every 11 nsec (93 million updates per second) on a 2-pipe CDC CYBER 205.

  19. Saturation field entropies of antiferromagnetic Ising models: Ladders and the kagome lattice

    NASA Astrophysics Data System (ADS)

    Varma, Vipin Kerala

    2013-10-01

    Saturation field entropies of antiferromagnetic Ising models on quasi-one-dimensional lattices (ladders) and the kagome lattice are calculated. The former is evaluated exactly by constructing the corresponding transfer matrices, while the latter calculation uses Binder's algorithm for efficiently and exactly computing the partition function of over 1300 spins to give Skag/kB=0.393589(6). We comment on the relation of the kagome lattice to the experimental situation in the spin-ice compound Dy2Ti2O7.

  20. The Ising model for changes in word ordering rules in natural languages

    NASA Astrophysics Data System (ADS)

    Itoh, Yoshiaki; Ueda, Sumie

    2004-11-01

    The order of ‘noun and adposition’ is an important parameter of word ordering rules in the world’s languages. The seven parameters, ‘adverb and verb’ and others, depend strongly on the ‘noun and adposition’. Japanese as well as Korean, Tamil and several other languages seem to have a stable structure of word ordering rules, while Thai and other languages, which have the opposite word ordering rules to Japanese, are also stable in structure. It seems therefore that each language in the world fluctuates between these two structures like the Ising model for finite lattice.

  1. Supporting Kibble-Zurek Mechanism in Quantum Ising Model through a Trapped Ion

    NASA Astrophysics Data System (ADS)

    Hu, Changkang; Cui, Jinming; Huang, Yunfeng; Wang, Zhao; Cao, Dongyang; Wang, Jian; Lv, Weimin; Lu, Yong; Luo, Le; Campo, Adolfo; Han, Yongjian; Li, Chuanfeng; Guo, Guangcan

    The Kibble-Zurek mechanism is the paradigm to account for the non adiabatic dynamics of a system across a phase transition. Its study in the quantum regime is hindered by the requisite of ground state cooling. We report the experimental quantum simulation of critical dynamics in the transverse-field Ising model by a set of Landau-Zener crossings in pseudo-momentum space, that can be probed with high accuracy using a single trapped ion. Our results support the Kibble-Zurek mechanism in the quantum regime and advance the quantum simulation of critical systems far-away from equilibrium.

  2. The Ising model for prediction of disordered residues from protein sequence alone

    NASA Astrophysics Data System (ADS)

    Lobanov, Michail Yu; Galzitskaya, Oxana V.

    2011-06-01

    Intrinsically disordered regions serve as molecular recognition elements, which play an important role in the control of many cellular processes and signaling pathways. It is useful to be able to predict positions of disordered residues and disordered regions in protein chains using protein sequence alone. A new method (IsUnstruct) based on the Ising model for prediction of disordered residues from protein sequence alone has been developed. According to this model, each residue can be in one of two states: ordered or disordered. The model is an approximation of the Ising model in which the interaction term between neighbors has been replaced by a penalty for changing between states (the energy of border). The IsUnstruct has been compared with other available methods and found to perform well. The method correctly finds 77% of disordered residues as well as 87% of ordered residues in the CASP8 database, and 72% of disordered residues as well as 85% of ordered residues in the DisProt database.

  3. Analysis of the phase transition for the Ising model on the frustrated square lattice

    NASA Astrophysics Data System (ADS)

    Kalz, Ansgar; Honecker, Andreas; Moliner, Marion

    2011-11-01

    We analyze the phase transition of the frustrated J1-J2 Ising model with antiferromagnetic nearest- and strong next-nearest-neighbor interactions on the square lattice. Using extensive Monte Carlo simulations we show that the nature of the phase transition for 1/2model. Starting from the conformally invariant fixed point of two decoupled critical Ising models (J1=0), we calculate the effect of the nearest-neighbor coupling term perturbatively using operator product expansions. As an effective action we obtain the Ashkin-Teller model.

  4. Flocking with discrete symmetry: The two-dimensional active Ising model

    NASA Astrophysics Data System (ADS)

    Solon, A. P.; Tailleur, J.

    2015-10-01

    We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.

  5. The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension

    ERIC Educational Resources Information Center

    Rayanto, Yudi Hari; Rusmawan, Putu Ngurah

    2016-01-01

    The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…

  6. A simulation of the mixed spin 3-spin 3/2 ferrimagnetic Ising model

    NASA Astrophysics Data System (ADS)

    Özkan, Aycan

    2016-01-01

    The mixed spin 3-spin 3/2 ferrimagnetic Ising model was simulated using cooling algorithm on cellular automaton (CA). The simulations were carried out in the intervals -4 ≤ DA/J ≤ 8 and -4 ≤ DB/J ≤ 8 for the square lattices with periodic boundary conditions. The ground-state phase diagram of the model has different types of ferrimagnetic phases. Although only the antiferromagnetic nearest-neighbor interaction was contained in the Hamiltonian, the compensation points emerged through DA/J = 2 at kT/J = 0. The values of the critical exponents (ν, α , β and γ) were estimated within the framework of the finite-size scaling theory and power-law relations for the selected DA/J values (-2, 0, 1, 2, and 4). The estimated critical exponent values were in good agreement with the universal values of the two-dimensional Ising model (ν = 1, α = α‧ = 0, β = 0.125, β‧ = 0.875 and γ = γ‧ = 1.75).

  7. Noncyclic geometric quantum computation and preservation of entanglement for a two-qubit Ising model

    NASA Astrophysics Data System (ADS)

    Rangani Jahromi, H.; Amniat-Talab, M.

    2015-10-01

    After presenting an exact analytical solution of time-dependent Schrödinger equation, we study the dynamics of entanglement for a two-qubit Ising model. One of the spin qubits is driven by a static magnetic field applied in the direction of the Ising interaction, while the other is coupled with a rotating magnetic field. We also investigate how the entanglement can be controlled by changing the external parameters. Because of the important role of maximally entangled Bell states in quantum communication, we focus on the generalized Bell states as the initial states of the system. It is found that the entanglement evolution is independent of the initial Bell states. Moreover, we can preserve the initial maximal entanglement by adjusting the angular frequency of the rotating field or controlling the exchange coupling between spin qubits. Besides, our calculation shows that the entanglement dynamics is unaffected by the static magnetic field imposed in the direction of the Ising interaction. This is an interesting result, because, as we shall show below, this driving field can be used to control and manipulate the noncyclic geometric phase without affecting the system entanglement. Besides, the nonadiabatic and noncyclic geometric phase for evolved states of the present system are calculated and described in detail. In order to identify the unusable states for quantum communication, completely deviated from the initial maximally entangled states, we also study the fidelity between the initial Bell state and the evolved state of the system. Interestingly, we find that these unusable states can be detected by geometric quantum computation.

  8. An Incompressible 2D Didactic Model with Singularity and Explicit Solutions of the 2D Boussinesq Equations

    NASA Astrophysics Data System (ADS)

    Chae, Dongho; Constantin, Peter; Wu, Jiahong

    2014-09-01

    We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.

  9. The sign-factor of the 3D Ising model on dual BCC lattice

    NASA Astrophysics Data System (ADS)

    Khachatryan, Sh.; Sedrakyan, A.

    2002-01-01

    We modify the two-dimensional model for the sign-factor of the regular 3D Ising model (3DIM) presented by Kavalov and Sedrakyan (Phys. Lett. 173B (1986) 449 and Nucl. Phys. 285B (1987) 264) for the case of dual to body centered cubic (DBCC) three-dimensional lattice. The advantage of this lattice is in an absence of self-intersections of the two-dimensional surfaces embedded there. We investigate simpler case of the model with scalar fermions (instead of SU(2) needed for 3DIM) and have found it's spectrum, which appeared to be massless. We reformulate the model by use of R-matrix formalism and a new interesting structure appears in a necessity to introduce three-particle R(3)ijk-matrices. We formulate the integrability property of the model for more general case.

  10. Long-range Ising and Kitaev models: phases, correlations and edge modes

    NASA Astrophysics Data System (ADS)

    Vodola, Davide; Lepori, Luca; Ercolessi, Elisa; Pupillo, Guido

    2016-05-01

    We analyze the quantum phases of the Ising chain with anti-ferromagnetic long-range interactions decaying with distance r as 1 /rα and of a related class of fermionic Hamiltonians generalising the Kitaev chain, with hopping and pairing terms long-range. We provide the phase diagram for all exponents α, based on an analysis of the entanglement entropy, the decay of correlation functions, and the edge modes in the case of open chains. We demonstrate that violations of the area law can occur for α < 1 , while correlation functions decay with a hybrid exponential and power-law behaviour. For the fermionic models we provide an exact analytical derivation for the decay of the correlation functions at every α. For the fermionic models we show that the edge modes, massless for α > 1 , acquire a mass for α < 1 . For the Ising chain a similar edge localization appears for the first and second excited states on the paramagnetic side of the phase diagram, where edge modes are not expected. We argue that, at least for the fermionic chains, these massive states correspond to the appearance of new phases, notably approached via quantum phase transitions without mass gap closure.

  11. Automata and the susceptibility of the square lattice Ising model modulo powers of primes

    NASA Astrophysics Data System (ADS)

    Guttmann, A. J.; Maillard, J.-M.

    2015-11-01

    We study the full susceptibility of the Ising model modulo powers of primes. We find exact functional equations for the full susceptibility modulo these primes. Revisiting some lesser-known results on discrete finite automata, we show that these results can be seen as a consequence of the fact that, modulo 2 r , one cannot distinguish the full susceptibility from some simple diagonals of rational functions which reduce to algebraic functions modulo 2 r , and, consequently, satisfy exact functional equations modulo 2 r . We sketch a possible physical interpretation of these functional equations modulo 2 r as reductions of a master functional equation corresponding to infinite order symmetries such as the isogenies of elliptic curves. One relevant example is the Landen transformation which can be seen as an exact generator of the Ising model renormalization group. We underline the importance of studying a new class of functions corresponding to ratios of diagonals of rational functions: they reduce to algebraic functions modulo powers of primes and they may have solutions with natural boundaries. Dedicated to R J Baxter, for his 75th birthday.

  12. Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system

    NASA Astrophysics Data System (ADS)

    Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng

    2016-03-01

    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena.

  13. Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system

    PubMed Central

    Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng

    2016-01-01

    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena. PMID:26951775

  14. Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system.

    PubMed

    Gong, Ming; Wen, Xueda; Sun, Guozhu; Zhang, Dan-Wei; Lan, Dong; Zhou, Yu; Fan, Yunyi; Liu, Yuhao; Tan, Xinsheng; Yu, Haifeng; Yu, Yang; Zhu, Shi-Liang; Han, Siyuan; Wu, Peiheng

    2016-01-01

    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching speed. Our results provide the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena. PMID:26951775

  15. Thermodynamic Comparison and the Ideal Glass Transition of Antiferromagnetic Ising Model on Multi-branched Husimi and Cubic Recursive Lattice with the Identical Coordination Number

    NASA Astrophysics Data System (ADS)

    Huang, Ran; Purushottam, D. Gujrati

    2015-09-01

    Two types of recursive lattices with the identical coordination number but different unit cells (2-D square and 3-D cube) are constructed and the antiferromagnetic Ising model is solved exactly on them to study the stable and metastable states. A multi-branched structure of the 2-D plaquette model, which we introduced in this work, makes it possible to be an analog to the cubic lattice. Two solutions of each model can be found to exhibit the crystallization of liquid, and the ideal glass transition of supercooled liquid respectively. Based on the solutions, the thermodynamics on both lattices, e.g. the free energy, energy density, and entropy of the supercooled liquid, crystal, and liquid state of the model are calculated and compared with each other. Interactions between particles farther away than the nearest neighbor distance and multi-spins interactions are taken into consideration, and their effects on the thermal behavior are examined. The two lattices show comparable properties on the thermodynamics, which proves that both of them are practical to describe the regular 3-D case, especially to locate the ideal glass transition, while the 2-D multi-branched plaquette model is less accurate with the advantage of simpler formulation and less computation time consumption. Supported by National Natural Science Foundation of China under Grant No. 11505110

  16. 2-D model of the streamer zone of a leader

    NASA Astrophysics Data System (ADS)

    Milikh, G. M.; Likhanskii, A. V.; Shneider, M. N.; Raina, A.; George, A.

    2016-02-01

    Formation of the streamer zone of a leader is an outstanding problem in the physics of electric discharges which is relevant to laboratory leaders, as well as to the leaders formed by lightning. Despite substantial progress in the theoretical understanding of this complicated phenomenon, significant puzzles, such as the low propagation velocity of a leader compared to the fast streamers, remain. The objective of this paper is to present 2-D plasma simulations of the formation and propagation of the streamer zone of a leader. In these simulations we will generate a group of streamers that propagate in a discharge gap while interacting with each other. It is shown that interaction between the streamers significantly reduces their propagation velocity. This explains why the leader, which consists of many streamers, is much slower than a single streamer formed in the same discharge gap. It is shown that the mean velocity suppression of the group of streamers is determined by the inter-streamer distance. The critical value of the packing factor of the streamers at which the interactions between them can be neglected, and thus the discussed process can be treated as caused by a single streamer, is obtained.

  17. Detect genuine multipartite entanglement in the one-dimensional transverse-field Ising model

    SciTech Connect

    Deng Dongling; Gu Shijian; Chen Jingling

    2010-02-15

    Recently Seevinck and Uffink argued that genuine multipartite entanglement (GME) had not been established in the experiments designed to confirm GME. In this paper, we use the Bell-type inequalities introduced by Seevinck and Svetlichny [M. Seevinck, G. Svetlichny, Phys. Rev. Lett. 89 (2002) 060401] to investigate the GME problem in the one-dimensional transverse-field Ising model. We show explicitly that the ground states of this model violate the inequality when the external transverse magnetic field is weak, which indicate that the ground states in this model with weak magnetic field are fully entangled. Since this model can be simulated with nuclear magnetic resonance, our results provide a fresh approach to experimental test of GME.

  18. Nonequilibrium dynamics of arbitrary-range Ising models with decoherence: An exact analytic solution

    NASA Astrophysics Data System (ADS)

    Foss-Feig, Michael; Hazzard, Kaden R. A.; Bollinger, John J.; Rey, Ana Maria

    2013-04-01

    The interplay between interactions and decoherence in many-body systems is of fundamental importance in quantum physics. In a step toward understanding this interplay, we obtain an exact analytic solution for the nonequilibrium dynamics of Ising models with arbitrary couplings (and therefore in arbitrary dimension) and subject to local Markovian decoherence. Our solution shows that decoherence significantly degrades the nonclassical correlations developed during coherent Ising spin dynamics, which relax much faster than predicted by treating decoherence and interactions separately. We also show that the competition of decoherence and interactions induces a transition from oscillatory to overdamped dynamics that is absent at the single-particle or mean-field level. These calculations are applicable to ongoing quantum information and emulation efforts using a variety of atomic, molecular, optical, and solid-state systems. In particular, we apply our results to the NIST Penning trapped-ion experiment and show that the current experiment is capable of producing entanglement amongst hundreds of quantum spins.

  19. Ising-nematic order in the bilinear-biquadratic model for the iron pnictides

    NASA Astrophysics Data System (ADS)

    Bilbao Ergueta, Patricia; Nevidomskyy, Andriy H.

    2015-10-01

    Motivated by the recent inelastic neutron scattering (INS) measurements in the iron pnictides which show a strong anisotropy of spin excitations even above the magnetic transition temperature TN, we study the spin dynamics within the frustrated Heisenberg model with biquadratic spin-spin exchange interactions. Using the Dyson-Maleev (DM) representation, which proves appropriate for all temperature regimes, we find that the spin-spin dynamical structure factors are in excellent agreement with experiment, exhibiting breaking of the C4 symmetry even into the paramagnetic region TNIsing-nematic phase. In addition to the Heisenberg spin interaction, we include the biquadratic coupling -K (Si.Sj) 2 and study its effect on the dynamical temperature range Tσ-TN of the Ising-nematic phase. We find that this range reduces dramatically when even small values of the interlayer exchange Jc and biquadratic coupling K are included. To supplement our analysis, we benchmark the results obtained using full decoupling in the DM method against those from different nonlinear spin-wave theories, including the recently developed generalized spin-wave theory (GSWT), and find good qualitative agreement among the different theoretical approaches as well as experiment for both the spin-wave dispersions and the dynamical structure factors.

  20. Emergent Ising degrees of freedom in the J1-J2-J3 model for the iron tellurides

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Fernandes, Rafael; Flint, Rebecca

    The iron-telluride family of superconductors form a double-stripe [ Q = (π / 2 , π / 2) ] magnetic order, which can be captured within a J1 -J2 -J3 Heisenberg model in the regime J3 >>J2 >>J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground state manifold has three additional Ising degrees of freedom. Via their coupling to the lattice, they give rise to a monoclinic distortion and to two non-uniform lattice distortions with wave-vector (π , π) . Because the ground state is four-fold degenerate (mod rotations in spin space), only two of these Ising order parameters are independent. Here we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order. All three transitions (corresponding to the condensations of two Ising and one magnetic order parameter) are simultaneous and first order in three dimensions, but lower dimensionality (or equivalently weaker interlayer coupling) and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions.

  1. Self-organizing Ising model of artificial financial markets with small-world network topology

    NASA Astrophysics Data System (ADS)

    Zhao, Haijie; Zhou, Jie; Zhang, Anghui; Su, Guifeng; Zhang, Yi

    2013-01-01

    We study a self-organizing Ising-like model of artificial financial markets with underlying small-world (SW) network topology. The asset price dynamics results from the collective decisions of interacting agents which are located on a small-world complex network (the nodes symbolize the agents of a financial market). The model incorporates the effects of imitation, the impact of external news and private information. We also investigate the influence of different network topologies, from regular lattice to random graph, on the asset price dynamics by adjusting the probability of the rewiring procedure. We find that a specific combination of model parameters reproduce main stylized facts of real-world financial markets.

  2. Parity Symmetry and Parity Breaking in the Quantum Rabi Model with Addition of Ising Interaction

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; He, Zhi; Yao, Chun-Mei

    2015-04-01

    We explore the possibility to generate new parity symmetry in the quantum Rabi model after a bias is introduced. In contrast to a mathematical treatment in a previous publication [J. Phys. A 46 (2013) 265302], we consider a physically realistic method by involving an additional spin into the quantum Rabi model to couple with the original spin by an Ising interaction, and then the parity symmetry is broken as well as the scaling behavior of the ground state by introducing a bias. The rule can be found that the parity symmetry is broken by introducing a bias and then restored by adding new degrees of freedom. Experimental feasibility of realizing the models under discussion is investigated. Supported by the National Natural Science Foundation of China under Grant Nos. 61475045 and 11347142, the Natural Science Foundation of Hunan Province, China under Grant No. 2015JJ3092

  3. Macroscopic degeneracy and order in the 3D plaquette Ising model

    NASA Astrophysics Data System (ADS)

    Johnston, Desmond A.; Mueller, Marco; Janke, Wolfhard

    2015-07-01

    The purely plaquette 3D Ising Hamiltonian with the spins living at the vertices of a cubic lattice displays several interesting features. The symmetries of the model lead to a macroscopic degeneracy of the low-temperature phase and prevent the definition of a standard magnetic order parameter. Consideration of the strongly anisotropic limit of the model suggests that a layered, “fuki-nuke” order still exists and we confirm this with multi-canonical simulations. The macroscopic degeneracy of the low-temperature phase also changes the finite-size scaling corrections at the first-order transition in the model and we see this must be taken into account when analyzing our measurements.

  4. Annealed Ising model with site dilution on self-similar structures

    NASA Astrophysics Data System (ADS)

    Silva, V. S. T.; Andrade, R. F. S.; Salinas, S. R.

    2014-11-01

    We consider an Ising model on the triangular Apollonian network (AN), with a thermalized distribution of vacant sites. The statistical problem is formulated in a grand canonical ensemble, in terms of the temperature T and a chemical potential μ associated with the concentration of active magnetic sites. We use a well-known transfer-matrix method, with a number of adaptations, to write recursion relations between successive generations of this hierarchical structure. We also investigate the analogous model on the diamond hierarchical lattice (DHL). From the numerical analysis of the recursion relations, we obtain various thermodynamic quantities. In the μ →∞ limit, we reproduce the results for the uniform models: in the AN, the system is magnetically ordered at all temperatures, while in the DHL there is a ferromagnetic-paramagnetic transition at a finite value of T . Magnetic ordering, however, is shown to disappear for sufficiently large negative values of the chemical potential.

  5. On discrete field theory properties of the dimer and Ising models and their conformal field theory limits

    SciTech Connect

    Kriz, Igor; Loebl, Martin; Somberg, Petr

    2013-05-15

    We study various mathematical aspects of discrete models on graphs, specifically the Dimer and the Ising models. We focus on proving gluing formulas for individual summands of the partition function. We also obtain partial results regarding conjectured limits realized by fermions in rational conformal field theories.

  6. Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian

    2016-04-01

    We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.

  7. 2D quantum double models from a 3D perspective

    NASA Astrophysics Data System (ADS)

    Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo

    2014-09-01

    In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.

  8. Theory and simulation of the dynamic heat capacity of the east Ising model.

    PubMed

    Brown, Jonathan R; McCoy, John D; Borchers, Brian

    2010-08-14

    A recently developed methodology for the calculation of the dynamic heat capacity from simulation is applied to the east Ising model. Results show stretched exponential relaxation with the stretching exponent, beta, decreasing with decreasing temperature. For low temperatures, the logarithm of the relaxation time is approximately proportional to the inverse of the temperature squared, which is the theoretical limiting behavior predicted by theories of facilitated dynamics. In addition, an analytical approach is employed where the overall relaxation is a composite of relaxation processes of subdomains, each with their own characteristic time. Using a Markov chain method, these times are computed both numerically and in closed form. The Markov chain results are seen to match the simulations at low temperatures and high frequencies. The dynamics of the east model are tracked very well by this analytic procedure, and it is possible to associate features of the spectrum of the dynamic heat capacity with specific domain relaxation events. PMID:20707576

  9. Modulated phases and chaotic behavior in a spin-1 Ising model with competing interactions

    NASA Astrophysics Data System (ADS)

    Tomé, Tânia; Salinas, S. R.

    1989-02-01

    We formulate the Blume-Capel spin-1 Ising model, with competing first- and second-neighbor interactions along the branches of a Cayley tree, in the infinite-coordination limit, as a discrete two-dimensional nonlinear mapping problem. The phase diagram displays multicritical points and many modulated phases. Mean-field calculations for the analogous model on a cubic lattice give the same qualitative results. We take advantage of the simplicity of the mapping to show the existence of complete devil's staircases, at low temperatures T, with increasing values of the Hausdorff dimensionality DF with T. We show that there are regions of the phase diagram associated with positive values of the Lyapunov exponents of the mapping, and we give strong numerical evidence to support the existence of a strange attractor with a Lyapunov dimension Dλ>1. We also find a route to chaos, according to the scenario of Feigenbaum, with a reasonable estimate of the exponent δ.

  10. Universal Finite Size Corrections and the Central Charge in Non-solvable Ising Models

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Mastropietro, Vieri

    2013-11-01

    We investigate a non-solvable two-dimensional ferromagnetic Ising model with nearest neighbor plus weak finite range interactions of strength λ. We rigorously establish one of the predictions of Conformal Field Theory (CFT), namely the fact that at the critical temperature the finite size corrections to the free energy are universal, in the sense that they are exactly independent of the interaction. The corresponding central charge, defined in terms of the coefficient of the first subleading term to the free energy, as proposed by Affleck and Blote-Cardy-Nightingale, is constant and equal to 1/2 for all and λ 0 a small but finite convergence radius. This is one of the very few cases where the predictions of CFT can be rigorously verified starting from a microscopic non solvable statistical model. The proof uses a combination of rigorous renormalization group methods with a novel partition function inequality, valid for ferromagnetic interactions.

  11. A set of exactly solvable Ising models with half-odd-integer spin

    NASA Astrophysics Data System (ADS)

    Rojas, Onofre; de Souza, S. M.

    2009-03-01

    We present a set of exactly solvable Ising models, with half-odd-integer spin- S on a square-type lattice including a quartic interaction term in the Hamiltonian. The particular properties of the mixed lattice, associated with mixed half-odd-integer spin- (S,1/2) and only nearest-neighbor interaction, allow us to map this system either onto a purely spin-1/2 lattice or onto a purely spin- S lattice. By imposing the condition that the mixed half-odd-integer spin- (S,1/2) lattice must have an exact solution, we found a set of exact solutions that satisfy the free fermion condition of the eight vertex model. The number of solutions for a general half-odd-integer spin- S is given by S+1/2. Therefore we conclude that this transformation is equivalent to a simple spin transformation which is independent of the coordination number.

  12. A fully coupled 2D model of equiaxed eutectic solidification

    SciTech Connect

    Charbon, Ch.; LeSar, R.

    1995-12-31

    We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.

  13. Improvement of a 2D numerical model of lava flows

    NASA Astrophysics Data System (ADS)

    Ishimine, Y.

    2013-12-01

    I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.

  14. Stratosphere chemistry in a 2-D model with residual circulation

    NASA Technical Reports Server (NTRS)

    Guthrie, Paul D.; Jackman, Charles H.

    1990-01-01

    The objective of this research was to examine the effects of chemical perturbations on the stratosphere using models which can incorporate fully interactive radiative, chemical, and dynamical responses, in the context of a zonally averaged model. Model runs for the unperturbed, chlorine-perturbed and simultaneously chlorine-and CO2-perturbed cases were completed using the JPL-87 chemical kinetics data. The base case was analyzed and submitted for publication. The perturbed cases show substantial sensitivity of the predicted column ozone depletion to the perturbations affecting lower stratosphere temperature, but less to far dynamical perturbations. The column ozone distribution changed substantially when the kinetics data was changed. This implies a greater-than-expected uncertainty in predicted latitude distributions of ozone depletion, due to uncertainty about the accuracy and completeness of the chemical kinetics data set.

  15. Development of CCHE2D embankment break model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...

  16. Missing mass approximations for the partition function of stimulus driven Ising models

    PubMed Central

    Haslinger, Robert; Ba, Demba; Galuske, Ralf; Williams, Ziv; Pipa, Gordon

    2013-01-01

    Ising models are routinely used to quantify the second order, functional structure of neural populations. With some recent exceptions, they generally do not include the influence of time varying stimulus drive. Yet if the dynamics of network function are to be understood, time varying stimuli must be taken into account. Inclusion of stimulus drive carries a heavy computational burden because the partition function becomes stimulus dependent and must be separately calculated for all unique stimuli observed. This potentially increases computation time by the length of the data set. Here we present an extremely fast, yet simply implemented, method for approximating the stimulus dependent partition function in minutes or seconds. Noting that the most probable spike patterns (which are few) occur in the training data, we sum partition function terms corresponding to those patterns explicitly. We then approximate the sum over the remaining patterns (which are improbable, but many) by casting it in terms of the stimulus modulated missing mass (total stimulus dependent probability of all patterns not observed in the training data). We use a product of conditioned logistic regression models to approximate the stimulus modulated missing mass. This method has complexity of roughly O(LNNpat) where is L the data length, N the number of neurons and Npat the number of unique patterns in the data, contrasting with the O(L2N) complexity of alternate methods. Using multiple unit recordings from rat hippocampus, macaque DLPFC and cat Area 18 we demonstrate our method requires orders of magnitude less computation time than Monte Carlo methods and can approximate the stimulus driven partition function more accurately than either Monte Carlo methods or deterministic approximations. This advance allows stimuli to be easily included in Ising models making them suitable for studying population based stimulus encoding. PMID:23898262

  17. Phase Structure of the Random Zq Models in 2D

    NASA Astrophysics Data System (ADS)

    Sasamoto, T.; Nishimori, H.

    We discuss the phase diagram of the random Zq models in two dimensions. It is argued that, when q is large enough, there exist three phases in the phase diagram with two axes being the temperature and the strength of randomness. Our conlusions are derived based on the application of the duality arguments for random systems, which have been formulated recently by Maillard et al.

