Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT`S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field (``port approximation``). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
Modelling RF sources using 2-D PIC codes
Eppley, K.R.
1993-03-01
In recent years, many types of RF sources have been successfully modelled using 2-D PIC codes. Both cross field devices (magnetrons, cross field amplifiers, etc.) and pencil beam devices (klystrons, gyrotrons, TWT'S, lasertrons, etc.) have been simulated. All these devices involve the interaction of an electron beam with an RF circuit. For many applications, the RF structure may be approximated by an equivalent circuit, which appears in the simulation as a boundary condition on the electric field ( port approximation''). The drive term for the circuit is calculated from the energy transfer between beam and field in the drift space. For some applications it may be necessary to model the actual geometry of the structure, although this is more expensive. One problem not entirely solved is how to accurately model in 2-D the coupling to an external waveguide. Frequently this is approximated by a radial transmission line, but this sometimes yields incorrect results. We also discuss issues in modelling the cathode and injecting the beam into the PIC simulation.
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2012-03-01
The massively parallel, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, PIC, Cartesian geometry UCAN code, with particle ions and adiabatic electrons, has been successfully exercised to identify non-diffusive transport characteristics in DIII-D-like tokamak discharges. The limitation in applying UCAN to larger scale discharges is the 1D domain decomposition in the toroidal (or z-) direction for massively parallel implementation using MPI which has restricted the calculations to a few hundred ion Larmor radii per minor radius. To exceed these sizes, we have implemented 2D domain decomposition in UCAN with the addition of the y-direction to the processor mix. This has been facilitated by use of relevant components in the 2D domain decomposed PLIB2 library of field and particle management routines developed for UCLA's UPIC framework of conventional PIC codes. The gyro-averaging in gyrokinetic codes has necessitated the use of replicated arrays for efficient charge accumulation and particle push. The 2D domain-decomposed UCAN2 code reproduces the original 1D domain results within roundoff. Production calculations at large system sizes have been performed with UCAN2 on 131072 processors of the Cray XE6 at NERSC.
NASA Astrophysics Data System (ADS)
Innocenti, M.; Beck, A.; Lapenta, G.; Markidis, S.
2012-12-01
The kinetic simulation of intrinsically multi scale processes such as magnetic reconnection events with realistic mass ratios is a daunting task for explicit Particle In Cell (PIC) codes, which require to use resolutions of the order of the electron Debye length even when simulating dramatically bigger domains. As an example, a simulation of reconnection in the magnetotail, with domain sizes of the order of 20 di x 10 di (˜ 7.2 106 m x 3.6 106 m, with di being the ion skin depth) and a resolution of λD,e= 687 m, with λD,e the electron Debye length, requires the astounding number of 10500 x 5240 cells. Higher grid spacings can be used if the simulation is performed with an implicit PIC code, which substitutes a much less strict accuracy constraint to the stability constraint of explicit PIC codes. The same reconnection problem as before can be simulated, with an implicit PIC code resolving the scale of interest of de /2 instead of the electron Debye length (de is the electron skin depth), with the much more manageable number of 1920 x 958 cells. However, an even smaller number of cells can be used if, instead of using the same, high resolution on the entire domain, the domain to simulate is divided into subdomains each resolved with a grid spacing related to the physical scale of interest in the specific subdomain. In the case of reconnection, the division which immediately springs to mind is between electron diffusion region, ion diffusion region and outer region, where resolutions respectively of the order of fractions of the electron skin depth, of the ion skin depth and bigger can be used. We present here a new Multi Level Multi Domain (MLMD) Implicit Moment Method (IMM) Particle In Cell (PIC) code, Parsek2D-MLMD, able to perform simulations of magnetic reconnection where the expensive high resolutions are used only when needed, while the rest of the domain is simulated with grid spacings chosen according to the local scales of interest. The major difference
Modeling Laser Wake Field Acceleration with the Quasi-Static PIC Code QuickPIC
Vieira, J.; Antonsen, T. Jr.; Cooley, J.; Silva, L. O.
2006-11-27
We use the Quasi-static Particle-In-Cell code QuickPIC to model laser wake field acceleration, in both uniform and parabolic plasma channels within current state of the art experimental laser and plasma parameters. QuickPIC uses the quasi-static approximation, which allows the separation of the plasma and laser evolution, as they respond in different time scales. The laser is evolved with a larger time step, that correctly resolves distances of the order of the Rayleigh length, according to the ponderomotive guiding center approximation, while the plasma response is calculated through a quasi-static field solver for each transverse 2d slice. We have performed simulations that show very good agreement between QuickPIC and three dimensional simulations using the full PIC code OSIRIS. We have scanned laser intensities from those for which linear plasma waves are excited to those for which the plasma response is highly nonlinear. For these simulations, QuickPIC was 2-3 orders of magnitude faster than OSIRIS.
QuickPIC: a highly efficient fully parallelized PIC code for plasma-based acceleration
NASA Astrophysics Data System (ADS)
Huang, C.; Decyk, V. K.; Zhou, M.; Lu, W.; Mori, W. B.; Cooley, J. H.; Antonsen, T. M., Jr.; Feng, B.; Katsouleas, T.; Vieira, J.; Silva, L. O.
2006-09-01
A highly efficient, fully parallelized, fully relativistic, three-dimensional particle-incell model for simulating plasma and laser wakefield acceleration is described. The model is based on the quasi-static approximation, which reduces a fully three-dimensional electromagnetic field solve and particle push to a two-dimensional field solve and particle push. This is done by calculating the plasma wake assuming that the drive beam and/or laser does not evolve during the time it takes for it to pass a plasma particle. The complete electromagnetic fields of the plasma wake and its associated index of refraction are then used to evolve the drive beam and/or laser using very large time steps. This algorithm reduces the computation time by 2 to 3 orders of magnitude without loss of accuracy for highly nonlinear problems of interest. The code is fully parallelizable with different domain decompositions for the 2D and 3D pieces of the code. The code also has dynamic load balancing. We present the basic algorithms and design of QuickPIC, as well as comparison between the new algorithm and conventional fully explicit models (OSIRIS). Direction for future work is also presented including a software pipeline technique to further scale QuickPIC to 10,000+ processors.
Low-temperature plasma simulations with the LSP PIC code
NASA Astrophysics Data System (ADS)
Carlsson, Johan; Khrabrov, Alex; Kaganovich, Igor; Keating, David; Selezneva, Svetlana; Sommerer, Timothy
2014-10-01
The LSP (Large-Scale Plasma) PIC-MCC code has been used to simulate several low-temperature plasma configurations, including a gas switch for high-power AC/DC conversion, a glow discharge and a Hall thruster. Simulation results will be presented with an emphasis on code comparison and validation against experiment. High-voltage, direct-current (HVDC) power transmission is becoming more common as it can reduce construction costs and power losses. Solid-state power-electronics devices are presently used, but it has been proposed that gas switches could become a compact, less costly, alternative. A gas-switch conversion device would be based on a glow discharge, with a magnetically insulated cold cathode. Its operation is similar to that of a sputtering magnetron, but with much higher pressure (0.1 to 0.3 Torr) in order to achieve high current density. We have performed 1D (axial) and 2D (axial/radial) simulations of such a gas switch using LSP. The 1D results were compared with results from the EDIPIC code. To test and compare the collision models used by the LSP and EDIPIC codes in more detail, a validation exercise was performed for the cathode fall of a glow discharge. We will also present some 2D (radial/azimuthal) LSP simulations of a Hall thruster. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000298.
2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU
NASA Astrophysics Data System (ADS)
Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre
2012-10-01
A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.
The Implicit Hyprid/PIC Code AMTHEM.
Mason, R. J.
2002-01-01
Recent inventions in pulse power switching, fast laser-driven thermonuclear ignition, and short pulse radiography have demanded a dramatic increase in the capabilities of plasma simulation tools. Multifluid, multi-component, fluid and kinetic models are needed for plasmas spanning thousands of Debye lengths and thousands of plasma periods. Such plasmas manifest both dense and tenuous regions, including or excluding magnetic fields and collisional resistivity. The problems of interest can dwell in a transition regime with limits traditionally treated by resistive MHD and and/or collisional particle-in-cell (PIC) methods. The ANTHEM implicit hybrid simulation model is under development to meet these challenges. This presentation will outline its past and current features, and review results typical of short-pulse laser applications.
2-d Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
AMBER: a PIC slice code for DARHT
NASA Astrophysics Data System (ADS)
Vay, Jean-Luc; Fawley, William
1999-11-01
The accelerator for the second axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility will produce a 4-kA, 20-MeV, 2-μ s output electron beam with a design goal of less than 1000 π mm-mrad normalized transverse emittance and less than 0.5-mm beam centroid motion. In order to study the beam dynamics throughout the accelerator, we have developed a slice Particle-In-Cell code named AMBER, in which the beam is modeled as a time-steady flow, subject to self, as well as external, electrostatic and magnetostatic fields. The code follows the evolution of a slice of the beam as it propagates through the DARHT accelerator lattice, modeled as an assembly of pipes, solenoids and gaps. In particular, we have paid careful attention to non-paraxial phenomena that can contribute to nonlinear forces and possible emittance growth. We will present the model and the numerical techniques implemented, as well as some test cases and some preliminary results obtained when studying emittance growth during the beam propagation.
2D electrostatic PIC algorithm for laser induced studying plasma in vacuum
NASA Astrophysics Data System (ADS)
Álvarez, C. A.; Riascos, H.; Gonzalez, C.
2016-02-01
Particle-In-Cell(PIC) method is widely used for simulating plasma kinetic models. A 2D-PIC electrostatic algorithm is implemented for simulating the expansion of a laser- induced plasma plume. For potential and Electric Field calculation, Dirichlet and periodic boundary conditions are used in the X (perpendicular to the ablated material) and Y directions, respectively. Poisson-solver employs FFTW3 library and the five-point Laplacian to compute the electric potential. Electric field calculation is made by central finite differences method. Leap-frog scheme updates particle positions and velocities at each iteration. Plume expansion anlysis is done for the Emission and Post-Emission stages. In the Emission phase (while the laser is turned on), fast electron expansion is observed and ion particles remain near the surface of the ablated material. In the post-emission stage (with the laser turned off) the charge separation produces an electric field that accelerates the ions leading to the formation of a KeV per particle Ion-Front. At the end of the expansion, fastest electrons escape from the simulation space; an almost homogeneous ion-electron distribution is observed, decreasing the electric field value and the Coulomb interactions.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
2D PIC/MC simulations of electrical asymmetry effect in capacitive coupled plasma
NASA Astrophysics Data System (ADS)
Zhang, Quan-Zhi; Jiang, Wei; Wang, You-Nian
2011-10-01
Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. This work was supported by the National Natural Science Foundation of China (Grant No 10635010) and the Important National Science & Technology Specific Project (Grant No
What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?
NASA Astrophysics Data System (ADS)
Goldman, M. V.; Newman, D. L.; Lapenta, G.
2016-03-01
The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.
Modeling of Ionization Physics with the PIC Code OSIRIS
Deng, S.; Tsung, F.; Lee, S.; Lu, W.; Mori, W.B.; Katsouleas, T.; Muggli, P.; Blue, B.E.; Clayton, C.E.; O'Connell, C.; Dodd, E.; Decker, F.J.; Huang, C.; Hogan, M.J.; Hemker, R.; Iverson, R.H.; Joshi, C.; Ren, C.; Raimondi, P.; Wang, S.; Walz, D.; /Southern California U. /UCLA /SLAC
2005-09-27
When considering intense particle or laser beams propagating in dense plasma or gas, ionization plays an important role. Impact ionization and tunnel ionization may create new plasma electrons, altering the physics of wakefield accelerators, causing blue shifts in laser spectra, creating and modifying instabilities, etc. Here we describe the addition of an impact ionization package into the 3-D, object-oriented, fully parallel PIC code OSIRIS. We apply the simulation tool to simulate the parameters of the upcoming E164 Plasma Wakefield Accelerator experiment at the Stanford Linear Accelerator Center (SLAC). We find that impact ionization is dominated by the plasma electrons moving in the wake rather than the 30 GeV drive beam electrons. Impact ionization leads to a significant number of trapped electrons accelerated from rest in the wake.
NASA Astrophysics Data System (ADS)
Artyomov, K. P.; Ryzhov, V. V.; Naumenko, G. A.; Shevelev, M. V.
2012-05-01
Different types of polarization radiation generated by a relativistic electron beam are simulated using fully electromagnetic particle-in-cell (PIC) code KARAT. The simulation results for diffraction radiation, transition radiation, Smith-Purcell radiation and Vavilov-Cherenkov radiation are in a good agreement with experimental data and analytical models. Modern PIC simulation is a good tool to check and predict experimental results.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, Kevin; Huang, C.; Bruhwiler, D.L.; Mori, W.B.; Tsung, F.S.; Cormier-Michel, E.; Geddes, C.G.R.; Cowan, B.; Cary, J.R.; Esarey, E.; Fonseca, R.A.; Martins, S.F.; Silva, L.O.
2008-09-08
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a0 and that full and reduced PIC agree well for values of a0 approaching 4.
Benchmarking the codes VORPAL, OSIRIS, and QuickPIC with Laser Wakefield Acceleration Simulations
Paul, K.; Bruhwiler, D. L.; Cowan, B.; Cary, J. R.; Huang, C.; Mori, W. B.; Tsung, F. S.; Cormier-Michel, E.; Geddes, C. G. R.; Esarey, E.; Fonseca, R. A.; Martins, S. F.; Silva, L. O.
2009-01-22
Three-dimensional laser wakefield acceleration (LWFA) simulations have recently been performed to benchmark the commonly used particle-in-cell (PIC) codes VORPAL, OSIRIS, and QuickPIC. The simulations were run in parallel on over 100 processors, using parameters relevant to LWFA with ultra-short Ti-Sapphire laser pulses propagating in hydrogen gas. Both first-order and second-order particle shapes were employed. We present the results of this benchmarking exercise, and show that accelerating gradients from full PIC agree for all values of a{sub 0} and that full and reduced PIC agree well for values of a{sub 0} approaching 4.
Numerical stability of pseudo-spectral PIC code generalizations
NASA Astrophysics Data System (ADS)
Godfrey, Brendan B.; Vay, Jean-Luc
2014-10-01
Laser Plasma Accelerator (LPA) particle-in-cell (PIC) simulations are computationally demanding, because they require beam transport over times and distances long compared with the natural scales of the acceleration mechanism and because they are prone to numerical instabilities. To provide greater flexibility in LPA PIC simulations, we have generalized the Pseudo-Spectral Time Domain (PSTD) algorithm to accommodate arbitrary order spatial derivative approximations and substantially longer time steps. Here, we show that, by extending approaches developed by us for other PIC algorithms, numerical Cherenkov instabilities can be suppressed for the generalized PSTD algorithm. We also illustrate the relationships between the generalized PSTD and other PIC algorithms, such as Finite Difference Time Domain (FDTD) and Pseudo-Spectral Analytical Time Domain (PSATD) algorithms. Background information can be found at http://hifweb.lbl.gov/public/BLAST/Godfrey/. Work supported in part by DOE under Contract DE-AC02-05CH11231.
In search of a 2-dB coding gain
NASA Technical Reports Server (NTRS)
Yuen, J. H.; Vo, Q. D.
1985-01-01
A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.
Validation and testing of the VAM2D computer code
Kool, J.B.; Wu, Y.S. )
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
CBEAM. 2-D: a two-dimensional beam field code
Dreyer, K.A.
1985-05-01
CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.
Simulation of Laser Wake Field Acceleration using a 2.5D PIC Code
NASA Astrophysics Data System (ADS)
An, W. M.; Hua, J. F.; Huang, W. H.; Tang, Ch. X.; Lin, Y. Z.
2006-11-01
A 2.5D PIC simulation code is developed to study the LWFA( Laser WakeField Acceleration ). The electron self-injection and the generation of mono-energetic electron beam in LWFA is briefly discussed through the simulation. And the experiment of this year at SILEX-I laser facility is also introduced.
2D FEM Heat Transfer & E&M Field Code
Energy Science and Technology Software Center (ESTSC)
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
PIC codes for plasma accelerators on emerging computer architectures (GPUS, Multicore/Manycore CPUS)
NASA Astrophysics Data System (ADS)
Vincenti, Henri
2016-03-01
The advent of exascale computers will enable 3D simulations of a new laser-plasma interaction regimes that were previously out of reach of current Petasale computers. However, the paradigm used to write current PIC codes will have to change in order to fully exploit the potentialities of these new computing architectures. Indeed, achieving Exascale computing facilities in the next decade will be a great challenge in terms of energy consumption and will imply hardware developments directly impacting our way of implementing PIC codes. As data movement (from die to network) is by far the most energy consuming part of an algorithm future computers will tend to increase memory locality at the hardware level and reduce energy consumption related to data movement by using more and more cores on each compute nodes (''fat nodes'') that will have a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, CPU machine vendors are making use of long SIMD instruction registers that are able to process multiple data with one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. GPU's also have a reduced clock speed per core and can process Multiple Instructions on Multiple Datas (MIMD). At the software level Particle-In-Cell (PIC) codes will thus have to achieve both good memory locality and vectorization (for Multicore/Manycore CPU) to fully take advantage of these upcoming architectures. In this talk, we present the portable solutions we implemented in our high performance skeleton PIC code PICSAR to both achieve good memory locality and cache reuse as well as good vectorization on SIMD architectures. We also present the portable solutions used to parallelize the Pseudo-sepctral quasi-cylindrical code FBPIC on GPUs using the Numba python compiler.
Parallelization of the GKEM Electromagnetic PIC code using MPI and OpenMP
NASA Astrophysics Data System (ADS)
Benjamin, Mark; Ethier, Stephane; Lee, Wei-Li
2009-11-01
GKEM is a legacy gyrokinetic PIC code in slab geometry that calculates anomalous transport in fusion plasmas due to drift wave microturbulence. It is currently being used to develop new algorithms for high-beta electromagnetic PIC simulations. This work focuses on the modernization and performance improvement of GKEM through the use of FORTRAN 90 language features and parallelization. MPI-based particle parallelization was implemented as well as loop-level multi-threading using OpenMP directives. Performance improvements and speedup curves for the different stages of the code are discussed. Project supported by the DOE-PPPL High School Internship Program and DOE contract DE-AC02-09CH11466.
Development and Benchmarking of a Hybrid PIC Code For Dense Plasmas and Fast Ignition
Witherspoon, F. Douglas; Welch, Dale R.; Thompson, John R.; MacFarlane, Joeseph J.; Phillips, Michael W.; Bruner, Nicki; Mostrom, Chris; Thoma, Carsten; Clark, R. E.; Bogatu, Nick; Kim, Jin-Soo; Galkin, Sergei; Golovkin, Igor E.; Woodruff, P. R.; Wu, Linchun; Messer, Sarah J.
2014-05-20
Computational Sciences, Inc. and Advanced Energy Systems Inc. joined efforts to develop new physics and numerical models for LSP in several key areas to enhance the ability of LSP to model high energy density plasmas (HEDP). This final report details those efforts. Areas addressed in this research effort include: adding radiation transport to LSP, first in 2D and then fully 3D, extending the EMHD model to 3D, implementing more advanced radiation and electrode plasma boundary conditions, and installing more efficient implicit numerical algorithms to speed complex 2-D and 3-D computations. The new capabilities allow modeling of the dominant processes in high energy density plasmas, and further assist the development and optimization of plasma jet accelerators, with particular attention to MHD instabilities and plasma/wall interaction (based on physical models for ion drag friction and ablation/erosion of the electrodes). In the first funding cycle we implemented a solver for the radiation diffusion equation. To solve this equation in 2-D, we used finite-differencing and applied the parallelized sparse-matrix solvers in the PETSc library (Argonne National Laboratory) to the resulting system of equations. A database of the necessary coefficients for materials of interest was assembled using the PROPACEOS and ATBASE codes from Prism. The model was benchmarked against Prism's 1-D radiation hydrodynamics code HELIOS, and against experimental data obtained from HyperV's separately funded plasma jet accelerator development program. Work in the second funding cycle focused on extending the radiation diffusion model to full 3-D, continued development of the EMHD model, optimizing the direct-implicit model to speed up calculations, add in multiply ionized atoms, and improved the way boundary conditions are handled in LSP. These new LSP capabilities were then used, along with analytic calculations and Mach2 runs, to investigate plasma jet merging, plasma detachment and transport, restrike
Spacecraft charging analysis with the implicit particle-in-cell code iPic3D
Deca, J.; Lapenta, G.; Marchand, R.; Markidis, S.
2013-10-15
We present the first results on the analysis of spacecraft charging with the implicit particle-in-cell code iPic3D, designed for running on massively parallel supercomputers. The numerical algorithm is presented, highlighting the implementation of the electrostatic solver and the immersed boundary algorithm; the latter which creates the possibility to handle complex spacecraft geometries. As a first step in the verification process, a comparison is made between the floating potential obtained with iPic3D and with Orbital Motion Limited theory for a spherical particle in a uniform stationary plasma. Second, the numerical model is verified for a CubeSat benchmark by comparing simulation results with those of PTetra for space environment conditions with increasing levels of complexity. In particular, we consider spacecraft charging from plasma particle collection, photoelectron and secondary electron emission. The influence of a background magnetic field on the floating potential profile near the spacecraft is also considered. Although the numerical approaches in iPic3D and PTetra are rather different, good agreement is found between the two models, raising the level of confidence in both codes to predict and evaluate the complex plasma environment around spacecraft.
