Synthetic Aperture Focusing Technique 3D-CAD-SAFT
NASA Astrophysics Data System (ADS)
Schmitz, V.; Kröning, M.; Chakhlov, S.; Fischer, W.
2000-05-01
Till the 80's ultrasonic holography has been used as an analyzing technique, a procedure which has been replaced by the Synthetic Aperture Focusing Technique "SAFT." This technique has been applied on metallic components in different power plants, mostly on pipe systems on pressure vessels or on specimen made of composite or concrete material. SAFT exists in different versions, either in 2D or 3D, for plane or arbitrarily shaped surfaces, for pulse echo or pitch- and catch arrangements. The defect sizes ranged from 100 μm in turbine shafts till fractures of meters in research pressure vessels. The paper covers the lastest results of the SAFT-reconstruction technique under Windows NT which has been guided by the experience obtained in the field. It contributes to the currently discussed question of the possible benefit using TOFD—techniques versus pulse echo techniques; the target has been a fatigue crack in a pipe segment which was investigated by different insonification angles, wave modes and probe arrangements. The results are evaluated with respect to signal-to-noise ratio improvement; problems of TOFD are demonstrated using an animation procedure which allows to walk through the weld in three orthogonal directions. A special example will be shown from a bore hole inspection of water power station valves where the reconstruction procedure follows the radial axial insonification planes. The multi-line SAFT images can be cut according to the situation of the crack position and orientation.
NASA Astrophysics Data System (ADS)
Hamlin, D. R.
1985-11-01
This final report describes work performed by Southwest Research Institute for the Nuclear Regulatory Commission (NRC) in fulfillment of NRC Contract No. NRC-04-77-145; "Program for Field Validation of the Synthetic Aperture Focusing Technique for Ultrasonic Testing (SAFT UT)." The purpose was to validate the effectiveness of SAFT UT as a nondestructive examination technique for nuclear power and other related industries. SAFT UT is an ultrasonic imaging method for accurate measurement of the spatial location and extent of acoustically reflective surfaces (flaws) contained in objects such as structural components and weldments in nuclear power reactor systems. The increased measurement accuracy offered by SAFT, when compared with that provided by measurement methods now in use, will improve the reliability of flaw severity assessment with resultant safety and economic benefits to the nuclear power industry. This report presents a comprehensive discussion of the work accomplished in evaluating the performance capabilities of the developed SAFT UT inspection system. Inspection results obtained using both 0-degree longitudinal and angle-beam operating modes are presented. These results include laboratory and nuclear power plant field site examinations on a variety of defect types contained within carbon and stainless steel flat plate and cylindrical test specimens or components. The SAFT UT processed data flaw images are evaluated by comparing them to results obtained from destructive sectioning or by using flaw fabrication data which predicted actual flaw depth, orientation and size. On the basis of these evaluations, conclusions are presented which summarize the performance capabilities of the SAFT UT inspection technique.
Hall, T. E.; Reid, L. D.; Doctor, S. R.
1988-06-01
This document provides a technical description of the real-time imaging system developed for rapid flaw detection and characterization utilizing the synthetic aperture focusing technique for ultrasonic testing (SAFT-UT). The complete fieldable system has been designed to perform inservice inspection of light-water reactor components. Software was written on a DEC LSI 11/23 computer system to control data collection. The unprocessed data is transferred to a VAX 11/730 host computer to perform data processing and image display tasks. A parallel architecture peripheral to the host computer, referred to as the Real-Time SAFT Processor, rapidly performs the SAFT processing function. From the host's point of view, this device operates on the SAFT data in such a way that one may consider it to be a specialized or SAFT array processor. A guide to SAFT-UT theory and conventions is included, along with a detailed description of the operation of the software, how to install the software, and a detailed hardware description.
Saft-reconstruction in ultrasonic immersion technique using phased array transducers
NASA Astrophysics Data System (ADS)
Kitze, J.; Prager, J.; Boehm, R.; Völz, U.; Montag, H.-J.
2012-05-01
The two main preconditions for the application of the Synthetic Aperture Focusing Technique (SAFT) are: (i) a large divergence of the sound beam of the transducer and (ii) an exact knowledge about the sound propagation path. These requirements are easily fulfilled for point sources directly mounted on the surface of the specimen. In many cases, however, the transducer is wedge mounted and/or coupled using a water delay line, e.g. in immersion technique. These delay lines change the beam index and the propagation path has to be evaluated for each pixel separately considering Fermat's principle. Using phased array transducers, a sector scan can improve the divergence of the sound beam. The introduced method combines the advantages of using a phased array transducer in immersion technique to improve SAFT reconstruction. An algorithm is presented accounting the influence of the delay line on the reconstruction method. The applicability of the algorithm is shown by validation with simulated echo responses and with experimental results collected from a specimen with artificial flaws.
Busse, L J; Collins, H D; Doctor, S R
1984-03-01
The development and capabilities of synthetic aperture focusing techniques for ultrasonic testing (SAFT-UT) are presented. The purpose of SAFT-UT is to produce high-resolution images of the interior of opaque objects. The goal of this work is to develop and implement methods which can be used to detect and to quantify the extent of defects and cracks in critical components of nuclear reactors (pressure vessels, primary piping systems, and nozzles). This report places particular emphasis upon the practical experimental results that have been obtained using SAFT-UT as well as the theoretical background that underlies synthetic aperture focusing. A discussion regarding high-speed and real-time implementations of two- and three-dimensional synthetic aperture focusing is also presented.
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkivskiy, S.; Hepburn, F.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia s catastrophic failure is thought to have been caused by a dislodged piece of external tank spray on foam insulation (SOFI) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods have shown great potential for inspecting SOFI for the purpose of detecting anomalies such as small air voids that may cause separation of the SOFI from the external tank during a launch. These methods are capable of producing relatively high-resolution images of the interior of SOFI particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques (SAFT) are being developed. This paper presents some of the preliminary results of this investigation using SAFT-based methods and microwave holography at relatively low frequencies illustrating their potential capabilities for operation at millimeter wave frequencies.
Development and validation of a real-time SAFT-UT system for inservice inspection of LWRs
Doctor, S.R.; Reid, L.D.; Hall, T.E.; Littlefield, R.J.; Gilbert, R.W.; Crawford, S.L.; Baldwin, A.J.; Bowey, R.E.
1985-10-01
A multi-year program is underway at Pacific Northwest Laboratory (PNL) to move the synthetic aperture focusing technique from the Laboratory into the field to inspect light water reactor components. This report is a summary of highlights from the third year's efforts. The work presented here includes: scanner development, SAFT-UT signal processing techniques, SAFT-UT graphics package development, SAFT-UT real-time processor, SAFT-UT field system integration, SAFT-UT evaluation on CCSS, a field trip demonstrating in-field SAFT data processing, and future work. 11 figs.
LINEAR SCANNING METHOD BASED ON THE SAFT COARRAY
Martin, C. J.; Martinez-Graullera, O.; Romero, D.; Ullate, L. G.; Higuti, R. T.
2010-02-22
This work presents a method to obtain B-scan images based on linear array scanning and 2R-SAFT. Using this technique some advantages are obtained: the ultrasonic system is very simple; it avoids the grating lobes formation, characteristic in conventional SAFT; and subaperture size and focussing lens (to compensate emission-reception) can be adapted dynamically to every image point. The proposed method has been experimentally tested in the inspection of CFRP samples.
Numerical Verification of a 2-D PSF Equalization Technique
NASA Astrophysics Data System (ADS)
Atwood, Shane; Kankelborg, C.
2013-07-01
The Multi-Order Extreme Ultraviolet Spectrograph (MOSES) forms images of the transition region at HE II 30.4 in three spectral orders. Subtle differences between these images encode line profile information. However, differences in instrument point-spread function (PSF) in the three orders lead to non-negligible systematic errors in the retrieval of the line profiles. We describe a technique for equalizing the PSFs, and provide numerical verification of the technique's validity.
An Improved Periodogram Technique for 2-D PSF Equalization
NASA Astrophysics Data System (ADS)
Atwood, Shane; Kankelborg, Charles
2014-06-01
The Multi-Order Extreme Ultraviolet Spectrograph (MOSES) forms images of the transition region at HE II 30.4 in three spectral orders. Subtle differences between these images encode line profile information. However, differences in instrument point-spread function (PSF) in the three orders lead to non-negligible systematic errors in the retrieval of the line profiles. We describe an improved periodogram technique for equalizing the PSFs, and provide numerical verification of the technique's validity.
Imaging of transverse cracks in austenitic welds with RT-SAFT
NASA Astrophysics Data System (ADS)
Höhne, C.; Kolkoori, S. R.; Rahman, M.-U.; Prager, J.
2014-02-01
The synthetic aperture focusing technique (SAFT) is an imaging technique commonly used in ultrasonic inspection. In order to apply SAFT to the inspection of austenitic welds, the inhomogeneous anisotropic nature of the weld structure has to be taken into account. A suitable approach to accomplish this, is to couple the SAFT-algorithm with a ray tracing program (RT-SAFT). While SAFT-imaging of cracks in austenitic welds by use of ray tracing has been carried out before, all attempts so far were limited to longitudinal cracks which usually allows a treatment as 2-dimensional problem. In case of transverse cracks, a full 3-dimensional ray tracing is necessary in order to perform a SAFT-reconstruction. In this paper, we give an outline of our attempts to reconstruct images of transverse cracks in austenitic welds, utilizing 3-dimensional ray tracing and a layered structure model derived from an empirical model of grain orientations in welds. We present results of this RT-SAFT on experimental data taken from transverse cracks in different austenitic welds, which show that size and position of the cracks can be estimated with good accuracy, and compare them to images obtained by assuming an isotropic homogeneous medium which corresponds to the application of the classical SAFT-algorithm.
Improved ultrasonic SAFT imaging of flaws in structures with curved surfaces
NASA Astrophysics Data System (ADS)
Hirose, Sohichi; Nishimoto, Seitaro; Maruyama, Taizo; Nagata, Yasuaki
2014-02-01
A time domain synthetic aperture focusing technique (SAFT) for flaw imaging of immersed structures with curved surfaces is improved in conjunction with approximate wave solutions, which were obtained in an explicit form by Schmerr (1998). In the improved SAFT, the approximate solutions are used to normalize A-scan waveforms and then the normalized waveforms are superimposed to obtain images with high contrast for a flaw in a structure in curved surfaces. As examples, the proposed SAFT is applied to experimental data for a side drilled hole (SDH) in an immersed round bar.
NASA Astrophysics Data System (ADS)
Cortés-Vega, Luis
2015-09-01
We built, based on the Euclidean algorithm, a functional technique, which allows to discover a direct proof of Chinese Remainder Theorem. Afterwards, by using this functional approach, we present some applications to 2-D acoustic diffractal diffusers. The novelty of the method is their functional algorithmic character, which improves ideas, as well as, other results of the author and his collaborators in a previous work.
Comparing and visualizing titanium implant integration in rat bone using 2D and 3D techniques.
Arvidsson, Anna; Sarve, Hamid; Johansson, Carina B
2015-01-01
The aim was to compare the osseointegration of grit-blasted implants with and without a hydrogen fluoride treatment in rat tibia and femur, and to visualize bone formation using state-of-the-art 3D visualization techniques. Grit-blasted implants were inserted in femur and tibia of 10 Sprague-Dawley rats (4 implants/rat). Four weeks after insertion, bone implant samples were retrieved. Selected samples were imaged in 3D using Synchrotron Radiation-based μCT (SRμCT). The 3D data was quantified and visualized using two novel visualization techniques, thread fly-through and 2D unfolding. All samples were processed to cut and ground sections and 2D histomorphometrical comparisons of bone implant contact (BIC), bone area (BA), and mirror image area (MI) were performed. BA values were statistically significantly higher for test implants than controls (p < 0.05), but BIC and MI data did not differ significantly. Thus, the results partly indicate improved bone formation at blasted and hydrogen fluoride treated implants, compared to blasted implants. The 3D analysis was a valuable complement to 2D analysis, facilitating improved visualization. However, further studies are required to evaluate aspects of 3D quantitative techniques, with relation to light microscopy that traditionally is used for osseointegration studies. PMID:24711247
Jang, Dong-Kyu; Stidd, David A.; Schafer, Sebastian; Chen, Michael; Moftakhar, Roham
2016-01-01
Purpose We investigated whether a 3D overlay roadmap using monoplane fluoroscopy offers advantages over a conventional 2D roadmap using biplane fluoroscopy during endovascular aneurysm treatment. Materials and Methods A retrospective chart review was conducted for 131 consecutive cerebral aneurysm embolizations by three neurointerventionalists at a single institution. Allowing for a transition period, the periods from January 2012 to August 2012 (Time Period 1) and February 2013 to July 2013 (Time Period 2) were analyzed for radiation exposure, contrast administration, fluoroscopy time, procedure time, angiographic results, and perioperative complications. Two neurointerventionalists (Group 1) used a conventional 2D roadmap for both Time Periods, and one neurointerventionalist (Group 2) transitioned from a 2D roadmap during Time Period 1 to a 3D overlay roadmap during Time Period 2. Results During Time Period 2, Group 2 demonstrated reduced fluoroscopy time (p<0.001), procedure time (P=0.023), total radiation dose (p=0.001), and fluoroscopy dose (P=0.017) relative to Group 1. During Time Period 2, there was no difference of immediate angiographic results and procedure complications between the two groups. Through the transition from Time Period 1 to Time Period 2, Group 2 demonstrated decreased fluoroscopy time (p< 0.001), procedure time (p=0.022), and procedure complication rate (p=0.041) in Time Period 2 relative to Time Period 1. Conclusion The monoplane 3D overlay roadmap technique reduced fluoroscopy dose and fluoroscopy time during neurointervention of cerebral aneurysms with similar angiographic occlusions and complications rate relative to biplane 2D roadmap, which implies possible compensation of limitations of monoplane fluoroscopy by 3D overlay technique. PMID:27621947
NASA Technical Reports Server (NTRS)
Case, J. T.; Robbins, J.; Kharkovshy, S.; Hepburn, F. L.; Zoughi, R.
2005-01-01
The Space Shuttle Columbia's catastrophic failure is thought to have been caused by a dislodged piece of external tank SOFI (Spray On Foam Insulation) striking the left wing of the orbiter causing significant damage to some of the reinforced carbodcarbon leading edge wing panels. Microwave and millimeter wave nondestructive evaluation methods, have shown great potential for inspecting the SOFI for the purpose of detecting anomalies such as small voids that may cause separation of the foam from the external tank during the launch. These methods are capable of producing relatively high-resolution images of the interior of SOH particularly when advanced imaging algorithms are incorporated into the overall system. To this end, synthetic aperture focusing techniques are being deveioped for this purpose. These iechniqiies pradiice high-resolution images that are independent of the distance of the imaging probe to the SOFI with spatial resolution in the order of the half size of imaging probe aperture. At microwave and millimeter wave frequencies these apertures are inherently small resulting in high-resolution images. This paper provides the results of this investigation using 2D and 3D SAF based methods and holography. The attributes of these methods and a full discussion of the results will also be provided.
NASA Astrophysics Data System (ADS)
Laepple, T.; Heue, K.; Friedeburg, C. V.; Wang, P.; Knab, V.; Pundt, I.
2002-12-01
Tomographic-Differential-Optical-Absorption-Spectroscopy (Tom-DOAS) is a new application of the DOAS method designed to measure 2-3-dimensional concentration fields of different trace gases (e.g. NO2, HCHO, Ozone) in the troposphere. Numerical reconstruction techniques are used to obtain spatially resolved data from the slant column densities provided by DOAS instruments. We discuss the detection of emission plumes by AMAX (Airborne Multi AXis) DOAS Systems which measure sunlight by telescopes pointing in different directions. 2D distributions are reconstructed from slant columns by using airmass factor matrices and inversion techniques. We discuss possibilities and limitations of this technique gained with the use of simulated test fields. Therefore the effect of the parameter choice (e.g. flight track, algorithm changes) and measurement errors is investigated. Further, first results from the Partenavia aircraft measurements over Milano (Italy) during the European FORMAT campaign will be presented.
Inspection of thick welded joints using laser-ultrasonic SAFT.
Lévesque, D; Asaumi, Y; Lord, M; Bescond, C; Hatanaka, H; Tagami, M; Monchalin, J-P
2016-07-01
The detection of defects in thick butt joints in the early phase of multi-pass arc welding would be very valuable to reduce cost and time in the necessity of reworking. As a non-contact method, the laser-ultrasonic technique (LUT) has the potential for the automated inspection of welds, ultimately online during manufacturing. In this study, testing has been carried out using LUT combined with the synthetic aperture focusing technique (SAFT) on 25 and 50mm thick butt welded joints of steel both completed and partially welded. EDM slits of 2 or 3mm height were inserted at different depths in the multi-pass welding process to simulate a lack of fusion. Line scans transverse to the weld are performed with the generation and detection laser spots superimposed directly on the surface of the weld bead. A CCD line camera is used to simultaneously acquire the surface profile for correction in the SAFT processing. All artificial defects but also real defects are visualized in the investigated thick butt weld specimens, either completed or partially welded after a given number of passes. The results obtained clearly show the potential of using the LUT with SAFT for the automated inspection of arc welds or hybrid laser-arc welds during manufacturing. PMID:27062646
2-D array for 3-D Ultrasound Imaging Using Synthetic Aperture Techniques
Daher, Nadim M.; Yen, Jesse T.
2010-01-01
A 2-D array of 256 × 256 = 65,536 elements, with total area 4 × 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single layer flex circuits, which, compared to multi-layer flex circuits, are simpler to design, cheaper to manufacture and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving −6 dB and −20 dB beamwidths of less than 0.2 and 0.5 millimeters, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with −6dB and −20 dB beamwidths in the order of 0.4 and 0.8 millimeters, respectively. PMID:16764446
2D Electric field imagery in 4H-SiC power diodes using OBIC technique
NASA Astrophysics Data System (ADS)
Hamad, Hassan; Bevilacqua, Pascal; Planson, Dominique; Raynaud, Christophe; Tournier, Dominique; Vergne, Bertrand; Lazar, Mihai; Brosselard, Pierre
2015-11-01
Wide band gap semiconductors are more and more used, especially to design high voltage devices. However, some devices show lower breakdown voltages than those predicted in theory. These early breakdown are in general due to imperfections in the peripheral protections of the active junction. The aim of these protections is to reduce electric field peaks at the periphery of the junction. Thus, it is important to study the electric field distribution on the device periphery to detect any protection weakness. This paper presents a 2D electric field imagery using OBIC (optical beam induced current) technique. 2D cartographies are realized on JTE (junction termination extension) protected diodes in order to display electric field on diode peripheries. Other measurements are also performed on circular avalanche diodes protected with a MESA etching and provided with optical window. In both cases, OBIC techniques is demonstrated to be an efficient method to obtain electric field distribution within the device and to locate defects. Contribution to the topical issue "Electrical Engineering Symposium (SGE 2014)", edited by Adel Razek
The influence of slope profile extraction techniques and DEM resolution on 2D rockfall simulation
NASA Astrophysics Data System (ADS)
Wang, X.; Frattini, P.; Agliardi, F.; Crosta, G. B.
2012-04-01
The development of advanced 3D rockfall modelling algorithms and tools during the last decade has allowed to gain insights in the topographic controls on the quality and reliability of rockfall simulation results. These controls include DEM resolution and roughness, and depend on the adopted rockfall simulation approach and DEM generation techniques. Despite the development of 3D simulations, the 2D modelling approach still remains suitable and convenient in some cases. Therefore, the accuracy of high-quality 3D descriptions of topography must be preserved when extracting slope profiles for 2D simulations. In this perspective, this study compares and evaluates three different techniques commonly used to extract slope profiles from DEM, in order to assess their suitability and effects on rockfall simulation results. These methods include: (A) an "interpolated shape" method (ESRI 3D Analyst), (B) a raw raster sampling method (EZ Profiler), and (C) a vector TIN sampling method (ESRI 3D Analyst). The raster DEMs used in the study were all derived from the same TIN DEM used for method C. For raster DEM, the "interpolated shape" method (A) extracts the profile by bi-linear interpolating the elevation among the four neighbouring cells at each sampling location along the profile trace. The EZ Profiler extension (B) extracts the profile by sampling elevation values directly from the DEM raster grid at each sampling location. These methods have been compared to the extraction of profiles from TIN DEM (C), where slope profile elevations are directly obtained by sampling the TIN triangular facets. 2D rockfall simulations performed using a widely used commercial software (RocfallTM) with the different profiles show that: (1) method A and C provide similar results; (2) runout simulated using profiles obtained by method A is usually shorter than method C; (3) method B presents abrupt horizontal steps in the profiles, resulting in unrealistic runout. To study the influence of DEM
Schickert, Martin
2015-03-31
Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.
NASA Astrophysics Data System (ADS)
Schickert, Martin
2015-03-01
Ultrasonic testing systems using transducer arrays and the SAFT (Synthetic Aperture Focusing Technique) reconstruction allow for imaging the internal structure of concrete elements. At one-sided access, three-dimensional representations of the concrete volume can be reconstructed in relatively great detail, permitting to detect and localize objects such as construction elements, built-in components, and flaws. Different SAFT data acquisition and processing schemes can be utilized which differ in terms of the measuring and computational effort and the reconstruction result. In this contribution, two methods are compared with respect to their principle of operation and their imaging characteristics. The first method is the conventional single-channel SAFT algorithm which is implemented using a virtual transducer that is moved within a transducer array by electronic switching. The second method is the Combinational SAFT algorithm (C-SAFT), also named Sampling Phased Array (SPA) or Full Matrix Capture/Total Focusing Method (TFM/FMC), which is realized using a combination of virtual transducers within a transducer array. Five variants of these two methods are compared by means of measurements obtained at test specimens containing objects typical of concrete elements. The automated SAFT imaging system FLEXUS is used for the measurements which includes a three-axis scanner with a 1.0 m × 0.8 m scan range and an electronically switched ultrasonic array consisting of 48 transducers in 16 groups. On the basis of two-dimensional and three-dimensional reconstructed images, qualitative and some quantitative results of the parameters image resolution, signal-to-noise ratio, measurement time, and computational effort are discussed in view of application characteristics of the SAFT variants.
A New Method for Detecting Goaf Area of Coal Mine :2D Microtremor Profiling Technique
NASA Astrophysics Data System (ADS)
Xu, P.; Ling, S.; Guo, H.; Shi, W.; Li, S.; Tian, B.
2012-12-01
A goaf area is referred to as a cavity where coal has been removed or mined out. These cavities will change the original geostress equilibrium of stratigraphic system and cause local geostress focusing or concentration. Consequently, the surrounding rock of a goaf may be deformed, fractured, displaced and caved resulting from the combined effect of gravity and geostress. In the cases of little or no effective mining control, widespread cracks, fractures and even subsidence of the rock mass above the goaf will not only lead to groundwater depletion, farmland destruction and deterioration of ecological environment, but also present a serious threat to the mining safety, engineering construction, and even people's lives and property. So, it is important to locate the boundary of the goaf and to evaluate its stability in order to provide the basis for comprehensive control in the latter period of mining. This article attempts to explore a new geophysical method - 2D microtremor profiling technique for goaf detection and mapping. 2D microtremor profiling technique is based on the microtremor array theory (Aki, 1957; Ling, 1994; Okada, 2003) utilizing spatial autocorrelation analysis to obtain Rayleigh-wave dispersion curves for apparent S-wave velocity (Vx) calculation (Ling & Miwa, 2006;Xu et al.,2012). A laterally continuous S-wave velocity section can then be obtained through data interpolation. The final result will be used for interpreting lateral changes in lithology and geological structures. Let's take a case study in Henan Province of China as an example. The coal seams in the survey area were about 150 ~ 250m deep. A triple-circular array was adopted for acquiring microtremor data, with the observation radius in 20, 40 and 80m, respectively, and a sampling the interval of 50m. We observed the following characteristics of the goaf area from the microtremor Vx section: (1) obvious low pseudo velocity anomaly corresponding to limestone layer below the goaf; (2
Numerical computation of 2D sommerfeld integrals— A novel asymptotic extraction technique
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Kuester, Edward F.
1992-02-01
The accurate and efficient computation of the elements in the impedance matrix is a crucial step in the application of Galerkin's method to the analysis of planar structures. As was demonstrated in a previous paper, it is possible to decompose the angular integral, in the polar representation for the 2D Sommerfeld integrals, in terms of incomplete Lipschitz-Hankel integrals (ILHIs) when piecewise sinusoidal basis functions are employed. Since Bessel series expansions can be used to compute these ILHIs, a numerical integration of the inner angular integral is not required. This technique provides an efficient method for the computation of the inner angular integral; however, the outer semi-infinite integral still converges very slowly when a real axis integration is applied. Therefore, it is very difficult to compute the impedance elements accurately and efficiently. In this paper, it is shown that this problem can be overcome by using the ILHI representation for the angular integral to develop a novel asymptotic extraction technique for the outer semi-infinite integral. The usefulness of this asymptotic extraction technique is demonstrated by applying it to the analysis of a printed strip dipole antenna in a layered medium.
Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2014-01-01
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595
Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar
2014-01-01
This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595
Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier
2015-01-01
A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878
Haque, Rubaiyet Iftekharul; Ogam, Erick; Loussert, Christophe; Benaben, Patrick; Boddaert, Xavier
2015-01-01
A capacitive acoustic resonator developed by combining three-dimensional (3D) printing and two-dimensional (2D) printed electronics technique is described. During this work, a patterned bottom structure with rigid backplate and cavity is fabricated directly by a 3D printing method, and then a direct write inkjet printing technique has been employed to print a silver conductive layer. A novel approach has been used to fabricate a diaphragm for the acoustic sensor as well, where the conductive layer is inkjet-printed on a pre-stressed thin organic film. After assembly, the resulting structure contains an electrically conductive diaphragm positioned at a distance from a fixed bottom electrode separated by a spacer. Measurements confirm that the transducer acts as capacitor. The deflection of the diaphragm in response to the incident acoustic single was observed by a laser Doppler vibrometer and the corresponding change of capacitance has been calculated, which is then compared with the numerical result. Observation confirms that the device performs as a resonator and provides adequate sensitivity and selectivity at its resonance frequency. PMID:26473878
High-resolution GPR imaging using a nonstandard 2D EEMD technique
NASA Astrophysics Data System (ADS)
Chen, Chih-Sung; Jeng*, Yih; Yu, Hung-Ming
2013-04-01
Ground Penetrating Radar (GPR) data are affected by a variety of factors. Linear and nonlinear data processing methods each have been widely applied to the GPR use in geophysical and engineering investigations. For complicated data such as the shallow earth image of urban area, a better result can be achieved by integrating both approaches. In this study, we introduce a nonstandard 2D EEMD approach, which integrates the natural logarithm transformed (NLT) ensemble empirical mode decomposition (EEMD) method with the linear filtering technique to process GPR images. The NLT converts the data into logarithmic values; therefore, it permits a wide dynamic range for the recorded GPR data to be presented. The EEMD dyadic filter bank decomposes the data into multiple components ready for image reconstruction. Consequently, the NLT EEMD method provides a new way of nonlinear energy compensating and noise filtering with results having minimal artifacts. However, horizontal noise in the GPR time-distance section may be enhanced after NLT process in some cases. To solve the dilemma, we process the data two dimensionally. At first, the vertical background noise of each GPR trace is removed by using a standard linear method, the background noise removal algorithm, or simply by performing the sliding background removal filter. After that, the NLT is applied to the data for examining the horizontal coherent energy. Next, we employ the EEMD filter bank horizontally at each time step to remove the horizontal coherent energy. After removing the vertical background noise and horizontal coherent energy, a vertical EEMD method is then applied to generate a filter bank of the GPR time-distance section for final image reconstruction. Two buried models imitating common shallow earth targets are used to verify the effectiveness of the proposed scheme. One model is a brick cistern buried in a disturbed site of poor reflection quality. The other model is a buried two-stack metallic target
Status of SAFT silver hydrogen cell development
NASA Technical Reports Server (NTRS)
Goualard, B. J.
1983-01-01
Nickel-hydrogen cells appear to be an improvement over the nickel-cadmium in applications requiring longer lifetime and reduced weight. An even more efficient couple, the silver-hydrogen couple, is also considered. After a theoretical study first performed by the Battelle Institute of Geneva under ESA (European Space Agency) contract, SAFT has undertaken more detailed analyses of the silver-hydrogen degradation mechanisms. ESA and the French Department of Defense contracted with SAFT for a full-development program of the silver-hydrogen technology.
SAFT nickel hydrogen cell cycling status
NASA Technical Reports Server (NTRS)
Borthomieu, Yannick; Duquesne, Didier
1994-01-01
An overview of the NiH2 cell development is given. The NiH2 SAFT system is an electrochemical (single or dual) stack (IPV). The stack is mounted in an hydroformed Inconel 718 vessel operating at high pressure, equipped with 'rabbit ears' ceramic brazed electrical feedthroughs. The cell design is described: positive electrode, negative electrode, and stack configuration. Overviews of low earth orbit and geostationary earth orbit cyclings are provided. DPA results are also provided. The cycling and DPA results demonstrate that SAFT NiH2 is characterized by high reliability and very stable performances.
• LTV can be used to characterize free phase PCE architecture in 2-D flow chambers without using a dye. • Results to date suggest that error in PCE detection using LTV can be less than 10% if the imaging system is optimized. • Mass balance calculations show a maximum error of 9...
Gil, Alvaro; Guitián, Francisco
2007-03-01
We report a method that combines Brewster angle microscopy and Langmuir-Blodgett films technique to obtain highly ordered 2D colloidal crystals of nanospheres. The deposition of Langmuir-Blodgett films of silica spheres monitored by Brewster angle microscopy allows to determine with accuracy the best physical conditions to transfer highly ordered monolayers of nanoparticles. PMID:17184789
2D electron temperature diagnostic using soft x-ray imaging technique
Nishimura, K. Sanpei, A. Tanaka, H.; Ishii, G.; Kodera, R.; Ueba, R.; Himura, H.; Masamune, S.; Ohdachi, S.; Mizuguchi, N.
2014-03-15
We have developed a two-dimensional (2D) electron temperature (T{sub e}) diagnostic system for thermal structure studies in a low-aspect-ratio reversed field pinch (RFP). The system consists of a soft x-ray (SXR) camera with two pin holes for two-kinds of absorber foils, combined with a high-speed camera. Two SXR images with almost the same viewing area are formed through different absorber foils on a single micro-channel plate (MCP). A 2D T{sub e} image can then be obtained by calculating the intensity ratio for each element of the images. We have succeeded in distinguishing T{sub e} image in quasi-single helicity (QSH) from that in multi-helicity (MH) RFP states, where the former is characterized by concentrated magnetic fluctuation spectrum and the latter, by broad spectrum of edge magnetic fluctuations.
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li, Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-01-01
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE®). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to ∼13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE® system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by ∼9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT∼18% and ∼42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE® and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%–4%). PDD values at 2 cm depth varied from ∼72% for the 40 mm field, down to ∼55% for the 1 mm field. EBT and PRESAGE® PDDs agreed within ∼3% in the typical therapy region (1–4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm). These results indicate good overall consistency between ion-chamber, EBT
Commissioning a small-field biological irradiator using point, 2D, and 3D dosimetry techniques
Newton, Joseph; Oldham, Mark; Thomas, Andrew; Li Yifan; Adamovics, John; Kirsch, David G.; Das, Shiva
2011-12-15
Purpose: To commission a small-field biological irradiator, the XRad225Cx from Precision x-Ray, Inc., for research use. The system produces a 225 kVp x-ray beam and is equipped with collimating cones that produce both square and circular radiation fields ranging in size from 1 to 40 mm. This work incorporates point, 2D, and 3D measurements to determine output factors (OF), percent-depth-dose (PDD) and dose profiles at multiple depths. Methods: Three independent dosimetry systems were used: ion-chambers (a farmer chamber and a micro-ionisation chamber), 2D EBT2 radiochromic film, and a novel 3D dosimetry system (DLOS/PRESAGE registered ). Reference point dose rates and output factors were determined from in-air ionization chamber measurements for fields down to {approx}13 mm using the formalism of TG61. PDD, profiles, and output factors at three separate depths (0, 0.5, and 2 cm), were determined for all field sizes from EBT2 film measurements in solid water. Several film PDD curves required a scaling correction, reflecting the challenge of accurate film alignment in very small fields. PDDs, profiles, and output factors were also determined with the 3D DLOS/PRESAGE registered system which generated isotropic 0.2 mm data, in scan times of 20 min. Results: Surface output factors determined by ion-chamber were observed to gradually drop by {approx}9% when the field size was reduced from 40 to 13 mm. More dramatic drops were observed for the smallest fields as determined by EBT{approx}18% and {approx}42% for the 2.5 mm and 1 mm fields, respectively. PRESAGE registered and film output factors agreed well for fields <20 mm (where 3D data were available) with mean deviation of 2.2% (range 1%-4%). PDD values at 2 cm depth varied from {approx}72% for the 40 mm field, down to {approx}55% for the 1 mm field. EBT and PRESAGE registered PDDs agreed within {approx}3% in the typical therapy region (1-4 cm). At deeper depths the EBT curves were slightly steeper (2.5% at 5 cm
Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei
2016-01-01
A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar(+) (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar(+) sputter etching, and photoresist &Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar(+) etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559
NASA Astrophysics Data System (ADS)
Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei
2016-01-01
A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas.
Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei
2016-01-01
A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type <100> silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559
2D and 3D optical diagnostic techniques applied to Madonna dei Fusi by Leonardo da Vinci
NASA Astrophysics Data System (ADS)
Fontana, R.; Gambino, M. C.; Greco, M.; Marras, L.; Materazzi, M.; Pampaloni, E.; Pelagotti, A.; Pezzati, L.; Poggi, P.; Sanapo, C.
2005-06-01
3D measurement and modelling have been traditionally applied to statues, buildings, archeological sites or similar large structures, but rarely to paintings. Recently, however, 3D measurements have been performed successfully also on easel paintings, allowing to detect and document the painting's surface. We used 3D models to integrate the results of various 2D imaging techniques on a common reference frame. These applications show how the 3D shape information, complemented with 2D colour maps as well as with other types of sensory data, provide the most interesting information. The 3D data acquisition was carried out by means of two devices: a high-resolution laser micro-profilometer, composed of a commercial distance meter mounted on a scanning device, and a laser-line scanner. The 2D data acquisitions were carried out using a scanning device for simultaneous RGB colour imaging and IR reflectography, and a UV fluorescence multispectral image acquisition system. We present here the results of the techniques described, applied to the analysis of an important painting of the Italian Reinassance: `Madonna dei Fusi', attributed to Leonardo da Vinci.
An enhanced CCRTM (E-CCRTM) damage imaging technique using a 2D areal scan for composite plates
NASA Astrophysics Data System (ADS)
He, Jiaze; Yuan, Fuh-Gwo
2016-04-01
A two-dimensional (2-D) non-contact areal scan system was developed to image and quantify impact damage in a composite plate using an enhanced zero-lag cross-correlation reverse-time migration (E-CCRTM) technique. The system comprises a single piezoelectric actuator mounted on the composite plate and a laser Doppler vibrometer (LDV) for scanning a region to capture the scattered wavefield in the vicinity of the PZT. The proposed damage imaging technique takes into account the amplitude, phase, geometric spreading, and all of the frequency content of the Lamb waves propagating in the plate; thus, the reflectivity coefficients of the delamination can be calculated and potentially related to damage severity. Comparisons are made in terms of damage imaging quality between 2-D areal scans and linear scans as well as between the proposed and existing imaging conditions. The experimental results show that the 2-D E-CCRTM performs robustly when imaging and quantifying impact damage in large-scale composites using a single PZT actuator with a nearby areal scan using LDV.
Application of the digital watermarking technique in 2D barcode certificate anti-counterfeit systems
NASA Astrophysics Data System (ADS)
Chen, MuSheng; Lin, ShunDa
2011-06-01
At present, two dimensional barcode has been used in many fields. The safety of information in barcode is important, so this article brings up an effective two dimensional barcode encryption technology to assure it. Either two-dimensional barcode or digital watermarking technique is one of the most important parts and research focuses in anti-counterfeit fields. This paper designs and realizes a whole set of certificate administration system based on QRcode. On this platform the digital watermarking technique based on the spatial domain is used to encrypt the two dimensional barcode. The combination of two dimensional barcode and digital watermarking can improve the security and secrecy of personal information, and realize real anti-counterfeit certificates.
Use of 2D and 3D Imaging Techniques to Understand Fracture Growth
NASA Astrophysics Data System (ADS)
Lockner, D. A.
2004-05-01
The monitoring of acoustic emissions (AE) is a valuable tool for studying the brittle fracture process in rock. With the improved characterization of transducer response, researchers are able to apply a broad spectrum of seismological techniques to AE catalogues collected in the laboratory; i.e., moment tensor analysis, Vp/Vs ratios, attenuation, event clustering statistics, Gutenberg-Richter b-value and aftershock analysis. Since AE occurs spontaneously as a result of unstable microcrack growth during rock deformation experiments, it provides a non-destructive method to observe damage accumulation. I will give examples of visualization techniques that have proven helpful in the analysis of fracture nucleation and growth based on 3D event locations in granite and sandstone samples. These techniques are useful in interpreting the development of complex fracture systems in lab samples. Complementary measurements of wave speed anisotropy and heterogeneity are used to infer both the development of damage zones and the rate of infiltration of water during fluid injection experiments. Finally, spatial clustering of AE events is evaluated in terms of the surface roughness of reactivated faults during triaxial deformation experiments.
Ultrasonic damage detection of concrete structures by using pulse-echo sensor arrays and SAFT
NASA Astrophysics Data System (ADS)
Shi, Li-hua; Shao, Zhi-xue; Shao, Zhe
2009-07-01
In ultrasonic nondestructive testing (NDT) of concrete structures, the synthetic aperture focusing technique (SAFT) can improve the resolution of target and therefore gives a better image display of the B-scan data. In traditional B-scan of concrete structures the ultrasonic transducers are usually moved manually to detect the whole structure, the detection speed and the consistency in different test points are greatly affected. A PZT sensor array is designed in this paper to perform B-scan on large concrete structures more efficiently. The excitation of the sensor array and the data processing techniques for the array data are discussed. A signal processing approach is proposed to improve the consistency between different test channels in the array. Experiments on real structures show the embedded objects can be located accurately by using the array sensor and SAFT method.
Structure elucidation of organic compounds from natural sources using 1D and 2D NMR techniques
NASA Astrophysics Data System (ADS)
Topcu, Gulacti; Ulubelen, Ayhan
2007-05-01
In our continuing studies on Lamiaceae family plants including Salvia, Teucrium, Ajuga, Sideritis, Nepeta and Lavandula growing in Anatolia, many terpenoids, consisting of over 50 distinct triterpenoids and steroids, and over 200 diterpenoids, several sesterterpenoids and sesquiterpenoids along with many flavonoids and other phenolic compounds have been isolated. For Salvia species abietanes, for Teucrium and Ajuga species neo-clerodanes for Sideritis species ent-kaurane diterpenes are characteristic while nepetalactones are specific for Nepeta species. In this review article, only some interesting and different type of skeleton having constituents, namely rearranged, nor- or rare diterpenes, isolated from these species will be presented. For structure elucidation of these natural diterpenoids intensive one- and two-dimensional NMR techniques ( 1H, 13C, APT, DEPT, NOE/NOESY, 1H- 1H COSY, HETCOR, COLOC, HMQC/HSQC, HMBC, SINEPT) were used besides mass and some other spectroscopic methods.