  18. Hysteresis in random-field Ising model on a Bethe lattice with a mixed coordination number

    NASA Astrophysics Data System (ADS)

    Shukla, Prabodh; Thongjaomayum, Diana

    2016-06-01

    We study zero-temperature hysteresis in the random-field Ising model on a Bethe lattice where a fraction c of the sites have coordination number z = 4 while the remaining fraction 1-c have z = 3. Numerical simulations as well as probabilistic methods are used to show the existence of critical hysteresis for all values of c\\gt 0. This extends earlier results for c = 0 and c = 1 to the entire range 0≤slant c≤slant 1, and provides new insight in non-equilibrium critical phenomena. Our analysis shows that a spanning avalanche can occur on a lattice even in the absence of a spanning cluster of z = 4 sites.

  19. Effective-field theory on the kinetic spin-3/2 Ising model

    NASA Astrophysics Data System (ADS)

    Shi, Xiaoling; Qi, Yang

    2015-11-01

    The effective-field theory (EFT) is used to study the dynamical response of the kinetic spin-3/2 Ising model in the presence of a sinusoidal oscillating magnetic field. The effective-field dynamic equations are given for the honeycomb lattices (Z = 3). The dynamic order parameter, the dynamic quadrupole moment are calculated. We have found that the behavior of the system strongly depends on the crystal field interaction D. The dynamic phase boundaries are obtained, and there is no dynamic tricritical point on the dynamic phase transition line. The results are also compared with previous results which obtained from the mean-field theory (MFT) and the effective-field theory (EFT) for the square lattices (Z = 4). Different dynamic phase transition lines show that the thermal fluctuations are a key factor of the dynamic phase transition.

  20. Long-range random transverse-field Ising model in three dimensions

    NASA Astrophysics Data System (ADS)

    Kovács, István A.; Juhász, Róbert; Iglói, Ferenc

    2016-05-01

    We consider the random transverse-field Ising model in d =3 dimensions with long-range ferromagnetic interactions which decay as a power α >d with the distance. Using a variant of the strong-disorder renormalization group method we study numerically the phase-transition point from the paramagnetic side. We find that the fixed point controlling the transition is of the strong-disorder type, and based on experience with other similar systems, we expect the results to be qualitatively correct, but probably not asymptotically exact. The distribution of the (sample dependent) pseudocritical points is found to scale with 1 /lnL , L being the linear size of the sample. Similarly, the critical magnetization scales with (lnL) χ/Ld and the excitation energy behaves as L-α. Using extreme-value statistics we argue that extrapolating from the ferromagnetic side the magnetization approaches a finite limiting value and thus the transition is of mixed order.

  1. A theory of solving TAP equations for Ising models with general invariant random matrices

    NASA Astrophysics Data System (ADS)

    Opper, Manfred; Çakmak, Burak; Winther, Ole

    2016-03-01

    We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields an effective dynamics of a single variable trajectory. Our main novel contribution is the expression for the implicit memory term of the dynamics for general invariant ensembles. By subtracting these terms, that depend on magnetizations at previous time steps, the implicit memory terms cancel making the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida-Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble.

  2. Behavior of Early Warnings near the Critical Temperature in the Two-Dimensional Ising Model

    PubMed Central

    Morales, Irving O.; Landa, Emmanuel; Angeles, Carlos Calderon; Toledo, Juan C.; Rivera, Ana Leonor; Temis, Joel Mendoza; Frank, Alejandro

    2015-01-01

    Among the properties that are common to complex systems, the presence of critical thresholds in the dynamics of the system is one of the most important. Recently, there has been interest in the universalities that occur in the behavior of systems near critical points. These universal properties make it possible to estimate how far a system is from a critical threshold. Several early-warning signals have been reported in time series representing systems near catastrophic shifts. The proper understanding of these early-warnings may allow the prediction and perhaps control of these dramatic shifts in a wide variety of systems. In this paper we analyze this universal behavior for a system that is a paradigm of phase transitions, the Ising model. We study the behavior of the early-warning signals and the way the temporal correlations of the system increase when the system is near the critical point. PMID:26103513

  3. Studies of hysteresis in two-dimensional kinetic Ising model using the FORC technique

    NASA Astrophysics Data System (ADS)

    Robb, Daniel; Novotny, Mark; Rikvold, Per Arne

    2004-03-01

    We describe the FORC (first order reversal curve) technique [1] for hysteresis, first developed as an experimental method to better characterize magnetic materials, and present FORC distributions for simulations of a square-lattice kinetic Ising model. To understand the simulation results, we apply a theory of magnetization reversal for the multidroplet (MD) regime [2] for homogeneous nucleation and growth, also called the Kolmogorov-Johnson-Mehl-Avrami regime. The FORC `partial hysteresis' loops exhibit different properties than those of systems with strong disorder [1]. We compare the simulation and the theory for several lattice sizes, frequencies of the external field, and temperatures. [1] C.R. Pike, A.P. Roberts, and K.L. Verosub, J. Appl. Phys. 85, 6660 (1999). [2] S.W. Sides, P.A. Rikvold, and M.A. Novotny, Phys. Rev. E 59, 2710 (1999).

  4. Convergence of the Equi-Energy Sampler and Its Application to the Ising Model.

    PubMed

    Hua, Xia; Kou, S C

    2011-10-01

    We provide a complete proof of the convergence of a recently developed sampling algorithm called the equi-energy (EE) sampler (Kou, Zhou, and Wong, 2006) in the case that the state space is countable. We show that in a countable state space, each sampling chain in the EE sampler is strongly ergodic a.s. with the desired steady-state distribution. Furthermore, all chains satisfy the individual ergodic property. We apply the EE sampler to the Ising model to test its efficiency, comparing it with the Metropolis algorithm and the parallel tempering algorithm. We observe that the dynamic exponent of the EE sampler is significantly smaller than those of parallel tempering and the Metropolis algorithm, demonstrating the high efficiency of the EE sampler. PMID:21969801

  5. Non-equilibrium steady states in two-temperature Ising models with Kawasaki dynamics

    NASA Astrophysics Data System (ADS)

    Borchers, Nick; Pleimling, Michel; Zia, R. K. P.

    2013-03-01

    From complex biological systems to a simple simmering pot, thermodynamic systems held out of equilibrium are exceedingly common in nature. Despite this, a general theory to describe these types of phenomena remains elusive. In this talk, we explore a simple modification of the venerable Ising model in hopes of shedding some light on these issues. In both one and two dimensions, systems attached to two distinct heat reservoirs exhibit many of the hallmarks of phase transition. When such systems settle into a non-equilibrium steady-state they exhibit numerous interesting phenomena, including an unexpected ``freezing by heating.'' There are striking and surprising similarities between the behavior of these systems in one and two dimensions, but also intriguing differences. These phenomena will be explored and possible approaches to understanding the behavior will be suggested. Supported by the US National Science Foundation through Grants DMR-0904999, DMR-1205309, and DMR-1244666

  6. Critical behavior of the two-dimensional Ising model with long-range correlated disorder

    NASA Astrophysics Data System (ADS)

    Dudka, M.; Fedorenko, A. A.; Blavatska, V.; Holovatch, Yu.

    2016-06-01

    We study critical behavior of the diluted two-dimensional Ising model in the presence of disorder correlations which decay algebraically with distance as ˜r-a . Mapping the problem onto two-dimensional Dirac fermions with correlated disorder we calculate the critical properties using renormalization group up to two-loop order. We show that beside the Gaussian fixed point the flow equations have a nontrivial fixed point which is stable for 0.995

  7. Stochastic Resonance in the Ising Model on a BARABÁSI-ALBERT Network

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    Stochastic resonance is investigated in the Ising model with ferromagnetic coupling on a Barabási-Albert network, subjected to weak periodic magnetic field. Spectral power amplification as a function of temperature shows strong dependence on the number of nodes, which is related to the dependence of the critical temperature for the ferromagnetic phase transition, and on the frequency of the periodic signal. Double maxima of the spectral power amplification evaluated from the time-dependent magnetization are observed for intermediate frequencies of the periodic signal, which are also dependent on the number of nodes. In the thermodynamic limit, the height of the maxima decreases to zero and stochastic resonance disappears. Results of numerical simulations are in qualitative agreement with predictions of the linear response theory in the mean-field approximation.

  8. Dynamical Phase Transition in the Ising Model on a Scale-Free Network

    NASA Astrophysics Data System (ADS)

    Krawiecki, A.

    Dynamical phase transition in the Ising model on a Barabási-Albert network under the influence of periodic magnetic field is studied using Monte-Carlo simulations. For a wide range of the system sizes N and the field frequencies, approximate phase borders between dynamically ordered and disordered phases are obtained on a plane h (field amplitude) versus T/Tc (temperature normalized to the static critical temperature without external field, Tc∝lnN). On these borders, second- or first-order transitions occur, for parameter ranges separated by a tricritical point. For all frequencies of the magnetic field, position of the tricritical point is shifted toward higher values of T/Tc and lower values of h with increasing system size, i.e. the range of critical parameters corresponding to the first-order transition is broadened.

  9. Optimal control in nonequilibrium systems: Dynamic Riemannian geometry of the Ising model

    NASA Astrophysics Data System (ADS)

    Rotskoff, Grant M.; Crooks, Gavin E.

    2015-12-01

    A general understanding of optimal control in nonequilibrium systems would illuminate the operational principles of biological and artificial nanoscale machines. Recent work has shown that a system driven out of equilibrium by a linear response protocol is endowed with a Riemannian metric related to generalized susceptibilities, and that geodesics on this manifold are the nonequilibrium control protocols with the lowest achievable dissipation. While this elegant mathematical framework has inspired numerous studies of exactly solvable systems, no description of the thermodynamic geometry yet exists when the metric cannot be derived analytically. Herein, we numerically construct the dynamic metric of the two-dimensional Ising model in order to study optimal protocols for reversing the net magnetization.

  10. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  11. Analytic Differentiation of Barlat's 2D Criteria for Inverse Modeling

    SciTech Connect

    Endelt, Benny; Nielsen, Karl Brian; Danckert, Joachim

    2005-08-05

    The demand for alternative identification schemes for identification of constitutive parameters is getting more pronounced as the complexity of the constitutive equations increases, i.e. the number of parameters subject to identification. A general framework for inverse identification of constitutive parameters associated with sheet metal forming is proposed in the article. The inverse problem is solved, through minimization of the least square error between an experimental punch force sampled from a deep drawing and a predicted punch force produced from a coherent finite element model.

  12. Google Earth as a tool in 2-D hydrodynamic modeling

    NASA Astrophysics Data System (ADS)

    Chien, Nguyen Quang; Keat Tan, Soon

    2011-01-01

    A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.

  13. Conservation laws and LETKF with 2D Shallow Water Model

    NASA Astrophysics Data System (ADS)

    Zeng, Yuefei; Janjic, Tijana

    2016-04-01

    Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.

  14. A 2D model to design MHD induction pumps

    NASA Astrophysics Data System (ADS)

    Stieglitz, R.; Zeininger, J.

    2006-09-01

    Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.

  15. Bond Order Correlations in the 2D Hubbard Model

    NASA Astrophysics Data System (ADS)

    Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark

    We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.

  16. Ising model of cardiac thin filament activation with nearest-neighbor cooperative interactions

    NASA Technical Reports Server (NTRS)

    Rice, John Jeremy; Stolovitzky, Gustavo; Tu, Yuhai; de Tombe, Pieter P.; Bers, D. M. (Principal Investigator)

    2003-01-01

    We have developed a model of cardiac thin filament activation using an Ising model approach from equilibrium statistical physics. This model explicitly represents nearest-neighbor interactions between 26 troponin/tropomyosin units along a one-dimensional array that represents the cardiac thin filament. With transition rates chosen to match experimental data, the results show that the resulting force-pCa (F-pCa) relations are similar to Hill functions with asymmetries, as seen in experimental data. Specifically, Hill plots showing (log(F/(1-F)) vs. log [Ca]) reveal a steeper slope below the half activation point (Ca(50)) compared with above. Parameter variation studies show interplay of parameters that affect the apparent cooperativity and asymmetry in the F-pCa relations. The model also predicts that Ca binding is uncooperative for low [Ca], becomes steeper near Ca(50), and becomes uncooperative again at higher [Ca]. The steepness near Ca(50) mirrors the steep F-pCa as a result of thermodynamic considerations. The model also predicts that the correlation between troponin/tropomyosin units along the one-dimensional array quickly decays at high and low [Ca], but near Ca(50), high correlation occurs across the whole array. This work provides a simple model that can account for the steepness and shape of F-pCa relations that other models fail to reproduce.

  17. Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory

    PubMed Central

    Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.

    2014-01-01

    With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

  18. Highlighting the structure-function relationship of the brain with the Ising model and graph theory.

    PubMed

    Das, T K; Abeyasinghe, P M; Crone, J S; Sosnowski, A; Laureys, S; Owen, A M; Soddu, A

    2014-01-01

    With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772

  19. GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System

    DOE Data Explorer

    James Menart

    2013-06-07

    This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..

  20. A fully Bayesian hidden Ising model for ChIP-seq data analysis.

    PubMed

    Mo, Qianxing

    2012-01-01

    Chromatin immunoprecipitation followed by next generation sequencing (ChIP-seq) is a powerful technique that is being used in a wide range of biological studies including genome-wide measurements of protein-DNA interactions, DNA methylation, and histone modifications. The vast amount of data and biases introduced by sequencing and/or genome mapping pose new challenges and call for effective methods and fast computer programs for statistical analysis. To systematically model ChIP-seq data, we build a dynamic signal profile for each chromosome and then model the profile using a fully Bayesian hidden Ising model. The proposed model naturally takes into account spatial dependency and global and local distributions of sequence tags. It can be used for one-sample and two-sample analyses. Through model diagnosis, the proposed method can detect falsely enriched regions caused by sequencing and/or mapping errors, which is usually not offered by the existing hypothesis-testing-based methods. The proposed method is illustrated using 3 transcription factor (TF) ChIP-seq data sets and 2 mixed ChIP-seq data sets and compared with 4 popular and/or well-documented methods: MACS, CisGenome, BayesPeak, and SISSRs. The results indicate that the proposed method achieves equivalent or higher sensitivity and spatial resolution in detecting TF binding sites with false discovery rate at a much lower level. PMID:21914728

  1. Comparison of 1D and 2D modelling with soil erosion model SMODERP

    NASA Astrophysics Data System (ADS)

    Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan

    2013-04-01

    The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can

  2. Comparison of the ferromagnetic Blume-Emery-Griffiths model and the AF spin-1 longitudinal Ising model at low temperature

    NASA Astrophysics Data System (ADS)

    Thomaz, M. T.; Corrêa Silva, E. V.

    2016-03-01

    We derive the exact Helmholtz free energy (HFE) of the standard and staggered one-dimensional Blume-Emery-Griffiths (BEG) model in the presence of an external longitudinal magnetic field. We discuss in detail the thermodynamic behavior of the ferromagnetic version of the model, which exhibits magnetic field-dependent plateaux in the z-component of its magnetization at low temperatures. We also study the behavior of its specific heat and entropy, both per site, at finite temperature. The degeneracy of the ground state, at T=0, along the lines that separate distinct phases in the phase diagram of the ferromagnetic BEG model is calculated, extending the study of the phase diagram of the spin-1 antiferromagnetic (AF) Ising model in S.M. de Souza and M.T. Thomaz, J. Magn. and Magn. Mater. 354 (2014) 205 [5]. We explore the implications of the equality of phase diagrams, at T=0, of the ferromagnetic BEG model with K/|J| = - 2 and of the spin-1 AF Ising model for D/|J| > 1/2.

  3. Relations between short-range and long-range Ising models

    NASA Astrophysics Data System (ADS)

    Angelini, Maria Chiara; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2014-06-01

    We perform a numerical study of the long-range (LR) ferromagnetic Ising model with power law decaying interactions (J ∝r-d-σ) on both a one-dimensional chain (d =1) and a square lattice (d =2). We use advanced cluster algorithms to avoid the critical slowing down. We first check the validity of the relation connecting the critical behavior of the LR model with parameters (d,σ) to that of a short-range (SR) model in an equivalent dimension D. We then study the critical behavior of the d =2 LR model close to the lower critical σ, uncovering that the spatial correlation function decays with two different power laws: The effect of the subdominant power law is much stronger than finite-size effects and actually makes the estimate of critical exponents very subtle. By including this subdominant power law, the numerical data are consistent with the standard renormalization group (RG) prediction by Sak [Phys. Rev. B 8, 281 (1973), 10.1103/PhysRevB.8.281], thus making not necessary (and unlikely, according to Occam's razor) the recent proposal by Picco [arXiv:1207.1018] of having a new set of RG fixed points in addition to the mean-field one and the SR one.

  4. Evaluation of tranche in securitization and long-range Ising model

    NASA Astrophysics Data System (ADS)

    Kitsukawa, K.; Mori, S.; Hisakado, M.

    2006-08-01

    This econophysics work studies the long-range Ising model of a finite system with N spins and the exchange interaction J/N and the external field H as a model for homogeneous credit portfolio of assets with default probability Pd and default correlation ρd. Based on the discussion on the (J,H) phase diagram, we develop a perturbative calculation method for the model and obtain explicit expressions for Pd,ρd and the normalization factor Z in terms of the model parameters N and J,H. The effect of the default correlation ρd on the probabilities P(Nd,ρd) for Nd defaults and on the cumulative distribution function D(i,ρd) are discussed. The latter means the average loss rate of the“tranche” (layered structure) of the securities (e.g. CDO), which are synthesized from a pool of many assets. We show that the expected loss rate of the subordinated tranche decreases with ρd and that of the senior tranche increases linearly, which are important in their pricing and ratings.

  5. Relations between short-range and long-range Ising models.

    PubMed

    Angelini, Maria Chiara; Parisi, Giorgio; Ricci-Tersenghi, Federico

    2014-06-01

    We perform a numerical study of the long-range (LR) ferromagnetic Ising model with power law decaying interactions (J∝r{-d-σ}) on both a one-dimensional chain (d=1) and a square lattice (d=2). We use advanced cluster algorithms to avoid the critical slowing down. We first check the validity of the relation connecting the critical behavior of the LR model with parameters (d,σ) to that of a short-range (SR) model in an equivalent dimension D. We then study the critical behavior of the d=2 LR model close to the lower critical σ, uncovering that the spatial correlation function decays with two different power laws: The effect of the subdominant power law is much stronger than finite-size effects and actually makes the estimate of critical exponents very subtle. By including this subdominant power law, the numerical data are consistent with the standard renormalization group (RG) prediction by Sak [Phys. Rev. B 8, 281 (1973)], thus making not necessary (and unlikely, according to Occam's razor) the recent proposal by Picco [arXiv:1207.1018] of having a new set of RG fixed points in addition to the mean-field one and the SR one. PMID:25019738

  6. Theoretical exploration on the magnetic properties of ferromagnetic metallic glass: An Ising model on random recursive lattice

    NASA Astrophysics Data System (ADS)

    Huang, Ran; Zhang, Ling; Chen, Chong; Wu, Chengjie; Yan, Linyin

    2015-07-01

    The ferromagnetic Ising spins are modeled on a recursive lattice constructed from random-angled rhombus units with stochastic configurations, to study the magnetic properties of the bulk Fe-based metallic glass. The integration of spins on the structural glass model well represents the magnetic moments in the glassy metal. The model is exactly solved by the recursive calculation technique. The magnetization of the amorphous Ising spins, i.e. the glassy metallic magnet is investigated by our modeling and calculation on a theoretical base. The results show that the glassy metallic magnets have a lower Curie temperature, weaker magnetization, and higher entropy compared to the regular ferromagnet in crystal form. These findings can be understood with the randomness of the amorphous system, and agree well with other experimental observations.

  7. Ising-like model for the two-step spin-crossover

    NASA Astrophysics Data System (ADS)

    Bousseksou, A.; Nasser, J.; Linares, J.; Boukheddaden, K.; Varret, F.

    1992-07-01

    We have analyzed an Ising-like model, in the mean-field approach, involving two “antiferromagnetically” coupled sublattices. This model simulates the so-called “two-step” spin-crossover transition, for which a precise definition is given. If both sublattices are equivalent, it implies a spontaneous breaking of symmetry which may occur within a temperature range limited by two “Néel températures”. It, also predicts a simultaneous reversal of the magnetization of the sublattices (if they are unequivalent) at a “characteristic” value of temperature. These features are analyzed simultaneously with some details. The present model fits and explains well the available experimental data concerning [ Fe(2-pic)_3] Cell_2- EtOH and Fe^II[ 5NO2 sal N(1, 4, 7, 10)] . Nous avons analysé un modèle de type Ising, à deux sous-réseaux couplés “antiferromagnétiquement”, dans l'approximation du champ moyen. Ce modèle permet de bien reproduire les transitions de spin “en deux étapes”, dont nous donnons une définition précise. Lorsque les deux sous-réseaux sont équivalents, il implique une brisure spontanée de symétrie qui peut intervenir dans un domaine de température limité par deux “températures de Néel”. De plus, lorsqu'ils sont inéquivalents, il prédit le renversement simultané de l' “aimantation” des deux sous-réseaux pour une valeur “caractéristique” de la température. Nous avons analysé en détail l'ensemble de ces effets. Ce modèle nous a permis d'ajuster et de discuter les résultats expérimentaux disponibles concernant [ Fe(2-pic)_3] Cell_2- EtOH et Fe^II[ 5NO2 sal N(1, 4, 7, 10)] .

  8. Ising-like transitions in the O(n) loop model on the square lattice.

    PubMed

    Fu, Zhe; Guo, Wenan; Blöte, Henk W J

    2013-05-01

    We explore the phase diagram of the O(n) loop model on the square lattice in the (x,n) plane, where x is the weight of a lattice edge covered by a loop. These results are based on transfer-matrix calculations and finite-size scaling. We express the correlation length associated with the staggered loop density in the transfer-matrix eigenvalues. The finite-size data for this correlation length, combined with the scaling formula, reveal the location of critical lines in the diagram. For n>2 we find Ising-like phase transitions associated with the onset of a checkerboardlike ordering of the elementary loops, i.e., the smallest possible loops, with the size of an elementary face, which cover precisely one-half of the faces of the square lattice at the maximum loop density. In this respect, the ordered state resembles that of the hard-square lattice gas with nearest-neighbor exclusion, and the finiteness of n represents a softening of its particle-particle potentials. We also determine critical points in the range -2≤n≤2. It is found that the topology of the phase diagram depends on the set of allowed vertices of the loop model. Depending on the choice of this set, the n>2 transition may continue into the dense phase of the n≤2 loop model, or continue as a line of n≤2 O(n) multicritical points. PMID:23767498

  9. Information Transfer and Criticality in the Ising Model on the Human Connectome

    PubMed Central

    Marinazzo, Daniele; Pellicoro, Mario; Wu, Guorong; Angelini, Leonardo; Cortés, Jesús M.; Stramaglia, Sebastiano

    2014-01-01

    We implement the Ising model on a structural connectivity matrix describing the brain at two different resolutions. Tuning the model temperature to its critical value, i.e. at the susceptibility peak, we find a maximal amount of total information transfer between the spin variables. At this point the amount of information that can be redistributed by some nodes reaches a limit and the net dynamics exhibits signature of the law of diminishing marginal returns, a fundamental principle connected to saturated levels of production. Our results extend the recent analysis of dynamical oscillators models on the connectome structure, taking into account lagged and directional influences, focusing only on the nodes that are more prone to became bottlenecks of information. The ratio between the outgoing and the incoming information at each node is related to the the sum of the weights to that node and to the average time between consecutive time flips of spins. The results for the connectome of 66 nodes and for that of 998 nodes are similar, thus suggesting that these properties are scale-independent. Finally, we also find that the brain dynamics at criticality is organized maximally to a rich-club w.r.t. the network of information flows. PMID:24705627

  10. Nonbacktracking operator for the Ising model and its applications in systems with multiple states

    NASA Astrophysics Data System (ADS)

    Zhang, Pan

    2015-04-01

    The nonbacktracking operator for a graph is the adjacency matrix defined on directed edges of the graph. The operator was recently shown to perform optimally in spectral clustering in sparse synthetic graphs and have a deep connection to belief propagation algorithm. In this paper we consider nonbacktracking operator for Ising model on a general graph with a general coupling distribution and study the spectrum of this operator analytically. We show that spectral algorithms based on this operator is equivalent to belief propagation algorithm linearized at the paramagnetic fixed point and recovers replica-symmetry results on phase boundaries obtained by replica methods. This operator can be applied directly to systems with multiple states like Hopfield model. We show that spectrum of the operator can be used to determine number of patterns that stored successfully in the network, and the associated eigenvectors can be used to retrieve all the patterns simultaneously. We also give an example on how to control the Hopfield model, i.e., making network more sparse while keeping patterns stable, using the nonbacktracking operator and matrix perturbation theory.

  11. Ising-like agent-based technology diffusion model: Adoption patterns vs. seeding strategies

    NASA Astrophysics Data System (ADS)

    Laciana, Carlos E.; Rovere, Santiago L.

    2011-03-01

    The well-known Ising model used in statistical physics was adapted to a social dynamics context to simulate the adoption of a technological innovation. The model explicitly combines (a) an individual's perception of the advantages of an innovation and (b) social influence from members of the decision-maker's social network. The micro-level adoption dynamics are embedded into an agent-based model that allows exploration of macro-level patterns of technology diffusion throughout systems with different configurations (number and distributions of early adopters, social network topologies). In the present work we carry out many numerical simulations. We find that when the gap between the individual's perception of the options is high, the adoption speed increases if the dispersion of early adopters grows. Another test was based on changing the network topology by means of stochastic connections to a common opinion reference (hub), which resulted in an increment in the adoption speed. Finally, we performed a simulation of competition between options for both regular and small world networks.

  12. Belief-propagation algorithm and the Ising model on networks with arbitrary distributions of motifs

    NASA Astrophysics Data System (ADS)

    Yoon, S.; Goltsev, A. V.; Dorogovtsev, S. N.; Mendes, J. F. F.

    2011-10-01

    We generalize the belief-propagation algorithm to sparse random networks with arbitrary distributions of motifs (triangles, loops, etc.). Each vertex in these networks belongs to a given set of motifs (generalization of the configuration model). These networks can be treated as sparse uncorrelated hypergraphs in which hyperedges represent motifs. Here a hypergraph is a generalization of a graph, where a hyperedge can connect any number of vertices. These uncorrelated hypergraphs are treelike (hypertrees), which crucially simplifies the problem and allows us to apply the belief-propagation algorithm to these loopy networks with arbitrary motifs. As natural examples, we consider motifs in the form of finite loops and cliques. We apply the belief-propagation algorithm to the ferromagnetic Ising model with pairwise interactions on the resulting random networks and obtain an exact solution of this model. We find an exact critical temperature of the ferromagnetic phase transition and demonstrate that with increasing the clustering coefficient and the loop size, the critical temperature increases compared to ordinary treelike complex networks. However, weak clustering does not change the critical behavior qualitatively. Our solution also gives the birth point of the giant connected component in these loopy networks.

  13. Application of the one- and two-dimensional Ising models to studies of cooperativity between ion channels.

    PubMed

    Liu, Y; Dilger, J P

    1993-01-01

    The Ising model of statistical physics provides a framework for studying systems of protomers in which nearest neighbors interact with each other. In this article, the Ising model is applied to the study of cooperative phenomena between ligand-gated ion channels. Expressions for the mean open channel probability, rho o, and the variance, sigma 2, are derived from the grand partition function. In the one-dimensional Ising model, interactions between neighboring open channels give rise to a sigmoidal rho o versus concentration curve and a nonquadratic relationship between sigma 2 and rho o. Positive cooperativity increases the slope at the midpoint of the rho o versus concentration curve, shifts the apparent binding affinity to lower concentrations, and increases the variance for a given rho o. Negative cooperativity has the opposite effects. Strong negative cooperativity results in a bimodal sigma 2 versus rho o curve. The slope of the rho o versus concentration curve increases linearly with the number of binding sites on a protomer, but the sigma 2 versus rho o relationship is independent of the number of ligand binding sites. Thus, the sigma 2 versus rho o curve provides unambiguous information about channel interactions. In the two-dimensional Ising model, rho o and sigma 2 are calculated numerically from a series expansion of the grand partition function appropriate for weak interactions. Virtually all of the features exhibited by the one-dimensional model are qualitatively present in the two-dimensional model. These models are also applicable to voltage-gated ion channels. PMID:7679298

  14. Domain-size heterogeneity in the Ising model: Geometrical and thermal transitions.

    PubMed

    de la Rocha, André R; de Oliveira, Paulo Murilo C; Arenzon, Jeferson J

    2015-04-01

    A measure of cluster size heterogeneity (H), introduced by Lee et al. [Phys. Rev. E 84, 020101 (2011)] in the context of explosive percolation, was recently applied to random percolation and to domains of parallel spins in the Ising and Potts models. It is defined as the average number of different domain sizes in a given configuration and a new exponent was introduced to explain its scaling with the size of the system. In thermal spin models, however, physical clusters take into account the temperature-dependent correlation between neighboring spins and encode the critical properties of the phase transition. We here extend the measure of H to these clusters and, moreover, present new results for the geometric domains for both d=2 and 3. We show that the heterogeneity associated with geometric domains has a previously unnoticed double peak, thus being able to detect both the thermal and percolative transitions. An alternative interpretation for the scaling of H that does not introduce a new exponent is also proposed. PMID:25974445

  15. Domain-size heterogeneity in the Ising model: Geometrical and thermal transitions

    NASA Astrophysics Data System (ADS)

    de la Rocha, André R.; de Oliveira, Paulo Murilo C.; Arenzon, Jeferson J.