Dipp, T.M. |
1993-12-01
The generation of radiation via photoelectrons induced off of a conducting surface was explored using Particle-In-Cell (PIC) code computer simulations. Using the MAGIC PIC code, the simulations were performed in one dimension to handle the diverse scale lengths of the particles and fields in the problem. The simulations involved monoenergetic, nonrelativistic photoelectrons emitted normal to the illuminated conducting surface. A sinusoidal, 100% modulated, 6.3263 ns pulse train, as well as unmodulated emission, were used to explore the behavior of the particles, fields, and generated radiation. A special postprocessor was written to convert the PIC code simulated electron sheath into far-field radiation parameters by means of rigorous retarded time calculations. The results of the small-spot PIC simulations were used to generate various graphs showing resonance and nonresonance radiation quantities such as radiated lobe patterns, frequency, and power. A database of PIC simulation results was created and, using a nonlinear curve-fitting program, compared with theoretical scaling laws. Overall, the small-spot behavior predicted by the theoretical scaling laws was generally observed in the PIC simulation data, providing confidence in both the theoretical scaling laws and the PIC simulations.
Development and Test of 2.5-Dimensional Electromagnetic PIC Simulation Code
NASA Astrophysics Data System (ADS)
Lee, Sang-Yun; Lee, Ensang; Kim, Khan-Hyuk; Seon, Jongho; Lee, Dong-Hun; Ryu, Kwang-Sun
2015-03-01
We have developed a 2.5-dimensional electromagnetic particle simulation code using the particle-in-cell (PIC) method to investigate electromagnetic phenomena that occur in space plasmas. Our code is based on the leap-frog method and the centered difference method for integration and differentiation of the governing equations. We adopted the relativistic Buneman-Boris method to solve the Lorentz force equation and the Esirkepov method to calculate the current density while maintaining charge conservation. Using the developed code, we performed test simulations for electron two-stream instability and electron temperature anisotropy induced instability with the same initial parameters as used in previously reported studies. The test simulation results are almost identical with those of the previous papers.
50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species
Code of Federal Regulations, 2012 CFR
2012-10-01
... 50 Wildlife and Fisheries 13 2012-10-01 2012-10-01 false Species Codes-Non-FMP Species 2d Table 2d to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE (CONTINUED) FISHERIES OF THE EXCLUSIVE ECONOMIC ZONE OFF ALASKA Pt. 679, Table 2d Table 2d to Part...
50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species
Code of Federal Regulations, 2013 CFR
2013-10-01
... 50 Wildlife and Fisheries 13 2013-10-01 2013-10-01 false Species Codes-Non-FMP Species 2d Table 2d to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 2d Table 2d to Part 679—Species Codes—Non-FMP Species General use...
50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species
Code of Federal Regulations, 2014 CFR
2014-10-01
... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Species Codes-Non-FMP Species 2d Table 2d to Part 679 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND... ALASKA Pt. 679, Table 2d Table 2d to Part 679—Species Codes—Non-FMP Species General use...
2D Axisymmetric vs 1D: A PIC/DSMC Model of Breakdown in Triggered Vacuum Spark Gaps
NASA Astrophysics Data System (ADS)
Moore, Stan; Moore, Chris; Boerner, Jeremiah
2015-09-01
Last year at GEC14, we presented results of one-dimensional PIC/DSMC simulations of breakdown in triggered vacuum spark gaps. In this talk, we extend the model to two-dimensional axisymmetric and compare the results to the previous 1D case. Specially, we vary the fraction of the cathode that emits electrons and neutrals (holding the total injection rates over the cathode surface constant) and show the effects of the higher dimensionality on the time to breakdown. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U. S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.
2-D skin-current toroidal-MHD-equilibrium code
Feinberg, B.; Niland, R.A.; Coonrod, J.; Levine, M.A.
1982-09-01
A two-dimensional, toroidal, ideal MHD skin-current equilibrium computer code is described. The code is suitable for interactive implementation on a minicomptuer. Some examples of the use of the code for design and interpretation of toroidal cusp experiments are presented.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.; Hiratsuka, J.
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result.
Analysis of the beam halo in negative ion sources by using 3D3V PIC code.
Miyamoto, K; Nishioka, S; Goto, I; Hatayama, A; Hanada, M; Kojima, A; Hiratsuka, J
2016-02-01
The physical mechanism of the formation of the negative ion beam halo and the heat loads of the multi-stage acceleration grids are investigated with the 3D PIC (particle in cell) simulation. The following physical mechanism of the beam halo formation is verified: The beam core and the halo consist of the negative ions extracted from the center and the periphery of the meniscus, respectively. This difference of negative ion extraction location results in a geometrical aberration. Furthermore, it is shown that the heat loads on the first acceleration grid and the second acceleration grid are quantitatively improved compared with those for the 2D PIC simulation result. PMID:26932006
Deploying electromagnetic particle-in-cell (EM-PIC) codes on Xeon Phi accelerators boards
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo
2014-10-01
The complexity of the phenomena involved in several relevant plasma physics scenarios, where highly nonlinear and kinetic processes dominate, makes purely theoretical descriptions impossible. Further understanding of these scenarios requires detailed numerical modeling, but fully relativistic particle-in-cell codes such as OSIRIS are computationally intensive. The quest towards Exaflop computer systems has lead to the development of HPC systems based on add-on accelerator cards, such as GPGPUs and more recently the Xeon Phi accelerators that power the current number 1 system in the world. These cards, also referred to as Intel Many Integrated Core Architecture (MIC) offer peak theoretical performances of >1 TFlop/s for general purpose calculations in a single board, and are receiving significant attention as an attractive alternative to CPUs for plasma modeling. In this work we report on our efforts towards the deployment of an EM-PIC code on a Xeon Phi architecture system. We will focus on the parallelization and vectorization strategies followed, and present a detailed performance evaluation of code performance in comparison with the CPU code.
Dynamic load balancing in a concurrent plasma PIC code on the JPL/Caltech Mark III hypercube
Liewer, P.C.; Leaver, E.W.; Decyk, V.K.; Dawson, J.M.
1990-12-31
Dynamic load balancing has been implemented in a concurrent one-dimensional electromagnetic plasma particle-in-cell (PIC) simulation code using a method which adds very little overhead to the parallel code. In PIC codes, the orbits of many interacting plasma electrons and ions are followed as an initial value problem as the particles move in electromagnetic fields calculated self-consistently from the particle motions. The code was implemented using the GCPIC algorithm in which the particles are divided among processors by partitioning the spatial domain of the simulation. The problem is load-balanced by partitioning the spatial domain so that each partition has approximately the same number of particles. During the simulation, the partitions are dynamically recreated as the spatial distribution of the particles changes in order to maintain processor load balance.
A method for handling slanted conducting surfaces in EM PIC codes
Pointon, T D
1988-06-01
A new version of MAGIC, a 2-1/2D relativistic electromagnetic particle simulation code, has been developed to handle slanted conducting surfaces. Modifications to standard algorithms for the electromagnetic field advance, charge and current densities, particle destruction, and field averaging are discussed. In addition, a new model for field emission from conducting boundary surfaces is described. Particles can be emitted from conformal or slanted surfaces, and also from certain types of corners. Results of the new code on several problems are presented. 10 refs., 15 figs.
Modeling the longitudinal wall impedance instability in heavy ion beams using an R-Z PIC code
Callahan, D.A.; Langdon, A.B.; Friedman, A.; Grote, D.P. ); Haber, I. )
1991-02-22
The effects of the longitudinal wall impedance instability in a heavy ion beam are of great interest for heavy ion fusion drivers. We are studying this instability using the R-Z thread of the WARP PIC code. We describe the code and our model of the impedance due to the accelerating modules of the induction LINAC as a resistive wall. We present computer simulations which illustrate this instability. 2 refs., 2 figs., 1 tab.
Lemaire, J.-L.; Sonnendruecker, E.
2005-06-08
We have investigated the dynamical behaviors of intense charged particle beams propagating through continuous and periodic systems using a fully self consistent method based on the direct solution of the Vlasov equation in presence of conducting wall. The simulation code deals either with an axisymetric system (r, vr, v{theta}) or cartesian system (x, vx, y, vy). Several diagnostics have been implemented enabling to display halo generation caused by sources that are driven by nonlinear forces, mismatching, non-stationary beam distributions and its development Comparisons with corresponding PIC technique simulations can be made. Further works are in progress to study in the same manner the propagation of charged particle beams in quadrupole FODO channels.
NASA Astrophysics Data System (ADS)
Swanekamp, S. B.; Oliver, B. V.; Grossmann, J. M.; Smithe, D.; Ludeking, L.
1996-11-01
The current understanding of plasma opening switch (POS) operation is as follows. During the conduction phase the switch plasma is redistributed by MHD forces. This redistribution of mass leads to the formation of a low density region in the switch where a 1-3 mm gap in the plasma is believed to form as the switch opens and magnetic energy is transferred between the primary storage inductor and the load. The processes of gap formation and power delivery are not very well understood. It is generally accepted that the assumptions of MHD theory are not valid during the gap formation and power delivery processes because electron inertia and the lack of space-charge neutrality are expected to play a key role. To study non-MHD processes during the gap formation process and power delivery phase of the POS, we have developed a technique for importing an arbitrary state of an MHD code into the PIC code MAGIC. At present the plasma kinetic pressure is ignored during the initialization of particles. Work supported by Defense Nuclear Agency. ^ JAYCOR, Vienna, VA 22102. ^ NRL-NRC Research Associate.
NASA Technical Reports Server (NTRS)
Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.
1994-01-01
A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.
TOPAZ2D heat transfer code users manual and thermal property data base
NASA Astrophysics Data System (ADS)
Shapiro, A. B.; Edwards, A. L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.
Large Scale Earth's Bow Shock with Northern IMF as Simulated by PIC Code in Parallel with MHD Model
NASA Astrophysics Data System (ADS)
Baraka, Suleiman
2016-06-01
In this paper, we propose a 3D kinetic model (particle-in-cell, PIC) for the description of the large scale Earth's bow shock. The proposed version is stable and does not require huge or extensive computer resources. Because PIC simulations work with scaled plasma and field parameters, we also propose to validate our code by comparing its results with the available MHD simulations under same scaled solar wind (SW) and (IMF) conditions. We report new results from the two models. In both codes the Earth's bow shock position is found to be ≈14.8 R E along the Sun-Earth line, and ≈29 R E on the dusk side. Those findings are consistent with past in situ observations. Both simulations reproduce the theoretical jump conditions at the shock. However, the PIC code density and temperature distributions are inflated and slightly shifted sunward when compared to the MHD results. Kinetic electron motions and reflected ions upstream may cause this sunward shift. Species distributions in the foreshock region are depicted within the transition of the shock (measured ≈2 c/ ω pi for Θ Bn = 90° and M MS = 4.7) and in the downstream. The size of the foot jump in the magnetic field at the shock is measured to be (1.7 c/ ω pi ). In the foreshocked region, the thermal velocity is found equal to 213 km s-1 at 15 R E and is equal to 63 km s -1 at 12 R E (magnetosheath region). Despite the large cell size of the current version of the PIC code, it is powerful to retain macrostructure of planets magnetospheres in very short time, thus it can be used for pedagogical test purposes. It is also likely complementary with MHD to deepen our understanding of the large scale magnetosphere.
Automatic differentiation of the TACO2D finite element code using ADIFOR
Carle, A.; Fagan, M.
1996-04-01
The need for sensitivities in particular applications is becoming increasingly important in problems such as optimal design or control. In this study, the authors use ADIFOR to generate derivative code for TACO2D, a finite element heat transfer code. The study of TACO2D indicates that ADIFOR-generated derivatives yield accurate derivatives at a fraction of the time requirements of finite difference approximations, and space requirements proportional to the number of variables. The primary focus on TACO2D was for the design of chemical vapor deposition reactors.
TOPAZ2D heat transfer code users manual and thermal property data base
Shapiro, A.B.; Edwards, A.L.
1990-05-01
TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.
A PIC-MCC code for simulation of streamer propagation in air
Chanrion, O. Neubert, T.
2008-07-20
A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70 km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at {approx}10 km relevant for lightning and thundercloud electrification. The code is used to study acceleration of thermal seed electrons in streamers and to understand the conditions under which electrons may reach energies in the runaway regime. This is the first study in air, with a particle model with realistic spatial dependencies of the electrostatic field. It is shown that at 1 atm pressure the electric field must exceed {approx}7.5 times the breakdown field to observe runaway electrons in a constant electric field. This value is close to the field where the electric force on an electron equals the maximum frictional force on an electron - found at {approx}100 eV. It is also found that this value is reached in a negative streamer tip at 10 km altitude when the background electric field equals
A PIC-MCC code for simulation of streamer propagation in air
NASA Astrophysics Data System (ADS)
Chanrion, O.; Neubert, T.
2008-07-01
A particle code has been developed to study the distribution and acceleration of electrons in electric discharges in air. The code can follow the evolution of a discharge from the initial stage of a single free electron in a background electric field to the formation of an electron avalanche and its transition into a streamer. The code is in 2D axi-symmetric coordinates, allowing quasi 3D simulations during the initial stages of streamer formation. This is important for realistic simulations of problems where space charge fields are essential such as in streamer formation. The charged particles are followed in a Cartesian mesh and the electric field is updated with Poisson's equation from the charged particle densities. Collisional processes between electrons and air molecules are simulated with a Monte Carlo technique, according to cross section probabilities. The code also includes photoionisation processes of air molecules by photons emitted by excited constituents. The paper describes the code and presents some results of streamer development at 70 km altitude in the mesosphere where electrical discharges (sprites) are generated above severe thunderstorms and at ∼10 km relevant for lightning and thundercloud electrification. The code is used to study acceleration of thermal seed electrons in streamers and to understand the conditions under which electrons may reach energies in the runaway regime. This is the first study in air, with a particle model with realistic spatial dependencies of the electrostatic field. It is shown that at 1 atm pressure the electric field must exceed ∼7.5 times the breakdown field to observe runaway electrons in a constant electric field. This value is close to the field where the electric force on an electron equals the maximum frictional force on an electron - found at ∼100 eV. It is also found that this value is reached in a negative streamer tip at 10 km altitude when the background electric field equals ∼3 times the
PiCode: A New Picture-Embedding 2D Barcode.
Chen, Changsheng; Huang, Wenjian; Zhou, Baojian; Liu, Chenchen; Mow, Wai Ho
2016-08-01
Nowadays, 2D barcodes have been widely used as an interface to connect potential customers and advertisement contents. However, the appearance of a conventional 2D barcode pattern is often too obtrusive for integrating into an aesthetically designed advertisement. Besides, no human readable information is provided before the barcode is successfully decoded. This paper proposes a new picture-embedding 2D barcode, called PiCode, which mitigates these two limitations by equipping a scannable 2D barcode with a picturesque appearance. PiCode is designed with careful considerations on both the perceptual quality of the embedded image and the decoding robustness of the encoded message. Comparisons with the existing beautified 2D barcodes show that PiCode achieves one of the best perceptual qualities for the embedded image, and maintains a better tradeoff between image quality and decoding robustness in various application conditions. PiCode has been implemented in the MATLAB on a PC and some key building blocks have also been ported to Android and iOS platforms. Its practicality for real-world applications has been successfully demonstrated. PMID:27249833
Elimination of the numerical Cerenkov instability for spectral EM-PIC codes
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2015-07-01
When using an electromagnetic particle-in-cell (EM-PIC) code to simulate a relativistically drifting plasma, a violent numerical instability known as the numerical Cerenkov instability (NCI) occurs. The NCI is due to the unphysical coupling of electromagnetic waves on a grid to wave-particle resonances, including aliased resonances, i.e., ω + 2 πμ / Δt =(k1 + 2 πν1 / Δx1) v0, where μ and ν1 refer to the time and space aliases and the plasma is drifting relativistically at velocity v0 in the 1 ˆ -direction. We extend our previous work Xu et al. (2013) by recasting the numerical dispersion relation of a relativistically drifting plasma into a form which shows explicitly how the instability results from the coupling modes which are purely transverse electromagnetic (EM) modes and purely longitudinal modes in the rest frame of the plasma for each time and space aliasing. The dispersion relation for each μ and ν1 is the product of the dispersion relation of these two modes set equal to a coupling term that vanishes in the continuous limit. The new form of the numerical dispersion relation provides an accurate method of systematically calculating the growth rate and location of the mode in the fundamental Brillouin zone for any Maxwell solver for each μ and ν1. We then focus on the spectral Maxwell solver and systematically discuss its NCI modes. We show that the second fastest growing NCI mode for the spectral solver corresponds to μ =ν1 = 0, that it has a growth rate approximately one order of magnitude smaller than the fastest growing μ = 0 and ν1 = 1 mode, and that its location in the k space fundamental Brillouin zone is sensitive to the grid size and time step. Based on these studies, strategies to systematically eliminate the NCI modes for a spectral solver are developed. We apply these strategies to both relativistic collisionless shock and LWFA simulations, and demonstrate that high-fidelity multi-dimensional simulations of drifting plasmas
NASA Astrophysics Data System (ADS)
Yu, Peicheng; Xu, Xinlu; Decyk, Viktor K.; An, Weiming; Vieira, Jorge; Tsung, Frank S.; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2014-06-01
Simulating laser wakefield acceleration (LWFA) in a Lorentz boosted frame in which the plasma drifts towards the laser with vb can speed up the simulation by factors of γb2=(1. In these simulations the relativistic drifting plasma inevitably induces a high frequency numerical instability that contaminates the interesting physics. Various approaches have been proposed to mitigate this instability. One approach is to solve Maxwell equations in Fourier space (a spectral solver) as this has been shown to suppress the fastest growing modes of this instability in simple test problems using a simple low pass or "ring" or "shell" like filters in Fourier space. We describe the development of a fully parallelized, multi-dimensional, particle-in-cell code that uses a spectral solver to solve Maxwell's equations and that includes the ability to launch a laser using a moving antenna. This new EM-PIC code is called UPIC-EMMA and it is based on the components of the UCLA PIC framework (UPIC). We show that by using UPIC-EMMA, LWFA simulations in the boosted frames with arbitrary γb can be conducted without the presence of the numerical instability. We also compare the results of a few LWFA cases for several values of γb, including lab frame simulations using OSIRIS, an EM-PIC code with a finite-difference time domain (FDTD) Maxwell solver. These comparisons include cases in both linear and nonlinear regimes. We also investigate some issues associated with numerical dispersion in lab and boosted frame simulations and between FDTD and spectral solvers.
2D MIMO Network Coding with Inter-Route Interference Cancellation
NASA Astrophysics Data System (ADS)
Tran, Gia Khanh; Sakaguchi, Kei; Ono, Fumie; Araki, Kiyomichi
Infrastructure wireless mesh network has been attracting much attention due to the wide range of its application such as public wireless access, sensor network, etc. In recent years, researchers have shown that significant network throughput gain can be achieved by employing network coding in a wireless environment. For further improvement of network throughput in one dimensional (1D) topology, Ono et al. proposed to use multiple antenna technique combined with network coding. In this paper, being inspired by MIMO network coding in 1D topology, the authors establish a novel MIMO network coding algorithm for a 2D topology consisting of two crossing routes. In this algorithm, multiple network coded flows are spatially multiplexed. Owing to the efficient usage of radio resource of network coding and co-channel interference cancellation ability of MIMO, the proposed algorithm shows an 8-fold gain in network capacity compared to conventional methods in the best-case scenario.
Snapshot 2D tomography via coded aperture x-ray scatter imaging
MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.
2015-01-01
This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254
Field depth extension of 2D barcode scanner based on wavefront coding and projection algorithm
NASA Astrophysics Data System (ADS)
Zhao, Tingyu; Ye, Zi; Zhang, Wenzi; Huang, Weiwei; Yu, Feihong
2008-03-01
Wavefront coding (WFC) used in 2D barcode scanners can extend the depth of field into a great extent with simpler structure compared to the autofocus microscope system. With a cubic phase mask (CPM) employed in the STOP, blurred images will be obtained in charge coupled device (CCD), which can be restored by digital filters. Direct methods are used widely in real-time restoration with good computational efficiency but with details smoothed. Here, the results of direct method are firstly filtered by hard-threshold function. The positions of the steps can be detected by simple differential operators. With the positions corrected by projection algorithm, the exact barcode information is restored. A wavefront coding system with 7mm effective focal length and 6 F-number is designed as an example. Although with the different magnification, images of different object distances can be restored by one point spread function (PSF) with 200mm object distance. A QR code (Quickly Response Code) of 31mm X 27mm is used as a target object. The simulation results showed that the sharp imaging objective distance is from 80mm to 355mm. The 2D barcode scanner with wavefront coding extends field depth with simple structure, low cost and large manufacture tolerance. This combination of the direct filter and projection algorithm proposed here could get the exact 2D barcode information with good computational efficiency.
Braunmueller, F. Tran, T. M.; Alberti, S.; Genoud, J.; Hogge, J.-Ph.; Tran, M. Q.; Vuillemin, Q.
2015-06-15
A new gyrotron simulation code for simulating the beam-wave interaction using a monomode time-dependent self-consistent model is presented. The new code TWANG-PIC is derived from the trajectory-based code TWANG by describing the electron motion in a gyro-averaged one-dimensional Particle-In-Cell (PIC) approach. In comparison to common PIC-codes, it is distinguished by its computation speed, which makes its use in parameter scans and in experiment interpretation possible. A benchmark of the new code is presented as well as a comparative study between the two codes. This study shows that the inclusion of a time-dependence in the electron equations, as it is the case in the PIC-approach, is mandatory for simulating any kind of non-stationary oscillations in gyrotrons. Finally, the new code is compared with experimental results and some implications of the violated model assumptions in the TWANG code are disclosed for a gyrotron experiment in which non-stationary regimes have been observed and for a critical case that is of interest in high power gyrotron development.