NASA Astrophysics Data System (ADS)
Hoefer, Christoph; Santner, Jakob; Borisov, Sergey; Kreuzeder, Andreas; Wenzel, Walter; Puschenreiter, Markus
2015-04-01
Two dimensional chemical imaging of root processes refers to novel in situ methods to investigate and map solutes at a high spatial resolution (sub-mm). The visualization of these solutes reveals new insights in soil biogeochemistry and root processes. We derive chemical images by using data from DGT-LA-ICP-MS (Diffusive Gradients in Thin Films and Laser Ablation Inductively Coupled Plasma Mass Spectrometry) and POS (Planar Optode Sensors). Both technologies have shown promising results when applied in aqueous environment but need to be refined and improved for imaging at the soil-plant interface. Co-localized mapping using combined DGT and POS technologies and the development of new gel combinations are in our focus. DGTs are smart and thin (<0.4 mm) hydrogels; containing a binding resin for the targeted analytes (e.g. trace metals, phosphate, sulphide or radionuclides). The measurement principle is passive and diffusion based. The present analytes are diffusing into the gel and are bound by the resin. Thereby, the resin acts as zero sink. After application, DGTs are retrieved, dried, and analysed using LA-ICP-MS. The data is then normalized by an internal standard (e.g. 13C), calibrated using in-house standards and chemical images of the target area are plotted using imaging software. POS are, similar to DGT, thin sensor foils containing a fluorophore coating depending on the target analyte. The measurement principle is based on excitation of the flourophore by a specific wavelength and emission of the fluorophore depending on the presence of the analyte. The emitted signal is captured using optical filters and a DSLR camera. While DGT analysis is destructive, POS measurements can be performed continuously during the application. Both semi-quantitative techniques allow an in situ application to visualize chemical processes directly at the soil-plant interface. Here, we present a summary of results from rhizotron experiments with different plants in metal
NASA Astrophysics Data System (ADS)
Cao, L.; Cheng, Q.
2004-12-01
The scale invariant generator technique (SIG) and spectrum-area analysis technique (S-A) were developed independently relevant to the concept of the generalized scale invariance (GSI). The former was developed for characterizing the parameters involved in the GSI for characterizing and simulating multifractal measures whereas the latter was for identifying scaling breaks for decomposition of superimposed multifractal measures caused by multiple geophysical processes. A natural integration of these two techniques may yield a new technique to serve two purposes, on the one hand, that can enrich the power of S-A by increasing the interpretability of decomposed patterns in some applications of S-A and, on the other hand, that can provide a mean to test the uniqueness of multifractality of measures which is essential for application of SIG technique in more complicated environment. The implementation of the proposed technique has been done as a Dynamic Link Library (DLL) in Visual C++. The program can be friendly used for method validation and application in different fields.
NASA Astrophysics Data System (ADS)
Ma, Guoqing; Du, Xiaojuan
2012-12-01
This paper presents a new inversion method for the interpretation of 2D magnetic anomaly data, which uses the combination of the analytic signal and its total gradient to estimate the depth and the nature (structural index) of an isolated magnetic source. However, our proposed method is sensitive to noise. In order to lower the effect of noise, we apply upward continuation technique to smooth the anomaly. Tests on synthetic noise-free and noise corrupted magnetic data show that the new method can successfully estimate the depth and the nature of the causative source. The practical application of the technique is applied to measured magnetic anomaly data from Jurh area, northeast China, and the inversion results are in agreement with the inversion results from Euler deconvolution of the analytic signal.
Evaluation of SAFT America, Inc. electrochemical capacitors
Wright, R.B.; Murphy, T.C.
1997-12-01
The electrochemical capacitor devices described in this report were deliverables from Lawrence Berkeley National Laboratory (LBNL), Contract No. 4606510 with SAFT America, Inc., as part of LBNL`s exploratory research program. Dr. Kimio Kinoshita is the Program Manager at LBNL. The contract was in support of the US Department of Energy`s (DOE) exploratory electrochemical energy storage program which includes development projects for a wide variety of advanced high-energy/high-power energy storage systems for electric and hybrid vehicle programs. The DOE is currently developing various electrochemical capacitors as candidate power assist devices for the Partnership for a New Generation of Vehicles (PNGV) fast-response engine requirements. The LBNL contract with SAFT America, Inc., was intended to evaluate various activated carbon-based electrode formulations and develop an electrical model of the double-layer capacitor. The goal is to design and deliver prototypes meeting the DOE requirement of > 1,000 W/kg, 16 Wh/kg. Deliverables were sent to the INEEL EST laboratory for independent testing and evaluation. The following report describes performance testing on ten devices received September 2, 1996. Due to the initial performance of these early devices, life-cycle testing was not conducted. Additional devices, with improved performance, are expected to be tested. Future results will be reported in a follow-on report.
NASA Astrophysics Data System (ADS)
Bernauer, F.; Hürkamp, K.; Rühm, W.; Tschiersch, J.
2015-03-01
Detailed characterization and classification of precipitation is an important task in atmospheric research. Line scanning 2-D-video disdrometer technique is well established for rain observations. The two orthogonal views taken of each hydrometeor passing the sensitive area of the instrument qualify this technique especially for detailed characterization of non symmetric solid hydrometeors. However, in case of solid precipitation problems related to the matching algorithm have to be considered and the user must be aware of the limited spacial resolution when size and shape descriptors are analyzed. This work has the aim of clarifying the potential of 2-D-video disdrometer technique in deriving size, velocity and shape parameters from single recorded pictures. The need of implementing a matching algorithm suitable for mixed and solid phase precipitation is highlighted as an essential step in data evaluation. For this purpose simple reproducible experiments with solid steel spheres and irregularly shaped styrofoam particles are conducted. Self-consistency of shape parameter measurements is tested in 40 cases of real snow fall. As result it was found, that reliable size and shape characterization with a relative standard deviation of less than 5% is only possible for particles larger than 1 mm. For particles between 0.5 and 1.0 mm the relative standard deviation can grow up to 22% for the volume, 17% for size parameters and 14% for shape descriptors. Testing the adapted matching algorithm with a reproducible experiment with styrofoam particles a mismatch probability of less than 2.5% was found. For shape parameter measurements in case of real solid phase precipitation the 2DVD shows self-consistent behavior.
A hybrid experimental-numerical technique for determining 3D velocity fields from planar 2D PIV data
NASA Astrophysics Data System (ADS)
Eden, A.; Sigurdson, M.; Mezić, I.; Meinhart, C. D.
2016-09-01
Knowledge of 3D, three component velocity fields is central to the understanding and development of effective microfluidic devices for lab-on-chip mixing applications. In this paper we present a hybrid experimental-numerical method for the generation of 3D flow information from 2D particle image velocimetry (PIV) experimental data and finite element simulations of an alternating current electrothermal (ACET) micromixer. A numerical least-squares optimization algorithm is applied to a theory-based 3D multiphysics simulation in conjunction with 2D PIV data to generate an improved estimation of the steady state velocity field. This 3D velocity field can be used to assess mixing phenomena more accurately than would be possible through simulation alone. Our technique can also be used to estimate uncertain quantities in experimental situations by fitting the gathered field data to a simulated physical model. The optimization algorithm reduced the root-mean-squared difference between the experimental and simulated velocity fields in the target region by more than a factor of 4, resulting in an average error less than 12% of the average velocity magnitude.
Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong
2015-01-01
NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples. PMID:25670027
Huang, Yuqing; Zhang, Zhiyong; Chen, Hao; Feng, Jianghua; Cai, Shuhui; Chen, Zhong
2015-01-01
NMR spectroscopy is a commonly used technique for metabolite analyses. Due to the observed macroscopic magnetic susceptibility in biological tissues, current NMR acquisitions in measurements of biological tissues are generally performed on tissue extracts using liquid NMR or on tissues using magic-angle spinning techniques. In this study, we propose an NMR method to achieve high-resolution J-resolved information for metabolite analyses directly from intact biological samples. A dramatic improvement in spectral resolution is evident in our contrastive demonstrations on a sample of pig brain tissue. Metabolite analyses for a postmortem fish from fresh to decayed statuses are presented to further reveal the capability of the proposed method. This method is a previously-unreported high-resolution 2D J-resolved spectroscopy for biological applications without specialised hardware requirements or complicated sample pretreatments. It provides a significant contribution to metabolite analyses of biological samples, and may be potentially applicable to in vivo samples. Furthermore, this method also can be applied to measurements of semisolid and viscous samples. PMID:25670027
NASA Astrophysics Data System (ADS)
Liu, Hongyi; Zhou, Jun; Chen, Yijian
2015-03-01
To break through 1-D IC layout limitations, we develop computationally efficient 2-D layout decomposition and stitching techniques which combine the optical and self-aligned multiple patterning (SAMP) processes. A polynomial time algorithm is developed to decompose the target layout into two components, each containing one or multiple sets of unidirectional features that can be formed by a SAMP+cut/block process. With no need of connecting vias, the final 2-D features are formed by directly stitching two components together. This novel patterning scheme is considered as a hybrid approach as the SAMP processes offer the capability of density scaling while the stitching process creates 2-D design freedom as well as the multiple-CD/pitch capability. Its technical advantages include significant reduction of via steps and avoiding the interdigitating types of multiple patterning (for density multiplication) to improve the processing yield. The developed decomposition and synthesis algorithms are tested using 2-D layouts from NCSU open cell library. Statistical and computational characteristics of these public layout data are investigated and discussed.
Grade-2 Teflon (AF1601) PCF for optical communication using 2D FDTD technique: a simplest design
NASA Astrophysics Data System (ADS)
Muduli, N.; Achary, J. S. N.; Padhy, Hemanta ku.
2016-04-01
A nonlinear ytterbium-doped rectangular proposed PCF structure of inner and outer cladding is used to analyze effective mode field area (Aeff), nonlinear coefficient (γ), dispersion (D), and confinement loss (CL) in a wide range of wavelength. The fabrication of PCF structure is due to different size doped air hole, pitch, and air hole diameter in a regular periodic geometrical array fashion. The various property of PCF structure such as mode field area, nonlinear coefficient, dispersion, and confinement loss are analyzed by implementing 2D FDTD technique. The above PCF property investigated using suitable parameters like Λ1, ?, ?, and ? in three different situations is discussed in simulation. The high nonlinear coefficient and dispersion property of PCF structure are tailored by setting the cladding parameter. However, highly nonlinear fibers with nonzero dispersion at the wavelength of 1.55 μm are very attractive for a range of optical communication application such as laser amplifier, pulse compression, wavelength conversion, all optical switching, and supercontinuum generation. So our newly proposed ytterbium-doped PCF seems to be most suitable exclusively for supercontinuum generation and nonlinear fiber optics. Finally, it is observed that ytterbium-doped Teflon (AF1601) PCF has more nonlinear coefficient (γ(λ) = 65.27 W-1 km-1) as compared to pure silica PCF (γ(λ) = 52 W-1 km-1) design to have same mode field area (Aeff) 1.7 μm2 at an operating wavelength of 1.55 μm.
NASA Astrophysics Data System (ADS)
Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.
1999-05-01
The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable
SAFT 4{1/2} inch nickel hydrogen battery cells
Duquesne, D.; Lacout, B.; Sennet, A.
1995-12-31
SAFT Advanced Batteries has now produced over 400 high capacity 4{1/2} inch Nickel Hydrogen Battery Cells for flight programs. The 4.5 inch diameter, rabbit-ear cell design is designed to provide the anticipated energy required at the lowest practical weight. SAFT has incorporated into the design of the dry-powder nickel electrode, truly hermetic ceramic to metal seals, qualified terminal feedthroughs, high reliability mechanical design, composite pure platinum negative electrode, and zircar separator, plus more than 25 years experience in aerospace nickel cell technology, resulting in a 4{1/2} inch configuration with the 3{1/2} inch cell design carryover heritage. General performance requirements for GEO missions that SAFT cells meet are 15 years in orbit lifetime, 80% DOD, low mass to energy ratios, and flexible capacity by modifying number of electrodes in the stack. This design is qualified for geostationary orbits based on SAFT`s 3{1/2} inch qualification heritage, design verification, and cycling performed by customer Space Systems/LORAL in support of the INTELSAT VIIA and N-STAR flight programs.
Li, Guohua; Li, Jihong; Wang, Wei; Yang, Mei; Zhang, Yuanwei; Sun, Pingchuan; Yuan, Zhi; He, Binglin; Yu, Yaoting
2006-06-01
To remove uremic octapeptide from the blood stream of uremic patients, various modified polyacylamide cross-linked absorbents were prepared. Adsorption experiments showed these absorbents have significant differences in adsorption capacity to the target peptide. In this paper, two-dimension proton nuclear magnetic resonance (2D 1H NMR) spectroscopy was used to investigate the interaction mechanism between the peptide and the adsorbents. Because of the insolubility of the absorbent, some soluble linear polymers with the same functional groups as the absorbents were employed as the model adsorbents in 2D 1H NMR. The preferred binding site for the peptide and polymers was identified to be at the C-terminal carboxyl group of the octapeptide via chemical shift perturbation effects. In this study, we found that hydrogen bonding, electrostatic, and hydrophobic interactions all play a role in the interaction force but had different contributions. Especially, the great chemical shift changes of the aromatic amino acid residues (Trp) during the interaction between butyl-modified polyacrylamide and octapeptide suggested the hydrophobic interaction, incorporated with the electrostatic force, played an important role in the binding reaction in aqueous solutions. This information not only rationally explained the results of the adsorption experiments, but also identified the effective binding site and mechanism, and shall provide a structural basis for designing better affinity-type adsorbents for the target peptide. PMID:16768402
Catala-Lehnen, Philip; Nüchtern, Jakob V; Briem, Daniel; Klink, Thorsten; Rueger, Johannes M; Lehmann, Wolfgang
2011-01-01
Navigation in hand surgery is still in the process of development. Initial studies have demonstrated the feasibility of 2D and 3D navigation for the palmar approach in scaphoid fractures, but a comparison of the possibilities of 2D and 3D navigation for the dorsal approach is still lacking. The aim of the present work was to test navigation for the dorsal approach in the scaphoid using cadaver bones. After development of a special radiolucent resting splint for the dorsal approach, we performed 2D- and 3D-navigated scaphoid osteosynthesis in 12 fresh-frozen cadaver forearms using a headless compression screw (Synthes). The operation time, radiation time, number of trials for screw insertion, and screw positions were analyzed. In six 2D-navigated screw osteosyntheses, we found two false positions with an average radiation time of 5 ± 2 seconds. Using 3D navigation, we detected one false position. A false position indicates divergence from the ideal line of the axis of the scaphoid but without penetration of the cortex. The initial scan clearly increased overall radiation time in the 3D-navigated group, and for both navigation procedures operating time was longer than in our clinical experience without navigation. Nonetheless, 2D and 3D navigation for non-dislocated scaphoid fractures is feasible, and navigation might reduce the risk of choosing an incorrect screw length, thereby possibly avoiding injury to the subtending cortex. The 3D navigation is more difficult to interpret than 2D fluoroscopic navigation but shows greater precision. Overall, navigation is costly, and the moderate advantages it offers for osteosynthesis of scaphoid fractures must be considered critically in comparisons with conventional operating techniques. PMID:21991920
Phased Array-Based Saft for Defect Sizing on Power Plant Components
NASA Astrophysics Data System (ADS)
Brekow, G.; Brackrock, D.; Boehm, R.; Kreutzbruck, M.
2009-03-01
Quantitative NDE methods play a key role when it comes to inspect components, which requires high operational safety. UT-SAFT is one of the well-known reconstruction tools, which provides information about the defect size. In this work we studied the use of phased array technique in combination with the SAFT algorithm to inspect power plant components. As a first example we inspected a real-sized mock-up model representing a part of a reactor pressure vessel with a 180 mm-thick ferritic base material followed by a 6 mm-thick austenitic cladding layer. The phased array probe was coupled at the outer ferritic surface. We detected and sized fatigue cracks within the cladding with a depth ranging from 4 mm to 10 mm. Secondly, we investigated a mock-up model resembling a nozzle including a thermo sleeve inlet and a maximum wall thickness of about 37 mm. Artificially inserted notches with a depth of 3 mm could be detected and sized, where the thermo sleeve is welded at the inside of the nozzle.
On-Site Evaluation of Large Components Using Saft and Tofd Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Spies, M.; Rieder, H.; Dillhöfer, A.
2011-06-01
This contribution addresses ultrasonic inspection and evaluation of welds in large components. An approach has been developed in order to enhance the reliability of welded ship propellers. The Synthetic Aperture Focusing Technique (SAFT) has been modified with regard to the curved surfaces and the sound attenuation of cast Ni-Al bronzes. For weld inspection in steels the Time-of-Flight Diffraction technique (TOFD) can provide additional information for specific defect orientations. Both techniques have been combined in view of the determination of defect sizes and shapes in longitudinal welds of pipes with diameters of up to 48 inches. Details on the inspection and evaluation concepts as well as experimental results are presented.
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
Haghtalab, Mohammad; Faraji-Dana, Reza
2012-05-01
Analysis and optimization of diffraction effects in nanolithography through multilayered media with a fast and accurate field-theoretical approach is presented. The scattered field through an arbitrary two-dimensional (2D) mask pattern in multilayered media illuminated by a TM-polarized incident wave is determined by using an electric field integral equation formulation. In this formulation the electric field is represented in terms of complex images Green's functions. The method of moments is then employed to solve the resulting integral equation. In this way an accurate and computationally efficient approximate method is achieved. The accuracy of the proposed method is vindicated through comparison with direct numerical integration results. Moreover, the comparison is made between the results obtained by the proposed method and those obtained by the full-wave finite-element method. The ray tracing method is combined with the proposed method to describe the imaging process in the lithography. The simulated annealing algorithm is then employed to solve the inverse problem, i.e., to design an optimized mask pattern to improve the resolution. Two binary mask patterns under normal incident coherent illumination are designed by this method, where it is shown that the subresolution features improve the critical dimension significantly. PMID:22561933
2-D PSTD Simulation of the time-reversed ultrasound-encoded deep-tissue imaging technique
Tseng, Snow H.; Ting, Wei-Lun; Wang, Shiang-Jiu
2014-01-01
We present a robust simulation technique to model the time-reversed ultrasonically encoded (TRUE) technique for deep-tissue imaging. The pseudospectral time-domain (PSTD) algorithm is employed to rigorously model the electromagnetic wave interaction of light propagating through a macroscopic scattering medium. Based upon numerical solutions of Maxwell’s equations, the amplitude and phase are accurately accounted for to analyze factors that affect the TRUE propagation of light through scattering media. More generally, we demonstrate the feasibility of modeling light propagation through a virtual tissue model of macroscopic dimensions with numerical solutions of Maxwell’s equations. PMID:24688821
Real-time 3-D SAFT-UT system evaluation and validation
Doctor, S.R.; Schuster, G.J.; Reid, L.D.; Hall, T.E.
1996-09-01
SAFT-UT technology is shown to provide significant enhancements to the inspection of materials used in US nuclear power plants. This report provides guidelines for the implementation of SAFT-UT technology and shows the results from its application. An overview of the development of SAFT-UT is provided so that the reader may become familiar with the technology. Then the basic fundamentals are presented with an extensive list of references. A comprehensive operating procedure, which is used in conjunction with the SAFT-UT field system developed by Pacific Northwest Laboratory (PNL), provides the recipe for both SAFT data acquisition and analysis. The specification for the hardware implementation is provided for the SAFT-UT system along with a description of the subsequent developments and improvements. One development of technical interest is the SAFT real time processor. Performance of the real-time processor is impressive and comparison is made of this dedicated parallel processor to a conventional computer and to the newer high-speed computer architectures designed for image processing. Descriptions of other improvements, including a robotic scanner, are provided. Laboratory parametric and application studies, performed by PNL and not previously reported, are discussed followed by a section on field application work in which SAFT was used during inservice inspections of operating reactors.
NASA Astrophysics Data System (ADS)
Nardi, F.; Grimaldi, S.; Petroselli, A.
2012-12-01
Remotely sensed Digital Elevation Models (DEMs), largely available at high resolution, and advanced terrain analysis techniques built in Geographic Information Systems (GIS), provide unique opportunities for DEM-based hydrologic and hydraulic modelling in data-scarce river basins paving the way for flood mapping at the global scale. This research is based on the implementation of a fully continuous hydrologic-hydraulic modelling optimized for ungauged basins with limited river flow measurements. The proposed procedure is characterized by a rainfall generator that feeds a continuous rainfall-runoff model producing flow time series that are routed along the channel using a bidimensional hydraulic model for the detailed representation of the inundation process. The main advantage of the proposed approach is the characterization of the entire physical process during hydrologic extreme events of channel runoff generation, propagation, and overland flow within the floodplain domain. This physically-based model neglects the need for synthetic design hyetograph and hydrograph estimation that constitute the main source of subjective analysis and uncertainty of standard methods for flood mapping. Selected case studies show results and performances of the proposed procedure as respect to standard event-based approaches.
Techniques utilized in the simulated altitude testing of a 2D-CD vectoring and reversing nozzle
NASA Technical Reports Server (NTRS)
Block, H. Bruce; Bryant, Lively; Dicus, John H.; Moore, Allan S.; Burns, Maureen E.; Solomon, Robert F.; Sheer, Irving
1988-01-01
Simulated altitude testing of a two-dimensional, convergent-divergent, thrust vectoring and reversing exhaust nozzle was accomplished. An important objective of this test was to develop test hardware and techniques to properly operate a vectoring and reversing nozzle within the confines of an altitude test facility. This report presents detailed information on the major test support systems utilized, the operational performance of the systems and the problems encountered, and test equipment improvements recommended for future tests. The most challenging support systems included the multi-axis thrust measurement system, vectored and reverse exhaust gas collection systems, and infrared temperature measurement systems used to evaluate and monitor the nozzle. The feasibility of testing a vectoring and reversing nozzle of this type in an altitude chamber was successfully demonstrated. Supporting systems performed as required. During reverser operation, engine exhaust gases were successfully captured and turned downstream. However, a small amount of exhaust gas spilled out the collector ducts' inlet openings when the reverser was opened more than 60 percent. The spillage did not affect engine or nozzle performance. The three infrared systems which viewed the nozzle through the exhaust collection system worked remarkably well considering the harsh environment.
Diaz, Aaron A.; Andersen, Eric S.; Samuel, Todd J.
2004-11-01
In the rail industry, sections of high strength Manganese steel are employed at critical locations in railroad networks. Ultrasonic inspections of Manganese steel microstructures are difficult to inspect with conventional means, as the propagation medium is highly attenuative, coarse-grained, anisotropic and nonhomogeneous in nature. Current in-service inspection methods are ineffective while pre-service X-ray methods (used for full-volumetric examinations of components prior to shipment) are time-consuming, costly, require special facilities and highly trained personnel for safe operations, and preclude manufacturers from inspecting statistically meaningful numbers of frogs for effective quality assurance. In-service examinations consist of visual inspections only and by the time a defect or flaw is visually detected, the structural integrity of the component may already be compromised, and immediate repair or replacement is required. A novel ultrasonic inspection technique utilizing low frequency ultrasound (100 to 500 kHz) combined with a synthetic aperture focusing technique (SAFT) for effective reduction of signal clutter and noise, and extraction of important features in the data, has proven to be effective for these coarse grained steel components. Results from proof-of-principal tests in the laboratory demonstrate an effective means to detect and localize reflectors introduced as a function of size and depth from the top of the frog rail. Using non-optimal, commercially available transducers coupled with the low-frequency/SAFT approach, preliminary evaluations were conducted to study the effects of the material microstructure on ultrasonic propagation, sensitivity and resolution in thick section frog components with machined side-drilled holes. Results from this study will be presented and discussed.
Recent developments on lithium ion batteries at SAFT
NASA Astrophysics Data System (ADS)
Broussely, M.
Li ion system has been implemented in various cell sizes and technologies, for very different applications. While cobalt oxide is the positive material chosen for voltage compatibility in portable applications, using conventional liquid electrolyte technology or polymer type for thin batteries, nickel-based oxides give excellent performances in the large batteries, designed for electric vehicles or satellites. All these battery designs are described, and some performances presented. These results show that the Li ion concept, widely used presently in small portable batteries, can bring very impressive improvement in power capability as well as long cycle life, besides the well established high energy density. Thanks to basic studies intensively engaged many years ago in its R&D Centres, SAFT is now using the Li Ion electrochemical system in the main development programs for a new generation of power sources. Both fields of expertise of SAFT, small portable and large industrial batteries, are involved in manufacturing or developing these power sources, addressing a very large market from portable phones to EVs.
NASA Astrophysics Data System (ADS)
Lotsch, Bettina V.
2015-07-01
Graphene's legacy has become an integral part of today's condensed matter science and has equipped a whole generation of scientists with an armory of concepts and techniques that open up new perspectives for the postgraphene area. In particular, the judicious combination of 2D building blocks into vertical heterostructures has recently been identified as a promising route to rationally engineer complex multilayer systems and artificial solids with intriguing properties. The present review highlights recent developments in the rapidly emerging field of 2D nanoarchitectonics from a materials chemistry perspective, with a focus on the types of heterostructures available, their assembly strategies, and their emerging properties. This overview is intended to bridge the gap between two major—yet largely disjunct—developments in 2D heterostructures, which are firmly rooted in solid-state chemistry or physics. Although the underlying types of heterostructures differ with respect to their dimensions, layer alignment, and interfacial quality, there is common ground, and future synergies between the various assembly strategies are to be expected.
Diaz, Aaron A.; Harris, R. V.; Doctor, Steven R.
2008-11-01
This report documents work performed at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, and at the Electric Power Research Institute's (EPRI) Nondestructive Examination (NDE) Center in Charlotte, North Carolina, on evalutating a low frequency ultrasonic inspection technique used for examination of cast stainless steel (CSS) and dissimilar metal (DMW) reactor piping components. The technique uses a zone-focused, multi-incident angle, low frequency (250-450 kHz) inspection protocol coupled with the synthetic aperture focusing technique (SAFT). The primary focus of this work is to provide information to the United States Nuclear Regulatory Commission on the utility, effectiveness and reliability of ultrasonic testing (UT) inspection techniques as related to the inservice ultrasonic inspection of coarse grained primary piping components in pressurized water reactors (PWRs).
iSAFT Protocol Validation Platform for On-Board Data Networks
NASA Astrophysics Data System (ADS)
Tavoularis, Antonis; Marinis, Kostas; Kollias, Vangelis
2014-08-01
iSAFT is an integrated powerful HW/SW environment for the simulation, validation & monitoring of satellite/spacecraft on-board data networks supporting simultaneously a wide range of protocols (RMAP, PTP, CCSDS Space Packet, TM/TC, CANopen, etc.) and network interfaces (SpaceWire, ECSS MIL-STD-1553, ECSS CAN). It is based on over 20 years of TELETEL's experience in the area of protocol validation in the telecommunications and aeronautical sectors, and it has been fully re-engineered in cooperation of TELETEL with ESA & space Primes, to comply with space on-board industrial validation requirements (ECSS, EGSE, AIT, AIV, etc.). iSAFT is highly modular and expandable to support new network interfaces & protocols and it is based on the powerful iSAFT graphical tool chain (Protocol Analyser /Recorder, TestRunner, Device Simulator, Traffic Generator, etc.). iSAFT can be used for the validation of units used in specific scientific missions, like the GAIA Video Processing Unit, which generate large volumes of data and validation can become very demanding. For these cases both the recording and the simulation exceed the performances of many existing test systems and test equipment is parallelized leading to complex EGSE architectures and generating SW synchronization issues. This paper presents the functional and performance characteristics of two instances of the iSAFT system, the iSAFT Recorder and iSAFT Simulator Traffic Generation engine. The main objective of the work presented in this paper was carried out in the frame of ESTEC Contract no. 4000105444/12/NL/CBI [titled "Protocol Validation System (PVS) activity"] and the results prove that, for both recording and simulation, iSAFT can be trusted even in missions with very high performance requirements.
Hara, Daisuke; Nakashima, Yasuharu; Hamai, Satoshi; Higaki, Hidehiko; Ikebe, Satoru; Shimoto, Takeshi; Hirata, Masanobu; Kanazawa, Masayuki; Kohno, Yusuke; Iwamoto, Yukihide
2014-01-01
Dynamic hip kinematics during weight-bearing activities were analyzed for six healthy subjects. Continuous X-ray images of gait, chair-rising, squatting, and twisting were taken using a flat panel X-ray detector. Digitally reconstructed radiographic images were used for 3D-to-2D model-to-image registration technique. The root-mean-square errors associated with tracking the pelvis and femur were less than 0.3 mm and 0.3° for translations and rotations. For gait, chair-rising, and squatting, the maximum hip flexion angles averaged 29.6°, 81.3°, and 102.4°, respectively. The pelvis was tilted anteriorly around 4.4° on average during full gait cycle. For chair-rising and squatting, the maximum absolute value of anterior/posterior pelvic tilt averaged 12.4°/11.7° and 10.7°/10.8°, respectively. Hip flexion peaked on the way of movement due to further anterior pelvic tilt during both chair-rising and squatting. For twisting, the maximum absolute value of hip internal/external rotation averaged 29.2°/30.7°. This study revealed activity dependent kinematics of healthy hip joints with coordinated pelvic and femoral dynamic movements. Kinematics' data during activities of daily living may provide important insight as to the evaluating kinematics of pathological and reconstructed hips. PMID:25506056
NASA Astrophysics Data System (ADS)
Zapf, M.; Schwarzenberg, G. F.; Ruiter, N. V.
2008-03-01
At Forschungszentrum Karlsruhe an Ultrasound Computer Tomography system USCT) is under development for early breast cancer detection. To detect morphological indicators in sub-millimeter resolution, the visualization is based on a SAFT algorithm (synthetic aperture focusing technique). The current 3D demonstrator system consists of approx. 2000 transducers, which are arranged in layers on a cylinder of 18 cm diameter and 15 cm height. With 3.5 millions of acquired raw data sets and up to one billion voxels for an image, a reconstruction may last up to months. In this work a performance optimized SAFT algorithm is developed. The used software environment is MathWorks' MATLAB. Several approaches were analyzed: a plain M-code (MATLAB's native language), an optimized M-code, a C-code implementation, and a low-level assembler implementation. The fastest found solution uses an SIMD enhanced assembler code wrapped in the C-interface of MATLAB. Additionally a 10% speed up is gained by reducing the function call overhead. The overall speed up is more than one order of magnitude. The resulting computational efficiency is near the theoretical optimum. The reconstruction time is significantly reduced without losing MATLAB's comfortable development environment.
Improve spatial resolutions of ultrasonic phased-array inspection using SAFT
NASA Astrophysics Data System (ADS)
Guan, Xuefei; Rasselkorde, El Mahjoub; Zhang, Jingdan; Zhou, S. Kevin; Abbasi, Waheed A.
2014-02-01
Ultrasonic Synthetic Aperture Focusing Technique (SAFT) reconstruction method is developed to provide high-resolution images of the inspected areas and volumes. The basic idea of the method is to coherently superimpose multiple A-scan measurements, incorporating the phase information of the sampling points. The method involves two major steps: data mapping according to time-of-flight (ToF), and local normalizing. Data mapping refers to the process of mapping each of the sampling points to a three-dimensional grid that represents the geometry model of the object being inspected. The value for each cell of the grid is a summation of all sampling points mapped into the cell. Local normalizing refers to normalizing a selected region of interest (ROI) for defect visualization and quantification. Lab experiments are performed using a 10MHz phased array ultrasonic probe to collect data from a cylinder material block. The method is used to process the experimental data. Using the developed method, spatial resolution of inspection is significantly improved comparing with traditional reconstruction methods. Results indicate that four closely spaced 0.794mm-diameter flat-bottomed holes are clearly identified.
Cycle life status of SAFT VOS nickel-cadmium cells
NASA Astrophysics Data System (ADS)
Goualard, Jacques
1993-02-01
The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.
Cycle life status of SAFT VOS nickel-cadmium cells
NASA Technical Reports Server (NTRS)
Goualard, Jacques
1993-01-01
The SAFT prismatic VOS Ni-Cd cells have been flown in geosynchronous orbit since 1977 and in low earth orbit since 1983. Parallel cycling tests are performed by several space agencies in order to determine the cycle life for a wide range of temperature and depth of discharge (DOD). In low Earth orbit (LEO), the ELAN program is conducted on 24 Ah cells by CNES and ESA at the European Battery Test Center at temperatures ranging from 0 to 27 C and DOD from 10 to 40 percent. Data are presented up to 37,000 cycles. One pack (X-80) has achieved 49,000 cycles at 10 C and 23 percent DOD. The geosynchronous orbit simulation of a high DOD test is conducted by ESA on 3 batteries at 10 C and 70, 90, and 100 percent DOD. Thirty-one eclipse seasons are completed, and no signs of degradation have been found. The Air Force test at CRANE on 24 Ah and 40 Ah cells at 20 C and 80 percent DOD has achieved 19 shadow periods. Life expectancy is discussed. The VOS cell technology could be used for the following: (1) in geosynchronous conditions--15 yrs at 10-15 C and 80 percent DOD; and (2) in low earth orbit--10 yrs at 5-15 C and 25-30 percent DOD.
Labate, L; Köster, P; Levato, T; Gizzi, L A
2012-10-01
A novel x-ray diagnostic of laser-fusion plasmas is described, allowing 2D monochromatic images of hot, dense plasmas to be obtained in any x-ray photon energy range, over a large domain, on a single-shot basis. The device (named energy-encoded pinhole camera) is based upon the use of an array of many pinholes coupled to a large area CCD camera operating in the single-photon mode. The available x-ray spectral domain is only limited by the quantum efficiency of scientific-grade x-ray CCD cameras, thus extending from a few keV up to a few tens of keV. Spectral 2D images of the emitting plasma can be obtained at any x-ray photon energy provided that a sufficient number of photons had been collected at the desired energy. Results from recent inertial confinement fusion related experiments will be reported in order to detail the new diagnostic. PMID:23126763
Energy Science and Technology Software Center (ESTSC)
2005-07-01
Aniso2d is a two-dimensional seismic forward modeling code. The earth is parameterized by an X-Z plane in which the seismic properties Can have monoclinic with x-z plane symmetry. The program uses a user define time-domain wavelet to produce synthetic seismograms anrwhere within the two-dimensional media.
Kröner, Frieder; Elsäßer, Dennis; Hubbuch, Jürgen
2013-11-29
The accelerating growth of the market for biopharmaceutical proteins, the market entry of biosimilars and the growing interest in new, more complex molecules constantly pose new challenges for bioseparation process development. In the presented work we demonstrate the application of a multidimensional, analytical separation approach to obtain the relevant physicochemical parameters of single proteins in a complex mixture for in silico chromatographic process development. A complete cell lysate containing a low titre target protein was first fractionated by multiple linear salt gradient anion exchange chromatography (AEC) with varying gradient length. The collected fractions were subsequently analysed by high-throughput capillary gel electrophoresis (HT-CGE) after being desalted and concentrated. From the obtained data of the 2D-separation the retention-volumes and the concentration of the single proteins were determined. The retention-volumes of the single proteins were used to calculate the related steric-mass action model parameters. In a final evaluation experiment the received parameters were successfully applied to predict the retention behaviour of the single proteins in salt gradient AEC. PMID:24139506
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.
2016-01-01
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877
NASA Astrophysics Data System (ADS)
Das, Saptarshi; Bera, Mrinal K.; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P.; Antonio, Mark R.; Sankaranarayanan, Subramanian K. R. S.; Roelofs, Andreas K.
2016-06-01
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well.
Das, Saptarshi; Bera, Mrinal K; Tong, Sheng; Narayanan, Badri; Kamath, Ganesh; Mane, Anil; Paulikas, Arvydas P; Antonio, Mark R; Sankaranarayanan, Subramanian K R S; Roelofs, Andreas K
2016-01-01
We report the discovery of an electrochemical process that converts two dimensional layered materials of arbitrary thicknesses into monolayers. The lateral dimensions of the monolayers obtained by the process within a few seconds time at room temperature were as large as 0.5 mm. The temporal and spatial dynamics of this physical phenomenon, studied on MoS2 flakes using ex-situ AFM imaging, Raman mapping, and photoluminescence measurements trace the origin of monolayer formation to a substrate-assisted self-limiting electrochemical ablation process. Electronic structure and atomistic calculations point to the interplay between three essential factors in the process: (1) strong covalent interaction of monolayer MoS2 with the substrate; (2) electric-field induced differences in Gibbs free energy of exfoliation; (3) dispersion of MoS2 in aqueous solution of hydrogen peroxide. This process was successful in obtaining monolayers of other 2D transition metal dichalcogenides, like WS2 and MoTe2 as well. PMID:27323877
Nanoimprint lithography: 2D or not 2D? A review
NASA Astrophysics Data System (ADS)
Schift, Helmut
2015-11-01
Nanoimprint lithography (NIL) is more than a planar high-end technology for the patterning of wafer-like substrates. It is essentially a 3D process, because it replicates various stamp topographies by 3D displacement of material and takes advantage of the bending of stamps while the mold cavities are filled. But at the same time, it keeps all assets of a 2D technique being able to pattern thin masking layers like in photon- and electron-based traditional lithography. This review reports about 20 years of development of replication techniques at Paul Scherrer Institut, with a focus on 3D aspects of molding, which enable NIL to stay 2D, but at the same time enable 3D applications which are "more than Moore." As an example, the manufacturing of a demonstrator for backlighting applications based on thermally activated selective topography equilibration will be presented. This technique allows generating almost arbitrary sloped, convex and concave profiles in the same polymer film with dimensions in micro- and nanometer scale.
Greg Flach, Frank Smith
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assigns an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.
Energy Science and Technology Software Center (ESTSC)
2011-12-31
Mesh2d is a Fortran90 program designed to generate two-dimensional structured grids of the form [x(i),y(i,j)] where [x,y] are grid coordinates identified by indices (i,j). The x(i) coordinates alone can be used to specify a one-dimensional grid. Because the x-coordinates vary only with the i index, a two-dimensional grid is composed in part of straight vertical lines. However, the nominally horizontal y(i,j0) coordinates along index i are permitted to undulate or otherwise vary. Mesh2d also assignsmore » an integer material type to each grid cell, mtyp(i,j), in a user-specified manner. The complete grid is specified through three separate input files defining the x(i), y(i,j), and mtyp(i,j) variations.« less
NASA Astrophysics Data System (ADS)
Revel, G. M.; Martarelli, M.; Chiariotti, P.
2010-07-01
The selective intensity technique is a powerful tool for the localization of acoustic sources and for the identification of the structural contribution to the acoustic emission. In practice, the selective intensity method is based on simultaneous measurements of acoustic intensity, by means of a couple of matched microphones, and structural vibration of the emitting object. In this paper high spatial density multi-point vibration data, acquired by using a scanning laser Doppler vibrometer, have been used for the first time. Therefore, by applying the selective intensity algorithm, the contribution of a large number of structural sources to the acoustic field radiated by the vibrating object can be estimated. The selective intensity represents the distribution of the acoustic monopole sources on the emitting surface, as if each monopole acted separately from the others. This innovative selective intensity approach can be very helpful when the measurement is performed on large panels in highly reverberating environments, such as aircraft cabins. In this case the separation of the direct acoustic field (radiated by the vibrating panels of the fuselage) and the reverberant one is difficult by traditional techniques. The first aim of this work is to develop and validate the technique in reverberating environments where the location and the quantification of each source are difficult by traditional techniques. The reverberant field is clearly challenging also for the proposed technique, affecting the achievable accuracy, mainly due to the fact that coherence between radiated and reverberated fields is often unknown and may be relevant. Secondly, the applicability of the method to real cases is demonstrated. A laboratory test case has been developed using a large wooden panel. The measurement is performed both in anechoic environment and under simulated reverberating conditions, for testing the ability of the selective intensity method to remove the reverberation.
