2D numerical modelling of meandering channel formation
NASA Astrophysics Data System (ADS)
XIAO, Y.; ZHOU, G.; YANG, F. S.
2016-03-01
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.
Numerical modeling of seismogram envelopes in 2-D random media
NASA Astrophysics Data System (ADS)
Fehler, Michael
2002-11-01
Several portions of seismograms recorded from regional earthquakes cannot be easily explained as resulting from waves propagating along deterministic paths within the Earth. For example, seismic coda, which is the tail portion of the seismogram of an earthquake recorded at distances of less than 100 km, is considered as resulting from waves that are multiply scattered from random heterogeneities in the Earth's lithosphere. At greater distances, observations that the duration of the initial arriving wave packet is much longer than the source-time duration is explained as being due to multiple forward scattering along the path between the source and the receiver. To investigate these phenomena, we use a finite difference method to numerically simulate 2-D scalar-waves that propagate through random media characterized by a von Karman autocorrelation function. Such media are considered to be appropriate models for the random component of the structure of the Earth's lithosphere. We investigate the characteristics of the resulting wavefields and compare them with those of observed seismograms.
Improvement of a 2D numerical model of lava flows
NASA Astrophysics Data System (ADS)
Ishimine, Y.
2013-12-01
I propose an improved procedure that reduces an improper dependence of lava flow directions on the orientation of Digital Elevation Model (DEM) in two-dimensional simulations based on Ishihara et al. (in Lava Flows and Domes, Fink, JH eds., 1990). The numerical model for lava flow simulations proposed by Ishihara et al. (1990) is based on two-dimensional shallow water model combined with a constitutive equation for a Bingham fluid. It is simple but useful because it properly reproduces distributions of actual lava flows. Thus, it has been regarded as one of pioneer work of numerical simulations of lava flows and it is still now widely used in practical hazard prediction map for civil defense officials in Japan. However, the model include an improper dependence of lava flow directions on the orientation of DEM because the model separately assigns the condition for the lava flow to stop due to yield stress for each of two orthogonal axes of rectangular calculating grid based on DEM. This procedure brings a diamond-shaped distribution as shown in Fig. 1 when calculating a lava flow supplied from a point source on a virtual flat plane although the distribution should be circle-shaped. To improve the drawback, I proposed a modified procedure that uses the absolute value of yield stress derived from both components of two orthogonal directions of the slope steepness to assign the condition for lava flows to stop. This brings a better result as shown in Fig. 2. Fig. 1. (a) Contour plots calculated with the original model of Ishihara et al. (1990). (b) Contour plots calculated with a proposed model.
Comparison of 3-D finite element model of ashlar masonry with 2-D numerical models of ashlar masonry
NASA Astrophysics Data System (ADS)
Beran, Pavel
2016-06-01
3-D state of stress in heterogeneous ashlar masonry can be also computed by several suitable chosen 2-D numerical models of ashlar masonry. The results obtained from 2-D numerical models well correspond to the results obtained from 3-D numerical model. The character of thermal stress is the same. While using 2-D models the computational time is reduced more than hundredfold and therefore this method could be used for computation of thermal stresses during long time periods with 10 000 of steps.
2D and 3D numerical models on compositionally buoyant diapirs in the mantle wedge
NASA Astrophysics Data System (ADS)
Hasenclever, Jörg; Morgan, Jason Phipps; Hort, Matthias; Rüpke, Lars H.
2011-11-01
We present 2D and 3D numerical model calculations that focus on the physics of compositionally buoyant diapirs rising within a mantle wedge corner flow. Compositional buoyancy is assumed to arise from slab dehydration during which water-rich volatiles enter the mantle wedge and form a wet, less dense boundary layer on top of the slab. Slab dehydration is prescribed to occur in the 80-180 km deep slab interval, and the water transport is treated as a diffusion-like process. In this study, the mantle's rheology is modeled as being isoviscous for the benefit of easier-to-interpret feedbacks between water migration and buoyant viscous flow of the mantle. We use a simple subduction geometry that does not change during the numerical calculation. In a large set of 2D calculations we have identified that five different flow regimes can form, in which the position, number, and formation time of the diapirs vary as a function of four parameters: subduction angle, subduction rate, water diffusivity (mobility), and mantle viscosity. Using the same numerical method and numerical resolution we also conducted a suite of 3D calculations for 16 selected parameter combinations. Comparing the 2D and 3D results for the same model parameters reveals that the 2D models can only give limited insights into the inherently 3D problem of mantle wedge diapirism. While often correctly predicting the position and onset time of the first diapir(s), the 2D models fail to capture the dynamics of diapir ascent as well as the formation of secondary diapirs that result from boundary layer perturbations caused by previous diapirs. Of greatest importance for physically correct results is the numerical resolution in the region where diapirs nucleate, which must be high enough to accurately capture the growth of the thin wet boundary layer on top of the slab and, subsequently, the formation, morphology, and ascent of diapirs. Here 2D models can be very useful to quantify the required resolution, which we
Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction
NASA Astrophysics Data System (ADS)
Ye, Jianhong; Jeng, Dongsheng; Wang, Ren; Zhu, Changqi
2013-10-01
A 2-D semi-coupled model PORO-WSSI 2D (also be referred as FSSI-CAS 2D) for the Fluid-Structure-Seabed Interaction (FSSI) has been developed by employing RANS equations for wave motion in fluid domain, VARANS equations for porous flow in porous structures; and taking the dynamic Biot's equations (known as "u - p" approximation) for soil as the governing equations. The finite difference two-step projection method and the forward time difference method are adopted to solve the RANS, VARANS equations; and the finite element method is adopted to solve the "u - p" approximation. A data exchange port is developed to couple the RANS, VARANS equations and the dynamic Biot's equations together. The analytical solution proposed by Hsu and Jeng (1994) and some experiments conducted in wave flume or geotechnical centrifuge in which various waves involved are used to validate the developed semi-coupled numerical model. The sandy bed involved in these experiments is poro-elastic or poro-elastoplastic. The inclusion of the interaction between fluid, marine structures and poro-elastoplastic seabed foundation is a special point and highlight in this paper, which is essentially different with other previous coupled models The excellent agreement between the numerical results and the experiment data indicates that the developed coupled model is highly reliablefor the FSSI problem.
Accelerating numerical modeling of wave propagation through 2-D anisotropic materials using OpenCL.
Molero, Miguel; Iturrarán-Viveros, Ursula
2013-03-01
We present an implementation of the numerical modeling of elastic waves propagation, in 2D anisotropic materials, using the new parallel computing devices (PCDs). Our study is aimed both to model laboratory experiments and explore the capabilities of the emerging PCDs by discussing performance issues. In the experiments a sample plate of an anisotropic material placed inside a water tank is rotated and, for every angle of rotation it is subjected to an ultrasonic wave (produced by a large source transducer) that propagates in the water and through the material producing some reflection and transmission signals that are recording by a "point-like" receiver. This experiment is numerically modeled by running a finite difference code covering a set of angles θ∈[-50°, 50°], and recorded the signals for the transmission and reflection results. Transversely anisotropic and weakly orthorhombic materials are considered. We accelerated the computation using an open-source toolkit called PyOpenCL, which lets one to easily access the OpenCL parallel computation API's from the high-level programming environment of Python. A speedup factor over 19 using the GPU is obtained when compared with the execution of the same program in parallel using a CPU multi-core (in this case we use the 4-cores that has the CPU). The performance for different graphic cards and operating systems is included together with the full 2-D finite difference code with PyOpenCL. PMID:23290584
Mechanical Modelling of Pultrusion Process: 2D and 3D Numerical Approaches
NASA Astrophysics Data System (ADS)
Baran, Ismet; Hattel, Jesper H.; Akkerman, Remko; Tutum, Cem C.
2015-02-01
The process induced variations such as residual stresses and distortions are a critical issue in pultrusion, since they affect the structural behavior as well as the mechanical properties and geometrical precision of the final product. In order to capture and investigate these variations, a mechanical analysis should be performed. In the present work, the two dimensional (2D) quasi-static plane strain mechanical model for the pultrusion of a thick square profile developed by the authors is further improved using generalized plane strain elements. In addition to that, a more advanced 3D thermo-chemical-mechanical analysis is carried out using 3D quadratic elements which is a novel application for the numerical modelling of the pultrusion process. It is found that the 2D mechanical models give relatively reasonable and accurate stress and displacement evolutions in the transverse direction as compared to the 3D model. Moreover, the generalized plane strain model predicts the longitudinal process induced stresses more similar to the ones calculated in the 3D model as compared with the plane strain model.
Optical fiber poling by induction: analysis by 2D numerical modeling.
De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A
2016-04-15
Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ^{(2)}-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323
Water cycling beneath subduction zones in 2D and 3D numerical models (Invited)
NASA Astrophysics Data System (ADS)
Rupke, L.; Iyer, K. H.; Hasenclever, J.; Morgan, J.
2013-12-01
Tracing the cycling of fluids and volatiles through subduction zones continues to be a challenging task with budgets still having large error bars attached to them. In this contribution we show how numerical models can help to integrate various geological, geophysical, and geochemical datasets and how they can be used to put better bounds on the likely amounts of water being subducted, released into the arc and back-arc melting regions, and recycled to the deeper mantle. To achieve this task we use a suite of numerical models. Bending related faulting and hydration of the incoming lithosphere is resolved using a reactive flow model that solves for crustal scale fluid flow and mantle serpentinization using reaction kinetics. Seismic tomography studies from offshore Chile and Central America are used to evaluate and constrain the effective reaction rate. These rates are then used to assess the contribution of serpentinization to the water budget at subduction zones. The pattern of hydration is controlled by the reaction kinetics and serpentinization is most intense around the 270°C isotherm. The depth of this isotherm correlates well with the dominant spacing of double seismic zones observed globally. Comparison of the results with heat flow data suggests that observed seafloor temperature gradients in the bend-fault region are too low to be caused by ';one-pass' downward water flow into the serpentinizing lithosphere, but rather suggest that bend-faults are areas of active hydrothermal circulation. This implies that serpentine-sourced vents and chemosynthetic vent communities should be found in this deep-sea environment as well. Dehydration reactions are resolved with a 2D kinematic subduction zone model that computes the temperature field and the likely locations and volumes of slab fluid release due to metamorphic dehydration reactions. Here we find that up to 1/3 of the subducted water may be transported into the deeper mantle for the coldest subduction zones
A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds
Li, Tingwen; Zhang, Yongmin
2013-10-11
Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.
Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2013-12-01
Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.
On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling
NASA Astrophysics Data System (ADS)
Liao, J.
2014-12-01
Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion
Pool Formation in Boulder-Bed Streams: Implications From 1-D and 2-D Numerical Modeling
NASA Astrophysics Data System (ADS)
Harrison, L. R.; Keller, E. A.
2003-12-01
In mountain rivers of Southern California, boulder-large roughness elements strongly influence flow hydraulics and pool formation and maintenance. In these systems, boulders appear to control the stream morphology by converging flow and producing deep pools during channel forming discharges. Our research goal is to develop quantitative relationships between boulder roughness elements, temporal patterns of scour and fill, and geomorphic processes that are important in producing pool habitat. The longitudinal distribution of shear stress, unit stream power and velocity were estimated along a 48 m reach on Rattlesnake Creek, using the HEC-RAS v 3.0 and River 2-D numerical models. The reach has an average slope of 0.02 and consists of a pool-riffle sequence with a large boulder constriction directly above the pool. Model runs were performed for a range of stream discharges to test if scour and fill thresholds for pool and riffle environments could be identified. Results from the HEC-RAS simulations identified that thresholds in shear stress, unit stream power and mean velocity occur above a discharge of 5.0 cms. Results from the one-dimensional analysis suggest that the reversal in competency is likely due to changes in cross-sectional width at varying flows. River 2-D predictions indicated that strong transverse velocity gradients were present through the pool at higher modeled discharges. At a flow of 0.5 cms (roughly 1/10th bankfull discharge), velocities are estimated at 0.6 m/s and 1.3 m/s for the pool and riffle, respectively. During discharges of 5.15 cms (approximate bankfull discharge), the maximum velocity in the pool center increased to nearly 3.0 m/s, while the maximum velocity over the riffle is estimated at approximately 2.5 cms. These results are consistent with those predicted by HEC-RAS, though the reversal appears to be limited to a narrow jet that occurs through the pool head and pool center. Model predictions suggest that the velocity reversal is
Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test
Croin, M.; Ghiotti, A.; Bruschi, S.
2007-04-07
The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.
NASA Astrophysics Data System (ADS)
Zou, B.; Li, D. F.; Hu, H. J.; Zhang, H. W.; Lou, L. H.; Chen, M.; Lv, Z. Y.
Based on the verified two dimensional(2D) finite element model for river flow simulation, the effect of estuary training levees on the water flow and sediment movement in the Yellow River estuary is analyzed. For disclosing the effect of setting the two training levees on the flow and sediment motion, the calculation and analysis for the two projects, (one is no levees, the other is setting up two no levees) are given. The results show that when setting up two training levees, water flow is bound by levees and the water flows become more concentrated. As a result, velocity increases in the main channel, sediment carrying capacity of water flow increases correspondingly.
Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models
NASA Astrophysics Data System (ADS)
Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva
2014-07-01
To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.
Numerical Real Space Renormalization of a 2D Random Boson Model
NASA Astrophysics Data System (ADS)
Iyer, Shankar; Refael, Gil
2011-03-01
Interest in the random boson problem originated in experiments on Helium adsorbed in Vycor, but the problem arises in many contexts, including Josephson junction arrays and disordered cold atom systems. Recently, Altman, Kafri, Polkovnikov, and Refael have studied a rotor model description of interacting bosons subjected to quenched disorder in one dimension. Using a real space renormalization approach, they have identified a random fixed point that marks the transition between superfluid and Mott-glass phases. Here, we describe work that numerically extends their approach to the random boson problem in two dimensions. We first test the validity of the real space renormalization by comparison to exact diagonalization of small systems. Then, we move to larger systems and explore what the renormalization scheme can tell us about the nature of the insulating and superfluid phases.
NASA Astrophysics Data System (ADS)
Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.
2014-03-01
The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.
2D-Combined ICP/CCP numerical modeling for RF plasma source
NASA Astrophysics Data System (ADS)
Miyashita, Masaru; Ikeda, Kei; Ochi, Syuta
2015-09-01
A numerical investigation of sputtering distribution on antenna cover in Radio Frequency (13.56 MHz) plasma(RF plasma) source by energetic ions bombardment has been performed including influences of static electric field from voltage of antenna and of inductive electric field from current of antenna. In order to validate the developed technique, the static electron heating distribution and the inductive electron heating distribution in simulation are compared. The comparison shows the static electric field is shielded in the sheath of the high electron density (1017m-3) plasma and the plasma is sustained by inductive electric field from current of antenna. The deep sheath potential in simulation is generated over the region of large vulnerable in experiment. The numerical simulation technique with calculating static electric field and inductive electric field is important for development of the RF plasma source with large current and long life time.
NASA Astrophysics Data System (ADS)
Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce
2012-10-01
Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.
2D numerical modelling of fluid percolation in the subduction zone
NASA Astrophysics Data System (ADS)
Dymkova, D.; Gerya, T.; Podladchikov, Y.
2012-04-01
Subducting slab dehydration and resulting aqueous fluid percolation triggers partial melting in the mantle wedge and is accompanied with the further melt percolation through the porous space to the region above the slab. This problem is a complex coupled chemical, thermal and mechanical process responsible for the magmatic arcs formation and change of the mantle wedge properties. We have created a two-dimensional model of a two-phase flow in a porous media solving a coupled Darcy-Stokes system of equations for two incompressible media for the case of nonlinear visco-plastic rheology of solid matrix. Our system of equation is expanded for the high-porosity limits and stabilized for the case of high porosity contrasts. We use a finite-difference method with fully staggered grid in a combination with marker-in-cell technique for advection of fluid and solid phase. We performed a comparison with a benchmark of a thermal convection in a porous media in a bottom-heated box to verify the interdependency of Rayleigh and Nusselt numbers with earlier obtained ones (Cherkaoui & Wilcock, 1999). We have demonstrated the stability and robustness of the algorithm in case of strongly non-linear visco-plastic rheology of solid including cases with localization of both deformation and porous flow along spontaneously forming shear bands. We have checked our model for the forming of localized porous channels under a simple shear stress (Katz et al, 2006). We have developed a setup of a self-initiating due to gravitational instability subduction. With our coupled fluid-solid flow we have achieved a self-consistent water downward suction by a slab bending predicted by the other models with a simplified fluid kinematical motion implementation (Faccenda et al, 2009). With this setup we have obtained a self-consistent upper crust weakening by a porous fluid pressure which was theoretically assumed in the previously existing subduction models (Gerya & Meilick, 2011; Faccenda et al, 2009
Numerical modeling of electromagnetic waves scattering from 2D coastal breaking sea waves
NASA Astrophysics Data System (ADS)
Khairi, Refzul; Coatanhay, Arnaud; Khenchaf, Ali; Scolan, Yves Marie
2013-11-01
The aim of this work is to model the interaction of L-band electromagnetic waves with coastal breaking sea waves. The breaking sea waves' profiles are generated using the desingularized technique and the electromagnetic waves scattering is computed using the high-order method of moments (HO-MoM) combined with non uniform rational basis spline (NURBS) geometry. Our study mainly focuses upon the electromagnetic waves behavior in the crest and the cavity of breaking sea waves. Contribution to the Topical Issue "Numelec 2012", Edited by Adel Razek.
Revisiting 2D numerical models for the 19th century outbursts of η Carinae
NASA Astrophysics Data System (ADS)
González, R. F.; Villa, A. M.; Gómez, G. C.; de Gouveia Dal Pino, E. M.; Raga, A. C.; Cantó, J.; Velázquez, P. F.; de La Fuente, E.
2010-02-01
We present here new results of two-dimensional hydrodynamical simulations of the eruptive events of the 1840s (the great) and the 1890s (the minor) eruptions suffered by the massive star η Carinae (Car). The two bipolar nebulae commonly known as the Homunculus and the little Homunculus (LH) were formed from the interaction of these eruptive events with the underlying stellar wind. We assume here an interacting, non-spherical multiple-phase wind scenario to explain the shape and the kinematics of both Homunculi, but adopt a more realistic parametrization of the phases of the wind. During the 1890s eruptive event, the outflow speed decreased for a short period of time. This fact suggests that the LH is formed when the eruption ends, from the impact of the post-outburst η Car wind (that follows the 1890s event) with the eruptive flow (rather than by the collision of the eruptive flow with the pre-outburst wind, as claimed in previous models; González et al.). Our simulations reproduce quite well the shape and the observed expansion speed of the large Homunculus. The LH (which is embedded within the large Homunculus) becomes Rayleigh-Taylor unstable and develop filamentary structures that resemble the spatial features observed in the polar caps. In addition, we find that the interior cavity between the two Homunculi is partially filled by material that is expelled during the decades following the great eruption. This result may be connected with the observed double-shell structure in the polar lobes of the η Car nebula. Finally, as in previous work, we find the formation of tenuous, equatorial, high-speed features that seem to be related to the observed equatorial skirt of η Car.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
Keywords: dessication-crack-induced-salinization, preferential flow, conceptual model, numerical model, vadose zone, vertisols, soil water retention function, HYDRUS 2D/3D Vertisols cover a hydrologically very significant area of semi-arid regions often through which water infiltrates to groundwater aquifers. Understanding of water flow and solute accumulation is thus very relevant to agricultural activity and water resources management. Previous works suggest a conceptual model of dessication-crack-induced-salinization where salinization of sediment in the deep section of the vadose zone (up to 4 m) is induced by subsurface evaporation due to convective air flow in the dessication cracks. It suggests that the salinization is induced by the hydraulic gradient between the dry sediment in the vicinity of cracks (low potential) and the relatively wet sediment further from the main cracks (high potential). This paper presents a modified previously suggested conceptual model and a numerical model. The model uses a simple uniform flow approach but unconventionally prescribes the boundary conditions and the hydraulic parameters of soil. The numerical model is bound to one location close to a dairy farm waste lagoon, but the application of the suggested conceptual model could be possibly extended to all semi-arid regions with vertisols. Simulations were conducted using several modeling approaches with an ultimate goal of fitting the simulation results to the controlling variables measured in the field: temporal variation in water content across thick layer of unsaturated clay sediment (>10 m), sediment salinity and salinity the water draining down the vadose zone to the water table. The development of the model was engineered in several steps; all computed as forward solutions by try-and-error approach. The model suggests very deep instant infiltration of fresh water up to 12 m, which is also supported by the field data. The paper suggests prescribing a special atmospheric
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
NASA Astrophysics Data System (ADS)
Cepeda, Jose; Luna, Byron Quan; Nadim, Farrokh
2013-04-01
An essential component of a quantitative landslide hazard assessment is establishing the extent of the endangered area. This task requires accurate prediction of the run-out behaviour of a landslide, which includes the estimation of the run-out distance, run-out width, velocities, pressures, and depth of the moving mass and the final configuration of the deposits. One approach to run-out modelling is to reproduce accurately the dynamics of the propagation processes. A number of dynamic numerical models are able to compute the movement of the flow over irregular topographic terrains (3-D) controlled by a complex interaction between mechanical properties that may vary in space and time. Given the number of unknown parameters and the fact that most of the rheological parameters cannot be measured in the laboratory or field, the parametrization of run-out models is very difficult in practice. For this reason, the application of run-out models is mostly used for back-analysis of past events and very few studies have attempted to achieve forward predictions. Consequently all models are based on simplified descriptions that attempt to reproduce the general features of the failed mass motion through the use of parameters (mostly controlling shear stresses at the base of the moving mass) which account for aspects not explicitly described or oversimplified. The uncertainties involved in the run-out process have to be approached in a stochastic manner. It is of significant importance to develop methods for quantifying and properly handling the uncertainties in dynamic run-out models, in order to allow a more comprehensive approach to quantitative risk assessment. A method was developed to compute the variation in run-out intensities by using a dynamic run-out model (MassMov2D) and a probabilistic framework based on a Monte Carlo simulation in order to analyze the effect of the uncertainty of input parameters. The probability density functions of the rheological parameters
NASA Technical Reports Server (NTRS)
Scalapino, D. J.; Sugar, R. L.; White, S. R.; Bickers, N. E.; Scalettar, R. T.
1989-01-01
Numerical simulations on the half-filled three-dimensional Hubbard model clearly show the onset of Neel order. Simulations of the two-dimensional electron-phonon Holstein model show the competition between the formation of a Peierls-CDW state and a superconducting state. However, the behavior of the partly filled two-dimensional Hubbard model is more difficult to determine. At half-filling, the antiferromagnetic correlations grow as T is reduced. Doping away from half-filling suppresses these correlations, and it is found that there is a weak attractive pairing interaction in the d-wave channel. However, the strength of the pair field susceptibility is weak at the temperatures and lattice sizes that have been simulated, and the nature of the low-temperature state of the nearly half-filled Hubbard model remains open.
NASA Astrophysics Data System (ADS)
Cruciani, Francesco; Manconi, Andrea; Rinaldo Barchi, Massimiliano
2014-05-01
this particular place and also elsewhere. We set up a 2D fluid dynamic model by considering a Finite Element Method (FEM) environment, which allows us to well represent the geometries, densities and viscosities of the geological materials, as derived from geophysical investigations. Our study aims at understanding whether the long-term mechanical behavior of the Barreirinhas Basin DW-FTB can be reproduced by considering a simplified Newtonian fluid dynamics environment or it is controlled by a more complex rheology, which might include the effect of additional parameters such as internal friction, cohesive strength and pore-fluid pressure at the basal detachment.