Wall surface temperature calculation in the SolEdge2D-EIRENE transport code
NASA Astrophysics Data System (ADS)
Denis, J.; Pégourié, B.; Bucalossi, J.; Bufferand, H.; Ciraolo, G.; Gardarein, J.-L.; Gaspar, J.; Grisolia, C.; Hodille, E.; Missirlian, M.; Serre, E.; Tamain, P.
2016-02-01
A thermal wall model is developed for the SolEdge2D-EIRENE edge transport code for calculating the surface temperature of the actively-cooled vessel components in interaction with the plasma. This is a first step towards a self-consistent evaluation of the recycling of particles, which depends on the wall surface temperature. The proposed thermal model is built to match both steady-state temperature and time constant of actively-cooled plasma facing components. A benchmark between this model and the Finite Element Modelling code CAST3M is performed in the case of an ITER-like monoblock. An example of application is presented for a SolEdge2D-EIRENE simulation of a medium-power discharge in the WEST tokamak, showing the steady-state wall temperature distribution and the temperature cycling due to an imposed Edge Localised Mode-like event.
A velocity-dependent anomalous radial transport model for (2-D, 2-V) kinetic transport codes
NASA Astrophysics Data System (ADS)
Bodi, Kowsik; Krasheninnikov, Sergei; Cohen, Ron; Rognlien, Tom
2008-11-01
Plasma turbulence constitutes a significant part of radial plasma transport in magnetically confined plasmas. This turbulent transport is modeled in the form of anomalous convection and diffusion coefficients in fluid transport codes. There is a need to model the same in continuum kinetic edge codes [such as the (2-D, 2-V) transport version of TEMPEST, NEO, and the code being developed by the Edge Simulation Laboratory] with non-Maxwellian distributions. We present an anomalous transport model with velocity-dependent convection and diffusion coefficients leading to a diagonal transport matrix similar to that used in contemporary fluid transport models (e.g., UEDGE). Also presented are results of simulations corresponding to radial transport due to long-wavelength ExB turbulence using a velocity-independent diffusion coefficient. A BGK collision model is used to enable comparison with fluid transport codes.
XPDC2-R{theta} a two-dimensional electrostatic PIC code
Birdsall, C.K.; Cooperberg, D.; Gopinath, V.P.; Mirrashidi, P.; Vahedi, V.; Verboncoeur, J.
1995-12-31
A two dimensional particle-in-cell simulation has been written using a cylindrical R-{theta} Poisson field solver. The simulator is capable of simulating coaxial structures with and without a central conductor. In the presence of a central conductor, an external circuit consisting of V,I sources and R-L-C elements can be self-consistently simulated with the plasma equations. The simulation model includes the PIC-MCC package to model collisions between charged particles and neutral species. The field solve in the {theta} direction can be done using finite-difference or Fourier transforms. The simulator is currently being used to study the diocotron and Kelvin-Helmholtz instabilities. The ability to generate movies to study time-varying phenomenon will be discussed. In addition, comparisons with theory and 1D models will also be presented.
CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
NASA Astrophysics Data System (ADS)
Leboeuf, Jean-Noel; Decyk, Viktor; Newman, David; Sanchez, Raul
2013-10-01
The massively parallel, 2D domain-decomposed, nonlinear, 3D, toroidal, electrostatic, gyrokinetic, Particle in Cell (PIC), Cartesian geometry UCAN2 code, with particle ions and adiabatic electrons, has been ported to two emerging mainframes. These two computers, one at NERSC in the US built by Cray named Edison and the other at the Barcelona Supercomputer Center (BSC) in Spain built by IBM named MareNostrum III (MNIII) just happen to share the same Intel ``Sandy Bridge'' processors. The successful port of UCAN2 to MNIII which came online first has enabled us to be up and running efficiently in record time on Edison. Overall, the performance of UCAN2 on Edison is superior to that on MNIII, particularly at large numbers of processors (>1024) for the same Intel IFORT compiler. This appears to be due to different MPI modules (OpenMPI on MNIII and MPICH2 on Edison) and different interconnection networks (Infiniband on MNIII and Cray's Aries on Edison) on the two mainframes. Details of these ports and comparative benchmarks are presented. Work supported by OFES, USDOE, under contract no. DE-FG02-04ER54741 with the University of Alaska at Fairbanks.
Laure, Chloé; Karamessini, Denise; Milenkovic, Olgica; Charles, Laurence; Lutz, Jean-François
2016-08-26
A 2D approach was studied for the design of polymer-based molecular barcodes. Uniform oligo(alkoxyamine amide)s, containing a monomer-coded binary message, were synthesized by orthogonal solid-phase chemistry. Sets of oligomers with different chain-lengths were prepared. The physical mixture of these uniform oligomers leads to an intentional dispersity (1st dimension fingerprint), which is measured by electrospray mass spectrometry. Furthermore, the monomer sequence of each component of the mass distribution can be analyzed by tandem mass spectrometry (2nd dimension sequencing). By summing the sequence information of all components, a binary message can be read. A 4-bytes extended ASCII-coded message was written on a set of six uniform oligomers. Alternatively, a 3-bytes sequence was written on a set of five oligomers. In both cases, the coded binary information was recovered. PMID:27484303
Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS
NASA Astrophysics Data System (ADS)
Tsung, F. S.; Mori, W. B.; Winjum, B. J.
2014-10-01
We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.
Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code
Naik,D.; Ben-Zvi, I.
2009-01-02
A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.
Automated design of coupled RF cavities using 2-D and 3-D codes
Smith, Peter; Christiansen, D. W.; Greninger, P. T.; Spalek, G.
2001-01-01
Coupled RF cavities in the Accelerator Production of Tritium Project have been designed using a procedure in which a 2-D code (CCT) searches for a design that meets frequency and coupling requirements, while a 3-D code (HFSS) is used to obtain empirical factors used by CCT to characterize the coupling slot between cavities. Using assumed values of the empirical factors, CCT runs the Superfish code iteratively to solve for a trial cavity design that has a specified frequency and coupling. The frequency shifts and the coupling constant k of the slot are modeled in CCT using a perturbation theory, the results of which are adjusted using the empirical factors. Given a trial design, HFSS is run using periodic boundary conditions to obtain a mode spectrum. The mode spectrum is processed using the DISPER code to obtain values of the coupling and the frequencies with slots. These results are used to calculate a new set of empirical factors, which are fed back into CCT for another design iteration. Cold models have been fabricated and tested to validate the codes, and results will be presented.
Assessment of the 2D MOC solver in MPACT: Michigan parallel characteristics transport code
Collins, B.; Kochunas, B.; Downar, T.
2013-07-01
MPACT (Michigan Parallel Characteristics Transport Code) is a new reactor analysis tool being developed by researchers at the University of Michigan as an advanced pin-resolved transport capability within VERA (Virtual Environment for Reactor Analysis). VERA is the end-user reactor simulation tool being developed by the Consortium for the Advanced Simulation of Light Water Reactors (CASL). The MPACT development project is itself unique for the way it is changing how students perform research to achieve the instructional and research goals of an academic institution, while providing immediate value to the industry. One of the major computational pieces in MPACT is the 2D MOC solver. It is critical that the 2D MOC solver provide an efficient, accurate, and robust solution over a broad range of reactor operating conditions. The C5G7 benchmark is first used to test the accuracy of the method with a fixed set of cross-sections. The VERA Core Physics Progression Problems are then used to compare the accuracy of both the 2D transport solver and also the cross-section treatments. (authors)
Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.
2004-04-19
We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.
A bounded two dimensional PIC-MCC code for simulating processing plasmas
Vahedi, V.; Birdsall, C.K.; Lieberman, M.A.
1992-12-01
The authors have developed a bounded two dimensional particle-in-cell simulation code with a Monte Carlo Collision (MCC) handler to study processing discharges. The MCC package models the collisions, between charged and neutral particles, which are needed to obtain a self sustained plasma and the proper electron and ion energy loss mechanisms. The simulations are aimed at determining uniformity of particle fluxes (magnitude and angle) across a typical target. Some early results are obtained from an x-y model with electrode area ratio of 6:1; a similar r-z model is in progress which can be used to study cylindrical chambers.
DOD-SBIR Structured Multi-Resolution PIC Code for Electromagnetic Plasma Simulations, Final Report
Vay, J L; Grote, D P; Friedman, A
2010-04-22
A novel electromagnetic solver with mesh refinement capability was implemented in Warp. The solver allows for calculations in 2-1/2 and 3 dimensions, includes the standard Yee stencil, and the Cole-Karkkainen stencil for lower numerical dispersion along the principal axes. Warp implementation of the Cole-Karkkainen stencil includes an extension to perfectly matched layers (PML) for absorption of waves, and is preserving the conservation property of charge conserving current deposition schemes, like the Buneman-Villanesor and Esirkepov methods. Warp's mesh refinement framework (originally developed for electrostatic calculations) was augmented to allow for electromagnetic capability, following the methodology presented in [1] extended to an arbitrary number of refinement levels. Other developments include a generalized particle injection method, internal conductors using stair-cased approximation, and subcycling of particle pushing. The solver runs in parallel using MPI message passing, with a choice at runtime of 1D, 2D and 3D domain decomposition, and is shown to scale linearly on a test problem up-to 32,768 CPUs. The novel solver was tested on the modeling of filamentation instability, fast ignition, ion beam induced plasma wake, and laser plasma acceleration.
NASA Astrophysics Data System (ADS)
Gillespie, K. M.; Speirs, D. C.; Ronald, K.; McConville, S. L.; Phelps, A. D. R.; Bingham, R.; Cross, A. W.; Robertson, C. W.; Whyte, C. G.; He, W.; Vorgul, I.; Cairns, R. A.; Kellett, B. J.
2008-12-01
Auroral Kilometric Radiation (AKR), occurs naturally in the polar regions of the Earth's magnetosphere where electrons are accelerated by electric fields into the increasing planetary magnetic dipole. Here conservation of the magnetic moment converts axial to rotational momentum forming a horseshoe distribution in velocity phase space. This distribution is unstable to cyclotron emission with radiation emitted in the X-mode. In a scaled laboratory reproduction of this process, a 75-85 keV electron beam of 5-40 A was magnetically compressed by a system of solenoids and emissions were observed for cyclotron frequencies of 4.42 GHz and 11.7 GHz resonating with near cut-off TE0,1 and TE0,3 modes, respectively. Here we compare these measurements with numerical predictions from the 3D PiC code KARAT. The 3D simulations accurately predicted the radiation modes and frequencies produced by the experiment. The predicted conversion efficiency between electron kinetic and wave field energy of around 1% is close to the experimental measurements and broadly consistent with quasi-linear theoretical analysis and geophysical observations.
Modelling 2001 lahars at Popocatépetl volcano using FLO2D numerical code
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2013-12-01
Popocatépetl volcano is located on the central part of the Transmexican Volcanic Belt. It is one of the most active volcanoes in Mexico and endanger more than 25 million people that lives in its surroundings. In the last months, the renewal of its volcanic activity put into alert scientific community. One of the possible scenarios is the 2001 explosive activity, which was characterized by a 8 km eruptive column and the subsequent formation of pumice flows up to 4 km from the crater. Lahars were generated few hours after, remobilizing the new deposits towards NE flank of the volcano, along Huiloac Gorge, almost reaching Santiago Xalitzintla town (Capra et al., 2004). The occurrence of a similar scenario makes very important to reproduce this event to delimitate accurately lahar hazard zones. In this work, 2001 lahar deposit is modeled using FLO2D numerical code. Geophone data is used to reconstruct initial hydrograph and sediment concentration. Sensitivity study of most important parameters used by this code like Manning, and α and β coefficients was conducted in order to achieve a good simulation. Results obtained were compared with field data and demonstrated a good agreement in thickness and flow distribution. A comparison with previously published data with laharZ program (Muñoz-Salinas, 2009) is also made. Additionally, lahars with fluctuating sediment concentrations but with similar volume are simulated to observe the influence of the rheological behavior on lahar distribution.
Embedded morphological dilation coding for 2D and 3D images
NASA Astrophysics Data System (ADS)
Lazzaroni, Fabio; Signoroni, Alberto; Leonardi, Riccardo
2002-01-01
Current wavelet-based image coders obtain high performance thanks to the identification and the exploitation of the statistical properties of natural images in the transformed domain. Zerotree-based algorithms, as Embedded Zerotree Wavelets (EZW) and Set Partitioning In Hierarchical Trees (SPIHT), offer high Rate-Distortion (RD) coding performance and low computational complexity by exploiting statistical dependencies among insignificant coefficients on hierarchical subband structures. Another possible approach tries to predict the clusters of significant coefficients by means of some form of morphological dilation. An example of a morphology-based coder is the Significance-Linked Connected Component Analysis (SLCCA) that has shown performance which are comparable to the zerotree-based coders but is not embedded. A new embedded bit-plane coder is proposed here based on morphological dilation of significant coefficients and context based arithmetic coding. The algorithm is able to exploit both intra-band and inter-band statistical dependencies among wavelet significant coefficients. Moreover, the same approach is used both for two and three-dimensional wavelet-based image compression. Finally we the algorithms are tested on some 2D images and on a medical volume, by comparing the RD results to those obtained with the state-of-the-art wavelet-based coders.
Numerical experiments on unstructured PIC stability.
Day, David Minot
2011-04-01
Particle-In-Cell (PIC) is a method for plasmas simulation. Particles are pushed with Verlet time integration. Fields are modeled using finite differences on a tensor product mesh (cells). The Unstructured PIC methods studied here use instead finite element discretizations on unstructured (simplicial) meshes. PIC is constrained by stability limits (upper bounds) on mesh and time step sizes. Numerical evidence (2D) and analysis will be presented showing that similar bounds constrain unstructured PIC.
Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers
BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.
2001-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.
Differential Sensitivity Theory applied to the MESA2D code for multi-material problems
Henninger, R.J.; Maudlin, P.J.; Harstad, E.N.
1996-05-01
The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and {alpha}{sub i} is a calculation input (parameter {alpha}{sub i}), then {partial_derivative}R/{partial_derivative}{alpha}{sub i} is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem {ital all} n sensitivities can be obtained by integrating the solutions from only {ital two} calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given. {copyright} {ital 1996 American Institute of Physics.}
Differential Sensitivity Theory applied to the MESA2D code for multi-material problems
NASA Astrophysics Data System (ADS)
Henninger, R. J.; Maudlin, P. J.; Harstad, E. N.
1996-05-01
The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and αi is a calculation input (parameter αi), then ∂R/∂αi is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given.
Differential sensitivity theory applied to the MESA2D code for multi-material problems
Henninger, R.J.; Maudlin, P.J.; Harstad, E.N.
1995-09-01
The technique called Differential Sensitivity Theory (DST) is extended to the multi-component system of equations solved by the MESA2D hydrocode. DST uses adjoint techniques to determine exact sensitivity derivatives, i.e., if R is a calculation result of interest (response R) and {alpha}{sub i} is a calculation input (parameter {alpha}{sub i}), then {partial_derivative}R/{partial_derivative}{alpha}{sub i} is defined as the sensitivity. The advantage of using DST is that for an n-parameter problem all n sensitivities can be obtained by integrating the solutions from only two calculations, a MESA calculation and its corresponding adjoint calculation using an Adjoint Continuum Mechanics (ACM) code. Previous papers have described application of the technique to one-dimensional, single-material problems. This work presents the derivation and solution of the additional adjoint equations for the purpose of computing sensitivities for two-dimensional, multi-component problems. As an example, results for a multi-material flyer plate impact problem featuring an oblique impact are given.
MULTI2D - a computer code for two-dimensional radiation hydrodynamics
NASA Astrophysics Data System (ADS)
Ramis, R.; Meyer-ter-Vehn, J.; Ramírez, J.
2009-06-01
Simulation of radiation hydrodynamics in two spatial dimensions is developed, having in mind, in particular, target design for indirectly driven inertial confinement energy (IFE) and the interpretation of related experiments. Intense radiation pulses by laser or particle beams heat high-Z target configurations of different geometries and lead to a regime which is optically thick in some regions and optically thin in others. A diffusion description is inadequate in this situation. A new numerical code has been developed which describes hydrodynamics in two spatial dimensions (cylindrical R-Z geometry) and radiation transport along rays in three dimensions with the 4 π solid angle discretized in direction. Matter moves on a non-structured mesh composed of trilateral and quadrilateral elements. Radiation flux of a given direction enters on two (one) sides of a triangle and leaves on the opposite side(s) in proportion to the viewing angles depending on the geometry. This scheme allows to propagate sharply edged beams without ray tracing, though at the price of some lateral diffusion. The algorithm treats correctly both the optically thin and optically thick regimes. A symmetric semi-implicit (SSI) method is used to guarantee numerical stability. Program summaryProgram title: MULTI2D Catalogue identifier: AECV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AECV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 151 098 No. of bytes in distributed program, including test data, etc.: 889 622 Distribution format: tar.gz Programming language: C Computer: PC (32 bits architecture) Operating system: Linux/Unix RAM: 2 Mbytes Word size: 32 bits Classification: 19.7 External routines: X-window standard library (libX11.so) and corresponding heading files (X11/*.h) are
A novel 2D wavelength-time chaos code in optical CDMA system
NASA Astrophysics Data System (ADS)
Zhang, Qi; Xin, Xiangjun; Wang, Yongjun; Zhang, Lijia; Yu, Chongxiu; Meng, Nan; Wang, Houtian
2012-11-01
Two-dimensional wavelength-time chaos code is proposed and constructed for a synchronous optical code division multiple access system. The access performance is compared between one-dimensional chaos code, WDM/chaos code and the proposed code. Comparison shows that two-dimensional wavelength-time chaos code possesses larger capacity, better spectral efficiency and bit-error ratio than WDM/chaos combinations and one-dimensional chaos code.
Ren, X; Domier, C W; Kramer, G; Luhmann, N C; Muscatello, C M; Shi, L; Tobias, B J; Valeo, E
2014-11-01
A synthetic microwave imaging reflectometer (MIR) diagnostic employing the full-wave reflectometer code (FWR2D) has been developed and is currently being used to guide the design of real systems, such as the one recently installed on DIII-D. The FWR2D code utilizes real plasma profiles as input, and it is combined with optical simulation tools for synthetic diagnostic signal generation. A detailed discussion of FWR2D and the process to generate the synthetic signal are presented in this paper. The synthetic signal is also compared to a prescribed density fluctuation spectrum to quantify the imaging quality. An example is presented with H-mode-like plasma profiles derived from a DIII-D discharge, where the MIR focal is located in the pedestal region. It is shown that MIR is suitable for diagnosing fluctuations with poloidal wavenumber up to 2.0 cm(-1) and fluctuation amplitudes less than 5%. PMID:25430276
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
A 2-D orientation-adaptive prediction filter in lifting structures for image coding.
Gerek, Omer N; Cetin, A Enis
2006-01-01
Lifting-style implementations of wavelets are widely used in image coders. A two-dimensional (2-D) edge adaptive lifting structure, which is similar to Daubechies 5/3 wavelet, is presented. The 2-D prediction filter predicts the value of the next polyphase component according to an edge orientation estimator of the image. Consequently, the prediction domain is allowed to rotate +/-45 degrees in regions with diagonal gradient. The gradient estimator is computationally inexpensive with additional costs of only six subtractions per lifting instruction, and no multiplications are required. PMID:16435541
NASA Astrophysics Data System (ADS)
Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu
2013-09-01
Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.
NASA Astrophysics Data System (ADS)
Krause, M.; Camenzind, M.
2001-12-01
In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller
50 CFR Table 2d to Part 679 - Species Codes-Non-FMP Species
Code of Federal Regulations, 2011 CFR
2011-10-01
... (unspecified) 625 Lamprey, pacific 600 Lingcod 130 Lumpsucker 216 Pacific flatnose 260 Pacific hagfish 212 Pacific hake 112 Pacific lamprey 600 Pacific saury 220 Pacific tomcod 250 Poacher (Family Algonidae) 219... description Code Arctic char, anadromous 521 Dolly varden, anadromous 531 Eels or eel-like fish 210 Eel,...
TOPAZ - a finite element heat conduction code for analyzing 2-D solids
Shapiro, A.B.
1984-03-01
TOPAZ is a two-dimensional implicit finite element computer code for heat conduction analysis. This report provides a user's manual for TOPAZ and a description of the numerical algorithms used. Sample problems with analytical solutions are presented. TOPAZ has been implemented on the CRAY and VAX computers.
Electromagnetic direct implicit PIC simulation
Langdon, A.B.
1983-03-29
Interesting modelling of intense electron flow has been done with implicit particle-in-cell simulation codes. In this report, the direct implicit PIC simulation approach is applied to simulations that include full electromagnetic fields. The resulting algorithm offers advantages relative to moment implicit electromagnetic algorithms and may help in our quest for robust and simpler implicit codes.
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
A detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows including a self-consistent treatment of the effects of magnetic fields and radiation transfer is presented. Attention is given to the hydrodynamic (HD) algorithms which form the foundation for the more complex MHD and radiation HD algorithms. The effect of self-gravity on the flow dynamics is accounted for by an iterative solution of the sparse-banded matrix resulting from discretizing the Poisson equation in multidimensions. The results of an extensive series of HD test problems are presented. A detailed description of the MHD algorithms in ZEUS-2D is presented. A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-constrained transport method provides for the accurate evolution of all modes of MHD wave families.