    2015-04-01

    A measure of cluster size heterogeneity (H ), introduced by Lee et al. [Phys. Rev. E 84, 020101 (2011), 10.1103/PhysRevE.84.020101] in the context of explosive percolation, was recently applied to random percolation and to domains of parallel spins in the Ising and Potts models. It is defined as the average number of different domain sizes in a given configuration and a new exponent was introduced to explain its scaling with the size of the system. In thermal spin models, however, physical clusters take into account the temperature-dependent correlation between neighboring spins and encode the critical properties of the phase transition. We here extend the measure of H to these clusters and, moreover, present new results for the geometric domains for both d =2 and 3. We show that the heterogeneity associated with geometric domains has a previously unnoticed double peak, thus being able to detect both the thermal and percolative transitions. An alternative interpretation for the scaling of H that does not introduce a new exponent is also proposed.

  16. Two-dimensional Ising transition through a technique from two-state opinion-dynamics models

    NASA Astrophysics Data System (ADS)

    Galam, Serge; Martins, André C. R.

    2015-01-01

    The Ising ferromagnetic model on a square lattice is revisited using the Galam unifying frame (GUF), set to investigate two-state opinion-dynamics models. When combined with Metropolis dynamics, an unexpected intermediate "dis/order" regime is found with the coexistence of two attractors associated, respectively, to an ordered and a disordered phases. The basin of attraction of initial conditions for the disordered phase attractor starts from zero size at a first critical temperature Tc 1 to embody the total landscape of initial conditions at a second critical temperature Tc 2, with Tc 1≈1.59 and Tc 2≈2.11 in J /kB units. It appears that Tc 2 is close to the Onsager result Tc≈2.27 . The transition, which is first-order-like, exhibits a vertical jump to the disorder phase at Tc 2, reminiscent of the rather abrupt vanishing of the corresponding Onsager second-order transition. However, using Glauber dynamics combined with GUF does not yield the intermediate phase and instead the expected classical mean-field transition is recovered at Tc≈3.09 . Accordingly, although the "dis/order" regime produced by the GUF-Metropolis combination is not physical, it is an intriguing result to be understood. In particular the fact that Glauber and Metropolis dynamics yield so different results using GUF needs an explanation. The possibility of extending GUF to larger clusters is discussed.

  17. The Finite-Size Scaling Study of the Ising Model for the Fractals

    NASA Astrophysics Data System (ADS)

    Merdan, Z.; Bayirli, M.; Günen, A.; Bülbül, M.

    2016-04-01

    The fractals are obtained by using the model of diffusion-limited aggregation (DLA) for 40 ≤ L ≤ 240. The two-dimensional Ising model is simulated on the Creutz cellular automaton for 40 ≤ L ≤ 240. The critical exponents and the fractal dimensions are computed to be β = 0.124(8), γ = 1.747(10), α = 0.081(21), δ = 14.994(11), η = 0.178(10), ν = 0.960(23) and df^{β } =1.876(8), df^{γ } =3.747(10), df^{α } =2.081(68), df^{δ } =1.940(22), df^{η } =2.178(10), df^{ν } =2.960(22), which are consistent with the theoretical values of β = 0.125, γ = 1.75, α = 0, δ = 15, η = 0.25, ν = 1 and df^{β } =1.875, df^{γ } =3.75, df^{α } =2, df^{δ } =1.933, df^{η } =2.25, df^{ν } =3.

  18. Quantum Quench Dynamics in the Transverse Field Ising Model at Non-zero Temperatures

    NASA Astrophysics Data System (ADS)

    Abeling, Nils; Kehrein, Stefan

    The recently discovered Dynamical Phase Transition denotes non-analytic behavior in the real time evolution of quantum systems in the thermodynamic limit and has been shown to occur in different systems at zero temperature [Heyl et al., Phys. Rev. Lett. 110, 135704 (2013)]. In this talk we present the extension of the analysis to non-zero temperature by studying a generalized form of the Loschmidt echo, the work distribution function, of a quantum quench in the transverse field Ising model. Although the quantitative behavior at non-zero temperatures still displays features derived from the zero temperature non-analyticities, it is shown that in this model dynamical phase transitions do not exist if T > 0 . This is a consequence of the system being initialized in a thermal state. Moreover, we elucidate how the Tasaki-Crooks-Jarzynski relation can be exploited as a symmetry relation for a global quench or to obtain the change of the equilibrium free energy density. This work was supported through CRC SFB 1073 (Project B03) of the Deutsche Forschungsgemeinschaft (DFG).

  19. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  20. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  1. Fast 2D flood modelling using GPU technology - recent applications and new developments

    NASA Astrophysics Data System (ADS)

    Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul

    2010-05-01

    In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.

  2. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  3. Partition function zeros for the Ising model on complete graphs and on annealed scale-free networks

    NASA Astrophysics Data System (ADS)

    Krasnytska, M.; Berche, B.; Holovatch, Yu; Kenna, R.

    2016-04-01

    We analyse the partition function of the Ising model on graphs of two different types: complete graphs, wherein all nodes are mutually linked and annealed scale-free networks for which the degree distribution decays as P(k) ˜ k -λ . We are interested in zeros of the partition function in the cases of complex temperature or complex external field (Fisher and Lee-Yang zeros respectively). For the model on an annealed scale-free network, we find an integral representation for the partition function which, in the case λ > 5, reproduces the zeros for the Ising model on a complete graph. For 3 < λ < 5 we derive the λ-dependent angle at which the Fisher zeros impact onto the real temperature axis. This, in turn, gives access to the λ-dependent universal values of the critical exponents and critical amplitudes ratios. Our analysis of the Lee-Yang zeros reveals a difference in their behaviour for the Ising model on a complete graph and on an annealed scale-free network when 3 < λ < 5. Whereas in the former case the zeros are purely imaginary, they have a non zero real part in latter case, so that the celebrated Lee-Yang circle theorem is violated.

  4. Rényi entropy of a line in two-dimensional Ising models

    NASA Astrophysics Data System (ADS)

    Stéphan, J.-M.; Misguich, G.; Pasquier, V.

    2010-09-01

    We consider the two-dimensional Ising model on an infinitely long cylinder and study the probabilities pi to observe a given spin configuration i along a circular section of the cylinder. These probabilities also occur as eigenvalues of reduced density matrices in some Rokhsar-Kivelson wave functions. We analyze the subleading constant to the Rényi entropy Rn=1/(1-n)ln(∑ipin) and discuss its scaling properties at the critical point. Studying three different microscopic realizations, we provide numerical evidence that it is universal and behaves in a steplike fashion as a function of n with a discontinuity at the Shannon point n=1 . As a consequence, a field theoretical argument based on the replica trick would fail to give the correct value at this point. We nevertheless compute it numerically with high precision. Two other values of the Rényi parameter are of special interest: n=1/2 and n=∞ are related in a simple way to the Affleck-Ludwig boundary entropies associated to free and fixed boundary conditions, respectively.

  5. Study of spin crossover nanoparticles thermal hysteresis using FORC diagrams on an Ising-like model

    NASA Astrophysics Data System (ADS)

    Atitoaie, Alexandru; Tanasa, Radu; Stancu, Alexandru; Enachescu, Cristian

    2014-11-01

    Recent developments in the synthesis and characterization of spin crossover (SCO) nanoparticles and their prospects of switching at molecular level turned these bistable compounds into possible candidates for replacing the materials used in recording media industry for development of solid state pressure and temperature sensors or for bringing contributions in engineering. Compared to bulk samples with the same chemical structure, SCO nanoparticles display different characteristics of the hysteretic and relaxation properties like the shift of the transition temperature towards lower values along with decrease of the hysteresis width with nanoparticles size. Using an Ising-like model with specific boundary conditions within a Monte Carlo procedure, we here reproduce most of the hysteretic properties of SCO nanoparticles by considering the interaction between spin crossover edge molecules and embedding surfactant molecules and we propose a complex analysis concerning the effect of the interactions and sizes during the thermal transition in systems of SCO nanoparticles by using the First Order Reversal Curves diagram method and by comparison with similar effects in mixed crystal systems.

  6. The dynamic critical properties of the spin-2 Ising model on a bilayer square lattice

    NASA Astrophysics Data System (ADS)

    Temizer, Ümüt; Yarar, Semih; Tülek, Mesimi

    2016-05-01

    The spin-2 Ising model is investigated for the ferromagnetic/ferromagnetic (FM/FM), antiferromagnetic/ferromagnetic (AFM/FM) and antiferromagnetic/antiferromagnetic (AFM/AFM) interactions on the two-layer square lattice by using the Glauber-type stochastic dynamics. The system is in contact with a heat bath at temperature T, and the exchange of energy with the heat bath occurs via one-spin flip. By employing the Master equation and Glauber transition rates, the dynamic equations of the system are obtained. These equations are solved by using the numerical methods. First, we investigate the average order parameters as a function of the time to find the phases in the system. Then, the temperature-dependence of the dynamic order parameters is examined to obtain the dynamic phase transition temperatures. The dynamic phase diagrams are presented on the different planes. According to the values of the system parameters, a variety of dynamic critical points such as tricritical point, triple point, quadruple point, critical end point, double critical end point, zero-temperature critical point, multicritical point and tetracritical point are obtained. The reentrant behavior is seen in the system for the AFM/AFM interaction. Finally, we also investigate the influence of the oscillating field frequency on the dynamic phase diagrams in detail.

  7. Random-field Ising model on isometric lattices: Ground states and non-Porod scattering

    NASA Astrophysics Data System (ADS)

    Bupathy, Arunkumar; Banerjee, Varsha; Puri, Sanjay

    2016-01-01

    We use a computationally efficient graph cut method to obtain ground state morphologies of the random-field Ising model (RFIM) on (i) simple cubic (SC), (ii) body-centered cubic (BCC), and (iii) face-centered cubic (FCC) lattices. We determine the critical disorder strength Δc at zero temperature with high accuracy. For the SC lattice, our estimate (Δc=2.278 ±0.002 ) is consistent with earlier reports. For the BCC and FCC lattices, Δc=3.316 ±0.002 and 5.160 ±0.002 , respectively, which are the most accurate estimates in the literature to date. The small-r behavior of the correlation function exhibits a cusp regime characterized by a cusp exponent α signifying fractal interfaces. In the paramagnetic phase, α =0.5 ±0.01 for all three lattices. In the ferromagnetic phase, the cusp exponent shows small variations due to the lattice structure. Consequently, the interfacial energy Ei(L ) for an interface of size L is significantly different for the three lattices. This has important implications for nonequilibrium properties.

  8. Quantum correlated cluster mean-field theory applied to the transverse Ising model

    NASA Astrophysics Data System (ADS)

    Zimmer, F. M.; Schmidt, M.; Maziero, Jonas

    2016-06-01

    Mean-field theory (MFT) is one of the main available tools for analytical calculations entailed in investigations regarding many-body systems. Recently, there has been a surge of interest in ameliorating this kind of method, mainly with the aim of incorporating geometric and correlation properties of these systems. The correlated cluster MFT (CCMFT) is an improvement that succeeded quite well in doing that for classical spin systems. Nevertheless, even the CCMFT presents some deficiencies when applied to quantum systems. In this article, we address this issue by proposing the quantum CCMFT (QCCMFT), which, in contrast to its former approach, uses general quantum states in its self-consistent mean-field equations. We apply the introduced QCCMFT to the transverse Ising model in honeycomb, square, and simple cubic lattices and obtain fairly good results both for the Curie temperature of thermal phase transition and for the critical field of quantum phase transition. Actually, our results match those obtained via exact solutions, series expansions or Monte Carlo simulations.

  9. Spinodals of the Ising model on the order-4 pentagonal tiling of the hyperbolic plane

    NASA Astrophysics Data System (ADS)

    Richards, Howard L.

    In the Euclidean plane, the Ising model on a regular lattice does not have a true spinodal - that is, there is no local minimum of the free energy that persists forever (in the limit of infinitely large systems) except for the global minimum, which characterizes the stable state. However, a local minimum can persist for a very long time, so the minimum can be referred to as a ``metastable'' state. The manner in which the metastable state decays depends on the strength of the magnetic field and the system size; the ``thermodynamic spinodal'' is the transition between systems large enough to contain a single critical droplet and systems that are too small to do so, and the ``dynamic spinodal'' marks the transition between decay as a Poisson process to decay that is ``deterministic'', meaning the standard deviation of the lifetime of the metastable state is small compared with its mean value. However, in the hyperbolic plane, true metastability exists, and evidence shows that the thermodynamic spinodal and dynamic spinodal are numerically close to the true spinodal, the field below which the metastable state cannot decay through the nucleation and growth of droplets. This research was supported by NSF Grant OCI-1005117.

  10. Square lattice Ising model susceptibility: connection matrices and singular behaviour of χ(3) and χ(4)

    NASA Astrophysics Data System (ADS)

    Zenine, N.; Boukraa, S.; Hassani, S.; Maillard, J.-M.

    2005-10-01

    We present a simple, but efficient, way to calculate connection matrices between sets of independent local solutions, defined at two neighbouring singular points, of Fuchsian differential equations of quite large orders, such as those found for the third and fourth contribution (χ(3) and χ(4)) to the magnetic susceptibility of the square lattice Ising model. We deduce all the critical behaviours of the solutions χ(3) and χ(4), as well as the asymptotic behaviour of the coefficients in the corresponding series expansions. We confirm that the newly found quadratic singularities of the Fuchsian ODE associated with χ(3) are not singularities of the particular solution χ(3) itself. We use the previous connection matrices to get the exact expressions of all the monodromy matrices of the Fuchsian differential equation for χ(3) (and χ(4)) expressed in the same basis of solutions. These monodromy matrices are the generators of the differential Galois group of the Fuchsian differential equations for χ(3) (and χ(4)), whose analysis is just sketched here. As far as the physics implications of the solutions are concerned, we find challenging qualitative differences when comparing the corrections to scaling for the full susceptibility χ at high temperature (respectively low temperature) and the first two terms χ(1) and χ(3) (respectively χ(2) and χ(4)).

  11. Beyond series expansions: mathematical structures for the susceptibility of the square lattice Ising model

    NASA Astrophysics Data System (ADS)

    Zenine, N.; Boukraa, S.; Hassani, S.; Maillard, J.-M.

    2006-06-01

    We first study the properties of the Fuchsian ordinary differential equations for the three and four-particle contributions χ(3) and χ(4) of the square lattice Ising model susceptibility. An analysis of some mathematical properties of these Fuchsian differential equations is sketched. For instance, we study the factorization properties of the corresponding linear differential operators, and consider the singularities of the three and four-particle contributions χ(3) and χ(4), versus the singularities of the associated Fuchsian ordinary differential equations, which actually exhibit new ''Landau-like'' singularities. We sketch the analysis of the corresponding differential Galois groups. In particular we provide a simple, but efficient, method to calculate the so-called ''connection matrices'' (between two neighboring singularities) and deduce the singular behaviors of χ(3) and χ(4). We provide a set of comments and speculations on the Fuchsian ordinary differential equations associated with the n-particle contributions χ(n) and address the problem of the apparent discrepancy between such a holonomic approach and some scaling results deduced from a Painlevé oriented approach.

  12. Operator product expansion coefficients of the 3D Ising model with a trapping potential

    NASA Astrophysics Data System (ADS)

    Costagliola, Gianluca

    2016-03-01

    Recently the operator product expansion coefficients of the 3D Ising model universality class have been calculated by studying via Monte Carlo simulation the two-point functions perturbed from the critical point with a relevant field. We show that this method can be applied also when the perturbation is performed with a relevant field coupled to a nonuniform potential acting as a trap. This setting is described by the trap size scaling ansatz, which can be combined with the general framework of the conformal perturbation in order to write down the correlators ⟨σ (r )σ (0 )⟩, ⟨σ (r )ɛ (0 )⟩ and ⟨ɛ (r )ɛ (0 )⟩, from which the operator product expansion coefficients can be estimated. We find Cσɛ σ=1.051 (3 ), in agreement with the results already known in the literature, and Cɛɛ ɛ=1.32 (15 ), confirming and improving the previous estimate obtained in the uniform perturbation case.

  13. Monte Carlo investigation of critical dynamics in the three-dimensional Ising model

    NASA Astrophysics Data System (ADS)

    Wansleben, S.; Landau, D. P.

    1991-03-01

    We report the results of a Monte Carlo investigation of the (equilibrium) time-displaced correlation functions for the magnetization and energy of a simple cubic Ising model as a function of time, temperature, and lattice size. The simulations were carried out on a CDC CYBER 205 supercomputer employing a high-speed, vectorized multispin coding program and using a total of 5×1012 Monte Carlo spin-flip trials. We used L×L×L lattices with periodic boundary conditions and L as large as 96. The short-time and long-time behaviors of the correlation functions are analyzed by fits to a sum of exponential decays, and the critical exponent z for the largest relaxation time is extracted using a finite-size-scaling analysis. Our estimate z=2.04+/-0.03 resolves an intriguing contradiction in the literature; it satisfies the theoretical lower bound and is in agreement with the prediction obtained by ɛ expansion. We also consider various small systematic errors that typically occur in the analysis of relaxation functions and show how they can lead to spurious results if sufficient care is not exercised.

  14. Hysteresis in DNA compaction by Dps is described by an Ising model.

    PubMed

    Vtyurina, Natalia N; Dulin, David; Docter, Margreet W; Meyer, Anne S; Dekker, Nynke H; Abbondanzieri, Elio A

    2016-05-01

    In all organisms, DNA molecules are tightly compacted into a dynamic 3D nucleoprotein complex. In bacteria, this compaction is governed by the family of nucleoid-associated proteins (NAPs). Under conditions of stress and starvation, an NAP called Dps (DNA-binding protein from starved cells) becomes highly up-regulated and can massively reorganize the bacterial chromosome. Although static structures of Dps-DNA complexes have been documented, little is known about the dynamics of their assembly. Here, we use fluorescence microscopy and magnetic-tweezers measurements to resolve the process of DNA compaction by Dps. Real-time in vitro studies demonstrated a highly cooperative process of Dps binding characterized by an abrupt collapse of the DNA extension, even under applied tension. Surprisingly, we also discovered a reproducible hysteresis in the process of compaction and decompaction of the Dps-DNA complex. This hysteresis is extremely stable over hour-long timescales despite the rapid binding and dissociation rates of Dps. A modified Ising model is successfully applied to fit these kinetic features. We find that long-lived hysteresis arises naturally as a consequence of protein cooperativity in large complexes and provides a useful mechanism for cells to adopt unique epigenetic states. PMID:27091987

  15. 2D face database diversification based on 3D face modeling

    NASA Astrophysics Data System (ADS)

    Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.

    2011-05-01

    Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.

  16. Magnetization plateaus and phase diagrams of the Ising model on the Shastry-Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Seyma Akkaya

    2015-11-01

    The magnetization properties of a two-dimensional spin-1/2 Ising model on the Shastry-Sutherland lattice are studied within the effective-field theory (EFT) with correlations. The thermal behavior of the magnetizations is investigated in order to characterize the nature (the first- or second-order) of the phase transitions as well as to obtain the phase diagrams of the model. The internal energy, specific heat, entropy and free energy of the system are also examined numerically as a function of the temperature in order to confirm the stability of the phase transitions. The applied field dependence of the magnetizations is also examined to find the existence of the magnetization plateaus. For strong enough magnetic fields, several magnetization plateaus are observed, e.g., at 1/9, 1/8, 1/3 and 1/2 of the saturation. The phase diagrams of the model are constructed in two different planes, namely (h/|J|, |J‧|/|J|) and (h/|J|, T/|J|) planes. It was found that the model exhibits first- and second-order phase transitions; hence tricitical point is also observed in additional to the zero-temperature critical point. Moreover the Néel order (N), collinear order (C) and ferromagnetic (F) phases are also found with appropriate values of the system parameters. The reentrant behavior is also obtained whenever model displays two Néel temperatures. These results are compared with some theoretical and experimental works and a good overall agreement has been obtained.

  17. Nematic phase in the J1-J2 square-lattice Ising model in an external field

    NASA Astrophysics Data System (ADS)

    Guerrero, Alejandra I.; Stariolo, Daniel A.; Almarza, Noé G.

    2015-05-01

    The J1-J2 Ising model in the square lattice in the presence of an external field is studied by two approaches: the cluster variation method (CVM) and Monte Carlo simulations. The use of the CVM in the square approximation leads to the presence of a new equilibrium phase, not previously reported for this model: an Ising-nematic phase, which shows orientational order but not positional order, between the known stripes and disordered phases. Suitable order parameters are defined, and the phase diagram of the model is obtained. Monte Carlo simulations are in qualitative agreement with the CVM results, giving support to the presence of the new Ising-nematic phase. Phase diagrams in the temperature-external field plane are obtained for selected values of the parameter κ =J2/|J1| which measures the relative strength of the competing interactions. From the CVM in the square approximation we obtain a line of second order transitions between the disordered and nematic phases, while the nematic-stripes phase transitions are found to be of first order. The Monte Carlo results suggest a line of second order nematic-disordered phase transitions in agreement with the CVM results. Regarding the stripes-nematic transitions, the present Monte Carlo results are not precise enough to reach definite conclusions about the nature of the transitions.

  18. A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows

    NASA Astrophysics Data System (ADS)

    La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro

    2015-03-01

    In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.

  19. A 2-D dynamical model of mesospheric temperature inversions in winter

    SciTech Connect

    Hauchecorne, A.; Maillard, A. )

    1990-11-01

    A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.

  20. Exploring the renormalization of quantum discord and Bell non-locality in the one-dimensional transverse Ising model

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-cheng; Shi, Jia-dong; Ding, Zhi-yong; Ye, Liu

    2016-08-01

    In this paper, the effect of external magnet field g on the relationship among the quantum discord, Bell non-locality and quantum phase transition by employing quantum renormalization-group (QRG) method in the one-dimensional transverse Ising model is investigated. In our model, external magnet field g can influence the phase diagrams. The results have shown that both the two quantum correlation measures can develop two saturated values, which are associated with two distinct phases: long-ranged ordered Ising phase and the paramagnetic phase with the number of QRG iterations increasing. Additionally, quantum non-locality always existent in the long-ranged ordered Ising phase no matter whatever the value of g is and what times QRG steps are carried out and we conclude that the quantum non-locality always exists not only suitable for the two sites of block, but for nearest-neighbor blocks in the long-ranged ordered Ising phase. However, the block-block correlation in the paramagnetic phase is not strong enough to violate the Bell-CHSH inequality as the size of system becomes large. Furthermore, when the system violates the CHSH inequality, i.e., satisfies quantum non-locality, it needs to be entangled. On the other way, if the system obeys the CHSH inequality, it may be entangled or not. To gain further insight, the non-analytic and scaling behavior of QD and Bell non-locality have also been analyzed in detail and this phenomenon indicates that the behavior of the correlation can perfectly help one to observe the quantum critical properties of the model.

  1. Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...

  2. Introducing the R2D2 Model: Online Learning for the Diverse Learners of This World

    ERIC Educational Resources Information Center

    Bonk, Curtis J.; Zhang, Ke

    2006-01-01

    The R2D2 method--read, reflect, display, and do--is a new model for designing and delivering distance education, and in particular, online learning. Such a model is especially important to address the diverse preferences of online learners of varied generations and varied Internet familiarity. Four quadrants can be utilized separately or as part…

  3. Evaluation of 2D shallow-water model for spillway flow with a complex geometry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...

  4. A Renormalization Group Study of the Ising Model on the Hierarchical Hanoi Networks

    NASA Astrophysics Data System (ADS)

    Brunson, Clifton Trent

    Despite all the remarkable breakthroughs in the area of complex networks over the last two decades, there still lacks a complete and general understanding of effects that occur when long-range connections are present in a system. This thesis explores the Ising model using recursive hierarchical networks called Hanoi networks (HN) as a substrate. Hanoi networks are purely synthetic and are not found in nature, so it is important to establish and not lose sight of why they worth studying. In essence, we are not strictly interested in HNs themselves, but the generalized statements about phase transitions on complex networks that they provide via the renormalization group (RG). The RG framework on HNs is established in this study and the thermodynamic observables for statistical models are derived from it. Traditionally, the RG has given physicists insight into the critical exponents of a system or model, which leads to universal behavior; however, hyperbolic networks, like the ones currently under investigation, do not contain constant exponents and do not exhibit universality. Instead, it is found that the scaling exponents are functions of the temperature. We ultimately want to answer the questions: What is it about long-range connections that create a break in universal behavior and can complex networks be designed to produce predicted and intended effects in phase behavior? The current state of research is several years or perhaps decades away from fully comprehending the answers to these questions. The research presented here is motivated by these questions, and our contribution here is intended to show a generalized picture of phase transitions on networks.

  5. Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models.

    PubMed

    Labuhn, Henning; Barredo, Daniel; Ravets, Sylvain; de Léséleuc, Sylvain; Macrì, Tommaso; Lahaye, Thierry; Browaeys, Antoine

    2016-06-30

    Spin models are the prime example of simplified many-body Hamiltonians used to model complex, strongly correlated real-world materials. However, despite the simplified character of such models, their dynamics often cannot be simulated exactly on classical computers when the number of particles exceeds a few tens. For this reason, quantum simulation of spin Hamiltonians using the tools of atomic and molecular physics has become a very active field over the past years, using ultracold atoms or molecules in optical lattices, or trapped ions. All of these approaches have their own strengths and limitations. Here we report an alternative platform for the study of spin systems, using individual atoms trapped in tunable two-dimensional arrays of optical microtraps with arbitrary geometries, where filling fractions range from 60 to 100 per cent. When excited to high-energy Rydberg D states, the atoms undergo strong interactions whose anisotropic character opens the way to simulating exotic matter. We illustrate the versatility of our system by studying the dynamics of a quantum Ising-like spin-1/2 system in a transverse field with up to 30 spins, for a variety of geometries in one and two dimensions, and for a wide range of interaction strengths. For geometries where the anisotropy is expected to have small effects on the dynamics, we find excellent agreement with ab initio simulations of the spin-1/2 system, while for strongly anisotropic situations the multilevel structure of the D states has a measurable influence. Our findings establish arrays of single Rydberg atoms as a versatile platform for the study of quantum magnetism. PMID:27281203

  6. Knight shift and spin relaxation in the single band 2D Hubbard model

    NASA Astrophysics Data System (ADS)

    Leblanc, James; Chen, Xi; Gull, Emanuel

    We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.

  7. Error propagation for velocity and shear stress prediction using 2D models for environmental management

    NASA Astrophysics Data System (ADS)

    Pasternack, Gregory B.; Gilbert, Andrew T.; Wheaton, Joseph M.; Buckland, Evan M.

    2006-08-01

    SummaryResource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with a commercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m 2, was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to ˜20-30%, they can provide a useful tool for river-rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal.

  8. Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils

    NASA Astrophysics Data System (ADS)

    González, A.; Gomez-Iradi, S.; Munduate, X.

    2014-06-01

    From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.

  9. 2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley

    NASA Astrophysics Data System (ADS)

    Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.