NASA Astrophysics Data System (ADS)
El Kadi Abderrezzak, Kamal; Die Moran, Andrés; Tassi, Pablo; Ata, Riadh; Hervouet, Jean-Michel
2016-07-01
Bank erosion can be an important form of morphological adjustment in rivers. With the advances made in computational techniques, two-dimensional (2D) depth-averaged numerical models have become valuable tools for resolving many engineering problems dealing with sediment transport. The objective of this research work is to present a simple, new, bank-erosion operator that is integrated into a 2D Saint-Venant-Exner morphodynamic model. The numerical code is based on an unstructured grid of triangular elements and finite-element algorithms. The slope of each element in the grid is compared to the angle of repose of the bank material. Elements for which the slope is too steep are tilted to bring them to the angle of repose along a horizontal axis defined such that the volume loss above the axis is equal to the volume gain below, thus ensuring mass balance. The model performance is assessed using data from laboratory flume experiments and a scale model of the Old Rhine. For the flume experiment case with uniform bank material, relevant results are obtained for bank geometry changes. For the more challenging case (i.e. scale model of the Old Rhine with non-uniform bank material), the numerical model is capable of reproducing the main features of the bank failure, induced by the newly designed groynes, as well as the transport of the mobilized sediment material downstream. Some deviations between the computed results and measured data are, however, observed. They are ascribed to the effects of three-dimensional (3D) flow structures, pore pressure and cohesion, which are not considered in the present 2D model.
NASA Astrophysics Data System (ADS)
Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong
2016-08-01
A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.
NASA Astrophysics Data System (ADS)
Sun, Zhigang; Chen, Xihui; Shao, Hongyan; Song, Yingdong
2016-04-01
A numerical model is presented for simulation of the oxidation-affected behaviors of two dimensional carbon fiber-reinforced silcon carbide matrix composite (2D C/SiC) exposed to air oxidizing environments below 900 °C, which incorporates the modeling of oxidized microstructure and computing of degraded elastic properties. This model is based upon the analysis of the representative volume cell (RVC) of the composite. The multi-scale model of 2D C/SiC composites is concerned in the present study. Analysis results of such a composite can provide a guideline for the real 2D C/SiC composite. The micro-structure during oxidation process is firstly modeled in the RVC. The elastic moduli of oxidized composite under non-stress oxidation environment is computed by finite element analysis. The elastic properties of 2D-C/SiC composites in air oxidizing environment are evaluated and validated in comparison to experimental data. The oxidation time, temperature and fiber volume fractions of C/SiC composite are investigated to show their influences upon the elastic properties of 2D C/SiC composites.
NASA Astrophysics Data System (ADS)
LeVeque, R. J.; Motley, M. R.
2015-12-01
A series of tsunami wave basin experiments of flow through a scale model of Seaside, Oregon have been used as validation data for a 2015 benchmarking workshop hosted by the National Tsunami Mitigation Program, which focused on better understanding the ability of tsunami models to predict flow velocities and inundation depths following a coastal inundation event. As researchers begin to assess the safety of coastal infrastructures, proper assessment of tsunami-induced forces on coastal structures is critical. Hydrodynamic forces on these structures are fundamentally proportional to the local momentum flux of the fluid, and experimental data included momentum flux measurements at many instrumented gauge locations. The GeoClaw tsunami model, which solves the two-dimensional shallow water equations, was compared against other codes during the benchmarking workshop, and more recently a three-dimensional computational fluid dynamics model using the open-source OpenFOAM software has been developed and results from this model are being compared with both the experimental data and the 2D GeoClaw results. In addition, the 3D model allows for computation of fluid forces on the faces of structures, permitting an investigation of the common use of momentum flux as a proxy for these forces. This work aims to assess the potential to apply these momentum flux predictions locally within the model to determine tsunami-induced forces on critical structures. Difficulties in working with these data sets and cross-model comparisons will be discussed. Ultimately, application of the more computationally efficient GeoClaw model, informed by the 3D OpenFOAM models, to predict forces on structures at the community scale can be expected to improve the safety and resilience of coastal communities.
NASA Technical Reports Server (NTRS)
Morrison, Joseph H.
1998-01-01
This report details calculations for the McDonnell-Douglas 30P/30N and the NHLP-2D three-element highlift configurations. Calculations were performed with the Reynolds averaged Navier-Stokes code ISAAC to study the effects of various numerical issues on high lift predictions. These issues include the effect of numerical accuracy on the advection terms of the turbulence equations, Navier-Stokes versus the thin-layer Navier-Stokes approximation, an alternative formulation of the production term, and the performance of several turbulence models. The effect of the transition location on the NHLP-2D flow solution was investigated. Two empirical transition models were used to estimate the transition location.
Floodplain mapping via 1D and quasi-2D numerical models in the valley of Thessaly, Greece
NASA Astrophysics Data System (ADS)
Oikonomou, Athanasios; Dimitriadis, Panayiotis; Koukouvinos, Antonis; Tegos, Aristoteles; Pagana, Vasiliki; Panagopoulos, Panayiotis-Dionisios; Mamassis, Nikolaos; Koutsoyiannis, Demetris
2013-04-01
The European Union Floods Directive defines a flood as 'a covering by water of land not normally covered by water'. Human activities, such as agriculture, urban development, industry and tourism, contribute to an increase in the likelihood and adverse impacts of flood events. The study of the hydraulic behaviour of a river is important in flood risk management. Here, we investigate the behaviour of three hydraulic models, with different theoretical frameworks, in a real case scenario. The area is located in the Penios river basin, in the plain of Thessaly (Greece). The three models used are the one-dimensional HEC-RAS and the quasi two-dimensional LISFLOOD-FP and FLO-2D which are compared to each other, in terms of simulated maximum water depth as well as maximum flow velocity, and to a real flood event. Moreover, a sensitivity analysis is performed to determine how each simulation is affected by the river and floodplain roughness coefficient, in terms of flood inundation.
NASA Astrophysics Data System (ADS)
Klochko, Andrei V.; Starikovskaia, Svetlana M.; Xiong, Zhongmin; Kushner, Mark J.
2014-09-01
Nanosecond electrical discharges in the form of ionization waves are of interest for rapidly ionizing and exciting complex gas mixtures to initiate chemical reactions. Operating with a small discharge tube diameter can significantly increase the specific energy deposition and so enable optimization of the initiation process. Analysis of the uniformity of energy release in small diameter capillary tubes will aid in this optimization. In this paper, results for the experimentally derived characteristics of nanosecond capillary discharges in air at moderate pressure are presented and compared with results from a two-dimensional model. The quartz capillary tube, having inner and outer diameters of 1.5 and 3.4 mm, is about 80 mm long and filled with synthetic dry air at 27 mbar. The capillary tube with two electrodes at the ends is inserted into a break of the central wire of a long coaxial cable. A metal screen around the tube is connected to the cable ground shield. The discharge is driven by a 19 kV 35 ns voltage pulse applied to the powered electrode. The experimental measurements are conducted primarily by using a calibrated capacitive probe and back current shunts. The numerical modelling focuses on the fast ionization wave (FIW) and the plasma properties in the immediate afterglow after the conductive plasma channel has been established between the two electrodes. The FIW produces a highly focused region of electric field on the tube axis that sustains the ionization wave that eventually bridges the electrode gap. Results from the model predict FIW propagation speed and current rise time that agree with the experiment.
NASA Astrophysics Data System (ADS)
López-Venegas, Alberto M.; Horrillo, Juan; Pampell-Manis, Alyssa; Huérfano, Victor; Mercado, Aurelio
2015-06-01
The most recent tsunami observed along the coast of the island of Puerto Rico occurred on October 11, 1918, after a magnitude 7.2 earthquake in the Mona Passage. The earthquake was responsible for initiating a tsunami that mostly affected the northwestern coast of the island. Runup values from a post-tsunami survey indicated the waves reached up to 6 m. A controversy regarding the source of the tsunami has resulted in several numerical simulations involving either fault rupture or a submarine landslide as the most probable cause of the tsunami. Here we follow up on previous simulations of the tsunami from a submarine landslide source off the western coast of Puerto Rico as initiated by the earthquake. Improvements on our previous study include: (1) higher-resolution bathymetry; (2) a 3D-2D coupled numerical model specifically developed for the tsunami; (3) use of the non-hydrostatic numerical model NEOWAVE (non-hydrostatic evolution of ocean WAVE) featuring two-way nesting capabilities; and (4) comprehensive energy analysis to determine the time of full tsunami wave development. The three-dimensional Navier-Stokes model tsunami solution using the Navier-Stokes algorithm with multiple interfaces for two fluids (water and landslide) was used to determine the initial wave characteristic generated by the submarine landslide. Use of NEOWAVE enabled us to solve for coastal inundation, wave propagation, and detailed runup. Our results were in agreement with previous work in which a submarine landslide is favored as the most probable source of the tsunami, and improvement in the resolution of the bathymetry yielded inundation of the coastal areas that compare well with values from a post-tsunami survey. Our unique energy analysis indicates that most of the wave energy is isolated in the wave generation region, particularly at depths near the landslide, and once the initial wave propagates from the generation region its energy begins to stabilize.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
NASA Astrophysics Data System (ADS)
Fuchsluger, Martin; Götzl, Gregor
2014-05-01
In general most aquifers have a much larger lateral extent than vertical. This fact leads to the application of the Dupuit-Forchheimer assumptions to many groundwater problems, whereas a two dimensional simulation is considered sufficient. By coupling transient fluid flow modeling with heat transport the 2D aquifer approximation is in many cases insufficient as it does not consider effects of the subjacent and overlying aquitards on heat propagation as well as the impact of surface climatic effects on shallow aquifers. A shallow Holocene aquifer in Vienna served as a case study to compare different modeling approaches in two and three dimensions in order to predict the performance and impact of a thermal aquifer utilization for heating (1.3 GWh) and cooling (1.4 GWh) of a communal building. With the assumption of a 6 doublets well field, the comparison was realized in three steps: At first a two dimensional model for unconfined flow was set up, assuming a varying hydraulic conductivity as well as a varying top and bottom elevation of the aquifer (gross - thickness). The model area was chosen along constant hydraulic head at steady state conditions. A second model was made by mapping solely the aquifer in three dimensions using the same subdomain and boundary conditions as defined in step one. The third model consists of a complete three dimensional geological build-up including the aquifer as well as the overlying and subjacent layers and additionally an annually variable climatic boundary condition at the surface. The latter was calibrated with measured water temperature at a nearby water gauge. For all three models the same annual operating mode of the 6 hydraulic doublets was assumed. Furthermore a limited maximal groundwater temperature at a range between 8 and 18 °C as well as a constrained well flow rate has been given. Finally a descriptive comparison of the three models concerning the extracted thermal power, drawdown, temperature distribution and Darcy
NASA Astrophysics Data System (ADS)
Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.
2016-05-01
An active volume scaling in bore and length of a Sr atom laser excited in a nanosecond pulse longitudinal He-SrBr2 discharge is carried out. Considering axial symmetry and uniform power input, a 2D model (r, z) is developed by numerical methods for determination of gas temperature in a new large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge free zone, in order to find out the optimal thermal mode for achievement of maximal output laser parameters. A 2D model (r, z) of gas temperature is developed by numerical methods for axial symmetry and uniform power input. The model determines gas temperature of nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.
NASA Astrophysics Data System (ADS)
Li, Yang; Deschamps, Frédéric; Tackley, Paul J.
2016-04-01
We perform numerical experiments of thermochemical mantle convection in 2-D spherical annulus geometry to investigate the distribution of post-perovskite (pPv) with respect to the location of primordial reservoirs of dense material in the lowermost mantle. High core-mantle boundary temperatures lead to strong anticorrelation between the locations of pPv and large primordial reservoirs, while low values lead to a pPv layer fully covering the outer core. Intermediate values avoid a full pPv layer but allow pPv phase change to occur within the primordial reservoirs. Through interactions between cold downwellings and primordial reservoirs, low viscosity (weak) pPv leads to the formation of long-lived, thin tails of primordial materials extending laterally at the edges of these reservoirs. Small patches of pPv also form within the primordial reservoir but are short-lived. If primordial reservoirs are enriched in iron, these patches may provide an explanation for the ultralow-velocity zones.
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
NASA Astrophysics Data System (ADS)
Syvitski, James P. M.; Hutton, Eric W. H.
2001-07-01
Numerical simulators of the dynamics of strata formation of continental margins fuse information from the atmosphere, ocean and regional geology. Such models can provide information for areas and times for which actual measurements are not available, or for when purely statistical estimates are not adequate by themselves. SEDFLUX is such a basin-fill model, written in ANSI-standard C, able to simulate the delivery of sediment and their accumulation over time scales of tens of thousands of years. SEDFLUX includes the effects of sea-level fluctuations, river floods, ocean storms, and other relevant environmental factors (climate trends, random catastrophic events), at a time step (daily to yearly) that is sensitive to short-term variations of the seafloor. SEDFLUX combines individual process-response models into one fully interactive model, delivering a multi-sized sediment load onto and across a continental margin, including sediment redistribution by (1) river mouth dynamics, (2) buoyant surface plumes, (3) hyperpycnal flows, (4) ocean storms, (5) slope instabilities, (6) turbidity currents, and (7) debris flows. The model allows for the deposit to compact, to undergo tectonic processes (faults, uplift) and isostatic subsidence from the sediment load. The modeled architecture has a typical vertical resolution of 1-25 cm, and a typical horizontal resolution of between 1 and 100 m.
NASA Astrophysics Data System (ADS)
Khalaji, E.; Nazari, M. R.; Seifi, Z.
2016-01-01
In this article, the effects of dependent parameters such as inlet Reynolds number (4000 ≤ Re ≤ 20,000), nozzle-plate distance (4 ≤ H/D ≤ 10), plate diameter (18 < D/B < 40 based on other approaches), inlet flow type (fully developed, uniform and pulsed) and thermal boundary condition (constant heat flux and temperature) in confined and unconfined turbulent impinging jet are investigated considering constant inlet fluid (air). The obtained results are compared with other experimental and numerical results found in the literature. This investigation indicates that the k - ω - overline{{v2 }} - f model acquires appropriate performance in terms of thermal and dynamical fluid analysis compared to other turbulence models and experimental results.
NASA Astrophysics Data System (ADS)
Chernogorova, T. P.; Temelkov, K. A.; Koleva, N. K.; Vuchkov, N. K.
2014-05-01
Assuming axial symmetry and a uniform power input, a 2D model (r, z) is developed numerically for determination of the gas temperature in the case of a nanosecond pulsed longitudinal discharge in He-SrBr2 formed in a newly-designed large-volume high-temperature discharge tube with additional incompact ZrO2 insulation in the discharge-free zone, in order to find the optimal thermal mode for achievement of maximal output laser parameters. The model determines the gas temperature of a nanosecond pulsed longitudinal discharge in helium with small additives of strontium and bromine.
Numerical simulation of rock cutting using 2D AUTODYN
NASA Astrophysics Data System (ADS)
Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.
2015-12-01
In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.
Resistivity inversion in 2-D anisotropic media: numerical experiments
NASA Astrophysics Data System (ADS)
Wiese, Timothy; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark; Marescot, Laurent
2015-04-01
Many rocks and layered/fractured sequences have a clearly expressed electrical anisotropy although it is rare in practice to incorporate anisotropy into resistivity inversion. In this contribution, we present a series of 2.5-D synthetic inversion experiments for various electrode configurations and 2-D anisotropic models. We examine and compare the image reconstructions obtained using the correct anisotropic inversion code with those obtained using the false but widely used isotropic assumption. Superior reconstruction in terms of reduced data misfit, true anomaly shape and position, and anisotropic background parameters were obtained when the correct anisotropic assumption was employed for medium to high coefficients of anisotropy. However, for low coefficient values the isotropic assumption produced better-quality results. When an erroneous isotropic inversion is performed on medium to high level anisotropic data, the images are dominated by patterns of banded artefacts and high data misfits. Various pole-pole, pole-dipole and dipole-dipole data sets were investigated and evaluated for the accuracy of the inversion result. The eigenvalue spectra of the pseudo-Hessian matrix and the formal resolution matrix were also computed to determine the information content and goodness of the results. We also present a data selection strategy based on high sensitivity measurements which drastically reduces the number of data to be inverted but still produces comparable results to that of the comprehensive data set. Inversion was carried out using transversely isotropic model parameters described in two different co-ordinate frames for the conductivity tensor, namely Cartesian versus natural or eigenframe. The Cartesian frame provided a more stable inversion product. This can be simply explained from inspection of the eigenspectra of the pseudo-Hessian matrix for the two model descriptions.
2D numerical simulation of the resistive reconnection layer
D. A. Uzdensky; R. M. Kulsrud
2000-07-21
In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.
2D Numerical Simulation of the Resistive Reconnection Layer
Kulsrud, R.M.; Uzdensky, D.A.
1999-03-01
In this paper we present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. We use realistic boundary conditions derived consistently from the outside magnetic field, and we also take into account the effect of the back pressure from flow into the separatrix region. We find that within a few Alfvén times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.
Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses
NASA Astrophysics Data System (ADS)
Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin
2012-12-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.
NASA Astrophysics Data System (ADS)
Seifi, Zeinab; Nazari, Mohammad Reza; Khalaji, Erfan
2016-03-01
In the present article, the characteristics of turbulent jet impinging onto a concave surface is studied using k - w - overline{{v2 }} - f turbulence model. Dependent parameters such as inlet Reynolds number (2960 < Re < 12,000), nozzle-plate distance (4 < H/B < 10), concavity (D/B = 30, 60) of confined and unconfined impinging jet are scrutinized to find out whether this approach would bring any privileges compared to other investigations or not. The obtained results indicate better performance in low nozzle-plate distance in comparison with those mentioned in other literatures. Furthermore, the average Nusselt number of confined impinging jet overtakes unconfined one (similar circumstances) while this trend will decline as relative concavity increases. Moreover, local heat transfer of stagnation area and wall jet goes up and down through nozzle-plate distance enhancement respectively. Finally, the effects of sinusoidal pulsed inlet profile on heat transfer of unconfined impinging jet indicate direct affiliation of amplitude and neutral impact of frequency on Nusselt number distribution.
Numerical Verification of a 2-D PSF Equalization Technique
NASA Astrophysics Data System (ADS)
Atwood, Shane; Kankelborg, C.
2013-07-01
The Multi-Order Extreme Ultraviolet Spectrograph (MOSES) forms images of the transition region at HE II 30.4 in three spectral orders. Subtle differences between these images encode line profile information. However, differences in instrument point-spread function (PSF) in the three orders lead to non-negligible systematic errors in the retrieval of the line profiles. We describe a technique for equalizing the PSFs, and provide numerical verification of the technique's validity.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Katz, Ira; Goebel, Dan M.; Jameson, Kristina K.
2006-01-01
Numerical simulations with the time-dependent Orificed Cathode (OrCa2D-II) computer code show that classical enhancements of the plasma resistivity can not account for the elevated electron temperatures and steep plasma potential gradients measured in the plume of a 25-27.5 A discharge hollow cathode. The cathode, which employs a 0.11-in diameter orifice, was operated at 5.5 sccm without an applied magnetic field using two different anode geometries. It is found that anomalous resistivity based on electron-driven instabilities improves the comparison between theory and experiment. It is also estimated that other effects such as the Hall-effect from the self-induced magnetic field, not presently included in OrCa2D-II, may contribute to the constriction of the current density streamlines thus explaining the higher plasma densities observed along the centerline.
Experimental validation of 2D profile photoresist shrinkage model
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex
2011-03-01
For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary
Homogenization models for 2-D grid structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Cioranescu, D.; Rebnord, D. A.
1992-01-01
In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.
NASA Astrophysics Data System (ADS)
Lach, Theodore M.
2003-10-01
The CBM (model) of the nucleus has resulted in the prediction of two new quarks, an "up" quark of mass 237.31 MeV/c2 and a "dn" quark of mass 42.392 MeV/c2. These two new predicted quarks helped to determine that the masses of the quarks and leptons are all related by a geometric progression relationship. The mass of each quark or lepton is just the "geometric mean" of two related elementary particles, either in the same generation or in the same family. This numerology predicts the following masses for the electron family: 0.511000 (electron), 7.74 (predicted), 117.3, 1778.4 (tau), 26950.1 MeV. The geometric ratio of this progression is 15.154 (e to the power e). The mass of the tau in this theory agrees very well with accepted values. This theory suggests that all the "dn like" quarks have a mass of just 10X multiples of 4.24 MeV (the mass of the "d" quark). The first 3 "up like" quark masses are 38, 237.31 and 1500 MeV. This theory also predicts a new heavy generation with a lepton mass of 27 GeV, a "dn like" quark of 42.4 GeV, and an "up like" quark of 65 GeV. Significant evidence already exists for the existence of these new quarks, and lepton. Ref. Masses of the Sub-Nuclear Particles, nucl-th/ 0008026, @ http://xxx.lanl.gov. Infinite Energy, Vol 5, issue 30.
Numerical simulation of HTPB combustion in a 2D hybrid slab combustor
NASA Astrophysics Data System (ADS)
Gariani, Gabriela; Maggi, Filippo; Galfetti, Luciano
2011-09-01
A code for the numerical simulation of combustion processes in hybrid rockets, developed at the Space Propulsion Laboratory of Politecnico di Milano (SPLab), is presented. The code deals with Navier-Stokes equations solved with RANS approach, blowing effect, combustion kinetics and radiation. The equations are closed with k-epsilon turbulence model and well stirred reactor model. The P1 model, a simplification of the PN radiation model, is adopted. Specific simulation tools were developed using OpenFOAM®open source technology. The computational domain is 2D and split in two subdomains, simulating the reacting gas mixture on one side and the solid fuel grain on the other. The interface between the two regions plays a key role as the solid grain pyrolysis comes from a straight solution of the model without shortcuts. A propellant combination with polybutadiene and gaseous oxygen has been chosen and a reduced kinetic model for combustion of butadiene, considered as the major gaseous constituent coming from polybutadiene pyrolysis, has been developed for reactions occurring in oxygen atmosphere. The computational domain tries to replicate the real experimental setup and is split into three areas: pre-chamber, slab zone and post-chamber. High speed camera visualizations of the combustion processes allow to compare the flame height, obtained by the code and by experimental tests, along the grain for given boundary conditions.
A 2D electrohydrodynamic model for electrorotation of fluid drops.
Feng, James Q
2002-02-01
A theoretical analysis of spontaneous electrorotation of deformable fluid drops in a DC electric field is presented with a 2D electrohydrodynamic model. The fluids in the system are assumed to be leaky dielectric and Newtonian. If the rotating flow is dominant over the cellular convection type of electrohydrodynamic flow, closed-form solutions for drops of small deformations can be obtained. Because the governing equations are in general nonlinear even when drop deformations are ignored, the general solution for even undeformed drop takes a form of infinite series and can only be evaluated by numerical means. Both closed-form solutions for special cases and numerical solutions for more general cases are obtained here to describe steady-state field variables and first-order drop deformations. In a DC electric field of strength beyond the threshold value, spontaneous electrorotation of a drop is shown to occur when charge relaxation in the surrounding fluid is faster than the fluid inside the drop. With increasing the strength of the applied electric field from the threshold for onset of electrorotation, the axis of drop contraction deviates from from that of the applied electric field in the direction of the rotating flow with an angle increasing with the field strength. PMID:16290391
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
Cascading rainfall uncertainties into 2D inundation impact models
NASA Astrophysics Data System (ADS)
Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David
2013-04-01
Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is
Effects of Agent's Repulsion in 2d Flocking Models
NASA Astrophysics Data System (ADS)
Moussa, Najem; Tarras, Iliass; Mazroui, M'hammed; Boughaleb, Yahya
In nature many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex behavior of these systems, many models have been proposed and tested so far. This paper deals with an extension of the Vicsek model, by including a second zone of repulsion, where each agent attempts to maintain a minimum distance from the others. The consideration of this zone in our study seems to play an important role during the travel of agents in the two-dimensional (2D) flocking models. Our numerical investigations show that depending on the basic ingredients such as repulsion radius (R1), effect of density of agents (ρ) and noise (η), our nonequilibrium system can undergo a kinetic phase transition from no transport to finite net transport. For different values of ρ, kinetic phase diagrams in the plane (η ,R1) are found. Implications of these findings are discussed.