NASA Astrophysics Data System (ADS)
Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko
2015-04-01
Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the
2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation
NASA Technical Reports Server (NTRS)
Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.
2009-01-01
A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.
Efficient simulation of pitch angle collisions in a 2+2-D Eulerian Vlasov code
NASA Astrophysics Data System (ADS)
Banks, Jeff; Berger, R.; Brunner, S.; Tran, T.
2014-10-01
Here we discuss pitch angle scattering collisions in the context of the Eulerian-based kinetic code LOKI that evolves the Vlasov-Poisson system in 2+2-dimensional phase space. The collision operator is discretized using 4th order accurate conservative finite-differencing. The treatment of the Vlasov operator in phase-space uses an approach based on a minimally diffuse, fourth-order-accurate discretization (Banks and Hittinger, IEEE T. Plasma Sci. 39, 2198). The overall scheme is therefore discretely conservative and controls unphysical oscillations. Some details of the numerical scheme will be presented, and the implementation on modern highly concurrent parallel computers will be discussed. We will present results of collisional effects on linear and non-linear Landau damping of electron plasma waves (EPWs). In addition we will present initial results showing the effect of collisions on the evolution of EPWs in two space dimensions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344 and funded by the LDRD program at LLNL under project tracking code 12-ERD-061.
Candel, A.; Kabel, A.; Lee, L.; Li, Z.; Limborg, C.; Ng, C.; Prudencio, E.; Schussman, G.; Uplenchwar, R.; Ko, K.; /SLAC
2009-06-19
Over the past years, SLAC's Advanced Computations Department (ACD), under SciDAC sponsorship, has developed a suite of 3D (2D) parallel higher-order finite element (FE) codes, T3P (T2P) and Pic3P (Pic2P), aimed at accurate, large-scale simulation of wakefields and particle-field interactions in radio-frequency (RF) cavities of complex shape. The codes are built on the FE infrastructure that supports SLAC's frequency domain codes, Omega3P and S3P, to utilize conformal tetrahedral (triangular)meshes, higher-order basis functions and quadratic geometry approximation. For time integration, they adopt an unconditionally stable implicit scheme. Pic3P (Pic2P) extends T3P (T2P) to treat charged-particle dynamics self-consistently using the PIC (particle-in-cell) approach, the first such implementation on a conformal, unstructured grid using Whitney basis functions. Examples from applications to the International Linear Collider (ILC), Positron Electron Project-II (PEP-II), Linac Coherent Light Source (LCLS) and other accelerators will be presented to compare the accuracy and computational efficiency of these codes versus their counterparts using structured grids.
2D Resistive Magnetohydrodynamics Calculations with an Arbitrary Lagrange Eulerian Code
NASA Astrophysics Data System (ADS)
Rousculp, C. L.; Gianakon, T. A.; Lipnikov, K. N.; Nelson, E. M.
2015-11-01
Single fluid resistive MHD is useful for modeling Z-pinch configurations in cylindrical geometry. One such example is thin walled liners for shock physics or HEDP experiments driven by capacitor banks such as the LANL's PHELIX or Sandia-Z. MHD is also useful for modeling high-explosive-driven flux compression generators (FCGs) and their high-current switches. The resistive MHD in our arbitrary Lagrange Eulerian (ALE) code operates in one and two dimensions in both Cartesian and cylindrical geometry. It is implemented as a time-step split operator, which consists of, ideal MHD connected to the explicit hydro momentum and energy equations and a second order mimetic discretization solver for implicit solution of the magnetic diffusion equation. In a staggered grid scheme, a single-component of cell-centered magnetic flux is conserved in the Lagrangian frame exactly, while magnetic forces are accumulated at the nodes. Total energy is conserved to round off. Total flux is conserved under the ALE relaxation and remap. The diffusion solver consistently computes Ohmic heating. Both Neumann and Dirichlet boundary conditions are available with coupling to external circuit models. Example calculations will be shown.
A 2D forward and inverse code for streaming potential problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.
2013-12-01
The self-potential method corresponds to the passive measurement of the electrical field in response to the occurrence of natural sources of current in the ground. One of these sources corresponds to the streaming current associated with the flow of the groundwater. We can therefore apply the self- potential method to recover non-intrusively some information regarding the groundwater flow. We first solve the forward problem starting with the solution of the groundwater flow problem, then computing the source current density, and finally solving a Poisson equation for the electrical potential. We use the finite-element method to solve the relevant partial differential equations. In order to reduce the number of (petrophysical) model parameters required to solve the forward problem, we introduced an effective charge density tensor of the pore water, which can be determined directly from the permeability tensor for neutral pore waters. The second aspect of our work concerns the inversion of the self-potential data using Tikhonov regularization with smoothness and weighting depth constraints. This approach accounts for the distribution of the electrical resistivity, which can be independently and approximately determined from electrical resistivity tomography. A numerical code, SP2DINV, has been implemented in Matlab to perform both the forward and inverse modeling. Three synthetic case studies are discussed.
NASA Astrophysics Data System (ADS)
Velioǧlu, Deniz; Cevdet Yalçıner, Ahmet; Zaytsev, Andrey
2016-04-01
Tsunamis are huge waves with long wave periods and wave lengths that can cause great devastation and loss of life when they strike a coast. The interest in experimental and numerical modeling of tsunami propagation and inundation increased considerably after the 2011 Great East Japan earthquake. In this study, two numerical codes, FLOW 3D and NAMI DANCE, that analyze tsunami propagation and inundation patterns are considered. Flow 3D simulates linear and nonlinear propagating surface waves as well as long waves by solving three-dimensional Navier-Stokes (3D-NS) equations. NAMI DANCE uses finite difference computational method to solve 2D depth-averaged linear and nonlinear forms of shallow water equations (NSWE) in long wave problems, specifically tsunamis. In order to validate these two codes and analyze the differences between 3D-NS and 2D depth-averaged NSWE equations, two benchmark problems are applied. One benchmark problem investigates the runup of long waves over a complex 3D beach. The experimental setup is a 1:400 scale model of Monai Valley located on the west coast of Okushiri Island, Japan. Other benchmark problem is discussed in 2015 National Tsunami Hazard Mitigation Program (NTHMP) Annual meeting in Portland, USA. It is a field dataset, recording the Japan 2011 tsunami in Hilo Harbor, Hawaii. The computed water surface elevation and velocity data are compared with the measured data. The comparisons showed that both codes are in fairly good agreement with each other and benchmark data. The differences between 3D-NS and 2D depth-averaged NSWE equations are highlighted. All results are presented with discussions and comparisons. Acknowledgements: Partial support by Japan-Turkey Joint Research Project by JICA on earthquakes and tsunamis in Marmara Region (JICA SATREPS - MarDiM Project), 603839 ASTARTE Project of EU, UDAP-C-12-14 project of AFAD Turkey, 108Y227, 113M556 and 213M534 projects of TUBITAK Turkey, RAPSODI (CONCERT_Dis-021) of CONCERT
NASA Astrophysics Data System (ADS)
Pfefferle, David; Aiba, Nobuyuki; Graves, Jonathan P.; Cooper, Wilfred A.
2014-10-01
In the framework of hybrid kinetic-MHD with plasma rotation, this project focuses on computing, via a delta-f PIC scheme, the non-adiabatic contribution to the MHD pressure tensor from supra-thermal populations. The orbit code VENUS-LEVIS is employed to evolve an ensemble of weighted markers in the rotating magnetic equilibria produced by the MHD stability code MINERVA. The linearly perturbed Vlasov equation is solved by evolving the marker weights in the presence of MINERVA's most unstable MHD modes. Moments of the perturbed distribution are sequenced to yield the hot ion kinetic response. The Laplace transform of the perturbed parallel and perpendicular pressure is calculated at the resonance as a function of the radial position and the poloidal and toroidal mode number. The resulting profiles are fed back into MINERVA as an additional source term in the MHD force balance equation. The mode structure, the frequency and the growth rate of the perturbations are modified due to resonances with the hot particles' bounce/transit motion and their toroidal precession drift. The effect of toroidal plasma rotation on the mode stability is assessed.
Hallquist, J.O.
1982-02-01
This revised report provides an updated user's manual for DYNA2D, an explicit two-dimensional axisymmetric and plane strain finite element code for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. A contact-impact algorithm permits gaps and sliding along material interfaces. By a specialization of this algorithm, such interfaces can be rigidly tied to admit variable zoning without the need of transition regions. Spatial discretization is achieved by the use of 4-node solid elements, and the equations-of motion are integrated by the central difference method. An interactive rezoner eliminates the need to terminate the calculation when the mesh becomes too distorted. Rather, the mesh can be rezoned and the calculation continued. The command structure for the rezoner is described and illustrated by an example.
NASA Astrophysics Data System (ADS)
Stone, James M.; Norman, Michael L.
1992-06-01
In this, the second of a series of three papers, we continue a detailed description of ZEUS-2D, a numerical code for the simulation of fluid dynamical flows in astrophysics including a self-consistent treatment of the effects of magnetic fields and radiation transfer. In this paper, we give a detailed description of the magnetohydrodynamical (MHD) algorithms in ZEUS-2D. The recently developed constrained transport (CT) algorithm is implemented for the numerical evolution of the components of the magnetic field for MHD simulations. This formalism guarantees the numerically evolved field components will satisfy the divergence-free constraint at all times. We find, however, that the method used to compute the electromotive forces must be chosen carefully to propagate accurately all modes of MHD wave families (in particular shear Alfvén waves). A new method of computing the electromotive force is developed using the method of characteristics (MOC). It is demonstrated through the results of an extensive series of MHD test problems that the resulting hybrid MOC-CT method provides for the accurate evolution of all modes of MHD wave families.
Eyler, L.L.; Budden, M.J.
1985-03-01
The objective of this work is to assess prediction capabilities and features of the MAGNUM-2D computer code in relation to its intended use in the Basalt Waste Isolation Project (BWIP). This objective is accomplished through a code verification and benchmarking task. Results are documented which support correctness of prediction capabilities in areas of intended model application. 10 references, 43 figures, 11 tables.
NASA Astrophysics Data System (ADS)
Chen, Zaigao
2016-07-01
Explosive emission cathodes (EECs) are adopted in relativistic backward wave oscillators (RBWOs) to generate intense relativistic electron beam. The emission uniformity of the EEC can render saturation of the power generation unstable and the output mode impure. However, the direct measurement of the plasma parameters on the cathode surface is quite difficult and there are very few related numerical study reports about this issue. In this paper, a self-developed three-dimensional conformal fully electromagnetic particle in cell code is used to study the effect of emission uniformity on the X-band RBWO; the electron explosive emission model and the field emission model are both implemented in the same cathode surface, and the local field enhancement factor is also considered in the field emission model. The RBWO with a random nonuniform EEC is thoroughly studied using this code; the simulation results reveal that when the area ratio of cathode surface for electron explosive emission is 80%, the output power is unstable and the output mode is impure. When the annular EEC does not emit electron in the angle range of 30°, the RBWO can also operate normally.
NASA Astrophysics Data System (ADS)
Kirnev, G.; Fundamenski, W.; Corrigan, G.
2007-06-01
The scrape-off layer (SOL) of the JET tokamak has been modelled using a two-dimensional plasma/neutral code, EDGE2D/NIMBUS, with variable transport coefficients, chosen according to nine candidate theories for radial heat transport in the SOL. Comparison of the radial power width on the outer divertor plates, λq, predicted by modelling and measured experimentally in L-mode and ELM-averaged H-mode at JET is presented. Transport coefficients based on classical and neo-classical ion conduction are found to offer the best agreement with experimentally measured λq magnitude and scaling with target power, upstream density and toroidal field. These results reinforce the findings of an earlier study, based on a simplified model of the SOL (Chankin 1997 Plasma Phys. Control. Fusion 39 1059), and support the earlier estimate of the power width at the entrance of the outer divertor volume in ITER, λq ap 4 mm mapped to the outer mid-plane (Fundamenski et al 2004 Nucl. Fusion 44 20).
NASA Astrophysics Data System (ADS)
Barbancho, Ana M.; Tardón, Lorenzo J.; Barbancho, Isabel
2010-12-01
In this paper, a piano chords detector based on parallel interference cancellation (PIC) is presented. The proposed system makes use of the novel idea of modeling a segment of music as a third generation mobile communications signal, specifically, as a CDMA (Code Division Multiple Access) signal. The proposed model considers each piano note as a CDMA user in which the spreading code is replaced by a representative note pattern. The lack of orthogonality between the note patterns will make necessary to design a specific thresholding matrix to decide whether the PIC outputs correspond to the actual notes composing the chord or not. An additional stage that performs an octave test and a fifth test has been included that improves the error rate in the detection of these intervals that are specially difficult to detect. The proposed system attains very good results in both the detection of the notes that compose a chord and the estimation of the polyphony number.
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali
2014-01-01
Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168
Accuracy Analysis of the PIC Method
NASA Astrophysics Data System (ADS)
Verboncoeur, J. P.; Cartwright, K. L.
2000-10-01
The discretization errors for many steps of the classical Particle-in-Cell (PIC) model have been well-studied (C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation, McGraw-Hill, New York, NY (1985).) (R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, McGraw-Hill, New York, NY (1981).). In this work, the errors in the interpolation algorithms, which provide the connection between continuum particles and discrete fields, are described in greater detail. In addition, the coupling of errors between steps in the method is derived. The analysis is carried out for both electrostatic and electromagnetic PIC models, and the results are demonstrated using a bounded one-dimensional electrostatic PIC code (J. P. Verboncoeur et al., J. Comput. Phys. 104, 321-328 (1993).), as well as a bounded two-dimensional electromagnetic PIC code (J. P. Verboncoeur et al., Comp. Phys. Comm. 87, 199-211 (1995).).
NASA Technical Reports Server (NTRS)
Koga, J. K.; Lin, C. S.; Winglee, R. M.
1989-01-01
Injections of nonrelativistic electron beams from an isolated equipotential conductor into a uniform background of plasma and neutral gas were simulated using a 2-D electrostatic particle code. The ionization effects on spacecraft charging are examined by including interactions of electrons with neutral gas. The simulations show that the conductor charging potential decreases with increasing neutral background density due to the production of secondary electrons near the conductor surface. In the spacecraft wake, the background electrons accelerated towards the charged spacecraft produce an enhancement of secondary electrons and ions. Simulations run for longer times indicate that the spacecraft potential is further reduced and short wavelength beam-plasma oscillations appear. The results are applied to explain the spacecraft charging potential measured during the SEPAC experiments from Spacelab 1.
Numerical model of water flow and solute accumulation in vertisols using HYDRUS 2D/3D code
NASA Astrophysics Data System (ADS)
Weiss, Tomáš; Dahan, Ofer; Turkeltub, Tuvia
2015-04-01
boundary to the wall of the crack (so that the solute can accumulate due to evaporation on the crack block wall, and infiltrating fresh water can push the solute further down) - in order to do so, HYDRUS 2D/3D code had to be modified by its developers. Unconventionally, the main fitting parameters were: parameter a and n in the soil water retention curve and saturated hydraulic conductivity. The amount of infiltrated water (within a reasonable range), the infiltration function in the crack and the actual evaporation from the crack were also used as secondary fitting parameters. The model supports the previous findings that significant amount (~90%) of water from rain events must infiltrate through the crack. It was also noted that infiltration from the crack has to be increasing with depth and that the highest infiltration rate should be somewhere between 1-3m. This paper suggests a new way how to model vertisols in semi-arid regions. It also supports the previous findings about vertisols: especially, the utmost importance of soil cracks as preferential pathways for water and contaminants and soil cracks as deep evaporators.
MPI implementation of a generalized implicit algorithm for multi-dimensional PIC simulations
NASA Astrophysics Data System (ADS)
Petrov, George; Davis, Jack
2012-10-01
The implicit 2D3V particle-in-cell (PIC) code developed to study the interaction of short pulse lasers with matter [G. M. Petrov and J. Davis, Computer Phys. Comm. 179, 868 (2008); Phys. Plasmas 18, 073102 (2011)] has been parallelized using MPI (Message Passing Interface). Performance evaluation has been made on a Linux cluster for two typical regimes of PIC operation: ``particle dominated,'' for which the bulk of the computation time is spent on pushing particles, and ``field dominated,'' for which computing the fields is prevalent. The MPI implementation of the code offers a significant numerical speedup, particularly in the ``particle dominated'' regime, which will allow extension to three dimensions and implementation of atomic physics.
NASA Technical Reports Server (NTRS)
Hanson, Donald B.
1994-01-01
A two dimensional linear aeroacoustic theory for rotor/stator interaction with unsteady coupling was derived and explored in Volume 1 of this report. Computer program CUP2D has been written in FORTRAN embodying the theoretical equations. This volume (Volume 2) describes the structure of the code, installation and running, preparation of the input file, and interpretation of the output. A sample case is provided with printouts of the input and output. The source code is included with comments linking it closely to the theoretical equations in Volume 1.
ERIC Educational Resources Information Center
Armstrong, C. J.
1997-01-01
Discusses PICS (Platform for Internet Content Selection), the Centre for Information Quality Management (CIQM), and metadata. Highlights include filtering networked information; the quality of information; and standardizing search engines. (LRW)
Shapiro, A.B.
1983-08-01
The computer code FACET calculates the radiation geometric view factor (alternatively called shape factor, angle factor, or configuration factor) between surfaces for axisymmetric, two-dimensional planar and three-dimensional geometries with interposed third surface obstructions. FACET was developed to calculate view factors for input to finite-element heat-transfer analysis codes. The first section of this report is a brief review of previous radiation-view-factor computer codes. The second section presents the defining integral equation for the geometric view factor between two surfaces and the assumptions made in its derivation. Also in this section are the numerical algorithms used to integrate this equation for the various geometries. The third section presents the algorithms used to detect self-shadowing and third-surface shadowing between the two surfaces for which a view factor is being calculated. The fourth section provides a user's input guide followed by several example problems.
Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.
1995-09-01
Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.
NASA Astrophysics Data System (ADS)
Ji, Jianhua; Wang, Yanfen; Wang, Ke; Xu, Ming; Zhang, Zhipeng; Yang, Shuwen
2013-09-01
A new two-dimensional OOC (optical orthogonal codes) named PC/MOCS is constructed, using PC (prime code) for time spreading and MOCS (modified one-coincidence sequence) for wavelength hopping. Compared with PC/PC, the number of wavelengths for PC/MOCS is not limited to a prime number. Compared with PC/OCS, the length of MOCS need not be expanded to the same length of PC. PC/MOCS can be constructed flexibly, and also can use available wavelengths effectively. Theoretical analysis shows that PC/MOCS can reduce the bit error rate (BER) of OCDMA system, and can support more users than PC/PC and PC/OCS.
TRAC code assessment using data from SCTF Core-III, a large-scale 2D/3D facility
Boyack, B.E.; Shire, P.R.; Harmony, S.C.; Rhee, G.
1988-01-01
Nine tests from the SCTF Core-III configuration have been analyzed using TRAC-PF1/MOD1. The objectives of these assessment activities were to obtain a better understanding of the phenomena occurring during the refill and reflood phases of a large-break loss-of-coolant accident, to determine the accuracy to which key parameters are calculated, and to identify deficiencies in key code correlations and models that provide closure for the differential equations defining thermal-hydraulic phenomena in pressurized water reactors. Overall, the agreement between calculated and measured values of peak cladding temperature is reasonable. In addition, TRAC adequately predicts many of the trends observed in both the integral effect and separate effect tests conducted in SCTF Core-III. The importance of assessment activities that consider potential contributors to discrepancies between the measured and calculated results arising from three sources are described as those related to (1) knowledge about the facility configuration and operation, (2) facility modeling for code input, and (3) deficiencies in code correlations and models. An example is provided. 8 refs., 7 figs., 2 tabs.
ZORNOC: a 1 1/2-D tokamak data analysis code for studying noncircular high beta plasmas
Zurro, B.; Wieland, R.M.; Murakami, M.; Swain, D.W.
1980-03-01
A new tokamak data analysis code, ZORNOC, was developed to study noncircular, high beta plasmas in the Impurity Study Experiment (ISX-B). These plasmas exhibit significant flux surface shifts and elongation in both ohmically heated and beam-heated discharges. The MHD equilibrium flux surface geometry is determined by solving the Grad-Shafranov equation based on: (1) the shape of the outermost flux surface, deduced from the magnetic loop probes; (2) a pressure profile, deduced by means of Thomson scattering data (electrons), charge exchange data (ions), and a Fokker-Planck model (fast ions); and (3) a safety factor profile, determined from the experimental data using a simple model (Z/sub eff/ = const) that is self-consistently altered while the plasma equilibrium is iterated. For beam-heated discharches the beam deposition profile is determined by means of a Monte Carlo scheme and the slowing down of the fast ions by means of an analytical solution of the Fokker-Planck equation. The code also carries out an electron power balance and calculates various confinement parameters. The code is described and examples of its operation are given.
Litvinenko, I. A.; Lykov, V. A.
1997-04-15
The results of numerical simulation of fast electrons motion and generated electro-magnetic fields at the picosecond pulse laser interaction with flat target are presented. The calculations were performed with PM2D code, where relativistic equation of electron motion joint with Maxwell equations is solved by particle method in cells. The efficiency of fast electrons energy conversion to the transverse electromagnetic wave of picosecond duration can reach the value 10{sup -4} for the intensity of ultrashort laser pulse at the target 10{sup 16}-10{sup 17} W/cm{sup 2}.