Kura, Nura Umar; Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Zaudi, Muhammad Amar; Aris, Ahmad Zaharin
2014-01-01
The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1-10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific
Ramli, Mohammad Firuz; Ibrahim, Shaharin; Sulaiman, Wan Nor Azmin; Aris, Ahmad Zaharin
2014-01-01
The existing knowledge regarding seawater intrusion and particularly upconing, in which both problems are linked to pumping, entirely relies on theoretical assumptions. Therefore, in this paper, an attempt is made to capture the effects of pumping on seawater intrusion and upconing using 2D resistivity measurement. For this work, two positions, one perpendicular and the other parallel to the sea, were chosen as profile line for resistivity measurement in the coastal area near the pumping wells of Kapas Island, Malaysia. Subsequently, water was pumped out of two pumping wells simultaneously for about five straight hours. Then, immediately after the pumping stopped, resistivity measurements were taken along the two stationed profile lines. This was followed by additional measurements after four and eight hours. The results showed an upconing with low resistivity of about 1–10 Ωm just beneath the pumping well along the first profile line that was taken just after the pumping stopped. The resistivity image also shows an intrusion of saline water (water enriched with diluted salt) from the sea coming towards the pumping well with resistivity values ranging between 10 and 25 Ωm. The subsequent measurements show the recovery of freshwater in the aquifer and how the saline water is gradually diluted or pushed out of the aquifer. Similarly the line parallel to the sea (L2) reveals almost the same result as the first line. However, in the second and third measurements, there were some significant variations which were contrary to the expectation that the freshwater may completely flush out the saline water from the aquifer. These two time series lines show that as the areas with the lowest resistivity (1 Ωm) shrink with time, the low resistivity (10 Ωm) tends to take over almost the entire area implying that the freshwater-saltwater equilibrium zone has already been altered. These results have clearly enhanced our current understanding and add more scientific
Light field morphing using 2D features.
Wang, Lifeng; Lin, Stephen; Lee, Seungyong; Guo, Baining; Shum, Heung-Yeung
2005-01-01
We present a 2D feature-based technique for morphing 3D objects represented by light fields. Existing light field morphing methods require the user to specify corresponding 3D feature elements to guide morph computation. Since slight errors in 3D specification can lead to significant morphing artifacts, we propose a scheme based on 2D feature elements that is less sensitive to imprecise marking of features. First, 2D features are specified by the user in a number of key views in the source and target light fields. Then the two light fields are warped view by view as guided by the corresponding 2D features. Finally, the two warped light fields are blended together to yield the desired light field morph. Two key issues in light field morphing are feature specification and warping of light field rays. For feature specification, we introduce a user interface for delineating 2D features in key views of a light field, which are automatically interpolated to other views. For ray warping, we describe a 2D technique that accounts for visibility changes and present a comparison to the ideal morphing of light fields. Light field morphing based on 2D features makes it simple to incorporate previous image morphing techniques such as nonuniform blending, as well as to morph between an image and a light field. PMID:15631126
Lemaire, J.-L.; Sonnendruecker, E.
2005-06-08
We have investigated the dynamical behaviors of intense charged particle beams propagating through continuous and periodic systems using a fully self consistent method based on the direct solution of the Vlasov equation in presence of conducting wall. The simulation code deals either with an axisymetric system (r, vr, v{theta}) or cartesian system (x, vx, y, vy). Several diagnostics have been implemented enabling to display halo generation caused by sources that are driven by nonlinear forces, mismatching, non-stationary beam distributions and its development Comparisons with corresponding PIC technique simulations can be made. Further works are in progress to study in the same manner the propagation of charged particle beams in quadrupole FODO channels.
Improving synthetic aperture focusing technique for thick concrete specimens via frequency banding
NASA Astrophysics Data System (ADS)
Clayton, Dwight A.
2016-04-01
A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. While standard Synthetic Aperture Focusing Technique (SAFT) is adequate for many defects with shallow concrete cover, some defects located under deep concrete cover are not easily identified using the standard SAFT. For many defects, particularly defects under deep cover, the use of frequency banded SAFT improves the detectability over standard SAFT. In addition to the improved detectability, the frequency banded SAFT also provides improved scan depth resolution that can be important in determining the suitability of a particular structure to perform its designed safety function. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To validate the advantages of frequency banded SAFT on thick concrete, a 2.134 m x 2.134 m x 1.016 m concrete test specimen with twenty deliberately embedded defects was fabricated.
Tracy, F.T.
1991-09-01
This report describes new advances in the computational modeling of ground water and seepage using the finite element method (FEM) in conjunction with tools and techniques typically used by the aerospace engineers. The unsolved environmental issues regarding our hazardous and toxic waste problems must be resolved, and significant resources must be placed on this effort. Some military bases are contaminated with hazardous waste that has entered the groundwater domain. A groundwater model that takes into account contaminant flow is therefore critical. First, an extension of the technique of generating an orthogonal structured grid (using the Cauchy-Riemann equations) to automatically generate a flow net for two-dimensional (2-D) steady-state seepage problems is presented for various boundary conditions. Second, a complete implementation of a three-dimensional (3-D) seepage package is described where (1) grid generation is accomplished using the EAGLE program, (2) the seepage and groundwater analysis for either confined or unconfined steady-state flow, homogeneous or inhomogeneous media, and isotropic or anisotropic soil is accomplished with no restriction on the FE grid or requirement of an initial guess of the free surface for unconfined flow problems, and (3) scientific visualization is accomplished using the program FAST developed by NASA.
NASA Astrophysics Data System (ADS)
Wang, Jin; Ma, Jianyong; Zhou, Changhe
2014-11-01
A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2013-12-21
In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.
Energy Science and Technology Software Center (ESTSC)
2004-08-01
AnisWave2D is a 2D finite-difference code for a simulating seismic wave propagation in fully anisotropic materials. The code is implemented to run in parallel over multiple processors and is fully portable. A mesh refinement algorithm has been utilized to allow the grid-spacing to be tailored to the velocity model, avoiding the over-sampling of high-velocity materials that usually occurs in fixed-grid schemes.
Study of Beamforming Techniques for Ultrasound Imaging in Nondestructive Testing.
NASA Astrophysics Data System (ADS)
Ghorayeb, Sleiman Riad
Many of the innovations in modern materials testing technology make use of ultrasound. Therefore, the theory and application of ultrasound have become of extreme importance in nondestructive inspection of complete engineered systems. However, despite the fact that most of these ultrasound inspection techniques are based on well-established phenomena, two key problems pertaining to their application still remain unresolved. These problems can be identified as (1) the material being tested is assumed to be isotropic and homogeneous by nature, and (2) the scanning/data collection process, prior to the reconstruction scheme, is very time consuming. As a result, techniques for fast, accurate testing of anisotropic and nonhomogeneous media have been the focus of attention in modern non-destructive testing research. This dissertation first describes the development and implementation of a time domain synthetic aperture focusing technique (SAFT) to reconstruct flaws imbedded within Plexiglass^{rm TM/ } and Graphite/Epoxy samples. A modification to the present SAFT algorithm is then proposed in order to improve the quality of the images produced by SAFT when applied to composites. In addition, since the finite element method (FEM) can be used to solve hyperbolic partial differential equations, which govern wave propagation, FEM solutions are used to mimic a SAFT measurement. That is, the FEM is used to simulate the action of a transducer array. This is done to study the sensitivity of parameters involved in the SAFT algorithm. Using the same FEM model as a test bed, the data independent beamformer, in its basic form, is studied to determine its performance in reducing data acquisition time. It is seen that this technique is capable of adjusting the weights of the interpolating filter (beamformer) to predict an incoming signal from a desired direction while discriminating against other signals from different directions. SAFT results indicate that the FEM model can be used as
Isothermal Multiphase Flash Calculations with the PC-SAFT Equation of State
Justo-Garcia, Daimler N.; Garcia-Sanchez, Fernando; Romero-Martinez, Ascencion
2008-03-05
A computational approach for isothermal multiphase flash calculations with the PC-SAFT (Perturbed-Chain Statistical Associating Fluid Theory) equation of state is presented. In the framework of the study of fluid phase equilibria of multicomponent systems, the general multiphase problem is the single most important calculation which consists of finding the correct number and types of phases and their corresponding equilibrium compositions such that the Gibbs energy of the system is a minimum. For solving this problem, the system Gibbs energy was minimized using a rigorous method for thermodynamic stability analysis to find the most stable state of the system. The efficiency and reliability of the approach to predict and calculate complex phase equilibria are illustrated by solving three typical problems encountered in the petroleum industry.
GEO And LEO Life Tests Of Saft Lithium Ion Batteries After Ten Years Of Cycling
NASA Astrophysics Data System (ADS)
Dudley, G.; Hendel, B.; Borthomieu, Y.
2011-10-01
In the period 1999 - 2000 several life tests were started to support the qualification of the SAFT VES140 S lithium ion cell for GEO and LEO applications. Most are still continuing and all have demonstrated excellent performance. For example a real-time GEO test after the equivalent of 10 years in orbit shows a cell internal resistance increase of less than 20% and the cell capacity and energy are still higher than the values measured after the first season.Accelerated GEO tests have reached 90 seasons. A real-time LEO test has exceeded 48000 cycles at 30% depth of discharge (DoD) and 108000 cycles under an accelerated variable DoD profile of between 10 and 30 %. The evolution of performance will be described and in particular measurements of cell internal resistance and can strain.
PC-SAFT Modeling of CO2 Solubilities in Deep Eutectic Solvents.
Zubeir, Lawien F; Held, Christoph; Sadowski, Gabriele; Kroon, Maaike C
2016-03-10
Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), a physically based model that accounts for different molecular interactions explicitly, was applied to describe for the first time the phase behavior of deep eutectic solvents (DESs) with CO2 at temperatures from 298.15 to 318.15 K and pressures up to 2 MPa. DESs are mixtures of two solid compounds, a hydrogen bond donor (HBD) and a hydrogen bond acceptor (HBA), which form liquids upon mixing with melting points far below that of the individual compounds. In this work, the HBD is lactic acid and the HBAs are tetramethylammonium chloride, tetraethylammonium chloride, and tetrabutylammonium chloride. Two different modeling strategies were considered for the PC-SAFT modeling. In the first strategy, the so-called pseudo-pure component approach, a DES was considered as a pseudo-pure compound, and its pure-component parameters were obtained by fitting to pure DES density data. In the second strategy, the so-called individual-component approach, a DES was considered to consist of two individual components (HBA and HBD), and the pure-component parameters of the HBA and HBD were obtained by fitting to the density of aqueous solutions containing only the individual compounds of the DES. In order to model vapor-liquid equilibria (VLE) of DES + CO2 systems, binary interaction parameters were adjusted to experimental data from the literature and to new data measured in this work. It was concluded that the individual-component strategy allows quantitative prediction of the phase behavior of DES + CO2 systems containing those HBD:HBA molar ratios that were not used for k(ij) fitting. In contrast, applying the pseudo-pure component strategy required DES-composition specific k(ij) parameters. PMID:26814164
NASA Astrophysics Data System (ADS)
Mayor, Louise
2016-05-01
Graphene might be the most famous example, but there are other 2D materials and compounds too. Louise Mayor explains how these atomically thin sheets can be layered together to create flexible “van der Waals heterostructures”, which could lead to a range of novel applications.
Schottky diodes from 2D germanane
NASA Astrophysics Data System (ADS)
Sahoo, Nanda Gopal; Esteves, Richard J.; Punetha, Vinay Deep; Pestov, Dmitry; Arachchige, Indika U.; McLeskey, James T.
2016-07-01
We report on the fabrication and characterization of a Schottky diode made using 2D germanane (hydrogenated germanene). When compared to germanium, the 2D structure has higher electron mobility, an optimal band-gap, and exceptional stability making germanane an outstanding candidate for a variety of opto-electronic devices. One-atom-thick sheets of hydrogenated puckered germanium atoms have been synthesized from a CaGe2 framework via intercalation and characterized by XRD, Raman, and FTIR techniques. The material was then used to fabricate Schottky diodes by suspending the germanane in benzonitrile and drop-casting it onto interdigitated metal electrodes. The devices demonstrate significant rectifying behavior and the outstanding potential of this material.
NASA Astrophysics Data System (ADS)
Planková, Barbora; Hrubý, Jan; Vinš, Václav
2013-04-01
In this work, we used the density gradient theory (DGT) combined with the cubic equation of state (EoS) by Peng and Robinson (PR) and the perturbed chain (PC) modification of the SAFT EoS developed by Gross and Sadowski [1]. The PR EoS is based on very simplified physical foundations, it has significant limitations in the accuracy of the predicted thermodynamic properties. On the other hand, the PC-SAFT EoS combines different intermolecular forces, e.g., hydrogen bonding, covalent bonding, Coulombic forces which makes it more accurate in predicting of the physical variables. We continued in our previous works [2,3] by solving the boundary value problem which arose by mathematical solution of the DGT formulation and including the boundary conditions. Achieving the numerical solution was rather tricky; this study describes some of the crucial developments that helped us to overcome the partial problems. The most troublesome were computations for low temperatures where we achieved great improvements compared to [3]. We applied the GT for the n-alkanes: nheptane, n-octane, n-nonane, and n-decane because of the availability of the experimental data. Comparing them with our numerical results, we observed great differences between the theories; the best results gave the combination of the GT and the PC-SAFT. However, a certain temperature drift was observed that is not satisfactorily explained by the present theories.
Energy Science and Technology Software Center (ESTSC)
2001-01-31
This software reduces the data from two-dimensional kSA MOS program, k-Space Associates, Ann Arbor, MI. Initial MOS data is recorded without headers in 38 columns, with one row of data per acquisition per lase beam tracked. The final MOSS 2d data file is reduced, graphed, and saved in a tab-delimited column format with headers that can be plotted in any graphing software.
Tomosynthesis imaging with 2D scanning trajectories
NASA Astrophysics Data System (ADS)
Khare, Kedar; Claus, Bernhard E. H.; Eberhard, Jeffrey W.
2011-03-01
Tomosynthesis imaging in chest radiography provides volumetric information with the potential for improved diagnostic value when compared to the standard AP or LAT projections. In this paper we explore the image quality benefits of 2D scanning trajectories when coupled with advanced image reconstruction approaches. It is intuitively clear that 2D trajectories provide projection data that is more complete in terms of Radon space filling, when compared with conventional tomosynthesis using a linearly scanned source. Incorporating this additional information for obtaining improved image quality is, however, not a straightforward problem. The typical tomosynthesis reconstruction algorithms are based on direct inversion methods e.g. Filtered Backprojection (FBP) or iterative algorithms that are variants of the Algebraic Reconstruction Technique (ART). The FBP approach is fast and provides high frequency details in the image but at the same time introduces streaking artifacts degrading the image quality. The iterative methods can reduce the image artifacts by using image priors but suffer from a slow convergence rate, thereby producing images lacking high frequency details. In this paper we propose using a fast converging optimal gradient iterative scheme that has advantages of both the FBP and iterative methods in that it produces images with high frequency details while reducing the image artifacts. We show that using favorable 2D scanning trajectories along with the proposed reconstruction method has the advantage of providing improved depth information for structures such as the spine and potentially producing images with more isotropic resolution.
MAGNUM-2D computer code: user's guide
England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.
1985-01-01
Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Lymperiadis, Alexandros; Adjiman, Claire S.; Galindo, Amparo; Jackson, George
2007-12-01
A predictive group-contribution statistical associating fluid theory (SAFT-γ) is developed by extending the molecular-based SAFT-VR equation of state [A. Gil-Villegas et al. J. Chem. Phys. 106, 4168 (1997)] to treat heteronuclear molecules which are formed from fused segments of different types. Our models are thus a heteronuclear generalization of the standard models used within SAFT, comparable to the optimized potentials for the liquid state OPLS models commonly used in molecular simulation; an advantage of our SAFT-γ over simulation is that an algebraic description for the thermodynamic properties of the model molecules can be developed. In our SAFT-γ approach, each functional group in the molecule is modeled as a united-atom spherical (square-well) segment. The different groups are thus characterized by size (diameter), energy (well depth) and range parameters representing the dispersive interaction, and by shape factor parameters (which denote the extent to which each group contributes to the overall molecular properties). For associating groups a number of bonding sites are included on the segment: in this case the site types, the number of sites of each type, and the appropriate association energy and range parameters also have to be specified. A number of chemical families (n-alkanes, branched alkanes, n-alkylbenzenes, mono- and diunsaturated hydrocarbons, and n-alkan-1-ols) are treated in order to assess the quality of the SAFT-γ description of the vapor-liquid equilibria and to estimate the parameters of various functional groups. The group parameters for the functional groups present in these compounds (CH3, CH2, CH3CH, ACH, ACCH2, CH2, CH , and OH) together with the unlike energy parameters between groups of different types are obtained from an optimal description of the pure component phase equilibria. The approach is found to describe accurately the vapor-liquid equilibria with an overall %AAD of 3.60% for the vapor pressure and 0.86% for
Realistic and efficient 2D crack simulation
NASA Astrophysics Data System (ADS)
Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek
2010-04-01
Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.
NASA Astrophysics Data System (ADS)
Pan, Shu; Jiang, Charles; Yan, Yu; Kawaji, Masahiro; Saghir, M. Ziad
2006-01-01
In this paper, by combining the PC-SAFT equation of state (EOS) to the thermal diffusion models for non-associating mixtures, the theoretical prediction of thermal diffusion has been carried out for associating fluid mixtures including water-methanol, water-ethanol, and water-isopropanol. At first, the parameters of the PC-SAFT for water-methanol, water-ethanol, and water-isopropanol mixtures are optimized. Then, by comparing the predictive and experimental values of density and residual partial molar enthalpy in water-methanol, water-ethanol, and water-isopropanol mixtures, we demonstrate the capability of PC-SAFT EOS to reproduce reliable thermodynamic properties in these mixtures with a low to moderate water concentration. Finally, with the thermodynamic properties from the PC-SAFT, several thermal diffusion models available in the literature are extended to binary water-alcohol mixtures including water-methanol, water-ethanol, and water-isopropanol. The Firoozabadi model combined with the PC-SAFT EOS has shown an effective capability for predicting mixtures with a low to moderate water concentration.
Measurement and PC-SAFT modelling of three-phase behaviour.
Rodríguez-Palmeiro, Iago; Rodríguez, Oscar; Soto, Ana; Held, Christoph
2015-01-21
Modelling of multi-component systems with complex interactions is an ongoing challenge in thermodynamics due to their great relevance in industry and academia. Systems that build three liquid phases are found in many interesting applications (separation processes, triphasic catalysis…). Among them, the surfactant flooding method for enhanced oil recovery is noticeable. In this method, a stable solution of water, surfactants, co-surfactants, salts and other components is injected into the reservoir. The optimal formulation of this surfactant system is associated with a three-phase behaviour in which the interfacial tension becomes significantly low. In this work, the PC-SAFT equation of state was used for the first time to predict the equilibrium involved in triphasic systems using solely pure-component parameters. The model without any fitting parameter was able to predict the three-phase behaviour. A great agreement between experimental and predicted compositions for (water + [C10mim][NTf2] + n-dodecane) and (water + [C12mim][NTf2] + n-dodecane) ternary systems at 298.15 K and atmospheric pressure was found. At 348.15 K slightly higher deviations were found, which can be compensated by the introduction of just one binary interaction parameter. The success of this achievement could mean an important advancement in upstream oil operations, enabling a faster and cheaper method to carry out an initial screening of potential surfactants. PMID:25464376
Dittbrenner, Nils; Moser, Isabelle; Triebskorn, Rita; Capowiez, Yvan
2011-09-01
Adverse effects of agrochemicals on earthworms' burrowing behaviour can have crucial impacts on the entire ecosystem. In the present study, we have therefore assessed short- and long-term effects on burrowing behaviour in the earthworm species Aporrectodea caliginosa and Lumbricus terrestris after exposure to a range of imidacloprid concentrations (0.2-4 mg kg(-1) dry weight (DW)) for different exposure times (1, 7, 14 d). 2D-terraria were used for the examination of post-exposure short-term effects (24-96 h), while post-exposure long-term effects were assessed by means of X-ray burrow reconstruction in three dimensional soil cores (6 weeks). For the latter each core was incubated with two specimens of L. terrestris and four of A. calignosa. Short-term effects on the burrowing behaviour (2D) of A. caliginosa were already detected at the lowest test concentration (0.2 mg kg(-1) DW), whereas such effects in L. terrestris were not observed until exposure to concentrations 10 times higher (2 mg kg(-1) DW). For both species tested in the 2D-terraria, "total burrow length after 24 h" and "maximal burrow depth after 24 h" were the most sensitive endpoints. 3D reconstructions of the burrow systems made by both earthworm species in the repacked soil cores revealed a significant linear decrease in burrow volume with increasing imidacloprid concentration. Since many of the observed effects occurred at imidacloprid concentrations relevant to natural conditions and since reduced activities of earthworms in soils can have crucial impacts on the ecosystem level, our results are of environmental concern. PMID:21632088
NASA Astrophysics Data System (ADS)
Dufal, Simon; Galindo, Amparo; Jackson, George; Haslam, Andrew J.
2012-06-01
In this work we integrate the statistical associating fluid theory for fluids interacting through potentials of variable range (SAFT-VR) into a traditional van der Waals and Platteeuw framework for modelling clathrate hydrates. We incorporate a new water-guest cell potential for the hydrate phase that can be related to the potential adopted in the familiar SAFT-VR equation of state for modelling fluids. We show how the ability of this equation of state to treat a wide range of complex fluids increases the scope of hydrate modelling to incorporate, in a single framework, the presence of various inhibitors (alcohols, glycols) or brines - or, indeed, any fluid for which a model is available (for use within SAFT-VR) or can be conveniently obtained. Agreement with experimental results is good throughout and, in many cases, excellent.
NASA Astrophysics Data System (ADS)
Vinš, Václav; Planková, Barbora; Hrubý, Jan
2013-05-01
In this study, the Cahn-Hilliard density gradient theory (GT) is used for predicting the surface tension of various binary mixtures at relatively wide temperature ranges and for testing the application of the GT for predictions of homogeneous nucleation. The GT was combined with two physically based equations of state (EoS), namely the perturbed-chain (PC) statistical associating fluid theory (SAFT) and its modification for polar substances the perturbed-chain polar (PCP) SAFT. The GT applied to the planar phase interface was employed to predict the interfacial tension for various quadrupolar (CO2 and benzene) and dipolar (difluoromethane, i.e., R32; pentafluoroethane, i.e., R125; and 1,1,1,2-tetrafluoroethane, i.e., R134a) substances and for five binary mixtures including polar components ( n-decane + CO2, benzene + CO2, R32 + R125, R32 + R134a, R134a + R125). The PCP-SAFT EoS combined with the GT provides more accurate results for both the quadrupolar and dipolar substances than the original PC-SAFT EoS. Besides the planar phase interface, the GT was also applied to the spherical phase interface simulating a critical cluster occurring in homogeneous nucleation of droplets. Carbon dioxide was considered, because it has a relatively high quadrupole moment and because of its relevance to natural gas processing. Application of the PCP-SAFT EoS provides a significant improvement compared to the PC-SAFT EoS, and it is clearly superior to the classical cubic Peng-Robinson EoS, which is still used for modeling droplet nucleation.
Paduszyński, Kamil; Domańska, Urszula
2012-04-26
We present the results of an extensive study on a novel approach of modeling ionic liquids (ILs) and their mixtures with molecular compounds, incorporating perturbed-chain statistical associating fluid theory (PC-SAFT). PC-SAFT was used to calculate the thermodynamic properties of different homologous series of ILs based on the bis(trifluormethylsulfonyl)imide anion ([NTf2]). First, pure fluid parameters were obtained for each IL by means of fitting the model predictions to experimental liquid densities over a broad range of temperature and pressure. The reliability and physical significance of the parameters as well as the employed molecular scheme were tested by calculation of density, vapor pressure, and other properties of pure ILs (e.g., critical properties, normal boiling point). Additionally, the surface tension of pure ILs was calculated by coupling the PC-SAFT equation of state with density gradient theory (DGT). All correlated/predicted results were compared with literature experimental or simulation data. Afterward, we attempted to model various thermodynamic properties of some binary systems composed of IL and organic solvent or water. The properties under study were the binary vapor-liquid, liquid-liquid, and solid-liquid equilibria and the excess enthalpies of mixing. To calculate cross-interaction energies we used the standard combining rules of Lorentz-Berthelot, Kleiner-Sadowski, and Wolbach-Sandler. It was shown that incorporation of temperature-dependent binary corrections was required to obtain much more accurate results than in the case of conventional predictions. Binary corrections were adjusted to infinite dilution activity coefficients of a particular solute in a given IL determined experimentally or predicted by means of the modified UNIFAC (Dortmund) group contribution method. We concluded that the latter method allows accurate and reliable calculations of bulk-phase properties in a totally predictive manner. PMID:22469027
Microwave Assisted 2D Materials Exfoliation
NASA Astrophysics Data System (ADS)
Wang, Yanbin
Two-dimensional materials have emerged as extremely important materials with applications ranging from energy and environmental science to electronics and biology. Here we report our discovery of a universal, ultrafast, green, solvo-thermal technology for producing excellent-quality, few-layered nanosheets in liquid phase from well-known 2D materials such as such hexagonal boron nitride (h-BN), graphite, and MoS2. We start by mixing the uniform bulk-layered material with a common organic solvent that matches its surface energy to reduce the van der Waals attractive interactions between the layers; next, the solutions are heated in a commercial microwave oven to overcome the energy barrier between bulk and few-layers states. We discovered the minutes-long rapid exfoliation process is highly temperature dependent, which requires precise thermal management to obtain high-quality inks. We hypothesize a possible mechanism of this proposed solvo-thermal process; our theory confirms the basis of this novel technique for exfoliation of high-quality, layered 2D materials by using an as yet unknown role of the solvent.
Canard configured aircraft with 2-D nozzle
NASA Technical Reports Server (NTRS)
Child, R. D.; Henderson, W. P.
1978-01-01
A closely-coupled canard fighter with vectorable two-dimensional nozzle was designed for enhanced transonic maneuvering. The HiMAT maneuver goal of a sustained 8g turn at a free-stream Mach number of 0.9 and 30,000 feet was the primary design consideration. The aerodynamic design process was initiated with a linear theory optimization minimizing the zero percent suction drag including jet effects and refined with three-dimensional nonlinear potential flow techniques. Allowances were made for mutual interference and viscous effects. The design process to arrive at the resultant configuration is described, and the design of a powered 2-D nozzle model to be tested in the LRC 16-foot Propulsion Wind Tunnel is shown.
2D vs. 3D mammography observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza F.; Hovanessian-Larsen, Linda; Liu, Brent
2011-03-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using a mammography phantom was performed to compare traditional 2D mammography with this ne 3D mammography technique. In comparing 3D and 2D mammography there was no difference in calcification detection, and mass detection was better in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Given the limitations of the mammography phantom used, however, a clearer picture in comparing 3D and 2D mammography may be better acquired with the incorporation of human studies in the future.
NASA Astrophysics Data System (ADS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2013-12-01
In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-γ equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-γ approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.
NKG2D ligands as therapeutic targets
Spear, Paul; Wu, Ming-Ru; Sentman, Marie-Louise; Sentman, Charles L.
2013-01-01
The Natural Killer Group 2D (NKG2D) receptor plays an important role in protecting the host from infections and cancer. By recognizing ligands induced on infected or tumor cells, NKG2D modulates lymphocyte activation and promotes immunity to eliminate ligand-expressing cells. Because these ligands are not widely expressed on healthy adult tissue, NKG2D ligands may present a useful target for immunotherapeutic approaches in cancer. Novel therapies targeting NKG2D ligands for the treatment of cancer have shown preclinical success and are poised to enter into clinical trials. In this review, the NKG2D receptor and its ligands are discussed in the context of cancer, infection, and autoimmunity. In addition, therapies targeting NKG2D ligands in cancer are also reviewed. PMID:23833565
Metrology for graphene and 2D materials
NASA Astrophysics Data System (ADS)
Pollard, Andrew J.
2016-09-01
The application of graphene, a one atom-thick honeycomb lattice of carbon atoms with superlative properties, such as electrical conductivity, thermal conductivity and strength, has already shown that it can be used to benefit metrology itself as a new quantum standard for resistance. However, there are many application areas where graphene and other 2D materials, such as molybdenum disulphide (MoS2) and hexagonal boron nitride (h-BN), may be disruptive, areas such as flexible electronics, nanocomposites, sensing and energy storage. Applying metrology to the area of graphene is now critical to enable the new, emerging global graphene commercial world and bridge the gap between academia and industry. Measurement capabilities and expertise in a wide range of scientific areas are required to address this challenge. The combined and complementary approach of varied characterisation methods for structural, chemical, electrical and other properties, will allow the real-world issues of commercialising graphene and other 2D materials to be addressed. Here, examples of metrology challenges that have been overcome through a multi-technique or new approach are discussed. Firstly, the structural characterisation of defects in both graphene and MoS2 via Raman spectroscopy is described, and how nanoscale mapping of vacancy defects in graphene is also possible using tip-enhanced Raman spectroscopy (TERS). Furthermore, the chemical characterisation and removal of polymer residue on chemical vapour deposition (CVD) grown graphene via secondary ion mass spectrometry (SIMS) is detailed, as well as the chemical characterisation of iron films used to grow large domain single-layer h-BN through CVD growth, revealing how contamination of the substrate itself plays a role in the resulting h-BN layer. In addition, the role of international standardisation in this area is described, outlining the current work ongoing in both the International Organization of Standardization (ISO) and the
NASA Astrophysics Data System (ADS)
Medvedev, S. N.
2015-10-01
Stacking by CDP technique is inapplicable for processing of data from bottom seismic stations or acoustic sonobuoys. In addition, big amount of unknown velocity and structural parameters of the real layered medium do not allow these parameters to be defined by standard processing methods. Local sloped stacking is proposed for simultaneous obtaining the stacked tracks, travel time curve of a chosen wave, and the first derivative of this travel time curve. The additionally defined parameters are second derivative of this travel time curve and integrated average of squared travel time curve. These data are sufficient to reduce the amount of unknown parameters (down to one-two for each boundary) when layer-by-layer top-to-bottom processing. As a result, the stable estimates of velocity parameters of the layered (isotropic or anisotropic) medium can be obtained and stacked tracks obtained by local sloped staking can be transformed into boundaries in the time and depth sections.
Perspectives for spintronics in 2D materials
NASA Astrophysics Data System (ADS)
Han, Wei
2016-03-01
The past decade has been especially creative for spintronics since the (re)discovery of various two dimensional (2D) materials. Due to the unusual physical characteristics, 2D materials have provided new platforms to probe the spin interaction with other degrees of freedom for electrons, as well as to be used for novel spintronics applications. This review briefly presents the most important recent and ongoing research for spintronics in 2D materials.
Research on the imaging of concrete defect based on the pulse compression technique
NASA Astrophysics Data System (ADS)
Li, Chang-Zheng; Zhang, Bi-Xing; Shi, Fang-Fang; Xie, Fu-Li
2013-06-01
When the synthetic aperture focusing technology (SAFT) is used for the detection of the concrete, the signal-to-noise ratio (SNR) and detection depth are not satisfactory. Therefore, the application of SAFT is usually limited. In this paper, we propose an improved SAFT technique for the detection of concrete based on the pulse compression technique used in the Radar domain. The proposed method first transmits a linear frequency modulation (LFM) signal, and then compresses the echo signal using the matched filtering method, after which a compressed signal with a narrower main lobe and higher SNR is obtained. With our improved SAFT, the compressed signals are manipulated in the imaging process and the image contrast is improved. Results show that the SNR is improved and the imaging resolution is guaranteed compared with the conventional short-pulse method. From theoretical and experimental results, we show that the proposed method can suppress noise and improve imaging contrast, and can also be used to detect multiple defects in concrete.
Paricaud, P.
2015-07-28
A simple modification of the Boublík-Mansoori-Carnahan-Starling-Leland equation of state is proposed for an application to the metastable disordered region. The new model has a positive pole at the jamming limit and can accurately describe the molecular simulation data of pure hard in the stable fluid region and along the metastable branch. The new model has also been applied to binary mixtures hard spheres, and an excellent description of the fluid and metastable branches can be obtained by adjusting the jamming packing fraction. The new model for hard sphere mixtures can be used as the repulsive term of equations of state for real fluids. In this case, the modified equations of state give very similar predictions of thermodynamic properties as the original models, and one can remove the multiple liquid density roots observed for some versions of the Statistical Associating Fluid Theory (SAFT) at low temperature without any modification of the dispersion term.
Annotated Bibliography of EDGE2D Use
J.D. Strachan and G. Corrigan
2005-06-24
This annotated bibliography is intended to help EDGE2D users, and particularly new users, find existing published literature that has used EDGE2D. Our idea is that a person can find existing studies which may relate to his intended use, as well as gain ideas about other possible applications by scanning the attached tables.
Staring 2-D hadamard transform spectral imager
Gentry, Stephen M.; Wehlburg, Christine M.; Wehlburg, Joseph C.; Smith, Mark W.; Smith, Jody L.
2006-02-07
A staring imaging system inputs a 2D spatial image containing multi-frequency spectral information. This image is encoded in one dimension of the image with a cyclic Hadamarid S-matrix. The resulting image is detecting with a spatial 2D detector; and a computer applies a Hadamard transform to recover the encoded image.
Ion Transport in 2-D Graphene Nanochannels
NASA Astrophysics Data System (ADS)
Xie, Quan; Foo, Elbert; Duan, Chuanhua
2015-11-01
Graphene membranes have recently attracted wide attention due to its great potential in water desalination and selective molecular sieving. Further developments of these membranes, including enhancing their mass transport rate and/or molecular selectivity, rely on the understanding of fundamental transport mechanisms through graphene membranes, which has not been studied experimentally before due to fabrication and measurement difficulties. Herein we report the fabrication of the basic constituent of graphene membranes, i.e. 2-D single graphene nanochannels (GNCs) and the study of ion transport in these channels. A modified bonding technique was developed to form GNCs with well-defined geometry and uniform channel height. Ion transport in such GNCs was studied using DC conductance measurement. Our preliminary results showed that the ion transport in GNCs is still governed by surface charge at low concentrations (10-6M to 10-4M). However, GNCs exhibits much higher ionic conductances than silica nanochannels with the same geometries in the surface-charge-governed regime. This conductance enhancement can be attributed to the pre-accumulation of charges on graphene surfaces. The work is supported by the Faculty Startup Fund (Boston University, USA).
Avendaño, Carlos; Lafitte, Thomas; Adjiman, Claire S; Galindo, Amparo; Müller, Erich A; Jackson, George
2013-03-01
In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-γ force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-γ CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-γ methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement
NASA Astrophysics Data System (ADS)
Lafitte, Thomas; Avendaño, Carlos; Papaioannou, Vasileios; Galindo, Amparo; Adjiman, Claire S.; Jackson, George; Müller, Erich A.
2012-06-01
In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C.S. Adjiman, G. Jackson, and E.A. Müller, J. Phys. Chem. B 115, 11154 (2011)] our methodology for the development of accurate coarse-grained (CG) SAFT-γ force fields for the computer simulation of molecular fluids was introduced with carbon dioxide as a particular case study. The procedure involves the use of a molecular-based equation of state to obtain effective intermolecular parameters (from experimental fluid phase equilibrium data) appropriate for molecular simulation over a wide range of fluid conditions. We now extend the methodology to develop coarse-grained models for benzene (C6H6) that can be used in fluid phase simulations. Our SAFT-γ CG force fields for benzene consist of a simple single-segment spherical model, and a rigid three-segment ring structure of tangent spherical groups interacting via Mie (generalized Lennard-Jones) segment-segment interactions. The description of the fluid phase behaviour of benzene with our simplified CG force fields is found to be comparable to that obtained with the more sophisticated models commonly used in the field; a marked improvement is seen with our SAFT-γ models for the vapour pressure, particularly at lower temperatures. These models of benzene together with the previously developed SAFT-γ three-segment chain model of n-decane are used to develop hetero-group force fields for n-decylbenzene, in the spirit of a group contribution methodology. In our approach, the parameters of the phenyl and n-decyl groups are obtained transferably from the individual models of benzene and n-decane, respectively, and the unlike energetic parameters between the phenyl and decyl segments can be obtained from vapour-liquid equilibria data for n-decylbenzene using the SAFT-γ equation of state. The resulting CG hetero-group models are found to describe the fluid properties of n-decylbenzene over a wide range of conditions, exemplifying how our approach
Ultrafast 2D NMR: an emerging tool in analytical spectroscopy.
Giraudeau, Patrick; Frydman, Lucio
2014-01-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry--from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications. PMID:25014342
Ultrafast 2D NMR: An Emerging Tool in Analytical Spectroscopy
NASA Astrophysics Data System (ADS)
Giraudeau, Patrick; Frydman, Lucio
2014-06-01
Two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy is widely used in chemical and biochemical analyses. Multidimensional NMR is also witnessing increased use in quantitative and metabolic screening applications. Conventional 2D NMR experiments, however, are affected by inherently long acquisition durations, arising from their need to sample the frequencies involved along their indirect domains in an incremented, scan-by-scan nature. A decade ago, a so-called ultrafast (UF) approach was proposed, capable of delivering arbitrary 2D NMR spectra involving any kind of homo- or heteronuclear correlation, in a single scan. During the intervening years, the performance of this subsecond 2D NMR methodology has been greatly improved, and UF 2D NMR is rapidly becoming a powerful analytical tool experiencing an expanded scope of applications. This review summarizes the principles and main developments that have contributed to the success of this approach and focuses on applications that have been recently demonstrated in various areas of analytical chemistry—from the real-time monitoring of chemical and biochemical processes, to extensions in hyphenated techniques and in quantitative applications.
2D materials for nanophotonic devices
NASA Astrophysics Data System (ADS)
Xu, Renjing; Yang, Jiong; Zhang, Shuang; Pei, Jiajie; Lu, Yuerui
2015-12-01
Two-dimensional (2D) materials have become very important building blocks for electronic, photonic, and phononic devices. The 2D material family has four key members, including the metallic graphene, transition metal dichalcogenide (TMD) layered semiconductors, semiconducting black phosphorous, and the insulating h-BN. Owing to the strong quantum confinements and defect-free surfaces, these atomically thin layers have offered us perfect platforms to investigate the interactions among photons, electrons and phonons. The unique interactions in these 2D materials are very important for both scientific research and application engineering. In this talk, I would like to briefly summarize and highlight the key findings, opportunities and challenges in this field. Next, I will introduce/highlight our recent achievements. We demonstrated atomically thin micro-lens and gratings using 2D MoS2, which is the thinnest optical component around the world. These devices are based on our discovery that the elastic light-matter interactions in highindex 2D materials is very strong. Also, I would like to introduce a new two-dimensional material phosphorene. Phosphorene has strongly anisotropic optical response, which creates 1D excitons in a 2D system. The strong confinement in phosphorene also enables the ultra-high trion (charged exciton) binding energies, which have been successfully measured in our experiments. Finally, I will briefly talk about the potential applications of 2D materials in energy harvesting.