NASA Astrophysics Data System (ADS)
Guo, Xiaofeng; Nandy, Ashesh
2003-02-01
Some 2-D and 3-D graphical representations of DNA sequences have been given by Gate, Nandy, Leong, Randic, and Guo et al. Based on 2-D graphical representation of DNA sequences, Raychaudhury and Nandy introduced the first-order moments of the x and y coordinates and the radius of the plot of a DNA sequence for indexing scheme and similarity measures of DNA sequences. In this Letter, based on Guo's novel 2-D graphical representation of DNA sequences of low degeneracy, we introduce the improved first-order moments of the x and y coordinates and the radius of DNA sequences, and the distance of two DNA sequences. The new descriptors of DNA sequences give a good numerical characterization of DNA sequences, which have lower degeneracy.
2-D Inhomogeneous Modeling of the Solar CO Bands
NASA Astrophysics Data System (ADS)
Ayres, T. R.
1996-05-01
The recent discovery of off-limb emissions in the mid-IR ( ~ 5 mu m) vibration-rotation bands of solar carbon monoxide (CO) has sparked new interest in the formation of the molecular lines, and their ability to diagnose thermal conditions at high altitudes. The off-limb extensions of the strong CO lines indicate the penetration of cool material (T ~ 3500 K) several hundred kilometers into the otherwise hot (T ~ 6000 K) chromosphere. The origin of the cool gas, and its role in the thermal energy balance, remain controversial. The interpretation of the CO observations must rely heavily upon numerical modeling, in particular highly-inhomogeneous thermal structures arrayed in a 2-D scheme that can properly treat the geometry of the grazing rays at the solar limb. The radiation transport, itself, is especially simple for the CO off-limb emissions, because the fundamental bands form quite close to LTE (high collision rates; low spontaneous decay rates) and the background continuum is purely thermal as well (f--f transitions in H(-) and H). Thus, the geometrical aspects of the problem can be treated in considerably more detail than would be practical for typical NLTE scattering lines. I describe the recent modeling efforts, and the diagnostic potential of the CO bands for future observational studies of inhomogeneous surface structure on the Sun, and on other stars of late spectral type. This work was supported by NSF grant AST-9218063 to the University of Colorado.
Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water
NASA Astrophysics Data System (ADS)
Gu, Ruochuan
A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.
2D/1D approximations to the 3D neutron transport equation. II: Numerical comparisons
Kelley, B. W.; Collins, B.; Larsen, E. W.
2013-07-01
In a companion paper [1], (i) several new '2D/1D equations' are introduced as accurate approximations to the 3D Boltzmann transport equation, (ii) the simplest of these approximate equations is systematically discretized, and (iii) a theoretically stable iteration scheme is developed to solve the discrete equations. In this paper, numerical results are presented that confirm the theoretical predictions made in [1]. (authors)
2D modeling of electromagnetic waves in cold plasmas
Crombé, K.; Van Eester, D.; Koch, R.; Kyrytsya, V.
2014-02-12
The consequences of sheath (rectified) electric fields, resulting from the different mobility of electrons and ions as a response to radio frequency (RF) fields, are a concern for RF antenna design as it can cause damage to antenna parts, limiters and other in-vessel components. As a first step to a more complete description, the usual cold plasma dielectric description has been adopted, and the density profile was assumed to be known as input. Ultimately, the relevant equations describing the wave-particle interaction both on the fast and slow timescale will need to be tackled but prior to doing so was felt as a necessity to get a feeling of the wave dynamics involved. Maxwell's equations are solved for a cold plasma in a 2D antenna box with strongly varying density profiles crossing also lower hybrid and ion-ion hybrid resonance layers. Numerical modelling quickly becomes demanding on computer power, since a fine grid spacing is required to capture the small wavelengths effects of strongly evanescent modes.
VAM2D: Variably saturated analysis model in two dimensions
Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. )
1991-10-01
This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.
von Neumann Stability Analysis of Numerical Solution Schemes for 1D and 2D Euler Equations
NASA Astrophysics Data System (ADS)
Konangi, Santosh; Palakurthi, Nikhil Kumar; Ghia, Urmila
2014-11-01
A von Neumann stability analysis is conducted for numerical schemes for the full system of coupled, density-based 1D and 2D Euler equations, closed by an isentropic equation of state. The governing equations are discretized on a staggered grid, which permits equivalence to finite-volume discretization. Presently, first-order accurate spatial and temporal finite-difference techniques are analyzed. The momentum convection term is treated as explicit, semi-implicit or implicit. Density upwind bias is included in the spatial operator of the continuity equation. By combining the discretization techniques, ten solution schemes are formulated. For each scheme, unstable and stable regimes are identified through the stability analysis, and the maximum allowable CFL number is predicted. The predictions are verified for selected schemes, using the Riemann problem at incompressible and compressible Mach numbers. Very good agreement is obtained between the analytically predicted and ``experimentally'' observed CFL values for all cases, thereby validating the analysis. The demonstrated analysis provides an accurate indication of stability conditions for the Euler equations, in contrast to the simplistic conditions arising from model equations, such as the wave equation.
An Intercomparison of 2-D Models Within a Common Framework
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)
2002-01-01
A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations
Absorption and Scattering 2D Volcano Images from Numerically Calculated Space-weighting functions
NASA Astrophysics Data System (ADS)
Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca
2016-04-01
Short period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S-waves and ending when the noise prevails), spanning more than 70% of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity) either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter-couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly-used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show the that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their extension to
Absorption and scattering 2-D volcano images from numerically calculated space-weighting functions
NASA Astrophysics Data System (ADS)
Del Pezzo, Edoardo; Ibañez, Jesus; Prudencio, Janire; Bianco, Francesca; De Siena, Luca
2016-08-01
Short-period small magnitude seismograms mainly comprise scattered waves in the form of coda waves (the tail part of the seismogram, starting after S waves and ending when the noise prevails), spanning more than 70 per cent of the whole seismogram duration. Corresponding coda envelopes provide important information about the earth inhomogeneity, which can be stochastically modeled in terms of distribution of scatterers in a random medium. In suitable experimental conditions (i.e. high earth heterogeneity), either the two parameters describing heterogeneity (scattering coefficient), intrinsic energy dissipation (coefficient of intrinsic attenuation) or a combination of them (extinction length and seismic albedo) can be used to image Earth structures. Once a set of such parameter couples has been measured in a given area and for a number of sources and receivers, imaging their space distribution with standard methods is straightforward. However, as for finite-frequency and full-waveform tomography, the essential problem for a correct imaging is the determination of the weighting function describing the spatial sensitivity of observable data to scattering and absorption anomalies. Due to the nature of coda waves, the measured parameter couple can be seen as a weighted space average of the real parameters characterizing the rock volumes illuminated by the scattered waves. This paper uses the Monte Carlo numerical solution of the Energy Transport Equation to find approximate but realistic 2-D space-weighting functions for coda waves. Separate images for scattering and absorption based on these sensitivity functions are then compared with those obtained with commonly used sensitivity functions in an application to data from an active seismic experiment carried out at Deception Island (Antarctica). Results show that these novel functions are based on a reliable and physically grounded method to image magnitude and shape of scattering and absorption anomalies. Their
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Numerical computation of 2D Sommerfeld integrals - Decomposition of the angular integral
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Kuester, Edward F.
1992-02-01
The computational efficiency of the 2D Sommerfeld integrals is shown to undergo improvement through the discovery of novel ways to compute the inner angular integral in polar representations. It is shown that the angular integral can be decomposed into a finite number of incomplete Lipschitz-Hankel integrals; these can in turn be calculated through a series of expansions, so that the angular integral can be computed by summing a series rather than applying a standard numerical integration algorithm. The technique is most efficient and accurate when piecewise-sinusoidal basis functions are employed to analyze a printed strip-dipole antenna in a layered medium.
2 1/2 -D compressible reconnection model
NASA Astrophysics Data System (ADS)
Skender, M.; Vršnak, B.
The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.
Fast 2D flood modelling using GPU technology - recent applications and new developments
NASA Astrophysics Data System (ADS)
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
Finger Counting and (2D:4D) Digit Ratio in Spatial-Numerical Association.
Fabbri, Marco; Natale, Vincenzo
2016-01-01
It is reported that a canonical and cultural finger counting habit influences the spatial-numerical association. The digit ratio (the ratio between the lengths of the index and ring fingers as a putative indicator of prenatal androgen exposure) also plays an effect on space-number representation, reflecting a stronger left-to-right number representation in people with a short index finger and longer ring finger (i.e., 2D:4D ratio). It is unknown whether the finger counting habit and digit ratio have an effect on spatial-numerical association independently from each other or whether they interact with each other. In Study 1, the digit ratio and finger counting mapping were recorded in right handers. The participants performed number-to-position, digit string bisection, and physical line bisection tasks. In the number-to-position task, a finger counting effect was found, as well as a significant interaction between factors. A digit ratio effect was observed in the digit string bisection task. In Study 2, digit ratio and finger counting mapping were recorded in right and left handers. The results showed that the finger counting habit influenced the spatial biases in both numerical tasks. A significant interaction between finger counting and digit ratio was found in both numerical tasks when only the left hand was considered. The results are discussed considering the embodied nature of the spatial-numerical association. PMID:26562848
Extension and application of the Preissmann slot model to 2D transient mixed flows
NASA Astrophysics Data System (ADS)
Maranzoni, Andrea; Dazzi, Susanna; Aureli, Francesca; Mignosa, Paolo
2015-08-01
This paper presents an extension of the Preissmann slot concept for the modeling of highly transient two-dimensional (2D) mixed flows. The classic conservative formulation of the 2D shallow water equations for free surface flows is adapted by assuming that two fictitious vertical slots, aligned along the two Cartesian plane directions and normally intersecting, are added on the ceiling of each integration element. Accordingly, transitions between free surface and pressurized flow can be handled in a natural and straightforward way by using the same set of governing equations. The opportunity of coupling free surface and pressurized flows is actually useful not only in one-dimensional (1D) problems concerning sewer systems but also for modeling 2D flooding phenomena in which the pressurization of bridges, culverts, or other crossing hydraulic structures can be expected. Numerical simulations are performed by using a shock-capturing MUSCL-Hancock finite volume scheme combined with the FORCE (First-Order Centred) solver for the evaluation of the numerical fluxes. The validation of the mathematical model is accomplished on the basis of both exact solutions of 1D discontinuous initial value problems and reference radial solutions of idealized test cases with cylindrical symmetry. Furthermore, the capability of the model to deal with practical field-scale applications is assessed by simulating the transit of a bore under an arch bridge. Numerical results show that the proposed model is suitable for the prediction of highly transient 2D mixed flows.
NASA Astrophysics Data System (ADS)
Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.
2001-05-01
Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of
Numerical Study of Microwave Reflectometry in Plasmas with 2D Turbulent Fluctuations
E. Mazzucato
1998-02-01
This paper describes a numerical study of the role played by 2D turbulent fluctuations in microwave reflectometry -- a radar technique for density measurements using the reflection of electromagnetic waves from a plasma cutoff. The results indicate that, if the amplitude of fluctuations is below a threshold which is set by the spectrum of poloidal wavenumbers, the measured backward field appears to originate from a virtual location behind the reflecting layer, and to arise from the phase modulation of the probing wave, with an amplitude given by 1D geometric optics. These results suggest a possible scheme for turbulence measurements in tokamaks, where the backward field is collected with a wide aperture antenna, and the virtual reflecting layer is imaged onto the plane of an array of detectors. Such a scheme should be capable of providing additional information on the nature of the short-scale turbulence observed in tokamaks, which still remains one of the unresolved issues in fusion research.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Numerical analysis of InSb parameters and InSb 2D infrared focal plane arrays
NASA Astrophysics Data System (ADS)
Zhang, Xiaolei; Zhang, Hongfei; Sun, Weiguo; Zhang, Lei; Meng, Chao; Lu, Zhengxiong
2012-10-01
Accurate and reliable numerical simulation tools are necessary for the development of advanced semiconductor devices. InSb is using the MATLAB and TCAD simulation tool to calculatet the InSb body bandstructure, blackbody's radiant emittance and simultaneously solve the Poisson, Continuity and transport equations for 2D detector structures. In this work the material complexities of InSb, such as non-parabolicity, degenergcy, mobility and Auger recombination/generation are explained, and physics based models are developed. The Empirical Tight Binding Method (ETBM) was been using to calculate the bandstructure for InSb at 77 K by Matlab. We describe a set of systematic experiments performed in order to calibrate the simulation to semiconductor devices backside illuminated InSb focal plane arrays realized with planar technology. The spectral photoresponse and crosstalk characteristic for mid-wavelength InSb infrared focal plane arrays have been numerically studied.
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
Brane brick models and 2 d (0 , 2) triality
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-05-01
We provide a brane realization of 2 d (0 , 2) Gadde-Gukov-Putrov triality in terms of brane brick models. These are Type IIA brane configurations that are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. Triality translates into a local transformation of brane brick models, whose simplest representative is a cube move. We present explicit examples and construct their triality networks. We also argue that the classical mesonic moduli space of brane brick model theories, which corresponds to the probed Calabi-Yau 4-fold, is invariant under triality. Finally, we discuss triality in terms of phase boundaries, which play a central role in connecting Calabi-Yau 4-folds to brane brick models.
NASA Astrophysics Data System (ADS)
Pasternack, Gregory B.; Gilbert, Andrew T.; Wheaton, Joseph M.; Buckland, Evan M.
2006-08-01
SummaryResource managers, scientists, government regulators, and stakeholders are considering sophisticated numerical models for managing complex environmental problems. In this study, observations from a river-rehabilitation experiment involving gravel augmentation and spawning habitat enhancement were used to assess sources and magnitudes of error in depth, velocity, and shear velocity predictions made at the 1-m scale with a commercial two-dimensional (depth-averaged) model. Error in 2D model depth prediction averaged 21%. This error was attributable to topographic survey resolution, which at 1 pt per 1.14 m 2, was inadequate to resolve small humps and depressions influencing point measurements. Error in 2D model velocity prediction averaged 29%. More than half of this error was attributable to depth prediction error. Despite depth and velocity error, 56% of tested 2D model predictions of shear velocity were within the 95% confidence limit of the best field-based estimation method. Ninety percent of the error in shear velocity prediction was explained by velocity prediction error. Multiple field-based estimates of shear velocity differed by up to 160%, so the lower error for the 2D model's predictions suggests such models are at least as accurate as field measurement. 2D models enable detailed, spatially distributed estimates compared to the small number measurable in a field campaign of comparable cost. They also can be used for design evaluation. Although such numerical models are limited to channel types adhering to model assumptions and yield predictions only accurate to ˜20-30%, they can provide a useful tool for river-rehabilitation design and assessment, including spatially diverse habitat heterogeneity as well as for pre- and post-project appraisal.
Impact of high speed civil transports on stratospheric ozone: A 2-D model investigation
Kinnison, D.E.; Connell, P.S.
1996-12-01
This study investigates the effect on stratospheric ozone from a fleet of proposed High Speed Civil Transports (HSCTs). The new LLNL 2-D operator-split chemical-radiative-transport model of the troposphere and stratosphere is used for this HSCT investigation. This model is integrated in a diurnal manner, using an implicit numerical solver. Therefore, rate coefficients are not modified by any sort of diurnal average factor. This model also does not make any assumptions on lumping of chemical species into families. Comparisons to previous model-derived HSCT assessment of ozone change are made, both to the previous LLNL 2-D model and to other models from the international assessment modeling community. The sensitivity to the NO{sub x} emission index and sulfate surface area density is also explored.
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
A 2D channel-clogging biofilm model.
Winstanley, H F; Chapwanya, M; Fowler, A C; O'Brien, S B G
2015-09-01
We present a model of biofilm growth in a long channel where the biomass is assumed to have the rheology of a viscous polymer solution. We examine the competition between growth and erosion-like surface detachment due to the flow. A particular focus of our investigation is the effect of the biofilm growth on the fluid flow in the pores, and the issue of whether biomass can grow sufficiently to shut off fluid flow through the pores, thus clogging the pore space. Net biofilm growth is coupled along the pore length via flow rate and nutrient transport in the pore flow. Our 2D model extends existing results on stability of 1D steady state biofilm thicknesses to show that, in the case of flows driven by a fixed pressure drop, full clogging of the pore can indeed happen in certain cases dependent on the functional form of the detachment term. PMID:25240390
Mass loss in 2D rotating stellar models
Lovekin, Caterine; Deupree, Bob
2010-10-05
Radiatively driven mass loss is an important factor in the evolution of massive stars . The mass loss rates depend on a number of stellar parameters, including the effective temperature and luminosity. Massive stars are also often rapidly rotating, which affects their structure and evolution. In sufficiently rapidly rotating stars, both the effective temperature and radius vary significantly as a function of latitude, and hence mass loss rates can vary appreciably between the poles and the equator. In this work, we discuss the addition of mass loss to a 2D stellar evolution code (ROTORC) and compare evolution sequences with and without mass loss. Preliminary results indicate that a full 2D calculation of mass loss using the local effective temperature and luminosity can significantly affect the distribution of mass loss in rotating main sequence stars. More mass is lost from the pole than predicted by 1D models, while less mass is lost at the equator. This change in the distribution of mass loss will affect the angular momentum loss, the surface temperature and luminosity, and even the interior structure of the star. After a single mass loss event, these effects are small, but can be expected to accumulate over the course of the main sequence evolution.
2D Quantum Transport Modeling in Nanoscale MOSFETs
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
With the onset of quantum confinement in the inversion layer in nanoscale MOSFETs, behavior of the resonant level inevitably determines all device characteristics. While most classical device simulators take quantization into account in some simplified manner, the important details of electrostatics are missing. Our work addresses this shortcoming and provides: (a) a framework to quantitatively explore device physics issues such as the source-drain and gate leakage currents, DIBL, and threshold voltage shift due to quantization, and b) a means of benchmarking quantum corrections to semiclassical models (such as density- gradient and quantum-corrected MEDICI). We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions, oxide tunneling and phase-breaking scattering are treated on equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Quantum simulations are focused on MIT 25, 50 and 90 nm "well- tempered" MOSFETs and compared to classical and quantum corrected models. The important feature of quantum model is smaller slope of Id-Vg curve and consequently higher threshold voltage. These results are quantitatively consistent with I D Schroedinger-Poisson calculations. The effect of gate length on gate-oxide leakage and sub-threshold current has been studied. The shorter gate length device has an order of magnitude smaller current at zero gate bias than the longer gate length device without a significant trade-off in on-current. This should be a device design consideration.
Comparison of 1D and 2D modelling with soil erosion model SMODERP
NASA Astrophysics Data System (ADS)
Kavka, Petr; Weyskrabova, Lenka; Zajicek, Jan
2013-04-01
The contribution presents a comparison of a runoff simulated by profile method (1D) and spatially distributed method (2D). Simulation model SMODERP is used for calculation and prediction of soil erosion and surface runoff from agricultural land. SMODERP is physically based model that includes the processes of infiltration (Phillips equation), surface runoff (kinematic wave based equation), surface retention, surface roughness and vegetation impact on runoff. 1D model was developed in past, new 2D model was developed in last two years. The model is being developed at the Department of Irrigation, Drainage and Landscape Engineering, Civil Engineering Faculty, CTU in Prague. 2D model was developed as a tool for widespread GIS software ArcGIS. The physical relations were implemented through Python script. This script uses ArcGIS system tools for raster and vectors treatment of the inputs. Flow direction is calculated by Steepest Descent algorithm in the preliminary version of 2D model. More advanced multiple flow algorithm is planned in the next version. Spatially distributed models enable to estimate not only surface runoff but also flow in the rills. Surface runoff is described in the model by kinematic wave equation. Equation uses Manning roughness coefficient for surface runoff. Parameters for five different soil textures were calibrated on the set of forty measurements performed on the laboratory rainfall simulator. For modelling of the rills a specific sub model was created. This sub model uses Manning formula for flow estimation. Numerical stability of the model is solved by Courant criterion. Spatial scale is fixed. Time step is dynamically changed depending on how flow is generated and developed. SMODERP is meant to be used not only for the research purposes, but mainly for the engineering practice. We also present how the input data can be obtained based on available resources (soil maps and data, land use, terrain models, field research, etc.) and how can
Development of CCHE2D embankment break model
Technology Transfer Automated Retrieval System (TEKTRAN)
Earthen embankment breach often results in detrimental impact on downstream residents and infrastructure, especially those located in the flooding zone. Embankment failures are most commonly caused by overtopping or internal erosion. This study is to develop a practical numerical model for simulat...
Molecular Dynamics implementation of BN2D or 'Mercedes Benz' water model
NASA Astrophysics Data System (ADS)
Scukins, Arturs; Bardik, Vitaliy; Pavlov, Evgen; Nerukh, Dmitry
2015-05-01
Two-dimensional 'Mercedes Benz' (MB) or BN2D water model (Naim, 1971) is implemented in Molecular Dynamics. It is known that the MB model can capture abnormal properties of real water (high heat capacity, minima of pressure and isothermal compressibility, negative thermal expansion coefficient) (Silverstein et al., 1998). In this work formulas for calculating the thermodynamic, structural and dynamic properties in microcanonical (NVE) and isothermal-isobaric (NPT) ensembles for the model from Molecular Dynamics simulation are derived and verified against known Monte Carlo results. The convergence of the thermodynamic properties and the system's numerical stability are investigated. The results qualitatively reproduce the peculiarities of real water making the model a visually convenient tool that also requires less computational resources, thus allowing simulations of large (hydrodynamic scale) molecular systems. We provide the open source code written in C/C++ for the BN2D water model implementation using Molecular Dynamics.
Numerical computation of 2D sommerfeld integrals— A novel asymptotic extraction technique
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Kuester, Edward F.
1992-02-01
The accurate and efficient computation of the elements in the impedance matrix is a crucial step in the application of Galerkin's method to the analysis of planar structures. As was demonstrated in a previous paper, it is possible to decompose the angular integral, in the polar representation for the 2D Sommerfeld integrals, in terms of incomplete Lipschitz-Hankel integrals (ILHIs) when piecewise sinusoidal basis functions are employed. Since Bessel series expansions can be used to compute these ILHIs, a numerical integration of the inner angular integral is not required. This technique provides an efficient method for the computation of the inner angular integral; however, the outer semi-infinite integral still converges very slowly when a real axis integration is applied. Therefore, it is very difficult to compute the impedance elements accurately and efficiently. In this paper, it is shown that this problem can be overcome by using the ILHI representation for the angular integral to develop a novel asymptotic extraction technique for the outer semi-infinite integral. The usefulness of this asymptotic extraction technique is demonstrated by applying it to the analysis of a printed strip dipole antenna in a layered medium.
Numerical method of crack analysis in 2D finite magnetoelectroelastic media
NASA Astrophysics Data System (ADS)
Zhao, Minghao; Xu, Guangtao; Fan, Cuiying
2010-04-01
The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592-600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.
Duality Between Spin Networks and the 2D Ising Model
NASA Astrophysics Data System (ADS)
Bonzom, Valentin; Costantino, Francesco; Livine, Etera R.
2016-06-01
The goal of this paper is to exhibit a deep relation between the partition function of the Ising model on a planar trivalent graph and the generating series of the spin network evaluations on the same graph. We provide respectively a fermionic and a bosonic Gaussian integral formulation for each of these functions and we show that they are the inverse of each other (up to some explicit constants) by exhibiting a supersymmetry relating the two formulations. We investigate three aspects and applications of this duality. First, we propose higher order supersymmetric theories that couple the geometry of the spin networks to the Ising model and for which supersymmetric localization still holds. Secondly, after interpreting the generating function of spin network evaluations as the projection of a coherent state of loop quantum gravity onto the flat connection state, we find the probability distribution induced by that coherent state on the edge spins and study its stationary phase approximation. It is found that the stationary points correspond to the critical values of the couplings of the 2D Ising model, at least for isoradial graphs. Third, we analyze the mapping of the correlations of the Ising model to spin network observables, and describe the phase transition on those observables on the hexagonal lattice. This opens the door to many new possibilities, especially for the study of the coarse-graining and continuum limit of spin networks in the context of quantum gravity.