HT2DINV: A 2D forward and inverse code for steady-state and transient hydraulic tomography problems
NASA Astrophysics Data System (ADS)
Soueid Ahmed, A.; Jardani, A.; Revil, A.; Dupont, J. P.
2015-12-01
Hydraulic tomography is a technique used to characterize the spatial heterogeneities of storativity and transmissivity fields. The responses of an aquifer to a source of hydraulic stimulations are used to recover the features of the estimated fields using inverse techniques. We developed a 2D free source Matlab package for performing hydraulic tomography analysis in steady state and transient regimes. The package uses the finite elements method to solve the ground water flow equation for simple or complex geometries accounting for the anisotropy of the material properties. The inverse problem is based on implementing the geostatistical quasi-linear approach of Kitanidis combined with the adjoint-state method to compute the required sensitivity matrices. For undetermined inverse problems, the adjoint-state method provides a faster and more accurate approach for the evaluation of sensitivity matrices compared with the finite differences method. Our methodology is organized in a way that permits the end-user to activate parallel computing in order to reduce the computational burden. Three case studies are investigated demonstrating the robustness and efficiency of our approach for inverting hydraulic parameters.
A New Cell-Centered Implicit Numerical Scheme for Ions in the 2-D Axisymmetric Code Hall2de
NASA Technical Reports Server (NTRS)
Lopez Ortega, Alejandro; Mikellides, Ioannis G.
2014-01-01
We present a new algorithm in the Hall2De code to simulate the ion hydrodynamics in the acceleration channel and near plume regions of Hall-effect thrusters. This implementation constitutes an upgrade of the capabilities built in the Hall2De code. The equations of mass conservation and momentum for unmagnetized ions are solved using a conservative, finite-volume, cell-centered scheme on a magnetic-field-aligned grid. Major computational savings are achieved by making use of an implicit predictor/multi-corrector algorithm for time evolution. Inaccuracies in the prediction of the motion of low-energy ions in the near plume in hydrodynamics approaches are addressed by implementing a multi-fluid algorithm that tracks ions of different energies separately. A wide range of comparisons with measurements are performed to validate the new ion algorithms. Several numerical experiments with the location and value of the anomalous collision frequency are also presented. Differences in the plasma properties in the near-plume between the single fluid and multi-fluid approaches are discussed. We complete our validation by comparing predicted erosion rates at the channel walls of the thruster with measurements. Erosion rates predicted by the plasma properties obtained from simulations replicate accurately measured rates of erosion within the uncertainty range of the sputtering models employed.
Parallel PIC Simulations of Short-Pulse High Intensity Laser Plasma Interactions.
NASA Astrophysics Data System (ADS)
Lasinski, B. F.; Still, C. H.; Langdon, A. B.
2001-10-01
We extend our previous simulations of high intensity short pulse laser plasma interactions footnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.
Parallel PIC Simulations of Ultra-High Intensity Laser Plasma Interactions.
NASA Astrophysics Data System (ADS)
Lasinski, B. F.; Still, C. H.; Langdon, A. B.; Wilks, S. C.; Hatchett, S. P.; Hinkel, D. E.
1999-11-01
We extend our previous simulations of high intensity short pulse laser plasma interactionsfootnote B. F. Lasinski, A. B. Langdon, S. P. Hatchett, M. H. Key, and M. Tabak, Phys. Plasmas 6, 2041 (1999); S. C. Wilks and W. L. Kruer, IEEE Journal of Quantum Electronics 11, 1954 (1997). to 3D and to much larger systems in 2D using our new, modern, 3D, electromagnetic, fully relativistic, massively parallel PIC code. Our simulation parameters are guided by the recent Petawatt experiments at Livermore. We study the generation of hot electrons and energetic ions and the associated complex phenomena. Laser light filamentation and the formation of high static magnetic fields are described.
A MARS-based method for estimating regional 2-D ionospheric VTEC and receiver differential code bias
NASA Astrophysics Data System (ADS)
Kao, Szu-Pyng; Chen, Yao-Chung; Ning, Fang-Shii
2014-01-01
The geometry-free linear combination of dual-frequency GNSS reference station ground observations are currently used to build the Vertical Total Electron Content (VTEC) model of the ionosphere. As it is known, besides ionospheric delays, there are differential code bias (DCB) of satellite (SDCB) and receiver (RDCB) in the geometry-free observation equation. The SDCB can be obtained using the International GNSS Service (IGS) analysis centers, but the RDCB for regional and local network receivers are not provided. Therefore, estimating the RDCB and VTEC model accurately and simultaneously is a critical factor investigated by researchers. This study uses Multivariate Adaptive Regression Splines (MARS) to estimate the VTEC approximate model and then substitutes this model in the observation equation to form the normal equation. The least squares method is used to solve the RDCB and VTEC model together. The research findings show that this method has good modeling effectiveness and the estimated RDCB has good reliability. The estimated VTEC model applied to GPS single-frequency precise point positioning has better positioning accuracy in comparison to the IGS global ionosphere map (GIM).
[PIC Program Evaluation Forms.
ERIC Educational Resources Information Center
Short, N. J.
These 4 questionnaires are designed to elicit teacher and parent evaluations of the Prescriptive Instruction Center (PIC) program. Included are Teacher Evaluation of Program Effectiveness (14 items), M & M Evaluation of Program Implementation (methods and materials specialists; 11 items), Teacher Evaluation of Program Effectiveness--Case Study…
ERIC Educational Resources Information Center
Montgomery, H. Wynn
1988-01-01
The author discusses the establishment and objectives of private industry councils (PICs). Such topics as local decision making, private sector representation, on-site evaluations, and summer jobs programs are covered. Emphasis is on the Atlanta, Georgia PIC. (CH)
NASA Astrophysics Data System (ADS)
Berger, Richard; Chapman, T.; Banks, J. W.; Brunner, S.
2015-11-01
We present 2D+2V Vlasov simulations of Ion Acoustic waves (IAWs) driven by an external traveling-wave potential, ϕ0 (x , t) , with frequency, ω, and wavenumber, k, obeying the kinetic dispersion relation. Both electrons and ions are treated kinetically. Simulations with ϕ0 (x , t) , localized transverse to the propagation direction, model IAWs driven in a laser speckle. The waves bow with a positive or negative curvature of the wave fronts that depends on the sign of the nonlinear frequency shift ΔωNL , which is in turn determined by the magnitude of ZTe /Ti where Z is the charge state and Te , i is the electron, ion temperature. These kinetic effects result can cause modulational and self-focusing instabilities that transfer wave energy to kinetic energy. Linear dispersion properties of IAWs are used in laser propagation codes that predict the amount of light reflected by stimulated Brillouin scattering. At high enough amplitudes, the linear dispersion is invalid and these kinetic effects should be incorporated. Including the spatial and time scales of these instabilities is computationally prohibitive. We report progress including kinetic models in laser propagation codes. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 and funded by the Laboratory Research and Development Program at LLNL under project tracking code 15.
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Icarus: A 2D direct simulation Monte Carlo (DSMC) code for parallel computers. User`s manual - V.3.0
Bartel, T.; Plimpton, S.; Johannes, J.; Payne, J.
1996-10-01
Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modelled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modelled using steric factors derived from Arrhenius reaction rates. Surface chemistry is modelled with surface reaction probabilities. The electron number density is either a fixed external generated field or determined using a local charge neutrality assumption. Ion chemistry is modelled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electrostatic fields can either be externally input or internally generated using a Langmuir-Tonks model. The Icarus software package includes the grid generation, parallel processor decomposition, postprocessing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. The majority of the software packages are written in standard Fortran.
Hybrid PIC Simulations of Particle Dynamics in Coaxial Plasma Jet Accelerators
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Hughes, Thomas; Welch, Dale; Hakel, Peter
2007-11-01
We describe the results of 1D and 2D simulations of plasma jet accelerators using the particle-in-cell (PIC) code Lsp. Previous studies of 1D cartesian simulations have shown that ion particle dynamics at the plasma-vacuum interface depend critically on the local Hall parameter, which is strongly dependent on electron temperature. In a coaxial accelerator with finite transverse dimensions, large transverse ion motions, predicted at moderate Hall parameters in 1D, can lead to ion loss to the walls. The results of 2D r-z jet simulations are described and compared with the 1D cartesian results. The effects of particle loss and ablation at the wall are considered, as are electron heating mechanisms at the plasma-vacuum interface, including radiation losses. We will apply the results to the plasma jet experiments underway at HyperV Technologies Corp.
NASA Astrophysics Data System (ADS)
Key, K.
2013-12-01
This work announces the public release of an open-source inversion code named MARE2DEM (Modeling with Adaptively Refined Elements for 2D Electromagnetics). Although initially designed for the rapid inversion of marine electromagnetic data, MARE2DEM now supports a wide variety of acquisition configurations for both offshore and onshore surveys that utilize electric and magnetic dipole transmitters or magnetotelluric plane waves. The model domain is flexibly parameterized using a grid of arbitrarily shaped polygonal regions, allowing for complicated structures such as topography or seismically imaged horizons to be easily assimilated. MARE2DEM efficiently solves the forward problem in parallel by dividing the input data parameters into smaller subsets using a parallel data decomposition algorithm. The data subsets are then solved in parallel using an automatic adaptive finite element method that iterative solves the forward problem on successively refined finite element meshes until a specified accuracy tolerance is met, thus freeing the end user from the burden of designing an accurate numerical modeling grid. Regularized non-linear inversion for isotropic or anisotropic conductivity is accomplished with a new implementation of Occam's method referred to as fast-Occam, which is able to minimize the objective function in much fewer forward evaluations than the required by the original method. This presentation will review the theoretical considerations behind MARE2DEM and use a few recent offshore EM data sets to demonstrate its capabilities and to showcase the software interface tools that streamline model building and data inversion.
PIC: Protein Interactions Calculator.
Tina, K G; Bhadra, R; Srinivasan, N
2007-07-01
Interactions within a protein structure and interactions between proteins in an assembly are essential considerations in understanding molecular basis of stability and functions of proteins and their complexes. There are several weak and strong interactions that render stability to a protein structure or an assembly. Protein Interactions Calculator (PIC) is a server which, given the coordinate set of 3D structure of a protein or an assembly, computes various interactions such as disulphide bonds, interactions between hydrophobic residues, ionic interactions, hydrogen bonds, aromatic-aromatic interactions, aromatic-sulphur interactions and cation-pi interactions within a protein or between proteins in a complex. Interactions are calculated on the basis of standard, published criteria. The identified interactions between residues can be visualized using a RasMol and Jmol interface. The advantage with PIC server is the easy availability of inter-residue interaction calculations in a single site. It also determines the accessible surface area and residue-depth, which is the distance of a residue from the surface of the protein. User can also recognize specific kind of interactions, such as apolar-apolar residue interactions or ionic interactions, that are formed between buried or exposed residues or near the surface or deep inside. PMID:17584791
Hierarchical agglomerative sub-clustering technique for particles management in PIC simulations
NASA Astrophysics Data System (ADS)
Grasso, Giacomo; Frignani, Michele; Rocchi, Federico; Sumini, Marco
2010-08-01
The effectiveness of Particle-In-Cell (PIC) codes lies mainly in the robustness of the methods implemented, under the fundamental assumption that a sufficient number of pseudo-particles is concerned for a correct representation of the system. The consequent drawback is the huge increase of computational time required to run a simulation, to what concerns the particles charge assignment to the grid and the motion of the former through the latter. Moreover the coupling of such methods with Monte-Carlo-Collisional (MCC) modules causes another expensive computational cost to simulate particle multiple collisions with background gas and domain boundaries. Particles management techniques are therefore often introduced in PIC-MCC codes in order to improve the distribution of pseudo-particles in the simulation domain: as a matter of facts, the aim at managing the number of samples according to the importance of the considered region is a main question for codes simulating a local phenomenon in a larger domain or a strongly collisional system (e.g.: a ionizing plasma, where the number of particles increases exponentially). A clustering procedure based on the distribution function sampling applied to the 5D phase space (2D in space, 3D in velocity) is here proposed, representing the leading criterion for particles merging and splitting procedures guaranteeing the second order charge moments conservation. Applied to the study of the electrical breakdown in the early discharge phase of a Plasma Focus device, this technique is shown to increase performances of both PIC kernel and MCC module preserving the solution of the electric field and increasing samples representativeness in stochastic calculations (with respect to more traditional merging and splitting procedures).
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Macroparticle merging algorithm for PIC
NASA Astrophysics Data System (ADS)
Vranic, Marija; Grismayer, Thomas; Martins, Joana L.; Fonseca, Ricardo A.; Silva, Luis O.
2014-10-01
With the development of large supercomputers (>1000000 cores), the complexity of the problems we are able to simulate with particle-in-cell (PIC) codes has increased substantially. However, localized density spikes can introduce load imbalance where a small fraction of cores is occupied, while the others remain idle. An additional challenge lies in self-consistent modeling of QED effects at ultra-high laser intensities (I > 1023 W/cm2), where the number of pairs produced sometimes grows exponentially and may reach beyond the maximum number of particles that each processor can handle. We can overcome this by resampling the 6D phase space: the macroparticles can be merged into fewer particles with higher particle weights. Existing merging scheme preserves the total charge, but not the particle distribution. Here we present a novel particle-merging algorithm that preserves the energy, momentum and charge locally and thereby minimizes the potential influence to the relevant physics. Through examples of classical plasma physics and more extreme scenarios, we show that the physics is not altered but we obtain an immense increase in performance.
Voronoi particle merging algorithm for PIC codes
NASA Astrophysics Data System (ADS)
Luu, Phuc T.; Tückmantel, T.; Pukhov, A.
2016-05-01
We present a new particle-merging algorithm for the particle-in-cell method. Based on the concept of the Voronoi diagram, the algorithm partitions the phase space into smaller subsets, which consist of only particles that are in close proximity in the phase space to each other. We show the performance of our algorithm in the case of the two-stream instability and the magnetic shower.
Gross, M.B.
1984-10-01
STEALTH is a family of computer codes that can be used to calculate a variety of physical processes in which the dynamic behavior of a continuum is involved. The version of STEALTH described in this volume is designed for calculations of fluid-structure interaction. This version of the program consists of a hydrodynamic version of STEALTH which has been coupled to a finite-element code, WHAMSE. STEALTH computes the transient response of the fluid continuum, while WHAMSE computes the transient response of shell and beam structures under external fluid loadings. The coupling between STEALTH and WHAMSE is performed during each cycle or step of a calculation. Separate calculations of fluid response and structural response are avoided, thereby giving a more accurate model of the dynamic coupling between fluid and structure. This volume provides the theoretical background, the finite-difference equations, the finite-element equations, a discussion of several sample problems, a listing of the input decks for the sample problems, a programmer's manual and a description of the input records for the STEALTH/WHAMSE computer program.
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2014-07-01
Lahar modelling represents an excellent tool to design hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed since it is one of the possible scenarios considered during a volcanic crisis. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheologic flow properties. Here we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by superelevation method. Simulation results clearly show the influence of concentration and rheologic properties on lahar depth and distribution. Modifying rheologic properties during lahar simulation strongly affect lahar distribution. More viscous lahars have a more restricted aerial distribution, thicker depths, and resulting velocities are noticeable smaller. FLO2D proved to be a very successful tool to delimitate lahar inundation zones as well as to generate different lahar scenarios not only related to lahar volume or magnitude but also to take into account different sediment concentrations and rheologies widely documented to influence lahar prone areas.
NASA Astrophysics Data System (ADS)
Caballero, L.; Capra, L.
2014-12-01
Lahar modeling represents an excellent tool for designing hazard maps. It allows the definition of potential inundation zones for different lahar magnitude scenarios and sediment concentrations. Here, we present the results obtained for the 2001 syneruptive lahar at Popocatépetl volcano, based on simulations performed with FLO2D software. An accurate delineation of this event is needed, since it is one of the possible scenarios considered if magmatic activity increases its magnitude. One of the main issues for lahar simulation using FLO2D is the calibration of the input hydrograph and rheological flow properties. Here, we verified that geophone data can be properly calibrated by means of peak discharge calculations obtained by the superelevation method. Digital elevation model resolution also resulted as an important factor in defining the reliability of the simulated flows. Simulation results clearly show the influence of sediment concentrations and rheological properties on lahar depth and distribution. Modifying rheological properties during lahar simulation strongly affects lahar distribution. More viscous lahars have a more restricted aerial distribution and thicker depths, and resulting velocities are noticeably smaller. FLO2D proved to be a very successful tool for delimitating lahar inundation zones as well as generating different lahar scenarios not only related to lahar volume or magnitude, but also taking into account different sediment concentrations and rheologies widely documented as influencing lahar-prone areas.
NASA Astrophysics Data System (ADS)
Dodd, E. S.; Barnes, D. C.; Bezzerides, B.; Dubois, D. F.; Vu, H. X.
2003-10-01
RPIC is a reduced-description PIC code designed to investigate laser-plasma instabilities (LPI) in physical systems with vastly-different time scales prevalent under ICF conditions(H.X. Vu, B. Bezzerides, D.F. DuBois, J. Comp. Phys. 156), 12 (1999)., typically studied with the extended Zakharov model. Comparisons between the extended Zakharov model and RPIC were presented in a series of papers(K.Y. Sanbonmatsu, H.X. Vu, D.F. DuBois, and B. Bezzerides, Phys. Rev. Lett. 82), 932 (1999); K.Y. Sanbonmatsu, H.X. Vu, B. Bezzerides, and D.F. DuBois, Phys. Plasmas. 7, 1723,2824 (2000)., where quantitative agreements are obtained in the fluid and quasi-linear regime. In the kinetic regime where particle trapping is important, differences were found. The RPIC model itself is limited, e.g., Langmuir wave frequency harmonics are neglected. Our goal is two fold in comparing RPIC with full PIC in 1-d. First, advantages of RPIC over full PIC will be quantitatively assessed. Second, for strong laser drives, harmonics may be important to LPI physics. We would like to establish the regime of validity for RPIC, and to assess if the regimes where RPIC fails is of interest to ICF indirect drive.
Technology Transfer Automated Retrieval System (TEKTRAN)
Food-grade tracers were printed with two-dimensional Data Matrix (DM) barcode so that they could carry simulated identifying information about grain as part of a prospective traceability system. The key factor in evaluating the tracers was their ability to be read with a code scanner after being rem...
Scaling in the 2D SU(3) × SU(3) spin model as a test of a new coding method for SU(3) matrices
NASA Astrophysics Data System (ADS)
Bunk, B.; Sommer, R.
1985-02-01
We present a Monte Carlo measurement of the magnetic susceptibility in the SU(3) × SU(3) spin model in two dimensions. Asymptotic scaling is verified on a 20 × 20 lattice. This laboratory is then used to test a new method for coding SU(3) variables in one (60 bit)- word of computer memory. In this approach, real numbers are truncated to fit into a 5-bit representation.
NASA Astrophysics Data System (ADS)
Rodríguez-Sánchez, Rafael; Martínez, José Luis; Cock, Jan De; Fernández-Escribano, Gerardo; Pieters, Bart; Sánchez, José L.; Claver, José M.; de Walle, Rik Van
2013-12-01
The H.264/AVC video coding standard introduces some improved tools in order to increase compression efficiency. Moreover, the multi-view extension of H.264/AVC, called H.264/MVC, adopts many of them. Among the new features, variable block-size motion estimation is one which contributes to high coding efficiency. Furthermore, it defines a different prediction structure that includes hierarchical bidirectional pictures, outperforming traditional Group of Pictures patterns in both scenarios: single-view and multi-view. However, these video coding techniques have high computational complexity. Several techniques have been proposed in the literature over the last few years which are aimed at accelerating the inter prediction process, but there are no works focusing on bidirectional prediction or hierarchical prediction. In this article, with the emergence of many-core processors or accelerators, a step forward is taken towards an implementation of an H.264/AVC and H.264/MVC inter prediction algorithm on a graphics processing unit. The results show a negligible rate distortion drop with a time reduction of up to 98% for the complete H.264/AVC encoder.
Hodgdon, M.L.; Oona, H.; Martinez, A.R.; Salon, S.; Wendling, P.; Krahenbuhl, L.; Nicolas, A.; Nicolas, L.
1989-01-01
We present herein the results of three electromagnetic field problems for compressed magnetic field generators and their associated power flow channels. The first problem is the computation of the transient magnetic field in a two-dimensional model of helical generator during loading. The second problem is the three-dimensional eddy current patterns in a section of an armature beneath a bifurcation point of a helical winding. Our third problem is the calculation of the three-dimensional electrostatic fields in a region known as the post-hole convolute in which a rod connects the inner and outer walls of a system of three concentric cylinders through a hole in the middle cylinder. While analytic solutions exist for many electromagnetic field problems in cases of special and ideal geometries, the solutions of these and similar problems for the proper analysis and design of compressed magnetic field generators and their related hardware require computer simulations. In earlier studies, computer models have been proposed, several based on research oriented hydrocodes to which uncoupled or partially coupled Maxwell's equations solvers are added. Although the hydrocode models address the problem of moving, deformable conductors, they are not useful for electromagnetic analysis, nor can they be considered design tools. For our studies, we take advantage of the commercial, electromagnetic computer-aided design software packages FLUX2D nd PHI3D that were developed for motor manufacturers and utilities industries. 4 refs., 6 figs.