Inertial solvation in femtosecond 2D spectra
NASA Astrophysics Data System (ADS)
Hybl, John; Albrecht Ferro, Allison; Farrow, Darcie; Jonas, David
2001-03-01
We have used 2D Fourier transform spectroscopy to investigate polar solvation. 2D spectroscopy can reveal molecular lineshapes beneath ensemble averaged spectra and freeze molecular motions to give an undistorted picture of the microscopic dynamics of polar solvation. The transition from "inhomogeneous" to "homogeneous" 2D spectra is governed by both vibrational relaxation and solvent motion. Therefore, the time dependence of the 2D spectrum directly reflects the total response of the solvent-solute system. IR144, a cyanine dye with a dipole moment change upon electronic excitation, was used to probe inertial solvation in methanol and propylene carbonate. Since the static Stokes' shift of IR144 in each of these solvents is similar, differences in the 2D spectra result from solvation dynamics. Initial results indicate that the larger propylene carbonate responds more slowly than methanol, but appear to be inconsistent with rotational estimates of the inertial response. To disentangle intra-molecular vibrations from solvent motion, the 2D spectra of IR144 will be compared to the time-dependent 2D spectra of the structurally related nonpolar cyanine dye HDITCP.
Internal Photoemission Spectroscopy of 2-D Materials
NASA Astrophysics Data System (ADS)
Nguyen, Nhan; Li, Mingda; Vishwanath, Suresh; Yan, Rusen; Xiao, Shudong; Xing, Huili; Cheng, Guangjun; Hight Walker, Angela; Zhang, Qin
Recent research has shown the great benefits of using 2-D materials in the tunnel field-effect transistor (TFET), which is considered a promising candidate for the beyond-CMOS technology. The on-state current of TFET can be enhanced by engineering the band alignment of different 2D-2D or 2D-3D heterostructures. Here we present the internal photoemission spectroscopy (IPE) approach to determine the band alignments of various 2-D materials, in particular SnSe2 and WSe2, which have been proposed for new TFET designs. The metal-oxide-2-D semiconductor test structures are fabricated and characterized by IPE, where the band offsets from the 2-D semiconductor to the oxide conduction band minimum are determined by the threshold of the cube root of IPE yields as a function of photon energy. In particular, we find that SnSe2 has a larger electron affinity than most semiconductors and can be combined with other semiconductors to form near broken-gap heterojunctions with low barrier heights which can produce a higher on-state current. The details of data analysis of IPE and the results from Raman spectroscopy and spectroscopic ellipsometry measurements will also be presented and discussed.
Brittle damage models in DYNA2D
Faux, D.R.
1997-09-01
DYNA2D is an explicit Lagrangian finite element code used to model dynamic events where stress wave interactions influence the overall response of the system. DYNA2D is often used to model penetration problems involving ductile-to-ductile impacts; however, with the advent of the use of ceramics in the armor-anti-armor community and the need to model damage to laser optics components, good brittle damage models are now needed in DYNA2D. This report will detail the implementation of four brittle damage models in DYNA2D, three scalar damage models and one tensor damage model. These new brittle damage models are then used to predict experimental results from three distinctly different glass damage problems.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
2D electronic materials for army applications
NASA Astrophysics Data System (ADS)
O'Regan, Terrance; Perconti, Philip
2015-05-01
The record electronic properties achieved in monolayer graphene and related 2D materials such as molybdenum disulfide and hexagonal boron nitride show promise for revolutionary high-speed and low-power electronic devices. Heterogeneous 2D-stacked materials may create enabling technology for future communication and computation applications to meet soldier requirements. For instance, transparent, flexible and even wearable systems may become feasible. With soldier and squad level electronic power demands increasing, the Army is committed to developing and harnessing graphene-like 2D materials for compact low size-weight-and-power-cost (SWAP-C) systems. This paper will review developments in 2D electronic materials at the Army Research Laboratory over the last five years and discuss directions for future army applications.
2-d Finite Element Code Postprocessor
Energy Science and Technology Software Center (ESTSC)
1996-07-15
ORION is an interactive program that serves as a postprocessor for the analysis programs NIKE2D, DYNA2D, TOPAZ2D, and CHEMICAL TOPAZ2D. ORION reads binary plot files generated by the two-dimensional finite element codes currently used by the Methods Development Group at LLNL. Contour and color fringe plots of a large number of quantities may be displayed on meshes consisting of triangular and quadrilateral elements. ORION can compute strain measures, interface pressures along slide lines, reaction forcesmore » along constrained boundaries, and momentum. ORION has been applied to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.« less
Chemical Approaches to 2D Materials.
Samorì, Paolo; Palermo, Vincenzo; Feng, Xinliang
2016-08-01
Chemistry plays an ever-increasing role in the production, functionalization, processing and applications of graphene and other 2D materials. This special issue highlights a selection of enlightening chemical approaches to 2D materials, which nicely reflect the breadth of the field and convey the excitement of the individuals involved in it, who are trying to translate graphene and related materials from the laboratory into a real, high-impact technology. PMID:27478083
2d PDE Linear Symmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ICCG2 (Incomplete Cholesky factorized Conjugate Gradient algorithm for 2d symmetric problems) was developed to solve a linear symmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as resistive MHD, spatial diffusive transport, and phase space transport (Fokker-Planck equation) problems. These problems share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized withmore » finite-difference or finite-element methods,the resulting matrix system is frequently of block-tridiagonal form. To use ICCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. The incomplete Cholesky conjugate gradient algorithm is used to solve the linear symmetric matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For matrices lacking symmetry, ILUCG2 should be used. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
2d PDE Linear Asymmetric Matrix Solver
Energy Science and Technology Software Center (ESTSC)
1983-10-01
ILUCG2 (Incomplete LU factorized Conjugate Gradient algorithm for 2d problems) was developed to solve a linear asymmetric matrix system arising from a 9-point discretization of two-dimensional elliptic and parabolic partial differential equations found in plasma physics applications, such as plasma diffusion, equilibria, and phase space transport (Fokker-Planck equation) problems. These equations share the common feature of being stiff and requiring implicit solution techniques. When these parabolic or elliptic PDE''s are discretized with finite-difference or finite-elementmore » methods, the resulting matrix system is frequently of block-tridiagonal form. To use ILUCG2, the discretization of the two-dimensional partial differential equation and its boundary conditions must result in a block-tridiagonal supermatrix composed of elementary tridiagonal matrices. A generalization of the incomplete Cholesky conjugate gradient algorithm is used to solve the matrix equation. Loops are arranged to vectorize on the Cray1 with the CFT compiler, wherever possible. Recursive loops, which cannot be vectorized, are written for optimum scalar speed. For problems having a symmetric matrix ICCG2 should be used since it runs up to four times faster and uses approximately 30% less storage. Similar methods in three dimensions are available in ICCG3 and ILUCG3. A general source, containing extensions and macros, which must be processed by a pre-compiler to obtain the standard FORTRAN source, is provided along with the standard FORTRAN source because it is believed to be more readable. The pre-compiler is not included, but pre-compilation may be performed by a text editor as described in the UCRL-88746 Preprint.« less
Bamgbade, B. A.; Wu, Y.; Burgess, W. A.
2012-10-25
Density data from 298 to 533 K and to 275 MPa are reported for Krytox® GPL 102, a poly(perfluoropropyl ether) (PFPE) with a CF3-branched fluoropropylether repeat group. The Tait equation fit to each density isotherm have mean absolute percent deviations (MAPD) between 0.11 and 0.30% with standard deviations (SD) not exceeding 0.20%. The perturbed-chain statistical associating fluid theory (PC-SAFT) fit to the density data has an MAPD of 0.67% and an SD of 0.67%. Likewise the PC-SAFT fit to previously reported density data of Demnum®, a PFPE with an n-fluoropropylether repeat group, has an MAPD of 0.22% and a SD of 0.21% for Demnum® S-20 and an MAPD of 0.27% with a SD of 0.14% for Demnum® S-65. The trends exhibited by the PC-SAFT pure component parameters obtained from the fits of these three PFPEs are similar to those reported for linear and branched hydrocarbons with the same number of carbons.
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
Correlated Electron Phenomena in 2D Materials
NASA Astrophysics Data System (ADS)
Lambert, Joseph G.
In this thesis, I present experimental results on coherent electron phenomena in layered two-dimensional materials: single layer graphene and van der Waals coupled 2D TiSe2. Graphene is a two-dimensional single-atom thick sheet of carbon atoms first derived from bulk graphite by the mechanical exfoliation technique in 2004. Low-energy charge carriers in graphene behave like massless Dirac fermions, and their density can be easily tuned between electron-rich and hole-rich quasiparticles with electrostatic gating techniques. The sharp interfaces between regions of different carrier densities form barriers with selective transmission, making them behave as partially reflecting mirrors. When two of these interfaces are set at a separation distance within the phase coherence length of the carriers, they form an electronic version of a Fabry-Perot cavity. I present measurements and analysis of multiple Fabry-Perot modes in graphene with parallel electrodes spaced a few hundred nanometers apart. Transition metal dichalcogenide (TMD) TiSe2 is part of the family of materials that coined the term "materials beyond graphene". It contains van der Waals coupled trilayer stacks of Se-Ti-Se. Many TMD materials exhibit a host of interesting correlated electronic phases. In particular, TiSe2 exhibits chiral charge density waves (CDW) below TCDW ˜ 200 K. Upon doping with copper, the CDW state gets suppressed with Cu concentration, and CuxTiSe2 becomes superconducting with critical temperature of T c = 4.15 K. There is still much debate over the mechanisms governing the coexistence of the two correlated electronic phases---CDW and superconductivity. I will present some of the first conductance spectroscopy measurements of proximity coupled superconductor-CDW systems. Measurements reveal a proximity-induced critical current at the Nb-TiSe2 interfaces, suggesting pair correlations in the pure TiSe2. The results indicate that superconducting order is present concurrently with CDW in
Universal Fabrication of 2D Electron Systems in Functional Oxides.
Rödel, Tobias Chris; Fortuna, Franck; Sengupta, Shamashis; Frantzeskakis, Emmanouil; Fèvre, Patrick Le; Bertran, François; Mercey, Bernard; Matzen, Sylvia; Agnus, Guillaume; Maroutian, Thomas; Lecoeur, Philippe; Santander-Syro, Andrés Felipe
2016-03-01
2D electron systems (2DESs) in functional oxides are promising for applications, but their fabrication and use, essentially limited to SrTiO3 -based heterostructures, are hampered by the need for growing complex oxide overlayers thicker than 2 nm using evolved techniques. It is demonstrated that thermal deposition of a monolayer of an elementary reducing agent suffices to create 2DESs in numerous oxides. PMID:26753522
Optical modulators with 2D layered materials
NASA Astrophysics Data System (ADS)
Sun, Zhipei; Martinez, Amos; Wang, Feng
2016-04-01
Light modulation is an essential operation in photonics and optoelectronics. With existing and emerging technologies increasingly demanding compact, efficient, fast and broadband optical modulators, high-performance light modulation solutions are becoming indispensable. The recent realization that 2D layered materials could modulate light with superior performance has prompted intense research and significant advances, paving the way for realistic applications. In this Review, we cover the state of the art of optical modulators based on 2D materials, including graphene, transition metal dichalcogenides and black phosphorus. We discuss recent advances employing hybrid structures, such as 2D heterostructures, plasmonic structures, and silicon and fibre integrated structures. We also take a look at the future perspectives and discuss the potential of yet relatively unexplored mechanisms, such as magneto-optic and acousto-optic modulation.
Large Area Synthesis of 2D Materials
NASA Astrophysics Data System (ADS)
Vogel, Eric
Transition metal dichalcogenides (TMDs) have generated significant interest for numerous applications including sensors, flexible electronics, heterostructures and optoelectronics due to their interesting, thickness-dependent properties. Despite recent progress, the synthesis of high-quality and highly uniform TMDs on a large scale is still a challenge. In this talk, synthesis routes for WSe2 and MoS2 that achieve monolayer thickness uniformity across large area substrates with electrical properties equivalent to geological crystals will be described. Controlled doping of 2D semiconductors is also critically required. However, methods established for conventional semiconductors, such as ion implantation, are not easily applicable to 2D materials because of their atomically thin structure. Redox-active molecular dopants will be demonstrated which provide large changes in carrier density and workfunction through the choice of dopant, treatment time, and the solution concentration. Finally, several applications of these large-area, uniform 2D materials will be described including heterostructures, biosensors and strain sensors.
2D microwave imaging reflectometer electronics
Spear, A. G.; Domier, C. W. Hu, X.; Muscatello, C. M.; Ren, X.; Luhmann, N. C.; Tobias, B. J.
2014-11-15
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics
NASA Astrophysics Data System (ADS)
Spear, A. G.; Domier, C. W.; Hu, X.; Muscatello, C. M.; Ren, X.; Tobias, B. J.; Luhmann, N. C.
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program.
2D microwave imaging reflectometer electronics.
Spear, A G; Domier, C W; Hu, X; Muscatello, C M; Ren, X; Tobias, B J; Luhmann, N C
2014-11-01
A 2D microwave imaging reflectometer system has been developed to visualize electron density fluctuations on the DIII-D tokamak. Simultaneously illuminated at four probe frequencies, large aperture optics image reflections from four density-dependent cutoff surfaces in the plasma over an extended region of the DIII-D plasma. Localized density fluctuations in the vicinity of the plasma cutoff surfaces modulate the plasma reflections, yielding a 2D image of electron density fluctuations. Details are presented of the receiver down conversion electronics that generate the in-phase (I) and quadrature (Q) reflectometer signals from which 2D density fluctuation data are obtained. Also presented are details on the control system and backplane used to manage the electronics as well as an introduction to the computer based control program. PMID:25430247
2D-Crystal-Based Functional Inks.
Bonaccorso, Francesco; Bartolotta, Antonino; Coleman, Jonathan N; Backes, Claudia
2016-08-01
The possibility to produce and process graphene, related 2D crystals, and heterostructures in the liquid phase makes them promising materials for an ever-growing class of applications as composite materials, sensors, in flexible optoelectronics, and energy storage and conversion. In particular, the ability to formulate functional inks with on-demand rheological and morphological properties, i.e., lateral size and thickness of the dispersed 2D crystals, is a step forward toward the development of industrial-scale, reliable, inexpensive printing/coating processes, a boost for the full exploitation of such nanomaterials. Here, the exfoliation strategies of graphite and other layered crystals are reviewed, along with the advances in the sorting of lateral size and thickness of the exfoliated sheets together with the formulation of functional inks and the current development of printing/coating processes of interest for the realization of 2D-crystal-based devices. PMID:27273554
The 2D lingual appliance system.
Cacciafesta, Vittorio
2013-09-01
The two-dimensional (2D) lingual bracket system represents a valuable treatment option for adult patients seeking a completely invisible orthodontic appliance. The ease of direct or simplified indirect bonding of 2D lingual brackets in combination with low friction mechanics makes it possible to achieve a good functional and aesthetic occlusion, even in the presence of a severe malocclusion. The use of a self-ligating bracket significantly reduces chair-side time for the orthodontist, and the low-profile bracket design greatly improves patient comfort. PMID:24005953
Inkjet printing of 2D layered materials.
Li, Jiantong; Lemme, Max C; Östling, Mikael
2014-11-10
Inkjet printing of 2D layered materials, such as graphene and MoS2, has attracted great interests for emerging electronics. However, incompatible rheology, low concentration, severe aggregation and toxicity of solvents constitute critical challenges which hamper the manufacturing efficiency and product quality. Here, we introduce a simple and general technology concept (distillation-assisted solvent exchange) to efficiently overcome these challenges. By implementing the concept, we have demonstrated excellent jetting performance, ideal printing patterns and a variety of promising applications for inkjet printing of 2D layered materials. PMID:25169938
Measurement of 2D birefringence distribution
NASA Astrophysics Data System (ADS)
Noguchi, Masato; Ishikawa, Tsuyoshi; Ohno, Masahiro; Tachihara, Satoru
1992-10-01
A new measuring method of 2-D birefringence distribution has been developed. It has not been an easy job to get a birefringence distribution in an optical element with conventional ellipsometry because of its lack of scanning means. Finding an analogy between the rotating analyzer method in ellipsometry and the phase-shifting method in recently developed digital interferometry, we have applied the phase-shifting algorithm to ellipsometry, and have developed a new method that makes the measurement of 2-D birefringence distribution easy and possible. The system contains few moving parts, assuring reliability, and measures a large area of a sample at one time, making the measuring time very short.
Real-time SPECT and 2D ultrasound image registration.
Bucki, Marek; Chassat, Fabrice; Galdames, Francisco; Asahi, Takeshi; Pizarro, Daniel; Lobo, Gabriel
2007-01-01
In this paper we present a technique for fully automatic, real-time 3D SPECT (Single Photon Emitting Computed Tomography) and 2D ultrasound image registration. We use this technique in the context of kidney lesion diagnosis. Our registration algorithm allows a physician to perform an ultrasound exam after a SPECT image has been acquired and see in real time the registration of both modalities. An automatic segmentation algorithm has been implemented in order to display in 3D the positions of the acquired US images with respect to the organs. PMID:18044572
2d-LCA - an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2014-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150 kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
Half-metallicity in 2D organometallic honeycomb frameworks.
Sun, Hao; Li, Bin; Zhao, Jin
2016-10-26
Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology. PMID:27541575
Parallel stitching of 2D materials
Ling, Xi; Wu, Lijun; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; et al
2016-01-27
Diverse parallel stitched 2D heterostructures, including metal–semiconductor, semiconductor–semiconductor, and insulator–semiconductor, are synthesized directly through selective “sowing” of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. Lastly, the methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits.
Parallel Stitching of 2D Materials.
Ling, Xi; Lin, Yuxuan; Ma, Qiong; Wang, Ziqiang; Song, Yi; Yu, Lili; Huang, Shengxi; Fang, Wenjing; Zhang, Xu; Hsu, Allen L; Bie, Yaqing; Lee, Yi-Hsien; Zhu, Yimei; Wu, Lijun; Li, Ju; Jarillo-Herrero, Pablo; Dresselhaus, Mildred; Palacios, Tomás; Kong, Jing
2016-03-01
Diverse parallel stitched 2D heterostructures, including metal-semiconductor, semiconductor-semiconductor, and insulator-semiconductor, are synthesized directly through selective "sowing" of aromatic molecules as the seeds in the chemical vapor deposition (CVD) method. The methodology enables the large-scale fabrication of lateral heterostructures, which offers tremendous potential for its application in integrated circuits. PMID:26813882
Baby universes in 2d quantum gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Jain, Sanjay; Thorleifsson, Gudmar
1993-06-01
We investigate the fractal structure of 2d quantum gravity, both for pure gravity and for gravity coupled to multiple gaussian fields and for gravity coupled to Ising spins. The roughness of the surfaces is described in terms of baby universes and using numerical simulations we measure their distribution which is related to the string susceptibility exponent γstring.
2-D Continuous Wavelet Transform for ESPI phase-maps denoising
NASA Astrophysics Data System (ADS)
Escalante, Nivia; Villa, Jesús; de la Rosa, Ismael; de la Rosa, Enrique; González-Ramírez, Efrén; Gutiérrez, Osvaldo; Olvera, Carlos; Araiza, María
2013-09-01
In this work we introduce a 2-D Continuous Wavelet Transform (2-D CWT) method for denoising ESPI phase-maps. Multiresolution analysis with 2-D wavelets can provide high directional sensitivity and high anisotropy which are proper characteristics for this task. In particular, the 2-D CWT method using Gabor atoms (Gabor mother wavelets) which can naturally model phase fringes, has a good performance against noise and can preserve phase fringes. We describe the theoretical basis of the proposed technique and show some experimental results with real and simulated ESPI phase-maps. As can be verified the proposal is robust and effective.
Interpretation of Magnetic Phase Anomalies over 2D Tabular Bodies
NASA Astrophysics Data System (ADS)
Subrahmanyam, M.
2016-05-01
In this study, phase angle (inverse tangent of the ratio of the horizontal to vertical gradients of magnetic anomalies) profile over two-dimensional tabular bodies has been subjected to detailed analysis for determining the source parameters. Distances between certain characteristic positions on this phase curve are related to the parameters of two-dimensional tabular magnetic sources. In this paper, I have derived the mathematical expressions for these relations. It has been demonstrated here that for locating the origin of the 2D tabular source, knowledge on the type of the model (contact, sheet, dyke, and fault) is not necessary. A procedure is evolved to determine the location, depth, width and magnetization angle of the 2D sources from the mathematical expressions. The method is tested on real field data. The effect of the overlapping bodies is also discussed with two synthetic examples. The interpretation technique is developed for contact, sheet, dike and inclined fault bodies.
Semiregular solid texturing from 2D image exemplars.
Du, Song-Pei; Hu, Shi-Min; Martin, Ralph R
2013-03-01
Solid textures, comprising 3D particles embedded in a matrix in a regular or semiregular pattern, are common in natural and man-made materials, such as brickwork, stone walls, plant cells in a leaf, etc. We present a novel technique for synthesizing such textures, starting from 2D image exemplars which provide cross-sections of the desired volume texture. The shapes and colors of typical particles embedded in the structure are estimated from their 2D cross-sections. Particle positions in the texture images are also used to guide spatial placement of the 3D particles during synthesis of the 3D texture. Our experiments demonstrate that our algorithm can produce higher quality structures than previous approaches; they are both compatible with the input images, and have a plausible 3D nature. PMID:22614330
Fully automated 2D-3D registration and verification.
Varnavas, Andreas; Carrell, Tom; Penney, Graeme
2015-12-01
Clinical application of 2D-3D registration technology often requires a significant amount of human interaction during initialisation and result verification. This is one of the main barriers to more widespread clinical use of this technology. We propose novel techniques for automated initial pose estimation of the 3D data and verification of the registration result, and show how these techniques can be combined to enable fully automated 2D-3D registration, particularly in the case of a vertebra based system. The initialisation method is based on preoperative computation of 2D templates over a wide range of 3D poses. These templates are used to apply the Generalised Hough Transform to the intraoperative 2D image and the sought 3D pose is selected with the combined use of the generated accumulator arrays and a Gradient Difference Similarity Measure. On the verification side, two algorithms are proposed: one using normalised features based on the similarity value and the other based on the pose agreement between multiple vertebra based registrations. The proposed methods are employed here for CT to fluoroscopy registration and are trained and tested with data from 31 clinical procedures with 417 low dose, i.e. low quality, high noise interventional fluoroscopy images. When similarity value based verification is used, the fully automated system achieves a 95.73% correct registration rate, whereas a no registration result is produced for the remaining 4.27% of cases (i.e. incorrect registration rate is 0%). The system also automatically detects input images outside its operating range. PMID:26387052
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct “beyond graphene” domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Application of 2D Non-Graphene Materials and 2D Oxide Nanostructures for Biosensing Technology.
Shavanova, Kateryna; Bakakina, Yulia; Burkova, Inna; Shtepliuk, Ivan; Viter, Roman; Ubelis, Arnolds; Beni, Valerio; Starodub, Nickolaj; Yakimova, Rositsa; Khranovskyy, Volodymyr
2016-01-01
The discovery of graphene and its unique properties has inspired researchers to try to invent other two-dimensional (2D) materials. After considerable research effort, a distinct "beyond graphene" domain has been established, comprising the library of non-graphene 2D materials. It is significant that some 2D non-graphene materials possess solid advantages over their predecessor, such as having a direct band gap, and therefore are highly promising for a number of applications. These applications are not limited to nano- and opto-electronics, but have a strong potential in biosensing technologies, as one example. However, since most of the 2D non-graphene materials have been newly discovered, most of the research efforts are concentrated on material synthesis and the investigation of the properties of the material. Applications of 2D non-graphene materials are still at the embryonic stage, and the integration of 2D non-graphene materials into devices is scarcely reported. However, in recent years, numerous reports have blossomed about 2D material-based biosensors, evidencing the growing potential of 2D non-graphene materials for biosensing applications. This review highlights the recent progress in research on the potential of using 2D non-graphene materials and similar oxide nanostructures for different types of biosensors (optical and electrochemical). A wide range of biological targets, such as glucose, dopamine, cortisol, DNA, IgG, bisphenol, ascorbic acid, cytochrome and estradiol, has been reported to be successfully detected by biosensors with transducers made of 2D non-graphene materials. PMID:26861346
Static & Dynamic Response of 2D Solids
Energy Science and Technology Software Center (ESTSC)
1996-07-15
NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less
Stochastic Inversion of 2D Magnetotelluric Data
Energy Science and Technology Software Center (ESTSC)
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function ismore » explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows« less
Stochastic Inversion of 2D Magnetotelluric Data
Chen, Jinsong
2010-07-01
The algorithm is developed to invert 2D magnetotelluric (MT) data based on sharp boundary parametrization using a Bayesian framework. Within the algorithm, we consider the locations and the resistivity of regions formed by the interfaces are as unknowns. We use a parallel, adaptive finite-element algorithm to forward simulate frequency-domain MT responses of 2D conductivity structure. Those unknown parameters are spatially correlated and are described by a geostatistical model. The joint posterior probability distribution function is explored by Markov Chain Monte Carlo (MCMC) sampling methods. The developed stochastic model is effective for estimating the interface locations and resistivity. Most importantly, it provides details uncertainty information on each unknown parameter. Hardware requirements: PC, Supercomputer, Multi-platform, Workstation; Software requirements C and Fortan; Operation Systems/version is Linux/Unix or Windows
Explicit 2-D Hydrodynamic FEM Program
Energy Science and Technology Software Center (ESTSC)
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. Themore » isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Layer Engineering of 2D Semiconductor Junctions.
He, Yongmin; Sobhani, Ali; Lei, Sidong; Zhang, Zhuhua; Gong, Yongji; Jin, Zehua; Zhou, Wu; Yang, Yingchao; Zhang, Yuan; Wang, Xifan; Yakobson, Boris; Vajtai, Robert; Halas, Naomi J; Li, Bo; Xie, Erqing; Ajayan, Pulickel
2016-07-01
A new concept for junction fabrication by connecting multiple regions with varying layer thicknesses, based on the thickness dependence, is demonstrated. This type of junction is only possible in super-thin-layered 2D materials, and exhibits similar characteristics as p-n junctions. Rectification and photovoltaic effects are observed in chemically homogeneous MoSe2 junctions between domains of different thicknesses. PMID:27136275
NASA Astrophysics Data System (ADS)
Smith, Greg; Lankshear, Allan
1998-07-01
2dF is a multi-object instrument mounted at prime focus at the AAT capable of spectroscopic analysis of 400 objects in a single 2 degree field. It also prepares a second 2 degree 400 object field while the first field is being observed. At its heart is a high precision robotic positioner that places individual fiber end magnetic buttons on one of two field plates. The button gripper is carried on orthogonal gantries powered by linear synchronous motors and contains a TV camera which precisely locates backlit buttons to allow placement in user defined locations to 10 (mu) accuracy. Fiducial points on both plates can also be observed by the camera to allow repeated checks on positioning accuracy. Field plates rotate to follow apparent sky rotation. The spectrographs both analyze light from the 200 observing fibers each and back- illuminate the 400 fibers being re-positioned during the observing run. The 2dF fiber position and spectrograph system is a large and complex instrument located at the prime focus of the Anglo Australian Telescope. The mechanical design has departed somewhat from the earlier concepts of Gray et al, but still reflects the audacity of those first ideas. The positioner is capable of positioning 400 fibers on a field plate while another 400 fibers on another plate are observing at the focus of the telescope and feeding the twin spectrographs. When first proposed it must have seemed like ingenuity unfettered by caution. Yet now it works, and works wonderfully well. 2dF is a system which functions as the result of the combined and coordinated efforts of the astronomers, the mechanical designers and tradespeople, the electronic designers, the programmers, the support staff at the telescope, and the manufacturing subcontractors. The mechanical design of the 2dF positioner and spectrographs was carried out by the mechanical engineering staff of the AAO and the majority of the manufacture was carried out in the AAO workshops.
Compact 2-D graphical representation of DNA
NASA Astrophysics Data System (ADS)
Randić, Milan; Vračko, Marjan; Zupan, Jure; Novič, Marjana
2003-05-01
We present a novel 2-D graphical representation for DNA sequences which has an important advantage over the existing graphical representations of DNA in being very compact. It is based on: (1) use of binary labels for the four nucleic acid bases, and (2) use of the 'worm' curve as template on which binary codes are placed. The approach is illustrated on DNA sequences of the first exon of human β-globin and gorilla β-globin.
2D materials: Graphene and others
NASA Astrophysics Data System (ADS)
Bansal, Suneev Anil; Singh, Amrinder Pal; Kumar, Suresh
2016-05-01
Present report reviews the recent advancements in new atomically thick 2D materials. Materials covered in this review are Graphene, Silicene, Germanene, Boron Nitride (BN) and Transition metal chalcogenides (TMC). These materials show extraordinary mechanical, electronic and optical properties which make them suitable candidates for future applications. Apart from unique properties, tune-ability of highly desirable properties of these materials is also an important area to be emphasized on.
Mason, W.E.
1983-03-01
A set of finite element codes for the solution of nonlinear, two-dimensional (TACO2D) and three-dimensional (TACO3D) heat transfer problems. Performs linear and nonlinear analyses of both transient and steady state heat transfer problems. Has the capability to handle time or temperature dependent material properties. Materials may be either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions and loadings are available including temperature, flux, convection, radiation, and internal heat generation.
NASA Astrophysics Data System (ADS)
Davies, J.; Cawley, P.
2007-03-01
Synthetically focused guided wave imaging techniques have previously been employed for plate like structures. Much work has been has been done using algorithms such as the synthetic aperture focusing technique (SAFT), the total focusing method (TFM) and common source method (CSM) using both linear and circular arrays. The resolutions for such algorithms for the plate case are well known. We have attempted to use these algorithms for imaging defects in pipes using an array of piezoelectric shear transducers clamped around the pipe circumference. We show that the SAFT and the TFM methods both suffer from coherent noise in the image caused by circumferentially propagating wave modes. It is shown that the common source method (CSM) method does not suffer from this problem though the resolution obtained is poorer. Results from the different imaging algorithms are presented for an 8 inch pipe using 50 kHz excitation, both from finite element simulations and laboratory experiments.
Engineering light outcoupling in 2D materials.
Lien, Der-Hsien; Kang, Jeong Seuk; Amani, Matin; Chen, Kevin; Tosun, Mahmut; Wang, Hsin-Ping; Roy, Tania; Eggleston, Michael S; Wu, Ming C; Dubey, Madan; Lee, Si-Chen; He, Jr-Hau; Javey, Ali
2015-02-11
When light is incident on 2D transition metal dichalcogenides (TMDCs), it engages in multiple reflections within underlying substrates, producing interferences that lead to enhancement or attenuation of the incoming and outgoing strength of light. Here, we report a simple method to engineer the light outcoupling in semiconducting TMDCs by modulating their dielectric surroundings. We show that by modulating the thicknesses of underlying substrates and capping layers, the interference caused by substrate can significantly enhance the light absorption and emission of WSe2, resulting in a ∼11 times increase in Raman signal and a ∼30 times increase in the photoluminescence (PL) intensity of WSe2. On the basis of the interference model, we also propose a strategy to control the photonic and optoelectronic properties of thin-layer WSe2. This work demonstrates the utilization of outcoupling engineering in 2D materials and offers a new route toward the realization of novel optoelectronic devices, such as 2D LEDs and solar cells. PMID:25602462
NASA Astrophysics Data System (ADS)
Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric; Blas, Felipe J.; Miqueu, Christelle
2014-04-01
As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the "CG" approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the "FMT" extension version gives a good representation solely at low pressures. Hence, the "CG" version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.
Malheiro, Carine; Mendiboure, Bruno; Plantier, Frédéric; Miqueu, Christelle; Blas, Felipe J.
2014-04-07
As a first step of an ongoing study of thermodynamic properties and adsorption of complex fluids in confined media, we present a new theoretical description for spherical monomers using the Statistical Associating Fluid Theory for potential of Variable Range (SAFT-VR) and a Non-Local Density Functional Theory (NLDFT) with Weighted Density Approximations (WDA). The well-known Modified Fundamental Measure Theory is used to describe the inhomogeneous hard-sphere contribution as a reference for the monomer and two WDA approaches are developed for the dispersive terms from the high-temperature Barker and Henderson perturbation expansion. The first approach extends the dispersive contributions using the scalar and vector weighted densities introduced in the Fundamental Measure Theory (FMT) and the second one uses a coarse-grained (CG) approach with a unique weighted density. To test the accuracy of this new NLDFT/SAFT-VR coupling, the two versions of the theoretical model are compared with Grand Canonical Monte Carlo (GCMC) molecular simulations using the same molecular model. Only the version with the “CG” approach for the dispersive terms provides results in excellent agreement with GCMC calculations in a wide range of conditions while the “FMT” extension version gives a good representation solely at low pressures. Hence, the “CG” version of the theoretical model is used to reproduce methane adsorption isotherms in a Carbon Molecular Sieve and compared with experimental data after a characterization of the material. The whole results show an excellent agreement between modeling and experiments. Thus, through a complete and consistent comparison both with molecular simulations and with experimental data, the NLDFT/SAFT-VR theory has been validated for the description of monomers.
2D superconductivity by ionic gating
NASA Astrophysics Data System (ADS)
Iwasa, Yoshi
2D superconductivity is attracting a renewed interest due to the discoveries of new highly crystalline 2D superconductors in the past decade. Superconductivity at the oxide interfaces triggered by LaAlO3/SrTiO3 has become one of the promising routes for creation of new 2D superconductors. Also, the MBE grown metallic monolayers including FeSe are also offering a new platform of 2D superconductors. In the last two years, there appear a variety of monolayer/bilayer superconductors fabricated by CVD or mechanical exfoliation. Among these, electric field induced superconductivity by electric double layer transistor (EDLT) is a unique platform of 2D superconductivity, because of its ability of high density charge accumulation, and also because of the versatility in terms of materials, stemming from oxides to organics and layered chalcogenides. In this presentation, the following issues of electric filed induced superconductivity will be addressed; (1) Tunable carrier density, (2) Weak pinning, (3) Absence of inversion symmetry. (1) Since the sheet carrier density is quasi-continuously tunable from 0 to the order of 1014 cm-2, one is able to establish an electronic phase diagram of superconductivity, which will be compared with that of bulk superconductors. (2) The thickness of superconductivity can be estimated as 2 - 10 nm, dependent on materials, and is much smaller than the in-plane coherence length. Such a thin but low resistance at normal state results in extremely weak pinning beyond the dirty Boson model in the amorphous metallic films. (3) Due to the electric filed, the inversion symmetry is inherently broken in EDLT. This feature appears in the enhancement of Pauli limit of the upper critical field for the in-plane magnetic fields. In transition metal dichalcogenide with a substantial spin-orbit interactions, we were able to confirm the stabilization of Cooper pair due to its spin-valley locking. This work has been supported by Grant-in-Aid for Specially
NASA Astrophysics Data System (ADS)
Dufal, Simon; Lafitte, Thomas; Haslam, Andrew J.; Galindo, Amparo; Clark, Gary N. I.; Vega, Carlos; Jackson, George
2015-05-01
An accurate representation of molecular association is a vital ingredient of advanced equations of state (EOSs), providing a description of thermodynamic properties of complex fluids where hydrogen bonding plays an important role. The combination of the first-order thermodynamic perturbation theory (TPT1) of Wertheim for associating systems with an accurate description of the structural and thermodynamic properties of the monomer fluid forms the basis of the statistical associating fluid theory (SAFT) family of EOSs. The contribution of association to the free energy in SAFT and related EOSs is very sensitive to the nature of intermolecular potential used to describe the monomers and, crucially, to the accuracy of the representation of the thermodynamic and structural properties. Here we develop an accurate description of the association contribution for use within the recently developed SAFT-VR Mie framework for chain molecules formed from segments interacting through a Mie potential [T. Lafitte, A. Apostolakou, C. Avendaño, A, Galindo, C. S. Adjiman, E. A. Müller, and G. Jackson, J. Chem. Phys. 139, 154504 (2013)]. As the Mie interaction represents a soft-core potential model, a method similar to that adopted for the Lennard-Jones potential [E. A. Müller and K. E. Gubbins, Ind. Eng. Chem. Res. 34, 3662 (1995)] is employed to describe the association contribution to the Helmholtz free energy. The radial distribution function (RDF) of the Mie fluid (which is required for the evaluation of the integral at the heart of the association term) is determined for a broad range of thermodynamic conditions (temperatures and densities) using the reference hyper-netted chain (RHNC) integral-equation theory. The numerical data for the association kernel of Mie fluids with different association geometries are then correlated for a range of thermodynamic states to obtain a general expression for the association contribution which can be applied for varying values of the Mie
Design Application Translates 2-D Graphics to 3-D Surfaces
NASA Technical Reports Server (NTRS)
2007-01-01
Fabric Images Inc., specializing in the printing and manufacturing of fabric tension architecture for the retail, museum, and exhibit/tradeshow communities, designed software to translate 2-D graphics for 3-D surfaces prior to print production. Fabric Images' fabric-flattening design process models a 3-D surface based on computer-aided design (CAD) specifications. The surface geometry of the model is used to form a 2-D template, similar to a flattening process developed by NASA's Glenn Research Center. This template or pattern is then applied in the development of a 2-D graphic layout. Benefits of this process include 11.5 percent time savings per project, less material wasted, and the ability to improve upon graphic techniques and offer new design services. Partners include Exhibitgroup/Giltspur (end-user client: TAC Air, a division of Truman Arnold Companies Inc.), Jack Morton Worldwide (end-user client: Nickelodeon), as well as 3D Exhibits Inc., and MG Design Associates Corp.
Role of defects in frictional properties of 2-D materials
NASA Astrophysics Data System (ADS)
Kavalur, Aditya; Kim, Woo Kyun
Graphene and other 2-D materials have provided a promising prospect to improve the tribological properties of small length scale devices such as MEMS/NEMS due to their low friction coefficient and excellent wear resistance. Several recent research efforts have been devoted to unveiling the physical origin of the superior tribological properties of these 2-D materials from both experimental and theoretical standpoints, however, many of them still remain far from clearly understood. Recently, it was shown that lamellar materials do not conform to the predictions of the Prandtl-Tomlinson model due to additional friction mechanisms of delamination and visco-elastic ploughing. These mechanisms are critical as they explain the low and negative coefficients of friction observed in recent AFM experiments. However, thus far, most simulation and theoretical studies about these novel friction mechanisms have focused on only pristine graphene whereas real graphene sheets prepared by CVD and other conventional techniques possess various forms of defects such as vacancies and non-hexagonal rings. In this study we examine the role of these defects in frictional properties of 2-D materials in relation to delamination and visco-elastic ploughing.
2D luminescence imaging of pH in vivo
Schreml, Stephan; Meier, Robert J.; Wolfbeis, Otto S.; Landthaler, Michael; Szeimies, Rolf-Markus; Babilas, Philipp
2011-01-01
Luminescence imaging of biological parameters is an emerging field in biomedical sciences. Tools to study 2D pH distribution are needed to gain new insights into complex disease processes, such as wound healing and tumor metabolism. In recent years, luminescence-based methods for pH measurement have been developed. However, for in vivo applications, especially for studies on humans, biocompatibility and reliability under varying conditions have to be ensured. Here, we present a referenced luminescent sensor for 2D high-resolution imaging of pH in vivo. The ratiometric sensing scheme is based on time-domain luminescence imaging of FITC and ruthenium(II)tris-(4,7-diphenyl-1,10-phenanthroline). To create a biocompatible 2D sensor, these dyes were bound to or incorporated into microparticles (aminocellulose and polyacrylonitrile), and particles were immobilized in polyurethane hydrogel on transparent foils. We show sensor precision and validity by conducting in vitro and in vivo experiments, and we show the versatility in imaging pH during physiological and chronic cutaneous wound healing in humans. Implementation of this technique may open vistas in wound healing, tumor biology, and other biomedical fields. PMID:21262842
A 2-D ECE Imaging Diagnostic for TEXTOR
NASA Astrophysics Data System (ADS)
Wang, J.; Deng, B. H.; Domier, C. W.; Luhmann, H. Lu, Jr.