2-D Model for Normal and Sickle Cell Blood Microcirculation
NASA Astrophysics Data System (ADS)
Tekleab, Yonatan; Harris, Wesley
2011-11-01
Sickle cell disease (SCD) is a genetic disorder that alters the red blood cell (RBC) structure and function such that hemoglobin (Hb) cannot effectively bind and release oxygen. Previous computational models have been designed to study the microcirculation for insight into blood disorders such as SCD. Our novel 2-D computational model represents a fast, time efficient method developed to analyze flow dynamics, O2 diffusion, and cell deformation in the microcirculation. The model uses a finite difference, Crank-Nicholson scheme to compute the flow and O2 concentration, and the level set computational method to advect the RBC membrane on a staggered grid. Several sets of initial and boundary conditions were tested. Simulation data indicate a few parameters to be significant in the perturbation of the blood flow and O2 concentration profiles. Specifically, the Hill coefficient, arterial O2 partial pressure, O2 partial pressure at 50% Hb saturation, and cell membrane stiffness are significant factors. Results were found to be consistent with those of Le Floch [2010] and Secomb [2006].
Ab initio modeling of 2D layered organohalide lead perovskites.
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-28
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place. PMID:27131557
Ab initio modeling of 2D layered organohalide lead perovskites
NASA Astrophysics Data System (ADS)
Fraccarollo, Alberto; Cantatore, Valentina; Boschetto, Gabriele; Marchese, Leonardo; Cossi, Maurizio
2016-04-01
A number of 2D layered perovskites A2PbI4 and BPbI4, with A and B mono- and divalent ammonium and imidazolium cations, have been modeled with different theoretical methods. The periodic structures have been optimized (both in monoclinic and in triclinic systems, corresponding to eclipsed and staggered arrangements of the inorganic layers) at the DFT level, with hybrid functionals, Gaussian-type orbitals and dispersion energy corrections. With the same methods, the various contributions to the solid stabilization energy have been discussed, separating electrostatic and dispersion energies, organic-organic intralayer interactions and H-bonding effects, when applicable. Then the electronic band gaps have been computed with plane waves, at the DFT level with scalar and full relativistic potentials, and including the correlation energy through the GW approximation. Spin orbit coupling and GW effects have been combined in an additive scheme, validated by comparing the computed gap with well known experimental and theoretical results for a model system. Finally, various contributions to the computed band gaps have been discussed on some of the studied systems, by varying some geometrical parameters and by substituting one cation in another's place.
Conservation laws and LETKF with 2D Shallow Water Model
NASA Astrophysics Data System (ADS)
Zeng, Yuefei; Janjic, Tijana
2016-04-01
Numerous approaches have been proposed to maintain physical conservation laws in the numerical weather prediction models. However, to achieve a reliable prediction, adequate initial conditions are also necessary, which are produced by a data assimilation algorithm. If an ensemble Kalman filters (EnKF) is used for this purpose, it has been shown that it could yield unphysical analysis ensemble that for example violates principles of mass conservation and positivity preservation (e.g. Janjic et al 2014) . In this presentation, we discuss the selection of conservation criteria for the analysis step, and start with testing the conservation of mass, energy and enstrophy. The simple experiments deal with nonlinear shallow water equations and simulated observations that are assimilated with LETKF (Localized Ensemble Transform Kalman Filter, Hunt et al. 2007). The model is discretized in a specific way to conserve mass, angular momentum, energy and enstrophy. The effects of the data assimilation on the conserved quantities (of mass, energy and enstrophy) depend on observation covarage, localization radius, observed variable and observation operator. Having in mind that Arakawa (1966) and Arakawa and Lamb (1977) showed that the conservation of both kinetic energy and enstrophy by momentum advection schemes in the case of nondivergent flow prevents systematic and unrealistic energy cascade towards high wave numbers, a cause of excessive numerical noise and possible eventual nonlinear instability, we test the effects on prediction depending on the type of errors in the initial condition. The performance with respect to nonlinear energy cascade is assessed as well.
NASA Astrophysics Data System (ADS)
Yong, Heng; Zhai, ChuanLei; Jiang, Song; Song, Peng; Dai, ZhenSheng; Gu, JianFa
2016-01-01
In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed cells. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A number of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.
A numerical method for computing unsteady 2-D boundary layer flows
NASA Technical Reports Server (NTRS)
Krainer, Andreas
1988-01-01
A numerical method for computing unsteady two-dimensional boundary layers in incompressible laminar and turbulent flows is described and applied to a single airfoil changing its incidence angle in time. The solution procedure adopts a first order panel method with a simple wake model to solve for the inviscid part of the flow, and an implicit finite difference method for the viscous part of the flow. Both procedures integrate in time in a step-by-step fashion, in the course of which each step involves the solution of the elliptic Laplace equation and the solution of the parabolic boundary layer equations. The Reynolds shear stress term of the boundary layer equations is modeled by an algebraic eddy viscosity closure. The location of transition is predicted by an empirical data correlation originating from Michel. Since transition and turbulence modeling are key factors in the prediction of viscous flows, their accuracy will be of dominant influence to the overall results.
A simple 2-D inundation model for incorporating flood damage in urban drainage planning
NASA Astrophysics Data System (ADS)
Pathirana, A.; Tsegaye, S.; Gersonius, B.; Vairavamoorthy, K.
2008-11-01
In this paper a new inundation model code is developed and coupled with Storm Water Management Model, SWMM, to relate spatial information associated with urban drainage systems as criteria for planning of storm water drainage networks. The prime objective is to achive a model code that is simple and fast enough to be consistently be used in planning stages of urban drainage projects. The formulation for the two-dimensional (2-D) surface flow model algorithms is based on the Navier Stokes equation in two dimensions. An Alternating Direction Implicit (ADI) finite difference numerical scheme is applied to solve the governing equations. This numerical scheme is used to express the partial differential equations with time steps split into two halves. The model algorithm is written using C++ computer programming language. This 2-D surface flow model is then coupled with SWMM for simulation of both pipe flow component and surcharge induced inundation in urban areas. In addition, a damage calculation block is integrated within the inundation model code. The coupled model is shown to be capable of dealing with various flow conditions, as well as being able to simulate wetting and drying processes that will occur as the flood flows over an urban area. It has been applied under idealized and semi-hypothetical cases to determine detailed inundation zones, depths and velocities due to surcharged water on overland surface.
A fully coupled 2D model of equiaxed eutectic solidification
Charbon, Ch.; LeSar, R.
1995-12-31
We propose a model of equiaxed eutectic solidification that couples the macroscopic level of heat diffusion with the microscopic level of nucleation and growth of the eutectic grains. The heat equation with the source term corresponding to the latent heat release due to solidification is calculated numerically by means of an implicit finite difference method. In the time stepping scheme, the evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The solid-liquid interface of each grain is tracked by using a subdivision of each grain perimeter in a large number of sectors. The state of each sector (i.e. whether it is still in contact with the liquid or already captured by an other grain) and the increase of radius of each grain during one time step allows one to compute the increase of solid fraction. As for deterministic models, the results of the model are the evolution of temperature and of solid fraction at any point of the sample. Moreover the model provides a complete picture of the microstructure, thus not limiting the microstructural information to the average grain density but allowing one to compute any stereological value of interest. We apply the model to the solidification of gray cast iron.
Predicting Fracture Using 2D Finite Element Modeling
MacNeil, J.A.M.; Adachi, J.D; Goltzman, D; Josse, R.G; Kovacs, C.S; Prior, J.C; Olszynski, W; Davison, K.S.; Kaiser, S.M
2013-01-01
A decrease in bone density at the hip or spine has been shown to increase the risk of fracture. A limitation of the bone mineral density (BMD) measurement is that it provides only a measure of a bone samples average density when projected onto a 2D surface. Effectively, what determines bone fracture is whether an applied load exceeds ultimate strength, with both bone tissue material properties (can be approximated through bone density), and geometry playing a role. The goal of this project was to use bone geometry and BMD obtained from radiographs and DXA measurements respectively to estimate fracture risk, using a two-dimensional finite element model (FEM) of the sagittal plane of lumbar vertebrae. The Canadian Multicenter Osteoporosis Study (CaMos) data was used for this study. There were 4194 men and women over the age of 50 years, with 786 having fractures. Each subject had BMD testing and radiographs of their lumbar vertebrae. A single two dimensional FEM of the first to fourth lumbar vertebra was automatically generated for each subject. Bone tissue stiffness was assigned based on the BMD of the individual vertebrae, and adjusted for patient age. Axial compression boundary conditions were applied with a force proportional to body mass. The resulting overall strain from the applied force was found. Men and women were analyzed separately. At baseline, the sensitivity of BMD to predict fragility fractures in women and men was 3.77 % and 0.86 %, while the sensitivity of FEM to predict fragility fractures for women and men was 10.8 % and 11.3 %. The FEM ROC curve demonstrated better performance compared to BMD. The relative risk of being considered at high fracture risk using FEM at baseline, was a better predictor of 5 year incident fragility fracture risk compared to BMD. PMID:21959170
A 2-D modeling contribution to river training design
NASA Astrophysics Data System (ADS)
Anselmo, V.; Coccato, M.; Frank, E.; Guiot, E.
2003-04-01
In the last ten years, two major floods (1994 and 2000) occurred in North-western Italy and a few questions arose about the hydraulic behavior of the streams as well about the choice and design of protection works. The River Po Authority is oriented to assign "design flows" in selected cross sections of the main rivers, as a design constraint to land management and river training in the upstream areas. Since the region has been fully developed in the last century and somewhere it is overcrowded, space for spreading flood flows is strongly reduced, while large partially developed areas are prone to flooding and residents ask for being protected. A first question regards the contribution to flood peak reduction of the still existing flood prone undeveloped areas beside the main channels, and a second question is about the best way to improve such a behavior. A 2-D unsteady model (Sobek, originated by Delft Hydraulics) was applied to a 25 km reach of the upper River Po. The effects of major floods was investigated, proving that the reduction of the peak flow is minor mainly because of the rather high slope (0.0015) and of the flood volume (500·106 m3). Aiming to enhance the role of the flooded areas, a few types of river training schemes were checked, with particular attention to the so called "Po system". Depth and extension of compartments are the main variables. Results are interesting, but must be evaluated in front of the cost-benefit analysis. The investigation is being extended to more steep stream reaches (up to 0.01), which are representative of the main upper Po tributaries.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
Numerical and experimental studies of the elastic enhancement factor of 2D open systems
NASA Astrophysics Data System (ADS)
Sirko, Leszek; Białous, Małgorzata; Yunko, Vitalii; Bauch, Szymon; Ławniczak, Michał
We present the results of numerical and experimental studies of the elastic enhancement factor W for microwave rough and rectangular cavities simulating two-dimensional chaotic and partially chaotic quantum billiards in the presence of moderate absorption strength. We show that for the frequency range ν = 15 . 0 - 18 . 5 GHz, in which the coupling between antennas and the system is strong enough, the values of W for the microwave rough cavity lie below the predictions of random matrix theory and on average they are above the theoretical results of V. Sokolov and O. Zhirov, Phys. Rev. E, 91, 052917 (2015). We also show that the enhancement factor W of a microwave rectangular cavity coupled to the external channels via microwave antennas, simulating a partially chaotic quantum billiard, calculated by applying the Potter-Rosenzweig model with κ = 2 . 8 +/- 0 . 5 is close to the experimental one. Our numerical and experimental results suggest that the enhancement factor can be used as a measure of internal chaos which can be especially useful for systems with significant openness or absorption. This work was partially supported by the Ministry of Science and Higher Education Grants N N202 130239 and UMO-2013/09/D/ST2/03727.
Well-posedness and generalized plane waves simulations of a 2D mode conversion model
NASA Astrophysics Data System (ADS)
Imbert-Gérard, Lise-Marie
2015-12-01
Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.
2D transient granular flows over obstacles: experimental and numerical work
NASA Astrophysics Data System (ADS)
Juez, Carmelo; Caviedes-Voullième, Daniel; Murillo, Javier; García-Navarro, Pilar
2016-04-01
Landslides are an ubiquitous natural hazard, and therefore human infrastructure and settlements are often at risk in mountainous regions. In order to better understand and predict landslides, systematic studies of the phenomena need to be undertaken. In particular, computational tools which allow for analysis of field problems require to be thoroughly tested, calibrated and validated under controlled conditions. And to do so, it is necessary for such controlled experiments to be fully characterized in the same terms as the numerical model requires. This work presents an experimental study of dry granular flow over a rough bed with topography which resembles a mountain valley. It has an upper region with a very high slope. The geometry of the bed describes a fourth order polynomial curve, with a low point with zero slope, and afterwards a short region with adverse slope. Obstacles are present in the lower regions which are used as model geometries of human structures. The experiments consisted of a sudden release a mass of sand on the upper region, and allowing it to flow downslope. Furthermore, it has been frequent in previous studies to measure final states of the granular mass at rest, but seldom has transient data being provided, and never for the entire field. In this work we present transient measurements of the moving granular surfaces, obtained with a consumer-grade RGB-D sensor. The sensor, developed for the videogame industry, allows to measure the moving surface of the sand, thus obtaining elevation fields. The experimental results are very consistent and repeatable. The measured surfaces clearly show the distinctive features of the granular flow around the obstacles and allow to qualitatively describe the different flow patterns. More importantly, the quantitative description of the granular surface allows for benchmarking and calibration of predictive numerical models, key in scaling the small-scale experimental knowledge into the field. In addition, as
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs
NASA Astrophysics Data System (ADS)
Villani, F.; Gnani, E.; Gnudi, A.; Reggiani, S.; Baccarani, G.
2015-11-01
A quasi 2D semianalytical model for the potential profile in hetero and homojunction tunnel FETs is developed and compared with full-quantum simulation results. It will be shown that the pure analytical solution perfectly matches results at high VDS. However, a coupling with the numerical solution of the 1D Poisson equation in the radial direction is necessary at low VDS, in order to properly account for the charge density in equilibrium with the drain contact. With such an approach we are able to correctly predict the potential profile for both the linear and saturation regimes.
Toward Scientific Numerical Modeling
NASA Technical Reports Server (NTRS)
Kleb, Bil
2007-01-01
Ultimately, scientific numerical models need quantified output uncertainties so that modeling can evolve to better match reality. Documenting model input uncertainties and verifying that numerical models are translated into code correctly, however, are necessary first steps toward that goal. Without known input parameter uncertainties, model sensitivities are all one can determine, and without code verification, output uncertainties are simply not reliable. To address these two shortcomings, two proposals are offered: (1) an unobtrusive mechanism to document input parameter uncertainties in situ and (2) an adaptation of the Scientific Method to numerical model development and deployment. Because these two steps require changes in the computational simulation community to bear fruit, they are presented in terms of the Beckhard-Harris-Gleicher change model.
A 2D simulation model for urban flood management
NASA Astrophysics Data System (ADS)
Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo
2014-05-01
The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and
NASA Astrophysics Data System (ADS)
Yan, Bo; Li, Yuguo; Liu, Ying
2016-07-01
In this paper, we present an adaptive finite element (FE) algorithm for direct current (DC) resistivity modeling in 2-D generally anisotropic conductivity structures. Our algorithm is implemented on an unstructured triangular mesh that readily accommodates complex structures such as topography and dipping layers and so on. We implement a self-adaptive, goal-oriented grid refinement algorithm in which the finite element analysis is performed on a sequence of refined grids. The grid refinement process is guided by an a posteriori error estimator. The problem is formulated in terms of total potentials where mixed boundary conditions are incorporated. This type of boundary condition is superior to the Dirichlet type of conditions and improves numerical accuracy considerably according to model calculations. We have verified the adaptive finite element algorithm using a two-layered earth with azimuthal anisotropy. The FE algorithm with incorporation of mixed boundary conditions achieves high accuracy. The relative error between the numerical and analytical solutions is less than 1% except in the vicinity of the current source location, where the relative error is up to 2.4%. A 2-D anisotropic model is used to demonstrate the effects of anisotropy upon the apparent resistivity in DC soundings.
Numerical solution of 2D-vector tomography problem using the method of approximate inverse
NASA Astrophysics Data System (ADS)
Svetov, Ivan; Maltseva, Svetlana; Polyakova, Anna
2016-08-01
We propose a numerical solution of reconstruction problem of a two-dimensional vector field in a unit disk from the known values of the longitudinal and transverse ray transforms. The algorithm is based on the method of approximate inverse. Numerical simulations confirm that the proposed method yields good results of reconstruction of vector fields.
TRENT2D WG: a smart web infrastructure for debris-flow modelling and hazard assessment
NASA Astrophysics Data System (ADS)
Zorzi, Nadia; Rosatti, Giorgio; Zugliani, Daniel; Rizzi, Alessandro; Piffer, Stefano
2016-04-01
Mountain regions are naturally exposed to geomorphic flows, which involve large amounts of sediments and induce significant morphological modifications. The physical complexity of this class of phenomena represents a challenging issue for modelling, leading to elaborate theoretical frameworks and sophisticated numerical techniques. In general, geomorphic-flows models proved to be valid tools in hazard assessment and management. However, model complexity seems to represent one of the main obstacles to the diffusion of advanced modelling tools between practitioners and stakeholders, although the UE Flood Directive (2007/60/EC) requires risk management and assessment to be based on "best practices and best available technologies". Furthermore, several cutting-edge models are not particularly user-friendly and multiple stand-alone software are needed to pre- and post-process modelling data. For all these reasons, users often resort to quicker and rougher approaches, leading possibly to unreliable results. Therefore, some effort seems to be necessary to overcome these drawbacks, with the purpose of supporting and encouraging a widespread diffusion of the most reliable, although sophisticated, modelling tools. With this aim, this work presents TRENT2D WG, a new smart modelling solution for the state-of-the-art model TRENT2D (Armanini et al., 2009, Rosatti and Begnudelli, 2013), which simulates debris flows and hyperconcentrated flows adopting a two-phase description over a mobile bed. TRENT2D WG is a web infrastructure joining advantages offered by the software-delivering model SaaS (Software as a Service) and by WebGIS technology and hosting a complete and user-friendly working environment for modelling. In order to develop TRENT2D WG, the model TRENT2D was converted into a service and exposed on a cloud server, transferring computational burdens from the user hardware to a high-performing server and reducing computational time. Then, the system was equipped with an
Numerical studies of the melting transition in 2D Yukawa systems
Hartmann, P.; Donko, Z.; Kalman, G. J.
2008-09-07
We present the latest results of our systematic studies of the solid--liquid phase transition in 2D classical many-particle systems interacting with the Yukawa potential. Our previous work is extended by applying the molecular dynamic simulations to systems with up to 1.6 million particles in the computational box (for {kappa} = 2 case). Equilibrium simulations are performed for different coupling parameters in the vicinity of the expected melting transition ({gamma}{sub m}{sup {kappa}}{sup ={sup 2}}{approx_equal}415) and a wide range of observables are averaged over uncorrelated samples of the micro-canonical ensemble generated by the simulations.
A guide to using material model No. 11 in NIKE2D: An internal variable, viscoplasticity model
Flower, E.C.; Nikkel, D.J. Jr.
1990-10-30
The need to accurately model the superplastic forming process which is highly rate and temperature dependent motivated the evaluation of Bammann's internal variable, viscoplasticity material model. The model is based upon the concepts of unified creep plasticity, but employs a yield surface for efficient implementation into large-scale numerical computer codes. It has proven elsewhere to be quite successful in describing large strain, thermal-mechanical behavior of crystalline materials. Features of the model enable it to simulate the apparent strain-rate behavior exhibited by many metals above one half the melt temperature. It is the efficient incorporation of features that make the model attractive for use in finite element modeling of metal deformation processes. Although this model was implemented into the Lawrence Livermore National Laboratory's NIKE2D finite element program in 1986, there have been no known reports of successful use by NIKE2D users. The purpose of this report is to provide the user the proper format to input model parameters, a procedure for determining appropriate values for material constants from experimental data, and supplemental information on the model relevant to the implementation in the NIKE2D finite element program. Detailed accounts of the theoretical aspects of the model can be found in the cited references. 4 refs., 8 figs.
The Implementation of C-ID, R2D2 Model on Learning Reading Comprehension
ERIC Educational Resources Information Center
Rayanto, Yudi Hari; Rusmawan, Putu Ngurah
2016-01-01
The purposes of this research are to find out, (1) whether C-ID, R2D2 model is effective to be implemented on learning Reading comprehension, (2) college students' activity during the implementation of C-ID, R2D2 model on learning Reading comprehension, and 3) college students' learning achievement during the implementation of C-ID, R2D2 model on…
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Development of CCHE2D embankment break model
Technology Transfer Automated Retrieval System (TEKTRAN)
Flooding due to breaching of earth embankments often results in detrimental impact on the people and their properties in the flooding zone. The embankment breaching process is often caused by overtopping of excessive water in a reservoir or a river. This study is to develop a practical numerical m...
Evaluation of Hydrus-2D model for solute distribution in subsurface drip
NASA Astrophysics Data System (ADS)
Souza, Claudinei; Bizari, Douglas; Grecco, Katarina
2015-04-01
The competition for water use between agriculture, industry and population has become intense over the years, requiring a rational use of this resource for food production. The subsurface drip irrigation can help producers with the optimization of operating parameters such as frequency and duration of irrigation, flow, spacing and depth of the dripper installation. This information can be obtained by numerical simulations using mathematical models, thus the aim of this study was to evaluate the HYDRUS-2D model from experimental data to predict the size of the wet bulbs generated by emitters of different application rates (1.0 and 1.6 L h-1). The results showed that horizontal displacement (bulb diameter) remained the largest in all the bulbs, observed both in experimental trials and estimated by the model and the correlation between them was high, above 0.90 to below 16% error. We conclude that the HYDRUS-2D model can be used to estimate the dimensions of the wet bulb getting new information on the sizing of the irrigation system.
Molecular-dynamics of a 2D Model of the Shape Memory Effect
NASA Astrophysics Data System (ADS)
Kastner, Oliver
2006-08-01
This work investigates the thermodynamic properties of a qualitative atomistic model for austenite martensite transitions. The model, still in 2D, employs Lennard-Jones potentials for the determination of the atomic interactions. By use of two atom species it is possible to identify three stable lattice structures in 2D, interpreted as austenite and two variants of martensite. The model is described in the first part of the work [6] in detail. The present work studies the thermodynamic properties of the model concerning a small, 2-dimensional test assembly consisting of 41 atoms. The phase stability is investigated by exploitation of the condition of minimal free energy. The free energy is calculated from the thermal equation of state, which is measured in numerical tensile tests. In the second part of this work a chain of eleven 41-atom assemblies is investigated. The chain is interpreted as an idealized larger body, where the individual crystallites represent crystallographic layers allowing for the creation of micro structure. By use of tensile tests at various temperature conditions we sketch how such chain may exhibit quasi-plasticity, pseudo-elasticity and the shape memory effect.
Neutrino-electron Scattering in 2-D Models of Supernova Convection
NASA Astrophysics Data System (ADS)
DeNisco, K. R.; Swesty, F. D.; Myra, E. S.
2005-12-01
We present results from 2-D supernova simulations which include the effects of neutrino-electron scattering. The importance of neutrino-electron scattering in stellar collapse has been known for two decades. Yet it has often been neglected in multidimensional simulations due to the difficulty of implementing it consistently. The inclusion of this process is numerically challenging because of the extremely short scattering timescales involved. The stiffness resulting from this short timescale precludes an explicit numerical treatment of this phenomenon, such as those that have recently been utilized in some 2-D models. We describe our fully-implicit treatment of this process and present our initial results. This work was performed at the State University of New York at Stony Brook as part of the TeraScale Supernova Initiative, and is funded by SciDAC grant DE-FC02-01ER41185 from the U.S. Department of Energy, Office of Science High-Energy, Nuclear, and Advanced Scientific Computing Research Programs. We gratefully acknowledge support of the National Energy Research Scientific Computing Center (NERSC) for computational and consulting support.
2-D model of the streamer zone of a leader
NASA Astrophysics Data System (ADS)
Milikh, G. M.; Likhanskii, A. V.; Shneider, M. N.; Raina, A.; George, A.