    2016-08-01

    We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.

  10. Two-dimensional Ising transition through a technique from two-state opinion-dynamics models.

    PubMed

    Galam, Serge; Martins, André C R

    2015-01-01

    The Ising ferromagnetic model on a square lattice is revisited using the Galam unifying frame (GUF), set to investigate two-state opinion-dynamics models. When combined with Metropolis dynamics, an unexpected intermediate "dis/order" regime is found with the coexistence of two attractors associated, respectively, to an ordered and a disordered phases. The basin of attraction of initial conditions for the disordered phase attractor starts from zero size at a first critical temperature T(c1) to embody the total landscape of initial conditions at a second critical temperature T(c2), with T(c1)≈1.59 and T(c2)≈2.11 in J/k(B) units. It appears that T(c2) is close to the Onsager result T(c)≈2.27. The transition, which is first-order-like, exhibits a vertical jump to the disorder phase at T(c2), reminiscent of the rather abrupt vanishing of the corresponding Onsager second-order transition. However, using Glauber dynamics combined with GUF does not yield the intermediate phase and instead the expected classical mean-field transition is recovered at T(c)≈3.09. Accordingly, although the "dis/order" regime produced by the GUF-Metropolis combination is not physical, it is an intriguing result to be understood. In particular the fact that Glauber and Metropolis dynamics yield so different results using GUF needs an explanation. The possibility of extending GUF to larger clusters is discussed. PMID:25679571

  11. Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration.

    PubMed

    Baka, N; Metz, C T; Schultz, C J; van Geuns, R-J; Niessen, W J; van Walsum, T

    2014-05-01

    2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration. PMID:24770908

  12. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  13. Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation

    SciTech Connect

    Kinnison, D.E.; Connell, P.S.

    1996-12-01

    This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored.

  14. Extension and application of the Preissmann slot model to 2D transient mixed flows

    NASA Astrophysics Data System (ADS)

    Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo

    2015-08-01

    This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.

  15. Generation of Control by SU(2) Reduction for the Anisotropic Ising Model

    NASA Astrophysics Data System (ADS)

    Delgado, F.

    2016-03-01

    Control of entanglement is fundamental in Quantum Information and Quantum Computation towards scalable spin-based quantum devices. For magnetic systems, Ising interaction with driven magnetic fields modifies entanglement properties of matter based quantum systems. This work presents a procedure for dynamics reduction on SU(2) subsystems using a non-local description. Some applications for Quantum Information are discussed.

  16. ISEE-1 and ISEE-2 fast plasma experiment and the ISEE-1 solar wind experiment

    NASA Technical Reports Server (NTRS)

    Bame, S. J.; Asbridge, J. R.; Felthauser, H. E.; Glore, J. P.; Paschmann, G.; Hemmerich, P.; Lehmann, K.; Rosenbauer, H.

    1978-01-01

    Identical fast plasma experiment (FPE) systems were placed on the ISEE-1 and ISEE-2 spacecraft. The FPE consists of three high efficiency 90 deg spherical section electrostatic analyzers using large secondary emitters and discrete dynode multipliers to detect analyzed particles. Two of them, viewing in opposite directions, produce complete 2D velocity distribution measurements of both protons and electrons every spacecraft revolution. A third FPE analyzer with a divided emitter measures 3D distributions at a slower rate. ISEE-1 also carries a solar-wind experiment (SWE) to measure solar-wind ions with high resolution. The SWE is composed of two 150 deg spherical section analyzers using the same set of plates. The two acceptance fans are tilted with respect to each other so that 3D characteristics of the ion distributions can be derived.

  17. Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry

    NASA Astrophysics Data System (ADS)

    Beran, Pavel

    2016-06-01

    3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.

  18. Adaptive multi-GPU Exchange Monte Carlo for the 3D Random Field Ising Model

    NASA Astrophysics Data System (ADS)

    Navarro, Cristóbal A.; Huang, Wei; Deng, Youjin

    2016-08-01

    This work presents an adaptive multi-GPU Exchange Monte Carlo approach for the simulation of the 3D Random Field Ising Model (RFIM). The design is based on a two-level parallelization. The first level, spin-level parallelism, maps the parallel computation as optimal 3D thread-blocks that simulate blocks of spins in shared memory with minimal halo surface, assuming a constant block volume. The second level, replica-level parallelism, uses multi-GPU computation to handle the simulation of an ensemble of replicas. CUDA's concurrent kernel execution feature is used in order to fill the occupancy of each GPU with many replicas, providing a performance boost that is more notorious at the smallest values of L. In addition to the two-level parallel design, the work proposes an adaptive multi-GPU approach that dynamically builds a proper temperature set free of exchange bottlenecks. The strategy is based on mid-point insertions at the temperature gaps where the exchange rate is most compromised. The extra work generated by the insertions is balanced across the GPUs independently of where the mid-point insertions were performed. Performance results show that spin-level performance is approximately two orders of magnitude faster than a single-core CPU version and one order of magnitude faster than a parallel multi-core CPU version running on 16-cores. Multi-GPU performance is highly convenient under a weak scaling setting, reaching up to 99 % efficiency as long as the number of GPUs and L increase together. The combination of the adaptive approach with the parallel multi-GPU design has extended our possibilities of simulation to sizes of L = 32 , 64 for a workstation with two GPUs. Sizes beyond L = 64 can eventually be studied using larger multi-GPU systems.

  19. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    NASA Astrophysics Data System (ADS)

    Hamm, Peter

    2014-11-01

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  20. Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...

  1. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…

  2. 2D-Raman-THz spectroscopy: A sensitive test of polarizable water models

    SciTech Connect

    Hamm, Peter

    2014-11-14

    In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.

  3. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    PubMed

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769

  4. Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model

    NASA Astrophysics Data System (ADS)

    Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry

    2015-05-01

    Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.

  5. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  6. The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.

    2004-08-01

    We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.

  7. Phase Transitions in Disordered Systems: The Example of the Random-Field Ising Model in Four Dimensions

    NASA Astrophysics Data System (ADS)

    Fytas, Nikolaos G.; Martín-Mayor, Víctor; Picco, Marco; Sourlas, Nicolas

    2016-06-01

    By performing a high-statistics simulation of the D =4 random-field Ising model at zero temperature for different shapes of the random-field distribution, we show that the model is ruled by a single universality class. We compute to a high accuracy the complete set of critical exponents for this class, including the correction-to-scaling exponent. Our results indicate that in four dimensions (i) dimensional reduction as predicted by the perturbative renormalization group does not hold and (ii) three independent critical exponents are needed to describe the transition.

  8. A model of the near-earth plasma environment and application to the ISEE-A and -B orbit

    NASA Technical Reports Server (NTRS)

    Chan, K. W.; Sawyer, K. W.; Vette, J. I.

    1977-01-01

    A model of the near-earth environment to obtain a best estimate of the average flux of protons and electrons in the energy range from 0.1 to 100 keV for the International Sun-Earth Explorer (ISEE)-A and -B spacecraft. The possible radiation damage to the thermal coating on these spinning spacecraft is also studied. Applications of the model to other high-altitude satellites can be obtained with the appropriate orbit averaging. This study is the first attempt to synthesize an overall quantitative environment of low-energy particles for high altitude spacecraft, using data from in situ measurements.

  9. Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation

    NASA Astrophysics Data System (ADS)

    Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates

    2014-06-01

    The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.

  10. XY ring exchange model with frustrated Ising coupling on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Owerre, S. A.

    2016-07-01

    We investigate the nature of a Z2-invariant XY ring-exchange interaction with a frustrated Ising coupling on the triangular lattice. Within the limits of pure XY ring-exchange interaction, we show that the classical ground state is degenerate resulting from the Z2-invariance of the Hamiltonian. Quantum fluctuations lift these classical degenerate ground states and produce an unusual state whose excitation spectrum exhibits a gapped maximum quadratic dispersion near k = 0 and vanishes at the midpoints of each side of the Brillouin zone. This result is in contrast to a gapless quadratic dispersion near k = 0 in the U(1)-invariant counterpart. We also study the effects of frustration when competing with a classically frustrated Ising interaction. We provide a glimpse into the possible quantum phases that could emerge. A comprehensive understanding of this Hamiltonian, however, cannot be elucidated analytically and requires an explicit numerical simulation.

  11. AIM for Allostery: Using the Ising Model to Understand Information Processing and Transmission in Allosteric Biomolecular Systems

    PubMed Central

    LeVine, Michael V.; Weinstein, Harel

    2015-01-01

    In performing their biological functions, molecular machines must process and transmit information with high fidelity. Information transmission requires dynamic coupling between the conformations of discrete structural components within the protein positioned far from one another on the molecular scale. This type of biomolecular “action at a distance” is termed allostery. Although allostery is ubiquitous in biological regulation and signal transduction, its treatment in theoretical models has mostly eschewed quantitative descriptions involving the system's underlying structural components and their interactions. Here, we show how Ising models can be used to formulate an approach to allostery in a structural context of interactions between the constitutive components by building simple allosteric constructs we termed Allosteric Ising Models (AIMs). We introduce the use of AIMs in analytical and numerical calculations that relate thermodynamic descriptions of allostery to the structural context, and then show that many fundamental properties of allostery, such as the multiplicative property of parallel allosteric channels, are revealed from the analysis of such models. The power of exploring mechanistic structural models of allosteric function in more complex systems by using AIMs is demonstrated by building a model of allosteric signaling for an experimentally well-characterized asymmetric homodimer of the dopamine D2 receptor. PMID:26594108

  12. Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models

    NASA Astrophysics Data System (ADS)

    Luther, K.; Haitjema, H. M.

    2000-04-01

    We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.

  13. 2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.

    2011-11-01

    We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we

  14. TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment

    NASA Astrophysics Data System (ADS)

    Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano

    2016-04-01

    Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an

  15. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  16. A New Proof of the Sharpness of the Phase Transition for Bernoulli Percolation and the Ising Model

    NASA Astrophysics Data System (ADS)

    Duminil-Copin, Hugo; Tassion, Vincent

    2016-04-01

    We provide a new proof of the sharpness of the phase transition for Bernoulli percolation and the Ising model. The proof applies to infinite-range models on arbitrary locally finite transitive infinite graphs. For Bernoulli percolation, we prove finiteness of the susceptibility in the subcritical regime {β < β_c}, and the mean-field lower bound {{P}_β[0longleftrightarrow infty ]ge (β-β_c)/β} for {β > β_c}. For finite-range models, we also prove that for any {β < β_c}, the probability of an open path from the origin to distance n decays exponentially fast in n. For the Ising model, we prove finiteness of the susceptibility for {β < β_c}, and the mean-field lower bound {< σ_0rangle_β^+ge sqrt{(β^2-β_c^2)/β^2}} for {β > β_c}. For finite-range models, we also prove that the two-point correlation functions decay exponentially fast in the distance for {β < β_c}.

  17. Boundary conditions and the critical Casimir force on an Ising model film: exact results in one and two dimensions.

    PubMed

    Rudnick, Joseph; Zandi, Roya; Shackell, Aviva; Abraham, Douglas

    2010-10-01

    Finite-size effects in certain critical systems can be understood as universal Casimir forces. Here, we compare the Casimir force for free, fixed, periodic, and antiperiodic boundary conditions in the exactly calculable case of the ferromagnetic Ising model in one and two dimensions. We employ a procedure which allows us to calculate the Casimir force with the aforementioned boundary conditions analytically in a transparent manner. Among other results, we find an attractive Casimir force for the case of periodic boundary conditions and a repulsive Casimir force in the antiperiodic case. PMID:21230249

  18. Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry

    NASA Astrophysics Data System (ADS)

    Lopes Cardozo, David; Holdsworth, Peter C. W.

    2016-04-01

    The magnetization probability density in d  =  2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.

  19. Magnetic properties of the spin-3/2 Blume-Capel model on a hexagonal Ising nanowire

    SciTech Connect

    Kocakaplan, Y.; Ertaş, M.

    2015-10-15

    Magnetic properties, such as magnetizations, internal energy, specific heat, entropy, Helmholtz free energy, and phase diagrams of the spin-3/2 Blume-Capel model on a hexagonal Ising nanowire with core-shell structure are studied by using the effective-field theory with correlations. The hysteresis behaviors of the system are also investigated and the effects of Hamiltonian parameters on hysteresis behaviors are discussed in detail. The obtained results are compared with some theoretical results and a qualitatively good agreement is found.

  20. Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model

    NASA Astrophysics Data System (ADS)

    Park, Sung-Been; Cha, Min-Chul

    2015-11-01

    We investigate the finite-size scaling properties of the quantum phase transition in the one-dimensional quantum Ising model with periodic boundary conditions by representing the ground state in matrix product state forms. The infinite time-evolving block decimation technique is used to optimize the states. A trace over a product of the matrices multiplied as many times as the number of sites yields the finite-size effects. For sufficiently large Schmidt ranks, the finite-size scaling behavior determines the critical point and the critical exponents whose values are consistent with the analytical results.

  1. Parameterising root system growth models using 2D neutron radiography images

    NASA Astrophysics Data System (ADS)

    Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel

    2013-04-01

    Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary

  2. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction

    NASA Astrophysics Data System (ADS)

    Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi

    2013-10-01

    A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.

  3. 2D density model of the Chinese continental lithosphere along a NW-SE transect

    NASA Astrophysics Data System (ADS)

    Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana

    2015-06-01

    This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.

  4. A Neural-FEM tool for the 2-D magnetic hysteresis modeling

    NASA Astrophysics Data System (ADS)

    Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.

    2016-04-01

    The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.

  5. Large pseudocounts and L2-norm penalties are necessary for the mean-field inference of Ising and Potts models

    NASA Astrophysics Data System (ADS)

    Barton, J. P.; Cocco, S.; De Leonardis, E.; Monasson, R.

    2014-07-01

    The mean-field (MF) approximation offers a simple, fast way to infer direct interactions between elements in a network of correlated variables, a common, computationally challenging problem with practical applications in fields ranging from physics and biology to the social sciences. However, MF methods achieve their best performance with strong regularization, well beyond Bayesian expectations, an empirical fact that is poorly understood. In this work, we study the influence of pseudocount and L2-norm regularization schemes on the quality of inferred Ising or Potts interaction networks from correlation data within the MF approximation. We argue, based on the analysis of small systems, that the optimal value of the regularization strength remains finite even if the sampling noise tends to zero, in order to correct for systematic biases introduced by the MF approximation. Our claim is corroborated by extensive numerical studies of diverse model systems and by the analytical study of the m-component spin model for large but finite m. Additionally, we find that pseudocount regularization is robust against sampling noise and often outperforms L2-norm regularization, particularly when the underlying network of interactions is strongly heterogeneous. Much better performances are generally obtained for the Ising model than for the Potts model, for which only couplings incoming onto medium-frequency symbols are reliably inferred.

  6. TMRPres2D: high quality visual representation of transmembrane protein models.

    PubMed

    Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J

    2004-11-22

    The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184

  7. A simple 2-D inundation model for incorporating flood damage in urban drainage planning

    NASA Astrophysics Data System (ADS)

    Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.

    2008-11-01

    In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.

  8. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  9. Presence or absence of order by disorder in a highly frustrated region of the spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices.

    PubMed

    Strečka, Jozef; Ekiz, Cesur

    2015-05-01

    The geometrically frustrated spin-1/2 Ising-Heisenberg model on triangulated Husimi lattices is exactly solved by combining the generalized star-triangle transformation with the method of exact recursion relations. The ground-state and finite-temperature phase diagrams are rigorously calculated along with both sublattice magnetizations of the Ising and Heisenberg spins. It is evidenced that the Ising-Heisenberg model on triangulated Husimi lattices with two or three interconnected triangles-in-triangles units displays in a highly frustrated region a quantum disorder irrespective of temperature, whereas the same model on triangulated Husimi lattices with a greater connectivity of triangles-in-triangles units exhibits at low enough temperatures an outstanding quantum order due to the order-by-disorder mechanism. The quantum reduction of both sublattice magnetizations in the peculiar quantum ordered state gradually diminishes upon increasing the coordination number of the underlying Husimi lattice. PMID:26066155

  10. Translation-invariant p-adic quasi-Gibbs measures for the Ising-Vannimenus model on a Cayley tree

    NASA Astrophysics Data System (ADS)

    Mukhamedov, F. M.; Saburov, M. Kh.; Khakimov, O. Kh.

    2016-04-01

    We consider the p-adic Ising-Vannimenus model on the Cayley tree of order k = 2. This model contains nearest-neighbor and next-nearest-neighbor interactions. We investigate the model using a new approach based on measure theory ( in the p-adic sense) and describe all translation-invariant p-adic quasi-Gibbs measures associated with the model. As a consequence, we can prove that a phase transition exists in the model. Here, "phase transition" means that there exist at least two nontrivial p-adic quasi-Gibbs measures such that one is bounded and the other is unbounded. The methods used are inapplicable in the real case.

  11. Nested 1D-2D approach for urban surface flood modeling

    NASA Astrophysics Data System (ADS)

    Murla, Damian; Willems, Patrick

    2015-04-01

    Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of

  12. Non-degenerated Ground States and Low-degenerated Excited States in the Antiferromagnetic Ising Model on Triangulations

    NASA Astrophysics Data System (ADS)

    Jiménez, Andrea

    2014-02-01

    We study the unexpected asymptotic behavior of the degeneracy of the first few energy levels in the antiferromagnetic Ising model on triangulations of closed Riemann surfaces. There are strong mathematical and physical reasons to expect that the number of ground states (i.e., degeneracy) of the antiferromagnetic Ising model on the triangulations of a fixed closed Riemann surface is exponential in the number of vertices. In the set of plane triangulations, the degeneracy equals the number of perfect matchings of the geometric duals, and thus it is exponential by a recent result of Chudnovsky and Seymour. From the physics point of view, antiferromagnetic triangulations are geometrically frustrated systems, and in such systems exponential degeneracy is predicted. We present results that contradict these predictions. We prove that for each closed Riemann surface S of positive genus, there are sequences of triangulations of S with exactly one ground state. One possible explanation of this phenomenon is that exponential degeneracy would be found in the excited states with energy close to the ground state energy. However, as our second result, we show the existence of a sequence of triangulations of a closed Riemann surface of genus 10 with exactly one ground state such that the degeneracy of each of the 1st, 2nd, 3rd and 4th excited energy levels belongs to O( n), O( n 2), O( n 3) and O( n 4), respectively.

  13. Pseudolikelihood Decimation Algorithm Improving the Inference of the Interaction Network in a General Class of Ising Models

    NASA Astrophysics Data System (ADS)

    Decelle, Aurélien; Ricci-Tersenghi, Federico

    2014-02-01

    In this Letter we propose a new method to infer the topology of the interaction network in pairwise models with Ising variables. By using the pseudolikelihood method (PLM) at high temperature, it is generally possible to distinguish between zero and nonzero couplings because a clear gap separate the two groups. However at lower temperatures the PLM is much less effective and the result depends on subjective choices, such as the value of the ℓ1 regularizer and that of the threshold to separate nonzero couplings from null ones. We introduce a decimation procedure based on the PLM that recursively sets to zero the less significant couplings, until the variation of the pseudolikelihood signals that relevant couplings are being removed. The new method is fully automated and does not require any subjective choice by the user. Numerical tests have been performed on a wide class of Ising models, having different topologies (from random graphs to finite dimensional lattices) and different couplings (both diluted ferromagnets in a field and spin glasses). These numerical results show that the new algorithm performs better than standard PLM.

  14. Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches

    NASA Astrophysics Data System (ADS)

    Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.

    2015-02-01

    The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.

  15. Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers

    NASA Astrophysics Data System (ADS)

    Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong

    2016-02-01

    We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.

  16. 2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment

    NASA Astrophysics Data System (ADS)

    Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.

    2009-12-01

    This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.

  17. A 2-D semi-analytical model of double-gate tunnel field-effect transistor

    NASA Astrophysics Data System (ADS)

    Huifang, Xu; Yuehua, Dai; Ning, Li; Jianbin, Xu

    2015-05-01

    A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poisson equation is solved by using a semi-analytical method combined with an eigenfunction expansion method. The expression of the surface potential is obtained, which is a special function for the infinite series expressions. The influence of the mobile charges on the potential profile is taken into account in the proposed model. On the basis of the potential profile, the shortest tunneling length and the average electrical field can be derived, and the drain current is then constructed by using Kane's model. In particular, the changes of the tunneling parameters Ak and Bk influenced by the drain—source voltage are also incorporated in the predicted model. The proposed model shows a good agreement with TCAD simulation results under different drain—source voltages, silicon film thicknesses, gate dielectric layer thicknesses, and gate dielectric layer constants. Therefore, it is useful to optimize the DG TFET and this provides a physical insight for circuit level design. Project supported by the National Natural Science Foundation of China (No. 61376106) and the Graduate Innovation Fund of Anhui University.

  18. Gender and ethnicity specific generic elastic models from a single 2D image for novel 2D pose face synthesis and recognition.

    PubMed

    Heo, Jingu; Savvides, Marios

    2012-12-01

    In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062

  19. Modeling the Elastic Modulus of 2D Woven CVI SiC Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    2006-01-01

    The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.

  20. ISE structural dynamic experiments

    NASA Technical Reports Server (NTRS)

    Lock, Malcolm H.; Clark, S. Y.

    1988-01-01

    The topics are presented in viewgraph form and include the following: directed energy systems - vibration issue; Neutral Particle Beam Integrated Space Experiment (NPB-ISE) opportunity/study objective; vibration sources/study plan; NPB-ISE spacecraft configuration; baseline slew analysis and results; modal contributions; fundamental pitch mode; vibration reduction approaches; peak residual vibration; NPB-ISE spacecraft slew experiment; goodbye ISE - hello Zenith Star Program.

  1. A solidification constitutive model for NIKE2D and NIKE3D

    SciTech Connect

    Raboin, P.J.

    1994-03-17

    This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.

  2. An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel

    NASA Astrophysics Data System (ADS)

    Maggio, Charles; Fauci, Lisa; Chrispell, John

    2009-11-01

    We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.

  3. Global regularity for the 2D Oldroyd-B model in the corotational case

    NASA Astrophysics Data System (ADS)

    Ye, Zhuan; Xu, Xiaojing

    2016-09-01

    This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.

  4. A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes

    NASA Astrophysics Data System (ADS)

    Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom

    2008-11-01

    Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.

  5. An Artificial Ising System with Phononic Excitations

    NASA Astrophysics Data System (ADS)

    Ghaffari, Hamed; Griffith, W. Ashley; Benson, Philip; Nasseri, M. H. B.; Young, R. Paul

    Many intractable systems and problems can be reduced to a system of interacting spins. Here, we report mapping collective phononic excitations from different sources of crystal vibrations to spin systems. The phononic excitations in our experiments are due to micro and nano cracking (yielding crackling noises due to lattice distortion). We develop real time mapping of the multi-array senores to a network-space and then mapping the excitation- networks to spin-like systems. We show that new mapped system satisfies the quench (impulsive) characteristics of the Ising model in 2D classical spin systems. In particular, we show that our artificial Ising system transits between two ground states and approaching the critical point accompanies with a very short time frozen regime, inducing formation of domains separated by kinks. For a cubic-test under a true triaxial test (3D case), we map the system to a 6-spin ring under a transversal-driving field where using functional multiplex networks, the vector components of the spin are inferred (i.e., XY model). By visualization of spin patterns of the ring per each event, we demonstrate that ``kinks'' (as defects) proliferate when system approach from above to its critical point. We support our observations with employing recorded acoustic excitations during distortion of crystal lattices in nano-indentation tests on different crystals (silicon and graphite), triaxial loading test on rock (poly-crystal) samples and a true 3D triaxial test.

  6. Crossing the c=1 barrier in 2D Lorentzian quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K.; Loll, R.

    2000-02-01

    In an extension of earlier work we investigate the behavior of two-dimensional (2D) Lorentzian quantum gravity under coupling to a conformal field theory with c>1. This is done by analyzing numerically a system of eight Ising models (corresponding to c=4) coupled to dynamically triangulated Lorentzian geometries. It is known that a single Ising model couples weakly to Lorentzian quantum gravity, in the sense that the Hausdorff dimension of the ensemble of two-geometries is two (as in pure Lorentzian quantum gravity) and the matter behavior is governed by the Onsager exponents. By increasing the amount of matter to eight Ising models, we find that the geometry of the combined system has undergone a phase transition. The new phase is characterized by an anomalous scaling of spatial length relative to proper time at large distances, and as a consequence the Hausdorff dimension is now three. In spite of this qualitative change in the geometric sector, and a very strong interaction between matter and geometry, the critical exponents of the Ising model retain their Onsager values. This provides evidence for the conjecture that the KPZ values of the critical exponents in 2D Euclidean quantum gravity are entirely due to the presence of baby universes. Lastly, we summarize the lessons learned so far from 2D Lorentzian quantum gravity.

  7. Exact results for the spin-1 Ising model on pure "square" Husimi lattices: Critical temperatures and spontaneous magnetization

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2016-02-01

    We investigate the second order phase transitions of the ferromagnetic spin-1 Ising model on pure Husimi lattices built up from elementary squares with arbitrary values of the coordination number. It is shown that the critical temperatures of the second order phase transitions are driven by a single equation simultaneously on all such lattices. It is also shown that for arbitrary given value of the coordination number this equation is equivalent to the corresponding polynomial equation. The explicit form of these polynomial equations is present for the lattices with the coordination numbers z = 4 , 6, and 8. It is proven that, at least for the small values of the coordination number, the positions of the critical temperatures are uniquely determined. In addition, it is shown that the properties of all phases of the model are also driven by the corresponding single equations simultaneously on all pure Husimi lattices built up from elementary squares. The spontaneous magnetization of the model is investigated in detail.

  8. Evaluation of Hydrus-2D model for solute distribution in subsurface drip

    NASA Astrophysics Data System (ADS)

    Souza, Claudinei; Bizari, Douglas; Grecco, Katarina

    2015-04-01

    The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.

  9. Exact solution of an anisotropic 2D random walk model with strong memory correlations

    NASA Astrophysics Data System (ADS)

    Cressoni, J. C.; Viswanathan, G. M.; da Silva, M. A. A.

    2013-12-01

    Over the last decade, there has been progress in understanding one-dimensional non-Markovian processes via analytic, sometimes exact, solutions. The extension of these ideas and methods to two and higher dimensions is challenging. We report the first exactly solvable two-dimensional (2D) non-Markovian random walk model belonging to the family of the elephant random walk model. In contrast to Lévy walks or fractional Brownian motion, such models incorporate memory effects by keeping an explicit history of the random walk trajectory. We study a memory driven 2D random walk with correlated memory and stops, i.e. pauses in motion. The model has an inherent anisotropy with consequences for its diffusive properties, thereby mixing the dominant regime along one dimension with a subdiffusive walk along a perpendicular dimension. The anomalous diffusion regimes are fully characterized by an exact determination of the Hurst exponent. We discuss the remarkably rich phase diagram, as well as several possible combinations of the independent walks in both directions. The relationship between the exponents of the first and second moments is also unveiled.

  10. Molecular-dynamics of a 2D Model of the Shape Memory Effect

    NASA Astrophysics Data System (ADS)

    Kastner, Oliver

    2006-08-01

    This work investigates the thermodynamic properties of a qualitative atomistic model for austenite martensite transitions. The model, still in 2D, employs Lennard-Jones potentials for the determination of the atomic interactions. By use of two atom species it is possible to identify three stable lattice structures in 2D, interpreted as austenite and two variants of martensite. The model is described in the first part of the work [6] in detail. The present work studies the thermodynamic properties of the model concerning a small, 2-dimensional test assembly consisting of 41 atoms. The phase stability is investigated by exploitation of the condition of minimal free energy. The free energy is calculated from the thermal equation of state, which is measured in numerical tensile tests. In the second part of this work a chain of eleven 41-atom assemblies is investigated. The chain is interpreted as an idealized larger body, where the individual crystallites represent crystallographic layers allowing for the creation of micro structure. By use of tensile tests at various temperature conditions we sketch how such chain may exhibit quasi-plasticity, pseudo-elasticity and the shape memory effect.

  11. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  12. A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs

    NASA Astrophysics Data System (ADS)

    Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.

    2015-11-01

    A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.