2002-11-01
A true 2-D extension to the UC Davis ECE Imaging (ECEI) concept is under development for installation on the TEXTOR tokamak in 2003. This combines the use of linear arrays with multichannel conventional wideband heterodyne ECE radiometers to provide a true 2-D imaging system. This is in contrast to current 1-D ECEI systems in which 2-D images are obtained through the use of multiple plasma discharges (varying the scanned emission frequency each discharge). Here, each array element of the 20 channel mixer array measures plasma emission at 16 simultaneous frequencies to form a 16x20 image of the plasma electron temperature Te. Correlation techniques can then be applied to any pair of the 320 image elements to study both radial and poloidal characteristics of turbulent Te fluctuations. The system relies strongly on the development of low cost, wideband (2-18 GHz) IF detection electronics for use in both ECE Imaging as well as conventional heterodyne ECE radiometry. System details, with a strong focus on the wideband IF electronics development, will be presented. *Supported by U.S. DoE Contracts DE-FG03-95ER54295 and DE-FG03-99ER54531.
Characterization of Porous Medium Properties Using 2D NMR
NASA Astrophysics Data System (ADS)
Sun, Boqin; Dunn, Keh-Jim
2003-03-01
We have successfully applied the concept of 2D NMR to the characterization of properties of fluid-saturated porous medium. Using a two-windowed modified CPMG pulse sequence, we were able to explore the magnetic internal filed gradient distribution within the pore space of a fluid-saturated porous medium due to magnetic susceptibility contrast between the solid matrix and pore fluid. Similar scheme is used to identify and quantify different types of pore fluids, such as oil, water, and gas, based on the contrast in their diffusion coefficients. The magic angle spinning technique (MAS) can also be applied in the 2D NMR framework for delineating the chemical shift spectra of the pore fluids in a porous medium at different T1 or T2 relaxation times. The results can be displayed in a two-dimensional plot, with one axis being the T1 or T2 relaxation times, the other axis being the internal field gradient, diffusion coefficient, or chemical shift, and the third axis being the proton population. Our preliminary laboratory work indicates that the 2D NMR approach can be a powerful tool for the characterization of properties of fluid-saturated porous medium, such as fluid typing, oil viscosity determination, surface wettability, etc.
NASA Astrophysics Data System (ADS)
Clayton, Dwight; Barker, Alan; Albright, Austin; Santos-Villalobos, Hector
2016-02-01
A multitude of concrete-based structures are typically part of a light water reactor (LWR) plant to provide the foundation, support, shielding, and containment functions. This use has made its long-term performance crucial for the safe operation of commercial nuclear power plants (NPPs). Extending reactor life to 60 years and beyond will likely increase susceptibility and severity of known forms of degradation. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on ultrasonic data collected from thick, complex concrete structures such as in NPPs. Towards these goals, we apply the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. Specially designed and fabricated test specimens can provide realistic flaws that are similar to actual flaws in terms of how they interact with a particular NDE technique. Artificial test blocks allow the isolation of certain testing problems as well as the variation of certain parameters. Because conditions in the laboratory are controlled, the number of unknown variables can be decreased, making it possible to focus on specific aspects, investigate them in detail, and gain further information on the capabilities and limitations of each method. To minimize artifacts caused by boundary effects, the dimensions of the specimens should not be too compact. In this paper, we apply this enhanced SAFT technique to a 2.134 m × 2.134 m × 1.016 m concrete
GBL-2D Version 1.0: a 2D geometry boolean library.
McBride, Cory L. (Elemental Technologies, American Fort, UT); Schmidt, Rodney Cannon; Yarberry, Victor R.; Meyers, Ray J.
2006-11-01
This report describes version 1.0 of GBL-2D, a geometric Boolean library for 2D objects. The library is written in C++ and consists of a set of classes and routines. The classes primarily represent geometric data and relationships. Classes are provided for 2D points, lines, arcs, edge uses, loops, surfaces and mask sets. The routines contain algorithms for geometric Boolean operations and utility functions. Routines are provided that incorporate the Boolean operations: Union(OR), XOR, Intersection and Difference. A variety of additional analytical geometry routines and routines for importing and exporting the data in various file formats are also provided. The GBL-2D library was originally developed as a geometric modeling engine for use with a separate software tool, called SummitView [1], that manipulates the 2D mask sets created by designers of Micro-Electro-Mechanical Systems (MEMS). However, many other practical applications for this type of software can be envisioned because the need to perform 2D Boolean operations can arise in many contexts.
Xiong, Wei; Laaser, Jennifer E.; Mehlenbacher, Randy D.; Zanni, Martin T.
2011-01-01
In the last ten years, two-dimensional infrared spectroscopy has become an important technique for studying molecular structures and dynamics. We report the implementation of heterodyne detected two-dimensional sum-frequency generation (HD 2D SFG) spectroscopy, which is the analog of 2D infrared (2D IR) spectroscopy, but is selective to noncentrosymmetric systems such as interfaces. We implement the technique using mid-IR pulse shaping, which enables rapid scanning, phase cycling, and automatic phasing. Absorptive spectra are obtained, that have the highest frequency resolution possible, from which we extract the rephasing and nonrephasing signals that are sometimes preferred. Using this technique, we measure the vibrational mode of CO adsorbed on a polycrystalline Pt surface. The 2D spectrum reveals a significant inhomogenous contribution to the spectral line shape, which is quantified by simulations. This observation indicates that the surface conformation and environment of CO molecules is more complicated than the simple “atop” configuration assumed in previous work. Our method can be straightforwardly incorporated into many existing SFG spectrometers. The technique enables one to quantify inhomogeneity, vibrational couplings, spectral diffusion, chemical exchange, and many other properties analogous to 2D IR spectroscopy, but specifically for interfaces. PMID:22143772
Interparticle Attraction in 2D Complex Plasmas
NASA Astrophysics Data System (ADS)
Kompaneets, Roman; Morfill, Gregor E.; Ivlev, Alexei V.
2016-03-01
Complex (dusty) plasmas allow experimental studies of various physical processes occurring in classical liquids and solids by directly observing individual microparticles. A major problem is that the interaction between microparticles is generally not molecularlike. In this Letter, we propose how to achieve a molecularlike interaction potential in laboratory 2D complex plasmas. We argue that this principal aim can be achieved by using relatively small microparticles and properly adjusting discharge parameters. If experimentally confirmed, this will make it possible to employ complex plasmas as a model system with an interaction potential resembling that of conventional liquids.
Periodically sheared 2D Yukawa systems
Kovács, Anikó Zsuzsa; Hartmann, Peter; Donkó, Zoltán
2015-10-15
We present non-equilibrium molecular dynamics simulation studies on the dynamic (complex) shear viscosity of a 2D Yukawa system. We have identified a non-monotonic frequency dependence of the viscosity at high frequencies and shear rates, an energy absorption maximum (local resonance) at the Einstein frequency of the system at medium shear rates, an enhanced collective wave activity, when the excitation is near the plateau frequency of the longitudinal wave dispersion, and the emergence of significant configurational anisotropy at small frequencies and high shear rates.
ENERGY LANDSCAPE OF 2D FLUID FORMS
Y. JIANG; ET AL
2000-04-01
The equilibrium states of 2D non-coarsening fluid foams, which consist of bubbles with fixed areas, correspond to local minima of the total perimeter. (1) The authors find an approximate value of the global minimum, and determine directly from an image how far a foam is from its ground state. (2) For (small) area disorder, small bubbles tend to sort inwards and large bubbles outwards. (3) Topological charges of the same sign repel while charges of opposite sign attract. (4) They discuss boundary conditions and the uniqueness of the pattern for fixed topology.
A scalable 2-D parallel sparse solver
Kothari, S.C.; Mitra, S.
1995-12-01
Scalability beyond a small number of processors, typically 32 or less, is known to be a problem for existing parallel general sparse (PGS) direct solvers. This paper presents a parallel general sparse PGS direct solver for general sparse linear systems on distributed memory machines. The algorithm is based on the well-known sequential sparse algorithm Y12M. To achieve efficient parallelization, a 2-D scattered decomposition of the sparse matrix is used. The proposed algorithm is more scalable than existing parallel sparse direct solvers. Its scalability is evaluated on a 256 processor nCUBE2s machine using Boeing/Harwell benchmark matrices.
2D stepping drive for hyperspectral systems
NASA Astrophysics Data System (ADS)
Endrödy, Csaba; Mehner, Hannes; Grewe, Adrian; Sinzinger, Stefan; Hoffmann, Martin
2015-07-01
We present the design, fabrication and characterization of a compact 2D stepping microdrive for pinhole array positioning. The miniaturized solution enables a highly integrated compact hyperspectral imaging system. Based on the geometry of the pinhole array, an inch-worm drive with electrostatic actuators was designed resulting in a compact (1 cm2) positioning system featuring a step size of about 15 µm in a 170 µm displacement range. The high payload (20 mg) as required for the pinhole array and the compact system design exceed the known electrostatic inch-worm-based microdrives.
WFR-2D: an analytical model for PWAS-generated 2D ultrasonic guided wave propagation
NASA Astrophysics Data System (ADS)
Shen, Yanfeng; Giurgiutiu, Victor
2014-03-01
This paper presents WaveFormRevealer 2-D (WFR-2D), an analytical predictive tool for the simulation of 2-D ultrasonic guided wave propagation and interaction with damage. The design of structural health monitoring (SHM) systems and self-aware smart structures requires the exploration of a wide range of parameters to achieve best detection and quantification of certain types of damage. Such need for parameter exploration on sensor dimension, location, guided wave characteristics (mode type, frequency, wavelength, etc.) can be best satisfied with analytical models which are fast and efficient. The analytical model was constructed based on the exact 2-D Lamb wave solution using Bessel and Hankel functions. Damage effects were inserted in the model by considering the damage as a secondary wave source with complex-valued directivity scattering coefficients containing both amplitude and phase information from wave-damage interaction. The analytical procedure was coded with MATLAB, and a predictive simulation tool called WaveFormRevealer 2-D was developed. The wave-damage interaction coefficients (WDICs) were extracted from harmonic analysis of local finite element model (FEM) with artificial non-reflective boundaries (NRB). The WFR-2D analytical simulation results were compared and verified with full scale multiphysics finite element models and experiments with scanning laser vibrometer. First, Lamb wave propagation in a pristine aluminum plate was simulated with WFR-2D, compared with finite element results, and verified by experiments. Then, an inhomogeneity was machined into the plate to represent damage. Analytical modeling was carried out, and verified by finite element simulation and experiments. This paper finishes with conclusions and suggestions for future work.
The benefits of using time-frequency analysis with synthetic aperture focusing technique
Albright, Austin E-mail: claytonda@ornl.gov; Clayton, Dwight E-mail: claytonda@ornl.gov
2015-03-31
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on
The Benefits of Using Time-Frequency Analysis with Synthetic Aperture Focusing Technique
Albright, Austin P; Clayton, Dwight A
2015-01-01
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band s interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m x 2m x 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on
The benefits of using time-frequency analysis with synthetic aperture focusing technique
NASA Astrophysics Data System (ADS)
Albright, Austin; Clayton, Dwight
2015-03-01
Improvements in detection and resolution are always desired and needed. There are various instruments available for the inspection of concrete structures that can be used with confidence for detecting different defects. However, more often than not that confidence is heavily dependent on the experience of the operator rather than the clear, objective discernibility of the output of the instrument. The challenge of objective discernment is amplified when the concrete structures contain multiple layers of reinforcement, are of significant thickness, or both, such as concrete structures in nuclear power plants. We seek to improve and extend the usefulness of results produced using the synthetic aperture focusing technique (SAFT) on data collected from thick, complex concrete structures. A secondary goal is to improve existing SAFT results, with regards to repeatedly and objectively identifying defects and/or internal structure of concrete structures. Towards these goals, we are applying the time-frequency technique of wavelet packet decomposition and reconstruction using a mother wavelet that possesses the exact reconstruction property. However, instead of analyzing the coefficients of each decomposition node, we select and reconstruct specific nodes based on the frequency band it contains to produce a frequency band specific time-series representation. SAFT is then applied to these frequency specific reconstructions allowing SAFT to be used to visualize the reflectivity of a frequency band and that band's interaction with the contents of the concrete structure. We apply our technique to data sets collected using a commercial, ultrasonic linear array (MIRA) from two 1.5m × 2m × 25cm concrete test specimens. One specimen contains multiple layers of rebar. The other contains honeycomb, crack, and rebar bonding defect analogs. This approach opens up a multitude of possibilities for improved detection, readability, and overall improved objectivity. We will focus on
Photocurrent spectroscopy of 2D materials
NASA Astrophysics Data System (ADS)
Cobden, David
Confocal photocurrent measurements provide a powerful means of studying many aspects of the optoelectronic and electrical properties of a 2D device or material. At a diffraction-limited point they can provide a detailed absorption spectrum, and they can probe local symmetry, ultrafast relaxation rates and processes, electron-electron interaction strengths, and transport coefficients. We illustrate this with several examples, once being the photo-Nernst effect. In gapless 2D materials, such as graphene, in a perpendicular magnetic field a photocurrent antisymmetric in the field is generated near to the free edges, with opposite sign at opposite edges. Its origin is the transverse thermoelectric current associated with the laser-induced electron temperature gradient. This effect provides an unambiguous demonstration of the Shockley-Ramo nature of long-range photocurrent generation in gapless materials. It also provides a means of investigating quasiparticle properties. For example, in the case of graphene on hBN, it can be used to probe the Lifshitz transition that occurs due to the minibands formed by the Moire superlattice. We also observe and discuss photocurrent generated in other semimetallic (WTe2) and semiconducting (WSe2) monolayers. Work supported by DoE BES and NSF EFRI grants.
Multienzyme Inkjet Printed 2D Arrays.
Gdor, Efrat; Shemesh, Shay; Magdassi, Shlomo; Mandler, Daniel
2015-08-19
The use of printing to produce 2D arrays is well established, and should be relatively facile to adapt for the purpose of printing biomaterials; however, very few studies have been published using enzyme solutions as inks. Among the printing technologies, inkjet printing is highly suitable for printing biomaterials and specifically enzymes, as it offers many advantages. Formulation of the inkjet inks is relatively simple and can be adjusted to a variety of biomaterials, while providing nonharmful environment to the enzymes. Here we demonstrate the applicability of inkjet printing for patterning multiple enzymes in a predefined array in a very straightforward, noncontact method. Specifically, various arrays of the enzymes glucose oxidase (GOx), invertase (INV) and horseradish peroxidase (HP) were printed on aminated glass surfaces, followed by immobilization using glutardialdehyde after printing. Scanning electrochemical microscopy (SECM) was used for imaging the printed patterns and to ascertain the enzyme activity. The successful formation of 2D arrays consisting of enzymes was explored as a means of developing the first surface confined enzyme based logic gates. Principally, XOR and AND gates, each consisting of two enzymes as the Boolean operators, were assembled, and their operation was studied by SECM. PMID:26214072
Dynamic sector processing using 2D assignment for rotating radars
NASA Astrophysics Data System (ADS)
Habtemariam, Biruk K.; Tharmarasa, R.; Pelletier, M.; Kirubarajan, T.
2011-09-01
Electronically scanned array radars as well as mechanically steered rotating antennas return measurements with different time stamps during the same scan while sweeping form one region to another. Data association algorithms process the measurements at the end of the scan in order to satisfy the common one measurement per track assumption. Data processing at the end of a full scan resulted in delayed target state update. This issue becomes more apparent while tracking fast moving targets with low scan rate sensors. In this paper, we present new dynamic sector processing algorithm using 2D assignment for continuously scanning radars. A complete scan can be divided into sectors, which could be as small as a single detection, depending on the scanning rate and sparsity of targets. Data association followed by filtering and target state update is done dynamically while sweeping from one end to another. Along with the benefit of immediate track updates, continuous tracking results in challenges such as multiple targets spanning multiple sectors and targets crossing consecutive sectors. Also, associations performed in the current sector may require changes in association done in previous sectors. Such difficulties are resolved by the proposed 2D assignment algorithm that implements an incremental Hungarian assignment technique. The algorithm offers flexibility with respect to assignment variables for fusing of measurements received in consecutive sectors. Furthermore the proposed technique can be extended to multiframe assignment for jointly processing data from multiple scanning radars. Experimental results based on rotating radars are presented.
2-D or not 2-D, that is the question: A Northern California test
Mayeda, K; Malagnini, L; Phillips, W S; Walter, W R; Dreger, D
2005-06-06
Reliable estimates of the seismic source spectrum are necessary for accurate magnitude, yield, and energy estimation. In particular, how seismic radiated energy scales with increasing earthquake size has been the focus of recent debate within the community and has direct implications on earthquake source physics studies as well as hazard mitigation. The 1-D coda methodology of Mayeda et al. has provided the lowest variance estimate of the source spectrum when compared against traditional approaches that use direct S-waves, thus making it ideal for networks that have sparse station distribution. The 1-D coda methodology has been mostly confined to regions of approximately uniform complexity. For larger, more geophysically complicated regions, 2-D path corrections may be required. The complicated tectonics of the northern California region coupled with high quality broadband seismic data provides for an ideal ''apples-to-apples'' test of 1-D and 2-D path assumptions on direct waves and their coda. Using the same station and event distribution, we compared 1-D and 2-D path corrections and observed the following results: (1) 1-D coda results reduced the amplitude variance relative to direct S-waves by roughly a factor of 8 (800%); (2) Applying a 2-D correction to the coda resulted in up to 40% variance reduction from the 1-D coda results; (3) 2-D direct S-wave results, though better than 1-D direct waves, were significantly worse than the 1-D coda. We found that coda-based moment-rate source spectra derived from the 2-D approach were essentially identical to those from the 1-D approach for frequencies less than {approx}0.7-Hz, however for the high frequencies (0.7{le} f {le} 8.0-Hz), the 2-D approach resulted in inter-station scatter that was generally 10-30% smaller. For complex regions where data are plentiful, a 2-D approach can significantly improve upon the simple 1-D assumption. In regions where only 1-D coda correction is available it is still preferable over 2
Simulation of 2D Fields of Raindrop Size Distributions
NASA Astrophysics Data System (ADS)
Berne, A.; Schleiss, M.; Uijlenhoet, R.
2008-12-01
The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are
Advecting Procedural Textures for 2D Flow Animation
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Moran, Pat (Technical Monitor)
2001-01-01
This paper proposes the use of specially generated 3D procedural textures for visualizing steady state 2D flow fields. We use the flow field to advect and animate the texture over time. However, using standard texture advection techniques and arbitrary textures will introduce some undesirable effects such as: (a) expanding texture from a critical source point, (b) streaking pattern from the boundary of the flowfield, (c) crowding of advected textures near an attracting spiral or sink, and (d) absent or lack of textures in some regions of the flow. This paper proposes a number of strategies to solve these problems. We demonstrate how the technique works using both synthetic data and computational fluid dynamics data.
Bayesian 2D Current Reconstruction from Magnetic Images
NASA Astrophysics Data System (ADS)
Clement, Colin B.; Bierbaum, Matthew K.; Nowack, Katja; Sethna, James P.
We employ a Bayesian image reconstruction scheme to recover 2D currents from magnetic flux imaged with scanning SQUIDs (Superconducting Quantum Interferometric Devices). Magnetic flux imaging is a versatile tool to locally probe currents and magnetic moments, however present reconstruction methods sacrifice resolution due to numerical instability. Using state-of-the-art blind deconvolution techniques we recover the currents, point-spread function and height of the SQUID loop by optimizing the probability of measuring an image. We obtain uncertainties on these quantities by sampling reconstructions. This generative modeling technique could be used to develop calibration protocols for scanning SQUIDs, to diagnose systematic noise in the imaging process, and can be applied to many tools beyond scanning SQUIDs.
Applications of 2D to 3D conversion for educational purposes
NASA Astrophysics Data System (ADS)
Koido, Yoshihisa; Morikawa, Hiroyuki; Shiraishi, Saki; Takeuchi, Soya; Maruyama, Wataru; Nakagori, Toshio; Hirakata, Masataka; Shinkai, Hirohisa; Kawai, Takashi
2013-03-01
There are three main approaches creating stereoscopic S3D content: stereo filming using two cameras, stereo rendering of 3D computer graphics, and 2D to S3D conversion by adding binocular information to 2D material images. Although manual "off-line" conversion can control the amount of parallax flexibly, 2D material images are converted according to monocular information in most cases, and the flexibility of 2D to S3D conversion has not been exploited. If the depth is expressed flexibly, comprehensions and interests from converted S3D contents are anticipated to be differed from those from 2D. Therefore, in this study we created new S3D content for education by applying 2D to S3D conversion. For surgical education, we created S3D surgical operation content under a surgeon using a partial 2D to S3D conversion technique which was expected to concentrate viewers' attention on significant areas. And for art education, we converted Ukiyoe prints; traditional Japanese artworks made from a woodcut. The conversion of this content, which has little depth information, into S3D, is expected to produce different cognitive processes from those evoked by 2D content, e.g., the excitation of interest, and the understanding of spatial information. In addition, the effects of the representation of these contents were investigated.
Numerical Evaluation of 2D Ground States
NASA Astrophysics Data System (ADS)
Kolkovska, Natalia
2016-02-01
A ground state is defined as the positive radial solution of the multidimensional nonlinear problem
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Jones, Justin S.; Kelly, Daniel P.; Zheng, Yun; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
An electrostatically actuated microshutter array consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutter arrays demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
2D Electrostatic Actuation of Microshutter Arrays
NASA Technical Reports Server (NTRS)
Burns, Devin E.; Oh, Lance H.; Li, Mary J.; Kelly, Daniel P.; Kutyrev, Alexander S.; Moseley, Samuel H.
2015-01-01
Electrostatically actuated microshutter arrays consisting of rotational microshutters (shutters that rotate about a torsion bar) were designed and fabricated through the use of models and experiments. Design iterations focused on minimizing the torsional stiffness of the microshutters, while maintaining their structural integrity. Mechanical and electromechanical test systems were constructed to measure the static and dynamic behavior of the microshutters. The torsional stiffness was reduced by a factor of four over initial designs without sacrificing durability. Analysis of the resonant behavior of the microshutters demonstrates that the first resonant mode is a torsional mode occurring around 3000 Hz. At low vacuum pressures, this resonant mode can be used to significantly reduce the drive voltage necessary for actuation requiring as little as 25V. 2D electrostatic latching and addressing was demonstrated using both a resonant and pulsed addressing scheme.
Graphene suspensions for 2D printing
NASA Astrophysics Data System (ADS)
Soots, R. A.; Yakimchuk, E. A.; Nebogatikova, N. A.; Kotin, I. A.; Antonova, I. V.
2016-04-01
It is shown that, by processing a graphite suspension in ethanol or water by ultrasound and centrifuging, it is possible to obtain particles with thicknesses within 1-6 nm and, in the most interesting cases, 1-1.5 nm. Analogous treatment of a graphite suspension in organic solvent yields eventually thicker particles (up to 6-10 nm thick) even upon long-term treatment. Using the proposed ink based on graphene and aqueous ethanol with ethylcellulose and terpineol additives for 2D printing, thin (~5 nm thick) films with sheet resistance upon annealing ~30 MΩ/□ were obtained. With the ink based on aqueous graphene suspension, the sheet resistance was ~5-12 kΩ/□ for 6- to 15-nm-thick layers with a carrier mobility of ~30-50 cm2/(V s).
Hirobe, Tomohisa; Ito, Shosuke; Wakamatsu, Kazumasa
2013-09-01
The novel mutation named ru2(d) /Hps5(ru2-d) , characterized by light-colored coats and ruby-eyes, prohibits differentiation of melanocytes by inhibiting tyrosinase (Tyr) activity, expression of Tyr, Tyr-related protein 1 (Tyrp1), Tyrp2, and Kit. However, it is not known whether the ru2(d) allele affects pheomelanin synthesis in recessive yellow (e/Mc1r(e) ) or in pheomelanic stage in agouti (A) mice. In this study, effects of the ru2(d) allele on pheomelanin synthesis were investigated by chemical analysis of melanin present in dorsal hairs of 5-week-old mice from F2 generation between C57BL/10JHir (B10)-co-isogenic ruby-eye 2(d) and B10-congenic recessive yellow or agouti. Eumelanin content was decreased in ruby-eye 2(d) and ruby-eye 2(d) agouti mice, whereas pheomelanin content in ruby-eye 2(d) recessive yellow and ruby-eye 2(d) agouti mice did not differ from the corresponding Ru2(d) /- mice, suggesting that the ru2(d) allele inhibits eumelanin but not pheomelanin synthesis. PMID:23672590
Rodriguez-Hernandez, Miguel A; Gomez-Sacristan, Angel; Sempere-Payá, Víctor M
2016-04-29
Ultrasound diagnosis is a widely used medical tool. Among the various ultrasound techniques, ultrasonic imaging is particularly relevant. This paper presents an improvement to a two-dimensional (2D) ultrasonic system using measurements taken from perpendicular planes, where digital signal processing techniques are used to combine one-dimensional (1D) A-scans were acquired by individual transducers in arrays located in perpendicular planes. An algorithm used to combine measurements is improved based on the wavelet transform, which includes a denoising step during the 2D representation generation process. The inclusion of this new denoising stage generates higher quality 2D representations with a reduced level of speckling. The paper includes different 2D representations obtained from noisy A-scans and compares the improvements obtained by including the denoising stage. PMID:27163318
Míguez, J M; Piñeiro, M M; Algaba, J; Mendiboure, B; Torré, J P; Blas, F J
2015-11-01
The high-pressure phase diagrams of the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) mixtures are examined using the SAFT-VR approach. Carbon dioxide molecule is modeled as two spherical segments tangentially bonded, water is modeled as a spherical segment with four associating sites to represent the hydrogen bonding, methane is represented as an isolated sphere, and tetrahydrofuran is represented as a chain of m tangentially bonded spherical segments. Dispersive interactions are modeled using the square-well intermolecular potential. In addition, two different molecular model mixtures are developed to take into account the subtle balance between water-tetrahydrofuran hydrogen-bonding interactions. The polar and quadrupolar interactions present in water, tetrahydrofuran, and carbon dioxide are treated in an effective way via square-well potentials of variable range. The optimized intermolecular parameters are taken from the works of Giner et al. (Fluid Phase Equil. 2007, 255, 200), Galindo and Blas (J. Phys. Chem. B 2002, 106, 4503), Patel et al. (Ind. Eng. Chem. Res. 2003, 42, 3809), and Clark et al. (Mol. Phys. 2006, 104, 3561) for tetrahydrofuran, carbon dioxide, methane, and water, respectively. The phase diagrams of the binary mixtures exhibit different types of phase behavior according to the classification of van Konynenburg and Scott, ranging from types I, III, and VI phase behavior for the tetrahydrofuran(1) + carbon dioxide(2), + methane(2), and + water(2) binary mixtures, respectively. This last type is characterized by the presence of a Bancroft point, positive azeotropy, and the so-called closed-loop curves that represent regions of liquid-liquid immiscibility in the phase diagram. The system exhibits lower critical solution temperatures (LCSTs), which denote the lower limit of immiscibility together with upper critical solution temperatures (UCSTs). This behavior is explained in terms of competition between the incompatibility
Laser fabrication of 2D and 3D metal nanoparticle structures and arrays.
Kuznetsov, A I; Kiyan, R; Chichkov, B N
2010-09-27
A novel method for fabrication of 2D and 3D metal nanoparticle structures and arrays is proposed. This technique is based on laser-induced transfer of molten metal nanodroplets from thin metal films. Metal nanoparticles are produced by solidification of these nanodroplets. The size of the transferred nanoparticles can be controllably changed in the range from 180 nm to 1500 nm. Several examples of complex 2D and 3D microstructures generated form gold nanoparticles are demonstrated. PMID:20941016
Probing dipole-dipole interaction in a rubidium gas via double-quantum 2D spectroscopy.
Gao, Feng; Cundiff, Steven T; Li, Hebin
2016-07-01
We have implemented double-quantum 2D spectroscopy on a rubidium vapor and shown that this technique provides sensitive and background-free detection of the dipole-dipole interaction. The 2D spectra include signals from both individual atoms and interatomic interactions, allowing quantitative studies of the interaction. A theoretical model based on the optical Bloch equations is used to reproduce the experimental spectrum and confirm the origin of double-quantum signals. PMID:27367074
2D to 3D conversion implemented in different hardware
NASA Astrophysics Data System (ADS)
Ramos-Diaz, Eduardo; Gonzalez-Huitron, Victor; Ponomaryov, Volodymyr I.; Hernandez-Fragoso, Araceli
2015-02-01
Conversion of available 2D data for release in 3D content is a hot topic for providers and for success of the 3D applications, in general. It naturally completely relies on virtual view synthesis of a second view given by original 2D video. Disparity map (DM) estimation is a central task in 3D generation but still follows a very difficult problem for rendering novel images precisely. There exist different approaches in DM reconstruction, among them manually and semiautomatic methods that can produce high quality DMs but they demonstrate hard time consuming and are computationally expensive. In this paper, several hardware implementations of designed frameworks for an automatic 3D color video generation based on 2D real video sequence are proposed. The novel framework includes simultaneous processing of stereo pairs using the following blocks: CIE L*a*b* color space conversions, stereo matching via pyramidal scheme, color segmentation by k-means on an a*b* color plane, and adaptive post-filtering, DM estimation using stereo matching between left and right images (or neighboring frames in a video), adaptive post-filtering, and finally, the anaglyph 3D scene generation. Novel technique has been implemented on DSP TMS320DM648, Matlab's Simulink module over a PC with Windows 7, and using graphic card (NVIDIA Quadro K2000) demonstrating that the proposed approach can be applied in real-time processing mode. The time values needed, mean Similarity Structural Index Measure (SSIM) and Bad Matching Pixels (B) values for different hardware implementations (GPU, Single CPU, and DSP) are exposed in this paper.
Progress in 2D photonic crystal Fano resonance photonics
NASA Astrophysics Data System (ADS)
Zhou, Weidong; Zhao, Deyin; Shuai, Yi-Chen; Yang, Hongjun; Chuwongin, Santhad; Chadha, Arvinder; Seo, Jung-Hun; Wang, Ken X.; Liu, Victor; Ma, Zhenqiang; Fan, Shanhui
2014-01-01
In contrast to a conventional symmetric Lorentzian resonance, Fano resonance is predominantly used to describe asymmetric-shaped resonances, which arise from the constructive and destructive interference of discrete resonance states with broadband continuum states. This phenomenon and the underlying mechanisms, being common and ubiquitous in many realms of physical sciences, can be found in a wide variety of nanophotonic structures and quantum systems, such as quantum dots, photonic crystals, plasmonics, and metamaterials. The asymmetric and steep dispersion of the Fano resonance profile promises applications for a wide range of photonic devices, such as optical filters, switches, sensors, broadband reflectors, lasers, detectors, slow-light and non-linear devices, etc. With advances in nanotechnology, impressive progress has been made in the emerging field of nanophotonic structures. One of the most attractive nanophotonic structures for integrated photonics is the two-dimensional photonic crystal slab (2D PCS), which can be integrated into a wide range of photonic devices. The objective of this manuscript is to provide an in depth review of the progress made in the general area of Fano resonance photonics, focusing on the photonic devices based on 2D PCS structures. General discussions are provided on the origins and characteristics of Fano resonances in 2D PCSs. A nanomembrane transfer printing fabrication technique is also reviewed, which is critical for the heterogeneous integrated Fano resonance photonics. The majority of the remaining sections review progress made on various photonic devices and structures, such as high quality factor filters, membrane reflectors, membrane lasers, detectors and sensors, as well as structures and phenomena related to Fano resonance slow light effect, nonlinearity, and optical forces in coupled PCSs. It is expected that further advances in the field will lead to more significant advances towards 3D integrated photonics, flat
A new inversion method for (T2, D) 2D NMR logging and fluid typing
NASA Astrophysics Data System (ADS)
Tan, Maojin; Zou, Youlong; Zhou, Cancan
2013-02-01
One-dimensional nuclear magnetic resonance (1D NMR) logging technology has some significant limitations in fluid typing. However, not only can two-dimensional nuclear magnetic resonance (2D NMR) provide some accurate porosity parameters, but it can also identify fluids more accurately than 1D NMR. In this paper, based on the relaxation mechanism of (T2, D) 2D NMR in a gradient magnetic field, a hybrid inversion method that combines least-squares-based QR decomposition (LSQR) and truncated singular value decomposition (TSVD) is examined in the 2D NMR inversion of various fluid models. The forward modeling and inversion tests are performed in detail with different acquisition parameters, such as magnetic field gradients (G) and echo spacing (TE) groups. The simulated results are discussed and described in detail, the influence of the above-mentioned observation parameters on the inversion accuracy is investigated and analyzed, and the observation parameters in multi-TE activation are optimized. Furthermore, the hybrid inversion can be applied to quantitatively determine the fluid saturation. To study the effects of noise level on the hybrid method and inversion results, the numerical simulation experiments are performed using different signal-to-noise-ratios (SNRs), and the effect of different SNRs on fluid typing using three fluid models are discussed and analyzed in detail.
On Animating 2D Velocity Fields
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex; Yan, Jerry (Technical Monitor)
2001-01-01
A velocity field, even one that represents a steady state flow, implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives. These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunctions with several examples.
On Animating 2D Velocity Fields
NASA Technical Reports Server (NTRS)
Kao, David; Pang, Alex
2000-01-01
A velocity field. even one that represents a steady state flow implies a dynamical system. Animated velocity fields is an important tool in understanding such complex phenomena. This paper looks at a number of techniques that animate velocity fields and propose two new alternatives, These are texture advection and streamline cycling. The common theme among these techniques is the use of advection on some texture to generate a realistic animation of the velocity field. Texture synthesis and selection for these methods are presented. Strengths and weaknesses of the techniques are also discussed in conjunction with several examples.
Graphene as a platform to study 2D electronic transitions
NASA Astrophysics Data System (ADS)
Bouchiat, Vincent; Kessler, Brian; Girit, Caglar; Zettl, Alex
2010-03-01
The easily accessible 2D electron gas in graphene provides an ideal platform on which to tune, via application of an electrostatic gate, the coupling between electronically ordered dopants deposited on its surface. To demonstrate this concept, we have measured arrays of superconducting clusters deposited on Graphene capable to induce via the proximity effect a gate-tunable superconducting transition. Using a simple fabrication procedure based on metal layer dewetting, doped graphene sheets can be decorated with a non percolating network on nanoscale tin clusters. This hybrid material displays a two-step superconducting transition. The higher transition step is gate independent and corresponds to the transition of the tin clusters to the superconducting state. The lower transition step towards a real zero resistance state exhibiting a well developped supercurrent, is strongly gate-tunable and is quantitatively described by Berezinskii-Kosterlitz-Thouless 2D vortex unbinding. Our simple self-assembly method and tunable coupling can readily be extended to other electronic order parameters such as ferro/antiferromagnetism, charge/spin density waves using similar decoration techniques. [1] B. M. Kessler, C.O. Girit, A. Zettl, and V. Bouchiat, Tunable Superconducting Phase Transition in Metal-Decorated Graphene Sheets submitted to PRL, arXiv:0907.3661
NASA Astrophysics Data System (ADS)
Cheng, Chingyun; Kangara, Jayampathi; Arakelyan, Ilya; Thomas, John
2016-05-01
We tune the dimensionality of a strongly interacting degenerate 6 Li Fermi gas from 2D to quasi-2D, by adjusting the radial confinement of pancake-shaped clouds to control the radial chemical potential. In the 2D regime with weak radial confinement, the measured pair binding energies are in agreement with 2D-BCS mean field theory, which predicts dimer pairing energies in the many-body regime. In the qausi-2D regime obtained with increased radial confinement, the measured pairing energy deviates significantly from 2D-BCS theory. In contrast to the pairing energy, the measured radii of the cloud profiles are not fit by 2D-BCS theory in either the 2D or quasi-2D regimes, but are fit in both regimes by a beyond mean field polaron-model of the free energy. Supported by DOE, ARO, NSF, and AFOSR.
Competing coexisting phases in 2D water
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2D Radiative Processes Near Cloud Edges
NASA Technical Reports Server (NTRS)
Varnai, T.
2012-01-01
Because of the importance and complexity of dynamical, microphysical, and radiative processes taking place near cloud edges, the transition zone between clouds and cloud free air has been the subject of intense research both in the ASR program and in the wider community. One challenge in this research is that the one-dimensional (1D) radiative models widely used in both remote sensing and dynamical simulations become less accurate near cloud edges: The large horizontal gradients in particle concentrations imply that accurate radiative calculations need to consider multi-dimensional radiative interactions among areas that have widely different optical properties. This study examines the way the importance of multidimensional shortwave radiative interactions changes as we approach cloud edges. For this, the study relies on radiative simulations performed for a multiyear dataset of clouds observed over the NSA, SGP, and TWP sites. This dataset is based on Microbase cloud profiles as well as wind measurements and ARM cloud classification products. The study analyzes the way the difference between 1D and 2D simulation results increases near cloud edges. It considers both monochromatic radiances and broadband radiative heating, and it also examines the influence of factors such as cloud type and height, and solar elevation. The results provide insights into the workings of radiative processes and may help better interpret radiance measurements and better estimate the radiative impacts of this critical region.
Simulation of Yeast Cooperation in 2D.
Wang, M; Huang, Y; Wu, Z
2016-03-01
Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702
Phase Engineering of 2D Tin Sulfides.
Mutlu, Zafer; Wu, Ryan J; Wickramaratne, Darshana; Shahrezaei, Sina; Liu, Chueh; Temiz, Selcuk; Patalano, Andrew; Ozkan, Mihrimah; Lake, Roger K; Mkhoyan, K A; Ozkan, Cengiz S
2016-06-01
Tin sulfides can exist in a variety of phases and polytypes due to the different oxidation states of Sn. A subset of these phases and polytypes take the form of layered 2D structures that give rise to a wide host of electronic and optical properties. Hence, achieving control over the phase, polytype, and thickness of tin sulfides is necessary to utilize this wide range of properties exhibited by the compound. This study reports on phase-selective growth of both hexagonal tin (IV) sulfide SnS2 and orthorhombic tin (II) sulfide SnS crystals with diameters of over tens of microns on SiO2 substrates through atmospheric pressure vapor-phase method in a conventional horizontal quartz tube furnace with SnO2 and S powders as the source materials. Detailed characterization of each phase of tin sulfide crystals is performed using various microscopy and spectroscopy methods, and the results are corroborated by ab initio density functional theory calculations. PMID:27099950
Parallel map analysis on 2-D grids
Berry, M.; Comiskey, J.; Minser, K.
1993-12-31
In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.
2D Turbulence with Complicated Boundaries
NASA Astrophysics Data System (ADS)
Roullet, G.; McWilliams, J. C.
2014-12-01
We examine the consequences of lateral viscous boundary layers on the 2D turbulence that arises in domains with complicated boundaries (headlands, bays etc). The study is carried out numerically with LES. The numerics are carefully designed to ensure all global conservation laws, proper boundary conditions and a minimal range of dissipation scales. The turbulence dramatically differs from the classical bi-periodic case. Boundary layer separations lead to creation of many small vortices and act as a continuing energy source exciting the inverse cascade of energy throughout the domain. The detachments are very intermittent in time. In free decay, the final state depends on the effective numerical resolution: laminar with a single dominant vortex for low Re and turbulent with many vortices for large enough Re. After very long time, the turbulent end-state exhibits a striking tendency for the emergence of shielded vortices which then interact almost elastically. In the forced case, the boundary layers allow the turbulence to reach a statistical steady state without any artificial hypo-viscosity or other large-scale dissipation. Implications are discussed for the oceanic mesoscale and submesoscale turbulence.