2016-02-01
Formation of the streamer zone of a leader is an outstanding problem in the physics of electric discharges which is relevant to laboratory leaders, as well as to the leaders formed by lightning. Despite substantial progress in the theoretical understanding of this complicated phenomenon, significant puzzles, such as the low propagation velocity of a leader compared to the fast streamers, remain. The objective of this paper is to present 2-D plasma simulations of the formation and propagation of the streamer zone of a leader. In these simulations we will generate a group of streamers that propagate in a discharge gap while interacting with each other. It is shown that interaction between the streamers significantly reduces their propagation velocity. This explains why the leader, which consists of many streamers, is much slower than a single streamer formed in the same discharge gap. It is shown that the mean velocity suppression of the group of streamers is determined by the inter-streamer distance. The critical value of the packing factor of the streamers at which the interactions between them can be neglected, and thus the discussed process can be treated as caused by a single streamer, is obtained.
Nested 1D-2D approach for urban surface flood modeling
NASA Astrophysics Data System (ADS)
Murla, Damian; Willems, Patrick
2015-04-01
Floods in urban areas as a consequence of sewer capacity exceedance receive increased attention because of trends in urbanization (increased population density and impermeability of the surface) and climate change. Despite the strong recent developments in numerical modeling of water systems, urban surface flood modeling is still a major challenge. Whereas very advanced and accurate flood modeling systems are in place and operation by many river authorities in support of flood management along rivers, this is not yet the case in urban water management. Reasons include the small scale of the urban inundation processes, the need to have very high resolution topographical information available, and the huge computational demands. Urban drainage related inundation modeling requires a 1D full hydrodynamic model of the sewer network to be coupled with a 2D surface flood model. To reduce the computational times, 0D (flood cones), 1D/quasi-2D surface flood modeling approaches have been developed and applied in some case studies. In this research, a nested 1D/2D hydraulic model has been developed for an urban catchment at the city of Gent (Belgium), linking the underground sewer (minor system) with the overland surface (major system). For the overland surface flood modelling, comparison was made of 0D, 1D/quasi-2D and full 2D approaches. The approaches are advanced by considering nested 1D-2D approaches, including infiltration in the green city areas, and allowing the effects of surface storm water storage to be simulated. An optimal nested combination of three different mesh resolutions was identified; based on a compromise between precision and simulation time for further real-time flood forecasting, warning and control applications. Main streets as mesh zones together with buildings as void regions constitute one of these mesh resolution (3.75m2 - 15m2); they have been included since they channel most of the flood water from the manholes and they improve the accuracy of
Stochastic dynamics of phase singularities under ventricular fibrillation in 2D Beeler-Reuter model
NASA Astrophysics Data System (ADS)
Suzuki, Akio; Konno, Hidetoshi
2011-09-01
The dynamics of ventricular fibrillation (VF) has been studied extensively, and the initiation mechanism of VF has been elucidated to some extent. However, the stochastic dynamical nature of sustained VF remains unclear so far due to the complexity of high dimensional chaos in a heterogeneous system. In this paper, various statistical mechanical properties of sustained VF are studied numerically in 2D Beeler-Reuter-Drouhard-Roberge (BRDR) model with normal and modified ionic current conductance. The nature of sustained VF is analyzed by measuring various fluctuations of spatial phase singularity (PS) such as velocity, lifetime, the rates of birth and death. It is found that the probability density function (pdf) for lifetime of PSs is independent of system size. It is also found that the hyper-Gamma distribution serves as a universal pdf for the counting number of PSs for various system sizes and various parameters of our model tissue under VF. Further, it is demonstrated that the nonlinear Langevin equation associated with a hyper-Gamma process can mimic the pdf and temporal variation of the number of PSs in the 2D BRDR model.
An investigation of DTNS2D for use as an incompressible turbulence modelling test-bed
NASA Technical Reports Server (NTRS)
Steffen, Christopher J., Jr.
1992-01-01
This paper documents an investigation of a two dimensional, incompressible Navier-Stokes solver for use as a test-bed for turbulence modelling. DTNS2D is the code under consideration for use at the Center for Modelling of Turbulence and Transition (CMOTT). This code was created by Gorski at the David Taylor Research Center and incorporates the pseudo compressibility method. Two laminar benchmark flows are used to measure the performance and implementation of the method. The classical solution of the Blasius boundary layer is used for validating the flat plate flow, while experimental data is incorporated in the validation of backward facing step flow. Velocity profiles, convergence histories, and reattachment lengths are used to quantify these calculations. The organization and adaptability of the code are also examined in light of the role as a numerical test-bed.
Numerical Simulations of the Propagation of a Liquid Plug through a 2D Airway Bifurcation
NASA Astrophysics Data System (ADS)
Vaughan, Benjamin L., Jr.; Grotberg, James B.
2010-11-01
Numerous medical therapies require the instillation of liquids plugs and their delivery throughout the pulmonary airways. This process and the effect on the resulting liquid distribution is controlled by a number of parameters, including airway orientation with respect to gravity, initial plug volume, liquid physical properties, and the imposed airflow rate which drives the plug from behind. The airflow rate defines an operative Capillary number, Ca, and the influence of gravity appears as an effective Bond number, Bo, whose magnitude varies with orientation. In this study, we develop a numerical method for solving the propagation of a liquid plug into a two-dimensional airway bifurcation consisting of a parent channel branching into two daughter channels. We measure the splitting ratio, RS, which is defined as the ratio of the liquid plug volumes between the daughter branches. RS increases with Ca and asymptotes to 1 as Ca goes to infinity, which corresponds to an equal split, while increasing Bo requires a higher value of Ca for an equal split. We also examine the normal and shear stresses on the bifurcation walls and observe that the stresses on the upper walls increase as Bo increases while the stresses on the lower walls decrease as Bo increases.
NASA Astrophysics Data System (ADS)
Kuhl, J. M.; Desjardin, P. E.
2012-01-01
Two-dimensional, fully coupled direct numerical simulations (DNS) are conducted to examine the local energy dynamics of a flexible cantilevered plate in the wake of a two-dimensional circular cylinder. The motion of the cantilevered plate is described using a finite element formulation and a fully compressible, finite volume Navier Stokes solver is used to compute the flow field. A sharp interface level set method is employed in conjunction with a ghost fluid method to describe the immersed boundaries of the bluff body and flexible plate. DNS is first conducted to validate the numerical methodology and compared with previous studies of flexible cantilevered plates and flow over bluff bodies; excellent agreement with previous results is observed. A newly defined power production/loss geometry metric is introduced based on surface curvature and plate velocity. The metric is found to be useful for determining which sections of the plate will produce energy based on curvature and deflection rate. Scatter plots and probability measures are presented showing a high correlation between the direction of energy transfer (i.e., to or from the plate) and the sign of the newly defined curvature-deflection-rate metric. The findings from this study suggest that a simple local geometry/kinematic based metric can be devised to aid in the development and design of flexible wind energy harvesting flutter mills.
Temperature and Pinning Effects on Driving a 2D Electron System on a Helium Film: A Numerical Study
NASA Astrophysics Data System (ADS)
Damasceno, Pablo F.; Dasilva, Cláudio José; Rino, José Pedro; Cândido, Ladir
2010-07-01
Using numerical simulations we investigated the dynamic response to an externally driven force of a classical two-dimensional (2D) electron system on a helium film at finite temperatures. A potential barrier located at the center of the system behaves as a pinning center that results in an insulator state below a threshold driving force. We have found that the current-voltage characteristic obeys the scaling relation I= f ξ , with ξ ranging from ˜(1.0-1.7) for different pinning strengths and temperatures. Our results may be used to understand the spread range of ξ in experiments with typical characteristic of plastic depinning.
NASA Astrophysics Data System (ADS)
García-Salaberri, P. A.; Vera, M.
2015-07-01
The influence of assembly compression on the performance of liquid-feed DMFCs under methanol-limiting conditions is explored by means of a 2D/1D multiphysics across-the-channel model. The numerical formulation incorporates a comprehensive 2D description of the anode GDL, including two-phase phenomena, non-uniform anisotropic transport properties, and electrical contact resistances at the GDL/BPP interface. GDL effective properties are evaluated using empirical data corresponding to Toray® carbon paper. A simplified but physically sound 1D description, locally coupled to the 2D anode GDL model, is adopted to describe transport processes in the MPLs, membrane and cathode GDL, whereas the catalyst layers are treated as infinitely thin surfaces. Good agreement is found between the numerical results and previous experimental data. The interplay between assembly compression, bipolar plate material, and channel configuration is also investigated. The results show that there is an optimum GDL compression ratio in terms of overall power density, the optimal compression level being strongly dependent on bipolar plate material. Beyond the optimum, the detrimental effect of compression is larger in non-parallel flow fields due to the additional reduction of methanol transported by under-rib convection. The results suggest that, under certain conditions, this transport mechanism could be more important than diffusion in the anode of liquid-feed DMFCs.
2D quantum double models from a 3D perspective
NASA Astrophysics Data System (ADS)
Bernabé Ferreira, Miguel Jorge; Padmanabhan, Pramod; Teotonio-Sobrinho, Paulo
2014-09-01
In this paper we look at three dimensional (3D) lattice models that are generalizations of the state sum model used to define the Kuperberg invariant of 3-manifolds. The partition function is a scalar constructed as a tensor network where the building blocks are tensors given by the structure constants of an involutory Hopf algebra A. These models are very general and are hard to solve in its entire parameter space. One can obtain familiar models, such as ordinary gauge theories, by letting A be the group algebra {C}(G) of a discrete group G and staying on a certain region of the parameter space. We consider the transfer matrix of the model and show that quantum double Hamiltonians are derived from a particular choice of the parameters. Such a construction naturally leads to the star and plaquette operators of the quantum double Hamiltonians, of which the toric code is a special case when A={C}({{{Z}}_{2}}). This formulation is convenient to study ground states of these generalized quantum double models where they can naturally be interpreted as tensor network states. For a surface Σ, the ground state degeneracy is determined by the Kuperberg 3-manifold invariant of \\Sigma \\times {{S}^{1}}. It is also possible to obtain extra models by simply enlarging the allowed parameter space but keeping the solubility of the model. While some of these extra models have appeared before in the literature, our 3D perspective allows for an uniform description of them.
Modeling floods in a dense urban area using 2D shallow water equations
NASA Astrophysics Data System (ADS)
Mignot, E.; Paquier, A.; Haider, S.
2006-07-01
SummaryA code solving the 2D shallow water equations by an explicit second-order scheme is used to simulate the severe October 1988 flood in the Richelieu urban locality of the French city of Nîmes. A reference calculation using a detailed description of the street network and of the cross-sections of the streets, considering impervious residence blocks and neglecting the flow interaction with the sewer network provides a mean peak water elevation 0.13 m lower than the measured flood marks with a standard deviation between the measured and computed water depths of 0.53 m. Sensitivity analysis of various topographical and numerical parameters shows that globally, the results keep the same level of accuracy, which reflects both the stability of the calculation method and the smoothening of results. However, the local flow modifications due to change of parameter values can drastically modify the local water depths, especially when the local flow regime is modified. Furthermore, the flow distribution to the downstream parts of the city can be altered depending on the set of parameters used. Finally, a second event, the 2002 flood, was simulated with the calibrated model providing results similar to 1988 flood calculation. Thus, the article shows that, after calibration, a 2D model can be used to help planning mitigation measures in a dense urban area.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-05-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite-differences to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P, slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High order explicit finite-differences (FD) can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
A 2D Electromechanical Model of Human Atrial Tissue Using the Discrete Element Method
Brocklehurst, Paul; Adeniran, Ismail; Yang, Dongmin; Sheng, Yong; Zhang, Henggui; Ye, Jianqiao
2015-01-01
Cardiac tissue is a syncytium of coupled cells with pronounced intrinsic discrete nature. Previous models of cardiac electromechanics often ignore such discrete properties and treat cardiac tissue as a continuous medium, which has fundamental limitations. In the present study, we introduce a 2D electromechanical model for human atrial tissue based on the discrete element method (DEM). In the model, single-cell dynamics are governed by strongly coupling the electrophysiological model of Courtemanche et al. to the myofilament model of Rice et al. with two-way feedbacks. Each cell is treated as a viscoelastic body, which is physically represented by a clump of nine particles. Cell aggregations are arranged so that the anisotropic nature of cardiac tissue due to fibre orientations can be modelled. Each cell is electrically coupled to neighbouring cells, allowing excitation waves to propagate through the tissue. Cell-to-cell mechanical interactions are modelled using a linear contact bond model in DEM. By coupling cardiac electrophysiology with mechanics via the intracellular Ca2+ concentration, the DEM model successfully simulates the conduction of cardiac electrical waves and the tissue's corresponding mechanical contractions. The developed DEM model is numerically stable and provides a powerful method for studying the electromechanical coupling problem in the heart. PMID:26583141
LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction
NASA Astrophysics Data System (ADS)
Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert
2012-10-01
The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.
Combined global 2D-local 3D modeling of the industrial Czochralski silicon crystal growth process
NASA Astrophysics Data System (ADS)
Jung, T.; Seebeck, J.; Friedrich, J.
2013-04-01
A global, axisymmetric thermal model of a Czochralski furnace is coupled to an external, local, 3D, time-dependent flow model of the melt via the inclusion of turbulent heat fluxes, extracted from the 3D melt model, into the 2D furnace model. Boundary conditions of the 3D model are updated using results from the 2D model. In the 3D model the boundary layers are resolved by aggressive mesh refinement towards the walls, and the Large Eddy Simulation approach is used to model the turbulent flow in the melt volume on a relatively coarse mesh to minimize calculation times. It is shown that by using this approach it is possible to reproduce fairly good results from Direct Numerical Simulations obtained on much finer meshes, as well as experimental results for interface shape and oxygen concentration in the case of growth of silicon crystals with 210 mm diameter for photovoltaics by the Czochralski method.
Numerical solution of 2D wet steam flow with non-equilibrium condensation and real thermodynamics
Hric, V.; Halama, J.
2015-03-10
An approach to modeling of wet steam flow with non-equilibrium condensation phenomenon is presented. The first part of our flow model is homogeneous Euler system of transport equations for mass, momentum and total energy of wet steam (mixture). The additional second part describes liquid phase via non-homogeneous system of transport equations for moments of droplets number distribution function and relies on corrected classical nucleation theory. Moment equations are closed by linearization of droplet growth rate model. All necessary relations for thermodynamic properties of steam are provided by IAPWS set of equations. However, properties of condensate are simply modeled by liquid saturation data. Two real equations of state are implemented. Recently developed CFD formulation for entropy (does not require iteration process) and so-called IAPWS special gas equation for Helmholtz energy (one iteration loop is necessary). Flow model is validated on converging-diverging supersonic nozzle with Barschdorff geometry. Simulations were performed by in-house CFD code based on finite volume method and stiff character of equations was solved by symmetrical time operator splitting. Achieved results satisfactorily agreed with experimental data.
Stratosphere chemistry in a 2-D model with residual circulation
NASA Technical Reports Server (NTRS)
Guthrie, Paul D.; Jackman, Charles H.
1990-01-01
The objective of this research was to examine the effects of chemical perturbations on the stratosphere using models which can incorporate fully interactive radiative, chemical, and dynamical responses, in the context of a zonally averaged model. Model runs for the unperturbed, chlorine-perturbed and simultaneously chlorine-and CO2-perturbed cases were completed using the JPL-87 chemical kinetics data. The base case was analyzed and submitted for publication. The perturbed cases show substantial sensitivity of the predicted column ozone depletion to the perturbations affecting lower stratosphere temperature, but less to far dynamical perturbations. The column ozone distribution changed substantially when the kinetics data was changed. This implies a greater-than-expected uncertainty in predicted latitude distributions of ozone depletion, due to uncertainty about the accuracy and completeness of the chemical kinetics data set.
Universality Class of the Nishimori Point in the 2D +/-J Random-Bond Ising Model
NASA Astrophysics Data System (ADS)
Honecker, A.; Picco, M.; Pujol, P.
2001-07-01
We study the universality class of the Nishimori point in the 2D +/-J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value pc = 0.1094+/-0.0002 and estimate ν = 1.33+/-0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464+/-0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point.
Universality class of the Nishimori point in the 2D +/- J random-bond Ising model.
Honecker, A; Picco, M; Pujol, P
2001-07-23
We study the universality class of the Nishimori point in the 2D +/- J random-bond Ising model by means of the numerical transfer-matrix method. Using the domain-wall free energy, we locate the position of the fixed point along the Nishimori line at the critical concentration value p(c) = 0.1094 +/- 0.0002 and estimate nu = 1.33 +/- 0.03. Then, we obtain the exponents for the moments of the spin-spin correlation functions as well as the value for the central charge c = 0.464 +/- 0.004. The main qualitative result is the fact that percolation is now excluded as a candidate for describing the universality class of this fixed point. PMID:11461639
Numerical Study of Sound Emission by 2D Regular and Chaotic Vortex Configurations
NASA Astrophysics Data System (ADS)
Knio, Omar M.; Collorec, Luc; Juvé, Daniel
1995-02-01
The far-field noise generated by a system of three Gaussian vortices lying over a flat boundary is numerically investigated using a two-dimensional vortex element method. The method is based on the discretization of the vorticity field into a finite number of smoothed vortex elements of spherical overlapping cores. The elements are convected in a Lagrangian reference along particle trajectories using the local velocity vector, given in terms of a desingularized Biot-Savart law. The initial structure of the vortex system is triangular; a one-dimensional family of initial configurations is constructed by keeping one side of the triangle fixed and vertical, and varying the abscissa of the centroid of the remaining vortex. The inviscid dynamics of this vortex configuration are first investigated using non-deformable vortices. Depending on the aspect ratio of the initial system, regular or chaotic motion occurs. Due to wall-related symmetries, the far-field sound always exhibits a time-independent quadrupolar directivity with maxima parallel end perpendicular to the wall. When regular motion prevails, the noise spectrum is dominated by discrete frequencies which correspond to the fundamental system frequency and its superharmonics. For chaotic motion, a broadband spectrum is obtained; computed soundlevels are substantially higher than in non-chaotic systems. A more sophisticated analysis is then performed which accounts for vortex core dynamics. Results show that the vortex cores are susceptible to inviscid instability which leads to violent vorticity reorganization within the core. This phenomenon has little effect on the large-scale features of the motion of the system or on low frequency sound emission. However, it leads to the generation of a high-frequency noise band in the acoustic pressure spectrum. The latter is observed in both regular and chaotic system simulations.
NASA Astrophysics Data System (ADS)
Krause, M.; Camenzind, M.
2001-12-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller
Phase Structure of the Random Zq Models in 2D
NASA Astrophysics Data System (ADS)
Sasamoto, T.; Nishimori, H.
We discuss the phase diagram of the random Zq models in two dimensions. It is argued that, when q is large enough, there exist three phases in the phase diagram with two axes being the temperature and the strength of randomness. Our conlusions are derived based on the application of the duality arguments for random systems, which have been formulated recently by Maillard et al.
NASA Astrophysics Data System (ADS)
Mo, Yike; Greenhalgh, Stewart A.; Robertsson, Johan O. A.; Karaman, Hakki
2015-05-01
Lateral velocity variations and low velocity near-surface layers can produce strong scattered and guided waves which interfere with reflections and lead to severe imaging problems in seismic exploration. In order to investigate these specific problems by laboratory seismic modelling, a simple 2D ultrasonic model facility has been recently assembled within the Wave Propagation Lab at ETH Zurich. The simulated geological structures are constructed from 2 mm thick metal and plastic sheets, cut and bonded together. The experiments entail the use of a piezoelectric source driven by a pulse amplifier at ultrasonic frequencies to generate Lamb waves in the plate, which are detected by piezoelectric receivers and recorded digitally on a National Instruments recording system, under LabVIEW software control. The 2D models employed were constructed in-house in full recognition of the similitude relations. The first heterogeneous model features a flat uniform low velocity near-surface layer and deeper dipping and flat interfaces separating different materials. The second model is comparable but also incorporates two rectangular shaped inserts, one of low velocity, the other of high velocity. The third model is identical to the second other than it has an irregular low velocity surface layer of variable thickness. Reflection as well as transmission experiments (crosshole & vertical seismic profiling) were performed on each model. The two dominant Lamb waves recorded are the fundamental symmetric mode (non-dispersive) and the fundamental antisymmetric (flexural) dispersive mode, the latter normally being absent when the source transducer is located on a model edge but dominant when it is on the flat planar surface of the plate. Experimental group and phase velocity dispersion curves were determined and plotted for both modes in a uniform aluminium plate. For the reflection seismic data, various processing techniques were applied, as far as pre-stack Kirchhoff migration. The
Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2016-03-01
By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.
Analytic Differentiation of Barlat's 2D Criteria for Inverse Modeling
Endelt, Benny; Nielsen, Karl Brian; Danckert, Joachim
2005-08-05
The demand for alternative identification schemes for identification of constitutive parameters is getting more pronounced as the complexity of the constitutive equations increases, i.e. the number of parameters subject to identification. A general framework for inverse identification of constitutive parameters associated with sheet metal forming is proposed in the article. The inverse problem is solved, through minimization of the least square error between an experimental punch force sampled from a deep drawing and a predicted punch force produced from a coherent finite element model.
Google Earth as a tool in 2-D hydrodynamic modeling
NASA Astrophysics Data System (ADS)
Chien, Nguyen Quang; Keat Tan, Soon
2011-01-01
A method for coupling virtual globes with geophysical hydrodynamic models is presented. Virtual globes such as Google TM Earth can be used as a visualization tool to help users create and enter input data. The authors discuss techniques for representing linear and areal geographical objects with KML (Keyhole Markup Language) files generated using computer codes (scripts). Although virtual globes offer very limited tools for data input, some data of categorical or vector type can be entered by users, and then transformed into inputs for the hydrodynamic program by using appropriate scripts. An application with the AnuGA hydrodynamic model was used as an illustration of the method. Firstly, users draw polygons on the Google Earth screen. These features are then saved in a KML file which is read using a script file written in the Lua programming language. After the hydrodynamic simulation has been performed, another script file is used to convert the resulting output text file to a KML file for visualization, where the depths of inundation are represented by the color of discrete point icons. The visualization of a wind speed vector field was also included as a supplementary example.
2D time-domain finite-difference modeling for viscoelastic seismic wave propagation
NASA Astrophysics Data System (ADS)
Fan, Na; Zhao, Lian-Feng; Xie, Xiao-Bi; Ge, Zengxi; Yao, Zhen-Xing
2016-07-01
Real Earth media are not perfectly elastic. Instead, they attenuate propagating mechanical waves. This anelastic phenomenon in wave propagation can be modeled by a viscoelastic mechanical model consisting of several standard linear solids. Using this viscoelastic model, we approximate a constant Q over a frequency band of interest. We use a four-element viscoelastic model with a tradeoff between accuracy and computational costs to incorporate Q into 2D time-domain first-order velocity-stress wave equations. To improve the computational efficiency, we limit the Q in the model to a list of discrete values between 2 and 1000. The related stress and strain relaxation times that characterize the viscoelastic model are pre-calculated and stored in a database for use by the finite-difference calculation. A viscoelastic finite-difference scheme that is second-order in time and fourth-order in space is developed based on the MacCormack algorithm. The new method is validated by comparing the numerical result with analytical solutions that are calculated using the generalized reflection/transmission coefficient method. The synthetic seismograms exhibit greater than 95 per cent consistency in a two-layer viscoelastic model. The dispersion generated from the simulation is consistent with the Kolsky-Futterman dispersion relationship.
A 2D model to design MHD induction pumps
NASA Astrophysics Data System (ADS)
Stieglitz, R.; Zeininger, J.
2006-09-01
Technical liquid metal systems accompanied by a thermal transfer of energy such as reactor systems, metallurgical processes, metal refinement, casting, etc., require a forced convection of the fluid. The increased temperatures and more often the environmental conditions as, e.g., in a nuclear environment, pumping principles are required, in which rotating parts are absent. Additionally, in many applications a controlled atmosphere is indispensable, in order to ensure the structural integrity of the duct walls. An interesting option to overcome the sealing problem of a mechanical pump towards the surrounding is offered by induction systems. Although their efficiency compared to that of turbo machines is quite low, they have several advantages, which are attractive to the specific requirements in liquid metal applications such as: - low maintenance costs due to the absence of sealings, bearings and moving parts; - low degradation rate of the structural material; - simple replacement of the inductor without cut of the piping system; - fine regulation of flow rate by different inductor connections; - change of pump characteristics without change of the mechanical set-up. Within the article, general design requirements of electromagnetic pumps (EMP) are elaborated. The design of two annular linear induction pumps operating with sodium and lead-bismuth are presented and the calculated pump characteristics and experimentally obtained data are compared. In this context, physical effects leading to deviations between the model and the real data are addressed. Finally, the main results are summarized. Tables 4, Figs 4, Refs 12.