  13. Effect of River Training Project on Hydrodynamics Flow Circumstances by 2D Finite Element Numerical Model

    NASA Astrophysics Data System (ADS)

    Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.

    Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.

  14. Image restoration using 2D autoregressive texture model and structure curve construction

    NASA Astrophysics Data System (ADS)

    Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.

    2015-05-01

    In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.

  15. Kosaki-Longo index and classification of charges in 2D quantum spin models

    NASA Astrophysics Data System (ADS)

    Naaijkens, Pieter

    2013-08-01

    We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.

  16. Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.

    PubMed

    Molero, Miguel; Iturrarán-Viveros, Ursula

    2013-03-01

    We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584

  17. Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive

    NASA Astrophysics Data System (ADS)

    Nagatani, Takashi

    1995-04-01

    A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.

  18. Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model

    NASA Astrophysics Data System (ADS)

    Suzuki, Akio; Konno, Hidetoshi

    2011-09-01

    The dynamics of ventricular fibrillation (VF) has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR) model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS) such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf) for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.

  19. Adaptive finite element modeling of direct current resistivity in 2-D generally anisotropic structures

    NASA Astrophysics Data System (ADS)

    Yan, Bo; Li, Yuguo; Liu, Ying

    2016-07-01

    In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.

  20. Inhibitory effects of phytochemicals on metabolic capabilities of CYP2D6*1 and CYP2D6*10 using cell-based models in vitro

    PubMed Central

    Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao

    2014-01-01

    Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236

  1. Modeling and Control of 2-D Grasping of an Object with Arbitrary Shape under Rolling Contact

    NASA Astrophysics Data System (ADS)

    Arimoto, Suguru; Yoshida, Morio; Sekimoto, Masahiro; Tahara, Kenji

    Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multi-joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry of the object and fingertips. First, a fundamental testbed problem of modeling and control of rolling motion between 2-D rigid bodies with an arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraint induces the Euler equation of motion that is parameterized by a common arclength parameter and constrained onto the kernel space orthogonally complemented to the image space spanned from the constraint gradient. By extending the analysis to the problem of stable grasp of a 2-D object with an arbitrary shape by a pair of robot fingers, the Euler-Lagrange equation of motion of the overall fingers/object system parametrized by arclength parameters is derived, together with a couple of first-order differential equations that express evolutions of contact points in terms of the second fundamental form. It is shown that 2-D rolling constraints are integrable in the sense of Frobonius even if their Pfaffian forms are characterized by arclength parameters. A control signal called “blind grasping” is introduced and shown to be effective in stabilization of grasping without using the details of the object shape and parameters or external sensing. An extension of the Dirichlet-Lagrange stability theorem to a class of systems with DOF-redundancy under constraints is suggested by using a Morse-Bott-Lyapunov function.

  2. Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL

    NASA Astrophysics Data System (ADS)

    Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.

    2009-04-01

    Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II

  3. Longtime Well-posedness for the 2D Groma-Balogh Model

    NASA Astrophysics Data System (ADS)

    Wan, Renhui; Chen, Jiecheng

    2016-07-01

    In this paper, we consider the cauchy problem for the 2D Groma-Balogh model (Acta Mater 47:3647-3654, 1999). From the works Cannone et al. (Arch Ration Mech Anal 196:71-96, 2010) and El Hajj (Ann Inst Henri Poincaré Anal Nonlinéaire 27:21-35, 2010), one can see global well-posedness for this model is an open question. However, we can prove longtime well-posedness. In particular, we show that this model admits a unique solution with the lifespan T^star satisfying T^star log ^2(1+T^star )≳ ɛ ^{-2} if the initial data is of size ɛ . To achieve this, we first establish some new decay estimates concerning the operator e^{-{R}_{12}^2t} . Then, we prove the longtime well-posedness by utilizing the weak dissipation to deal with the nonlinear terms.

  4. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    NASA Astrophysics Data System (ADS)

    Imbert-Gérard, Lise-Marie

    2015-12-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  5. The concept models and implementations of multiport neural net associative memory for 2D patterns

    NASA Astrophysics Data System (ADS)

    Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.

    2011-04-01

    The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.

  6. Modeling floods in a dense urban area using 2D shallow water equations

    NASA Astrophysics Data System (ADS)

    Mignot, E.; Paquier, A.; Haider, S.

    2006-07-01

    SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.

  7. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  8. 2D and 3D shape based segmentation using deformable models.

    PubMed

    El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A

    2005-01-01

    A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036

  9. Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling

    NASA Astrophysics Data System (ADS)

    Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad

    2015-10-01

    Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.

  10. A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method

    PubMed Central

    Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao

    2015-01-01

    Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141

  11. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922

  12. 2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan

    2001-01-01

    We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.

  13. Be2D: A model to understand the distribution of meteoric 10Be in soilscapes

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Govers, Gerard

    2016-04-01

    Cosmogenic nuclides have revolutionised our understanding of earth surface process rates. They have become one of the standard tools to quantify soil production by weathering, soil redistribution and erosion. Especially Beryllium-10 has gained much attention due to its long half-live and propensity to be relatively conservative in the landscape. The latter makes 10Be an excellent tool to assess denudation rates over the last 1000 to 100 × 103 years, bridging the anthropogenic and geological time scale. Nevertheless, the mobility of meteoric 10Be in soil systems makes translation of meteoric 10Be inventories into erosion and deposition rates difficult. Here we present a coupled soil hillslope model, Be2D, that is applied to synthetic and real topography to address the following three research questions. (i) What is the influence of vertical meteoric Be10 mobility, caused by chemical mobility, clay translocation and bioturbation, on its lateral redistribution over the soilscape, (ii) How does vertical mobility influence erosion rates and soil residence times inferred from meteoric 10Be inventories and (iii) To what extent can a tracer with a half-life of 1.36 Myr be used to distinguish between natural and human-disturbed soil redistribution rates? The model architecture of Be2D is designed to answer these research questions. Be2D is a dynamic model including physical processes such as soil formation, physical weathering, clay migration, bioturbation, creep, overland flow and tillage erosion. Pathways of meteoric 10Be mobility are simulated using a two step approach which is updated each timestep. First, advective and diffusive mobility of meteoric 10Be is simulated within the soil profile and second, lateral redistribution because of lateral soil fluxes is calculated. The performance and functionality of the model is demonstrated through a number of synthetic and real model runs using existing datasets of meteoric 10Be from case-studies in southeastern US. Brute

  14. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  15. Determination of critical linear lattice size for the four dimensional Ising model on the Creutz cellular automaton

    NASA Astrophysics Data System (ADS)

    Kizilirmak, Ganimet Mülazımoğlu

    2015-12-01

    The four-dimensional Ising model is simulated on the Creutz cellular automaton (CCA) near the infinite-lattice critical temperature for the lattice with the linear dimension 4 ⩽ L ⩽ 22. The temperature dependence of Binder parameter ( g L) are analyzed for the lattice with the linear dimension 4 ⩽ L ⩽ 22. In this study conducted highly detailed, two different types of behavior were determined as a result of varying linear lattice dimension. The infinite lattice critical temperatures are obtained to be T c = 6.6845 ± 0.0005 in interval 4 ⩽ L ⩽ 12 and T c = 6.6807 ± 0.0024 in interval 14 ⩽ L ⩽ 22. The finite and infinite lattice critical exponents for the order parameter, the magnetic susceptibility and the specific heat are computed from the results of simulations by using finite-size scaling relations. Critical linear lattice size have been identified as L = 14.

  16. Effect of further-neighbor interactions on the magnetization behaviors of the Ising model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Chen, J.; Zhuo, W. Z.; Qin, M. H.; Dong, S.; Zeng, M.; Lu, X. B.; Gao, X. S.; Liu, J.-M.

    2016-09-01

    In this work, we study the magnetization behaviors of the classical Ising model on the triangular lattice using Monte Carlo simulations, and pay particular attention to the effect of further-neighbor interactions. Several fascinating spin states are identified to be stabilized in certain magnetic field regions, respectively, resulting in the magnetization plateaus at 2/3, 5/7, 7/9 and 5/6 of the saturation magnetization M S, in addition to the well-known plateaus at 0, 1/3 and 1/2 of M S. The stabilization of these interesting orders can be understood as the consequence of the competition between Zeeman energy and exchange energy.

  17. Effect of further-neighbor interactions on the magnetization behaviors of the Ising model on a triangular lattice.

    PubMed

    Chen, J; Zhuo, W Z; Qin, M H; Dong, S; Zeng, M; Lu, X B; Gao, X S; Liu, J-M

    2016-09-01

    In this work, we study the magnetization behaviors of the classical Ising model on the triangular lattice using Monte Carlo simulations, and pay particular attention to the effect of further-neighbor interactions. Several fascinating spin states are identified to be stabilized in certain magnetic field regions, respectively, resulting in the magnetization plateaus at 2/3, 5/7, 7/9 and 5/6 of the saturation magnetization M S, in addition to the well-known plateaus at 0, 1/3 and 1/2 of M S. The stabilization of these interesting orders can be understood as the consequence of the competition between Zeeman energy and exchange energy. PMID:27356040

  18. Quantum Monte Carlo study of long-range transverse-field Ising models on the triangular lattice

    NASA Astrophysics Data System (ADS)

    Humeniuk, Stephan

    2016-03-01

    Motivated by recent experiments with a Penning ion trap quantum simulator, we perform numerically exact Stochastic Series Expansion quantum Monte Carlo simulations of long-range transverse-field Ising models on a triangular lattice for different decay powers α of the interactions. The phase boundary for the ferromagnet is obtained as a function of α . For antiferromagnetic interactions, there is strong indication that the transverse field stabilizes a clock ordered phase with sublattice magnetization (M ,-M/2 ,-M/2 ) with unsaturated M <1 in a process known as "order by disorder" similar to the nearest-neighbor antiferromagnet on the triangular lattice. Connecting the known limiting cases of nearest-neighbor and infinite-range interactions, a semiquantitative phase diagram is obtained. Magnetization curves for the ferromagnet for experimentally relevant system sizes and with open boundary conditions are presented.

  19. Comparative modeling of vertical and planar organic phototransistors with 2D drift-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.

    2016-05-01

    Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.

  20. An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    1992-01-01

    This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.

  1. A guide to using material model No. 11 in NIKE2D: An internal variable, viscoplasticity model

    SciTech Connect

    Flower, E.C.; Nikkel, D.J. Jr.

    1990-10-30

    The need to accurately model the superplastic forming process which is highly rate and temperature dependent motivated the evaluation of Bammann's internal variable, viscoplasticity material model. The model is based upon the concepts of unified creep plasticity, but employs a yield surface for efficient implementation into large-scale numerical computer codes. It has proven elsewhere to be quite successful in describing large strain, thermal-mechanical behavior of crystalline materials. Features of the model enable it to simulate the apparent strain-rate behavior exhibited by many metals above one half the melt temperature. It is the efficient incorporation of features that make the model attractive for use in finite element modeling of metal deformation processes. Although this model was implemented into the Lawrence Livermore National Laboratory's NIKE2D finite element program in 1986, there have been no known reports of successful use by NIKE2D users. The purpose of this report is to provide the user the proper format to input model parameters, a procedure for determining appropriate values for material constants from experimental data, and supplemental information on the model relevant to the implementation in the NIKE2D finite element program. Detailed accounts of the theoretical aspects of the model can be found in the cited references. 4 refs., 8 figs.

  2. Neutrino-electron Scattering in 2-D Models of Supernova Convection

    NASA Astrophysics Data System (ADS)

    DeNisco, K. R.; Swesty, F. D.; Myra, E. S.

    2005-12-01

    We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.

  3. Implications of lack-of-ergodicity in 2D Potts model

    NASA Astrophysics Data System (ADS)

    Ota, Smita

    2015-03-01

    Microcanonical Monte Carlo simulation is used to study two dimensional (2D) q state Potts model. We consider a 2D square lattice having NxN spins with periodic boundary condition and simulated the system with N =15 and q =10. The demon energy distribution is found to be exponential for high system energy and large system size. For smaller system size and above the first order transition the demon energy distribution is found to deviate from exp(- βED) and has the form exp(- βED + γ ED2). Here β = 1/kBT and kB is the Boltzmann constant. It is found that γ is finite at higher temperatures. As the system energy is reduced γ becomes zero near the first order transition. It is found that during cooling γ changes sign from negative to positive and then to negative again near the 1st order transition. Therefore the demon energy distribution becomes exp(- βED) (or ergodic) at two values of system energy near the 1st order transition. Further cooling or at still lower temperatures the system shows lack of ergodicity. However, difference in heating cooling curves are apparent in E vs γ. The system energies for which γ is zero during cooling can represent the 'ergodic' states. This can be related to the two-level systems observed in glasses at low temperatures.

  4. GRAV2D: an interactive 2-1/2 dimensional gravity modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.

    1980-11-01

    GRAV2D is an interactive computer program used for modeling 2-1/2 dimensional gravity data. A forward algorithm is used to give the theoretical attraction of gravity intensity at a station due to a perturbing body given by the initial model. The resultant model can then be adjusted for a better fit by a combination of manual adjustment, one-dimensional automatic search, and Marquardt inversion. GRAV2D has an interactive data management system for data manipulation and display built around subroutines to do a forward problem, a one-dimensional direct search and an inversion. This is a user's guide and documentation for GRAV2D.

  5. 2D time-domain finite-difference modeling for viscoelastic seismic wave propagation

    NASA Astrophysics Data System (ADS)

    Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing

    2016-07-01

    Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.

  6. Transforming 2d Cadastral Data Into a Dynamic Smart 3d Model

    NASA Astrophysics Data System (ADS)

    Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.

    2013-08-01

    3D property registration has become an imperative need in order to optimally reflect all complex cases of the multilayer reality of property rights and restrictions, revealing their vertical component. This paper refers to the potentials and multiple applications of 3D cadastral systems and explores the current state-of-the art, especially the available software with which 3D visualization can be achieved. Within this context, the Hellenic Cadastre's current state is investigated, in particular its data modeling frame. Presenting the methodologies and specifications addressing the registration of 3D properties, the operating cadastral system's shortcomings and merits are pointed out. Nonetheless, current technological advances as well as the availability of sophisticated software packages (proprietary or open source) call for 3D modeling. In order to register and visualize the complex reality in 3D, Esri's CityEngine modeling software has been used, which is specialized in the generation of 3D urban environments, transforming 2D GIS Data into Smart 3D City Models. The application of the 3D model concerns the Campus of the National Technical University of Athens, in which a complex ownership status is established along with approved special zoning regulations. The 3D model was built using different parameters based on input data, derived from cadastral and urban planning datasets, as well as legal documents and architectural plans. The process resulted in a final 3D model, optimally describing the cadastral situation and built environment and proved to be a good practice example of 3D visualization.

  7. The development and testing of a 2D laboratory seismic modelling system for heterogeneous structure investigations

    NASA Astrophysics Data System (ADS)

    Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki

    2015-05-01

    Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The

  8. Turbulence modeling for subsonic separated flows over 2-D airfoils and 3-D wings

    NASA Astrophysics Data System (ADS)

    Rosen, Aaron M.

    Accurate predictions of turbulent boundary layers and flow separation through computational fluid dynamics (CFD) are becoming more and more essential for the prediction of loads in the design of aerodynamic flight components. Standard eddy viscosity models used in many commercial codes today do not capture the nonequilibrium effects seen in a separated flow and thus do not generally make accurate separation predictions. Part of the reason for this is that under nonequilibrium conditions such as a strong adverse pressure gradient, the history effects of the flow play an important role in the growth and decay of turbulence. More recent turbulence models such as Olsen and Coakley's Lag model and Lillard's lagRST model seek to simulate these effects by lagging the turbulent variables when nonequilibrium effects become important. The purpose of the current research is to assess how these nonequilibrium turbulence models capture the separated regions on various 2-D airfoils and 3-D wings. Nonequilibrium models including the Lag model and the lagRST model are evaluated in comparison with three baseline models (Spalart-Allmaras, Wilcox's k-omega, and Menter's SST) using a modified version of the OVERFLOW code. Tuning the model coefficients of the Lag and lagRST models is also explored. Results show that the various lagRST formulations display an improvement in velocity profile predictions over the standard RANS models, but have trouble capturing the edge of the boundary layer. Experimental separation location measurements were not available, but several trends are noted which may be useful to tuning the model coefficients in the future.

  9. 2D-photochemical modeling of Saturn’s stratosphere: hydrocarbon and water distributions

    NASA Astrophysics Data System (ADS)

    Hue, Vincent; Cavalié, Thibault; Hersant, Franck; Dobrijevic, Michel; Greathouse, Thomas; Lellouch, Emmanuel; Hartogh, Paul; Cassidy, Timothy; Spiga, Aymeric; Guerlet, Sandrine; Sylvestre, Melody

    2014-11-01

    Saturn’s axial tilt of 27° produces seasons in a similar way as on Earth. The seasonal forcing over Saturn’s 30 years period influences the production/loss of the major atmospheric absorbers and coolants through photochemistry, and influences therefore Saturn’s stratospheric temperatures. We have developed a 2D time-dependent photochemical model of Saturn’s atmosphere [Hue et al., in prep.], coupled to a radiative-climate model [Greathouse et al., 2008] to study seasonal effects on its atmospheric composition. Cassini spacecraft has revealed that the distribution of hydrocarbons in Saturn’s stratosphere [Guerlet et al., 2009] differs from pure photochemical predictions, i.e. without meridional transport [Moses et al., 2005]. Differences between the observed distribution of hydrocarbons and 2D-photochemical predictions are likely to be an indicator of dynamical forcing.Disentangling the origin of water in the stratosphere of this planet has been a long-term issue. Due to Saturn’s cold tropopause trap, which acts as a transport barrier, the water vapor observed by the Infrared Space Observatory (ISO) [Feuchtgruber et al., 1997] has an external origin. Three external sources have been identified: (i) permanent flux from interplanetary dust particles, (ii) local sources form planetary environments (rings, satellites), (iii) large cometary impacts, similar to Shoemaker-Levy 9 on Jupiter. Previous observations of Saturn with Herschel’s Hsso program [Hartogh et al., 2009] led to the detection of a water torus around Saturn [Hartogh et al., 2011], fed by Enceladus’ geysers. A substantial fraction of this torus is predicted to be a local source of water for Saturn’s and its satellites, as it will spread in this system [Cassidy et al., 2010]. Using the new 2D-photochemical model, we test here the validity of Enceladus’ torus as the source of Saturn’s stratospheric water.References : Hue et al., in prep. Greathouse et al., 2008. AGU Fall Meeting

  10. On the assimilation of flood extension images into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Monnier, J.; Couderc, F.; Dartus, D.; Madec, R.; Vila, J.

    2012-12-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images (e.g. from satellite) is still delicate. In the present talk, we address the richness of satellite information to constraint a 2D shallow-water model, and present also related difficulties. A preliminary study done on Mosel river is presented in [LaMo] [HoLaMoPu]. On selected parts of the image, an 0th order model flow allows to obtain some reliable water levels with quantified uncertainties (C. Puech et al.). Next, variationnal sensitivities (based on a gradient computation and adjoint equations) reveal some difficulties that a model designer have to tackle (e.g. roughness parameters at open boundaries), and allow to better understand both the model and the flow. Next, a variational data assimilation algorithm (4D-var) shows that such data lead to a better calibration of the model (e.g. roughness coefficients) and potentially allows to identify the incoming and/or outgoing flow at open boundaries, [LaMo] [HoLaMoPu]. On the other side, the flood dynamic extension is difficult to represent accurately using a 2D SW model since the wet-dry front dynamics is difficult to compute. We compare some 2nd order finite volume solvers and obtain an accurate and stable scheme at wet-dry front. Then, we present some basic rules of compatibility between data and mesh resolution in order to be reliable enough to constraint the model with flood extension data, [CoMaMoViDa]. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. [CoMaMoViDa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Open-source computational software http://www-gmm.insa-toulouse.fr/~monnier/DassFlow/ [HoLaMoPu] R. Hostache, X. Lai, J. Monnier, C. Puech. "Assimilation of spatial

  11. The combined effect of attraction and orientation zones in 2D flocking models

    NASA Astrophysics Data System (ADS)

    Iliass, Tarras; Cambui, Dorilson

    2016-01-01

    In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.

  12. Coronary arteries motion modeling on 2D x-ray images

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Sundar, Hari

    2012-02-01

    During interventional procedures, 3D imaging modalities like CT and MRI are not commonly used due to interference with the surgery and radiation exposure concerns. Therefore, real-time information is usually limited and building models of cardiac motion are difficult. In such case, vessel motion modeling based on 2-D angiography images become indispensable. Due to issues with existing vessel segmentation algorithms and the lack of contrast in occluded vessels, manual segmentation of certain branches is usually necessary. In addition, such occluded branches are the most important vessels during coronary interventions and obtaining motion models for these can greatly help in reducing the procedure time and radiation exposure. Segmenting different cardiac phases independently does not guarantee temporal consistency and is not efficient for occluded branches required manual segmentation. In this paper, we propose a coronary motion modeling system which extracts the coronary tree for every cardiac phase, maintaining the segmentation by tracking the coronary tree during the cardiac cycle. It is able to map every frame to the specific cardiac phase, thereby inferring the shape information of the coronary arteries using the model corresponding to its phase. Our experiments show that our motion modeling system can achieve promising results with real-time performance.

  13. 2-D modeling of laterally acoustically coupled thin film bulk acoustic wave resonator filters.

    PubMed

    Pensala, Tuomas; Meltaus, Johanna; Kokkonen, Kimmo; Ylilammi, Markku

    2010-11-01

    A 2-D model is developed for calculating lateral acoustical coupling between adjacent thin film BAW resonators forming an electrical N-port. The model is based on solution and superposition of lateral eigenmodes and eigenfrequencies in a structure consisting of adjacent regions with known plate wave dispersion properties. Mechanical and electrical response of the device are calculated as a superposition of eigenmodes according to voltage drive at one electrical port at a time while extracting current induced in the other ports, leading to a full Y-parameter description of the device. Exemplary cases are simulated to show the usefulness of the model in the study of the basic design rules of laterally coupled thin film BAW resonator filters. Model predictions are compared to an experimental 1.9-GHz band-pass filter based on aluminum nitride thin film technology and lateral acoustical coupling. Good agreement is obtained in prediction of passband behavior. The eigenmode-based model forms a useful tool for fast simulation of laterally coupled acoustic devices. It allows one to gain insight into basic device physics in a very intuitive fashion compared with more detailed but heavier finite element method. Shortcomings of this model and possible improvements are discussed. PMID:21041141

  14. Entanglement detection in the mixed-spin Ising-X Y model

    NASA Astrophysics Data System (ADS)

    Hamid Arian, Zad

    2016-03-01

    In the present work, we initially verify anisotropy effect on the heat capacity of a mixed-three-spin (1/2,1,1/2) system (where spins (1/2,1/2) have XY interaction and spins (1,1/2) have Ising interaction together) at finite temperatures, then, the pairwise entanglement for spins (1/2,1/2), by means of negativity (as a measure of entanglement) as a function of the temperature T, homogeneous magnetic field B, and anisotropy parameter γ is investigated. In addition, we show that one can find magnetic phase transition points for the spins (1/2,1/2) at finite temperatures and understand properly their behavior with respect to the magnetic field and the anisotropy parameter, via the negativity function. An interval of the magnetic field from the negativity diagram of the spins (1/2,1/2) is presented in which quantum phase transition occurs for the tripartite mixed-three-spin system. Finally, some new interesting entanglement witnesses are introduced by using non-degenerate perturbation theory for the mixed-three-spin system.

  15. Flat-histogram Monte Carlo in the Classical Antiferromagnetic Ising Model

    NASA Astrophysics Data System (ADS)

    Brown, G.; Rikvold, P. A.; Nicholson, D. M.; Odbadrakh, Kh.; Yin, J.-Q.; Eisenbach, M.; Miyashita, S.

    2014-03-01

    Flat-histogram Monte Carlo methods, such as Wang-Landau and multicanonical sampling, are extremely useful in numerical studies of frustrated magnetic systems. Numerical tools such as windowing and discrete histograms introduce discontinuities along the continuous energy variable, which in turn introduce artifacts into the calculated density of states. We demonstrate these effects and introduce practical solutions, including ``guard regions'' with biased walks for windowing and analytic representations for histograms. The classical Ising antiferromagnet supplemented by a mean-field interaction is considered. In zero field, the allowed energies are discrete and the artifacts can be avoided in small systems by not binning. For large systems, or cases where non-zero fields are used to break the degeneracy between local energy minima, the energy becomes continuous and these artifacts must be taken into account. Work performed at ORNL, managed by UT-Batelle for the US DOE; sponsored by Div of Mat Sci & Eng, Office of BES; used resources of Oak Ridge Leadership Computing Facility at ORNL, supported by Office of Science Contract DE-AC05-00OR22725.

  16. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    Energy Science and Technology Software Center (ESTSC)

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut awaymore » to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.« less

  17. Surface delta interaction in the g7/2 - d5/2 model space

    NASA Astrophysics Data System (ADS)

    Yu, Xiaofei; Zamick, Larry

    2016-05-01

    Using an attractive surface delta interaction we obtain wave functions for 2 neutrons (or neutron holes) in the g7/2 -d5/2 model space. If we take the single particle energies to be degenerate we find that the g factors for I = 2 , 4 and 6 are all the same G (J) =gl, the orbital g factor of the nucleon. For a free neutron gl = 0, so in this case all 2 particles or 2 holes' g factors are equal to zero. Only the orbital part of the g-factors contributes - the spin part cancels out. We then consider the effects of introducing a single energy splitting between the 2 orbits. We make a linear approximation for all other n values.

  18. 3D prostate boundary segmentation from ultrasound images using 2D active shape models.

    PubMed

    Hodge, Adam C; Ladak, Hanif M

    2006-01-01

    Boundary outlining, or segmentation, of the prostate is an important task in diagnosis and treatment planning for prostate cancer. This paper describes an algorithm for semi-automatic, three-dimensional (3D) segmentation of the prostate boundary from ultrasound images based on two-dimensional (2D) active shape models (ASM) and rotation-based slicing. Evaluation of the algorithm used distance- and volume-based error metrics to compare algorithm generated boundary outlines to gold standard (manually generated) boundary outlines. The mean absolute distance between the algorithm and gold standard boundaries was 1.09+/-0.49 mm, the average percent absolute volume difference was 3.28+/-3.16%, and a 5x speed increase as compared manual planimetry was achieved. PMID:17946106

  19. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  20. Models Ion Trajectories in 2D and 3D Electrostatic and Magnetic Fields

    SciTech Connect

    Dahl, David

    2000-02-21

    SIMION3D7.0REV is a C based ion optics simulation program that can model complex problems using Laplace equation solutions for potential fields. The program uses an ion optics workbench that can hold up to 200 2D and/or 3D electrostatic/magnetic potential arrays. Arrays can have up to 50,000,000 points. SIMION3D7.0''s 32 bit virtual Graphics User Interface provides a highly interactive advanced user environment. All potential arrays are visualized as 3D objects that the user can cut away to inspect ion trajectories and potential energy surfaces. User programs allow the user to customize the program for specific simulations. A geometry file option supports the definition of highly complex array geometry. Algorithm modifications have improved this version''s computational speed and accuracy.

  1. Robust autonomous model learning from 2D and 3D data sets.

    PubMed

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets. PMID:18051152

  2. Calibration Of 2D Hydraulic Inundation Models In The Floodplain Region Of The Lower Tagus River

    NASA Astrophysics Data System (ADS)

    Pestanana, R.; Matias, M.; Canelas, R.; Araujo, A.; Roque, D.; Van Zeller, E.; Trigo-Teixeira, A.; Ferreira, R.; Oliveira, R.; Heleno, S.

    2013-12-01

    In terms of inundated area, the largest floods in Portugal occur in the Lower Tagus River. On average, the river overflows every 2.5 years, at times blocking roads and causing important agricultural damages. This paper focus on the calibration of 2D-horizontal flood simulation models for the floods of 2001 and 2006 on a 70-km stretch of the Lower Tagus River. Flood extent maps, derived from ERS SAR and ENVISAT ASAR imagery were compared with the flood extent maps obtained for each simulation, to calibrate roughness coefficients. The combination of the calibration results from the 2001 and 2006 floods provided a preliminary Manning coefficient map of the study area.