Competing coexisting phases in 2D water
NASA Astrophysics Data System (ADS)
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-05-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules.
Competing coexisting phases in 2D water.
Zanotti, Jean-Marc; Judeinstein, Patrick; Dalla-Bernardina, Simona; Creff, Gaëlle; Brubach, Jean-Blaise; Roy, Pascale; Bonetti, Marco; Ollivier, Jacques; Sakellariou, Dimitrios; Bellissent-Funel, Marie-Claire
2016-01-01
The properties of bulk water come from a delicate balance of interactions on length scales encompassing several orders of magnitudes: i) the Hydrogen Bond (HBond) at the molecular scale and ii) the extension of this HBond network up to the macroscopic level. Here, we address the physics of water when the three dimensional extension of the HBond network is frustrated, so that the water molecules are forced to organize in only two dimensions. We account for the large scale fluctuating HBond network by an analytical mean-field percolation model. This approach provides a coherent interpretation of the different events experimentally (calorimetry, neutron, NMR, near and far infra-red spectroscopies) detected in interfacial water at 160, 220 and 250 K. Starting from an amorphous state of water at low temperature, these transitions are respectively interpreted as the onset of creation of transient low density patches of 4-HBonded molecules at 160 K, the percolation of these domains at 220 K and finally the total invasion of the surface by them at 250 K. The source of this surprising behaviour in 2D is the frustration of the natural bulk tetrahedral local geometry and the underlying very significant increase in entropy of the interfacial water molecules. PMID:27185018
2-D wavelet with position controlled resolution
NASA Astrophysics Data System (ADS)
Walczak, Andrzej; Puzio, Leszek
2005-09-01
Wavelet transformation localizes all irregularities in the scene. It is most effective in the case when intensities in the scene have no sharp details. It is the case often present in a medical imaging. To identify the shape one has to extract it from the scene as typical irregularity. When the scene does not contain sharp changes then common differential filters are not efficient tool for a shape extraction. The new 2-D wavelet for such task has been proposed. Described wavelet transform is axially symmetric and has varied scale in dependence on the distance from the centre of the wavelet symmetry. The analytical form of the wavelet has been presented as well as its application for details extraction in the scene. Most important feature of the wavelet transform is that it gives a multi-scale transformation, and if zoom is on the wavelet selectivity varies proportionally to the zoom step. As a result, the extracted shape does not change during zoom operation. What is more the wavelet selectivity can be fit to the local intensity gradient properly to obtain best extraction of the irregularities.
2D Seismic Reflection Data across Central Illinois
Smith, Valerie; Leetaru, Hannes
2014-09-30
In a continuing collaboration with the Midwest Geologic Sequestration Consortium (MGSC) on the Evaluation of the Carbon Sequestration Potential of the Cambro-Ordovician Strata of the Illinois and Michigan Basins project, Schlumberger Carbon Services and WesternGeco acquired two-dimensional (2D) seismic data in the Illinois Basin. This work included the design, acquisition and processing of approximately 125 miles of (2D) seismic reflection surveys running west to east in the central Illinois Basin. Schlumberger Carbon Services and WesternGeco oversaw the management of the field operations (including a pre-shoot planning, mobilization, acquisition and de-mobilization of the field personnel and equipment), procurement of the necessary permits to conduct the survey, post-shoot closure, processing of the raw data, and provided expert consultation as needed in the interpretation of the delivered product. Three 2D seismic lines were acquired across central Illinois during November and December 2010 and January 2011. Traversing the Illinois Basin, this 2D seismic survey was designed to image the stratigraphy of the Cambro-Ordovician sections and also to discern the basement topography. Prior to this survey, there were no regionally extensive 2D seismic data spanning this section of the Illinois Basin. Between the NW side of Morgan County and northwestern border of Douglas County, these seismic lines ran through very rural portions of the state. Starting in Morgan County, Line 101 was the longest at 93 miles in length and ended NE of Decatur, Illinois. Line 501 ran W-E from the Illinois Basin – Decatur Project (IBDP) site to northwestern Douglas County and was 25 miles in length. Line 601 was the shortest and ran N-S past the IBDP site and connected lines 101 and 501. All three lines are correlated to well logs at the IBDP site. Originally processed in 2011, the 2D seismic profiles exhibited a degradation of signal quality below ~400 millisecond (ms) which made
2-D Animation's Not Just for Mickey Mouse.
ERIC Educational Resources Information Center
Weinman, Lynda
1995-01-01
Discusses characteristics of two-dimensional (2-D) animation; highlights include character animation, painting issues, and motion graphics. Sidebars present Silicon Graphics animations tools and 2-D animation programs for the desktop computer. (DGM)
MAZE96. Generates 2D Input for DYNA NIKE & TOPAZ
Sanford, L.; Hallquist, J.O.
1992-02-24
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
On 2D graphical representation of DNA sequence of nondegeneracy
NASA Astrophysics Data System (ADS)
Zhang, Yusen; Liao, Bo; Ding, Kequan
2005-08-01
Some two-dimensional (2D) graphical representations of DNA sequences have been given by Gates, Nandy, Leong and Mogenthaler, Randić, and Liao et al., which give visual characterizations of DNA sequences. In this Letter, we introduce a nondegeneracy 2D graphical representation of DNA sequence, which is different from Randić's novel 2D representation and Liao's 2D representation. We also present the nondegeneracy forms corresponding to the representations of Gates, Nandy, Leong and Mogenthaler.
Generates 2D Input for DYNA NIKE & TOPAZ
Energy Science and Technology Software Center (ESTSC)
1996-07-15
MAZE is an interactive program that serves as an input and two-dimensional mesh generator for DYNA2D, NIKE2D, TOPAZ2D, and CHEMICAL TOPAZ2D. MAZE also generates a basic template for ISLAND input. MAZE has been applied to the generation of input data to study the response of two-dimensional solids and structures undergoing finite deformations under a wide variety of large deformation transient dynamic and static problems and heat transfer analyses.
Ultrasonic 2D matrix PVDF transducer
NASA Astrophysics Data System (ADS)
Ptchelintsev, A.; Maev, R. Gr.
2000-05-01
During the past decade a substantial amount of work has been done in the area of ultrasonic imaging technology using 2D arrays. The main problems arising for the two-dimensional matrix transducers at megahertz frequencies are small size and huge count of the elements, high electrical impedance, low sensitivity, bad SNR and slower data acquisition rate. The major technological difficulty remains the high density of the interconnect. To solve these problems numerous approaches have been suggested. In the present work, a 24×24 elements (24 transmit+24 receive) matrix and a switching board were developed. The transducer consists of two 52 μm PVDF layers each representing a linear array of 24 elements placed one on the top of the other. Electrodes in these two layers are perpendicular and form the grid of 0.5×0.5 mm pitch. The layers are bonded together with the ground electrode being monolithic and located between the layers. The matrix is backed from the rear surface with an epoxy composition. During the emission, a linear element from the emitting layer generates a longitudinal wave pulse propagating inside the test object. Reflected pulses are picked-up by the receiving layer. During one transmit-receive cycle one transmit element and one receive element are selected by corresponding multiplexers. These crossed elements emulate a small element formed by their intersection. The present design presents the following advantages: minimizes number of active channels and density of the interconnect; reduces the electrical impedance of the element improving electrical matching; enables the transmit-receive mode; due to the efficient backing provides bandwidth and good time resolution; and, significantly reduces the electronics complexity. The matrix can not be used for the beam steering and focusing. Owing to this impossibility of focusing, the penetration depth is limited as well by the diffraction phenomena.
Experimental validation of 2D profile photoresist shrinkage model
NASA Astrophysics Data System (ADS)
Bunday, Benjamin; Cordes, Aaron; Self, Andy; Ferry, Lorena; Danilevsky, Alex
2011-03-01
For many years, lithographic resolution has been the main obstacle in allowing the pace of transistor densification to meet Moore's Law. For the 32 nm node and beyond, new lithography techniques will be used, including immersion ArF (iArF) lithography and extreme ultraviolet lithography (EUVL). As in the past, these techniques will use new types of photoresists with the capability to print smaller feature widths and pitches. These smaller feature sizes will also require the use of thinner layers of photoresists, such as under 100 nm. In previous papers, we focused on ArF and iArF photoresist shrinkage. We evaluated the magnitude of shrinkage for both R&D and mature resists as a function of chemical formulation, lithographic sensitivity, scanning electron microscope (SEM) beam condition, and feature size. Shrinkage results were determined by the well accepted methodology described in SEMATECH's CD-SEM Unified Specification. In other associated works, we first developed a 1-D model for resist shrinkage for the bottom linewidth and then a 2-D profile model that accounted for shrinkage of all aspects of a trapezoidal profile along a given linescan. A fundamental understanding of the phenomenology of the shrinkage trends was achieved, including how the shrinkage behaves differently for different sized and shaped features. In the 1-D case, calibration of the parameters to describe the photoresist material and the electron beam was all that was required to fit the models to real shrinkage data, as long as the photoresist was thick enough that the beam could not penetrate the entire layer of resist. The later 2-D model included improvements for solving the CD shrinkage in thin photoresists, which is now of great interest for upcoming realistic lithographic processing to explore the change in resist profile with electron dose and to predict the influence of initial resist profile on shrinkage characteristics. The 2-D model also included shrinkage due to both the primary
A Planar Quantum Transistor Based on 2D-2D Tunneling in Double Quantum Well Heterostructures
Baca, W.E.; Blount, M.A.; Hafich, M.J.; Lyo, S.K.; Moon, J.S.; Reno, J.L.; Simmons, J.A.; Wendt, J.R.
1998-12-14
We report on our work on the double electron layer tunneling transistor (DELTT), based on the gate-control of two-dimensional -- two-dimensional (2D-2D) tunneling in a double quantum well heterostructure. While previous quantum transistors have typically required tiny laterally-defined features, by contrast the DELTT is entirely planar and can be reliably fabricated in large numbers. We use a novel epoxy-bond-and-stop-etch (EBASE) flip-chip process, whereby submicron gating on opposite sides of semiconductor epitaxial layers as thin as 0.24 microns can be achieved. Because both electron layers in the DELTT are 2D, the resonant tunneling features are unusually sharp, and can be easily modulated with one or more surface gates. We demonstrate DELTTs with peak-to-valley ratios in the source-drain I-V curve of order 20:1 below 1 K. Both the height and position of the resonant current peak can be controlled by gate voltage over a wide range. DELTTs with larger subband energy offsets ({approximately} 21 meV) exhibit characteristics that are nearly as good at 77 K, in good agreement with our theoretical calculations. Using these devices, we also demonstrate bistable memories operating at 77 K. Finally, we briefly discuss the prospects for room temperature operation, increases in gain, and high-speed.
NASA Astrophysics Data System (ADS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-07-01
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ˜2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ˜1% from simulation data while the theory reproduces the excess
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-07-14
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory
NASA Astrophysics Data System (ADS)
Lobanova, Olga; Avendaño, Carlos; Lafitte, Thomas; Müller, Erich A.; Jackson, George
2015-05-01
In this work, we develop coarse-grained (CG) force fields for water, where the effective CG intermolecular interactions between particles are estimated from an accurate description of the macroscopic experimental vapour-liquid equilibria data by means of a molecular-based equation of state. The statistical associating fluid theory for Mie (generalised Lennard-Jones) potentials of variable range (SAFT-VR Mie) is used to parameterise spherically symmetrical (isotropic) force fields for water. The resulting SAFT-γ CG models are based on the Mie (8-6) form with size and energy parameters that are temperature dependent; the latter dependence is a consequence of the angle averaging of the directional polar interactions present in water. At the simplest level of CG where a water molecule is represented as a single bead, it is well known that an isotropic potential cannot be used to accurately reproduce all of the thermodynamic properties of water simultaneously. In order to address this deficiency, we propose two CG potential models of water based on a faithful description of different target properties over a wide range of temperatures: our CGW1-vle model is parameterised to match the saturated-liquid density and vapour pressure; our other CGW1-ift model is parameterised to match the saturated-liquid density and vapour-liquid interfacial tension. A higher level of CG corresponding to two water molecules per CG bead is also considered: the corresponding CGW2-bio model is developed to reproduce the saturated-liquid density and vapour-liquid interfacial tension in the physiological temperature range, and is particularly suitable for the large-scale simulation of bio-molecular systems. A critical comparison of the phase equilibrium and transport properties of the proposed force fields is made with the more traditional atomistic models.
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-09-07
In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks–Chandler–Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.
NASA Astrophysics Data System (ADS)
Ghobadi, Ahmadreza F.; Elliott, J. Richard
2014-09-01
In Paper I [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 139(23), 234104 (2013)], we showed that how a third-order Weeks-Chandler-Anderson (WCA) Thermodynamic Perturbation Theory and molecular simulation can be integrated to characterize the repulsive and dispersive contributions to the Helmholtz free energy for realistic molecular conformations. To this end, we focused on n-alkanes to develop a theory for fused and soft chains. In Paper II [A. F. Ghobadi and J. R. Elliott, J. Chem. Phys. 141(2), 024708 (2014)], we adapted the classical Density Functional Theory and studied the microstructure of the realistic molecular fluids in confined geometries and vapor-liquid interfaces. We demonstrated that a detailed consistency between molecular simulation and theory can be achieved for both bulk and inhomogeneous phases. In this paper, we extend the methodology to molecules with partial charges such as carbon dioxide, water, 1-alkanols, nitriles, and ethers. We show that the electrostatic interactions can be captured via an effective association potential in the framework of Statistical Associating Fluid Theory (SAFT). Implementation of the resulting association contribution in assessing the properties of these molecules at confined geometries and interfaces presents satisfactory agreement with molecular simulation and experimental data. For example, the predicted surface tension deviates less than 4% comparing to full potential simulations. Also, the theory, referred to as SAFT-γ WCA, is able to reproduce the specific orientation of hydrophilic head and hydrophobic tail of 1-alkanols at the vapor-liquid interface of water.
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2
NASA Astrophysics Data System (ADS)
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin
2016-02-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics.
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M.; Tongay, Sefaattin
2016-01-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617
Unusual dimensionality effects and surface charge density in 2D Mg(OH)2.
Suslu, Aslihan; Wu, Kedi; Sahin, Hasan; Chen, Bin; Yang, Sijie; Cai, Hui; Aoki, Toshihiro; Horzum, Seyda; Kang, Jun; Peeters, Francois M; Tongay, Sefaattin
2016-01-01
We present two-dimensional Mg(OH)2 sheets and their vertical heterojunctions with CVD-MoS2 for the first time as flexible 2D insulators with anomalous lattice vibration and chemical and physical properties. New hydrothermal crystal growth technique enabled isolation of environmentally stable monolayer Mg(OH)2 sheets. Raman spectroscopy and vibrational calculations reveal that the lattice vibrations of Mg(OH)2 have fundamentally different signature peaks and dimensionality effects compared to other 2D material systems known to date. Sub-wavelength electron energy-loss spectroscopy measurements and theoretical calculations show that Mg(OH)2 is a 6 eV direct-gap insulator in 2D, and its optical band gap displays strong band renormalization effects from monolayer to bulk, marking the first experimental confirmation of confinement effects in 2D insulators. Interestingly, 2D-Mg(OH)2 sheets possess rather strong surface polarization (charge) effects which is in contrast to electrically neutral h-BN materials. Using 2D-Mg(OH)2 sheets together with CVD-MoS2 in the vertical stacking shows that a strong change transfer occurs from n-doped CVD-MoS2 sheets to Mg(OH)2, naturally depleting the semiconductor, pushing towards intrinsic doping limit and enhancing overall optical performance of 2D semiconductors. Results not only establish unusual confinement effects in 2D-Mg(OH)2, but also offer novel 2D-insulating material with unique physical, vibrational, and chemical properties for potential applications in flexible optoelectronics. PMID:26846617
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6*15 and *35 Genotyping
Riffel, Amanda K.; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C.; Leeder, J. Steven; Rosenblatt, Kevin P.; Gaedigk, Andrea
2016-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6*15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6*15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6*35) which is also located in exon 1. Although alternative CYP2D6*15 and *35 assays resolved the issue, we discovered a novel CYP2D6*15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6*15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6*43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer and/or probe regions can impact
CYP2D7 Sequence Variation Interferes with TaqMan CYP2D6 (*) 15 and (*) 35 Genotyping.
Riffel, Amanda K; Dehghani, Mehdi; Hartshorne, Toinette; Floyd, Kristen C; Leeder, J Steven; Rosenblatt, Kevin P; Gaedigk, Andrea
2015-01-01
TaqMan™ genotyping assays are widely used to genotype CYP2D6, which encodes a major drug metabolizing enzyme. Assay design for CYP2D6 can be challenging owing to the presence of two pseudogenes, CYP2D7 and CYP2D8, structural and copy number variation and numerous single nucleotide polymorphisms (SNPs) some of which reflect the wild-type sequence of the CYP2D7 pseudogene. The aim of this study was to identify the mechanism causing false-positive CYP2D6 (*) 15 calls and remediate those by redesigning and validating alternative TaqMan genotype assays. Among 13,866 DNA samples genotyped by the CompanionDx® lab on the OpenArray platform, 70 samples were identified as heterozygotes for 137Tins, the key SNP of CYP2D6 (*) 15. However, only 15 samples were confirmed when tested with the Luminex xTAG CYP2D6 Kit and sequencing of CYP2D6-specific long range (XL)-PCR products. Genotype and gene resequencing of CYP2D6 and CYP2D7-specific XL-PCR products revealed a CC>GT dinucleotide SNP in exon 1 of CYP2D7 that reverts the sequence to CYP2D6 and allows a TaqMan assay PCR primer to bind. Because CYP2D7 also carries a Tins, a false-positive mutation signal is generated. This CYP2D7 SNP was also responsible for generating false-positive signals for rs769258 (CYP2D6 (*) 35) which is also located in exon 1. Although alternative CYP2D6 (*) 15 and (*) 35 assays resolved the issue, we discovered a novel CYP2D6 (*) 15 subvariant in one sample that carries additional SNPs preventing detection with the alternate assay. The frequency of CYP2D6 (*) 15 was 0.1% in this ethnically diverse U.S. population sample. In addition, we also discovered linkage between the CYP2D7 CC>GT dinucleotide SNP and the 77G>A (rs28371696) SNP of CYP2D6 (*) 43. The frequency of this tentatively functional allele was 0.2%. Taken together, these findings emphasize that regardless of how careful genotyping assays are designed and evaluated before being commercially marketed, rare or unknown SNPs underneath primer
2D magnetic nanoparticle imaging using magnetization response second harmonic
NASA Astrophysics Data System (ADS)
Tanaka, Saburo; Murata, Hayaki; Oishi, Tomoya; Suzuki, Toshifumi; Zhang, Yi
2015-06-01
A detection method and an imaging technique for magnetic nanoparticles (MNPs) have been investigated. In MNP detection and in magnetic particle imaging (MPI), the most commonly employed method is the detection of the odd harmonics of the magnetization response. We examined the advantage of using the second harmonic response when applying an AC magnetic modulation field and a DC bias field. If the magnetization response is detected by a Cu-wound-coil detection system, the output voltage from the coil is proportional to the change in the flux, dϕ/dt. Thus, the dependence of the derivative of the magnetization, M, on an AC magnetic modulation field and a DC bias field were calculated and investigated. The calculations were in good agreement with the experimental results. We demonstrated that the use of the second harmonic response for the detection of MNPs has an advantage compared with the usage of the third harmonic response, when the Cu-wound-coil detection system is employed and the amplitude of the ratio of the AC modulation field and a knee field Hac/Hk is less than 2. We also constructed a 2D MPI scanner using a pair of permanent ring magnets with a bore of ϕ80 mm separated by 90 mm. The magnets generated a gradient of Gz=3.17 T/m transverse to the imaging bore and Gx=1.33 T/m along the longitudinal axis. An original concentrated 10 μl Resovist solution in a ϕ2×3 mm2 vessel was used as a sample, and it was imaged by the scanner. As a result, a 2D contour map image could be successfully generated using the method with a lock-in amplifier.
2D kinematic signatures of boxy/peanut bulges
NASA Astrophysics Data System (ADS)
Iannuzzi, Francesca; Athanassoula, E.
2015-07-01
We study the imprints of boxy/peanut structures on the 2D line-of-sight kinematics of simulated disc galaxies. The models under study belong to a family with varying initial gas fraction and halo triaxiality, plus few other control runs with different structural parameters; the kinematic information was extracted using the Voronoi-binning technique and parametrized up to the fourth order of a Gauss-Hermite series. Building on a previous work for the long-slit case, we investigate the 2D kinematic behaviour in the edge-on projection as a function of the boxy/peanut strength and position angle; we find that for the strongest structures the highest moments show characteristic features away from the mid-plane in a range of position angles. We also discuss the masking effect of a classical bulge and the ambiguity in discriminating kinematically this spherically symmetric component from a boxy/peanut bulge seen end-on. Regarding the face-on case, we extend existing results to encompass the effect of a second buckling and find that this phenomenon spurs an additional set of even deeper minima in the fourth moment. Finally, we show how the results evolve when inclining the disc away from perfectly edge-on and face-on. The behaviour of stars born during the course of the simulations is discussed and confronted to that of the pre-existing disc. The general aim of our study is providing a handle to identify boxy/peanut structures and their properties in latest generation Integral Field Unit observations of nearby disc galaxies.
Geometrical Correlation and Matching of 2d Image Shapes
NASA Astrophysics Data System (ADS)
Vizilter, Y. V.; Zheltov, S. Y.
2012-07-01
The problem of image correspondence measure selection for image comparison and matching is addressed. Many practical applications require image matching "just by shape" with no dependence on the concrete intensity or color values. Most popular technique for image shape comparison utilizes the mutual information measure based on probabilistic reasoning and information theory background. Another approach was proposed by Pytiev (so called "Pytiev morphology") based on geometrical and algebraic reasoning. In this framework images are considered as piecewise-constant 2D functions, tessellation of image frame by the set of non-intersected connected regions determines the "shape" of image and the projection of image onto the shape of other image is determined. Morphological image comparison is performed using the normalized morphological correlation coefficients. These coefficients estimate the closeness of one image to the shape of other image. Such image analysis technique can be characterized as an ""ntensity-to-geometry" matching. This paper generalizes the Pytiev morphological approach for obtaining the pure "geometry-to-geometry" matching techniques. The generalized intensity-geometrical correlation coefficient is proposed including the linear correlation coefficient and the square of Pytiev correlation coefficient as its partial cases. The morphological shape correlation coefficient is proposed based on the statistical averaging of images with the same shape. Centered morphological correlation coefficient is obtained under the condition of intensity centering of averaged images. Two types of symmetric geometrical normalized correlation coefficients are proposed for comparison of shape-tessellations. The technique for correlation and matching of shapes with ordered intensities is proposed with correlation measures invariant to monotonous intensity transformations. The quality of proposed geometrical correlation measures is experimentally estimated in the task of
Differential CYP 2D6 Metabolism Alters Primaquine Pharmacokinetics
Potter, Brittney M. J.; Xie, Lisa H.; Vuong, Chau; Zhang, Jing; Zhang, Ping; Duan, Dehui; Luong, Thu-Lan T.; Bandara Herath, H. M. T.; Dhammika Nanayakkara, N. P.; Tekwani, Babu L.; Walker, Larry A.; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.
2015-01-01
Primaquine (PQ) metabolism by the cytochrome P450 (CYP) 2D family of enzymes is required for antimalarial activity in both humans (2D6) and mice (2D). Human CYP 2D6 is highly polymorphic, and decreased CYP 2D6 enzyme activity has been linked to decreased PQ antimalarial activity. Despite the importance of CYP 2D metabolism in PQ efficacy, the exact role that these enzymes play in PQ metabolism and pharmacokinetics has not been extensively studied in vivo. In this study, a series of PQ pharmacokinetic experiments were conducted in mice with differential CYP 2D metabolism characteristics, including wild-type (WT), CYP 2D knockout (KO), and humanized CYP 2D6 (KO/knock-in [KO/KI]) mice. Plasma and liver pharmacokinetic profiles from a single PQ dose (20 mg/kg of body weight) differed significantly among the strains for PQ and carboxy-PQ. Additionally, due to the suspected role of phenolic metabolites in PQ efficacy, these were probed using reference standards. Levels of phenolic metabolites were highest in mice capable of metabolizing CYP 2D6 substrates (WT and KO/KI 2D6 mice). PQ phenolic metabolites were present in different quantities in the two strains, illustrating species-specific differences in PQ metabolism between the human and mouse enzymes. Taking the data together, this report furthers understanding of PQ pharmacokinetics in the context of differential CYP 2D metabolism and has important implications for PQ administration in humans with different levels of CYP 2D6 enzyme activity. PMID:25645856
Photorealistic image synthesis and camera validation from 2D images
NASA Astrophysics Data System (ADS)
Santos Ferrer, Juan C.; González Chévere, David; Manian, Vidya
2014-06-01
This paper presents a new 3D scene reconstruction technique using the Unity 3D game engine. The method presented here allow us to reconstruct the shape of simple objects and more complex ones from multiple 2D images, including infrared and digital images from indoor scenes and only digital images from outdoor scenes and then add the reconstructed object to the simulated scene created in Unity 3D, these scenes are then validated with real world scenes. The method used different cameras settings and explores different properties in the reconstructions of the scenes including light, color, texture, shapes and different views. To achieve the highest possible resolution, it was necessary the extraction of partial textures from visible surfaces. To recover the 3D shapes and the depth of simple objects that can be represented by the geometric bodies, there geometric characteristics were used. To estimate the depth of more complex objects the triangulation method was used, for this the intrinsic and extrinsic parameters were calculated using geometric camera calibration. To implement the methods mentioned above the Matlab tool was used. The technique presented here also let's us to simulate small simple videos, by reconstructing a sequence of multiple scenes of the video separated by small margins of time. To measure the quality of the reconstructed images and video scenes the Fast Low Band Model (FLBM) metric from the Video Quality Measurement (VQM) software was used. Low bandwidth perception based features include edges and motion.
Image Appraisal for 2D and 3D Electromagnetic Inversion
Alumbaugh, D.L.; Newman, G.A.
1999-01-28
Linearized methods are presented for appraising image resolution and parameter accuracy in images generated with two and three dimensional non-linear electromagnetic inversion schemes. When direct matrix inversion is employed, the model resolution and posterior model covariance matrices can be directly calculated. A method to examine how the horizontal and vertical resolution varies spatially within the electromagnetic property image is developed by examining the columns of the model resolution matrix. Plotting the square root of the diagonal of the model covariance matrix yields an estimate of how errors in the inversion process such as data noise and incorrect a priori assumptions about the imaged model map into parameter error. This type of image is shown to be useful in analyzing spatial variations in the image sensitivity to the data. A method is analyzed for statistically estimating the model covariance matrix when the conjugate gradient method is employed rather than a direct inversion technique (for example in 3D inversion). A method for calculating individual columns of the model resolution matrix using the conjugate gradient method is also developed. Examples of the image analysis techniques are provided on 2D and 3D synthetic cross well EM data sets, as well as a field data set collected at the Lost Hills Oil Field in Central California.
2D XAFS-XEOL Spectroscopy - Some recent developments
NASA Astrophysics Data System (ADS)
Ward, M. J.; Smith, J. G.; Regier, T. Z.; Sham, T. K.
2013-03-01
The use of optical photons to measure the modulation of the absorption coefficient upon X-ray excitation, or optical XAFS, is of particular interest for application to the study of light emitting semiconducting nanomaterials due to the additional information that may be gained. The potential for site-selectivity, elemental and excitation energy specific luminescence decay channels, and surface vs. bulk effects all make the use of X-ray excited optical luminescence (XEOL) desirable as a detection method. Previous experiments have made use of a monochromator to select the optical emission wavelength used to monitor optical XAFS. This method of detection suffers from the primary limitation of only being able to monitor the optical response at one emission wavelength. By combining the high resolution soft X-ray Spherical Grating Monochromator beam-line at the Canadian Light Source with an Ocean Optics QE 65000 fast CCD spectrophotometer and custom integration software we have developed a technique for collecting 2D XAFS-XEOL spectra, in which the excitation energy is scanned and a XEOL spectra is collected for every energy value. Herein we report the development of this technique and its capabilities using the study of the luminescence emitted from single crystal zinc oxide as an example.
2D to 3D to 2D Dimensionality Crossovers in Thin BSCCO Films
NASA Astrophysics Data System (ADS)
Williams, Gary A.
2003-03-01
With increasing temperature the superfluid fraction in very thin BSCCO films undergoes a series of dimensionality crossovers. At low temperatures the strong anisotropy causes the thermal excitations to be 2D pancake-antipancake pairs in uncoupled layers. At higher temperatures where the c-axis correlation length becomes larger than a layer there is a crossover to 3D vortex loops. These are initially elliptical, but as the 3D Tc is approached they become more circular as the anisotropy scales away, as modeled by Shenoy and Chattopadhyay [1]. Close to Tc when the correlation length becomes comparable to the film thickness there is a further crossover to a 2D Kosterlitz-Thouless transition, with a drop of the superfluid fraction to zero at T_KT which can be of the order of 1 K below T_c. Good agreement with this model is found for experiments on thin BSCCO 2212 films [2]. 1. S. R. Shenoy and B. Chattopadhyay, Phys. Rev. B 51, 9129 (1995). 2. K. Osborn et al., cond-mat/0204417.
Mechanical characterization of 2D, 2D stitched, and 3D braided/RTM materials
NASA Technical Reports Server (NTRS)
Deaton, Jerry W.; Kullerd, Susan M.; Portanova, Marc A.
1993-01-01
Braided composite materials have potential for application in aircraft structures. Fuselage frames, floor beams, wing spars, and stiffeners are examples where braided composites could find application if cost effective processing and damage tolerance requirements are met. Another important consideration for braided composites relates to their mechanical properties and how they compare to the properties of composites produced by other textile composite processes being proposed for these applications. Unfortunately, mechanical property data for braided composites do not appear extensively in the literature. Data are presented in this paper on the mechanical characterization of 2D triaxial braid, 2D triaxial braid plus stitching, and 3D (through-the-thickness) braid composite materials. The braided preforms all had the same graphite tow size and the same nominal braid architectures, (+/- 30 deg/0 deg), and were resin transfer molded (RTM) using the same mold for each of two different resin systems. Static data are presented for notched and unnotched tension, notched and unnotched compression, and compression after impact strengths at room temperature. In addition, some static results, after environmental conditioning, are included. Baseline tension and compression fatigue results are also presented, but only for the 3D braided composite material with one of the resin systems.
Fast Computation of Wideband Beam Pattern for Designing Large-Scale 2-D Arrays.
Chi, Cheng; Li, Zhaohui
2016-06-01
For real-time and high-resolution 3-D ultrasound imaging, the design of sparse distribution and weights of elements of a large-scale wideband 2-D array is needed to reduce hardware cost and achieve better directivity. However, due to the high time consumption of computing the wideband beam pattern, the design methods that need massive iterations have rarely been applied to design large-scale wideband 2-D arrays by directly computing the wideband beam pattern. In this paper, a fast method is proposed to realize the computation of a wideband beam pattern of arbitrary 2-D arrays in the far field in order to design large-scale wideband 2-D arrays. The proposed fast method exploits two important techniques: 1) nonuniform fast Fourier transform (FFT) and 2) short inverse FFT. Compared with the commonly used ultrasound simulator Field II, two orders of magnitude improvement in computation speed is achieved with comparable accuracy. The proposed fast method enables massive iterations of direct wideband beam pattern computation of arbitrary large-scale 2-D arrays. A design example in this paper demonstrates that the proposed fast method can help achieve better performance in designing large-scale wideband 2-D arrays. PMID:27046870
NASA Technical Reports Server (NTRS)
Bourbakis, N.; Sarkar, D.
1994-01-01
A technique for generation of a 2-D space map by traveling a short distance is described. The space to be mapped can be classified as: (1) space without obstacles, (2) space with stationary obstacles, and (3) space with moving obstacles. This paper presents the methodology used to generate a 2-D map of an unknown navigation space. The ability to minimize the redundancy during traveling and maximize the confidence function for generation of the map are advantages of this technique.
Differential Cytochrome P450 2D Metabolism Alters Tafenoquine Pharmacokinetics
Vuong, Chau; Xie, Lisa H.; Potter, Brittney M. J.; Zhang, Jing; Zhang, Ping; Duan, Dehui; Nolan, Christina K.; Sciotti, Richard J.; Zottig, Victor E.; Nanayakkara, N. P. Dhammika; Tekwani, Babu L.; Walker, Larry A.; Smith, Philip L.; Paris, Robert M.; Read, Lisa T.; Li, Qigui; Pybus, Brandon S.; Sousa, Jason C.; Reichard, Gregory A.; Smith, Bryan
2015-01-01
Cytochrome P450 (CYP) 2D metabolism is required for the liver-stage antimalarial efficacy of the 8-aminoquinoline molecule tafenoquine in mice. This could be problematic for Plasmodium vivax radical cure, as the human CYP 2D ortholog (2D6) is highly polymorphic. Diminished CYP 2D6 enzyme activity, as in the poor-metabolizer phenotype, could compromise radical curative efficacy in humans. Despite the importance of CYP 2D metabolism for tafenoquine liver-stage efficacy, the exact role that CYP 2D metabolism plays in the metabolism and pharmacokinetics of tafenoquine and other 8-aminoquinoline molecules has not been extensively studied. In this study, a series of tafenoquine pharmacokinetic experiments were conducted in mice with different CYP 2D metabolism statuses, including wild-type (WT) (reflecting extensive metabolizers for CYP 2D6 substrates) and CYPmouse 2D knockout (KO) (reflecting poor metabolizers for CYP 2D6 substrates) mice. Plasma and liver pharmacokinetic profiles from a single 20-mg/kg of body weight dose of tafenoquine differed between the strains; however, the differences were less striking than previous results obtained for primaquine in the same model. Additionally, the presence of a 5,6-ortho-quinone tafenoquine metabolite was examined in both mouse strains. The 5,6-ortho-quinone species of tafenoquine was observed, and concentrations of the metabolite were highest in the WT extensive-metabolizer phenotype. Altogether, this study indicates that CYP 2D metabolism in mice affects tafenoquine pharmacokinetics and could have implications for human tafenoquine pharmacokinetics in polymorphic CYP 2D6 human populations. PMID:25870069
Complete analyticity for 2D Ising completed
NASA Astrophysics Data System (ADS)
Schonmann, Roberto H.; Shlosman, Senya B.
1995-06-01
We study the behavior of the two-dimensional nearest neighbor ferromagnetic Ising model under an external magnetic field h. We extend to every subcritical value of the temperature a result previously proven by Martirosyan at low enough temperature, and which roughly states that for finite systems with — boundary conditions under a positive external field, the boundary effect dominates in the bulk if the linear size of the system is of order B/h with B small enough, while if B is large enough, then the external field dominates in the bulk. As a consequence we are able to complete the proof that “complete analyticity for nice sets” holds for every value of the temperature and external field in the interior of the uniqueness region in the phase diagram of the model. The main tools used are the results and techniques developed to study large deviations for the block magnetization in the absence of the magnetic field, and recently extended to all temperatures below the critical one by Ioffe.
The 2-d CCD Data Reduction Cookbook
NASA Astrophysics Data System (ADS)
Davenhall, A. C.; Privett, G. J.; Taylor, M. B.
This cookbook presents simple recipes and scripts for reducing direct images acquired with optical CCD detectors. Using these recipes and scripts you can correct un-processed images obtained from CCDs for various instrumental effects to retrieve an accurate picture of the field of sky observed. The recipes and scripts use standard software available at all Starlink sites. The topics covered include: creating and applying bias and flat-field corrections, registering frames and creating a stack or mosaic of registered frames. Related auxiliary tasks, such as converting between different data formats, displaying images and calculating image statistics are also presented. In addition to the recipes and scripts, sufficient background material is presented to explain the procedures and techniques used. The treatment is deliberately practical rather than theoretical, in keeping with the aim of providing advice on the actual reduction of observations. Additional material outlines some of the differences between using conventional optical CCDs and the similar arrays used to observe at infrared wavelengths.
Homogenization models for 2-D grid structures
NASA Technical Reports Server (NTRS)
Banks, H. T.; Cioranescu, D.; Rebnord, D. A.
1992-01-01
In the past several years, we have pursued efforts related to the development of accurate models for the dynamics of flexible structures made of composite materials. Rather than viewing periodicity and sparseness as obstacles to be overcome, we exploit them to our advantage. We consider a variational problem on a domain that has large, periodically distributed holes. Using homogenization techniques we show that the solution to this problem is in some topology 'close' to the solution of a similar problem that holds on a much simpler domain. We study the behavior of the solution of the variational problem as the holes increase in number, but decrease in size in such a way that the total amount of material remains constant. The result is an equation that is in general more complex, but with a domain that is simply connected rather than perforated. We study the limit of the solution as the amount of material goes to zero. This second limit will, in most cases, retrieve much of the simplicity that was lost in the first limit without sacrificing the simplicity of the domain. Finally, we show that these results can be applied to the case of a vibrating Love-Kirchhoff plate with Kelvin-Voigt damping. We rely heavily on earlier results of (Du), (CS) for the static, undamped Love-Kirchhoff equation. Our efforts here result in a modification of those results to include both time dependence and Kelvin-Voigt damping.
Parallelized CCHE2D flow model with CUDA Fortran on Graphics Process Units
Technology Transfer Automated Retrieval System (TEKTRAN)
This paper presents the CCHE2D implicit flow model parallelized using CUDA Fortran programming technique on Graphics Processing Units (GPUs). A parallelized implicit Alternating Direction Implicit (ADI) solver using Parallel Cyclic Reduction (PCR) algorithm on GPU is developed and tested. This solve...
A Geometric Boolean Library for 2D Objects
Energy Science and Technology Software Center (ESTSC)
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various filemore » formats, are also provided in the library.« less
A Geometric Boolean Library for 2D Objects
McBride, Corey L.; Yarberry, Victor; Jorgensen, Craig
2006-01-05
The 2D Boolean Library is a collection of C++ classes -- which primarily represent 2D geometric data and relationships, and routines -- which contain algorithms for 2D geometric Boolean operations and utility functions. Classes are provided for 2D points, lines, arcs, edgeuses, loops, surfaces and mask sets. Routines are provided that incorporate the Boolean operations Union(OR), XOR, Intersection and Difference. Various analytical geometry routines and routines for importing and exporting the data in various file formats, are also provided in the library.