Bond Order Correlations in the 2D Hubbard Model
NASA Astrophysics Data System (ADS)
Moore, Conrad; Abu Asal, Sameer; Yang, Shuxiang; Moreno, Juana; Jarrell, Mark
We use the dynamical cluster approximation to study the bond correlations in the Hubbard model with next nearest neighbor (nnn) hopping to explore the region of the phase diagram where the Fermi liquid phase is separated from the pseudogap phase by the Lifshitz line at zero temperature. We implement the Hirsch-Fye cluster solver that has the advantage of providing direct access to the computation of the bond operators via the decoupling field. In the pseudogap phase, the parallel bond order susceptibility is shown to persist at zero temperature while it vanishes for the Fermi liquid phase which allows the shape of the Lifshitz line to be mapped as a function of filling and nnn hopping. Our cluster solver implements NVIDIA's CUDA language to accelerate the linear algebra of the Quantum Monte Carlo to help alleviate the sign problem by allowing for more Monte Carlo updates to be performed in a reasonable amount of computation time. Work supported by the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents.
The combined effect of attraction and orientation zones in 2D flocking models
NASA Astrophysics Data System (ADS)
Iliass, Tarras; Cambui, Dorilson
2016-01-01
In nature, many animal groups, such as fish schools or bird flocks, clearly display structural order and appear to move as a single coherent entity. In order to understand the complex motion of these systems, we study the Vicsek model of self-propelled particles (SPP) which is an important tool to investigate the behavior of collective motion of live organisms. This model reproduces the biological behavior patterns in the two-dimensional (2D) space. Within the framework of this model, the particles move with the same absolute velocity and interact locally in the zone of orientation by trying to align their direction with that of the neighbors. In this paper, we model the collective movement of SPP using an agent-based model which follows biologically motivated behavioral rules, by adding a second region called the attraction zone, where each particles move towards each other avoiding being isolated. Our main goal is to present a detailed numerical study on the effect of the zone of attraction on the kinetic phase transition of our system. In our study, the consideration of this zone seems to play an important role in the cohesion. Consequently, in the directional orientation, the zone that we added forms the compact particle group. In our simulation, we show clearly that the model proposed here can produce two collective behavior patterns: torus and dynamic parallel group. Implications of these findings are discussed.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
NASA Astrophysics Data System (ADS)
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-14
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Thermochemical Nonequilibrium 2D Modeling of Nitrogen Inductively Coupled Plasma Flow
NASA Astrophysics Data System (ADS)
Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe; Satoshi, Miyatani
2015-09-01
Two-dimensional (2D) numerical simulations of thermochemical nonequilibrium inductively coupled plasma (ICP) flows inside a 10-kW inductively coupled plasma wind tunnel (ICPWT) were carried out with nitrogen as the working gas. Compressible axisymmetric Navier-Stokes (N-S) equations coupled with magnetic vector potential equations were solved. A four-temperature model including an improved electron-vibration relaxation time was used to model the internal energy exchange between electron and heavy particles. The third-order accuracy electron transport properties (3rd AETP) were applied to the simulations. A hybrid chemical kinetic model was adopted to model the chemical nonequilibrium process. The flow characteristics such as thermal nonequilibrium, inductive discharge, effects of Lorentz force were made clear through the present study. It was clarified that the thermal nonequilibrium model played an important role in properly predicting the temperature field. The prediction accuracy can be improved by applying the 3rd AETP to the simulation for this ICPWT. supported by Grant-in-Aid for Scientific Research (No. 23560954), sponsored by the Japan Society for the Promotion of Science
2D dynamical magma propagation modeling: application to the 2001 Mount Etna eruption
NASA Astrophysics Data System (ADS)
Pinel, Virginie; Carrara, Alexandre; Maccaferri, Francesco; Rivalta, Eleonora; Corbi, Fabio
2016-04-01
Numerical and analog studies of dike propagation in a stress field induced by volcanic edifice construction have shown that surface loading tends both to attract the magma and to reduce its velocity. Available numerical models can either calculate the trajectory or the velocity of the ascending dikes, but not both of them simultaneously. We developed a hybrid model of dyke propagation in two dimensions solving both for the magma trajectory and velocity as a function of the source overpressure, the magma physical properties (density and viscosity) as well as the crustal density and stress field. We first calculate a dyke trajectory in 2D and secondly run a 1D dynamical model of dyke propagation along this trajectory taken into account the influence of the stress field seen by the magma along this path. This model is used to characterize the influence of surface load on magma migration towards the surface and compared to previous results obtained by analog modeling.We find that the amplitude of dyke deflection and magma velocity variation depend on the ratio between the dyke driving pressure (source overpressure as well buoyancy) and the stress field perturbation. Our model is then applied to the July 2001 eruption of Etna, where the final dyke deflection had been previously interpreted as due to the topographic load by Bonaccorso et al. [2010]. We show that the velocity decrease observed during the last stage of the propagation can also be attributed to the local stress field. We use the dyke propagation duration to estimate the magma overpressure at the dyke bottom to be less than 4 MPa.
GEO2D - Two-Dimensional Computer Model of a Ground Source Heat Pump System
James Menart
2013-06-07
This file contains a zipped file that contains many files required to run GEO2D. GEO2D is a computer code for simulating ground source heat pump (GSHP) systems in two-dimensions. GEO2D performs a detailed finite difference simulation of the heat transfer occurring within the working fluid, the tube wall, the grout, and the ground. Both horizontal and vertical wells can be simulated with this program, but it should be noted that the vertical wall is modeled as a single tube. This program also models the heat pump in conjunction with the heat transfer occurring. GEO2D simulates the heat pump and ground loop as a system. Many results are produced by GEO2D as a function of time and position, such as heat transfer rates, temperatures and heat pump performance. On top of this information from an economic comparison between the geothermal system simulated and a comparable air heat pump systems or a comparable gas, oil or propane heating systems with a vapor compression air conditioner. The version of GEO2D in the attached file has been coupled to the DOE heating and cooling load software called ENERGYPLUS. This is a great convenience for the user because heating and cooling loads are an input to GEO2D. GEO2D is a user friendly program that uses a graphical user interface for inputs and outputs. These make entering data simple and they produce many plotted results that are easy to understand. In order to run GEO2D access to MATLAB is required. If this program is not available on your computer you can download the program MCRInstaller.exe, the 64 bit version, from the MATLAB website or from this geothermal depository. This is a free download which will enable you to run GEO2D..
Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar
2015-03-01
This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259
NASA Astrophysics Data System (ADS)
Barnes, T.
In this article we review numerical studies of the quantum Heisenberg antiferromagnet on a square lattice, which is a model of the magnetic properties of the undoped “precursor insulators” of the high temperature superconductors. We begin with a brief pedagogical introduction and then discuss zero and nonzero temperature properties and compare the numerical results to analytical calculations and to experiment where appropriate. We also review the various algorithms used to obtain these results, and discuss algorithm developments and improvements in computer technology which would be most useful for future numerical work in this area. Finally we list several outstanding problems which may merit further investigation.
Approaches to Modeling Coupled Flow and Reaction in a 2-D Cementation Experiment
Steefel, Carl; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; van der Lee, J.
2008-04-01
Porosity evolution at reactive interfaces is a key process that governs the evolution and performances of many engineered systems that have important applications in earth and environmental sciences. This is the case, for example, at the interface between cement structures and clays in deep geological nuclear waste disposals. Although in a different transport regime, similar questions arise for permeable reactive barriers used for biogeochemical remediation in surface environments. The COMEDIE project aims at investigating the coupling between transport, hydrodynamics and chemistry when significant variations of porosity occur. The present work focuses on a numerical benchmark used as a design exercise for the future COMEDIE-2D experiment. The use of reactive transport simulation tools like Hytec and Crunch provides predictions of the physico-chemical evolutions that are expected during the future experiments in laboratory. Focus is given in this paper on the evolution during the simulated experiment of precipitate, permeability and porosity fields. A first case is considered in which the porosity is constant. Results obtained with Crunch and Hytec are in relatively good agreement. Differences are attributable to the models of reactive surface area taken into account for dissolution/precipitation processes. Crunch and Hytec simulations taking into account porosity variations are then presented and compared. Results given by the two codes are in qualitative agreement, with differences attributable in part to the models of reactive surface area for dissolution/precipitation processes. As a consequence, the localization of secondary precipitates predicted by Crunch leads to lower local porosities than for predictions obtained by Hytec and thus to a stronger coupling between flow and chemistry. This benchmark highlights the importance of the surface area model employed to describe systems in which strong porosity variations occur as a result of dissolution
Obtaining instantaneous water levels relative to a geoid with a 2D storm surge model
NASA Astrophysics Data System (ADS)
Slobbe, D. C.; Verlaan, M.; Klees, R.; Gerritsen, H.
2013-01-01
Current and new applications of 2D storm surge models such as the Dutch Continental Shelf Model (DCSM) require that the models provide proper estimates of the instantaneous water levels expressed relative to a particular geoid, rather than only the tide and surge components expressed relative to the ill-defined model's zero height surface. For DCSM, this is realized by adding the depth-averaged horizontal baroclinic pressure gradients to the model equations, which are derived from 4D salinity and temperature fields provided by the Proudman Oceanographic Laboratory hydrodynamic model (POL's hindcast). The vertical datum of the extended model is fixed to that of the European Gravimetric Geoid model 2008 (EGG08). This is done by an adjustment of the model parameters that depend on the choice of the reference surface (e.g., bathymetry) and by referring the water levels along the open boundaries to this reference surface. Using different numerical experiments we investigate the effects on the water levels of several approximations we have made during the implementation. The ability of the model to reproduce both the mean sea level (MSL) and instantaneous water levels is assessed by a comparison with the MSL derived from POL's hindcast as well as with instantaneous water levels acquired by various radar altimeter satellites. From this comparison we conclude that our modeled MSL is in good agreement with the MSL derived from POL's hindcast; the standard deviation of the differences is below 2 cm. However, larger differences in MSL are observed when comparing the model output with the MSL derived from radar altimeter data. They are attributed to either geoid errors or errors in the used salinity and temperature fields. The root mean squared (rms) differences between observed and modeled instantaneous water levels over the entire model domain varies from 9 cm for data acquired by the TOPEX satellite to 11 cm for data acquired by the GFO-1 satellite. These numbers improve to
Analysis of vegetation effect on waves using a vertical 2-D RANS model
Technology Transfer Automated Retrieval System (TEKTRAN)
A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model
Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.
Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma
2015-01-01
Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873
NASA Technical Reports Server (NTRS)
Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne
2003-01-01
The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.
2D face database diversification based on 3D face modeling
NASA Astrophysics Data System (ADS)
Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.
2011-05-01
Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.
MAST-2D diffusive model for flood prediction on domains with triangular Delaunay unstructured meshes
NASA Astrophysics Data System (ADS)
Aricò, C.; Sinagra, M.; Begnudelli, L.; Tucciarelli, T.
2011-11-01
A new methodology for the solution of the 2D diffusive shallow water equations over Delaunay unstructured triangular meshes is presented. Before developing the new algorithm, the following question is addressed: it is worth developing and using a simplified shallow water model, when well established algorithms for the solution of the complete one do exist? The governing Partial Differential Equations are discretized using a procedure similar to the linear conforming Finite Element Galerkin scheme, with a different flux formulation and a special flux treatment that requires Delaunay triangulation but entire solution monotonicity. A simple mesh adjustment is suggested, that attains the Delaunay condition for all the triangle sides without changing the original nodes location and also maintains the internal boundaries. The original governing system is solved applying a fractional time step procedure, that solves consecutively a convective prediction system and a diffusive correction system. The non linear components of the problem are concentrated in the prediction step, while the correction step leads to the solution of a linear system of the order of the number of computational cells. A semi-analytical procedure is applied for the solution of the prediction step. The discretized formulation of the governing equations allows to handle also wetting and drying processes without any additional specific treatment. Local energy dissipations, mainly the effect of vertical walls and hydraulic jumps, can be easily included in the model. Several numerical experiments have been carried out in order to test (1) the stability of the proposed model with regard to the size of the Courant number and to the mesh irregularity, (2) its computational performance, (3) the convergence order by means of mesh refinement. The model results are also compared with the results obtained by a fully dynamic model. Finally, the application to a real field case with a Venturi channel is presented.
A multispeed Discrete Boltzmann Model for transcritical 2D shallow water flows
NASA Astrophysics Data System (ADS)
La Rocca, Michele; Montessori, Andrea; Prestininzi, Pietro; Succi, Sauro
2015-03-01
In this work a Discrete Boltzmann Model for the solution of transcritical 2D shallow water flows is presented and validated. In order to provide the model with transcritical capabilities, a particular multispeed velocity set has been employed for the discretization of the Boltzmann equation. It is shown that this particular set naturally yields a simple and closed procedure to determine higher order equilibrium distribution functions needed to simulate transcritical flow. The model is validated through several classical benchmarks and is proven to correctly and accurately simulate both 1D and 2D transitions between the two flow regimes.
A 2-D dynamical model of mesospheric temperature inversions in winter
Hauchecorne, A.; Maillard, A. )
1990-11-01
A 2-D stratospheric and mesospheric dynamical model including drag and diffusion due to gravity wave breaking is used to simulate winter mesospheric temperature inversions similar to those observed by Rayleigh lidar. It is shown that adiabatic heating associated to descending velocities in the mesosphere is the main mechanism involved in the formation of such inversions. Sensitivity tests are performed with the model and confirm this assumption. It is also explained why other previous similar studies with 2-D models did not show mesospheric inversion layers.
Spectral functions in the 1D and 2D Bose Hubbard model
NASA Astrophysics Data System (ADS)
Ivancic, Robert; Duchon, Eric; Trivedi, Nandini
2014-03-01
We use state of the art numerical techniques including quantum Monte Carlo and maximum entropy methods to obtain the low energy excitation spectra in the superfluid and Mott-insulator phases of the Bose Hubbard model. These results are checked in 1D against Bethe Ansatz and tDMRG results and extended to 2D where such approaches are impossible. In the superfluid, we find linearly dispersing Bogoliubov sound modes as well as additional gapped modes broadened by interaction effects. In the Mott insulator, we find evidence for a finite gap and well defined quasiparticle excitations. We examine properties such as the excitation lifetime, density of states, and speed of sound as the system is tuned across the quantum phase transition that separates the superfluid and Mott states. These results provide an important theoretical framework for upcoming ultracold atom experiments in one and two dimensions. We acknowledge support from the NSF DMR-0907275 (R.I., E.D. and N.T.).
Merging of RVR meander with CONCEPTS: Simplified 2D model for long-term meander evolution
Technology Transfer Automated Retrieval System (TEKTRAN)
RVR Meander is a simplified two-dimensional (2D) hydrodynamic and migration model (Abad and Garcia, 2006) while CONCEPTS (CONservational Channel Evolution and Pollutant Transport System) is a one-dimensional (1D) hydrodynamic and morphodynamic model (Langendoen and Alonso, 2008; Langendoen and Simon...
Introducing the R2D2 Model: Online Learning for the Diverse Learners of This World
ERIC Educational Resources Information Center
Bonk, Curtis J.; Zhang, Ke
2006-01-01
The R2D2 method--read, reflect, display, and do--is a new model for designing and delivering distance education, and in particular, online learning. Such a model is especially important to address the diverse preferences of online learners of varied generations and varied Internet familiarity. Four quadrants can be utilized separately or as part…
Evaluation of 2D shallow-water model for spillway flow with a complex geometry
Technology Transfer Automated Retrieval System (TEKTRAN)
Although the two-dimensional (2D) shallow water model is formulated based on several assumptions such as hydrostatic pressure distribution and vertical velocity is negligible, as a simple alternative to the complex 3D model, it has been used to compute water flows in which these assumptions may be ...
2D Numerical Investigation of the Laminar and Turbulent Flow Over Different Airfoils Using OpenFOAM
NASA Astrophysics Data System (ADS)
Rahimi, H.; Medjroubi, W.; Stoevesandt, B.; Peinke, J.
2014-12-01
The aim of this work is to assess the prediction capabilities of the turbulence models and the transition model kkl-ω available in OpenFOAM and to achieve a database of airfoil aerodynamical characteristics. The airfoils chosen for the simulations are FX 79-W- 15A and NACA 63-430, which are widely used in wind turbines. The numerically obtained lift and drag coefficients are compared with available experimental results. A quantitative and qualitative study is conducted to determine the influence of meshing strategies, computational time step together with interpolation and temporal schemes. Two Reynolds Averaged Navier- Stokes models (RANS models) are used, which are the k-ω SST model by Menter and the kkl-ω model (which involves transition modeling) by Walters and Davor.
Knight shift and spin relaxation in the single band 2D Hubbard model
NASA Astrophysics Data System (ADS)
Leblanc, James; Chen, Xi; Gull, Emanuel
We study in detail the roles of spin and charge fluctuations in the single band 2D Hubbard model. Using dynamical mean field theory and cluster extensions such as the dynamical cluster approximation (DCA), we compute the full two particle susceptibilities in the spin and charge representations. By performing analytic continuations we obtain the temperature and doping dependence of the spin-lattice relaxation (T1- 1) and knight shift in the 2D Hubbard model relevant to NMR results on doped cuprates and connect these to RPA results in weak coupling limits.
Dynamic Linkages Between the Transition Zone & Surface Plate Motions in 2D Models of Subduction
NASA Astrophysics Data System (ADS)
Arredondo, K.; Billen, M. I.
2012-12-01
Descending subducted slabs affect both plate tectonics at the surface and overall mantle flow (e.g. Conrad and Lithgow-Bertelloni, 2002). For time-dependent numerical models, the potential evolution of these slabs, ranging from immediate penetration into the lower mantle to prior buckling and stagnation, are affected by parameters such as the plate age, the viscosity jump into the lower mantle, the presence of phase transitions, trench motion and the chosen governing equation approximation (e.g. Billen and Hirth, 2007). Similarly, the overall deviatoric stress within the slab, especially where modified by the phase transitions, may explain the uneven distribution of deep earthquakes with depth (e.g. Bina, 1997). Better understanding of these processes may arise from a more realistic 2-D model that is fully-dynamic, with an overriding plate, freely-moving trench, compositionally-layered slab and seven major phase transitions, in addition to using the compressible (TALA) form of the governing equations. Though the thermodynamic parameters of certain phase transitions may be uncertain, this study aims to test the latest data and encourage further mineralogical research. We will present fully-dynamic models, which explore the importance of the phase transitions, especially those that have been previously excluded such as the wadsleyite to ringwoodite and the pyroxene and garnet phase transitions. These phase transitions, coupled with the modeled compositionally distinct crust, harzburgite, and pyrolite lithosphere layers, may produce new large-scale dynamic behavior not seen in past numerical models, as well as stress variations within the slab related to deep slab seismicity. Feedback from the compositionally complex slab to the dynamic trench may provide further insight on the mechanics of slab stagnation and behavior in the upper and lower mantle. Billen, M. I., and G. Hirth, Rheologic controls on slab dynamics, Geochemistry, Geophysics and Geosystems, 8 (Q08012
Nosich, Andrey A; Gandel, Yuriy V; Magath, Thore; Altintas, Ayhan
2007-09-01
Considered is the beam wave guidance and scattering by 2D quasi-optical reflectors modeling the components of beam waveguides. The incident field is taken as the complex-source-point field to simulate a finite-width beam generated by a small-aperture source. A numerical solution is obtained from the coupled singular integral equations (SIEs) for the surface currents on reflectors, discretized by using the recently introduced Nystrom-type quadrature formulas. This analysis is applied to study what effect the edge illumination has on the performance of a chain of confocal elliptic reflectors. We also develop a semianalytical approach for shaped reflector synthesis after a prescribed near-field pattern. Here a new point is the use of auxiliary SIEs of the same type as in the scattering analysis problem, however, for the gradient of the objective function. Sample results are presented for the synthesis of a reflector-type beam splitter. PMID:17767252
Validation of DYSTOOL for unsteady aerodynamic modeling of 2D airfoils
NASA Astrophysics Data System (ADS)
González, A.; Gomez-Iradi, S.; Munduate, X.
2014-06-01
From the point of view of wind turbine modeling, an important group of tools is based on blade element momentum (BEM) theory using 2D aerodynamic calculations on the blade elements. Due to the importance of this sectional computation of the blades, the National Renewable Wind Energy Center of Spain (CENER) developed DYSTOOL, an aerodynamic code for 2D airfoil modeling based on the Beddoes-Leishman model. The main focus here is related to the model parameters, whose values depend on the airfoil or the operating conditions. In this work, the values of the parameters are adjusted using available experimental or CFD data. The present document is mainly related to the validation of the results of DYSTOOL for 2D airfoils. The results of the computations have been compared with unsteady experimental data of the S809 and NACA0015 profiles. Some of the cases have also been modeled using the CFD code WMB (Wind Multi Block), within the framework of a collaboration with ACCIONA Windpower. The validation has been performed using pitch oscillations with different reduced frequencies, Reynolds numbers, amplitudes and mean angles of attack. The results have shown a good agreement using the methodology of adjustment for the value of the parameters. DYSTOOL have demonstrated to be a promising tool for 2D airfoil unsteady aerodynamic modeling.
2D-photochemical model for forbidden oxygen line emission for comet 1P/Halley
NASA Astrophysics Data System (ADS)
Cessateur, G.; De Keyser, J.; Maggiolo, R.; Rubin, M.; Gronoff, G.; Gibbons, A.; Jehin, E.; Dhooghe, F.; Gunell, H.; Vaeck, N.; Loreau, J.
2016-08-01
We present here a 2D-model of photochemistry for computing the production and loss mechanisms of the O(1S) and O(1D) states, which are responsible for the emission lines at 577.7 nm, 630 nm, and 636.4 nm, in case of the comet 1P/Halley. The presence of O2 within cometary atmospheres, measured by the in-situ ROSETTA and GIOTTO missions, necessitates a revision of the usual photochemical models. Indeed, the photodissociation of molecular oxygen also leads to a significant production of oxygen in excited electronic states. In order to correctly model the solar UV flux absorption, we consider here a 2D configuration. While the green to red-doublet ratio is not affected by the solar UV flux absorption, estimates of the red-doublet and green lines emissions are, however, overestimated by a factor of two in the 1D model compared to the 2D model. Considering a spherical symmetry, emission maps can be deduced from the 2D model in order to be directly compared to ground and/or in-situ observations.
Oriented Gaussian mixture models for nonrigid 2D/3D coronary artery registration.
Baka, N; Metz, C T; Schultz, C J; van Geuns, R-J; Niessen, W J; van Walsum, T
2014-05-01
2D/3D registration of patient vasculature from preinterventional computed tomography angiography (CTA) to interventional X-ray angiography is of interest to improve guidance in percutaneous coronary interventions. In this paper we present a novel feature based 2D/3D registration framework, that is based on probabilistic point correspondences, and show its usefulness on aligning 3D coronary artery centerlines derived from CTA images with their 2D projection derived from interventional X-ray angiography. The registration framework is an extension of the Gaussian mixture model (GMM) based point-set registration to the 2D/3D setting, with a modified distance metric. We also propose a way to incorporate orientation in the registration, and show its added value for artery registration on patient datasets as well as in simulation experiments. The oriented GMM registration achieved a median accuracy of 1.06 mm, with a convergence rate of 81% for nonrigid vessel centerline registration on 12 patient datasets, using a statistical shape model. The method thereby outperformed the iterative closest point algorithm, the GMM registration without orientation, and two recently published methods on 2D/3D coronary artery registration. PMID:24770908
The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis
Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.
2014-08-15
Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly
Compartment modeling anslysis of C-11 flumazenil kinetics in human brain using dynamic 2D and 3D PET
Choi, Y.; Simpson, N.; Townsend, D.W.