  3. Structure-approximating inverse protein folding problem in the 2D HP model.

    PubMed

    Gupta, Arvind; Manuch, Ján; Stacho, Ladislav

    2005-12-01

    The inverse protein folding problem is that of designing an amino acid sequence which has a particular native protein fold. This problem arises in drug design where a particular structure is necessary to ensure proper protein-protein interactions. In this paper, we show that in the 2D HP model of Dill it is possible to solve this problem for a broad class of structures. These structures can be used to closely approximate any given structure. One of the most important properties of a good protein (in drug design) is its stability--the aptitude not to fold simultaneously into other structures. We show that for a number of basic structures, our sequences have a unique fold. PMID:16379538

  4. Spreadsheet analysis of stability and meta-stability of low-dimensional magnetic particles using the Ising approach

    NASA Astrophysics Data System (ADS)

    Ehrmann, Andrea; Blachowicz, Tomasz; Zghidi, Hafed

    2015-05-01

    Modelling hysteresis behaviour, as it can be found in a broad variety of dynamical systems, can be performed in different ways. An elementary approach, applied for a set of elementary cells, which uses only two possible states per cell, is the Ising model. While such Ising models allow for a simulation of many systems with sufficient accuracy, they nevertheless depict some typical features which must be taken into account with proper care, such as meta-stability or the externally applied field sweeping speed. This paper gives a general overview of recent results from Ising models from the perspective of a didactic model, based on a 2D spreadsheet analysis, which can be used also for solving general scientific problems where direct next-neighbour interactions take place.

  5. An application of the distributed hydrologic model CASC2D to a tropical montane watershed

    NASA Astrophysics Data System (ADS)

    Marsik, Matt; Waylen, Peter

    2006-11-01

    SummaryIncreased stormflow in the Quebrada Estero watershed (2.5 km 2), in the northwestern Central Valley tectonic depression of Costa Rica, reportedly has caused flooding of the city of San Ramón in recent decades. Although scientifically untested, urban expansion was deemed the cause and remedial measures were recommended by the Programa de Investigación en Desarrollo Humano Sostenible (ProDUS). CASC2D, a physically-based, spatially explicit hydrologic model, was constructed and calibrated to a June 10th 2002 storm that delivered 110.5 mm of precipitation in 4.5 h visibly exceeded the bankfull stage (0.9 m) of the Quebrada flooding portions of San Ramón. The calibrated hydrograph showed a peak discharge 16.68% (2.5 m 3 s -1) higher, an above flood stage duration 20% shorter, and time to peak discharge 11 min later than the same observed discharge hydrograph characteristics. Simulations of changing land cover conditions from 1979 to 1999 showed an increase also in the peak discharge, above flood stage duration, and time to peak discharge. Analysis using a modified location quotient identified increased urbanization in lower portions of the watershed over the time period studied. These results suggest that increased urbanization in the Quebrada Estero watershed have increased flooding peaks, and durations above threshold, confirming the ProDUS report. These results and the CASC2D model offer an easy-to-use, pragmatic planning tool for policymakers in San Ramón to assess future development scenarios and their potential flooding impacts to San Ramón.

  6. 2D Distinct Element Method (DEM) models of the initiation, propagation and saturation of rock joints

    NASA Astrophysics Data System (ADS)

    Arslan, A.; Schöpfer, M. P.; Walsh, J. J.; Childs, C.

    2009-12-01

    In layered sequences, rock joints usually best develop within the more brittle layers and commonly display a regular spacing that scales with layer thickness. A variety of conceptual and mechanical models have been developed for these observations. A limitation of previous approaches, however, is that fracture initiation and associated interface slip are not explicitly simulated; instead, fractures were predefined and interfaces were welded. To surmount this problem, we have modelled the formation and growth of joints in layered sequences by using the two-dimensional Distinct Element Method (DEM) as implemented in the Particle Flow Code (PFC-2D). In PFC-2D, rock is represented by an assemblage of circular particles that are bonded at particle-particle contacts. Failure occurs if either the tensile or shear strength of a bond is exceeded. The models comprise a central brittle layer with high Young’s modulus, which is embedded in a low Young’s modulus matrix. The interfaces between the layers are defined by ‘smooth joint’ contacts, a modelling feature that eliminates interparticle bumpiness and associated interlocking friction. Consequently, this feature allows the user to assign macroscopic properties such as friction and cohesion along layer interfaces in a controlled manner. Layer parallel extension is applied by assigning a velocity to particles at the lateral boundaries of the model while maintaining a constant vertical confining pressure. Models were extended until joint saturation in the central layer was reached. We thereby explored the impact of confining pressure and interface properties (friction, cohesion) on joint spacing. A number of important conclusions can be drawn from our models: (i) The distributions of average horizontal normal stress within the layer and of shear stress at the interface are consistent with analytical solutions (stress-transfer theory). (ii) At low interfacial shear strength, new joints form preferentially midway between

  7. Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling

    NASA Astrophysics Data System (ADS)

    Mould, D. C.; Lane, S. N.; Christmas, M.

    2004-05-01

    Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts

  8. Spin Circuit Model for Spin Orbit Torques in 2D Channels

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin

    2015-03-01

    Recently, the unique coupling between charge and spin in topological insulators has been explored through various types of electrical measurements, which could have interesting applications. In this talk, we present a spin circuit model for spin orbit torques in topological insulator surface states and other 2D channels. We show with a simple example that results from the circuit model agree well with those obtained from nonequilibrium Green's function (NEGF) based quantum transport simulation. Some predictions of our model have already received experimental support and we hope this model can provide a unifying framework that can be used to critically evaluate experimental results, to explore new types of devices as well as to answer fundamental questions regarding these materials. The model for spin-orbit torques described here can be incorporated into a broader spin-circuit approach which, we believe, provides a natural platform for multi-physics, multi-component spintronic devices. This work was supported by FAME, a Semiconductor Research Corporation program sponsored by MARCO and DARPA.

  9. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling

    PubMed Central

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-01-01

    In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, −). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U−, and D−. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563

  10. Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani

    2015-09-01

    Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science

  11. Incorporating a Turbulence Transport Model into 2-D Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Cha, Eunsun; Cappelli, Mark A.; Fernandez, Eduardo

    2014-10-01

    2-D hybrid simulations of Hall plasma thrusters that do not resolve cross-field transport-generating fluctuations require a model to capture how electrons migrate across the magnetic field. We describe the results of integrating a turbulent electron transport model into simulations of plasma behavior in a plane spanned by the E and B field vectors. The simulations treat the electrons as a fluid and the heavy species (ions/neutrals) as discrete particles. The transport model assumes that the turbulent eddy cascade in the electron fluid to smaller scales is the primary means of electron energy dissipation. Using this model, we compare simulations to experimental measurements made on a laboratory Hall discharge over a range of discharge voltage. Both the current-voltage trends as well as the plasma properties such as plasma temperature, electron density, and ion velocities seem agree favorably with experiments, where a simple Bohm transport model tends to perform poorly in capturing much of the discharge behavior.

  12. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling.

    PubMed

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-01-01

    In this paper we present a general theory for an arbitrary 2D channel with "spin momentum locking" due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green's function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling. PMID:26932563

  13. Spin Circuit Model for 2D Channels with Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Sayed, Shehrin; Datta, Supriyo

    2016-03-01

    In this paper we present a general theory for an arbitrary 2D channel with “spin momentum locking” due to spin-orbit coupling. It is based on a semiclassical model that classifies all the channel electronic states into four groups based on the sign of the z-component of the spin (up (U), down (D)) and the sign of the x-component of the velocity (+, -). This could be viewed as an extension of the standard spin diffusion model which uses two separate electrochemical potentials for U and D states. Our model uses four: U+, D+, U-, and D-. We use this formulation to develop an equivalent spin circuit that is also benchmarked against a full non-equilibrium Green’s function (NEGF) model. The circuit representation can be used to interpret experiments and estimate important quantities of interest like the charge to spin conversion ratio or the maximum spin current that can be extracted. The model should be applicable to topological insulator surface states with parallel channels as well as to other layered structures with interfacial spin-orbit coupling.

  14. Field Evaluation of a Novel 2D Preferential Flow Snowpack Hydrology Model

    NASA Astrophysics Data System (ADS)

    Leroux, N.; Pomeroy, J. W.; Kinar, N. J.

    2015-12-01

    Accurate estimation of snowmelt flux is of primary importance for runoff hydrograph prediction, which is used for water management and flood forecasting. Lateral flows and preferential flow pathways in porous media flow have proven critical for improving soil and groundwater flow models, but though many physically-based layered snowmelt models have been developed, only 1D matrix flow is accounted for in these models. Therefore, there is a need for snowmelt models that include these processes so as to examine the potential to improve snowmelt hydrological modelling. A 2D model is proposed that enables an improved understanding of energy and water flows within deep heterogeneous snowpacks, including those on slopes. A dual pathway theory is presented that simulates the formation of preferential flow paths, vertical and lateral water flows through the snow matrix and flow fingers, internal energy fluxes, melt, wet snow metamorphism, and internal refreezing. The dual pathway model utilizes an explicit finite volume method to solve for the energy and water flux equations over a non-orthogonal grid. It was run and evaluated using in-situ data collected from snowpit - accessed gravimetric, thermometric, photographic, and dielectric observations and novel non-invasive acoustic observations of layering, temperature, flowpath geometry, density and wetness at the Fortress Mountain Snow Laboratory, Alberta, Canada. The melt of a natural snowpack was artificially generated after detailed observation of snowpack initial conditions such as snow layer properties, temperature, and liquid water content. Snowpack ablation and liquid water content distribution over time were then measured and used for model parameterization and validation. Energy available at the snow surface and soil slope angle were set as mondel inputs. Model verification was based on snowpack property evolution. The heterogeneous flow model can be an important tool to help understand snowmelt flow processes, how

  15. Integration of 2-D hydraulic model and high-resolution LiDAR-derived DEM for floodplain flow modeling

    NASA Astrophysics Data System (ADS)

    Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.

    2015-02-01

    The rapid progress of Light Detection And Ranging (LiDAR) technology has made acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially with regards to the study of floodplain flow modeling. High-resolution DEM data include many redundant interpolation points, needs a high amount of calculation, and does not match the size of computational mesh. These disadvantages are a common problem for floodplain flow modeling studies. Two-dimensional (2-D) hydraulic modeling, a popular method of analyzing floodplain flow, offers high precision of elevation parameterization for computational mesh while ignoring much micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, enabling the calculation of flood water levels in DEM grid cells through local inverse distance weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of the connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha polder, a flood storage area of Dongting Lake, using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than DEM only simulations.

  16. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  17. A case study of fluid flow in fractured rock mass based on 2-D DFN modeling

    NASA Astrophysics Data System (ADS)

    Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon

    2014-05-01

    A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.

  18. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  19. Studies of Arctic stratospheric ozone in a 2-D model including some effects of zonal asymmetries

    SciTech Connect

    Isaksen, I.S.A.; Rognerud, B.; Stordal, F. ); Coffey, M.T.; Mankin, W.G. )

    1990-03-01

    A two-dimensional (2-D) zonally averaged chemistry-transport model of the stratosphere has been extended to include some zonally asymmetric effects to study the chemically disturbed conditions in the Arctic winter during the occurrence of polar stratospheric clouds (PSCs). The model allows air parcels that have been in PSCs in the polar night to be exposed to sunlight during the passage south through a wave trough. Large enhancements of ClO are estimated as well as significant ozone reductions, most pronounced around the 20 km height level. The ozone depletions maximize in late March, about one month after the cease in PSC activity in the model, and amount to 5-8% in column ozone at 70{degree}N. In agreement with column measurements made from the DC-8, the model estimates an increase in the columns of HNO{sub 3} and ClONO{sub 2}, and a decrease in the HCl column within the polar vortex.

  20. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  1. Obtaining instantaneous water levels relative to a geoid with a 2D storm surge model

    NASA Astrophysics Data System (ADS)

    Slobbe, D. C.; Verlaan, M.; Klees, R.; Gerritsen, H.

    2013-01-01

    Current and new applications of 2D storm surge models such as the Dutch Continental Shelf Model (DCSM) require that the models provide proper estimates of the instantaneous water levels expressed relative to a particular geoid, rather than only the tide and surge components expressed relative to the ill-defined model's zero height surface. For DCSM, this is realized by adding the depth-averaged horizontal baroclinic pressure gradients to the model equations, which are derived from 4D salinity and temperature fields provided by the Proudman Oceanographic Laboratory hydrodynamic model (POL's hindcast). The vertical datum of the extended model is fixed to that of the European Gravimetric Geoid model 2008 (EGG08). This is done by an adjustment of the model parameters that depend on the choice of the reference surface (e.g., bathymetry) and by referring the water levels along the open boundaries to this reference surface. Using different numerical experiments we investigate the effects on the water levels of several approximations we have made during the implementation. The ability of the model to reproduce both the mean sea level (MSL) and instantaneous water levels is assessed by a comparison with the MSL derived from POL's hindcast as well as with instantaneous water levels acquired by various radar altimeter satellites. From this comparison we conclude that our modeled MSL is in good agreement with the MSL derived from POL's hindcast; the standard deviation of the differences is below 2 cm. However, larger differences in MSL are observed when comparing the model output with the MSL derived from radar altimeter data. They are attributed to either geoid errors or errors in the used salinity and temperature fields. The root mean squared (rms) differences between observed and modeled instantaneous water levels over the entire model domain varies from 9 cm for data acquired by the TOPEX satellite to 11 cm for data acquired by the GFO-1 satellite. These numbers improve to

  2. New perspective on matter coupling in 2D quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, J.; Anagnostopoulos, K. N.; Loll, R.

    1999-11-01

    We provide compelling evidence that a previously introduced model of nonperturbative 2D Lorentzian quantum gravity exhibits (two-dimensional) flat-space behavior when coupled to Ising spins. The evidence comes from both a high-temperature expansion and from Monte Carlo simulations of the combined gravity-matter system. This weak-coupling behavior lends further support to the conclusion that the Lorentzian model is a genuine alternative to Liouville quantum gravity in two dimensions, with a different and much ``smoother'' critical behavior.

  3. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  4. Transectional heat transfer in thermoregulating bigeye tuna (Thunnus obesus) - a 2D heat flux model.

    PubMed

    Boye, Jess; Musyl, Michael; Brill, Richard; Malte, Hans

    2009-11-01

    We developed a 2D heat flux model to elucidate routes and rates of heat transfer within bigeye tuna Thunnus obesus Lowe 1839 in both steady-state and time-dependent settings. In modeling the former situation, we adjusted the efficiencies of heat conservation in the red and the white muscle so as to make the output of the model agree as closely as possible with observed cross-sectional isotherms. In modeling the latter situation, we applied the heat exchanger efficiencies from the steady-state model to predict the distribution of temperature and heat fluxes in bigeye tuna during their extensive daily vertical excursions. The simulations yielded a close match to the data recorded in free-swimming fish and strongly point to the importance of the heat-producing and heat-conserving properties of the white muscle. The best correspondence between model output and observed data was obtained when the countercurrent heat exchangers in the blood flow pathways to the red and white muscle retained 99% and 96% (respectively) of the heat produced in these tissues. Our model confirms that the ability of bigeye tuna to maintain elevated muscle temperatures during their extensive daily vertical movements depends on their ability to rapidly modulate heating and cooling rates. This study shows that the differential cooling and heating rates could be fully accounted for by a mechanism where blood flow to the swimming muscles is either exclusively through the heat exchangers or completely shunted around them, depending on the ambient temperature relative to the body temperature. Our results therefore strongly suggest that such a mechanism is involved in the extensive physiological thermoregulatory abilities of endothermic bigeye tuna. PMID:19880733

  5. Comparing a 2D fluid model of the DC planar magnetron cathode to experiments

    SciTech Connect

    Garcia, M.

    1996-05-01

    Planar magnetron cathodes have arching magnetic field lines which concentrate plasma density near the electrode surface. This enhances the ion bombardment of the surface and the yield of sputtered atoms. Magnetron cathodes are used in the Plasma Electrode Pockels Cell (PEPC) devices of the Laser Program because they provide for significantly higher conduction than do glow discharges. An essential feature of magnetron cathodes is that the vector product of the perpendicular electric field, E[sub y], with the parallel component of the magnetic field, B[sub x], forms a closed track with a circulating current along the cathode surface. An analytical, 2D, two component, quasi-neutral, continuum model yields formulas for the plasma density, the total and component current densities, the electric field, and the positive electrical potential, between the cathode surface and a distant, uniform plasma. For a specific gas, the free parameters are electron temperature, gas number density, and total current. The model is applied to the interpretation of experimental data from the PEPC device, as well as a small vacuum facility for testing magnetron cathodes. Finally, the model has been applied to generate cross sectional views of a PEPC magnetron cathode track.

  6. Doubled CO2 Effects on NO(y) in a Coupled 2D Model

    NASA Technical Reports Server (NTRS)

    Rosenfield, J. E.; Douglass, A. R.

    1998-01-01

    Changes in temperature and ozone have been the main focus of studies of the stratospheric impact of doubled CO2. Increased CO2 is expected to cool the stratosphere, which will result in increases in stratospheric ozone through temperature dependent loss rates. Less attention has been paid to changes in minor constituents which affect the O3 balance and which may provide additional feedbacks. Stratospheric NO(y) fields calculated using the GSFC 2D interactive chemistry-radiation-dynamics model show significant sensitivity to the model CO2. Modeled upper stratospheric NO(y) decreases by about 15% in response to CO2 doubling, mainly due to the temperature decrease calculated to result from increased cooling. The abundance of atomic nitrogen, N, increases because the rate of the strongly temperature dependent reaction N + O2 yields NO + O decreases at lower temperatures. Increased N leads to an increase in the loss of NO(y) which is controlled by the reaction N + NO yields N2 + O. The NO(y) reduction is shown to be sensitive to the NO photolysis rate. The decrease in the O3 loss rate due to the NO(y) changes is significant when compared to the decrease in the O3 loss rate due to the temperature changes.

  7. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  8. Complex 2D matrix model and geometrical map on the complex-Nc plane

    NASA Astrophysics Data System (ADS)

    Nawa, Kanabu; Ozaki, Sho; Nagahiro, Hideko; Jido, Daisuke; Hosaka, Atsushi

    2013-08-01

    We study the parameter dependence of the internal structure of resonance states by formulating a complex two-dimensional (2D) matrix model, where the two dimensions represent two levels of resonances. We calculate a critical value of the parameter at which a "nature transition" with character exchange occurs between two resonance states, from the viewpoint of geometry on complex-parameter space. Such a critical value is useful for identifying the internal structure of resonance states with variation of the parameter in the system. We apply the model to analyze the internal structure of hadrons with variation of the color number N_c from infty to a realistic value 3. By regarding 1/N_c as the variable parameter in our model, we calculate a critical color number of the nature transition between hadronic states in terms of a quark-antiquark pair and a mesonic molecule as exotics from the geometry on the complex-N_c plane. For large-N_c effective theory, we employ the chiral Lagrangian induced by holographic QCD with a D4/D8/overline {D8} multi-D brane system in type IIA superstring theory.

  9. Field-induced magnetization jumps and quantum criticality in the 2D J-Q model

    NASA Astrophysics Data System (ADS)

    Iaizzi, Adam; Sandvik, Anders

    The J-Q model is a `designer hamiltonian' formed by adding a four spin `Q' term to the standard antiferromagnetic S = 1 / 2 Heisenberg model. The Q term drives a quantum phase transition to a valence-bond solid (VBS) state: a non-magnetic state with a pattern of local singlets which breaks lattice symmetries. The elementary excitations of the VBS are triplons, i.e. gapped S=1 quasiparticles. There is considerable interest in the quantum phase transition between the Néel and VBS states as an example of deconfined quantum criticality. Near the phase boundary, triplons deconfine into pairs of bosonic spin-1/2 excitations known as spinons. Using exact diagonalization and the stochastic series expansion quantum monte carlo method, we study the 2D J-Q model in the presence of an external magnetic field. We use the field to force a nonzero density of magnetic excitations at T=0 and look for signatures of Bose-Einstein condensation of spinons. At higher magnetic fields, there is a jump in the induced magnetization caused by the onset of an effective attractive interaction between magnons on a ferromagnetic background. We characterize the first order quantum phase transition and determine the minimum value of the coupling ratio q ≡ Q / J required to produce this jump. Funded by NSF DMR-1410126.

  10. 2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement

    SciTech Connect

    Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.

    2012-08-16

    We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.

  11. Prominence fine-structure dynamics as inferred from 2D non-LTE models

    NASA Astrophysics Data System (ADS)

    Gunar, Stanislav; Schmieder, Brigitte; Mein, Pierre; Heinzel, Petr

    2012-07-01

    2D multi-thread prominence fine structure models are able to produce synthetic Lyman spectra in very good agreement with spectral observations by SOHO/SUMER including the spectral line asymmetries. The synthetic differential emission measure curves derived from these models are also in a good agreement with observations. Now we show that these models are also able to produce synthetic H-alpha line profiles in very good agreement with observations which allows us to analyze not only the physical parameters of the prominence fine-structure plasma but also some aspects of its dynamical behaviour. We compare the synthetic H-alpha spectra with the observed spectra of the April 26, 2007 prominence using three statistical parameters: the line integrated intensity, the line full-width at the half-maximum (FWHM), and the Doppler velocity derived from shifts of the line profiles. This statistical analysis allows us to conclude that the overall statistical distribution of the LOS velocities in the April 26, 2007 prominence at the time of the observations was below +/-15 km/s and in the prominence core was close to +/-10 km/s. In combination with the analysis of the Lyman spectra we determine several physical parameters of the observed prominence fine structures which show that the April 26, 2007 prominence was relatively less massive. We are also able to put some constrains on the prominence core temperature that might be relatively low, reaching values below 6000 K.

  12. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Shen, Yuzhong

    2011-03-01

    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.

  13. Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers.

    PubMed

    Govind Rajan, Ananth; Warner, Jamie H; Blankschtein, Daniel; Strano, Michael S

    2016-04-26

    Transition metal dichalcogenides (TMDs) like molybdenum disulfide (MoS2) and tungsten disulfide (WS2) are layered materials capable of growth to one monolayer thickness via chemical vapor deposition (CVD). Such CVD methods, while powerful, are notoriously difficult to extend across different reactor types and conditions, with subtle variations often confounding reproducibility, particularly for 2D TMD growth. In this work, we formulate the first generalized TMD synthetic theory by constructing a thermodynamic and kinetic growth mechanism linked to CVD reactor parameters that is predictive of specific geometric shape, size, and aspect ratio from triangular to hexagonal growth, depending on specific CVD reactor conditions. We validate our model using experimental data from Wang et al. (Chem. Mater. 2014, 26, 6371-6379) that demonstrate the systemic evolution of MoS2 morphology down the length of a flow CVD reactor where variations in gas phase concentrations can be accurately estimated using a transport model (CSulfur = 9-965 μmol/m(3); CMoO3 = 15-16 mmol/m(3)) under otherwise isothermal conditions (700 °C). A stochastic model which utilizes a site-dependent activation energy barrier based on the intrinsic TMD bond energies and a series of Evans-Polanyi relations leads to remarkable, quantitative agreement with both shape and size evolution along the reactor. The model is shown to extend to the growth of WS2 at 800 °C and MoS2 under varied process conditions. Finally, a simplified theory is developed to translate the model into a "kinetic phase diagram" of the growth process. The predictive capability of this model and its extension to other TMD systems promise to significantly increase the controlled synthesis of such materials. PMID:26937889

  14. 2D dynamical magma propagation modeling: application to the 2001 Mount Etna eruption

    NASA Astrophysics Data System (ADS)

    Pinel, Virginie; Carrara, Alexandre; Maccaferri, Francesco; Rivalta, Eleonora; Corbi, Fabio

    2016-04-01

    Numerical and analog studies of dike propagation in a stress field induced by volcanic edifice construction have shown that surface loading tends both to attract the magma and to reduce its velocity. Available numerical models can either calculate the trajectory or the velocity of the ascending dikes, but not both of them simultaneously. We developed a hybrid model of dyke propagation in two dimensions solving both for the magma trajectory and velocity as a function of the source overpressure, the magma physical properties (density and viscosity) as well as the crustal density and stress field. We first calculate a dyke trajectory in 2D and secondly run a 1D dynamical model of dyke propagation along this trajectory taken into account the influence of the stress field seen by the magma along this path. This model is used to characterize the influence of surface load on magma migration towards the surface and compared to previous results obtained by analog modeling.We find that the amplitude of dyke deflection and magma velocity variation depend on the ratio between the dyke driving pressure (source overpressure as well buoyancy) and the stress field perturbation. Our model is then applied to the July 2001 eruption of Etna, where the final dyke deflection had been previously interpreted as due to the topographic load by Bonaccorso et al. [2010]. We show that the velocity decrease observed during the last stage of the propagation can also be attributed to the local stress field. We use the dyke propagation duration to estimate the magma overpressure at the dyke bottom to be less than 4 MPa.

  15. Effects of CYP2D6 Status on Harmaline Metabolism, Pharmacokinetics and Pharmacodynamics, and a Pharmacogenetics-Based Pharmacokinetic Model

    PubMed Central

    Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2009-01-01

    Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902

  16. On the assimilation of SWOT type data into 2D shallow-water models

    NASA Astrophysics Data System (ADS)

    Frédéric, Couderc; Denis, Dartus; Pierre-André, Garambois; Ronan, Madec; Jérôme, Monnier; Jean-Paul, Villa

    2013-04-01

    In river hydraulics, assimilation of water level measurements at gauging stations is well controlled, while assimilation of images is still delicate. In the present talk, we address the richness of satellite mapped information to constrain a 2D shallow-water model, but also related difficulties. 2D shallow models may be necessary for small scale modelling in particular for low-water and flood plain flows. Since in both cases, the dynamics of the wet-dry front is essential, one has to elaborate robust and accurate solvers. In this contribution we introduce robust second order, stable finite volume scheme [CoMaMoViDaLa]. Comparisons of real like tests cases with more classical solvers highlight the importance of an accurate flood plain modelling. A preliminary inverse study is presented in a flood plain flow case, [LaMo] [HoLaMoPu]. As a first step, a 0th order data processing model improves observation operator and produces more reliable water level derived from rough measurements [PuRa]. Then, both model and flow behaviours can be better understood thanks to variational sensitivities based on a gradient computation and adjoint equations. It can reveal several difficulties that a model designer has to tackle. Next, a 4D-Var data assimilation algorithm used with spatialized data leads to improved model calibration and potentially leads to identify river discharges. All the algorithms are implemented into DassFlow software (Fortran, MPI, adjoint) [Da]. All these results and experiments (accurate wet-dry front dynamics, sensitivities analysis, identification of discharges and calibration of model) are currently performed in view to use data from the future SWOT mission. [CoMaMoViDaLa] F. Couderc, R. Madec, J. Monnier, J.-P. Vila, D. Dartus, K. Larnier. "Sensitivity analysis and variational data assimilation for geophysical shallow water flows". Submitted. [Da] DassFlow - Data Assimilation for Free Surface Flows. Computational software http

  17. MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes

    NASA Astrophysics Data System (ADS)

    Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.

    2011-11-01

    A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.

  18. Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Gupta, S.; Malik, R. P.

    2016-06-01

    We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.

  19. Learning structured models for segmentation of 2-D and 3-D imagery.

    PubMed

    Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal

    2015-05-01

    Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309

  20. T-duality without isometry via extended gauge symmetries of 2D sigma models

    NASA Astrophysics Data System (ADS)

    Chatzistavrakidis, Athanasios; Deser, Andreas; Jonke, Larisa

    2016-01-01

    Target space duality is one of the most profound properties of string theory. However it customarily requires that the background fields satisfy certain invariance conditions in order to perform it consistently; for instance the vector fields along the directions that T-duality is performed have to generate isometries. In the present paper we examine in detail the possibility to perform T-duality along non-isometric directions. In particular, based on a recent work of Kotov and Strobl, we study gauged 2D sigma models where gauge invariance for an extended set of gauge transformations imposes weaker constraints than in the standard case, notably the corresponding vector fields are not Killing. This formulation enables us to follow a procedure analogous to the derivation of the Buscher rules and obtain two dual models, by integrating out once the Lagrange multipliers and once the gauge fields. We show that this construction indeed works in non-trivial cases by examining an explicit class of examples based on step 2 nilmanifolds.