2D/3D Visual Tracker for Rover Mast
NASA Technical Reports Server (NTRS)
Bajracharya, Max; Madison, Richard W.; Nesnas, Issa A.; Bandari, Esfandiar; Kunz, Clayton; Deans, Matt; Bualat, Maria
2006-01-01
A visual-tracker computer program controls an articulated mast on a Mars rover to keep a designated feature (a target) in view while the rover drives toward the target, avoiding obstacles. Several prior visual-tracker programs have been tested on rover platforms; most require very small and well-estimated motion between consecutive image frames a requirement that is not realistic for a rover on rough terrain. The present visual-tracker program is designed to handle large image motions that lead to significant changes in feature geometry and photometry between frames. When a point is selected in one of the images acquired from stereoscopic cameras on the mast, a stereo triangulation algorithm computes a three-dimensional (3D) location for the target. As the rover moves, its body-mounted cameras feed images to a visual-odometry algorithm, which tracks two-dimensional (2D) corner features and computes their old and new 3D locations. The algorithm rejects points, the 3D motions of which are inconsistent with a rigid-world constraint, and then computes the apparent change in the rover pose (i.e., translation and rotation). The mast pan and tilt angles needed to keep the target centered in the field-of-view of the cameras (thereby minimizing the area over which the 2D-tracking algorithm must operate) are computed from the estimated change in the rover pose, the 3D position of the target feature, and a model of kinematics of the mast. If the motion between the consecutive frames is still large (i.e., 3D tracking was unsuccessful), an adaptive view-based matching technique is applied to the new image. This technique uses correlation-based template matching, in which a feature template is scaled by the ratio between the depth in the original template and the depth of pixels in the new image. This is repeated over the entire search window and the best correlation results indicate the appropriate match. The program could be a core for building application programs for systems
AnisWave2D: User's Guide to the 2d Anisotropic Finite-DifferenceCode
Toomey, Aoife
2005-01-06
This document describes a parallel finite-difference code for modeling wave propagation in 2D, fully anisotropic materials. The code utilizes a mesh refinement scheme to improve computational efficiency. Mesh refinement allows the grid spacing to be tailored to the velocity model, so that fine grid spacing can be used in low velocity zones where the seismic wavelength is short, and coarse grid spacing can be used in zones with higher material velocities. Over-sampling of the seismic wavefield in high velocity zones is therefore avoided. The code has been implemented to run in parallel over multiple processors and allows large-scale models and models with large velocity contrasts to be simulated with ease.
Klassifikation von Standardebenen in der 2D-Echokardiographie mittels 2D-3D-Bildregistrierung
NASA Astrophysics Data System (ADS)
Bergmeir, Christoph; Subramanian, Navneeth
Zum Zweck der Entwicklung eines Systems, das einen unerfahrenen Anwender von Ultraschall (US) zur Aufnahme relevanter anatomischer Strukturen leitet, untersuchen wir die Machbarkeit von 2D-US zu 3D-CT Registrierung. Wir verwenden US-Aufnahmen von Standardebenen des Herzens, welche zu einem 3D-CT-Modell registriert werden. Unser Algorithmus unterzieht sowohl die US-Bilder als auch den CT-Datensatz Vorverarbeitungsschritten, welche die Daten durch Segmentierung auf wesentliche Informationen in Form von Labein für Muskel und Blut reduzieren. Anschließend werden diese Label zur Registrierung mittels der Match-Cardinality-Metrik genutzt. Durch mehrmaliges Registrieren mit verschiedenen Initialisierungen ermitteln wir die im US-Bild sichtbare Standardebene. Wir evaluierten die Methode auf sieben US-Bildern von Standardebenen. Fünf davon wurden korrekt zugeordnet.
3-D Reconstruction From 2-D Radiographic Images and Its Application to Clinical Veterinary Medicine
NASA Astrophysics Data System (ADS)
Hamamoto, Kazuhiko; Sato, Motoyoshi
3D imaging technique is very important and indispensable in diagnosis. The main stream of the technique is one in which 3D image is reconstructed from a set of slice images, such as X-ray CT and MRI. However, these systems require large space and high costs. On the other hand, a low cost and small size 3D imaging system is needed in clinical veterinary medicine, for example, in the case of diagnosis in X-ray car or pasture area. We propose a novel 3D imaging technique using 2-D X-ray radiographic images. This system can be realized by cheaper system than X-ray CT and enables to get 3D image in X-ray car or portable X-ray equipment. In this paper, a 3D visualization technique from 2-D radiographic images is proposed and several reconstructions are shown. These reconstructions are evaluated by veterinarians.
Functional characterization of CYP2D6 enhancer polymorphisms
Wang, Danxin; Papp, Audrey C.; Sun, Xiaochun
2015-01-01
CYP2D6 metabolizes nearly 25% of clinically used drugs. Genetic polymorphisms cause large inter-individual variability in CYP2D6 enzyme activity and are currently used as biomarker to predict CYP2D6 metabolizer phenotype. Previously, we had identified a region 115 kb downstream of CYP2D6 as enhancer for CYP2D6, containing two completely linked single nucleotide polymorphisms (SNPs), rs133333 and rs5758550, associated with enhanced transcription. However, the enhancer effect on CYP2D6 expression, and the causative variant, remained to be ascertained. To characterize the CYP2D6 enhancer element, we applied chromatin conformation capture combined with the next-generation sequencing (4C assays) and chromatin immunoprecipitation with P300 antibody, in HepG2 and human primary culture hepatocytes. The results confirmed the role of the previously identified enhancer region in CYP2D6 expression, expanding the number of candidate variants to three highly linked SNPs (rs133333, rs5758550 and rs4822082). Among these, only rs5758550 demonstrated regulating enhancer activity in a reporter gene assay. Use of clustered regularly interspaced short palindromic repeats mediated genome editing in HepG2 cells targeting suspected enhancer regions decreased CYP2D6 mRNA expression by 70%, only upon deletion of the rs5758550 region. These results demonstrate robust effects of both the enhancer element and SNP rs5758550 on CYP2D6 expression, supporting consideration of rs5758550 for CYP2D6 genotyping panels to yield more accurate phenotype prediction. PMID:25381333
NASA Astrophysics Data System (ADS)
Chae, Dongho; Constantin, Peter; Wu, Jiahong
2014-09-01
We give an example of a well posed, finite energy, 2D incompressible active scalar equation with the same scaling as the surface quasi-geostrophic equation and prove that it can produce finite time singularities. In spite of its simplicity, this seems to be the first such example. Further, we construct explicit solutions of the 2D Boussinesq equations whose gradients grow exponentially in time for all time. In addition, we introduce a variant of the 2D Boussinesq equations which is perhaps a more faithful companion of the 3D axisymmetric Euler equations than the usual 2D Boussinesq equations.
Proposal for a hybrid 2D MOT/molasses configuration for potassium-41
NASA Astrophysics Data System (ADS)
Peterson, W. A.; Wrubel, J. P.
2016-05-01
We report a proposed design for a compact 2D MOT-optical molasses hybrid for potassium-41 atoms. Adding electromagnets to a previously-reported permanent-magnet based 2D MOT, we show it is possible to flatten the magnetic field at the trap's center, creating a region suitable for molasses. The remaining magnetic field at the fringes of the molasses provides a restoring force sufficient to keep the atoms trapped. This technique should reduce the rate of atom escape from the molasses and allow cooling times substantially longer than in a standard, un-trapped molasses. Research Corporation for Science Advancement, Cottrell College Science Award.
Topological evolutionary computing in the optimal design of 2D and 3D structures
NASA Astrophysics Data System (ADS)
Burczynski, T.; Poteralski, A.; Szczepanik, M.
2007-10-01
An application of evolutionary algorithms and the finite-element method to the topology optimization of 2D structures (plane stress, bending plates, and shells) and 3D structures is described. The basis of the topological evolutionary optimization is the direct control of the density material distribution (or thickness for 2D structures) by the evolutionary algorithm. The structures are optimized for stress, mass, and compliance criteria. The numerical examples demonstrate that this method is an effective technique for solving problems in computer-aided optimal design.
Far-field pattern modification of LEDs with 2D PhC PDMS membrane
NASA Astrophysics Data System (ADS)
Suslik, Lubos; Pudis, Dusan; Gaso, Peter; Lettrichova, Ivana; Kovac, Jaroslav; Hronec, Pavol; Nolte, Rainer; Schaaf, Peter
2014-12-01
In this paper we present results of an implementation of thin two-dimensional (2D) photonic crystal (PhC) patterned in thin polydimethylsiloxane (PDMS) membranes on the light emitting diode (LED) surface. PDMS membranes were patterned by using the interference lithography in combination with imprinting technique. 2D PhC surface relief structures of period 580 nm were patterned in thin PDMS membranes with depth up to 150 nm. Patterned PDMS membranes placed on different optoelectronic device surface could modify the final optical properties.
Efficient Visible Quasi-2D Perovskite Light-Emitting Diodes.
Byun, Jinwoo; Cho, Himchan; Wolf, Christoph; Jang, Mi; Sadhanala, Aditya; Friend, Richard H; Yang, Hoichang; Lee, Tae-Woo
2016-09-01
Efficient quasi-2D-structure perovskite light-emitting diodes (4.90 cd A(-1) ) are demonstrated by mixing a 3D-structured perovskite material (methyl ammonium lead bromide) and a 2D-structured perovskite material (phenylethyl ammonium lead bromide), which can be ascribed to better film uniformity, enhanced exciton confinement, and reduced trap density. PMID:27334788
Integrating Mobile Multimedia into Textbooks: 2D Barcodes
ERIC Educational Resources Information Center
Uluyol, Celebi; Agca, R. Kagan
2012-01-01
The major goal of this study was to empirically compare text-plus-mobile phone learning using an integrated 2D barcode tag in a printed text with three other conditions described in multimedia learning theory. The method examined in the study involved modifications of the instructional material such that: a 2D barcode was used near the text, the…
High Speed 2D Hadamard Transform Spectral Imager
WEHLBURG, JOSEPH C.; WEHLBURG, CHRISTINE M.; SMITH, JODY L.; SPAHN, OLGA B.; SMITH, MARK W.; BONEY, CRAIG M.
2003-02-01
Hadamard Transform Spectrometer (HTS) approaches share the multiplexing advantages found in Fourier transform spectrometers. Interest in Hadamard systems has been limited due to data storage/computational limitations and the inability to perform accurate high order masking in a reasonable amount of time. Advances in digital micro-mirror array (DMA) technology have opened the door to implementing an HTS for a variety of applications including fluorescent microscope imaging and Raman imaging. A Hadamard transform spectral imager (HTSI) for remote sensing offers a variety of unique capabilities in one package such as variable spectral and temporal resolution, no moving parts (other than the micro-mirrors) and vibration tolerance. Two approaches to for 2D HTS systems have been investigated in this LDRD. The first approach involves dispersing the incident light, encoding the dispersed light then recombining the light. This method is referred to as spectral encoding. The other method encodes the incident light then disperses the encoded light. The second technique is called spatial encoding. After creating optical designs for both methods the spatial encoding method was selected as the method that would be implemented because the optical design was less costly to implement.
2D Colloidal Wigner crystals in confined geometries
NASA Astrophysics Data System (ADS)
Higler, Ruben; Sprakel, Joris
2015-03-01
Crystallization of bulk systems has been widely studied using colloids as a model system. However, study into colloidal crystallization in confined geometries has been sparse and little is known about the effects of strong confinement on the dynamics of colloidal crystal. In our research we prepare 2D crystals from charged colloids in an apolar solvent to study crystal dynamics, formation, and structure in circular confinements. These confining geometries are made using softlithography techniques from SU-8. In order to broaden the parameter space we can reach in experiments we employ brownian dynamics simulations to supplement our experimental results. Using single-particle tracking we have subpixel resolution positional information of every particle in the system. We study the vibrational modes of our confined crystals and find well defined modes unique to confined systems, such as a radially symmetric compression (or breathing) mode, a collective rotation mode, and distinct resonance modes. Furthermore, due to the circular nature of our constrictions, defectless crystals are impossible, we find, for sufficiently high area fractions, that the defects order at well defined points at the edge. The effect of this ``defect-localization'' has a clear influence on the vibrational modes.
Hierarchical streamline bundles for visualizing 2D flow fields.
Shene, Ching-Kuang; Wang, Chaoli; Yu, Hongfeng; Chen, Jacqueline H.
2010-08-01
We present hierarchical streamline bundles, a new approach to simplifying and visualizing 2D flow fields. Our method first densely seeds a flow field and produces a large number of streamlines that capture important flow features such as critical points. Then, we group spatially neighboring and geometrically similar streamlines to construct a hierarchy from which we extract streamline bundles at different levels of detail. Streamline bundles highlight multiscale flow features and patterns through a clustered yet non-cluttered display. This selective visualization strategy effectively accentuates visual foci and therefore is able to convey the desired insight into the flow fields. The hierarchical streamline bundles we have introduced offer a new way to characterize and visualize the flow structure and patterns in multiscale fashion. Streamline bundles highlight critical points clearly and concisely. Exploring the hierarchy allows a complete visualization of important flow features. Thanks to selective streamline display and flexible LOD refinement, our multiresolution technique is scalable and is promising for viewing large and complex flow fields. In the future, we would like to seek a cost-effective way to generate streamlines without enforcing the dense seeding condition. We will also extend this approach to handle real-world 3D complex flow fields.
Robust elastic 2D/3D geometric graph matching
NASA Astrophysics Data System (ADS)
Serradell, Eduard; Kybic, Jan; Moreno-Noguer, Francesc; Fua, Pascal
2012-02-01
We present an algorithm for geometric matching of graphs embedded in 2D or 3D space. It is applicable for registering any graph-like structures appearing in biomedical images, such as blood vessels, pulmonary bronchi, nerve fibers, or dendritic arbors. Our approach does not rely on the similarity of local appearance features, so it is suitable for multimodal registration with a large difference in appearance. Unlike earlier methods, the algorithm uses edge shape, does not require an initial pose estimate, can handle partial matches, and can cope with nonlinear deformations and topological differences. The matching consists of two steps. First, we find an affine transform that roughly aligns the graphs by exploring the set of all consistent correspondences between the nodes. This can be done at an acceptably low computational expense by using parameter uncertainties for pruning, backtracking as needed. Parameter uncertainties are updated in a Kalman-like scheme with each match. In the second step we allow for a nonlinear part of the deformation, modeled as a Gaussian Process. Short sequences of edges are grouped into superedges, which are then matched between graphs. This allows for topological differences. A maximum consistent set of superedge matches is found using a dedicated branch-and-bound solver, which is over 100 times faster than a standard linear programming approach. Geometrical and topological consistency of candidate matches is determined in a fast hierarchical manner. We demonstrate the effectiveness of our technique at registering angiography and retinal fundus images, as well as neural image stacks.
Van der Waals stacked 2D layered materials for optoelectronics
NASA Astrophysics Data System (ADS)
Zhang, Wenjing; Wang, Qixing; Chen, Yu; Wang, Zhuo; Wee, Andrew T. S.
2016-06-01
The band gaps of many atomically thin 2D layered materials such as graphene, black phosphorus, monolayer semiconducting transition metal dichalcogenides and hBN range from 0 to 6 eV. These isolated atomic planes can be reassembled into hybrid heterostructures made layer by layer in a precisely chosen sequence. Thus, the electronic properties of 2D materials can be engineered by van der Waals stacking, and the interlayer coupling can be tuned, which opens up avenues for creating new material systems with rich functionalities and novel physical properties. Early studies suggest that van der Waals stacked 2D materials work exceptionally well, dramatically enriching the optoelectronics applications of 2D materials. Here we review recent progress in van der Waals stacked 2D materials, and discuss their potential applications in optoelectronics.
Unitary quantum lattice gas representation of 2D quantum turbulence
NASA Astrophysics Data System (ADS)
Zhang, Bo; Vahala, George; Vahala, Linda; Soe, Min
2011-05-01
Quantum vortex structures and energy cascades are examined for two dimensional quantum turbulence (2D QT) using a special unitary evolution algorithm. The qubit lattice gas (QLG) algorithm, is employed to simulate the weakly-coupled Bose-Einstein condensate (BEC) governed by the Gross-Pitaevskii (GP) equation. A parameter regime is uncovered in which, as in 3D QT, there is a very short Poincare recurrence time. This short recurrence time is destroyed as the nonlinear interaction energy is increased. Energy cascades for 2D QT are considered to examine whether 2D QT exhibits the inverse cascades of 2D classical turbulence. In the parameter regime considered, the spectra analysis reveals no such dual cascades---dual cascades being a hallmark of 2D classical turbulence.
CYP2D6 polymorphism in patients with eating disorders.
Peñas-Lledó, E M; Dorado, P; Agüera, Z; Gratacós, M; Estivill, X; Fernández-Aranda, F; Llerena, A
2012-04-01
CYP2D6 polymorphism is associated with variability in drug response, endogenous metabolism (that is, serotonin), personality, neurocognition and psychopathology. The relationship between CYP2D6 genetic polymorphism and the risk of eating disorders (ED) was analyzed in 267 patients with ED and in 285 controls. A difference in the CYP2D6 active allele distribution was found between these groups. Women carrying more than two active genes (ultrarapid metabolizers) (7.5 vs 4.6%) or two (67 vs 58.9%) active genes were more frequent among patients with ED, whereas those with one (20.6 vs 30.2%) or zero active genes (4.9 vs 6.3%) were more frequent among controls (P<0.05). Although further research is needed, present findings suggest an association between CYP2D6 and ED. CYP2D6 allele distribution in patients with ED seems related to increased enzyme activity. PMID:20877302
2D materials and van der Waals heterostructures.
Novoselov, K S; Mishchenko, A; Carvalho, A; Castro Neto, A H
2016-07-29
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices--such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes--are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices. PMID:27471306
Gated cardiac NMR imaging and 2D echocardiography in the detection of intracardial neoplasm
Go, R.T.; O'Donnell, J.K.; Salcedo, E.E.; Feiglin, D.H.; Underwood, D.A.; MacIntyre, W.J.; Meaney, T.F.
1985-05-01
Noninvasive 2D echocardiography has replaced contrast angiography as the procedure of choice in the diagnosis of intracardiac neoplasm. The purpose of this study was to determine whether intracardiac neoplasm can be detected as well by gated cardiac NMR. Four patients with known intracardiac neoplasm previously diagnosed by 2D echocardiography had gated cardiac NMR imaging using a superconductive 0.6 Tesla magnet. All patients were performed using a Tl weighted spin echo pulse sequence with a TE of 30 msec and TR of one R-R interval. Two-dimensional planar single or multiple slice techniques were used. In one patient, imaging at different times along the R-R interval were performed for cine display. The results of the present study show detection of the intracardiac neoplasm in all four cases by gated cardiac NMR imaging and the results were comparable to 2D echocardiography. The former imaging technique showed superior spatial resolution. Despite its early stage of development, gated cardiac NMR imaging appears at least equal to 2D echocardiography in the detection of intracardiac neoplasm. The availability of multislice coupled with multiframe acquisition techniques now being developed will provide a cinematic display that will be more effective in the display of the tumor in motion within the cardiac chamber involved and facilitate visualization of the relationship of the tumor to adjacent cardiac structures.
Propagator-resolved 2D exchange in porous media in the inhomogeneous magnetic field.
Burcaw, Lauren M; Hunter, Mark W; Callaghan, Paul T
2010-08-01
We present a propagator-resolved 2D exchange spectroscopy technique for observing fluid motion in a porous medium. The susceptibility difference between the matrix and the fluid is exploited to produce an inhomogeneous internal magnetic field, causing the Larmor frequency to change as molecules migrate. We test our method using a randomly packed monodisperse 100 microm diameter glass bead matrix saturated with distilled water. Building upon previous 2D exchange spectroscopy work we add a displacement dimension which allows us to obtain 2D exchange spectra that are defined by both mixing time and spatial displacement rather than by mixing time alone. We also simulate our system using a Monte Carlo process in a random nonpenetrating monodisperse bead pack, finding good agreement with experiment. A simple analytic model is used to interpret the NMR data in terms of a characteristic length scale over which molecules must diffuse to sample the inhomogeneous field distribution. PMID:20554230
Nishida, Jun; Tamimi, Amr; Fei, Honghan; Pullen, Sonja; Ott, Sascha; Cohen, Seth M.; Fayer, Michael D.
2014-01-01
The structural elasticity of metal–organic frameworks (MOFs) is a key property for their functionality. Here, we show that 2D IR spectroscopy with pulse-shaping techniques can probe the ultrafast structural fluctuations of MOFs. 2D IR data, obtained from a vibrational probe attached to the linkers of UiO-66 MOF in low concentration, revealed that the structural fluctuations have time constants of 7 and 670 ps with no solvent. Filling the MOF pores with dimethylformamide (DMF) slows the structural fluctuations by reducing the ability of the MOF to undergo deformations, and the dynamics of the DMF molecules are also greatly restricted. Methodology advances were required to remove the severe light scattering caused by the macroscopic-sized MOF particles, eliminate interfering oscillatory components from the 2D IR data, and address Förster vibrational excitation transfer. PMID:25512539
2D face database diversification based on 3D face modeling
NASA Astrophysics Data System (ADS)
Wang, Qun; Li, Jiang; Asari, Vijayan K.; Karim, Mohammad A.
2011-05-01
Pose and illumination are identified as major problems in 2D face recognition (FR). It has been theoretically proven that the more diversified instances in the training phase, the more accurate and adaptable the FR system appears to be. Based on this common awareness, researchers have developed a large number of photographic face databases to meet the demand for data training purposes. In this paper, we propose a novel scheme for 2D face database diversification based on 3D face modeling and computer graphics techniques, which supplies augmented variances of pose and illumination. Based on the existing samples from identical individuals of the database, a synthesized 3D face model is employed to create composited 2D scenarios with extra light and pose variations. The new model is based on a 3D Morphable Model (3DMM) and genetic type of optimization algorithm. The experimental results show that the complemented instances obviously increase diversification of the existing database.
Probing electric properties at the boundary of planar 2D heterostructure
NASA Astrophysics Data System (ADS)
Park, Jewook
The quest for novel two-dimensional (2D) materials has led to the discovery of hybridized 2D atomic crystals. Especially, planar 2D heterostructure provides opportunities to explore fascinating electric properties at abrupt one-dimensional (1D) boundaries reminiscent to those seen in the 2D interfaces of complex oxides. By implementing the concept of epitaxy to 2D space, we developed a new growth technique to epitaxially grow hexagonal boron nitride (hBN) from the edges of graphene, forming a coherent planar heterostructure. At the interface of hBN and graphene, a polar-on-nonpolar 1D boundary can be formed which is expected to possess peculiar electronic states associated with the polarity of hBN and edge states of graphene Scanning tunneling microscopy and spectroscopy (STM/S) measurements revealed an abrupt 1D zigzag oriented boundary, with boundary states about 0.6 eV below or above the Fermi level depending on the termination of the hBN at the boundary. The boundary states are extended along the boundary and exponentially decay into the bulk of graphene and hBN. Combined STM/S and first-principles theory study not only disclose spatial and energetic distribution of interfacial state but also reveal the origin of boundary states and the effect of the polarity discontinuity at the interface By probing electric properties at the boundary in the atomic scale, planar 2D heterostructure is demonstrated as a promising platform for discovering emergent phenomena at the 1D interface in 2D materials. This research was conducted at the Center for Nanophase Materials Sciences, which is a DOE Office of Science User Facility.
Towards 2D Bayesian Tomography of Receiver Functions
NASA Astrophysics Data System (ADS)
Ray, A.; Bodin, T.; Key, K.
2014-12-01
Receiver function analysis is a powerful tool widely used to isolate and interpret receiver-side structure effects in teleseismic records. The idea is to deconvolve the vertical component from the horizontal components to produce a time series, thus eliminating the influence of the source and distant path effects. The receiver function is usually migrated and directly interpreted by visual inspection. However, deconvolution is a numerically unstable procedure that needs to be stabilized, and the solution depends on the choice of regularization parameters (e.g. water level and the width of a low pass filter). Since the solution is blurred with multiple reflections from the subsurface that produce apparent discontinuities, qualitative interpretation of receiver functions is subjective. Alternatively, waveforms can be directly inverted for a 1D S-wave velocity model beneath the receiver. An inversion procedure is more quantitative, as a forward model will take into account all possible reflections and conversions. If cast in a Bayesian framework, an inversion also enables one to assess model uncertainties and quantify parameter trade-offs. However, seismologists have preferred migration techniques as they are easier to implement, computationally cheaper, and allow construction of 2D or 3D sections. Inversions have been limited thus far to the 1D case. In this work we present a method for inversion of converted waveforms measured at a number of aligned stations. The unknown model is a 2D vertical cross section parameterized with a variable number of discontinuities, although the forward model used to compute synthetics under individual stations is 1D. Body waves are inverted jointly with surface wave dispersion measurements to reduce the range of possible solutions. The problem is solved with a fully non linear Bayesian inversion scheme where the posterior velocity distribution is sampled with a Markov Chain Monte Carlo Algorithm. Our approach uses the 'trans
Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications
NASA Astrophysics Data System (ADS)
Shahil, Khan Mohammad Farhan
Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was
3D reconstruction of a carotid bifurcation from 2D transversal ultrasound images.
Yeom, Eunseop; Nam, Kweon-Ho; Jin, Changzhu; Paeng, Dong-Guk; Lee, Sang-Joon
2014-12-01
Visualizing and analyzing the morphological structure of carotid bifurcations are important for understanding the etiology of carotid atherosclerosis, which is a major cause of stroke and transient ischemic attack. For delineation of vasculatures in the carotid artery, ultrasound examinations have been widely employed because of a noninvasive procedure without ionizing radiation. However, conventional 2D ultrasound imaging has technical limitations in observing the complicated 3D shapes and asymmetric vasodilation of bifurcations. This study aims to propose image-processing techniques for better 3D reconstruction of a carotid bifurcation in a rat by using 2D cross-sectional ultrasound images. A high-resolution ultrasound imaging system with a probe centered at 40MHz was employed to obtain 2D transversal images. The lumen boundaries in each transverse ultrasound image were detected by using three different techniques; an ellipse-fitting, a correlation mapping to visualize the decorrelation of blood flow, and the ellipse-fitting on the correlation map. When the results are compared, the third technique provides relatively good boundary extraction. The incomplete boundaries of arterial lumen caused by acoustic artifacts are somewhat resolved by adopting the correlation mapping and the distortion in the boundary detection near the bifurcation apex was largely reduced by using the ellipse-fitting technique. The 3D lumen geometry of a carotid artery was obtained by volumetric rendering of several 2D slices. For the 3D vasodilatation of the carotid bifurcation, lumen geometries at the contraction and expansion states were simultaneously depicted at various view angles. The present 3D reconstruction methods would be useful for efficient extraction and construction of the 3D lumen geometries of carotid bifurcations from 2D ultrasound images. PMID:24965564
Xie, Donghao; Ji, Ding-Kun; Zhang, Yue; Cao, Jun; Zheng, Hu; Liu, Lin; Zang, Yi; Li, Jia; Chen, Guo-Rong; James, Tony D; He, Xiao-Peng
2016-08-01
Here we demonstrate that 2D MoS2 can enhance the receptor-targeting and imaging ability of a fluorophore-labelled ligand. The 2D MoS2 has an enhanced working concentration range when compared with graphene oxide, resulting in the improved imaging of both cell and tissue samples. PMID:27378648
Comparison of 2D versus 3D mammography with screening cases: an observer study
NASA Astrophysics Data System (ADS)
Fernandez, James Reza; Deshpande, Ruchi; Hovanessian-Larsen, Linda; Liu, Brent
2012-02-01
Breast cancer is the most common type of non-skin cancer in women. 2D mammography is a screening tool to aid in the early detection of breast cancer, but has diagnostic limitations of overlapping tissues, especially in dense breasts. 3D mammography has the potential to improve detection outcomes by increasing specificity, and a new 3D screening tool with a 3D display for mammography aims to improve performance and efficiency as compared to 2D mammography. An observer study using human studies collected from was performed to compare traditional 2D mammography with this new 3D mammography technique. A prior study using a mammography phantom revealed no difference in calcification detection, but improved mass detection in 2D as compared to 3D. There was a significant decrease in reading time for masses, calcifications, and normals in 3D compared to 2D, however, as well as more favorable confidence levels in reading normal cases. Data for this current study is currently being obtained, and a full report should be available in the next few weeks.
Fast 2D flood modelling using GPU technology - recent applications and new developments
NASA Astrophysics Data System (ADS)
Crossley, Amanda; Lamb, Rob; Waller, Simon; Dunning, Paul
2010-05-01
In recent years there has been considerable interest amongst scientists and engineers in exploiting the potential of commodity graphics hardware for desktop parallel computing. The Graphics Processing Units (GPUs) that are used in PC graphics cards have now evolved into powerful parallel co-processors that can be used to accelerate the numerical codes used for floodplain inundation modelling. We report in this paper on experience over the past two years in developing and applying two dimensional (2D) flood inundation models using GPUs to achieve significant practical performance benefits. Starting with a solution scheme for the 2D diffusion wave approximation to the 2D Shallow Water Equations (SWEs), we have demonstrated the capability to reduce model run times in ‘real-world' applications using GPU hardware and programming techniques. We then present results from a GPU-based 2D finite volume SWE solver. A series of numerical test cases demonstrate that the model produces outputs that are accurate and consistent with reference results published elsewhere. In comparisons conducted for a real world test case, the GPU-based SWE model was over 100 times faster than the CPU version. We conclude with some discussion of practical experience in using the GPU technology for flood mapping applications, and for research projects investigating use of Monte Carlo simulation methods for the analysis of uncertainty in 2D flood modelling.
Iqpc 2015 Track: Evaluation of Automatically Generated 2d Footprints from Urban LIDAR Data
NASA Astrophysics Data System (ADS)
Truong-Hong, L.; Laefer, D.; Bisheng, Y.; Ronggang, H.; Jianping, L.
2015-08-01
Over the last decade, several automatic approaches have been proposed to extract and reconstruct 2D building footprints and 2D road profiles from ALS data, satellite images, and/or aerial imagery. Since these methods have to date been applied to various data sets and assessed through a variety of different quality indicators and ground truths, comparing the relative effectiveness of the techniques and identifying their strengths and short-comings has not been possible in a systematic way. This contest as part of IQPC15 was designed to determine pros and cons of submitted approaches in generating 2D footprint of a city region from ALS data. Specifically, participants were asked to submit 2D footprints (building outlines and road profiles) derived from ALS data from a highly dense dataset (approximately 225 points/m2) across a 1km2 of Dublin, Ireland's city centre. The proposed evaluation strategies were designed to measure not only the capacity of each method to detect and reconstruct 2D buildings and roads but also the quality of the reconstructed building and road models in terms of shape similarity and positional accuracy.
Combination 3D TOP with 2D PC MRA Techique for cerebral blood flow volume measurement.
Guo, G; Wu, R H; Zhang, Y P; Guan, J T; Guo, Y L; Cheng, Y; terBrugge, K; Mikulis, D J
2006-01-01
To demonstrate the discrepancy of cerebral blood flow volume (BFV) estimation with 2D phase-contrast (2D PC) MRA guided with 3D time-of-flight (3D TOF) MR localization by using an "internal" standard. 20 groups of the common (CCA), internal (ICA), and external (ECA) carotid arteries in 10 healthy subjects were examined with 2D PC MRA guided by 3D TOF MR angiograms. The sum BFV of the internal and external carotid arteries was then compared with the ipsilateral common carotid artery flow. An accurate technique would demonstrate no difference. The difference was therefore a measure of accuracy of the method. 3D TOF MRA localization is presented to allow the determination of a slice orientation to improve the accuracy of 2D PC MRA in estimate the BFV. By using the combined protocols, there was better correlation in BFV estimate between the sum of ICA+ECA with the ipsilateral CCA (R2=0.729, P=0.000). The inconsistency (mean +/- SD) was found to be 6.95 +/- 5.95% for estimate the BFV in ICA+ECA and ipsilateral CCA. The main inconsistency was contributed to the ECA and its branches. Guided with 3D TOF MRA localization, 2D PC MRA is more accurate in the determination of blood flow volume in the carotid arteries. PMID:17946401
Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika
2002-01-01
Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730
Efficient 2D MRI relaxometry using compressed sensing
NASA Astrophysics Data System (ADS)
Bai, Ruiliang; Cloninger, Alexander; Czaja, Wojciech; Basser, Peter J.
2015-06-01
Potential applications of 2D relaxation spectrum NMR and MRI to characterize complex water dynamics (e.g., compartmental exchange) in biology and other disciplines have increased in recent years. However, the large amount of data and long MR acquisition times required for conventional 2D MR relaxometry limits its applicability for in vivo preclinical and clinical MRI. We present a new MR pipeline for 2D relaxometry that incorporates compressed sensing (CS) as a means to vastly reduce the amount of 2D relaxation data needed for material and tissue characterization without compromising data quality. Unlike the conventional CS reconstruction in the Fourier space (k-space), the proposed CS algorithm is directly applied onto the Laplace space (the joint 2D relaxation data) without compressing k-space to reduce the amount of data required for 2D relaxation spectra. This framework is validated using synthetic data, with NMR data acquired in a well-characterized urea/water phantom, and on fixed porcine spinal cord tissue. The quality of the CS-reconstructed spectra was comparable to that of the conventional 2D relaxation spectra, as assessed using global correlation, local contrast between peaks, peak amplitude and relaxation parameters, etc. This result brings this important type of contrast closer to being realized in preclinical, clinical, and other applications.
NKG2D receptor and its ligands in host defense
Lanier, Lewis L.
2015-01-01
NKG2D is an activating receptor expressed on the surface of natural killer (NK) cells, CD8+ T cells, and subsets of CD4+ T cells, iNKT cells, and γδ T cells. In humans NKG2D transmits signals by its association with the DAP10 adapter subunit and in mice alternatively spliced isoforms transmit signals either using DAP10 or DAP12 adapter subunits. Although NKG2D is encoded by a highly conserved gene (KLRK1) with limited polymorphism, the receptor recognizes an extensive repertoire of ligands, encoded by at least 8 genes in humans (MICA, MICB, RAET1E, RAET1G, RAET1H, RAET1I, RAET1L, and RAET1N), some with extensive allelic polymorphism. Expression of the NKG2D ligands is tightly regulated at the level of transcription, translation, and post-translation. In general healthy adult tissues do not express NKG2D glycoproteins on the cell surface, but these ligands can be induced by hyper-proliferation and transformation, as well as when cells are infected by pathogens. Thus, the NKG2D pathway serves a mechanism for the immune system to detect and eliminate cells that have undergone “stress”. Viruses and tumor cells have devised numerous strategies to evade detection by the NKG2D surveillance system and diversification of the NKG2D ligand genes likely has been driven by selective pressures imposed by pathogens. NKG2D provides an attractive target for therapeutics in the treatment of infectious diseases, cancer, and autoimmune diseases. PMID:26041808
A SAFT equation of state for the quaternary H2S-CO2-H2O-NaCl system
NASA Astrophysics Data System (ADS)
Ji, Xiaoyan; Zhu, Chen
2012-08-01
Phase equilibria and thermodynamic properties of the quaternary H2S-CO2-H2O-NaCl system were studied using a statistical associating fluid theory (SAFT)-based equation of state (EOS) at temperatures from 0 to 200 °C (373.15-473.15 K), pressures up to 600 bar (60 MPa) and concentrations of NaCl up to 6 mol/kgH2O. The understanding of the physical-chemical properties of this system is critical for predicting the consequences of co-injection of CO2 and H2S into geological formations (geological carbon sequestration) as an option for mitigating the global warming trend. Equation of state parameters were generated from regression of available and reliable experimental data and incorporation of existing parameters for some subsystems. Densities were predicted and compared with available experimental results. Using the EOS developed in this study, we predicted equilibrium compositions in both liquid and vapor phases, fugacity coefficients of components, the equilibrium pressures at a given composition of the H2O-rich phase in electrolyte solutions with NaCl varying from 0 to 4 mol/kgH2O, and the aqueous solution densities. These predicted values are tabulated and available as supplementary data in the electronic version online. These predictions provide information and guidance for future experiments regarding the thermodynamic properties and phase behaviors in the H2S-CO2-H2O-NaCl system.
Vahid, A; Maginn, E J
2015-03-21
Understanding fundamental solvation phenomena and mixture thermodynamic properties for organic molecules in ionic liquids is essential to the development of ionic liquids in many application areas. In the present work, molecular simulations were used to compute a wide range of properties for the pure ionic liquid trimethylbutylammonium bis(trifluoromethylsulfonyl)imide as well as mixtures of this ionic liquid with ethanol, 1-propanol, dimethylformamide, and dimethylsulfoxide. A new force field for the ionic liquid was developed and validated by computing ionic liquid surface tension and density as a function of temperature. Force fields for ethanol and propanol were taken from the literature, while new force fields were developed for dimethylformamide and dimethylsulfoxide. These force fields were shown to yield vapor-liquid coexistence curves, vapor pressure curves and critical points in excellent agreement with experimental data. Absorption isotherms, enthalpies of mixing and mixture volumes were then computed and shown to agree well with available literature. The simulations help rationalize the observed trends in solubility and enthalpy of mixing in terms of the relative strength of hydrogen bonding between the solutes and the ionic liquid. It was found that the entropy of absorption plays a very important role in the solvation process. The PCIP-SAFT equation of state was able to fit the experimental data (or simulation results when experiments were unavailable) very accurately with only small adjustable binary interaction parameters. PMID:25704844
2D constant-loss taper for mode conversion
NASA Astrophysics Data System (ADS)
Horth, Alexandre; Kashyap, Raman; Quitoriano, Nathaniel J.
2015-03-01
Proposed in this manuscript is a novel taper geometry, the constant-loss taper (CLT). This geometry is derived with 1D slabs of silicon embedded in silicon dioxide using coupled-mode theory (CMT). The efficiency of the CLT is compared to both linear and parabolic tapers using CMT and 2D finite-difference time-domain simulations. It is shown that over a short 2D, 4.45 μm long taper the CLT's mode conversion efficiency is ~90% which is 10% and 18% more efficient than a 2D parabolic or linear taper, respectively.
Recent advances in 2D materials for photocatalysis
NASA Astrophysics Data System (ADS)
Luo, Bin; Liu, Gang; Wang, Lianzhou
2016-03-01
Two-dimensional (2D) materials have attracted increasing attention for photocatalytic applications because of their unique thickness dependent physical and chemical properties. This review gives a brief overview of the recent developments concerning the chemical synthesis and structural design of 2D materials at the nanoscale and their applications in photocatalytic areas. In particular, recent progress on the emerging strategies for tailoring 2D material-based photocatalysts to improve their photo-activity including elemental doping, heterostructure design and functional architecture assembly is discussed.
Comparison of 2D and 3D gamma analyses
Pulliam, Kiley B.; Huang, Jessie Y.; Howell, Rebecca M.; Followill, David; Kry, Stephen F.; Bosca, Ryan; O’Daniel, Jennifer
2014-02-15
Purpose: As clinics begin to use 3D metrics for intensity-modulated radiation therapy (IMRT) quality assurance, it must be noted that these metrics will often produce results different from those produced by their 2D counterparts. 3D and 2D gamma analyses would be expected to produce different values, in part because of the different search space available. In the present investigation, the authors compared the results of 2D and 3D gamma analysis (where both datasets were generated in the same manner) for clinical treatment plans. Methods: Fifty IMRT plans were selected from the authors’ clinical database, and recalculated using Monte Carlo. Treatment planning system-calculated (“evaluated dose distributions”) and Monte Carlo-recalculated (“reference dose distributions”) dose distributions were compared using 2D and 3D gamma analysis. This analysis was performed using a variety of dose-difference (5%, 3%, 2%, and 1%) and distance-to-agreement (5, 3, 2, and 1 mm) acceptance criteria, low-dose thresholds (5%, 10%, and 15% of the prescription dose), and data grid sizes (1.0, 1.5, and 3.0 mm). Each comparison was evaluated to determine the average 2D and 3D gamma, lower 95th percentile gamma value, and percentage of pixels passing gamma. Results: The average gamma, lower 95th percentile gamma value, and percentage of passing pixels for each acceptance criterion demonstrated better agreement for 3D than for 2D analysis for every plan comparison. The average difference in the percentage of passing pixels between the 2D and 3D analyses with no low-dose threshold ranged from 0.9% to 2.1%. Similarly, using a low-dose threshold resulted in a difference between the mean 2D and 3D results, ranging from 0.8% to 1.5%. The authors observed no appreciable differences in gamma with changes in the data density (constant difference: 0.8% for 2D vs 3D). Conclusions: The authors found that 3D gamma analysis resulted in up to 2.9% more pixels passing than 2D analysis. It must
Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials
NASA Astrophysics Data System (ADS)
Kim, Sang Jin; Choi, Kyoungjun; Lee, Bora; Kim, Yuna; Hong, Byung Hee
2015-07-01
Recently, 2D materials have been intensively studied as emerging materials for future electronics, including flexible electronics, photonics, and electrochemical energy storage devices. Among representative 2D materials (such as graphene, boron nitride, and transition metal dichalcogenides) that exhibit extraordinary properties, graphene stands out in the flexible electronics field due to its combination of high electron mobility, high thermal conductivity, high specific surface area, high optical transparency, excellent mechanical flexibility, and environmental stability. This review covers the synthesis, transfer, and characterization methods of graphene and 2D materials and graphene's application to flexible devices as well as comparison with other competing materials.