1994-05-01
We examined the feasibility of compartment modeling analysis and the numerical accuracy of model parameters of radioligand delivery and binding in the brain using 2D and 3D PET. Two subjects were injected with C-11 flumazenil (FMZ) i.v., and imaged over the brain with a dynamic sequence of 6x20 s, 2x30 s, 4x90 s, 4x180 s, 2x300 s, 2x600 s, and 2x1200 s frames. Different scatter correction methods were applied to the 3D data: No scatter correction (NOC), dual-energy window subtraction (DEW) and convolution-subtraction (CON). The kinetic data for regions listed below were fitted to a 2-compartment, 2-parameter model. Both 2D and 3D results are similar and within the expected range. The 3D %SE was less than 2D despite the smaller dose. The effect of the scatter in 3D parameter estimates appears to be small. These preliminary data indicate temporally sufficient kinetic data can be acquired in 3D mode to perform compartmental analysis of C-11 FMZ. Improved sensitivity in 3D may allow more accurate receptor characterization especially in small structures or in low specific binding areas.
Numerical modeling of Hall thruster
Chable, S.; Rogier, F.
2005-05-16
A stationary plasma thruster is numerically studied using different levels. An one dimensional modeling is first analyzed and compared with experimental results. A simplified model of oscillations thruster is proposed and used to control the amplitude of oscillations. A two dimensional numerical method is discussed and applied to the computation of the flow in the exhaust.
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
NASA Astrophysics Data System (ADS)
Hamm, Peter
2014-11-01
In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
ERIC Educational Resources Information Center
Park, Elisa L.
2009-01-01
The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…
2D-Raman-THz spectroscopy: A sensitive test of polarizable water models
Hamm, Peter
2014-11-14
In a recent paper, the experimental 2D-Raman-THz response of liquid water at ambient conditions has been presented [J. Savolainen, S. Ahmed, and P. Hamm, Proc. Natl. Acad. Sci. U. S. A. 110, 20402 (2013)]. Here, all-atom molecular dynamics simulations are performed with the goal to reproduce the experimental results. To that end, the molecular response functions are calculated in a first step, and are then convoluted with the laser pulses in order to enable a direct comparison with the experimental results. The molecular dynamics simulation are performed with several different water models: TIP4P/2005, SWM4-NDP, and TL4P. As polarizability is essential to describe the 2D-Raman-THz response, the TIP4P/2005 water molecules are amended with either an isotropic or a anisotropic polarizability a posteriori after the molecular dynamics simulation. In contrast, SWM4-NDP and TL4P are intrinsically polarizable, and hence the 2D-Raman-THz response can be calculated in a self-consistent way, using the same force field as during the molecular dynamics simulation. It is found that the 2D-Raman-THz response depends extremely sensitively on details of the water model, and in particular on details of the description of polarizability. Despite the limited time resolution of the experiment, it could easily distinguish between various water models. Albeit not perfect, the overall best agreement with the experimental data is obtained for the TL4P water model.
Numerical modeling of vertical cavity semiconductor lasers
Chow, W.W.; Hadley, G.R.
1996-08-01
A vertical cavity surface emitting laser (VCSEL) is a diode laser whose optical cavity is formed by growing or depositing DBR mirror stacks that sandwich an active gain region. The resulting short cavity supports lasing into a single longitudinal mode normal to the wafer, making these devices ideal for a multitude of applications, ranging from high-speed communication to high-power sources (from 2D arrays). This report describes the development of a numerical VCSEL model, whose goal is to both further their understanding of these complex devices and provide a tool for accurate design and data analysis.
Justification for a 2D versus 3D fingertip finite element model during static contact simulations.
Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan
2016-10-01
The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769
MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC
Youngblood, Gerald E; Senor, David J; Jones, Russell H
2004-06-01
The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.
The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models
NASA Astrophysics Data System (ADS)
Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.
2004-08-01
We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.
NASA Astrophysics Data System (ADS)
Morgan, J. P.; de Monserrat, A.; Hall, R.; Taramon, J. M.; Perez-Gussinye, M.
2015-12-01
This work focuses on improving current 2D numerical approaches to modeling the boundary conditions associated with computing accurate deformation and melting associated with continental rifting. Recent models primarily use far-field boundary conditions that have been used for decades with little assessment of their effects on asthenospheric flow beneath the rifting region. All are clearly extremely oversimplified — Huismans and Buiter assume there is no vertical flow into the rifting region, with the asthenosphere flowing uniformly into the rifting region from the sides beneath lithosphere moving in the opposing direction, Armitage et al. and van Wijk use divergent velocities on the upper boundary to impose break-up within a Cartesian box, while other studies generally assume there is uniform horizontal flow away from the center of rifting, with uniform vertical flow replenishing the material pulled out of the sides of the computational region. All are likely to significantly shape the pattern of asthenospheric flow beneath the stretching lithosphere that is associated with pressure-release melting and rift volcanism. Thus while ALL may lead to similar predictions of the effects of crustal stretching and thinning, NONE may lead to accurate determination of the the asthenospheric flow and melting associated with lithospheric stretching and breakup. Here we discuss a suite of numerical experiments that compare these choices to likely more realistic boundary condition choices like the analytical solution for flow associated with two diverging plates stretching over a finite-width region, and a high-resolution 2-D region embedded within a cylindrical annulus 'whole mantle cross-section' at 5% extra numerical problem size. Our initial results imply that the choice of far-field boundary conditions does indeed significantly influence predicted melting distributions and melt volumes associated with continental breakup. For calculations including asthenospheric melting
Simplified 2D Bidomain Model of Whole Heart Electrical Activity and ECG Generation
NASA Astrophysics Data System (ADS)
Sovilj, Siniša; Magjarević, Ratko; Abed, Amr Al; Lovell, Nigel H.; Dokos, Socrates
2014-06-01
The aim of this study was the development of a geometrically simple and highly computationally-efficient two dimensional (2D) biophysical model of whole heart electrical activity, incorporating spontaneous activation of the sinoatrial node (SAN), the specialized conduction system, and realistic surface ECG morphology computed on the torso. The FitzHugh-Nagumo (FHN) equations were incorporated into a bidomain finite element model of cardiac electrical activity, which was comprised of a simplified geometry of the whole heart with the blood cavities, the lungs and the torso as an extracellular volume conductor. To model the ECG, we placed four electrodes on the surface of the torso to simulate three Einthoven leads VI, VII and VIII from the standard 12-lead system. The 2D model was able to reconstruct ECG morphology on the torso from action potentials generated at various regions of the heart, including the sinoatrial node, atria, atrioventricular node, His bundle, bundle branches, Purkinje fibers, and ventricles. Our 2D cardiac model offers a good compromise between computational load and model complexity, and can be used as a first step towards three dimensional (3D) ECG models with more complex, precise and accurate geometry of anatomical structures, to investigate the effect of various cardiac electrophysiological parameters on ECG morphology.
NASA Astrophysics Data System (ADS)
Croissant, Thomas; Lague, Dimitri; Davy, Philippe; Steer, Philippe
2016-04-01
In active mountain ranges, large earthquakes (Mw > 5-6) trigger numerous landslides that impact river dynamics. These landslides bring local and sudden sediment piles that will be eroded and transported along the river network causing downstream changes in river geometry, transport capacity and erosion efficiency. The progressive removal of landslide materials has implications for downstream hazards management and also for understanding landscape dynamics at the timescale of the seismic cycle. The export time of landslide-derived sediments after large-magnitude earthquakes has been studied from suspended load measurements but a full understanding of the total process, including the coupling between sediment transfer and channel geometry change, still remains an issue. Note that the transport of small sediment pulses has been studied in the context of river restoration, but the magnitude of sediment pulses generated by landslides may make the problem different. Here, we study the export of large volumes (>106 m3) of sediments with the 2D hydro-morphodynamic model, Eros. This model uses a new hydrodynamic module that resolves a reduced form of the Saint-Venant equations with a particle method. It is coupled with a sediment transport and lateral and vertical erosion model. Eros accounts for the complex retroactions between sediment transport and fluvial geometry, with a stochastic description of the floods experienced by the river. Moreover, it is able to reproduce several features deemed necessary to study the evacuation of large sediment pulses, such as river regime modification (single-thread to multi-thread), river avulsion and aggradation, floods and bank erosion. Using a synthetic and simple topography we first present how granulometry, landslide volume and geometry, channel slope and flood frequency influence 1) the dominance of pulse advection vs. diffusion during its evacuation, 2) the pulse export time and 3) the remaining volume of sediment in the catchment
Gilbert, Robert P; Guyenne, Philippe; Li, Jing
2014-02-01
In this paper, we compare ultrasound interrogations of actual CT-scanned images of trabecular bone with artificial randomly constructed bone. Even though it is known that actual bone does not have randomly distributed trabeculae, we find that the ultrasound attenuations are close enough to cast doubt on any microstructural information, such as trabeculae width and distance between trabeculae, being gleaned from such experiments. More precisely, we perform numerical simulations of ultrasound interrogation on cancellous bone to investigate the phenomenon of ultrasound attenuation as a function of excitation frequency and bone porosity. The theoretical model is based on acoustic propagation equations for a composite fluid-solid material and is solved by a staggered-grid finite-difference scheme in the time domain. Numerical experiments are performed on two-dimensional bone samples reconstructed from CT-scanned images of real human calcaneus and from random distributions of fluid-solid particles generated via the turning bands method. A detailed comparison is performed on various parameters such as the attenuation rate and speed of sound through the bone samples as well as the normalized broadband ultrasound attenuation coefficient. Comparing results from these two types of bone samples allows us to assess the role of bone microstructure in ultrasound attenuation. It is found that the random model provides suitable bone samples for ultrasound interrogation in the transverse direction of the trabecular network. PMID:24480174
Approximate analytic solutions to 3D unconfined groundwater flow within regional 2D models
NASA Astrophysics Data System (ADS)
Luther, K.; Haitjema, H. M.
2000-04-01
We present methods for finding approximate analytic solutions to three-dimensional (3D) unconfined steady state groundwater flow near partially penetrating and horizontal wells, and for combining those solutions with regional two-dimensional (2D) models. The 3D solutions use distributed singularities (analytic elements) to enforce boundary conditions on the phreatic surface and seepage faces at vertical wells, and to maintain fixed-head boundary conditions, obtained from the 2D model, at the perimeter of the 3D model. The approximate 3D solutions are analytic (continuous and differentiable) everywhere, including on the phreatic surface itself. While continuity of flow is satisfied exactly in the infinite 3D flow domain, water balance errors can occur across the phreatic surface.
NASA Astrophysics Data System (ADS)
Ghazanfarian, J.; Abbassi, A.
2012-03-01
Analytical and numerical solutions of the 2D transient dual-phase-lag (DPL) heat conduction equation are presented in this article. The geometry is that of a simplified metal oxide semiconductor field effect transistor with a heater placed on it. A temperature jump boundary condition is used on all boundaries in order to consider boundary phonon scattering at the micro- and nanoscale. A combination of a Laplace transformation technique and separation of variables is used to solve governing equations analytically, and a three-level finite difference scheme is employed to generate numerical results. The results are illustrated for three Knudsen numbers of 0.1, 1, and 10 at different instants of time. It is seen that the wave characteristic of the DPL model is strengthened by increasing the Knudsen number. It is found that the combination of the DPL model with the proposed mixed-type temperature boundary condition has the potential to accurately predict a 2D temperature distribution not only within the transistor itself but also in the near-boundary region.
NASA Astrophysics Data System (ADS)
Kim, Ho Jun; Lee, Hae June
2016-06-01
The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.
NASA Technical Reports Server (NTRS)
Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo
2004-01-01
Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.
NASA Astrophysics Data System (ADS)
Zheng, F.; Shi, X.; Wu, J.; Gao, Y. W.
2013-12-01
Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often referred to as dense non-aqueous phase liquids (DNAPLs). Accuracy description of the spreading behavior and configuration for subsurface DNAPL migration is important, especially favourable for design effective remediation strategies. In this study, a 2-D experiment was conducted to investigate the infiltration behavior and spatial distribution of PCE in saturated porous media. Accusand 20/30 mesh sand (Unimin, Le Sueur, MN) was used as the background medium with two 70/80 and 60/70 mesh lenses embedded to simulate heterogeneous conditions. Dyed PCE of 100 ml was released into the flow cell at a constant rate of 2ml/min using a Harvard Apparatus syringe pump with a 50 ml glass syringe for two times, and 5 ml/min water was continuously injected through the inlet at the left side of the sandbox, while kept the same effluent rate at right side to create hydrodynamic condition. A light transmission (LT) system was used to record the migration of PCE and determine the saturation distribution of PCE in the sandbox experiment with a thermoelectrically air-cooled charged-coupled device (CCD) camera. All images were processed using MATLAB to calculate thickness-averaged PCE saturation for each pixel. Mass balance was checked through comparing injected known mounts of PCE with that calculated from LT analysis. Results showed that LT method is effective to delineate PCE migration pathways and quantify the saturation distribution. The relative errors of total PCE volumes calculated by LT analysis at different times were within 15% of the injected PCE volumes. The simulation are conducted using the multiphase modeling software T2VOC, which calibrated by the LT analysis results of three recorded time steps to fit with the complete spatial-temporal distribution of the PCE saturation. Model verification was then performed using the other eight recorded time
Numerical modeling of flowing soft materials
NASA Astrophysics Data System (ADS)
Toschi, Federico; Benzi, Roberto; Bernaschi, Massimo; Perlekar, Prasad; Sbragaglia, Mauro; Succi, Sauro
2012-11-01
The structural properties of soft-flowing and non-ergodic materials, such as emulsions, foams and gels shares similarities with the three basic states of matter (solid, liquid and gas). The macroscopic properties are characterized by non-standard features such as non-Newtonian rheology, long-time relaxation, caging effects, enhanced viscosity, structural arrest, hysteresis, dynamic disorder, aging and related phenomena. Large scale non-homogeneities can develop, even under simple shear conditions, by means of the formation of macroscopic bands of widely different viscosities (``shear banding'' phenomena). We employ a numerical model based on the Lattice Boltzmann method to perform numerical simulations of soft-matter under flowing conditions. Results of 3d simulations are presented and compared to previous 2d investigations.
Parameterising root system growth models using 2D neutron radiography images
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
2D density model of the Chinese continental lithosphere along a NW-SE transect
NASA Astrophysics Data System (ADS)
Šimonová, Barbora; Bielik, Miroslav; Dérerová, Jana
2015-06-01
This paper presents a 2D density model along a transect from NW to SE China. The model was first constructed by the transformation of seismic velocity to density, revealed by previous deep seismic soundings (DSS) investigations in China. Then, the 2D density model was updated using the GM-SYS software by fitting the computed to the observed gravity data. Based on the density distribution of anomalous layers we divided the Chinese continental crust along the transect into three regions: north-western, central and south-eastern. The first one includes the Junggar Basin, Tianshan and Tarim Basin. The second part consists of the Qilian Orogen, the Qaidam Basin and the Songpan Ganzi Basin. The third region is represented by the Yangtze and the Cathaysia blocks. The low velocity body (vp =5.2 - 6.2 km/s) at the junction of the North-western and Central parts at a depth between 21 - 31 km, which was discovered out by DSS, was also confirmed by our 2D density modelling.
A Neural-FEM tool for the 2-D magnetic hysteresis modeling
NASA Astrophysics Data System (ADS)
Cardelli, E.; Faba, A.; Laudani, A.; Lozito, G. M.; Riganti Fulginei, F.; Salvini, A.
2016-04-01
The aim of this work is to present a new tool for the analysis of magnetic field problems considering 2-D magnetic hysteresis. In particular, this tool makes use of the Finite Element Method to solve the magnetic field problem in real device, and fruitfully exploits a neural network (NN) for the modeling of 2-D magnetic hysteresis of materials. The NS has as input the magnetic inductions components B at the k-th simulation step and returns as output the corresponding values of the magnetic field H corresponding to the input pattern. It is trained by vector measurements performed on the magnetic material to be modeled. This input/output scheme is directly implemented in a FEM code employing the magnetic potential vector A formulation. Validations through measurements on a real device have been performed.
TMRPres2D: high quality visual representation of transmembrane protein models.
Spyropoulos, Ioannis C; Liakopoulos, Theodore D; Bagos, Pantelis G; Hamodrakas, Stavros J
2004-11-22
The 'TransMembrane protein Re-Presentation in 2-Dimensions' (TMRPres2D) tool, automates the creation of uniform, two-dimensional, high analysis graphical images/models of alpha-helical or beta-barrel transmembrane proteins. Protein sequence data and structural information may be acquired from public protein knowledge bases, emanate from prediction algorithms, or even be defined by the user. Several important biological and physical sequence attributes can be embedded in the graphical representation. PMID:15201184
NASA Astrophysics Data System (ADS)
Zhao, Dongmiao; Tang, Jun; Wu, Xiuguang; Lin, Changning; Liu, Lijun; Chen, Jian
2016-05-01
A 2D vertical (2DV) numerical model, without σ-coordinate transformation in the vertical direction, is developed for the simulation of fl ow and sediment transport in open channels. In the model, time-averaged Reynolds equations are closed by the k-ɛ nonlinear turbulence model. The modifi ed Youngs-VOF method is introduced to capture free surface dynamics, and the free surface slope is simulated using the ELVIRA method. Based on the power-law scheme, the k-ɛ model and the suspended-load transport model are solved numerically with an implicit scheme applied in the vertical plane and an explicit scheme applied in the horizontal plane. Bedload transport is modeled using the Euler-WENO scheme, and the grid-closing skill is adopted to deal with the moving channel bed boundary. Verifi cation of the model using laboratory data shows that the model is able to adequately simulate fl ow and sediment transport in open channels, and is a good starting point for the study of sediment transport dynamics in strong nonlinear fl ow scenarios.
Numerical models of galactic dynamos
NASA Astrophysics Data System (ADS)
Elstner, Detlef
The state of the art for dynamo models in spiral galaxies is reviewed. The comparison of numerical models with special properties of observed magnetic fields yields constraints for the turbulent diffusivity and the α-effect. The derivation of the turbulence parameters from the vertical structure of the interstellar medium gives quite reasonable values for modelling the regular magnetic fields in galaxies with an α2Ω-dynamo. Considering the differences of the turbulence between spiral arms and interarm regions, the observed interarm magnetic fields are recovered in the numerical models due to the special properties of the α2Ω-dynamo.
FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires
Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.
2013-01-01
FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599
A unified approach to the power law and the critical state modeling of superconductors in 2D
NASA Astrophysics Data System (ADS)
Morandi, Antonio; Fabbri, Massimo
2015-02-01
Two main options exist for modeling the non-linearity of the superconductor: the power law and the critical state model. A vanishing electric field is predicted by the critical state model, which does not take into account relaxation phenomena. The power law model is to be used if flux creep is to be taken into account. However, detectable flux creep may not occur in many operating conditions. In these cases the critical state represents a more accurate modeling option. The existing numerical tools usually incorporate either the power law with a finite n-exponent or the critical state model, not both. A numerical model which incorporates both the power law and the critical state modeling of superconductors in 2D is developed in this paper. The same mathematical formulation and discretization method are used in both of the cases, and the same matrix equation is obtained. The difference between the two models only arises when the solution of the matrix equation is dealt with. The model is implemented by means of one unique computer code. The discretization can be made by means of both triangular and rectangular meshes. A circuit interpretation of the model is also introduced. The equivalence of the proposed method with the variational approach reported in the literature for dealing with the critical state is also discussed in the paper. The numerical results for some cases of practical interest are presented. The difference between the results obtained by means of the two models in terms of current distribution and ac loss is pointed out.
Numerical modeling of flow through orifice meters
NASA Astrophysics Data System (ADS)
Sheikholesiami, M. Z.; Patel, B. R.
1988-03-01
Numerical modeling is performed for turbulent flow through orifice meters using Creare's computer program FLUENT. FLUENT solves the time averaged Navier-Stokes equations in 2-D and 3-D Cartesian or cylindrical coordinates. Turbulence is simulated using a two equation k-epsilon or algebraic stress turbulence model. It is shown that an 80 x 60 grid distribution is sufficient to resolve the flow field around the orifice. The variations in discharge coefficient are studied as a result of variation in beta ratio, Reynolds number, upstream and downstream boundary conditions, pipe surface roughness, and upstream swirl. The effects of beta ratio and Reynolds number on the discharge coefficient are shown to be similar to the experimental data. It is also shown that the surface roughness can increase the discharge coefficient by about 0.7 percent for the range of roughness heights encountered in practice. The numerical modeling approach would be most effective if it is combined with a systematic experimental program that can supply the necessary boundary conditions. It is recommended that numerical modeling be used for the study of other flow meters.
Canonical vs. micro-canonical sampling methods in a 2D Ising model
Kepner, J.
1990-12-01
Canonical and micro-canonical Monte Carlo algorithms were implemented on a 2D Ising model. Expressions for the internal energy, U, inverse temperature, Z, and specific heat, C, are given. These quantities were calculated over a range of temperature, lattice sizes, and time steps. Both algorithms accurately simulate the Ising model. To obtain greater than three decimal accuracy from the micro-canonical method requires that the more complicated expression for Z be used. The overall difference between the algorithms is small. The physics of the problem under study should be the deciding factor in determining which algorithm to use. 13 refs., 6 figs., 2 tabs.
Complex zeros of the 2 d Ising model on dynamical random lattices
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Magnea, U.
1998-04-01
We study the zeros in the complex plane of the partition function for the Ising model coupled to 2 d quantum gravity for complex magnetic field and for complex temperature. We compute the zeros by using the exact solution coming from a two matrix model and by Monte Carlo simulations of Ising spins on dynamical triangulations. We present evidence that the zeros form simple one-dimensional patterns in the complex plane, and that the critical behaviour of the system is governed by the scaling of the distribution of singularities near the critical point.
Brane brick models, toric Calabi-Yau 4-folds and 2d (0,2) quivers
NASA Astrophysics Data System (ADS)
Franco, Sebastián; Lee, Sangmin; Seong, Rak-Kyeong
2016-02-01
We introduce brane brick models, a novel type of Type IIA brane configurations consisting of D4-branes ending on an NS5-brane. Brane brick models are T-dual to D1-branes over singular toric Calabi-Yau 4-folds. They fully encode the infinite class of 2 d (generically) {N}=(0,2) gauge theories on the worldvolume of the D1-branes and streamline their connection to the probed geometries. For this purpose, we also introduce new combinatorial procedures for deriving the Calabi-Yau associated to a given gauge theory and vice versa.
2D-3D Registration of CT Vertebra Volume to Fluoroscopy Projection: A Calibration Model Assessment
NASA Astrophysics Data System (ADS)
Bifulco, P.; Cesarelli, M.; Allen, R.; Romano, M.; Fratini, A.; Pasquariello, G.
2009-12-01
This study extends a previous research concerning intervertebral motion registration by means of 2D dynamic fluoroscopy to obtain a more comprehensive 3D description of vertebral kinematics. The problem of estimating the 3D rigid pose of a CT volume of a vertebra from its 2D X-ray fluoroscopy projection is addressed. 2D-3D registration is obtained maximising a measure of similarity between Digitally Reconstructed Radiographs (obtained from the CT volume) and real fluoroscopic projection. X-ray energy correction was performed. To assess the method a calibration model was realised a sheep dry vertebra was rigidly fixed to a frame of reference including metallic markers. Accurate measurement of 3D orientation was obtained via single-camera calibration of the markers and held as true 3D vertebra position; then, vertebra 3D pose was estimated and results compared. Error analysis revealed accuracy of the order of 0.1 degree for the rotation angles of about 1 mm for displacements parallel to the fluoroscopic plane, and of order of 10 mm for the orthogonal displacement.
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
A new micromechanical approach of micropolar continuum modeling for 2-D periodic cellular material
NASA Astrophysics Data System (ADS)
Niu, Bin; Yan, Jun
2016-06-01
In this paper, we present a new united approach to formulate the equivalent micropolar constitutive relation of two-dimensional (2-D) periodic cellular material to capture its non-local properties and to explain the size effects in its structural analysis. The new united approach takes both the displacement compatibility and the equilibrium of forces and moments into consideration, where Taylor series expansion of the displacement and rotation fields and the extended averaging procedure with an explicit enforcement of equilibrium are adopted in the micromechanical analysis of a unit cell. In numerical examples, the effective micropolar constants obtained in this paper and others derived in the literature are used for the equivalent micropolar continuum simulation of cellular solids. The solutions from the equivalent analysis are compared with the discrete simulation solutions of the cellular solids. It is found that the micropolar constants developed in this paper give satisfying results of equivalent analysis for the periodic cellular material.