NASA Technical Reports Server (NTRS)
Chang, Chau-Lyan
2003-01-01
During the past two decades, our understanding of laminar-turbulent transition flow physics has advanced significantly owing to, in a large part, the NASA program support such as the National Aerospace Plane (NASP), High-speed Civil Transport (HSCT), and Advanced Subsonic Technology (AST). Experimental, theoretical, as well as computational efforts on various issues such as receptivity and linear and nonlinear evolution of instability waves take part in broadening our knowledge base for this intricate flow phenomenon. Despite all these advances, transition prediction remains a nontrivial task for engineers due to the lack of a widely available, robust, and efficient prediction tool. The design and development of the LASTRAC code is aimed at providing one such engineering tool that is easy to use and yet capable of dealing with a broad range of transition related issues. LASTRAC was written from scratch based on the state-of-the-art numerical methods for stability analysis and modem software technologies. At low fidelity, it allows users to perform linear stability analysis and N-factor transition correlation for a broad range of flow regimes and configurations by using either the linear stability theory (LST) or linear parabolized stability equations (LPSE) method. At high fidelity, users may use nonlinear PSE to track finite-amplitude disturbances until the skin friction rise. Coupled with the built-in receptivity model that is currently under development, the nonlinear PSE method offers a synergistic approach to predict transition onset for a given disturbance environment based on first principles. This paper describes the governing equations, numerical methods, code development, and case studies for the current release of LASTRAC. Practical applications of LASTRAC are demonstrated for linear stability calculations, N-factor transition correlation, non-linear breakdown simulations, and controls of stationary crossflow instability in supersonic swept wing boundary
Birdsall, C.K. . Dept. of Electrical Engineering and Computer Sciences)
1991-04-01
Many-particle (meaning 100's) charged-particle plasma simulations using spatial meshes for the electromagnetic field solutions, particle-in-cell (PIC) merged with Monte Carlo collision (MCC) calculations, are coming into wide use for application to partially ionized gases. This paper emphasizes the development of PIC computer experiments since the 1950's starting with one-dimensional (1-D) charged-sheet models, the addition of the mesh, and fast direct Poisson equation solvers for 2-D and 3-D. The finite-size particle-in-mesh (finite {Delta}{chi}, {Delta}t) theory of Langdon is presented in part to display the effects of too small {lambda}{sub D}/{Delta}{chi}, even for Maxwellian velocity distributions, as a caution, for example, when some ions are cooled to background gas temperatures by charge exchange. Early work on adding collisions to 1-D charge-sheet models by Burger and Shanny et al. are presented, with many of the elements of current Monte Carlo codes. Bounded plasma modeling is presented with electrode charges and external R, L, C, and V(t), I(t) sources now in use on fast desktop computers as real-time computer experiments, complementing analytic modeling and laboratory experiments. This paper reports that the addition of Monte Carlo collisions (usually done with irregular timesteps) to PIC (usually done with uniform {Delta}t's) is displayed as a developing art, relying on experimental total cross sections and approximate analytical differential cross sections to produce changes in charged-particle speed and direction due to collisions with neutrals, so far including elastic, excitation, ionization, charge exchange, and attachment processes.
PIC Simulations of Hypersonic Plasma Instabilities
NASA Astrophysics Data System (ADS)
Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Decyk, V.; Schriver, D.; Clark, E.
2013-12-01
The plasma sheaths formed around hypersonic aircraft (Mach number, M > 10) are relatively unexplored and of interest today to both further the development of new technologies and solve long-standing engineering problems. Both laboratory experiments and analytical/numerical modeling are required to advance the understanding of these systems; it is advantageous to perform these tasks in tandem. There has already been some work done to study these plasmas by experiments that create a rapidly expanding plasma through ablation of a target with a laser. In combination with a preformed magnetic field, this configuration leads to a magnetic "bubble" formed behind the front as particles travel at about Mach 30 away from the target. Furthermore, the experiment was able to show the generation of fast electrons which could be due to instabilities on electron scales. To explore this, future experiments will have more accurate diagnostics capable of observing time- and length-scales below typical ion scales, but simulations are a useful tool to explore these plasma conditions theoretically. Particle in Cell (PIC) simulations are necessary when phenomena are expected to be observed at these scales, and also have the advantage of being fully kinetic with no fluid approximations. However, if the scales of the problem are not significantly below the ion scales, then the initialization of the PIC simulation must be very carefully engineered to avoid unnecessary computation and to select the minimum window where structures of interest can be studied. One method of doing this is to seed the simulation with either experiment or ion-scale simulation results. Previous experiments suggest that a useful configuration for studying hypersonic plasma configurations is a ring of particles rapidly expanding transverse to an external magnetic field, which has been simulated on the ion scale with an ion-hybrid code. This suggests that the PIC simulation should have an equivalent configuration
Faudot, E.; Heuraux, S.; Colas, L.
2005-09-26
Understanding DC potential generation in front of ICRF antennas is crucial for long pulse high RF power systems. DC potentials are produced by sheath rectification of these RF potentials. To reach this goal, near RF parallel electric fields have to be computed in 3D and integrated along open magnetic field lines to yield a 2D RF potential map in a transverse plane. DC potentials are produced by sheath rectification of these RF potentials. As RF potentials are spatially inhomogeneous, transverse polarization currents are created, modifying RF and DC maps. Such modifications are quantified on a 'test map' having initially a Gaussian shape and assuming that the map remains Gaussian near its summit,the time behavior of the peak can be estimated analytically in presence of polarization current as a function of its width r0 and amplitude {phi}0 (normalized to a characteristic length for transverse transport and to the local temperature). A 'peaking factor' is built from the DC peak potential normalized to {phi}0, and validated with a 2D fluid code and a 2D PIC code (XOOPIC). In an unexpected way transverse currents can increase this factor. Realistic situations of a Tore Supra antenna are also studied, with self-consistent near fields provided by ICANT code. Basic processes will be detailed and an evaluation of the 'peaking factor' for ITER will be presented for a given configuration.
PIC (PRODUCTS OF INCOMPLETE COMBUSTION) ANALYSIS METHODS
The report gives results of method evaluations for products of incomplete combustion (PICs): 36 proposed PICs were evaluated by previously developed gas chromatography/flame ionization detection (GC/FID) and gas chromatography/mass spectroscopy (GC/MS) methods. It also gives resu...
PIC modeling of material dependence on fast electron generation and transport
NASA Astrophysics Data System (ADS)
Mishra, R.; Wei, M. S.; Chawla, S.; Sentoku, Y.; Stephens, R. B.; Beg, F. N.
2011-10-01
2D collisional PIC simulations, using PICLS code that includes dynamic ionization and radiation cooling, are performed to model a recent experiment on the Titan laser using multi-foil targets, where 2x reduction in total fast electron flux and a smaller spot size through high-Z layer were observed. Modeling show that a thin high-Z transport layer (e.g., Au) near lower Z source layer introduces a collimating effect on fast electron transport. Strong self-generated resistive B-fields are produced inside Au layer and at the interface (Al/Au), which confine the fast electron propagation and can also trap electrons in wing region to inhibit their propagation. In addition, effects of the surface material on LPI produced fast electron source characteristics are examined in both planar and buried cone geometries. Supported by US DOE under contracts DE-AC52 07NA27344(ACE) and DE-FC02-04ER54789 (FSC).
Beyond Hydrodynamics via a Fluid Element PIC algorithm, GaPH
NASA Astrophysics Data System (ADS)
Bateson, William; Hewett, Dennis; Lambert, Michael
1996-11-01
For strongly-driven gas and plasma systems, issues of interpenetration and turbulence have led to difficulties with fluid models. For example, a Maxwell distribution within the finite volume could miss the interpenetration and shear regions between two fluids. To address these and other issues, we have extended our Grid and Particle Hydrodynamics (GaPH), a fluid element PIC code, beyond the initial high-precision, 1-D collisionless solutions[2] to 2-D with both binary and viscous drag collisions. The GaPH algorithm still aggressively probes for emerging phase space features by fitting new "particles" to the "hydrodynamic" evolution of individual particles and aggressively merges to preserves economy if interesting features fail to materialize. Recent extensions add collisonal diffusion to the hydrodynamics. Through these and other extensions, GaPH approximates Boltzmann transport thus leaving the fluid model assumption of a local Maxwell distribution behind. [1] This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-Eng-48 and by Sandia National Laboratory under Contract DE-AC04-94AL85000. [2] "Beyond Hydrodynamics via Fluid Element Particle-In-Cell", WB Bateson and DW Hewett, (submitted J. Comp. Phys. July 1996).
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
PIC simulations of SMLWFA for 35fs class lasers
NASA Astrophysics Data System (ADS)
Adam, J. C.; Tsung, F. S.; Ren, Chuang; Mori, W. B.; Fonseca, R. A.; Silva, L. O.
2001-10-01
In the self-modulated laser wakefield regime a laser pulse several to many 2 π c/ ωp long breaks up via Raman scattering type instabilities producing large wakes. In some cases these wakes can trap background electrons generating a beam of accelerated electrons with a large energy spread. PIC simulations have shown that this process is highly sensitive to the laser intensity, pulse length, and plasma density [K-C.Tzeng et al., PRL 76, 3332 (1996), K-C.Tzeng et al., PRL 79, 5258 (1997)]. There have been some recent experimental results in which 35fs laser pulses have been used. In this case the pulses are at most only a few 2 π c/ ωp long even for the highest densities 10**20 cm-3. We report here on 1D, 2D, and 3D PIC simulations using OSIRIS for parameters closely related to the LULI/LOA results [V.Malka et al., Phys. Plasmas 8, 2605 (2001)].
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Electrostatic PIC with adaptive Cartesian mesh
NASA Astrophysics Data System (ADS)
Kolobov, Vladimir; Arslanbekov, Robert
2016-05-01
We describe an initial implementation of an electrostatic Particle-in-Cell (ES-PIC) module with adaptive Cartesian mesh in our Unified Flow Solver framework. Challenges of PIC method with cell-based adaptive mesh refinement (AMR) are related to a decrease of the particle-per-cell number in the refined cells with a corresponding increase of the numerical noise. The developed ES-PIC solver is validated for capacitively coupled plasma, its AMR capabilities are demonstrated for simulations of streamer development during high-pressure gas breakdown. It is shown that cell-based AMR provides a convenient particle management algorithm for exponential multiplications of electrons and ions in the ionization events.
PlasmaPIC: A tool for modeling low-temperature plasma discharges
NASA Astrophysics Data System (ADS)
Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian
2015-09-01
PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.
Energy Science and Technology Software Center (ESTSC)
2002-01-31
This program solves the two-dimensional mechanical equilbrium configuration of a core restraint system, which is subjected to radial temperature and flux gradients, on a time increment basis. At each time increment, the code calculates the irradiation creep and swelling strains for each duct from user-specified creep and swelling correlations. Using the calculated thermal bowing, inelastic bowing and the duct dilation, the corresponding equilibrium forces, beam deflections, total beam displacements, and structural reactivity changes are calculated.
Challenges of PIC Simulations at High Laser Intensity
NASA Astrophysics Data System (ADS)
Luedtke, Scott V.; Arefiev, Alexey V.; Toncian, Toma; Hegelich, Bjorn Manuel
2015-11-01
New lasers with very high intensity pulses (I >1022 W/cm2) are being commissioned to explore new regimes of laser-matter interactions. These lasers require accurate particle-in-cell (PIC) simulations, which may require new computational approaches to efficiently produce physically accurate results. We examine the constraints on PIC simulations at high field intensity imposed by both the particle pusher and field solver. As proposed by Arefiev, et al. (Physics of Plasmas 22, 013103 (2015)), we implement adaptive sub-cycling in the Boris pusher of the EPOCH code and demonstrate its effectiveness in efficiently reducing errors from the pusher. It is well know that the use of a finite-difference scheme also modifies the electromagnetic wave dispersion relation. We examine the effect of the resulting discrepancy in the phase velocity on electron acceleration, and demonstrate that relatively small errors in the phase velocity lead to substantial changes in the electron energy gain from the laser pulse. We discuss the corresponding conditions for the field solver. These results are relevant to direct laser acceleration and underdense ionization experiments. This work was supported by NNSA cooperative agreement DE-NA0002008, the Defense Advanced Research Projects Agency's PULSE program (12-63-PULSE-FP014) and the Air Force Office of Scientific Research (FA9550-14-1-0045).
Modeling Self-Ionized Plasma Wakefield Acceleration for Afterburner Parameters Using QuickPIC
Zhou, M.; Clayton, C.E.; Decyk, V.K.; Huang, C.; Johnson, D.K.; Joshi, C.; Lu, W.; Mori, W.B.; Tsung, F.S.; Deng, S.; Katsouleas, T.; Muggli, P.; Oz, E.; Decker, F.-J.; Iverson, R.; O'Connel, C.; Walz, D.; /SLAC
2006-01-25
For the parameters envisaged in possible afterburner stages[1] of a plasma wakefield accelerator (PWFA), the self-fields of the particle beam can be intense enough to tunnel ionize some neutral gases. Tunnel ionization has been investigated as a way for the beam itself to create the plasma, and the wakes generated may differ from those generated in pre-ionized plasmas[2],[3]. However, it is not practical to model the whole stage of PWFA with afterburner parameters using the models described in [2] and [3]. Here we describe the addition of a tunnel ionization package using the ADK model into QuickPIC, a highly efficient quasi-static particle in cell (PIC) code which can model a PWFA with afterburner parameters. Comparison between results from OSIRIS (a full PIC code with ionization) and from QuickPIC with the ionization package shows good agreement. Preliminary results using parameters relevant to the E164X experiment and the upcoming E167 experiment at SLAC are shown.
PIC simulation of electrodeless plasma thruster with rotating electric field
NASA Astrophysics Data System (ADS)
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-01
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
PIC simulation of electrodeless plasma thruster with rotating electric field
Nomura, Ryosuke; Ohnishi, Naofumi; Nishida, Hiroyuki
2012-11-27
For longer lifetime of electric propulsion system, an electrodeless plasma thruster with rotating electric field have been proposed utilizing a helicon plasma source. The rotating electric field may produce so-called Lissajous acceleration of helicon plasma in the presence of diverging magnetic field through a complicated mechanism originating from many parameters. Two-dimensional simulations of the Lissajous acceleration were conducted by a code based on Particle-In-Cell (PIC) method and Monte Carlo Collision (MCC) method for understanding plasma motion in acceleration area and for finding the optimal condition. Obtained results show that azimuthal current depends on ratio of electron drift radius to plasma region length, AC frequency, and axial magnetic field. When ratio of cyclotron frequency to the AC frequency is higher than unity, reduction of the azimuthal current by collision effect is little or nothing.
Static & Dynamic Response of 2D Solids
Energy Science and Technology Software Center (ESTSC)
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
NASA Astrophysics Data System (ADS)
Chen, Guangye; Chacón, Luis; CoCoMans Team
2014-10-01
For decades, the Vlasov-Darwin model has been recognized to be attractive for PIC simulations (to avoid radiative noise issues) in non-radiative electromagnetic regimes. However, the Darwin model results in elliptic field equations that renders explicit time integration unconditionally unstable. Improving on linearly implicit schemes, fully implicit PIC algorithms for both electrostatic and electromagnetic regimes, with exact discrete energy and charge conservation properties, have been recently developed in 1D. This study builds on these recent algorithms to develop an implicit, orbit-averaged, time-space-centered finite difference scheme for the particle-field equations in multiple dimensions. The algorithm conserves energy, charge, and canonical-momentum exactly, even with grid packing. A simple fluid preconditioner allows efficient use of large timesteps, O (√{mi/me}c/veT) larger than the explicit CFL. We demonstrate the accuracy and efficiency properties of the of the algorithm with various numerical experiments in 2D3V.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Performance and capacity analysis of Poisson photon-counting based Iter-PIC OCDMA systems.
Li, Lingbin; Zhou, Xiaolin; Zhang, Rong; Zhang, Dingchen; Hanzo, Lajos
2013-11-01
In this paper, an iterative parallel interference cancellation (Iter-PIC) technique is developed for optical code-division multiple-access (OCDMA) systems relying on shot-noise limited Poisson photon-counting reception. The novel semi-analytical tool of extrinsic information transfer (EXIT) charts is used for analysing both the bit error rate (BER) performance as well as the channel capacity of these systems and the results are verified by Monte Carlo simulations. The proposed Iter-PIC OCDMA system is capable of achieving two orders of magnitude BER improvements and a 0.1 nats of capacity improvement over the conventional chip-level OCDMA systems at a coding rate of 1/10. PMID:24216821
PIC Algorithm with Multiple Poisson Equation Solves During One Time Step
NASA Astrophysics Data System (ADS)
Ren, Junxue; Godar, Trenton; Menart, James; Mahalingam, Sudhakar; Choi, Yongjun; Loverich, John; Stoltz, Peter H.
2015-09-01
In order to reduce the overall computational time of a PIC (particle-in-cell) computer simulation, an attempt was made to utilize larger time step sizes by implementing multiple solutions of Poisson's equation within one time step. The hope was this would make the PIC simulation stable at larger time steps than an explicit technique can use, and using larger time steps would reduce the overall computational time, even though the computational time per time step would increase. A three-dimensional PIC code that tracks electrons and ions throughout a three-dimensional Cartesian computational domain is used to perform this study. The results of altering the number of times Poisson's equation is solved during a single time step are presented. Also, the size of the time that can be used and still maintain a stable solution is surveyed. The results indicate that using multiple Poisson solves during one time step provides some ability to use larger time steps in PIC simulations, but the increase in time step size is not significant and the overall simulation run time is not reduced
3D implicit PIC simulations of solar wind - moon interactions
NASA Astrophysics Data System (ADS)
Deca, J.; Markidis, S.; Divin, A.; Lapenta, G.; Vapirev, A.
2012-04-01
We present three-dimensional Particle-in-Cell simulations of an unmagnetized insulating Moon-sized body immersed in the solar wind. The simulations are performed using the implicit electromagnetic Particle-in-Cell code iPIC3D [Markidis, 2009]. Multiscale kinetic physics is resolved for all plasma components (heavy ions, protons and electrons) in the code, recently updated with a set of open boundary conditions designed for solar wind - body interaction studies. Particles are injected at the inflow side of the computational domain and absorbed at all others. A bow shock is not formed upstream of the body, but the obstacle generates faint dispersive waves propagating parallel to the magnetic field lines, in agreement with numerical simulations done in MHD approach. Polarization electric field is generated in the wake. In addition, plasma flows filling the wake tend to excite streaming instabilities, which lead to bipolar signatures in the parallel electric field. Our future work includes updating the physical model to include photoionization and re-emission at the object's surface.
PIC Simulation for ICF Plasma Sputter Coater
NASA Astrophysics Data System (ADS)
Wu, W.; Huang, H.; Parks, P. B.; Chan, V. S.; Walton, C. C.; Wilks, S. C.
2010-11-01
To satisfy mesh spacing constraint δ/λDebye<=1 particle In Cell (PIC) simulations at 25x reduced cathode currents levels are used to numerically model the distribution of currents, electrostatic potentials and particle kinetics in a Type II ``unbalanced'' cylindrically symmetric magnetron discharge used for Be sputter coating of ICF capsules. Simulation indicates a strong magnetic field confinement of the plasma in the closed field lines region adjacent to cathode, and accompanying cross-field line plasma diffusion into the open-field line region connected to wall/anode. A narrow Charles-Langmuir sheath and a pre-sheath that is ˜10x wider due to the existence of the B-field are observed. The effects of varying boundary conditions, e.g., the separation between the anode/cathode, the anode bias voltage, etc., are studied, which is expected to aid experimentalists in turning these ``knobs'' for better coating qualities. We also show that the etch rate due to sputtering of Be targets predicted by the results of our PIC simulations, after rescaling to experimental conditions, agrees with experiments.
NASA Astrophysics Data System (ADS)
Koechlin, L.
2015-12-01
We carry a long term survey of the solar activity with our coronagraphic system at Pic du Midi de Bigorre in the French Pyrenees (CLIMSO). It is a set of two solar telescopes and two coronagraphs, taking one frame per minute for each of the four channels : Solar disk in H-α (656.28 nm), prominences in H-α, disk in Ca II (393.3 nm), prominences in He I (1083 nm), all year long, weather permitting. Since 2015 we also take images of the FeXIII corona (1074.7 nm) at the rate of one every 10 minutes. These images cover a large field: 1.25 solar diameter, 2k*2K pixels, and are freely downloadable form a database. The improvements made since 2015 concern an autoguiding system for better centering of the solar disk behind the coronagraphic masks, and a new Fe XIII channel at λ=1074.7 nm. In the near future we plan to provide radial velocity maps of the disc and polarimetry maps of the disk and corona. This survey took its present form in 2007 and we plan to maintain image acquisition in the same or better experimental conditions for a long period: one or several solar cycles if possible. During the partial solar eclipse of March 20, 2015, the CLIMSO instruments and the staff at Pic du Midi operating it have provided several millions internet users with real time images of the Sun and Moon during all the phenomenon.
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
NASA Astrophysics Data System (ADS)
Chacón, L.; Chen, G.
2016-07-01
We extend a recently proposed fully implicit PIC algorithm for the Vlasov-Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (ϕ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ ṡ A = 0 exactly. An asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.
A curvilinear, fully implicit, conservative electromagnetic PIC algorithm in multiple dimensions
Chacon, L.; Chen, G.