  1. A computational model of the short-cut rule for 2D shape decomposition.

    PubMed

    Luo, Lei; Shen, Chunhua; Liu, Xinwang; Zhang, Chunyuan

    2015-01-01

    We propose a new 2D shape decomposition method based on the short-cut rule. The short-cut rule originates from cognition research, and states that the human visual system prefers to partition an object into parts using the shortest possible cuts. We propose and implement a computational model for the short-cut rule and apply it to the problem of shape decomposition. The model we proposed generates a set of cut hypotheses passing through the points on the silhouette, which represent the negative minima of curvature. We then show that most part-cut hypotheses can be eliminated by analysis of local properties of each. Finally, the remaining hypotheses are evaluated in ascending length order, which guarantees that of any pair of conflicting cuts only the shortest will be accepted. We demonstrate that, compared with state-of-the-art shape decomposition methods, the proposed approach achieves decomposition results, which better correspond to human intuition as revealed in psychological experiments. PMID:25438318

  2. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-08-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  3. Optimal implicit 2-D finite differences to model wave propagation in poroelastic media

    NASA Astrophysics Data System (ADS)

    Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.

    2016-05-01

    Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.

  4. Hydraulic Modeling of Alluvial Fans along the Truckee Canal using the 2-Dimensional Model SRH2D

    NASA Astrophysics Data System (ADS)

    Wright, J.; Kallio, R.; Sankovich, V.

    2013-12-01

    Alluvial fans are gently sloping, fan-shaped landforms created by sediment deposition at the ends of mountain valleys. Their gentle slopes and scenic vistas are attractive to developers. Unfortunately, alluvial fans are highly flood-prone, and the flow paths of flood events are highly variable, thereby placing human developments at risk. Many studies have been performed on alluvial fans in the arid west because of the uncertainty of their flow paths and flood extents. Most of these studies have been focused on flood elevations and mitigation. This study is not focused on the flood elevations. Rather, it is focused on the attenuation effects of alluvial fans on floods entering and potentially failing a Reclamation canal. The Truckee Canal diverts water from the Truckee River to Lahontan Reservoir. The drainage areas along the canal are alluvial fans with complex distributary channel networks . Ideally, in nature, the sediment grain-size distribution along the alluvial fan flow paths would provide enough infiltration and subsurface storage to attenuate floods entering the canal and reduce risk to low levels. Human development, however, can prevent the natural losses from occurring due to concentrated flows within the alluvial fan. While the concentrated flows might mitigate flood risk inside the fan, they do not lower the flood risk of the canal. A 2-dimensional hydraulic model, SRH-2D, was coupled to a 1-dimensional rainfall-runoff model to estimate the flood attenuation effects of the alluvial fan network surrounding an 11 mile stretch of the Truckee Canal near Fernley, Nevada. Floods having annual exceedance probabilities ranging from 1/10 to 1/100 were computed and analyzed. SRH-2D uses a zonal approach for modeling river systems, allowing areas to be divided into separate zones based on physical parameters such as surface roughness and infiltration. One of the major features of SRH-2D is the adoption of an unstructured hybrid mixed element mesh, which is based

  5. Four-particle decay of the Bethe-Salpeter kernel in the high-temperature Ising model

    NASA Astrophysics Data System (ADS)

    Auil, F.

    2002-12-01

    In this article we study the four-particle decay of the Bethe-Salpeter (B-S) kernel for the high-temperature Ising model. We use the hyperplane decoupling method [T. Spencer, Commun. Math. Phys. 44, 143 (1975); R. S. Schor, Nucl. Phys. B 222, 71 (1983)] to prove exponential decay in a set of variables particularly adapted to the methods of Spencer and Zirilli [Commun. Math. Phys. 49, 1 (1976)] for the analysis of scattering and bound states in QFT, transcribed to lattice theories by Auil and Barata [Ann. Henri Poincare 2, 1065 (2001)]. We study arbitrary derivatives of the general n-point correlation functions with respect to the interpolating variables, and we are able to obtain, in some cases, information about the third derivatives of the B-S kernel. As a later consequence, we have two-body asymptotic completeness for the (massive) Euclidean lattice field theory implemented by this model. This allows us to analyze the Ornstein-Zernike behavior of four-point functions, related to the specific heat of the model.

  6. Multipartite entanglement and quantum phase transitions in the one-, two-, and three-dimensional transverse-field Ising model

    SciTech Connect

    Montakhab, Afshin; Asadian, Ali

    2010-12-15

    In this paper we consider the quantum phase transition in the Ising model in the presence of a transverse field in one, two, and three dimensions from a multipartite entanglement point of view. Using exact numerical solutions, we are able to study such systems up to 25 qubits. The Meyer-Wallach measure of global entanglement is used to study the critical behavior of this model. The transition we consider is between a symmetric Greenberger-Horne-Zeilinger-like state to a paramagnetic product state. We find that global entanglement serves as a good indicator of quantum phase transition with interesting scaling behavior. We use finite-size scaling to extract the critical point as well as some critical exponents for the one- and two-dimensional models. Our results indicate that such multipartite measure of global entanglement shows universal features regardless of dimension d. Our results also provide evidence that multipartite entanglement is better suited for the study of quantum phase transitions than the much-studied bipartite measures.

  7. Combining multitracing and 2D-modelling to identify the dynamic of heavy metals during flooding.

    NASA Astrophysics Data System (ADS)

    Hissler, C.; Hostache, R.; Matgen, P.; Tosheva, Z.; David, E.; Bates, P.; Stille, P.

    2012-04-01

    to assess the risk of floodplain contamination in heavy metal due to river sediment deposition and to heavy metal partitioning between particulate and dissolved phases. We focus on a multidisciplinary approach combining environmental geochemistry (multitracing) and hydraulic modelling (using TELEMAC-2D). One important single flood event was selected to illustrate this innovative approach. During the entire flood, the river water was sampled every hour in order to collect the particulate and the dissolved fractions. All the tracers were analyzed in both fractions. An important set of hydrological and sedimentological data are used to reach a more efficient calibration of the TELEMAC modelling system. In addition to standard techniques of hydrochemistry, new approaches of in situ suspended sediment transport monitoring will help getting new insights on the hydraulic system behaviour.

  8. Baby universes in 2d quantum gravity

    NASA Astrophysics Data System (ADS)

    Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar

    1993-06-01

    We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.

  9. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    The study of volcanic domes growth (e.g. St. Helens, Unzen, Montserrat) shows that it is often characterized by a succession of extrusion phases, dome explosions and collapse events. Lava dome eruptive activity may last from days to decades. Therefore, their internal structure, at the end of the eruption, is complex and includes massive extrusions and lava lobes, talus and pyroclastic deposits as well as hydrothermal alteration. The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for volcano structure imaging. Because a large range of resistivity values is often observed in volcanic environments, the method is well suited to study the internal structure of volcanic edifices. We performed an ERT survey on an 11ka years old trachytic lava dome, the Puy de Dôme volcano (French Massif Central). The analysis of a recent high resolution DEM (LiDAR 0.5 m), as well as other geophysical data, strongly suggest that the Puy de Dôme is a composite dome. 11 ERT profiles have been carried out, both at the scale of the entire dome (base diameter of ~2 km and height of 400 m) on the one hand, and at a smaller scale on the summit part on the other hand. Each profile is composed of 64 electrodes. Three different electrode spacing have been used depending on the study area (35 m for the entire dome, 10 m and 5 m for its summit part). Some profiles were performed with half-length roll-along acquisitions, in order to keep a good trade-off between depth of investigation and resolution. Both Wenner-alpha and Wenner-Schlumberger protocols were used. 2-D models of the electrical resistivity distribution were computed using RES2DINV software. In order to constrain inversion models interpretation, the depth of investigation (DOI) method was applied to those results. It aims to compute a sensitivity index on inversion results, illustrating how the data influence the model and constraining models

  10. Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)

    NASA Astrophysics Data System (ADS)

    Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.

    2013-12-01

    Tracing the cycling of fluids and volatiles through subduction zones continues to be a challenging task with budgets still having large error bars attached to them. In this contribution we show how numerical models can help to integrate various geological, geophysical, and geochemical datasets and how they can be used to put better bounds on the likely amounts of water being subducted, released into the arc and back-arc melting regions, and recycled to the deeper mantle. To achieve this task we use a suite of numerical models. Bending related faulting and hydration of the incoming lithosphere is resolved using a reactive flow model that solves for crustal scale fluid flow and mantle serpentinization using reaction kinetics. Seismic tomography studies from offshore Chile and Central America are used to evaluate and constrain the effective reaction rate. These rates are then used to assess the contribution of serpentinization to the water budget at subduction zones. The pattern of hydration is controlled by the reaction kinetics and serpentinization is most intense around the 270°C isotherm. The depth of this isotherm correlates well with the dominant spacing of double seismic zones observed globally. Comparison of the results with heat flow data suggests that observed seafloor temperature gradients in the bend-fault region are too low to be caused by ';one-pass' downward water flow into the serpentinizing lithosphere, but rather suggest that bend-faults are areas of active hydrothermal circulation. This implies that serpentine-sourced vents and chemosynthetic vent communities should be found in this deep-sea environment as well. Dehydration reactions are resolved with a 2D kinematic subduction zone model that computes the temperature field and the likely locations and volumes of slab fluid release due to metamorphic dehydration reactions. Here we find that up to 1/3 of the subducted water may be transported into the deeper mantle for the coldest subduction zones

  11. Modeling of two-storey precast school building using Ruaumoko 2D program

    SciTech Connect

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-05-15

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  12. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images

    NASA Astrophysics Data System (ADS)

    Straatsma, Menno; Huthoff, Fredrik

    2011-01-01

    In The Netherlands, 2D-hydrodynamic simulations are used to evaluate the effect of potential safety measures against river floods. In the investigated scenarios, the floodplains are completely inundated, thus requiring realistic representations of hydraulic roughness of floodplain vegetation. The current study aims at providing better insight into the uncertainty of flood water levels due to uncertain floodplain roughness parameterization. The study focuses on three key elements in the uncertainty of floodplain roughness: (1) classification error of the landcover map, (2), within class variation of vegetation structural characteristics, and (3) mapping scale. To assess the effect of the first error source, new realizations of ecotope maps were made based on the current floodplain ecotope map and an error matrix of the classification. For the second error source, field measurements of vegetation structure were used to obtain uncertainty ranges for each vegetation structural type. The scale error was investigated by reassigning roughness codes on a smaller spatial scale. It is shown that classification accuracy of 69% leads to an uncertainty range of predicted water levels in the order of decimeters. The other error sources are less relevant. The quantification of the uncertainty in water levels can help to make better decisions on suitable flood protection measures. Moreover, the relation between uncertain floodplain roughness and the error bands in water levels may serve as a guideline for the desired accuracy of floodplain characteristics in hydrodynamic models.

  13. Modeling of two-storey precast school building using Ruaumoko 2D program

    NASA Astrophysics Data System (ADS)

    Hamid, N. H.; Tarmizi, L. H.; Ghani, K. D.

    2015-05-01

    The long-distant earthquake loading from Sumatra and Java Island had caused some slight damages to precast and reinforced concrete buildings in West Malaysia such as cracks on wall panels, columns and beams. Subsequently, the safety of existing precast concrete building is needed to be analyzed because these buildings were designed using BS 8110 which did not include the seismic loading in the design. Thus, this paper emphasizes on the seismic performance and dynamic behavior of precast school building constructed in Malaysia under three selected past earthquakes excitations ; El Centro 1940 North-South, El Centro East-West components and San Fernando 1971 using RUAUMOKO 2D program. This program is fully utilized by using prototype precast school model and dynamic non-linear time history analysis. From the results, it can be concluded that two-storey precast school building has experienced severe damage and partial collapse especially at beam-column joint under San Fernando and El Centro North-South Earthquake as its exceeds the allowable inter-storey drift and displacement as specified in Eurocode 8. The San Fernando earthquake has produced a massive destruction to the precast building under viscous damping, ξ = 5% and this building has generated maximum building displacement of 435mm, maximum building drift of 0.68% and maximum bending moment at 8458kNm.

  14. Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code

    NASA Astrophysics Data System (ADS)

    Caballero, L.; Capra, L.

    2013-12-01

    Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.

  15. GPU computing with OpenCL to model 2D elastic wave propagation: exploring memory usage

    NASA Astrophysics Data System (ADS)

    Iturrarán-Viveros, Ursula; Molero-Armenta, Miguel

    2015-01-01

    Graphics processing units (GPUs) have become increasingly powerful in recent years. Programs exploring the advantages of this architecture could achieve large performance gains and this is the aim of new initiatives in high performance computing. The objective of this work is to develop an efficient tool to model 2D elastic wave propagation on parallel computing devices. To this end, we implement the elastodynamic finite integration technique, using the industry open standard open computing language (OpenCL) for cross-platform, parallel programming of modern processors, and an open-source toolkit called [Py]OpenCL. The code written with [Py]OpenCL can run on a wide variety of platforms; it can be used on AMD or NVIDIA GPUs as well as classical multicore CPUs, adapting to the underlying architecture. Our main contribution is its implementation with local and global memory and the performance analysis using five different computing devices (including Kepler, one of the fastest and most efficient high performance computing technologies) with various operating systems.

  16. 2D and 3D multipactor modeling in dielectric-loaded accelerator structures

    NASA Astrophysics Data System (ADS)

    Sinitsyn, Oleksandr; Nusinovich, Gregory; Antonsen, Thomas

    2010-11-01

    Multipactor (MP) is known as the avalanche growth of the number of secondary electrons emitted from a solid surface exposed to an RF electric field under vacuum conditions. MP is a severe problem in modern rf systems and, therefore, theoretical and experimental studies of MP are of great interest to the researchers working in various areas of physics and engineering. In this work we present results of MP studies in dielectric-loaded accelerator (DLA) structures. First, we show simulation results obtained with the use of the 2D self-consistent MP model (O. V. Sinitsyn, et. al., Phys. Plasmas, vol. 16, 073102 (2009)) and compare those to experimental ones obtained during recent extensive studies of DLA structures performed by Argonne National Laboratory, Naval Research Laboratory, SLAC National Accelerator Laboratory and Euclid TechLabs (C. Jing, et al., IEEE Trans. Plasma Sci., vol. 38, pp. 1354-1360 (2010)). Then we present some new results of 3D analysis of MP which include studies of particle trajectories and studies of MP development at the early stage.

  17. Spectral functions in the 1D and 2D Bose Hubbard model

    NASA Astrophysics Data System (ADS)

    Ivancic, Robert; Duchon, Eric; Trivedi, Nandini

    2014-03-01

    We use state of the art numerical techniques including quantum Monte Carlo and maximum entropy methods to obtain the low energy excitation spectra in the superfluid and Mott-insulator phases of the Bose Hubbard model. These results are checked in 1D against Bethe Ansatz and tDMRG results and extended to 2D where such approaches are impossible. In the superfluid, we find linearly dispersing Bogoliubov sound modes as well as additional gapped modes broadened by interaction effects. In the Mott insulator, we find evidence for a finite gap and well defined quasiparticle excitations. We examine properties such as the excitation lifetime, density of states, and speed of sound as the system is tuned across the quantum phase transition that separates the superfluid and Mott states. These results provide an important theoretical framework for upcoming ultracold atom experiments in one and two dimensions. We acknowledge support from the NSF DMR-0907275 (R.I., E.D. and N.T.).

  18. D Recording for 2d Delivering - the Employment of 3d Models for Studies and Analyses -

    NASA Astrophysics Data System (ADS)

    Rizzi, A.; Baratti, G.; Jiménez, B.; Girardi, S.; Remondino, F.

    2011-09-01

    In the last years, thanks to the advances of surveying sensors and techniques, many heritage sites could be accurately replicated in digital form with very detailed and impressive results. The actual limits are mainly related to hardware capabilities, computation time and low performance of personal computer. Often, the produced models are not visible on a normal computer and the only solution to easily visualized them is offline using rendered videos. This kind of 3D representations is useful for digital conservation, divulgation purposes or virtual tourism where people can visit places otherwise closed for preservation or security reasons. But many more potentialities and possible applications are available using a 3D model. The problem is the ability to handle 3D data as without adequate knowledge this information is reduced to standard 2D data. This article presents some surveying and 3D modeling experiences within the APSAT project ("Ambiente e Paesaggi dei Siti d'Altura Trentini", i.e. Environment and Landscapes of Upland Sites in Trentino). APSAT is a multidisciplinary project funded by the Autonomous Province of Trento (Italy) with the aim documenting, surveying, studying, analysing and preserving mountainous and hill-top heritage sites located in the region. The project focuses on theoretical, methodological and technological aspects of the archaeological investigation of mountain landscape, considered as the product of sequences of settlements, parcelling-outs, communication networks, resources, and symbolic places. The mountain environment preserves better than others the traces of hunting and gathering, breeding, agricultural, metallurgical, symbolic activities characterised by different lengths and environmental impacts, from Prehistory to the Modern Period. Therefore the correct surveying and documentation of this heritage sites and material is very important. Within the project, the 3DOM unit of FBK is delivering all the surveying and 3D material to

  19. Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment

    SciTech Connect

    Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.

    2008-04-01

    Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution

  20. 1D and 2D urban dam-break flood modelling in Istanbul, Turkey

    NASA Astrophysics Data System (ADS)

    Ozdemir, Hasan; Neal, Jeffrey; Bates, Paul; Döker, Fatih

    2014-05-01

    Urban flood events are increasing in frequency and severity as a consequence of several factors such as reduced infiltration capacities due to continued watershed development, increased construction in flood prone areas due to population growth, the possible amplification of rainfall intensity due to climate change, sea level rise which threatens coastal development, and poorly engineered flood control infrastructure (Gallegos et al., 2009). These factors will contribute to increased urban flood risk in the future, and as a result improved modelling of urban flooding according to different causative factor has been identified as a research priority (Gallegos et al., 2009; Ozdemir et al. 2013). The flooding disaster caused by dam failures is always a threat against lives and properties especially in urban environments. Therefore, the prediction of dynamics of dam-break flows plays a vital role in the forecast and evaluation of flooding disasters, and is of long-standing interest for researchers. Flooding occurred on the Ayamama River (Istanbul-Turkey) due to high intensity rainfall and dam-breaching of Ata Pond in 9th September 2009. The settlements, industrial areas and transportation system on the floodplain of the Ayamama River were inundated. Therefore, 32 people were dead and millions of Euros economic loses were occurred. The aim of this study is 1 and 2-Dimensional flood modelling of the Ata Pond breaching using HEC-RAS and LISFLOOD-Roe models and comparison of the model results using the real flood extent. The HEC-RAS model solves the full 1-D Saint Venant equations for unsteady open channel flow whereas LISFLOOD-Roe is the 2-D shallow water model which calculates the flow according to the complete Saint Venant formulation (Villanueva and Wright, 2006; Neal et al., 2011). The model consists a shock capturing Godunov-type scheme based on the Roe Riemann solver (Roe, 1981). 3 m high resolution Digital Surface Model (DSM), natural characteristics of the pond

  1. Thermodynamic, critical properties and phase transitions of the Ising model on a square lattice with competing interactions

    NASA Astrophysics Data System (ADS)

    Ramazanov, M. K.; Murtazaev, A. K.; Magomedov, M. A.

    2016-05-01

    The thermodynamic and critical properties, and phase transitions of two-dimensional Ising model on a square lattice with competing interactions are investigated by the Monte Carlo method. Estimations are made for the magnitude relations of the next-nearest-neighbor and nearest-neighbor exchange interactions r=J2/J1 in the value ranges of 0.1≤r≤1.0. The anomalies of thermodynamic observables are shown to be present in this model on the interval 0.45≤r≤0.5. The phase diagram for the dependence of the critical temperature on a value of next-nearest neighbor interaction is plotted. A phase transition for all values in the interval 0.45≤r≤0.5 is shown to be a second order. Our data show that the temperature of the heat capacity maximum at r=0.5 tends to a finite value. The static critical exponents of the heat capacity α, susceptibility γ, order parameter β, correlation length ν, and the Fisher exponent η are calculated by means of the finite-size scaling theory. It is found that the change in next-nearest neighbor interaction value in the range 0.7≤r≤1.0 leads to nonuniversal critical behavior.

  2. Highly optimized simulations on single- and multi-GPU systems of the 3D Ising spin glass model

    NASA Astrophysics Data System (ADS)

    Lulli, M.; Bernaschi, M.; Parisi, G.

    2015-11-01

    We present a highly optimized implementation of a Monte Carlo (MC) simulator for the three-dimensional Ising spin-glass model with bimodal disorder, i.e., the 3D Edwards-Anderson model running on CUDA enabled GPUs. Multi-GPU systems exchange data by means of the Message Passing Interface (MPI). The chosen MC dynamics is the classic Metropolis one, which is purely dissipative, since the aim was the study of the critical off-equilibrium relaxation of the system. We focused on the following issues: (i) the implementation of efficient memory access patterns for nearest neighbours in a cubic stencil and for lagged-Fibonacci-like pseudo-Random Numbers Generators (PRNGs); (ii) a novel implementation of the asynchronous multispin-coding Metropolis MC step allowing to store one spin per bit and (iii) a multi-GPU version based on a combination of MPI and CUDA streams. Cubic stencils and PRNGs are two subjects of very general interest because of their widespread use in many simulation codes.

  3. Role of further-neighbor interactions in modulating the critical behavior of the Ising model with frustration.

    PubMed

    Liu, R M; Zhuo, W Z; Dong, S; Lu, X B; Gao, X S; Qin, M H; Liu, J-M

    2016-03-01

    In this work, we investigate the phase transitions and critical behaviors of the frustrated J(1)-J(2)-J(3) Ising model on the square lattice using Monte Carlo simulations, and particular attention goes to the effect of the second-next-nearest-neighbor interaction J(3) on the phase transition from a disordered state to the single stripe antiferromagnetic state. A continuous Ashkin-Teller-like transition behavior in a certain range of J(3) is identified, while the four-state Potts-critical end point [J(3)/J(1)](C) is estimated based on the analytic method reported in earlier work [Jin, Sen, and Sandvik, Phys. Rev. Lett. 108, 045702 (2012)]. It is suggested that the interaction J(3) can tune the transition temperature and in turn modulate the critical behaviors of the frustrated model. Furthermore, it is revealed that an antiferromagnetic J(3) can stabilize the staggered dimer state via a phase transition of strong first-order character. PMID:27078299

  4. Simulation of Subgrid Orographic Convection and Precipitation with 2-D Cloud-Resolving Models Embedded in a GCM Grid

    NASA Astrophysics Data System (ADS)

    Jung, J.; Arakawa, A.

    2015-12-01

    Through explicitly resolved cloud-scale processes by embedded 2-D cloud-resolving models (CRMs), the Multiscale Modeling Framework (MMF) known as the superparameterization has been reasonably successful to simulate various atmospheric events over a wide range of time scales. One thing to be justified is, however, if the influence of complex 3-D topography can be adequately represented by the embedded 2-D CRMs. In this study, simulations are performed in the presence of a variety of topography with embedded 3-D and 2-D CRMs in a single-column inactive GCM. Through the comparison between these simulations, it is demonstrated that the 2-D representation of topography is able to simulate the statistics of precipitation due to 3-D topography reasonably well as long as the topographic characteristics, such as the mean and standard deviation, are closely recognized. It is also shown that the use of two perpendicular sets of 2-D representations tends to reduce the error due to a 2-D representation.

  5. Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Harrison, L. R.; Keller, E. A.

    2003-12-01

    In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is

  6. On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2014-12-01

    Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion

  7. Facial Sketch Synthesis Using 2D Direct Combined Model-Based Face-Specific Markov Network.

    PubMed

    Tu, Ching-Ting; Chan, Yu-Hsien; Chen, Yi-Chung

    2016-08-01

    A facial sketch synthesis system is proposed, featuring a 2D direct combined model (2DDCM)-based face-specific Markov network. In contrast to the existing facial sketch synthesis systems, the proposed scheme aims to synthesize sketches, which reproduce the unique drawing style of a particular artist, where this drawing style is learned from a data set consisting of a large number of image/sketch pairwise training samples. The synthesis system comprises three modules, namely, a global module, a local module, and an enhancement module. The global module applies a 2DDCM approach to synthesize the global facial geometry and texture of the input image. The detailed texture is then added to the synthesized sketch in a local patch-based manner using a parametric 2DDCM model and a non-parametric Markov random field (MRF) network. Notably, the MRF approach gives the synthesized results an appearance more consistent with the drawing style of the training samples, while the 2DDCM approach enables the synthesis of outcomes with a more derivative style. As a result, the similarity between the synthesized sketches and the input images is greatly improved. Finally, a post-processing operation is performed to enhance the shadowed regions of the synthesized image by adding strong lines or curves to emphasize the lighting conditions. The experimental results confirm that the synthesized facial images are in good qualitative and quantitative agreement with the input images as well as the ground-truth sketches provided by the same artist. The representing power of the proposed framework is demonstrated by synthesizing facial sketches from input images with a wide variety of facial poses, lighting conditions, and races even when such images are not included in the training data set. Moreover, the practical applicability of the proposed framework is demonstrated by means of automatic facial recognition tests. PMID:27244737

  8. Integration of 2-D hydraulic model and high-resolution lidar-derived DEM for floodplain flow modeling

    NASA Astrophysics Data System (ADS)

    Shen, D.; Wang, J.; Cheng, X.; Rui, Y.; Ye, S.

    2015-08-01

    The rapid progress of lidar technology has made the acquirement and application of high-resolution digital elevation model (DEM) data increasingly popular, especially in regards to the study of floodplain flow. However, high-resolution DEM data pose several disadvantages for floodplain modeling studies; e.g., the data sets contain many redundant interpolation points, large numbers of calculations are required to work with data, and the data do not match the size of the computational mesh. Two-dimensional (2-D) hydraulic modeling, which is a popular method for analyzing floodplain flow, offers highly precise elevation parameterization for computational mesh while ignoring much of the micro-topographic information of the DEM data itself. We offer a flood simulation method that integrates 2-D hydraulic model results and high-resolution DEM data, thus enabling the calculation of flood water levels in DEM grid cells through local inverse distance-weighted interpolation. To get rid of the false inundation areas during interpolation, it employs the run-length encoding method to mark the inundated DEM grid cells and determine the real inundation areas through the run-length boundary tracing technique, which solves the complicated problem of connectivity between DEM grid cells. We constructed a 2-D hydraulic model for the Gongshuangcha detention basin, which is a flood storage area of Dongting Lake in China, by using our integrated method to simulate the floodplain flow. The results demonstrate that this method can solve DEM associated problems efficiently and simulate flooding processes with greater accuracy than simulations only with DEM.