A 2-D semi-analytical model of double-gate tunnel field-effect transistor
NASA Astrophysics Data System (ADS)
Huifang, Xu; Yuehua, Dai; Ning, Li; Jianbin, Xu
2015-05-01
A 2-D semi-analytical model of double gate (DG) tunneling field-effect transistor (TFET) is proposed. By aid of introducing two rectangular sources located in the gate dielectric layer and the channel, the 2-D Poisson equation is solved by using a semi-analytical method combined with an eigenfunction expansion method. The expression of the surface potential is obtained, which is a special function for the infinite series expressions. The influence of the mobile charges on the potential profile is taken into account in the proposed model. On the basis of the potential profile, the shortest tunneling length and the average electrical field can be derived, and the drain current is then constructed by using Kane's model. In particular, the changes of the tunneling parameters Ak and Bk influenced by the drain—source voltage are also incorporated in the predicted model. The proposed model shows a good agreement with TCAD simulation results under different drain—source voltages, silicon film thicknesses, gate dielectric layer thicknesses, and gate dielectric layer constants. Therefore, it is useful to optimize the DG TFET and this provides a physical insight for circuit level design. Project supported by the National Natural Science Foundation of China (No. 61376106) and the Graduate Innovation Fund of Anhui University.
Heo, Jingu; Savvides, Marios
2012-12-01
In this paper, we propose a novel method for generating a realistic 3D human face from a single 2D face image for the purpose of synthesizing new 2D face images at arbitrary poses using gender and ethnicity specific models. We employ the Generic Elastic Model (GEM) approach, which elastically deforms a generic 3D depth-map based on the sparse observations of an input face image in order to estimate the depth of the face image. Particularly, we show that Gender and Ethnicity specific GEMs (GE-GEMs) can approximate the 3D shape of the input face image more accurately, achieving a better generalization of 3D face modeling and reconstruction compared to the original GEM approach. We qualitatively validate our method using publicly available databases by showing each reconstructed 3D shape generated from a single image and new synthesized poses of the same person at arbitrary angles. For quantitative comparisons, we compare our synthesized results against 3D scanned data and also perform face recognition using synthesized images generated from a single enrollment frontal image. We obtain promising results for handling pose and expression changes based on the proposed method. PMID:22201062
Modeling the Elastic Modulus of 2D Woven CVI SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.
NASA Astrophysics Data System (ADS)
Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko
2015-04-01
Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the
NASA Astrophysics Data System (ADS)
Filipović, Vilim; Romić, Davor; Romić, Marija; Matijević, Lana; Mallmann, Fábio J. K.; Robinson, David A.
2016-04-01
/irrigation due the absence of soil cover. Contrary, in the MULCH plots most of the nitrate applied was still left in the upper soil layer at the end of simulations. Numerical modeling revealed a large influence of plastic mulch cover on water and nutrient outflow and distribution in soil. Results suggest that under this management practice the nitrogen amounts applied via fertigation can be lowered and optimized (higher application frequencies) to reduce possible negative influence of the nitrogen based fertilizer such as leaching of nitrates to groundwater. Keywords: Plastic mulch cover; Vegetable cultivation; Water flow; Nitrate dynamics; HYDRUS-2D
A solidification constitutive model for NIKE2D and NIKE3D
Raboin, P.J.
1994-03-17
This memo updates the current status of a solidification material model development which has been underway for more than a year. Significant modeling goals such as predicting cut-off stresses, thermo-elasto-plasticity, strain rate dependent plasticity and dynamic recovery have been completed. The model is called SOLMAT for solidification material model, and while developed for NIKE2D, it has already been implemented in NIKE3D and NIT03D by B. Maker. This memo details the future development strategy of SOLMAT including liquid and solid constitutive improvements, coupling of deviatoric and dilatational deformation and a plan to switch between constitutive theories. It explains some of the difficulties associated solidification modeling and proposes two experiments to measure properties for using SOLMAT. Due to the sensitive nature of these plans in relation to programmatic and CRADA concerns, this memo should be treated as confidential document.
An Integrative Model of Excitation Driven Fluid Flow in a 2D Uterine Channel
NASA Astrophysics Data System (ADS)
Maggio, Charles; Fauci, Lisa; Chrispell, John
2009-11-01
We present a model of intra-uterine fluid flow in a sagittal cross-section of the uterus by inducing peristalsis in a 2D channel. This is an integrative multiscale computational model that takes as input fluid viscosity, passive tissue properties of the uterine channel and a prescribed wave of membrane depolarization. This voltage pulse is coupled to a model of calcium dynamics inside a uterine smooth muscle cell, which in turn drives a kinetic model of myosin phosphorylation governing contractile muscle forces. Using the immersed boundary method, these muscle forces are communicated to a fluid domain to simulate the contractions which occur in a human uterus. An analysis of the effects of model parameters on the flow properties and emergent geometry of the peristaltic channel will be presented.
Global regularity for the 2D Oldroyd-B model in the corotational case
NASA Astrophysics Data System (ADS)
Ye, Zhuan; Xu, Xiaojing
2016-09-01
This paper is dedicated to the Oldroyd-B model with fractional dissipation $(-\\Delta)^{\\alpha}\\tau$ for any $\\alpha>0$. We establish the global smooth solutions to the Oldroyd-B model in the corotational case with arbitrarily small fractional powers of the Laplacian in two spatial dimensions. The methods described here are quite different from the tedious iterative approach used in recent paper \\cite{XY}. Moreover, in the Appendix we provide some a priori estimates to the Oldroyd-B model in the critical case which may be useful and of interest for future improvement. Finally, the global regularity to to the Oldroyd-B model in the corotational case with $-\\Delta u$ replaced by $(-\\Delta)^{\\gamma}u$ for $\\gamma>1$ are also collected in the Appendix. Therefore our result is more closer to the resolution of the well-known global regularity issue on the critical 2D Oldroyd-B model.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
Exact solution of an anisotropic 2D random walk model with strong memory correlations
NASA Astrophysics Data System (ADS)
Cressoni, J. C.; Viswanathan, G. M.; da Silva, M. A. A.
2013-12-01
Over the last decade, there has been progress in understanding one-dimensional non-Markovian processes via analytic, sometimes exact, solutions. The extension of these ideas and methods to two and higher dimensions is challenging. We report the first exactly solvable two-dimensional (2D) non-Markovian random walk model belonging to the family of the elephant random walk model. In contrast to Lévy walks or fractional Brownian motion, such models incorporate memory effects by keeping an explicit history of the random walk trajectory. We study a memory driven 2D random walk with correlated memory and stops, i.e. pauses in motion. The model has an inherent anisotropy with consequences for its diffusive properties, thereby mixing the dominant regime along one dimension with a subdiffusive walk along a perpendicular dimension. The anomalous diffusion regimes are fully characterized by an exact determination of the Hurst exponent. We discuss the remarkably rich phase diagram, as well as several possible combinations of the independent walks in both directions. The relationship between the exponents of the first and second moments is also unveiled.
Momentum Transport: 2D and 3D Cloud Resolving Model Simulations
NASA Technical Reports Server (NTRS)
Tao, Wei-Kuo
2001-01-01
The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.
Vector chiral phases in the frustrated 2D XY model and quantum spin chains.
Schenck, H; Pokrovsky, V L; Nattermann, T
2014-04-18
The phase diagram of the frustrated 2D classical and 1D quantum XY models is calculated analytically. Four transitions are found: the vortex unbinding transitions triggered by strong fluctuations occur above and below the chiral transition temperature. Vortex interaction is short range on small and logarithmic on large scales. The chiral transition, though belonging to the Ising universality class by symmetry, has different critical exponents due to nonlocal interaction. In a narrow region close to the Lifshitz point a reentrant phase transition between paramagnetic and quasiferromagnetic phase appears. Applications to antiferromagnetic quantum spin chains and multiferroics are discussed. PMID:24785067
Image restoration using 2D autoregressive texture model and structure curve construction
NASA Astrophysics Data System (ADS)
Voronin, V. V.; Marchuk, V. I.; Petrosov, S. P.; Svirin, I.; Agaian, S.; Egiazarian, K.
2015-05-01
In this paper an image inpainting approach based on the construction of a composite curve for the restoration of the edges of objects in an image using the concepts of parametric and geometric continuity is presented. It is shown that this approach allows to restore the curved edges and provide more flexibility for curve design in damaged image by interpolating the boundaries of objects by cubic splines. After edge restoration stage, a texture restoration using 2D autoregressive texture model is carried out. The image intensity is locally modeled by a first spatial autoregressive model with support in a strongly causal prediction region on the plane. Model parameters are estimated by Yule-Walker method. Several examples considered in this paper show the effectiveness of the proposed approach for large objects removal as well as recovery of small regions on several test images.
Kosaki-Longo index and classification of charges in 2D quantum spin models
NASA Astrophysics Data System (ADS)
Naaijkens, Pieter
2013-08-01
We consider charge superselection sectors of two-dimensional quantum spin models corresponding to cone localisable charges, and prove that the number of equivalence classes of such charges is bounded by the Kosaki-Longo index of an inclusion of certain observable algebras. To demonstrate the power of this result we apply the theory to the toric code on a 2D infinite lattice. For this model we can compute the index of this inclusion, and conclude that there are four distinct irreducible charges in this model, in accordance with the analysis of the toric code model on compact surfaces. We also give a sufficient criterion for the non-degeneracy of the charge sectors, in the sense that Verlinde's matrix S is invertible.
Self-Organization in 2D Traffic Flow Model with Jam-Avoiding Drive
NASA Astrophysics Data System (ADS)
Nagatani, Takashi
1995-04-01
A stochastic cellular automaton (CA) model is presented to investigate the traffic jam by self-organization in the two-dimensional (2D) traffic flow. The CA model is the extended version of the 2D asymmetric exclusion model to take into account jam-avoiding drive. Each site contains either a car moving to the up, a car moving to the right, or is empty. A up car can shift right with probability p ja if it is blocked ahead by other cars. It is shown that the three phases (the low-density phase, the intermediate-density phase and the high-density phase) appear in the traffic flow. The intermediate-density phase is characterized by the right moving of up cars. The jamming transition to the high-density jamming phase occurs with higher density of cars than that without jam-avoiding drive. The jamming transition point p 2c increases with the shifting probability p ja. In the deterministic limit of p ja=1, it is found that a new jamming transition occurs from the low-density synchronized-shifting phase to the high-density moving phase with increasing density of cars. In the synchronized-shifting phase, all up cars do not move to the up but shift to the right by synchronizing with the move of right cars. We show that the jam-avoiding drive has an important effect on the dynamical jamming transition.
A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields
Zigh, Ghani; Solis, Jorge; Fort, James A.
2011-01-14
In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as
Qu, Qiang; Qu, Jian; Han, Lu; Zhan, Min; Wu, Lan-xiang; Zhang, Yi-wen; Zhang, Wei; Zhou, Hong-hao
2014-01-01
Aim: Herbal products have been widely used, and the safety of herb-drug interactions has aroused intensive concerns. This study aimed to investigate the effects of phytochemicals on the catalytic activities of human CYP2D6*1 and CYP2D6*10 in vitro. Methods: HepG2 cells were stably transfected with CYP2D6*1 and CYP2D6*10 expression vectors. The metabolic kinetics of the enzymes was studied using HPLC and fluorimetry. Results: HepG2-CYP2D6*1 and HepG2-CYP2D6*10 cell lines were successfully constructed. Among the 63 phytochemicals screened, 6 compounds, including coptisine sulfate, bilobalide, schizandrin B, luteolin, schizandrin A and puerarin, at 100 μmol/L inhibited CYP2D6*1- and CYP2D6*10-mediated O-demethylation of a coumarin compound AMMC by more than 50%. Furthermore, the inhibition by these compounds was dose-dependent. Eadie-Hofstee plots demonstrated that these compounds competitively inhibited CYP2D6*1 and CYP2D6*10. However, their Ki values for CYP2D6*1 and CYP2D6*10 were very close, suggesting that genotype-dependent herb-drug inhibition was similar between the two variants. Conclusion: Six phytochemicals inhibit CYP2D6*1 and CYP2D6*10-mediated catalytic activities in a dose-dependent manner in vitro. Thus herbal products containing these phytochemicals may inhibit the in vivo metabolism of co-administered drugs whose primary route of elimination is CYP2D6. PMID:24786236
Modeling and Control of 2-D Grasping of an Object with Arbitrary Shape under Rolling Contact
NASA Astrophysics Data System (ADS)
Arimoto, Suguru; Yoshida, Morio; Sekimoto, Masahiro; Tahara, Kenji
Modeling, control, and stabilization of dynamics of two-dimensional object grasping by using a pair of multi-joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry of the object and fingertips. First, a fundamental testbed problem of modeling and control of rolling motion between 2-D rigid bodies with an arbitrary shape is treated under the assumption that the two contour curves coincide at the contact point and share the same tangent. The rolling constraint induces the Euler equation of motion that is parameterized by a common arclength parameter and constrained onto the kernel space orthogonally complemented to the image space spanned from the constraint gradient. By extending the analysis to the problem of stable grasp of a 2-D object with an arbitrary shape by a pair of robot fingers, the Euler-Lagrange equation of motion of the overall fingers/object system parametrized by arclength parameters is derived, together with a couple of first-order differential equations that express evolutions of contact points in terms of the second fundamental form. It is shown that 2-D rolling constraints are integrable in the sense of Frobonius even if their Pfaffian forms are characterized by arclength parameters. A control signal called “blind grasping” is introduced and shown to be effective in stabilization of grasping without using the details of the object shape and parameters or external sensing. An extension of the Dirichlet-Lagrange stability theorem to a class of systems with DOF-redundancy under constraints is suggested by using a Morse-Bott-Lyapunov function.
Numerical linearized MHD model of flapping oscillations
NASA Astrophysics Data System (ADS)
Korovinskiy, D. B.; Ivanov, I. B.; Semenov, V. S.; Erkaev, N. V.; Kiehas, S. A.
2016-06-01
Kink-like magnetotail flapping oscillations in a Harris-like current sheet with earthward growing normal magnetic field component Bz are studied by means of time-dependent 2D linearized MHD numerical simulations. The dispersion relation and two-dimensional eigenfunctions are obtained. The results are compared with analytical estimates of the double-gradient model, which are found to be reliable for configurations with small Bz up to values ˜ 0.05 of the lobe magnetic field. Coupled with previous results, present simulations confirm that the earthward/tailward growth direction of the Bz component acts as a switch between stable/unstable regimes of the flapping mode, while the mode dispersion curve is the same in both cases. It is confirmed that flapping oscillations may be triggered by a simple Gaussian initial perturbation of the Vz velocity.
Numerical Modelling of Gelating Aerosols
Babovsky, Hans
2008-09-01
The numerical simulation of the gel phase transition of an aerosol system is an interesting and demanding task. Here, we follow an approach first discussed in [6, 8] which turns out as a useful numerical tool. We investigate several improvements and generalizations. In the center of interest are coagulation diffusion systems, where the aerosol dynamics is supplemented with diffusive spreading in physical space. This leads to a variety of scenarios (depending on the coagulation kernel and the diffusion model) for the spatial evolution of the gelation area.
Uncertainties in modelling Mt. Pinatubo eruption with 2-D AER model and CCM SOCOL
NASA Astrophysics Data System (ADS)
Kenzelmann, P.; Weisenstein, D.; Peter, T.; Luo, B. P.; Rozanov, E.; Fueglistaler, S.; Thomason, L. W.
2009-04-01
Large volcanic eruptions may introduce a strong forcing on climate. They challenge the skills of climate models. In addition to the short time attenuation of solar light by ashes the formation of stratospheric sulphate aerosols, due to volcanic sulphur dioxide injection into the lower stratosphere, may lead to a significant enhancement of the global albedo. The sulphate aerosols have a residence time of about 2 years. As a consequence of the enhanced sulphate aerosol concentration both the stratospheric chemistry and dynamics are strongly affected. Due to absorption of longwave and near infrared radiation the temperature in the lower stratosphere increases. So far chemistry climate models overestimate this warming [Eyring et al. 2006]. We present an extensive validation of extinction measurements and model runs of the eruption of Mt. Pinatubo in 1991. Even if Mt. Pinatubo eruption has been the best quantified volcanic eruption of this magnitude, the measurements show considerable uncertainties. For instance the total amount of sulphur emitted to the stratosphere ranges from 5-12 Mt sulphur [e.g. Guo et al. 2004, McCormick, 1992]. The largest uncertainties are in the specification of the main aerosol cloud. SAGE II, for instance, could not measure the peak of the aerosol extinction for about 1.5 years, because optical termination was reached. The gap-filling of the SAGE II [Thomason and Peter, 2006] using lidar measurements underestimates the total extinctions in the tropics for the first half year after the eruption by 30% compared to AVHRR [Rusell et. al 1992]. The same applies to the optical dataset described by Stenchikov et al. [1998]. We compare these extinction data derived from measurements with extinctions derived from AER 2D aerosol model calculations [Weisenstein et al., 2007]. Full microphysical calculations with injections of 14, 17, 20 and 26 Mt SO2 in the lower stratosphere were performed. The optical aerosol properties derived from SAGE II
Longtime Well-posedness for the 2D Groma-Balogh Model
NASA Astrophysics Data System (ADS)
Wan, Renhui; Chen, Jiecheng
2016-07-01
In this paper, we consider the cauchy problem for the 2D Groma-Balogh model (Acta Mater 47:3647-3654, 1999). From the works Cannone et al. (Arch Ration Mech Anal 196:71-96, 2010) and El Hajj (Ann Inst Henri Poincaré Anal Nonlinéaire 27:21-35, 2010), one can see global well-posedness for this model is an open question. However, we can prove longtime well-posedness. In particular, we show that this model admits a unique solution with the lifespan T^star satisfying T^star log ^2(1+T^star )≳ ɛ ^{-2} if the initial data is of size ɛ . To achieve this, we first establish some new decay estimates concerning the operator e^{-{R}_{12}^2t} . Then, we prove the longtime well-posedness by utilizing the weak dissipation to deal with the nonlinear terms.
The concept models and implementations of multiport neural net associative memory for 2D patterns
NASA Astrophysics Data System (ADS)
Krasilenko, Vladimir G.; Nikolskyy, Aleksandr I.; Yatskovskaya, Rimma A.; Yatskovsky, Victor I.
2011-04-01
The paper considers neural net models and training and recognizing algorithms with base neurobiologic operations: p-step autoequivalence and non-equivalenc The Modified equivalently models (MEMs) of multiport neural net associative memory (MNNAM) are offered with double adaptive - equivalently weighing (DAEW) for recognition of 2D-patterns (images). It is shown, the computing process in MNNAM under using the proposed MEMs, is reduced to two-step and multi-step algorithms and step-by-step matrix-matrix (tensor-tensor) procedures. The given results of computer simulations confirmed the perspective of such models. Besides the result was received when MNNAM capacity on base of MEMs exceeded the amount of neurons.
Novel phase-space Monte-Carlo method for quench dynamics in 1D and 2D spin models
NASA Astrophysics Data System (ADS)
Pikovski, Alexander; Schachenmayer, Johannes; Rey, Ana Maria
2015-05-01
An important outstanding problem is the effcient numerical computation of quench dynamics in large spin systems. We propose a semiclassical method to study many-body spin dynamics in generic spin lattice models. The method, named DTWA, is based on a novel type of discrete Monte-Carlo sampling in phase-space. We demonstare the power of the technique by comparisons with analytical and numerically exact calculations. It is shown that DTWA captures the dynamics of one- and two-point correlations 1D systems. We also use DTWA to study the dynamics of correlations in 2D systems with many spins and different types of long-range couplings, in regimes where other numerical methods are generally unreliable. Computing spatial and time-dependent correlations, we find a sharp change in the speed of propagation of correlations at a critical range of interactions determined by the system dimension. The investigations are relevant for a broad range of systems including solids, atom-photon systems and ultracold gases of polar molecules, trapped ions, Rydberg, and magnetic atoms. This work has been financially supported by JILA-NSF-PFC-1125844, NSF-PIF-1211914, ARO, AFOSR, AFOSR-MURI.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
2D and 3D shape based segmentation using deformable models.
El-Baz, Ayman; Yuksel, Seniha E; Shi, Hongjian; Farag, Aly A; El-Ghar, Mohamed A; Eldiasty, Tarek; Ghoneim, Mohamed A
2005-01-01
A novel shape based segmentation approach is proposed by modifying the external energy component of a deformable model. The proposed external energy component depends not only on the gray level of the images but also on the shape information which is obtained from the signed distance maps of objects in a given data set. The gray level distribution and the signed distance map of the points inside and outside the object of interest are accurately estimated by modelling the empirical density function with a linear combination of discrete Gaussians (LCDG) with positive and negative components. Experimental results on the segmentation of the kidneys from low-contrast DCE-MRI and on the segmentation of the ventricles from brain MRI's show how the approach is accurate in segmenting 2-D and 3-D data sets. The 2D results for the kidney segmentation have been validated by a radiologist and the 3D results of the ventricle segmentation have been validated with a geometrical phantom. PMID:16686036
Interpretation of gravity data using 2-D continuous wavelet transformation and 3-D inverse modeling
NASA Astrophysics Data System (ADS)
Roshandel Kahoo, Amin; Nejati Kalateh, Ali; Salajegheh, Farshad
2015-10-01
Recently the continuous wavelet transform has been proposed for interpretation of potential field anomalies. In this paper, we introduced a 2D wavelet based method that uses a new mother wavelet for determination of the location and the depth to the top and base of gravity anomaly. The new wavelet is the first horizontal derivatives of gravity anomaly of a buried cube with unit dimensions. The effectiveness of the proposed method is compared with Li and Oldenburg inversion algorithm and is demonstrated with synthetics and real gravity data. The real gravity data is taken over the Mobrun massive sulfide ore body in Noranda, Quebec, Canada. The obtained results of the 2D wavelet based algorithm and Li and Oldenburg inversion on the Mobrun ore body had desired similarities to the drill-hole depth information. In all of the inversion algorithms the model non-uniqueness is the challenging problem. Proposed method is based on a simple theory and there is no model non-uniqueness on it.
Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.
Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil
2016-03-01
Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets. PMID:26824922
2-D Modeling of Nanoscale MOSFETs: Non-Equilibrium Green's Function Approach
NASA Technical Reports Server (NTRS)
Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan
2001-01-01
We have developed physical approximations and computer code capable of realistically simulating 2-D nanoscale transistors, using the non-equilibrium Green's function (NEGF) method. This is the most accurate full quantum model yet applied to 2-D device simulation. Open boundary conditions and oxide tunneling are treated on an equal footing. Electrons in the ellipsoids of the conduction band are treated within the anisotropic effective mass approximation. Electron-electron interaction is treated within Hartree approximation by solving NEGF and Poisson equations self-consistently. For the calculations presented here, parallelization is performed by distributing the solution of NEGF equations to various processors, energy wise. We present simulation of the "benchmark" MIT 25nm and 90nm MOSFETs and compare our results to those from the drift-diffusion simulator and the quantum-corrected results available. In the 25nm MOSFET, the channel length is less than ten times the electron wavelength, and the electron scattering time is comparable to its transit time. Our main results are: (1) Simulated drain subthreshold current characteristics are shown, where the potential profiles are calculated self-consistently by the corresponding simulation methods. The current predicted by our quantum simulation has smaller subthreshold slope of the Vg dependence which results in higher threshold voltage. (2) When gate oxide thickness is less than 2 nm, gate oxide leakage is a primary factor which determines off-current of a MOSFET (3) Using our 2-D NEGF simulator, we found several ways to drastically decrease oxide leakage current without compromising drive current. (4) Quantum mechanically calculated electron density is much smaller than the background doping density in the poly silicon gate region near oxide interface. This creates an additional effective gate voltage. Different ways to. include this effect approximately will be discussed.