2016-07-01
Here, we extend a recently proposed fully implicit PIC algorithm for the Vlasov–Darwin model in multiple dimensions (Chen and Chacón (2015) [1]) to curvilinear geometry. As in the Cartesian case, the approach is based on a potential formulation (Φ, A), and overcomes many difficulties of traditional semi-implicit Darwin PIC algorithms. Conservation theorems for local charge and global energy are derived in curvilinear representation, and then enforced discretely by a careful choice of the discretization of field and particle equations. Additionally, the algorithm conserves canonical-momentum in any ignorable direction, and preserves the Coulomb gauge ∇ • A = 0 exactly. Anmore » asymptotically well-posed fluid preconditioner allows efficient use of large cell sizes, which are determined by accuracy considerations, not stability, and can be orders of magnitude larger than required in a standard explicit electromagnetic PIC simulation. We demonstrate the accuracy and efficiency properties of the algorithm with numerical experiments in mapped meshes in 1D-3V and 2D-3V.« less
Vollrath, Margarete E; Hampson, Sarah E; Torgersen, Svenn
2016-05-01
Children's personality traits are invaluable predictors of concurrent and later mental and physical health. Several validated longer inventories for assessing the widely recognized Five-Factor Model of personality in children are available, but short forms are scarce. This study aimed at constructing a 30-item form of the 144-item Hierarchical Personality Inventory for Children (HiPIC) (Mervielde & De Fruyt, ). Participants were 1543 children aged 6-12 years (sample 1) and 3895 children aged 8 years (sample 2). Sample 1 completed the full HiPIC, from which we constructed the HiPIC-30, and the Child Behaviour Checklist (Achenbach, ). Sample 2 completed the HiPIC-30. The HiPIC-30 personality domains correlated over r = .90 with the full HiPIC domains, had good Cronbach's alphas and correlated similarly with CBCL behaviour problems and gender as the full HiPIC. The factor structures of the HiPIC-30 were convergent across samples, but the imagination factor was not clear-cut. We conclude that the HiPIC-30 is a reliable and valid questionnaire for the Five-Factor personality traits in children. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27120426
The TESS (Tandem Experiment Simulation Studies) computer code user's manual
Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )
1990-06-01
TESS (Tandem Experiment Simulation Studies) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the confinement and transport of plasma in a magnetic mirror device, including tandem mirror configurations. Mirror plasmas may be modeled in a system which includes an applied magnetic field and/or a self-consistent or applied electrostatic potential. The PIC code TESS is similar to the PIC code DIPSI (Direct Implicit Plasma Surface Interactions) which is designed to study plasma transport to and interaction with a solid surface. The codes TESS and DIPSI are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 10 refs., 2 tabs.
Development of 1D Particle-in-Cell Code and Simulation of Plasma-Wall Interactions
NASA Astrophysics Data System (ADS)
Rose, Laura P.
This thesis discusses the development of a 1D particle-in-cell (PIC) code and the analysis of plasma-wall interactions. The 1D code (Plasma and Wall Simulation -- PAWS) is a kinetic simulation of plasma done by treating both electrons and ions as particles. The goal of this thesis is to study near wall plasma interaction to better understand the mechanism that occurs in this region. The main focus of this investigation is the effects that secondary electrons have on the sheath profile. The 1D code is modeled using the PIC method. Treating both the electrons and ions as macroparticles the field is solved on each node and weighted to each macro particle. A pre-ionized plasma was loaded into the domain and the velocities of particles were sampled from the Maxwellian distribution. An important part of this code is the boundary conditions at the wall. If a particle hits the wall a secondary electron may be produced based on the incident energy. To study the sheath profile the simulations were run for various cases. Varying background neutral gas densities were run with the 2D code and compared to experimental values. Different wall materials were simulated to show their effects of SEE. In addition different SEE yields were run, including one study with very high SEE yields to show the presence of a space charge limited sheath. Wall roughness was also studied with the 1D code using random angles of incidence. In addition to the 1D code, an external 2D code was also used to investigate wall roughness without secondary electrons. The roughness profiles where created upon investigation of wall roughness inside Hall Thrusters based off of studies done on lifetime erosion of the inner and outer walls of these devices. The 2D code, Starfish[33], is a general 2D axisymmetric/Cartesian code for modeling a wide a range of plasma and rarefied gas problems. These results show that higher SEE yield produces a smaller sheath profile and that wall roughness produces a lower SEE yield
NASA Astrophysics Data System (ADS)
Innocenti, Maria Elena; Beck, Arnaud; Markidis, Stefano; Lapenta, Giovanni
2015-04-01
We study turbulence generated by the Lower Hybrid Drift Instability (LHDI [1]) in the terrestrial magnetosphere. The problem is not only of interest per se, but also for the implications it can have for the so-called turbulent reconnection. The LHDI evolution is simulated with the PIC Multi Level Multi Domain code Parsek2D-MLMD [2,3], which simulates different parts of the domain with different spatial and temporal resolutions. This allows to satisfy, at a low computing cost, the two necessary requirements for LHDI turbulence simulations: 1) a large domain, to capture the high wavelength branch of the LHDI and of the secondary kink instability and 2) high resolution, to cover the high wavenumber part of the power spectrum and to capture the wavenumber at which the turbulent cascade ends. The turbulent cascade proceeds seamlessly from the coarse (low resolution) to the refined (high resolution) grid, the only one resolved enough to capture its end, which is studied here and related to wave-particle interaction processes. We also comment upon the role of smoothing (a common technique used in PIC simulations to reduce particle noise, [4]) in simulations of turbulence and on how its effects on power spectra may be easily mistaken, in absence of accurate convergence studies, for the end of the inertial range. [1] P. Gary, Theory of space plasma microinstabilities, Cambridge Atmospheric and Space Science Series, 2005. [2] M. E. Innocenti, G. Lapenta, S. Markidis, A. Beck, A. Vapirev, Journal of Computational Physics 238 (2013) 115 - 140. [3] M. E. Innocenti, A. Beck, T. Ponweiser, S. Markidis, G. Lapenta, Computer Physics Communications (accepted) (2014). [4] C. K. Birdsall, A. B. Langdon, Plasma physics via computer simulation, Taylor and Francis, 2004.
Castro-Chavez, Fernando
2012-01-01
Background Three binary representations of the genetic code according to the ancient I Ching of Fu-Xi will be presented, depending on their defragging capabilities by pairing based on three biochemical properties of the nucleic acids: H-bonds, Purine/Pyrimidine rings, and the Keto-enol/Amino-imino tautomerism, yielding the last pair a 32/32 single-strand self-annealed genetic code and I Ching tables. Methods Our working tool is the ancient binary I Ching's resulting genetic code chromosomes defragged by vertical and by horizontal pairing, reverse engineered into non-binaries of 2D rotating 4×4×4 circles and 8×8 squares and into one 3D 100% symmetrical 16×4 tetrahedron coupled to a functional tetrahedron with apical signaling and central hydrophobicity (codon formula: 4[1(1)+1(3)+1(4)+4(2)]; 5:5, 6:6 in man) forming a stella octangula, and compared to Nirenberg's 16×4 codon table (1965) pairing the first two nucleotides of the 64 codons in axis y. Results One horizontal and one vertical defragging had the start Met at the center. Two, both horizontal and vertical pairings produced two pairs of 2×8×4 genetic code chromosomes naturally arranged (M and I), rearranged by semi-introversion of central purines or pyrimidines (M' and I') and by clustering hydrophobic amino acids; their quasi-identity was disrupted by amino acids with odd codons (Met and Tyr pairing to Ile and TGA Stop); in all instances, the 64-grid 90° rotational ability was restored. Conclusions We defragged three I Ching representations of the genetic code while emphasizing Nirenberg's historical finding. The synthetic genetic code chromosomes obtained reflect the protective strategy of enzymes with a similar function, having both humans and mammals a biased G-C dominance of three H-bonds in the third nucleotide of their most used codons per amino acid, as seen in one chromosome of the i, M and M' genetic codes, while a two H-bond A-T dominance was found in their complementary chromosome, as seen
Adaptive entropy coded subband coding of images.
Kim, Y H; Modestino, J W
1992-01-01
The authors describe a design approach, called 2-D entropy-constrained subband coding (ECSBC), based upon recently developed 2-D entropy-constrained vector quantization (ECVQ) schemes. The output indexes of the embedded quantizers are further compressed by use of noiseless entropy coding schemes, such as Huffman or arithmetic codes, resulting in variable-rate outputs. Depending upon the specific configurations of the ECVQ and the ECPVQ over the subbands, many different types of SBC schemes can be derived within the generic 2-D ECSBC framework. Among these, the authors concentrate on three representative types of 2-D ECSBC schemes and provide relative performance evaluations. They also describe an adaptive buffer instrumented version of 2-D ECSBC, called 2-D ECSBC/AEC, for use with fixed-rate channels which completely eliminates buffer overflow/underflow problems. This adaptive scheme achieves performance quite close to the corresponding ideal 2-D ECSBC system. PMID:18296138
Simulation Of Electron Cloud Effects On Electron Beam At ERL With Pipelined QuickPIC
Feng, B.; Muggli, P.; Huang, C.; Decyk, V.; Mori, W. B.; Hoffstaetter, G. H.; Katsouleas, T.
2009-01-22
With the successful implementation of pipelining algorithm to the QuickPIC code, the number of processors used is increased by 2 to 3 orders of magnitude, and the speed of the simulation is improved by a similar factor. The pipelined QuickPIC is used to simulate the electron cloud effect on electron beam in the Cornell Energy Recovery Linac (ERL) due to extremely small emittance and high peak currents anticipated in the machine. A tune shift is found due to electron cloud on electron beams, which is of equal magnitude to that on positron beams but in an opposite direction; however, emittance growth of the electron beam in an electron cloud is not observed for ERL parameters.
Enhanced quasi-static PIC simulation with pipelining algorithm for e-cloud instability
NASA Astrophysics Data System (ADS)
Feng, Bing; Huang, Chengkun; Decyk, Viktor; Mori, Warren; Muggli, Patric; Katsouleas, Tom
2008-11-01
Simulating the electron cloud effect on a beam that circulates thousands of turns in circular machines is highly computationally demanding. A novel algorithm, the pipelining algorithm is applied to the fully parallelized quasi-static particle-in-cell code QuickPIC to overcome the limit of the maximum number of processors can be used for each time step. The pipelining algorithm divides the processors into subgroups and each subgroup focuses on different partition of the beam and performs the calculation in series. With this novel algorithm, the accuracy of the simulation is preserved; the speed of the simulation is improved by one order of magnitude with more than 10^2 processors are used. The long term simulation results of the CERN-LHC and the Main Injector at FNAL from the QuickPIC with pipelining algorithm are presented. This work is supported by SiDAC and US Department of Energy
Hybrid-PIC Algorithms for Simulation of Large-Scale Plasma Jet Accelerators
NASA Astrophysics Data System (ADS)
Thoma, Carsten; Welch, Dale
2009-11-01
Merging coaxial plasma jets are envisioned for use in magneto-inertial fusion schemes as the source of an imploding plasma liner. An experimental program at HyperV is considering the generation of large plasma jets (length scales on the order of centimeters) at high densities (10^16-10^17 cm-3) in long coaxial accelerators. We describe the Hybrid particle-in-cell (PIC) methods implemented in the code LSP for this parameter regime and present simulation results of the HyperV accelerator. A radiation transport algorithm has also been implemented into LSP so that the effect of radiation cooling on the jet mach number can be included self-consistently into the Hybrid PIC formalism.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
It's about Time: The Literacy TopPics Awards.
ERIC Educational Resources Information Center
And Others; Swafford, Jeanne
1997-01-01
Examines the last five years of articles in this journal to show what topics were most often written about (the "Top Picks" or "TopPics"). Discusses these results and makes recommendations that deserve considerable attention in the future. Notes that integrated language arts was a perennial TopPic. (SR)
A portable approach for PIC on emerging architectures
NASA Astrophysics Data System (ADS)
Decyk, Viktor
2016-03-01
A portable approach for designing Particle-in-Cell (PIC) algorithms on emerging exascale computers, is based on the recognition that 3 distinct programming paradigms are needed. They are: low level vector (SIMD) processing, middle level shared memory parallel programing, and high level distributed memory programming. In addition, there is a memory hierarchy associated with each level. Such algorithms can be initially developed using vectorizing compilers, OpenMP, and MPI. This is the approach recommended by Intel for the Phi processor. These algorithms can then be translated and possibly specialized to other programming models and languages, as needed. For example, the vector processing and shared memory programming might be done with CUDA instead of vectorizing compilers and OpenMP, but generally the algorithm itself is not greatly changed. The UCLA PICKSC web site at http://www.idre.ucla.edu/ contains example open source skeleton codes (mini-apps) illustrating each of these three programming models, individually and in combination. Fortran2003 now supports abstract data types, and design patterns can be used to support a variety of implementations within the same code base. Fortran2003 also supports interoperability with C so that implementations in C languages are also easy to use. Finally, main codes can be translated into dynamic environments such as Python, while still taking advantage of high performing compiled languages. Parallel languages are still evolving with interesting developments in co-Array Fortran, UPC, and OpenACC, among others, and these can also be supported within the same software architecture. Work supported by NSF and DOE Grants.
Ion Density Holes observed by Cluster satellite: Electromagnetic PIC Simulation
NASA Astrophysics Data System (ADS)
Hong, J.; Lee, E.; Min, K. W.; Parks, G. K.
2010-12-01
In the upstream region of the bow shock, many transient structures have been found such as hot flow anomalies (HFAs), foreshock cavities (FCs), hot diamagnetic cavities (HDCs), and short- and large-amplitude magnetic structures. Density holes (DHs) are one of such transient phenomena with similar characteristics to those of HFAs, FCs, and HDCs: density depletion accompanied by the depression of magnetic field and "deflection of" flow velocity. While sometimes regarded as the early phase of HFA, DH has a lower magnetic shear and a smaller flow deviation than the HFA. However, the most significant difference between the two structures is the direction of motional electric field (convection electric field). The solar wind convection electric fields of DHs have an outward-component from the embedding IMF current sheets while HFAs usually have components directed inward on either or both of the edges. As the Cluster observations indicate the isolated DH structures generally accompany diffuse ion beams in the rotating magnetic fields, which can be interpreted as a current sheet or a solitary wave, we conjecture the ion-ion beam instability occurring around the current sheet to be the important factor of DHs structures and set up simulation models using a two-dimensional electromagnetic particle-in-cell (PIC) code. Here, we report the characteristics of DHs observed by Cluster and the progress of our simulation study.
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
Energy Science and Technology Software Center (ESTSC)
2012-01-05
Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less
Energy Science and Technology Software Center (ESTSC)
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
ePLAS code improvements for short pulse laser-matter interaction studies
NASA Astrophysics Data System (ADS)
Mason, R. J.; Ambrosiano, J.; Atchison, W.; Faehl, R.; Henderson, D.; Kirkpatrick, R.; Barnes, D.
2009-11-01
We detail new features for ePLAS, a 2D implicit/hybrid simulation model in use for Fast Ignition. The hybrid/PIC code tracks laser light with ponderomotive force, depositing at critical into relativistic hot particle electrons, while pulling cold collisional, return-current Van Leer fluid electrons through fluid ions by means of self-consistent Implicit Momentfootnotetext{R. J. Mason, J. Comp. Phys. {71,} 429 (1987).} E- and B-fields. The new features include: a 1D formulation for light absorption studies with generalized {E- and B-} fields, multiple laser beams, real EOS data from analytic models or the Sesame tables, K/α imaging, generalized cold electron elevation to hots, particle ions for fast ion fusion, improved graphical options, and new Linux and Mac OS X implementations. The focus of the talk is code enhancements.
RADMC: A 2-D Continuum Radiative Transfer Tool
NASA Astrophysics Data System (ADS)
Dullemond, C. P.
2011-08-01
RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.
Warren B. Mori
2007-04-20
One of the important research questions in high energy density science (HEDS) is how intense laser and electron beams penetrate into and interact with matter. At high beam intensities the self-fields of the laser and particle beams can fully ionize matter so that beam -matter interactions become beam-plasma interactions. These interactions involve a disparity of length and time scales, and they involve interactions between particles, between particles and waves, and between waves and waves. In a plasma what happens in one region can significantly impact another because the particles are free to move and many types of waves can be excited. Therefore, simulating these interactions requires tools that include wave particle interactions and that include wave nonlinearities. One methodology for studying such interactions is particle-in-cell (PIC) simulations. While PIC codes include most of the relevant physics they are also the most computer intensive. However, with the development of sophisticated software and the use of massively parallel computers, PIC codes can now be used to accurately study a wide range of problems in HEDS. The research in this project involved building, maintaining, and using the UCLA parallel computing infrastructure. This infrastructure includes the codes OSIRIS and UPIC which have been improved or developed during this grant period. Specifically, we used this PIC infrastructure to study laser-plasma interactions relevant to future NIF experiments and high-intensity laser and beam plasma interactions relevant to fast ignition fusion. The research has led to fundamental knowledge in how to write parallel PIC codes and use parallel PIC simulations, as well as increased the fundamental knowledge of HEDS. This fundamental knowledge will not only impact Inertial Confinement Fusion but other fields such as plasma-based acceleration and astrophysics.
FPCAS2D user's guide, version 1.0
NASA Astrophysics Data System (ADS)
Bakhle, Milind A.
1994-12-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
The DIPSI (Direct Implicit Plasma Surface Interactions) computer code user's manual
Procassini, R.J. . Dept. of Nuclear Engineering); Cohen, B.I. )
1990-06-01
DIPSI (Direct Implicit Plasma Surface Interactions) is a one-dimensional, bounded particle-in-cell (PIC) simulation code designed to investigate the interaction of plasma with a solid surface, such as a limiter or divertor plate in a tokamak fusion device. Plasma confinement and transport may be studied in a system which includes an applied magnetic field (oriented normal to the solid surface) and/or a self-consistent electrostatic potential. The PIC code DIPSI is an offshoot of the PIC code TESS (Tandem Experiment Simulation Studies) which was developed to study plasma confinement in mirror devices. The codes DIPSI and TESS are direct descendants of the PIC code ES1 that was created by A. B. Langdon. This document provides the user with a brief description of the methods used in the code and a tutorial on the use of the code. 11 refs., 2 tabs.
Experimental validation of equations for 2D DIC uncertainty quantification.
Reu, Phillip L.; Miller, Timothy J.
2010-03-01
Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.
User-configurable MAGIC for electromagnetic PIC calculations
NASA Astrophysics Data System (ADS)
Goplen, Bruce; Ludeking, Larry; Smith, David; Warren, Gary
1995-05-01
MAGIC is a user-configurable code that solves Maxwell's equations together with Lorentz particle motion. A variety of 2D, finite-difference electromagnetic algorithms and 3D particle-in-cell algorithms may be combined in problem-specific ways to provide fast, accurate, steady-state and transient calculations for many research and design needs. Default configurations provide good speed and accuracy for most applications, and a library of templates offers optimized algorithm configurations for specific devices. A programmable processor named POSTER provides advanced post-analysis of the field and particle solutions. Coordinate systems, boundary conditions, geometry, and materials are specified by the user, and grid generation can be manual, user-assisted, or fully automatic. MAGIC has a fully 3D counterpart called SOS. Programs exist to connect these analysis tools to parametric and CAD input from an integrated design environment.
2D barcodes: a novel and simple method for denture identification.
Sudheendra, Udyavara S; Sowmya, Kasetty; Vidhi, Mathur; Shreenivas, Kallianpur; Prathamesh, Joshi
2013-01-01
Several methods of denture marking have been described in the literature. However, most of them are expensive, time-consuming, and do not permit the incorporation of large amounts of information. We propose a novel and simple method incorporating 2D codes which has several advantages over the existing methods. A 2D code was generated in the dental office and inserted into a maxillary denture. The code was then read using software downloaded into a mobile phone giving access to the website containing details about the patient. The denture was also subjected to durability tests, which did not hamper the efficacy of the 2D code. 2D coding for dentures is a simple, less expensive method with the potential of storing a large amount of information that can be accessed on-site by the forensic investigator, thus allowing quick identification of the denture wearer. PMID:22971078
UCSD's MedPics: implementation and impact on the curriculum.
Hoffman, H. M.; Irwin, A. E.; Baird, S.; Bloor, C. M.; Miyai, K.; Savoia, M. C.
1993-01-01
MedPics is a computer-based image delivery system with supporting text fields and on-screen graphics to assist in key feature identification. It has been used by the University of California, San Diego as an integral part of the Human Disease course since 1992. Initially created to support pathology and histology, the program has now expanded to include hematology. MedPics has had a positive impact on the second year curriculum for which it was created. Moreover, use of this program has improved student attitudes toward computer-based resources and increased faculty interest in instructional development. Images Figure 1 PMID:8130582
NASA Astrophysics Data System (ADS)
McMahon, Matthew; Poole, Patrick; Willis, Christopher; Andereck, David; Schumacher, Douglass
2014-10-01
We recently introduced liquid crystal films as on-demand, variable thickness (50-5000 nanometers), low cost targets for intense laser experiments. Here we present the first particle-in-cell (PIC) simulations of short pulse laser excitation of liquid crystal targets treating Scarlet (OSU) class lasers using the PIC code LSP. In order to accurately model the target evolution, a low starting temperature and field ionization model are employed. This is essential as large starting temperatures, often used to achieve large Debye lengths, lead to expansion of the target causing significant reduction of the target density before the laser pulse can interact. We also present an investigation of the modification of laser pulses by very thin targets. This work was supported by the DARPA PULSE program through a grant from ARMDEC, by the US Department of Energy under Contract No. DE-NA0001976, and allocations of computing time from the Ohio Supercomputing Center.
2D bifurcations and Newtonian properties of memristive Chua's circuits
NASA Astrophysics Data System (ADS)
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Pic-du-Midi Observatory (Observatoire Midi-Pyrenees) (OMP)
NASA Astrophysics Data System (ADS)
Murdin, P.