  9. Building a 2.5D Digital Elevation Model from 2D Imagery

    NASA Technical Reports Server (NTRS)

    Padgett, Curtis W.; Ansar, Adnan I.; Brennan, Shane; Cheng, Yang; Clouse, Daniel S.; Almeida, Eduardo

    2013-01-01

    When projecting imagery into a georeferenced coordinate frame, one needs to have some model of the geographical region that is being projected to. This model can sometimes be a simple geometrical curve, such as an ellipse or even a plane. However, to obtain accurate projections, one needs to have a more sophisticated model that encodes the undulations in the terrain including things like mountains, valleys, and even manmade structures. The product that is often used for this purpose is a Digital Elevation Model (DEM). The technology presented here generates a high-quality DEM from a collection of 2D images taken from multiple viewpoints, plus pose data for each of the images and a camera model for the sensor. The technology assumes that the images are all of the same region of the environment. The pose data for each image is used as an initial estimate of the geometric relationship between the images, but the pose data is often noisy and not of sufficient quality to build a high-quality DEM. Therefore, the source imagery is passed through a feature-tracking algorithm and multi-plane-homography algorithm, which refine the geometric transforms between images. The images and their refined poses are then passed to a stereo algorithm, which generates dense 3D data for each image in the sequence. The 3D data from each image is then placed into a consistent coordinate frame and passed to a routine that divides the coordinate frame into a number of cells. The 3D points that fall into each cell are collected, and basic statistics are applied to determine the elevation of that cell. The result of this step is a DEM that is in an arbitrary coordinate frame. This DEM is then filtered and smoothed in order to remove small artifacts. The final step in the algorithm is to take the initial DEM and rotate and translate it to be in the world coordinate frame [such as UTM (Universal Transverse Mercator), MGRS (Military Grid Reference System), or geodetic] such that it can be saved in

  10. Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2012-12-01

    Descending subducted slabs affect both plate tectonics at the surface and overall mantle flow (e.g. Conrad and Lithgow-Bertelloni, 2002). For time-dependent numerical models, the potential evolution of these slabs, ranging from immediate penetration into the lower mantle to prior buckling and stagnation, are affected by parameters such as the plate age, the viscosity jump into the lower mantle, the presence of phase transitions, trench motion and the chosen governing equation approximation (e.g. Billen and Hirth, 2007). Similarly, the overall deviatoric stress within the slab, especially where modified by the phase transitions, may explain the uneven distribution of deep earthquakes with depth (e.g. Bina, 1997). Better understanding of these processes may arise from a more realistic 2-D model that is fully-dynamic, with an overriding plate, freely-moving trench, compositionally-layered slab and seven major phase transitions, in addition to using the compressible (TALA) form of the governing equations. Though the thermodynamic parameters of certain phase transitions may be uncertain, this study aims to test the latest data and encourage further mineralogical research. We will present fully-dynamic models, which explore the importance of the phase transitions, especially those that have been previously excluded such as the wadsleyite to ringwoodite and the pyroxene and garnet phase transitions. These phase transitions, coupled with the modeled compositionally distinct crust, harzburgite, and pyrolite lithosphere layers, may produce new large-scale dynamic behavior not seen in past numerical models, as well as stress variations within the slab related to deep slab seismicity. Feedback from the compositionally complex slab to the dynamic trench may provide further insight on the mechanics of slab stagnation and behavior in the upper and lower mantle. Billen, M. I., and G. Hirth, Rheologic controls on slab dynamics, Geochemistry, Geophysics and Geosystems, 8 (Q08012

  11. Development of a Geocryologic Model of Permafrost From 2D Inversion of IP Profiling

    NASA Astrophysics Data System (ADS)

    Fortier, R.; Leblanc, A.

    2004-05-01

    Non-invasive investigation of permafrost along a planned route of pipeline, road or airstrip in cold regions involves the use of effective methods for detecting, characterizing, mapping and monitoring permafrost conditions on various spatial and temporal scales. Among the available near-surface geophysical methods, the electrical resistivity imaging is probably the most suitable method since the resistivity contrast between unfrozen and frozen ground can be one or two orders of magnitude. Induced polarization (IP) profiling was carried out to study the spatial distribution of ground ice in two permafrost mounds near Umiujaq in Nunavik, Canada. A dipole-dipole array was used to perform the IP profiling. Pseudo-sections of electrical resistivity and chargeability giving a misrepresented cross-section of the sub-surface were first draw. The inversion of IP profiling was also performed using DCIP2D developed by UBC-GIF for estimating the spatial distribution of electrical properties in the ground to create realistic models of sub-surface resistivity and chargeability cross-section. The inverse models show clearly the presence of ice-rich core in the permafrost mounds. The ice-rich cores are underlined by high resistivity values while the unfrozen zones show low resistivity values. The localisation of the permafrost table is highlighted by a strong contrast of resistivity while the permafrost base is marked by a transitional change in resistivity. In the hollow between the permafrost mounds, the models show low resistivity values characteristic of unfrozen zone. A synthetic resistivity sounding built from the most acceptable inverse model correlates well with electrical resistivity logging carried out in the permafrost mound during cone penetration tests. The inversion of IP profiling is fundamental for defining realistic models of sub-surface resistivity and chargeability. Electrical resistivity imaging is a appropriate near-surface geophysical method for permafrost

  12. Export of earthquake-triggered landslides in active mountain ranges: insights from 2D morphodynamic modelling.

    NASA Astrophysics Data System (ADS)

    Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe

    2016-04-01

    In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment

  13. Logarithmic terms in entanglement entropies of 2D quantum critical points and Shannon entropies of spin chains.

    PubMed

    Zaletel, Michael P; Bardarson, Jens H; Moore, Joel E

    2011-07-01

    Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the "Shannon entropy" of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut. PMID:21797582

  14. Logarithmic Terms in Entanglement Entropies of 2D Quantum Critical Points and Shannon Entropies of Spin Chains

    NASA Astrophysics Data System (ADS)

    Zaletel, Michael P.; Bardarson, Jens H.; Moore, Joel E.

    2011-07-01

    Universal logarithmic terms in the entanglement entropy appear at quantum critical points (QCPs) in one dimension (1D) and have been predicted in 2D at QCPs described by 2D conformal field theories. The entanglement entropy in a strip geometry at such QCPs can be obtained via the “Shannon entropy” of a 1D spin chain with open boundary conditions. The Shannon entropy of the XXZ chain is found to have a logarithmic term that implies, for the QCP of the square-lattice quantum dimer model, a logarithm with universal coefficient ±0.25. However, the logarithm in the Shannon entropy of the transverse-field Ising model, which corresponds to entanglement in the 2D Ising conformal QCP, is found to have a singular dependence on the replica or Rényi index resulting from flows to different boundary conditions at the entanglement cut.

  15. Majority-vote model on spatially embedded networks: Crossover from mean-field to Ising universality classes

    NASA Astrophysics Data System (ADS)

    Sampaio Filho, C. I. N.; dos Santos, T. B.; Moreira, A. A.; Moreira, F. G. B.; Andrade, J. S.

    2016-05-01

    We study through Monte Carlo simulations and finite-size scaling analysis the nonequilibrium phase transitions of the majority-vote model taking place on spatially embedded networks. These structures are built from an underlying regular lattice over which directed long-range connections are randomly added according to the probability Pi j˜r-α , where ri j is the Manhattan distance between nodes i and j , and the exponent α is a controlling parameter [J. M. Kleinberg, Nature (London) 406, 845 (2000), 10.1038/35022643]. Our results show that the collective behavior of this system exhibits a continuous order-disorder phase transition at a critical parameter, which is a decreasing function of the exponent α . Precisely, considering the scaling functions and the critical exponents calculated, we conclude that the system undergoes a crossover among distinct universality classes. For α ≤3 the critical behavior is described by mean-field exponents, while for α ≥4 it belongs to the Ising universality class. Finally, in the region where the crossover occurs, 3 <α <4 , the critical exponents are dependent on α .

  16. Dynamic phase transitions and dynamic phase diagrams of the Ising model on the Shastry-Sutherland lattice

    NASA Astrophysics Data System (ADS)

    Deviren, Şeyma Akkaya; Deviren, Bayram

    2016-03-01

    The dynamic phase transitions and dynamic phase diagrams are studied, within a mean-field approach, in the kinetic Ising model on the Shastry-Sutherland lattice under the presence of a time varying (sinusoidal) magnetic field by using the Glauber-type stochastic dynamics. The time-dependence behavior of order parameters and the behavior of average order parameters in a period, which is also called the dynamic order parameters, as a function of temperature, are investigated. Temperature dependence of the dynamic magnetizations, hysteresis loop areas and correlations are investigated in order to characterize the nature (first- or second-order) of the dynamic phase transitions as well as to obtain the dynamic phase transition temperatures. We present the dynamic phase diagrams in the magnetic field amplitude and temperature plane. The phase diagrams exhibit a dynamic tricritical point and reentrant phenomena. The phase diagrams also contain paramagnetic (P), Néel (N), Collinear (C) phases, two coexistence or mixed regions, (N+C) and (N+P), which strongly depend on interaction parameters.

  17. Repulsive interactions induced by specific adsorption: Anomalous step diffusivity and inadequacy of nearest-neighbor Ising model. (part I experimental)

    NASA Astrophysics Data System (ADS)

    Al-Shakran, Mohammad; Kibler, Ludwig A.; Jacob, Timo; Ibach, Harald; Beltramo, Guillermo L.; Giesen, Margret

    2016-09-01

    This is Part I of two closely related papers, where we show that the specific adsorption of anions leads to a failure of the nearest-neighbor Ising model to describe island perimeter curvatures on Au(100) electrodes in dilute KBr, HCl and H2SO4 electrolytes and the therewith derived step diffusivity vs. step orientation. This result has major consequences for theoretical studies aiming at the understanding of growth, diffusion and degradation phenomena. Part I focuses on the experimental data. As shown theoretically in detail in Part II (doi:10.1016/j.susc.2016.03.022), a set of nearest-neighbor and next-nearest-neighbor interaction energies (ɛNN, ɛNNN) can uniquely be derived from the diffusivity of steps along <100> and <110>. We find strong repulsive next-nearest neighbor (NNN) interaction in KBr and HCl, whereas NNN interaction is negligibly for H2SO4. The NNN repulsive interaction energy ɛNNN therefore correlates positively with the Gibbs adsorption energy of the anions. We find furthermore that ɛNNN increases with increasing Br- and Cl- coverage. The results for ɛNN and ɛNNN are quantitatively consistent with the coverage dependence of the step line tension. We thereby establish a sound experimental base for theoretical studies on the energetics of steps in the presence of specific adsorption.

  18. Analytical formulation of 2-D aeroelastic model in weak ground effect

    NASA Astrophysics Data System (ADS)

    Dessi, Daniele; Mastroddi, Franco; Mancini, Simone

    2013-10-01

    This paper deals with the aeroelastic modeling and analysis of a 2-D oscillating airfoil in ground effect, elastically constrained by linear and torsional springs and immersed in an incompressible potential flow (typical section) at a finite distance from the ground. This work aims to extend Theodorsen theory, valid in an unbounded flow domain, to the case of weak ground effect, i.e., for clearances above half the airfoil chord. The key point is the determination of the aerodynamic loads, first in the frequency domain and then in the time domain, accounting for their dependence on the ground distance. The method of images is exploited in order to comply with the impermeability condition on the ground. The new integral equation in the unknown vortex distribution along the chord and the wake is solved using asymptotic expansions in the perturbation parameter defined as the inverse of the non-dimensional ground clearance of the airfoil. The mathematical model describing the aeroelastic system is transformed from the frequency domain into the time domain and then in a pure differential form using a finite-state aerodynamic approximation (augmented states). The typical section, which the developed theory is applied to, is obtained as a reduced model of a wing box finite element representation, thus allowing comparison with the corresponding aeroelastic analysis carried out by a commercial solver based on a 3-D lifting surface aerodynamic model. Stability (flutter margins) and response of the airfoil both in frequency and time domains are then investigated. In particular, within the developed theory, the solution of the Wagner problem can be directly achieved confirming an asymptotic trend of the aerodynamic coefficients toward the steady-state conditions different from that relative to the unbounded domain case. The dependence of flutter speed and the frequency response functions on ground clearance is highlighted, showing the usefulness of this approach in efficiently

  19. Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M.; Mourgues, R.; Bureau, D.

    2012-04-01

    The analysis of surface deformation in response to approaching intrusion is important for assessing volcanic hazards. In this paper, we present results from 2D scaled models of magma intrusion, in which we discuss the propagation mode and related surface deformation during dyke growth. Our experiments consist in the injection of analogue magma (Golden syrup) into cohesive fine-grained silica powder, simulating the brittle upper crust. Using an optical image correlation technique (Particle Imaging Velocimetry), we were able to follow the surface deformation, the displacements within the country rock and to calculate strains induced by the magma emplacement. We identified two kinds of intrusion morphologies resulting from different interactions between the dyke and plastic deformations occurring in the country rock near the surface. In both morphologies, the dyke is vertical at depth. Our analysis demonstrates that both hydraulic tensile opening and shear-related propagation operate during this first stage of vertical growth. At the same time, the surface lifted up and formed a smooth symmetrical dome. Both types of morphologies differ in the upper part. During a second stage of evolution, the first type of intrusion inclined at a dip between 45 to 65°. This inclination is not caused by shear deformations and is attributed to stress rotation near the tip. Closer to the surface, the growth of the inclined sheet creates shear bands which conduct the fluid toward the surface. The surface uplift becomes asymmetric. The second type of intrusion does not rotate at depth and continues its vertical propagation by catching vertical tensile cracks. The intrusion of magma in these cracks creates horizontal stresses which are responsible for the closure of fractures and the formation of reverse faults. At the surface the dome remains symmetrical. For both intrusions, the surface uplift accelerates during the second stage and it is strongly influenced by the presence or the

  20. The Two-Commponent Model and 2d Metal-Insulator Transition

    NASA Astrophysics Data System (ADS)

    Castner, Theodore G.

    2004-03-01

    Fermi liquid theory for the 2d MIT is extended to include the soft correlation gap (CG) in the density-of-states N(E) from carrier interactions [N(E)α(E-E_F)^t] producing a minimum in N(E) at E_F. The results are consistent with the scaling form g=g_cexp(xT_o/T) in a limited T-regime, but not as Tarrow0 ruling out the perfect conductor scenario. The two-component model of itinerant plus localized electrons n_i+n_loc=n=n_c(1+x) for n>nc is an essential feature and allows a full explanation of the T-dependence of the metallic resistivity ratio ρ_i(T)/ρ_i(0) [ρ_i= 1/(σ-σ_c)] including the maximum at T_max. The results explain the Hanein et al. data^1 for p-type GaAs and show p_i(T)/p_i(0)=1+T/T_phi in a restricted T-range where T_phi=xTc [T_c=E_c/k, E_c=mobility edge] as x=p/p_c-1 goes to 0. The correction to EF from the soft CG [of width |Delta_c] yields a constant ratio E_F/Δc as x goes to 0. The origin of the nonuniversal gc [ρc at x=0] and implications for the beta function β(g)=ln(g/g_c) and single particle scaling will be discussed. 1. Y. Hanein et al., PRL80, 1288 (1998);Phys.Rev.B58, R13338 (1998).

  1. 2D condensation model for the inner Solar Nebula: an enstatite-rich environment

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Liffman, Kurt; Maddison, Sarah T.; Brooks, Geoffrey

    2016-04-01

    Infrared observations provide the dust composition in the protoplanetary discs surface layers, but cannot probe the dust chemistry in the mid-plane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the 2D distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive time-scales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ˜0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc mid-plane out to ˜0.4 AU. The two enstatite-rich zones support recent evidence that Mercury and enstatite chondrites (ECs) shared a bulk material with similar composition. Our results are also consistent with infrared observation of protoplanetary disc which show emission of enstatite-rich dust in the inner surface of discs. The resulting chemistry and dynamics suggests that the formation of the bulk material of ECs occurred in the inner surface layer of the disc, within 0.4 AU. We also propose a simple alternative scenario in which gas fractionation and vertical settling of the condensates lead to an enstatite-chondritic bulk material.

  2. Antiferroquadrupolar and Ising-Nematic Orders of a Frustrated Bilinear-Biquadratic Heisenberg Model and Implications for the Magnetism of FeSe

    NASA Astrophysics Data System (ADS)

    Yu, Rong; Si, Qimiao

    2015-09-01

    Motivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized Heisenberg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-temperature phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctuations and interlayer couplings are analyzed. We propose the Ising-nematic order as underlying the structural phase transition observed in the normal state of FeSe, and discuss the role of the Goldstone modes of the antiferroquadrupolar order for the dipolar magnetic fluctuations in this system. Our results provide a considerably broadened perspective on the overall magnetic phase diagram of the iron chalcogenides and pnictides, and are amenable to tests by new experiments.

  3. Antiferroquadrupolar and Ising-nematic orders of a frustrated bilinear-biquadratic Heisenberg model and implications for the magnetism of FeSe.

    PubMed

    Yu, Rong; Si, Qimiao

    2015-09-11

    Motivated by the properties of the iron chalcogenides, we study the phase diagram of a generalized Heisenberg model with frustrated bilinear-biquadratic interactions on a square lattice. We identify zero-temperature phases with antiferroquadrupolar and Ising-nematic orders. The effects of quantum fluctuations and interlayer couplings are analyzed. We propose the Ising-nematic order as underlying the structural phase transition observed in the normal state of FeSe, and discuss the role of the Goldstone modes of the antiferroquadrupolar order for the dipolar magnetic fluctuations in this system. Our results provide a considerably broadened perspective on the overall magnetic phase diagram of the iron chalcogenides and pnictides, and are amenable to tests by new experiments. PMID:26406842

  4. Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process

    NASA Astrophysics Data System (ADS)

    Jung, T.; Seebeck, J.; Friedrich, J.

    2013-04-01

    A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.

  5. 2D and 3D QSAR models for identifying diphenylpyridylethanamine based inhibitors against cholesteryl ester transfer protein.

    PubMed

    Chen, Meimei; Yang, Xuemei; Lai, Xinmei; Gao, Yuxing

    2015-10-15

    Cholesteryl ester transfer protein (CETP) inhibitors hold promise as new agents against coronary heart disease. Molecular modeling techniques such as 2D-QSAR and 3D-QSAR analysis were applied to establish models to distinguish potent and weak CETP inhibitors. 2D and 3D QSAR models-based a series of diphenylpyridylethanamine (DPPE) derivatives (newly identified as CETP inhibitors) were then performed to elucidate structural and physicochemical requirements for higher CETP inhibitory activity. The linear and spline 2D-QSAR models were developed through multiple linear regression (MLR) and support vector machine (SVM) methods. The best 2D-QSAR model obtained by SVM gave a high predictive ability (R(2)train=0.929, R(2)test=0.826, Q(2)LOO=0.780). Also, the 2D-QSAR models uncovered that SlogP_VSA0, E_sol and Vsurf_DW23 were important features in defining activity. In addition, the best 3D-QSAR model presented higher predictive ability (R(2)train=0.958, R(2)test=0.852, Q(2)LOO=0.734) based on comparative molecular field analysis (CoMFA). Meanwhile, the derived contour maps from 3D-QSAR model revealed the significant structural features (steric and electronic effects) required for improving CETP inhibitory activity. Consequently, twelve newly designed DPPE derivatives were proposed to be robust and potent CETP inhibitors. Overall, these derived models may help to design novel DPPE derivatives with better CETP inhibitory activity. PMID:26346366

  6. A MODIFIED LIGHT TRANSMISSION VISUALIZATION METHOD FOR DNAPL SATURATION MEASUREMENTS IN 2-D MODELS

    EPA Science Inventory

    In this research, a light transmission visualization (LTV) method was used to quantify dense non-aqueous phase liquids (DNAPL) saturation in two-dimensional (2-D), two fluid phase systems. The method is an expansion of earlier LTV methods and takes into account both absorption an...

  7. DNAPL MAPPING AND WATER SATURATION MEASUREMENTS IN 2-D MODELS USING LIGHT TRANSMISSION VISUALIZATION (LTV) TECHNIQUE

    EPA Science Inventory

    • LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...

  8. Numerical study of the spin-glass transition in a dilute Ising model on a triangular lattice

    NASA Astrophysics Data System (ADS)

    Andérico, Carmen Z.; Fernández, Julio F.; Streit, Thomas S. J.

    1982-10-01

    We study an Ising model with nearest-neighbor antiferromagnetic interactions. It is placed on a triangular lattice, where each site is occupied by a spin with x probability. There is no applied magnetic field. Randomness and frustration, two essential ingredients of spin-glasses, are present in this model. We study its critical properties here. The entropy is obtained by a transfer-matrix calculation as a function of x at low temperature (T=0.3JkB) for systems on a lattice of 10 × 20 sites. A fairly shallow minimum appears near x~=0.9, which suggests that this case is the one most likely to show a transition into an ordered state at low temperature. We study the cases x=1, 0.9, and 0.74, which is about half-way to the critical percolation. We simulate systems on lattices of 50 × 50 sites and 30 × 30 sites by the Monte Carlo method. The specific heat has a broad maximum at T~=0.9 for x=0.74 and 0.9. χSG, defined by χSG=N-1 i,j<σiσj>2, and the relaxation time (τ) are obtained for T>=0.6JkB. Both quantities, τ and χSG, turn out to be proportional to exp[A(T-T0)c] and 0<=T0<~0.4 a fit with T0=0 yields c~1 for x=1 but c~2 for x=0.74 and 0.9.

  9. Comparison of the 1D flux theory with a 2D hydrodynamic secondary settling tank model.

    PubMed

    Ekama, G A; Marais, P

    2004-01-01

    The applicability of the 1D idealized flux theory (1DFT) for design of secondary settling tanks (SSTs) is evaluated by comparing its predicted maximum surface overflow (SOR) and solids loading (SLR) rates with that calculated from the 2D hydrodynamic model SettlerCAD using as a basis 35 full scale SST stress tests conducted on different SSTs with diameters from 30 to 45m and 2.25 to 4.1 m side water depth, with and without Stamford baffles. From the simulations, a relatively consistent pattern appeared, i.e. that the 1DFT can be used for design but its predicted maximum SLR needs to be reduced by an appropriate flux rating, the magnitude of which depends mainly on SST depth and hydraulic loading rate (HLR). Simulations of the sloping bottom shallow (1.5-2.5 m SWD) Dutch SSTs tested by STOWa and the Watts et al. SST, all with doubled SWDs, and the Darvill new (4.1 m) and old (2.5 m) SSTs with interchanged depths, were run to confirm the sensitivity of the flux rating to depth and HLR. Simulations with and without a Stamford baffle were also done. While the design of the internal features of the SST, such as baffling, have a marked influence on the effluent SS concentration for underloaded SSTs, these features appeared to have only a small influence on the flux rating, i.e. capacity, of the SST, In the meantime until more information is obtained, it would appear that from the simulations so far that the flux rating of 0.80 of the 1DFT maximum SLR recommended by Ekama and Marais remains a reasonable value to apply in the design of full scale SSTs--for deep SSTs (4 m SWD) the flux rating could be increased to 0.85 and for shallow SSTs (2.5 m SWD) decreased to 0.75. It is recommended that (i) while the apparent interrelationship between SST flux rating and depth suggests some optimization of the volume of the SST, that this be avoided and that (ii) the depth of the SST be designed independently of the surface area as is usually the practice and once selected, the

  10. Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR

    SciTech Connect

    Zielinski, R.G.; Kazimi, M.S.

    1981-09-01

    Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.

  11. An influence of solar activity on latitudinal distribution of atmospheric ozone and temperature in 2-D radiative-photochemical model

    NASA Technical Reports Server (NTRS)

    Dyominov, I. G.

    1989-01-01

    On the basis of the 2-D radiative-photochemical model of the ozone layer at heights 0 to 60 km in the Northern Hemisphere there are revealed and analyzed in detail the characteristic features of the season-altitude-latitude variations of ozone and temperature due to changes of the solar flux during the 11 year cycle, electron and proton precipitations.

  12. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  13. Persistence in a Random Bond Ising Model of Socio-Econo Dynamics

    NASA Astrophysics Data System (ADS)

    Jain, S.; Yamano, T.

    We study the persistence phenomenon in a socio-econo dynamics model using computer simulations at a finite temperature on hypercubic lattices in dimensions up to five. The model includes a "social" local field which contains the magnetization at time t. The nearest neighbour quenched interactions are drawn from a binary distribution which is a function of the bond concentration, p. The decay of the persistence probability in the model depends on both the spatial dimension and p. We find no evidence of "blocking" in this model. We also discuss the implications of our results for possible applications in the social and economic fields. It is suggested that the absence, or otherwise, of blocking could be used as a criterion to decide on the validity of a given model in different scenarios.

  14. Driven microswimmers on a 2D substrate: A stochastic towed sled model

    NASA Astrophysics Data System (ADS)

    Marchegiani, Giampiero; Marchesoni, Fabio

    2015-11-01

    We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.

  15. Driven microswimmers on a 2D substrate: A stochastic towed sled model

    SciTech Connect

    Marchegiani, Giampiero; Marchesoni, Fabio

    2015-11-14

    We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.

  16. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

    NASA Astrophysics Data System (ADS)

    Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

    2014-07-01

    To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

  17. Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-30

    The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÔ/PyC/ICVI-SiC composite, one with a “thin” (0.110 μm) and the other with a “thick” (1.040 μm) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÔ SA/”thin” PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÔ type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÔ type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÔor the TyrannoÔ SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.

  18. Reduced order modelling of an unstructured mesh air pollution model and application in 2D/3D urban street canyons

    NASA Astrophysics Data System (ADS)

    Fang, F.; Zhang, T.; Pavlidis, D.; Pain, C. C.; Buchan, A. G.; Navon, I. M.

    2014-10-01

    A novel reduced order model (ROM) based on proper orthogonal decomposition (POD) has been developed for a finite-element (FE) adaptive mesh air pollution model. A quadratic expansion of the non-linear terms is employed to ensure the method remained efficient. This is the first time such an approach has been applied to air pollution LES turbulent simulation through three dimensional landscapes. The novelty of this work also includes POD's application within a FE-LES turbulence model that uses adaptive resolution. The accuracy of the reduced order model is assessed and validated for a range of 2D and 3D urban street canyon flow problems. By comparing the POD solutions against the fine detail solutions obtained from the full FE model it is shown that the accuracy is maintained, where fine details of the air flows are captured, whilst the computational requirements are reduced. In the examples presented below the size of the reduced order models is reduced by factors up to 2400 in comparison to the full FE model while the CPU time is reduced by up to 98% of that required by the full model.

  19. Quantum Critical Behavior of the Bose-Fermi Kondo Model with Ising Anisotropy

    NASA Astrophysics Data System (ADS)

    Park, Tae-Ho

    2005-03-01

    The existence of a continous quantum phase transition of the Bose-Fermi Kondo Model (BFKM) with a self-consistently determined bosonic bath has been demonstrated within the Extended Dynamical Mean Field Approach to the anisotropic Kondo lattice model and φ/T-scaling near the quantum critical point(QCP)was found[1,2]. We study the quantum critical properties of the anisotropic BFKM with specified bath spectral function, where the spectrum of the bosonic bath vanishes in a power-law fashion with exponent γ for small frequencies. Motivated by very recent results that the quantum to classical mapping for a related class of models fails[3,4]. We determine the critical local susceptibility using both the classical and quantum Monte Carlo approaches of Ref.5. Our results cover several values of γ below and above the upper critical dimension of the classical model for temperatures down to 1% of the bare Kondo scale. [1]D. Grempel and Q. Si, Phys. Rev. Lett. 91, 026402 (2003). [2]J.Zhu, D. Grempel, and Q. Si, Phys. Rev. Lett. 91, 156404 (2003). [3]L. Zhu, S. Kirchner, Q. Si nad A. Georges, Phys. Rev. Lett. in press (cond-mat/0406293). [4]M. Vojta, N. Tong, and R. Bulla, cond-mat/0410132. [5]D. Grempel and M. Rozenberg, Phys. Rev. B 60, 4702 (1999).

  20. Theory of bi-molecular association dynamics in 2D for accurate model and experimental parameterization of binding rates

    NASA Astrophysics Data System (ADS)

    Yogurtcu, Osman N.; Johnson, Margaret E.

    2015-08-01

    The dynamics of association between diffusing and reacting molecular species are routinely quantified using simple rate-equation kinetics that assume both well-mixed concentrations of species and a single rate constant for parameterizing the binding rate. In two-dimensions (2D), however, even when systems are well-mixed, the assumption of a single characteristic rate constant for describing association is not generally accurate, due to the properties of diffusional searching in dimensions d ≤ 2. Establishing rigorous bounds for discriminating between 2D reactive systems that will be accurately described by rate equations with a single rate constant, and those that will not, is critical for both modeling and experimentally parameterizing binding reactions restricted to surfaces such as cellular membranes. We show here that in regimes of intrinsic reaction rate (ka) and diffusion (D) parameters ka/D > 0.05, a single rate constant cannot be fit to the dynamics of concentrations of associating species independently of the initial conditions. Instead, a more sophisticated multi-parametric description than rate-equations is necessary to robustly characterize bimolecular reactions from experiment. Our quantitative bounds derive from our new analysis of 2D rate-behavior predicted from Smoluchowski theory. Using a recently developed single particle reaction-diffusion algorithm we extend here to 2D, we are able to test and validate the predictions of Smoluchowski theory and several other theories of reversible reaction dynamics in 2D for the first time. Finally, our results also mean that simulations of reactive systems in 2D using rate equations must be undertaken with caution when reactions have ka/D > 0.05, regardless of the simulation volume. We introduce here a simple formula for an adaptive concentration dependent rate constant for these chemical kinetics simulations which improves on existing formulas to better capture non-equilibrium reaction dynamics from dilute