2000-11-01
OMP is under the administrative supervision of both the Institute des Sciences de l'Univers (INSU) of the French National Center for Scientific Research (CNRS) and the Ministry of Research, Technology and Education. It has laboratories located at the Université Paul Sabatier in Toulouse, Bagnères, Lannemezan and at the summit of Pic du Midi de Bigorre....
Functional design criteria for pumping and instrumentation control (PIC) skids
BOETTGER, J.S.
1999-08-25
Radioactive liquid and semisolid waste from operation of Hanford's nuclear fuel processing plants is stored in 177 underground storage tanks located in the 200 Areas of the Hanford site. 28 of these tanks are of double-shell construction. The remaining 149 tanks are of single-shell construction. Only the newer, double-shell tanks (DST) can meet current requirements for containment of dangerous waste. Therefore, the single-shell tanks (SST) are being ''interim stabilized,'' which is the process of removing liquid from the waste through the use of a jet pump installed in a saltwell which penetrates the waste. Lockheed Martin Hanford Company has decided to purchase additional Pumping and Instrumentation Control (PIC) skids to monitor and control the operation of saltwell jet pumps in SSTs. Similar PIC skids are already in use at several locations. The PIC skids will shut off all power to equipment/instruments if preset limits are exceeded for such conditions as flammable gas, leak detection, pressure and flow, as well as provide air and water necessary for saltwell pumping activities. This document outlines the functional design criteria for pumping and instrumentation control (PIC) skids to support the interim stabilization effort for saltwell pumping.
EXPERIMENTAL INVESTIGATION OF PIC FORMATION IN CFC-12 INCINERATION
The report gives results of experiments to determine the effect of flame zone temperature on gas-phase flame formation and destruction of products of incomplete combustion (PICS) during dichlorodi-fluoromethane (CFC-12) incineration. The effect of water injection into the flame ...
Soft-PIC multiuser detection in MC-CDMA uplink system
NASA Astrophysics Data System (ADS)
Guo, Li-Li; Yuan, Bing-Bing
2005-06-01
It is necessary for an MC-CDMA uplink receiver to employ MUD (multiuser detection) in a frequency selective fading channel. After analyzing the algorithm of PIC (parallel interference cancellation) MUD, a novel MUD scheme, Soft-PIC (soft parallel interference cancellation) is proposed. Based on the reliability of each detected user signal in the former stage, this Soft-PIC detection scheme substitutes a soft decision of the variable for the hard decision in PIC scheme. Compared with the PIC scheme, it can reconstruct the interference signals more accurately and eliminate MAI (multiple access interference) in a more efficient way. PIC is one of the most practical schemes in numerous multiuser detection technologies. However, Soft-PIC as an improved PIC scheme deserves further study.
PIC/MCC simulation of capacitively coupled discharges: Effect of particle management and integration
NASA Astrophysics Data System (ADS)
Sun, Anbang; Becker, Markus M.; Loffhagen, Detlef
2016-09-01
A PIC/MCC simulation model for the analysis of low-temperature discharge plasmas is represented which takes the common leapfrog and the velocity Verlet algorithm for the particle integration, adaptive particle management as well as parallel computing using MPI into account. Main features of the model including the impact of super particle numbers, adaptive particle management and the time step size for the different integration methods are represented. The investigations are performed for low-pressure capacitively coupled radio frequency discharges in helium and argon. Besides a code verification by comparison with benchmark simulation results in helium it is shown that an adaptive particle management is particularly suitable for the simulation of discharges at elevated pressures where boundary effects and processes in the sheath regions are important. Furthermore, it is pointed out that the velocity Verlet integration scheme allows to speed up the PIC/MCC simulations compared to the leapfrog method because it makes the use of larger time steps at the same accuracy possible.
Kreh, B.B.
1994-12-01
This work investigates the role that the beam-plasma instability may play in a thermionic converter. The traditional assumption of collisionally dominated relaxation is questioned, and the beam-plasma instability is proposed as a possible dominant relaxation mechanism. Theory is developed to describe the beam-plasma instability in the cold-plasma approximation, and the theory is tested with two common Particle-in-Cell (PIC) simulation codes. The theory is first confirmed using an unbounded plasma PIC simulation employing periodic boundary conditions, ES1. The theoretically predicted growth rates are on the order of the plasma frequencies, and ES1 simulations verify these predictions within the order of 1%. For typical conditions encountered in thermionic converters, the resulting growth period is on the order of 7 {times} 10{sup {minus}11} seconds. The bounded plasma simulation PDP1 was used to evaluate the influence of finite geometry and the electrode boundaries. For this bounded plasma, a two-stream interaction was supported and resulting in nearly complete thermalization in approximately 5 {times} 10{sup {minus}10} seconds. Since the electron-electron collision rate of 10{sup 9} Hz and the electron atom collision rate of 10{sup 7} Hz are significantly slower than the rate of development of these instabilities, the instabilities appear to be an important relaxation mechanism.
PIC simulations of whistler wave generation using plasma conditions from the RAM-SCB model
NASA Astrophysics Data System (ADS)
Yu, Yiqun; Zhao, Lei; Peng, Bo; Delzanno, Gian Luca; Jordanova, Vania; Markidis, Stefano
2014-10-01
Wave-particle interactions play an important role in the Earth's inner magnetospheric dynamics. We study the whistler wave generation with an implicit particle-in-cell code (iPIC3D) within unstable equatorial regions identified by the kinetic ring current model RAM-SCB. During storm time, RAM-SCB shows that hot electrons on the dayside demonstrate high temperature anisotropy and are unstable to whistler wave excitation. By using plasma parameters from RAM-SCB, we carry out iPIC3D simulations assuming a bi-Maxwellian distribution for electrons. We find that with an electron temperature anisotropy of 4, electron density of 6 cm-3, and parallel temperature of 1 keV on the dayside around L ~ 5 . 5 , whistler waves are rapidly excited and propagate along the background magnetic field. Comparisons with linear theory show good agreement. The electron velocity distribution is significantly changed after wave generation, with smaller anisotropy due to the pitch-angle scattering. Furthermore, test particles are tracked in the whistler wave environment and the pitch-angle diffusion coefficient is extracted. The coefficient generally agrees with quasi-linear theory prediction with slight deviation even when the wave amplitude is as large as 5 % of the background magnetic field.
NASA Astrophysics Data System (ADS)
Bourdin, P. A.; Nakamura, T.; Narita, Y.
2015-12-01
Electromagnetic Parcile-In-Cell (PIC) simulations are widely used to study plasma phenomena where kinetic scales are coupled to fluid scales. One of these phenomena is the evolution of magnetic reconnection. Switch-on effects have been described earlier for magneto-/hydrodynamic (MHD and HD) simulations, where oscillations are ignited by the initial condition and the usual instantaneous way of starting a simulation run. Here we revisit the GEM setup (a Harris current sheet) and demonstrate the immediate generation of oscillations propagating perpendicular to the magnetic shear layer (in Bz). Also we show how these oscillations do not dissipate quickly and will later be mode-converted to generate wave power, first in By, much later also in Bx (pointing along the shear direction). One needs to take care not to interpret these oscillations as physical wave modes associated with the nature of reconnection. We propose a method to prevent such switch-on effects from the beginning, that should be considered for implementation in other PIC simulation codes as well.
Generalized SIMD algorithm for efficient EM-PIC simulations on modern CPUs
NASA Astrophysics Data System (ADS)
Fonseca, Ricardo; Decyk, Viktor; Mori, Warren; Silva, Luis
2012-10-01
There are several relevant plasma physics scenarios where highly nonlinear and kinetic processes dominate. Further understanding of these scenarios is generally explored through relativistic particle-in-cell codes such as OSIRIS [1], but this algorithm is computationally intensive, and efficient use high end parallel HPC systems, exploring all levels of parallelism available, is required. In particular, most modern CPUs include a single-instruction-multiple-data (SIMD) vector unit that can significantly speed up the calculations. In this work we present a generalized PIC-SIMD algorithm that is shown to work efficiently with different CPU (AMD, Intel, IBM) and vector unit types (2-8 way, single/double). Details on the algorithm will be given, including the vectorization strategy and memory access. We will also present performance results for the various hardware variants analyzed, focusing on floating point efficiency. Finally, we will discuss the applicability of this type of algorithm for EM-PIC simulations on GPGPU architectures [2]. [4pt] [1] R. A. Fonseca et al., LNCS 2331, 342, (2002)[0pt] [2] V. K. Decyk, T. V. Singh; Comput. Phys. Commun. 182, 641-648 (2011)
FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide
NASA Technical Reports Server (NTRS)
Wawrzynek, Paul; Ingraffea, Anthony
1994-01-01
FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.
Normalized ion distribution function in expanding sheaths of 2D grid electrodes
NASA Astrophysics Data System (ADS)
Yi, Changho; Namkung, Won; Cho, Moohyun
2016-04-01
Ion distributions in expanding collisionless sheaths of two-dimensional (2D) grid electrodes were studied by using XOOPIC (particle-in-cell) simulations when short pulses of negative high-voltage were applied to electrodes immersed in plasmas. 2D grid electrodes consist of a periodic array of cylindrical electrodes, and the opening ratio of the grid electrodes is defined by the ratio of the spacing between cylindrical electrodes to the periodic length of the grid electrodes. In this paper, we introduce a normalized ion distribution function in normalized coordinates, and it is shown by simulation that the normalized ion distribution function depends only on the opening ratio of the grid electrodes. When the opening ratio of the grid electrodes is fixed, the ion distribution in expanding sheaths can be easily found in various conditions using only a single run of a PIC simulation, and the computation time can be significantly reduced.
Energy Science and Technology Software Center (ESTSC)
2010-02-01
Neutron transport, calculation of multiplication factor and neutron fluxes in 2-D configurations: cell calculations, 2-D diffusion and transport, and burnup. Preparation of a cross section library for the code BOXER from a basic library in ENDF/B format (ETOBOX).
Australian Validation of the Hierarchical Personality Inventory for Children (HiPIC)
ERIC Educational Resources Information Center
Hopkinson, Laura; Watt, Dianne; Roodenburg, John
2014-01-01
The Hierarchical Personality Inventory for Children (HiPIC) is a developmentally appropriate parent-report measure of the Five Factor Model (FFM) that has been validated in several European languages but only recently in English. The English translation of the HiPIC was evaluated in an Australian context. Parent-rated HiPIC scores were obtained…
46 CFR 13.301 - Original application for “Tankerman-PIC (Barge)” endorsement.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 1 2010-10-01 2010-10-01 false Original application for âTankerman-PIC (Barge)â... OFFICERS AND SEAMEN CERTIFICATION OF TANKERMEN Requirements for âTankerman-PIC (Barge)â Endorsement § 13.301 Original application for “Tankerman-PIC (Barge)” endorsement. Each applicant for a...
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Anderson, Jonas T.
2013-03-15
In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.
Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B Brett; Turvey, Stuart E; Vallance, Bruce A
2015-07-01
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed "protein involved in colonization," or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966
Bhullar, Kirandeep; Zarepour, Maryam; Yu, Hongbing; Yang, Hong; Croxen, Matthew; Stahl, Martin; Finlay, B. Brett; Turvey, Stuart E.
2015-01-01
Bacterial pathogens produce a number of autotransporters that possess diverse functions. These include the family of serine protease autotransporters of Enterobacteriaceae (SPATEs) produced by enteric pathogens such as Shigella flexneri and enteroaggregative Escherichia coli. Of these SPATEs, one termed “protein involved in colonization,” or Pic, has been shown to possess mucinase activity in vitro, but to date, its role in in vivo enteric pathogenesis is unknown. Testing a pic null (ΔpicC) mutant in Citrobacter rodentium, a natural mouse pathogen, found that the C. rodentium ΔpicC strain was impaired in its ability to degrade mucin in vitro compared to the wild type. Upon infection of mice, the ΔpicC mutant exhibited a hypervirulent phenotype with dramatically heavier pathogen burdens found in intestinal crypts. ΔpicC mutant-infected mice suffered greater barrier disruption and more severe colitis and weight loss, necessitating their euthanization between 10 and 14 days postinfection. Notably, the virulence of the ΔpicC mutant was normalized when the picC gene was restored; however, a PicC point mutant causing loss of mucinase activity did not replicate the ΔpicC phenotype. Exploring other aspects of PicC function, the ΔpicC mutant was found to aggregate to higher levels in vivo than wild-type C. rodentium. Moreover, unlike the wild type, the C. rodentium ΔpicC mutant had a red, dry, and rough (RDAR) morphology in vitro and showed increased activation of the innate receptor Toll-like receptor 2 (TLR2). Interestingly, the C. rodentium ΔpicC mutant caused a degree of pathology similar to that of wild-type C. rodentium when infecting TLR2-deficient mice, showing that despite its mucinase activity, PicC's major role in vivo may be to limit C. rodentium's stimulation of the host's innate immune system. PMID:25895966
Hewett, D.W.; Francis, G.E.; Max, C.E.
1990-06-29
Evidence from magnetospheric and solar flare research supports the belief that collisionless magnetic reconnection can proceed on the Alfven-wave crossing timescale. Reconnection behavior that occurs this rapidly in collisionless plasmas is not well understood because underlying mechanisms depend on the details of the ion and electron distributions in the vicinity of the emerging X-points. We use the direct implicit Particle-In-Cell (PIC) code AVANTI to study the details of these distributions as they evolve in the self-consistent E and B fields of magnetic reconnection. We first consider a simple neutral sheet model. We observe rapid movement of the current-carrying electrons away from the emerging X-point. Later in time an oscillation of the trapped magnetic flux is found, superimposed upon continued linear growth due to plasma inflow at the ion sound speed. The addition of a current-aligned and a normal B field widen the scope of our studies.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
NASA Astrophysics Data System (ADS)
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.
2015-04-01
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
PIC Simulations in Low Energy Part of PIP-II Proton Linac
Romanov, Gennady
2014-07-01
The front end of PIP-II linac is composed of a 30 keV ion source, low energy beam transport line (LEBT), 2.1 MeV radio frequency quadrupole (RFQ), and medium energy beam transport line (MEBT). This configuration is currently being assembled at Fermilab to support a complete systems test. The front end represents the primary technical risk with PIP-II, and so this step will validate the concept and demonstrate that the hardware can meet the specified requirements. SC accelerating cavities right after MEBT require high quality and well defined beam after RFQ to avoid excessive particle losses. In this paper we will present recent progress of beam dynamic study, using CST PIC simulation code, to investigate partial neutralization effect in LEBT, halo and tail formation in RFQ, total emittance growth and beam losses along low energy part of the linac.
Study of negative hydrogen ion beam optics using the 3D3V PIC model
Miyamoto, K.; Nishioka, S.; Goto, I.; Hatayama, A.; Hanada, M.; Kojima, A.
2015-04-08
The mechanism of negative ion extraction under real conditions with the complex magnetic field is studied by using the 3D PIC simulation code. The extraction region of the negative ion source for the negative ion based neutral beam injection system in fusion reactors is modelled. It is shown that the E x B drift of electrons is caused by the magnetic filter and the electron suppression magnetic field, and the resultant asymmetry of the plasma meniscus. Furthermore, it is indicated that that the asymmetry of the plasma meniscus results in the asymmetry of negative ion beam profile including the beam halo. It could be demonstrated theoretically that the E x B drift is not significantly weakened by the elastic collisions of the electrons with neutral particles.
The ePLAS code for high-intensity laser-matter interaction studies
NASA Astrophysics Data System (ADS)
Mason, R. J.; Wei, M.; Beg, F.; King, J.; Stephens, R.; Fernandez, J.; Hegelich, M.
2008-04-01
The 2-D implicit hybrid simulation code e-PLAS has been developed to study inertial fusion targets undergoing intense short pulse laser illumination over large problem space and time scales. It treats the background target plasma electrons as a collisional Eulerian fluid and the ions as either a fluid or PIC particles-in-cell. Laser deposition near the critical surface converts the local cold electrons into a relativistic PIC component. Self-consistent E- and B- fields are computed by the Implicit Moment Method [1,2]. This permits the completion of full interaction simulations in only a few hours of CPU time on a modern PC. Recent application has been made to cone -capped and nail-headed wire targets driven by sub-picosecond laser pulses at 1.06 μm and up to 4.0 x 10^20 W/cm^2, as well as to the focusing of ions driven from the back side of thin foils. Discussion will be given to recent ePLAS improvements in the light absorption physics and fast ion modeling. [1] R. J. Mason, and C. Cranfill, IEEE Trans. Plasma Sci. PS-14, 45 (1986). [2] R. J. Mason, J. Comp. Phys. 71, 429 (1987).
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Rosenthal, Martin D.; Moore, Frederick A.
2015-01-01
A new phenotype of multiple organ failure has appeared: Persistent Inflammatory, Immunosuppressed, Catabolic Syndrome (PICS). Comorbidities and age >65 years have been established as the leading risk factors for PICS. As the percentage of elderly people continues to increase the prevalence of PICS in our ICUs will surely grow. Malnutrition (despite appropriate supplementation), recurrent nosocomial infections, frailty, ventilator dependence, and an indolent death depicts the central theme that plagues PICS patients. Aligned with the recently awarded P50 grant by NIGMS entitled, “PICS: A New Horizon for Surgical Critical Care”, and the University Of Florida’s Sepsis and Critical Illness Research Center will investigate the genetic make-up of PICS patients, better understand frailty and the implication in trauma patients, and hopefully elucidate new therapies. Currently, there are no therapies to combat PICS aside from nutritional inference elaborated after reviewing the literature on Burns, Cachexia, and Sarcopenia. PMID:26086042
A split control variate scheme for PIC simulations with collisions
NASA Astrophysics Data System (ADS)
Sonnendrücker, Eric; Wacher, Abigail; Hatzky, Roman; Kleiber, Ralf
2015-08-01
When the distribution function of plasma particles stays close to some analytically known function, statistical noise inherent to Monte Carlo simulations can be greatly reduced by introducing this function as a control variate in the computation of the velocity moments. Such a method, even though it can be naturally applied to nonlinear simulations, has originally emerged from linearised simulations and is usually called the δf particle-in-cell (PIC) method. In the past, the method has been extended to also handle collisions. This resulted in a two weight scheme which is known to produce a pronounced weight growth problem which rapidly makes it inefficient as a control variate method for variance reduction. In this work we analyse the weight growth problem within a simple example, which allows us to overcome its pathological behaviour. We also introduce a new split algorithm based on switching the control variate for PIC simulations with collisions. A key element of our algorithm is a new weight smoothing operator which enables us to obtain a significant noise reduction both in the presence of collisions and in the deep nonlinear phase of PIC simulations.
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Graphical representations of DNA as 2-D map
NASA Astrophysics Data System (ADS)
Randić, Milan
2004-03-01
We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Boltzmann electron PIC simulation of the E-sail effect
NASA Astrophysics Data System (ADS)
Janhunen, P.
2015-12-01
The solar wind electric sail (E-sail) is a planned in-space propulsion device that uses the natural solar wind momentum flux for spacecraft propulsion with the help of long, charged, centrifugally stretched tethers. The problem of accurately predicting the E-sail thrust is still somewhat open, however, due to a possible electron population trapped by the tether. Here we develop a new type of particle-in-cell (PIC) simulation for predicting E-sail thrust. In the new simulation, electrons are modelled as a fluid, hence resembling hybrid simulation, but in contrast to normal hybrid simulation, the Poisson equation is used as in normal PIC to calculate the self-consistent electrostatic field. For electron-repulsive parts of the potential, the Boltzmann relation is used. For electron-attractive parts of the potential we employ a power law which contains a parameter that can be used to control the number of trapped electrons. We perform a set of runs varying the parameter and select the one with the smallest number of trapped electrons which still behaves in a physically meaningful way in the sense of producing not more than one solar wind ion deflection shock upstream of the tether. By this prescription we obtain thrust per tether length values that are in line with earlier estimates, although somewhat smaller. We conclude that the Boltzmann PIC simulation is a new tool for simulating the E-sail thrust. This tool enables us to calculate solutions rapidly and allows to easily study different scenarios for trapped electrons.
PicSafe Medi: a clinical photography app review.
Lo, Michelle Chin I; Brinkworth, Simon; Knights, Christina; Mackie, Ian
2015-01-01
Medical photographs are used in many clinical settings; however, there are significant risks associated with using the camera feature on mobile devices, namely, breaches of security. PicSafe Medi is an app that allows healthcare professionals to take clinical photographs using smart devices whilst addressing the concerns of patient confidentiality. We review the app to assess its functionality in a UK clinical setting, taking into account UK guidelines such as those offered by the General Medical Council, UK legislation, the Institute of Medical Illustrators and the Department of Health. PMID:26828558
Automation of Pic du Midi 2-m Telescope Bernard Lyot
NASA Astrophysics Data System (ADS)
Lavie-Cambot, Jean-Marie; Lacassagne, F.; Ambert, P.; Arrotis, J.-M.; Argentin, Y.; Arberet, M.-P.; Chereau, E.; Decha, C.; Delaigue, C.; Guesdon, L.; Laurent-Burguiere, D.; Malbreil, G.
2011-03-01
Since 2007, Pic du Midi 2-m Telescope Bernard Lyot is dedicated to spectropolarimetry with a scientific niche in stella magnetism. In parallel, TBL is progressively evolving from an analogic human-controlled telescope, to a fully automated computer controlled digital telescope. This evolution required TBL team to replace all electronics and motors with digital system (parvex, brushless motors, buscan) components, and to integrate the dataflow system from proposal to archiving into a fully coordinates, remote-access software suite. A trained technician can already control remotely the telescope, instrument and science programs from anywhere. Further robotisation will require a high-level expert system to be defined.