Bridging the Gap: From 2D Cell Culture to 3D Microengineered Extracellular Matrices.
Li, Yanfen; Kilian, Kristopher A
2015-12-30
Historically the culture of mammalian cells in the laboratory has been performed on planar substrates with media cocktails that are optimized to maintain phenotype. However, it is becoming increasingly clear that much of biology discerned from 2D studies does not translate well to the 3D microenvironment. Over the last several decades, 2D and 3D microengineering approaches have been developed that better recapitulate the complex architecture and properties of in vivo tissue. Inspired by the infrastructure of the microelectronics industry, lithographic patterning approaches have taken center stage because of the ease in which cell-sized features can be engineered on surfaces and within a broad range of biocompatible materials. Patterning and templating techniques enable precise control over extracellular matrix properties including: composition, mechanics, geometry, cell-cell contact, and diffusion. In this review article we explore how the field of engineered extracellular matrices has evolved with the development of new hydrogel chemistry and the maturation of micro- and nano- fabrication. Guided by the spatiotemporal regulation of cell state in developing tissues, techniques for micropatterning in 2D, pseudo-3D systems, and patterning within 3D hydrogels will be discussed in the context of translating the information gained from 2D systems to synthetic engineered 3D tissues. PMID:26592366
NASA Astrophysics Data System (ADS)
Bouclier, R.; Elguedj, T.; Combescure, A.
2013-11-01
This work deals with the development of 2D solid shell non-uniform rational B-spline elements. We address a static problem, that can be solved with a 2D model, involving a thin slender structure under small perturbations. The plane stress, plane strain and axisymmetric assumption can be made. projection and reduced integration techniques are considered to deal with the locking phenomenon. The use of the approach leads to the implementation of two strategies insensitive to locking: the first strategy is based on a 1D projection of the mean strain across the thickness; the second strategy undertakes to project all the strains onto a suitably chosen 2D space. Conversely, the reduced integration approach based on Gauss points is less expensive, but only alleviates locking and is limited to quadratic approximations. The performance of the various 2D elements developed is assessed through several numerical examples. Simple extensions of these techniques to 3D are finally performed.
Recent developments in 2D layered inorganic nanomaterials for sensing
NASA Astrophysics Data System (ADS)
Kannan, Padmanathan Karthick; Late, Dattatray J.; Morgan, Hywel; Rout, Chandra Sekhar
2015-08-01
Two dimensional layered inorganic nanomaterials (2D-LINs) have recently attracted huge interest because of their unique thickness dependent physical and chemical properties and potential technological applications. The properties of these layered materials can be tuned via both physical and chemical processes. Some 2D layered inorganic nanomaterials like MoS2, WS2 and SnS2 have been recently developed and employed in various applications, including new sensors because of their layer-dependent electrical properties. This article presents a comprehensive overview of recent developments in the application of 2D layered inorganic nanomaterials as sensors. Some of the salient features of 2D materials for different sensing applications are discussed, including gas sensing, electrochemical sensing, SERS and biosensing, SERS sensing and photodetection. The working principles of the sensors are also discussed together with examples.
2. D Street facade and rear (east) blank wall of ...
2. D Street facade and rear (east) blank wall of parking garage. Farther east is 408 8th Street (National Art And Frame Company). - PMI Parking Garage, 403-407 Ninth Street, Northwest, Washington, District of Columbia, DC
Collective excitations in 2D hard-disc fluid.
Huerta, Adrian; Bryk, Taras; Trokhymchuk, Andrij
2015-07-01
Collective dynamics of a two-dimensional (2D) hard-disc fluid was studied by molecular dynamics simulations in the range of packing fractions that covers states up to the freezing. Some striking features concerning collective excitations in this system were observed. In particular, the short-wavelength shear waves while being absent at low packing fractions were observed in the range of high packing fractions, just before the freezing transition in a 2D hard-disc fluid. In contrast, the so-called "positive sound dispersion" typically observed in dense Lennard-Jones-like fluids, was not detected for the 2D hard-disc fluid. The ratio of specific heats in the 2D hard-disc fluid shows a monotonic increase with density approaching the freezing, resembling in this way the similar behavior in the vicinity of the Widom line in the case of supercritical fluids. PMID:25595625
Alloyed 2D Metal-Semiconductor Atomic Layer Junctions.
Kim, Ah Ra; Kim, Yonghun; Nam, Jaewook; Chung, Hee-Suk; Kim, Dong Jae; Kwon, Jung-Dae; Park, Sang Won; Park, Jucheol; Choi, Sun Young; Lee, Byoung Hun; Park, Ji Hyeon; Lee, Kyu Hwan; Kim, Dong-Ho; Choi, Sung Mook; Ajayan, Pulickel M; Hahm, Myung Gwan; Cho, Byungjin
2016-03-01
Heterostructures of compositionally and electronically variant two-dimensional (2D) atomic layers are viable building blocks for ultrathin optoelectronic devices. We show that the composition of interfacial transition region between semiconducting WSe2 atomic layer channels and metallic NbSe2 contact layers can be engineered through interfacial doping with Nb atoms. WxNb1-xSe2 interfacial regions considerably lower the potential barrier height of the junction, significantly improving the performance of the corresponding WSe2-based field-effect transistor devices. The creation of such alloyed 2D junctions between dissimilar atomic layer domains could be the most important factor in controlling the electronic properties of 2D junctions and the design and fabrication of 2D atomic layer devices. PMID:26839956
Technical Review of the UNET2D Hydraulic Model
Perkins, William A.; Richmond, Marshall C.
2009-05-18
The Kansas City District of the US Army Corps of Engineers is engaged in a broad range of river management projects that require knowledge of spatially-varied hydraulic conditions such as velocities and water surface elevations. This information is needed to design new structures, improve existing operations, and assess aquatic habitat. Two-dimensional (2D) depth-averaged numerical hydraulic models are a common tool that can be used to provide velocity and depth information. Kansas City District is currently using a specific 2D model, UNET2D, that has been developed to meet the needs of their river engineering applications. This report documents a tech- nical review of UNET2D.
From weakly to strongly interacting 2D Fermi gases
NASA Astrophysics Data System (ADS)
Dyke, Paul; Fenech, Kristian; Lingham, Marcus; Peppler, Tyson; Hoinka, Sascha; Vale, Chris
2014-05-01
We study ultracold 2D Fermi gases of 6Li formed in a highly oblate trapping potential. The potential is generated by a cylindrically focused, blue detuned TEM01 mode laser beam. Weak magnetic field curvature provides highly harmonic confinement in the radial direction and we can readily produce single clouds with an aspect ratio of 230. Our experiments investigate the dimensional crossover from 3D to 2D for a two component Fermi gas in the Bose-Einstein Condensate to Bardeen Cooper Schrieffer crossover. Observation of an elbow in measurements of the cloud width vs. atom number is consistent with populating only the lowest transverse harmonic oscillator state for weak attractive interactions. This measurement is extended to the strongly interacting region using the broad Feshbach resonance at 832 G. We also report our progress towards measurement of the 2D equation of state for an interacting 2D Fermi gas via in-situ absorption imaging.
Chemical vapour deposition: Transition metal carbides go 2D
NASA Astrophysics Data System (ADS)
Gogotsi, Yury
2015-11-01
The unique properties of 2D materials, such as graphene or transition metal dichalcogenides, have been attracting much attention in the past decade. Now, metallically conductive and even superconducting transition metal carbides are entering the game.
Dominant 2D magnetic turbulence in the solar wind
NASA Technical Reports Server (NTRS)
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1995-01-01
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevector aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of inertial ranged magnetic spectra in the solar wind. The first test is based upon a characteristic difference between perpendicular and parallel reduced power spectra which is expected for the 2D component but not for the slab component. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant (approximately 85 percent by energy) 2D component in solar wind magnetic turbulence.
Dominant 2D magnetic turbulence in the solar wind
Bieber, John W.; Wanner, Wolfgang; Matthaeus, William H.
1996-07-20
There have been recent suggestions that solar wind magnetic turbulence may be a composite of slab geometry (wavevectors aligned with the mean magnetic field) and 2D geometry (wavevectors perpendicular to the mean field). We report results of two new tests of this hypothesis using Helios measurements of mid-inertial range magnetic spectra in the solar wind. The first test is based upon a characteristic difference between reduced magnetic power spectra in the two different directions perpendicular to the mean field. Such a difference is expected for 2D geometry but not for slab geometry. The second test examines the dependence of power spectrum density upon the magnetic field angle (i.e., the angle between the mean magnetic field and the radial direction), a relationship which is expected to be in opposite directions for the slab and 2D components. Both tests support the presence of a dominant ({approx}85% by energy) 2D component in solar wind magnetic turbulence.
Efficient framework for deformable 2D-3D registration
NASA Astrophysics Data System (ADS)
Fluck, Oliver; Aharon, Shmuel; Khamene, Ali
2008-03-01
Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.
Computational Design of 2D materials for Energy Applications
NASA Astrophysics Data System (ADS)
Sun, Qiang
2015-03-01
Since the successful synthesis of graphene, tremendous efforts have been devoted to two-dimensional monolayers such as boron nitride (BN), silicene and MoS2. These 2D materials exhibit a large variety of physical and chemical properties with unprecedented applications. Here we report our recent studies of computational design of 2D materials for fuel cell applications which include hydrogen storage, CO2 capture, CO conversion and O2 reduction.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Phylogenetic tree construction based on 2D graphical representation
NASA Astrophysics Data System (ADS)
Liao, Bo; Shan, Xinzhou; Zhu, Wen; Li, Renfa
2006-04-01
A new approach based on the two-dimensional (2D) graphical representation of the whole genome sequence [Bo Liao, Chem. Phys. Lett., 401(2005) 196.] is proposed to analyze the phylogenetic relationships of genomes. The evolutionary distances are obtained through measuring the differences among the 2D curves. The fuzzy theory is used to construct phylogenetic tree. The phylogenetic relationships of H5N1 avian influenza virus illustrate the utility of our approach.
Atherosclerosis imaging using 3D black blood TSE SPACE vs 2D TSE
Wong, Stephanie K; Mobolaji-Iawal, Motunrayo; Arama, Leron; Cambe, Joy; Biso, Sylvia; Alie, Nadia; Fayad, Zahi A; Mani, Venkatesh
2014-01-01
AIM: To compare 3D Black Blood turbo spin echo (TSE) sampling perfection with application-optimized contrast using different flip angle evolution (SPACE) vs 2D TSE in evaluating atherosclerotic plaques in multiple vascular territories. METHODS: The carotid, aortic, and femoral arterial walls of 16 patients at risk for cardiovascular or atherosclerotic disease were studied using both 3D black blood magnetic resonance imaging SPACE and conventional 2D multi-contrast TSE sequences using a consolidated imaging approach in the same imaging session. Qualitative and quantitative analyses were performed on the images. Agreement of morphometric measurements between the two imaging sequences was assessed using a two-sample t-test, calculation of the intra-class correlation coefficient and by the method of linear regression and Bland-Altman analyses. RESULTS: No statistically significant qualitative differences were found between the 3D SPACE and 2D TSE techniques for images of the carotids and aorta. For images of the femoral arteries, however, there were statistically significant differences in all four qualitative scores between the two techniques. Using the current approach, 3D SPACE is suboptimal for femoral imaging. However, this may be due to coils not being optimized for femoral imaging. Quantitatively, in our study, higher mean total vessel area measurements for the 3D SPACE technique across all three vascular beds were observed. No significant differences in lumen area for both the right and left carotids were observed between the two techniques. Overall, a significant-correlation existed between measures obtained between the two approaches. CONCLUSION: Qualitative and quantitative measurements between 3D SPACE and 2D TSE techniques are comparable. 3D-SPACE may be a feasible approach in the evaluation of cardiovascular patients. PMID:24876923
Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates
NASA Astrophysics Data System (ADS)
Leon Swisher, Christine; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder
2015-08-01
In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate-lactate, pyruvate-alanine, and pyruvate-hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines.
Dynamic UltraFast 2D EXchange SpectroscopY (UF-EXSY) of hyperpolarized substrates
Swisher, Christine Leon; Koelsch, Bertram; Sukumar, Subramianam; Sriram, Renuka; Santos, Romelyn Delos; Wang, Zhen Jane; Kurhanewicz, John; Vigneron, Daniel; Larson, Peder
2015-01-01
In this work, we present a new ultrafast method for acquiring dynamic 2D EXchange SpectroscopY (EXSY) within a single acquisition. This technique reconstructs two-dimensional EXSY spectra from one-dimensional spectra based on the phase accrual during echo times. The Ultrafast-EXSY acquisition overcomes long acquisition times typically needed to acquire 2D NMR data by utilizing sparsity and phase dependence to dramatically undersample in the indirect time dimension. This allows for the acquisition of the 2D spectrum within a single shot. We have validated this method in simulations and hyperpolarized enzyme assay experiments separating the dehydration of pyruvate and lactate-to-pyruvate conversion. In a renal cell carcinoma cell (RCC) line, bidirectional exchange was observed. This new technique revealed decreased conversion of lactate-to-pyruvate with high expression of monocarboxylate transporter 4 (MCT4), known to correlate with aggressive cancer phenotypes. We also showed feasibility of this technique in vivo in a RCC model where bidirectional exchange was observed for pyruvate–lactate, pyruvate–alanine, and pyruvate–hydrate and were resolved in time. Broadly, the technique is well suited to investigate the dynamics of multiple exchange pathways and applicable to hyperpolarized substrates where chemical exchange has shown great promise across a range of disciplines. PMID:26117655
Cascading rainfall uncertainties into 2D inundation impact models
NASA Astrophysics Data System (ADS)
Souvignet, Maxime; de Almeida, Gustavo; Champion, Adrian; Garcia Pintado, Javier; Neal, Jeff; Freer, Jim; Cloke, Hannah; Odoni, Nick; Coxon, Gemma; Bates, Paul; Mason, David
2013-04-01
Existing precipitation products show differences in their spatial and temporal distribution and several studies have presented how these differences influence the ability to predict hydrological responses. However, an atmospheric-hydrologic-hydraulic uncertainty cascade is seldom explored and how, importantly, input uncertainties propagate through this cascade is still poorly understood. Such a project requires a combination of modelling capabilities, runoff generation predictions based on those rainfall forecasts, and hydraulic flood wave propagation based on the runoff predictions. Accounting for uncertainty in each component is important in decision making for issuing flood warnings, monitoring or planning. We suggest a better understanding of uncertainties in inundation impact modelling must consider these differences in rainfall products. This will improve our understanding of the input uncertainties on our predictive capability. In this paper, we propose to address this issue by i) exploring the effects of errors in rainfall on inundation predictive capacity within an uncertainty framework, i.e. testing inundation uncertainty against different comparable meteorological conditions (i.e. using different rainfall products). Our method cascades rainfall uncertainties into a lumped hydrologic model (FUSE) within the GLUE uncertainty framework. The resultant prediction uncertainties in discharge provide uncertain boundary conditions, which are cascaded into a simplified shallow water 2D hydraulic model (LISFLOOD-FP). Rainfall data captured by three different measurement techniques - rain gauges, gridded data and numerical weather predictions (NWP) models are used to assess the combined input data and model parameter uncertainty. The study is performed in the Severn catchment over the period between June and July 2007, where a series of rainfall events causing record floods in the study area). Changes in flood area extent are compared and the uncertainty envelope is
Self-leveling 2D DPN probe arrays
NASA Astrophysics Data System (ADS)
Haaheim, Jason R.; Val, Vadim; Solheim, Ed; Bussan, John; Fragala, J.; Nelson, Mike
2010-02-01
Dip Pen Nanolithography® (DPN®) is a direct write scanning probe-based technique which operates under ambient conditions, making it suitable to deposit a wide range of biological and inorganic materials. Precision nanoscale deposition is a fundamental requirement to advance nanoscale technology in commercial applications, and tailoring chemical composition and surface structure on the sub-100 nm scale benefits researchers in areas ranging from cell adhesion to cell-signaling and biomimetic membranes. These capabilities naturally suggest a "Desktop Nanofab" concept - a turnkey system that allows a non-expert user to rapidly create high resolution, scalable nanostructures drawing upon well-characterized ink and substrate pairings. In turn, this system is fundamentally supported by a portfolio of MEMS devices tailored for microfluidic ink delivery, directed placement of nanoscale materials, and cm2 tip arrays for high-throughput nanofabrication. Massively parallel two-dimensional nanopatterning is now commercially available via NanoInk's 2D nano PrintArray™, making DPN a high-throughput (>3×107 μm2 per hour), flexible and versatile method for precision nanoscale pattern formation. However, cm2 arrays of nanoscopic tips introduce the nontrivial problem of getting them all evenly touching the surface to ensure homogeneous deposition; this requires extremely precise leveling of the array. Herein, we describe how we have made the process simple by way of a selfleveling gimbal attachment, coupled with semi-automated software leveling routines which bring the cm^2 chip to within 0.002 degrees of co-planarity. This excellent co-planarity yields highly homogeneous features across a square centimeter, with <6% feature size standard deviation. We have engineered the devices to be easy to use, wire-free, and fully integrated with both of our patterning tools: the DPN 5000, and the NLP 2000.
Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials
NASA Astrophysics Data System (ADS)
Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna
2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.
CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1994-01-01
An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.
NASA Astrophysics Data System (ADS)
Yang, Jie; Rodriguez, Norma; Omedes, Olivier; Gennari, Frank; Lai, Ya-Chieh; Mankad, Viral
2010-03-01
As technology processes continue to shrink, standard design rule checking (DRC) has become insufficient to guarantee design manufacturability. DRCPlus is a powerful technique for capturing yield detractors related to complex 2D situations1,2. DRCPlus is a pattern-based 2D design rule check beyond traditional width and space DRC that can identify problematic 2D configurations which are difficult to manufacture. This paper describes a new approach for applying DRCPlus in a router, enabling an automated approach to detecting and fixing known lithography hotspots using an integrated fast 2D pattern matching engine. A simple pass/no-pass criterion associated with each pattern offers designers guidance on how to fix these problematic patterns. Since it does not rely on compute intensive simulations, DRCPlus can be applied on fairly large design blocks and enforced in conjunction with standard DRC in the early stages of the design flow. By embedding this capability into the router, 2D yield detractors can be identified and fixed by designers in a push-button manner without losing design connectivity. More robust designs can be achieved and the impact on parasitics can be easily assessed. This paper will describe a flow using a fast 2D pattern matching engine integrated into the router in order to enforce DRCPlus rules. An integrated approach allows for rapid identification of hotspot patterns and, more importantly, allows for rapid fixing and verification of these hotspots by a tool that understands design intent and constraints. The overall flow is illustrated in Figure 1. An inexact search pattern is passed to the integrated pattern matcher. The match locations are filtered by the router through application of a DRC constraint (typically a recommended rule). Matches that fail this constraint are automatically fixed by the router, with the modified regions incrementally re-checked to ensure no additional DRCPlus violations are introduced.
Methodological Gaps in Left Atrial Function Assessment by 2D Speckle Tracking Echocardiography
Rimbaş, Roxana Cristina; Dulgheru, Raluca Elena; Vinereanu, Dragoş
2015-01-01
The assessment of left atrial (LA) function is used in various cardiovascular diseases. LA plays a complementary role in cardiac performance by modulating left ventricular (LV) function. Transthoracic two-dimensional (2D) phasic volumes and Doppler echocardiography can measure LA function non-invasively. However, evaluation of LA deformation derived from 2D speckle tracking echocardiography (STE) is a new feasible and promising approach for assessment of LA mechanics. These parameters are able to detect subclinical LA dysfunction in different pathological condition. Normal ranges for LA deformation and cut-off values to diagnose LA dysfunction with different diseases have been reported, but data are still conflicting, probably because of some methodological and technical issues. This review highlights the importance of an unique standardized technique to assess the LA phasic functions by STE, and discusses recent studies on the most important clinical applications of this technique. PMID:26761370
2D imaging and 3D sensing data acquisition and mutual registration for painting conservation
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale
2005-01-01
We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.
2D imaging and 3D sensing data acquisition and mutual registration for painting conservation
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Marras, Luciano; Pampaloni, Enrico M.; Pelagotti, Anna; Pezzati, Luca; Poggi, Pasquale
2004-12-01
We describe the application of 2D and 3D data acquisition and mutual registration to the conservation of paintings. RGB color image acquisition, IR and UV fluorescence imaging, together with the more recent hyperspectral imaging (32 bands) are among the most useful techniques in this field. They generally are meant to provide information on the painting materials, on the employed techniques and on the object state of conservation. However, only when the various images are perfectly registered on each other and on the 3D model, no ambiguity is possible and safe conclusions may be drawn. We present the integration of 2D and 3D measurements carried out on two different paintings: "Madonna of the Yarnwinder" by Leonardo da Vinci, and "Portrait of Lionello d'Este", by Pisanello, both painted in the XV century.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
NASA Astrophysics Data System (ADS)
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-01
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs
NASA Astrophysics Data System (ADS)
De Vylder, Jonas; Philips, Wilfried
2011-02-01
This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.
Dynamic photorefractive self-amplified angular-multiplex 2-D optical beam-array generation
NASA Technical Reports Server (NTRS)
Zhou, Shaomin; Yeh, Pochi; Liu, Hua-Kuang
1993-01-01
A real-time 2-D angular-multiplex beam-array holographic storage and reconstruction technique using electrically-addressed spatial light modulators(E-SLM's) and photorefractive crystals is described. Using a liquid crystal television (LCTV) spatial light modulator (SLM) for beam steering and lithium niobate photorefractive crystal for holographic recording, experimental results of generating large and complicated arrays of laser beams with high diffraction efficiency and good uniformity are presented.
Driven microswimmers on a 2D substrate: A stochastic towed sled model
Marchegiani, Giampiero; Marchesoni, Fabio
2015-11-14
We investigate, both numerically and analytically, the diffusion properties of a stochastic sled sliding on a substrate, subject to a constant towing force. The problem is motivated by the growing interest in controlling transport of artificial microswimmers in 2D geometries at low Reynolds numbers. We simulated both symmetric and asymmetric towed sleds. Remarkable properties of their mobilities and diffusion constants include sidewise drifts and excess diffusion peaks. We interpret our numerical findings by making use of stochastic approximation techniques.
Burgess, Ward A.; Tapriyal, Deepak; Morreale, Bryan D.; Soong, Yee; Baled, Hseen O.; Enick, Robert M.; Wu, Yue; Bamgbade, Babatunde A.; McHugh, Mark A.
2013-12-01
This research focuses on providing the petroleum reservoir engineering community with robust models of hydrocarbon density and viscosity at the extreme temperature and pressure conditions (up to 533 K and 276 MPa, respectively) characteristic of ultra-deep reservoirs, such as those associated with the deepwater wells in the Gulf of Mexico. Our strategy is to base the volume-translated (VT) Peng–Robinson (PR) and Soave–Redlich–Kwong (SRK) cubic equations of state (EoSs) and perturbed-chain, statistical associating fluid theory (PC-SAFT) on an extensive data base of high temperature (278–533 K), high pressure (6.9–276 MPa) density rather than fitting the models to low pressure saturated liquid density data. This high-temperature, high-pressure (HTHP) data base consists of literature data for hydrocarbons ranging from methane to C{sub 40}. The three new models developed in this work, HTHP VT-PR EoS, HTHP VT-SRK EoS, and hybrid PC-SAFT, yield mean absolute percent deviation values (MAPD) for HTHP hydrocarbon density of ~2.0%, ~1.5%, and <1.0%, respectively. An effort was also made to provide accurate hydrocarbon viscosity models based on literature data. Viscosity values are estimated with the frictional theory (f-theory) and free volume (FV) theory of viscosity. The best results were obtained when the PC-SAFT equation was used to obtain both the attractive and repulsive pressure inputs to f-theory, and the density input to FV theory. Both viscosity models provide accurate results at pressures to 100 MPa but experimental and model results can deviate by more than 25% at pressures above 200 MPa.
NASA Astrophysics Data System (ADS)
Peng, Cheng; Efetov, Dmitri; Shiue, Ren-Jye; Nanot, Sebastien; Hempel, Marek; Kong, Jing; Koppens, Frank; Englund, Dirk
Strong spatial tunability of the charge carrier density at nanoscale is essential to many 2D-material-based electronic and optoelectronic applications. As an example, plasmonic metamaterials with nanoscale dimensions would make graphene plasmonics at visible and near-infrared wavelengths possible. However, existing gating techniques based on conventional dielectric gating geometries limit the spatial resolution and achievable carrier concentration, strongly restricting the available wavelength, geometry, and quality of the devices. Here, we present a novel spatially selective electrolyte gating approach that allows for in-plane spatial Fermi energy modulation of 2D materials of more than 1 eV (carrier density of n = 1014 cm-2) across a length of 2 nm. We present electrostatic simulations as well as electronic transport, photocurrent, cyclic voltammetry and optical spectroscopy measurements to characterize the performance of the gating technique applied to graphene devices. The high spatial resolution, high doping capacity, full tunability and self-aligned device geometry of the presented technique opens a new venue for nanoscale metamaterial engineering of 2D materials for complete optical absorption, nonlinear optics and sensing, among other applications.
Fast and Memory-Efficient Topological Denoising of 2D and 3D Scalar Fields.
Günther, David; Jacobson, Alec; Reininghaus, Jan; Seidel, Hans-Peter; Sorkine-Hornung, Olga; Weinkauf, Tino
2014-12-01
Data acquisition, numerical inaccuracies, and sampling often introduce noise in measurements and simulations. Removing this noise is often necessary for efficient analysis and visualization of this data, yet many denoising techniques change the minima and maxima of a scalar field. For example, the extrema can appear or disappear, spatially move, and change their value. This can lead to wrong interpretations of the data, e.g., when the maximum temperature over an area is falsely reported being a few degrees cooler because the denoising method is unaware of these features. Recently, a topological denoising technique based on a global energy optimization was proposed, which allows the topology-controlled denoising of 2D scalar fields. While this method preserves the minima and maxima, it is constrained by the size of the data. We extend this work to large 2D data and medium-sized 3D data by introducing a novel domain decomposition approach. It allows processing small patches of the domain independently while still avoiding the introduction of new critical points. Furthermore, we propose an iterative refinement of the solution, which decreases the optimization energy compared to the previous approach and therefore gives smoother results that are closer to the input. We illustrate our technique on synthetic and real-world 2D and 3D data sets that highlight potential applications. PMID:26356972
2D and 3D X-Ray Structural Microscopy Using Submicron-Resolution Laue Microdiffraction
Budai, John D.; Yang, Wenge; Larson, Bennett C.; Tischler, Jonathan Z.; Liu, Wenjun; Ice, Gene E.
2010-11-10
We have developed a scanning, polychromatic x-ray microscopy technique with submicron spatial resolution at the Advanced Photon Source. In this technique, white undulator radiation is focused to submicron diameter using elliptical mirrors. Laue diffraction patterns scattered from the sample are collected with an area detector and then analyzed to obtain the local crystal structure, lattice orientation, and strain tensor. These new microdiffraction capabilities have enabled both 2D and 3D structural studies of materials on mesoscopic length-scales of tenths-to-hundreds of microns. For thin samples such as deposited films, 2D structural maps are obtained by step-scanning the area of interest. For example, 2D x-ray microscopy has been applied in studies of the epitaxial growth of oxide films. For bulk samples, a 3D differential-aperture x-ray microscopy technique has been developed that yields the full diffraction information from each submicron volume element. The capabilities of 3D x-ray microscopy are demonstrated here with measurements of grain orientations and grain boundary motion in polycrystalline aluminum during 3D thermal grain growth. X-ray microscopy provides the needed, direct link between the experimentally measured 3D microstructural evolution and the results of theory and modeling of materials processes on mesoscopic length scales.
Growth and Characterization of Silicon at the 2D Limit
NASA Astrophysics Data System (ADS)
Mannix, Andrew; Kiraly, Brian; Hersam, Mark; Guisinger, Nathan
2015-03-01
Because bulk silicon has dominated the development of microelectronics over the past 50 years, the recent interest in two-dimensional (2D) materials (e.g., graphene, MoS2, phosphorene, etc.) naturally raises questions regarding the growth and properties of silicon at the 2D limit. Utilizing atomic-scale, ultra-high vacuum (UHV) scanning tunneling microscopy (STM), we have investigated the 2D limits of silicon growth on Ag(111). In agreement with previous reports of sp2-bonded silicene phases, we observe the temperature-dependent evolution of ordered 2D phases. However, we attribute these to apparent Ag-Si surface alloys. At sufficiently high silicon coverage, we observe the precipitation of crystalline, sp3-bonded Si(111) domains. These domains are capped with a √3 honeycomb phase that is indistinguishable from the silver-induced √3 honeycomb-chained-trimer reconstruction on bulk Si(111). Further ex-situcharacterization with Raman spectroscopy, atomic force microscopy, cross-sectional transmission electron microscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy reveals that these sheets are ultrathin sheets of bulk-like, (111) oriented, sp3 silicon. Even at the 2D limit, scanning tunneling spectroscopy shows that these silicon nanosheets exhibit semiconducting electronic characteristics.
2D nanostructures for water purification: graphene and beyond.
Dervin, Saoirse; Dionysiou, Dionysios D; Pillai, Suresh C
2016-08-18
Owing to their atomically thin structure, large surface area and mechanical strength, 2D nanoporous materials are considered to be suitable alternatives for existing desalination and water purification membrane materials. Recent progress in the development of nanoporous graphene based materials has generated enormous potential for water purification technologies. Progress in the development of nanoporous graphene and graphene oxide (GO) membranes, the mechanism of graphene molecular sieve action, structural design, hydrophilic nature, mechanical strength and antifouling properties and the principal challenges associated with nanopore generation are discussed in detail. Subsequently, the recent applications and performance of newly developed 2D materials such as 2D boron nitride (BN) nanosheets, graphyne, molybdenum disulfide (MoS2), tungsten chalcogenides (WS2) and titanium carbide (Ti3C2Tx) are highlighted. In addition, the challenges affecting 2D nanostructures for water purification are highlighted and their applications in the water purification industry are discussed. Though only a few 2D materials have been explored so far for water treatment applications, this emerging field of research is set to attract a great deal of attention in the near future. PMID:27506268
Sparse radar imaging using 2D compressed sensing
NASA Astrophysics Data System (ADS)
Hou, Qingkai; Liu, Yang; Chen, Zengping; Su, Shaoying
2014-10-01
Radar imaging is an ill-posed linear inverse problem and compressed sensing (CS) has been proved to have tremendous potential in this field. This paper surveys the theory of radar imaging and a conclusion is drawn that the processing of ISAR imaging can be denoted mathematically as a problem of 2D sparse decomposition. Based on CS, we propose a novel measuring strategy for ISAR imaging radar and utilize random sub-sampling in both range and azimuth dimensions, which will reduce the amount of sampling data tremendously. In order to handle 2D reconstructing problem, the ordinary solution is converting the 2D problem into 1D by Kronecker product, which will increase the size of dictionary and computational cost sharply. In this paper, we introduce the 2D-SL0 algorithm into the reconstruction of imaging. It is proved that 2D-SL0 can achieve equivalent result as other 1D reconstructing methods, but the computational complexity and memory usage is reduced significantly. Moreover, we will state the results of simulating experiments and prove the effectiveness and feasibility of our method.
Phosphorene: A New High-Mobility 2D Semiconductor
NASA Astrophysics Data System (ADS)
Liu, Han; Neal, Adam; Zhu, Zhen; Tomanek, David; Ye, Peide
2014-03-01
The rise of 2D crystals has opened various possibilities for future electrical and optical applications. MoS2 n-type transistors are showing great potential in ultra-scaled and low-power electronics. Here, we introduce phosphorene, a name we coined for 2D few-layer black phosphorus, a new 2D material with layered structure. We perform ab initio band structure calculations and show that the fundamental band gap depends sensitively on the number of layers. We observe transport behavior, which shows a mobility variation in the 2D plane. High on-current of 194 mA/mm, high hole mobility up to 286 cm2/V .s and on/off ratio up to 104 was achieved with phosphorene transistors at room temperature. Schottky barrier height at the metal/phosphorene interface was also measured as a function of temperature. We demonstrate a CMOS inverter with combination to MoS2 NMOS transistors, which shows great potential for semiconducting 2D crystals in future electronic, optoelectronic and flexible electronic devices.
Mean flow and anisotropic cascades in decaying 2D turbulence
NASA Astrophysics Data System (ADS)
Liu, Chien-Chia; Cerbus, Rory; Gioia, Gustavo; Chakraborty, Pinaki
2015-11-01
Many large-scale atmospheric and oceanic flows are decaying 2D turbulent flows embedded in a non-uniform mean flow. Despite its importance for large-scale weather systems, the affect of non-uniform mean flows on decaying 2D turbulence remains unknown. In the absence of mean flow it is well known that decaying 2D turbulent flows exhibit the enstrophy cascade. More generally, for any 2D turbulent flow, all computational, experimental and field data amassed to date indicate that the spectrum of longitudinal and transverse velocity fluctuations correspond to the same cascade, signifying isotropy of cascades. Here we report experiments on decaying 2D turbulence in soap films with a non-uniform mean flow. We find that the flow transitions from the usual isotropic enstrophy cascade to a series of unusual and, to our knowledge, never before observed or predicted, anisotropic cascades where the longitudinal and transverse spectra are mutually independent. We discuss implications of our results for decaying geophysical turbulence.
2D Doppler backscattering using synthetic aperture microwave imaging of MAST edge plasmas
NASA Astrophysics Data System (ADS)
Thomas, D. A.; Brunner, K. J.; Freethy, S. J.; Huang, B. K.; Shevchenko, V. F.; Vann, R. G. L.
2016-02-01
Doppler backscattering (DBS) is already established as a powerful diagnostic; its extension to 2D enables imaging of turbulence characteristics from an extended region of the cut-off surface. The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D DBS experiments of MAST edge plasma. SAMI actively probes the plasma edge using a wide (±40° vertical and horizontal) and tuneable (10-34.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24° FWHM at 10-34.5 GHz. This capability is unique to SAMI and is a novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial observations of phenomena previously measured by conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch angle to be made; preliminary results are presented. Capabilities gained through steering a beam using a phased array and the limitations of this technique are discussed.
Local Probing of Phase Coherence in a Strongly Interacting 2D Quantum Gas
NASA Astrophysics Data System (ADS)
Luick, Niclas; Siegl, Jonas; Hueck, Klaus; Morgener, Kai; Lompe, Thomas; Weimer, Wolf; Moritz, Henning
2016-05-01
The dimensionality of a quantum system has a profound impact on its coherence and superfluid properties. In 3D superfluids, bosonic atoms or Cooper pairs condense into a macroscopic wave function exhibiting long-range phase coherence. Meanwhile, 2D superfluids show a strikingly different behavior: True long-range coherence is precluded by thermal fluctuations, nevertheless Berezinskii-Kosterlitz-Thouless (BKT) theory predicts that 2D systems can still become superfluid. The superfluid state is characterized by an algebraic decay of phase correlations g1(r) ~r - τ / 4 , where the decay exponent τ is directly related to the superfluid density ns according to τ = 4 /(nsλdB2) . I will present local coherence measurements in a strongly interacting 2D gas of diatomic 6 Li molecules. A self-interference technique allows us to locally extract the algebraic decay exponent and to reconstruct the superfluid density. We determine the scaling of the decay exponent with phase space density to provide a benchmark for studies of 2D superfluids in the strongly interacting regime.
2D materials for photon conversion and nanophotonics
NASA Astrophysics Data System (ADS)
Tahersima, Mohammad H.; Sorger, Volker J.
2015-09-01
The field of two-dimensional (2D) materials has the potential to enable unique applications across a wide range of the electromagnetic spectrum. While 2D-layered materials hold promise for next-generation photon-conversion intrinsic limitations and challenges exist that shall be overcome. Here we discuss the intrinsic limitations as well as application opportunities of this new class of materials, and is sponsored by the NSF program Designing Materials to Revolutionize and Engineer our Future (DMREF) program, which links to the President's Materials Genome Initiative. We present general material-related details for photon conversion, and show that taking advantage of the mechanical flexibility of 2D materials by rolling MoS2/graphene/hexagonal boron nitride stack to a spiral solar cell allows for solar absorption up to 90%.
Perception-based reversible watermarking for 2D vector maps
NASA Astrophysics Data System (ADS)
Men, Chaoguang; Cao, Liujuan; Li, Xiang
2010-07-01
This paper presents an effective and reversible watermarking approach for digital copyright protection of 2D-vector maps. To ensure that the embedded watermark is insensitive for human perception, we only select the noise non-sensitive regions for watermark embedding by estimating vertex density within each polyline. To ensure the exact recovery of original 2D-vector map after watermark extraction, we introduce a new reversible watermarking scheme based on reversible high-frequency wavelet coefficients modification. Within the former-selected non-sensitive regions, our watermarking operates on the lower-order vertex coordinate decimals with integer wavelet transform. Such operation further reduces the visual distortion caused by watermark embedding. We have validated the effectiveness of our scheme on our real-world city river/building 2D-vector maps. We give extensive experimental comparisons with state-of-the-art methods, including embedding capability, invisibility, and robustness over watermark attacking.
Graphene based 2D-materials for supercapacitors
NASA Astrophysics Data System (ADS)
Palaniselvam, Thangavelu; Baek, Jong-Beom
2015-09-01
Ever-increasing energy demands and the depletion of fossil fuels are compelling humanity toward the development of suitable electrochemical energy conversion and storage devices to attain a more sustainable society with adequate renewable energy and zero environmental pollution. In this regard, supercapacitors are being contemplated as potential energy storage devices to afford cleaner, environmentally friendly energy. Recently, a great deal of attention has been paid to two-dimensional (2D) nanomaterials, including 2D graphene and its inorganic analogues (transition metal double layer hydroxides, chalcogenides, etc), as potential electrodes for the development of supercapacitors with high electrochemical performance. This review provides an overview of the recent progress in using these graphene-based 2D materials as potential electrodes for supercapacitors. In addition, future research trends including notable challenges and opportunities are also discussed.
Simultaneous 2D Strain Sensing Using Polymer Planar Bragg Gratings
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Simultaneous 2D strain sensing using polymer planar Bragg gratings.
Rosenberger, Manuel; Eisenbeil, Waltraud; Schmauss, Bernhard; Hellmann, Ralf
2015-01-01
We demonstrate the application of polymer planar Bragg gratings for multi-axial strain sensing and particularly highlight simultaneous 2D strain measurement. A polymer planar Bragg grating (PPBG) fabricated with a single writing step in bulk polymethylmethacrylate is used for measuring both tensile and compressive strain at various angles. It is shown that the sensitivity of the PPBG strongly depends on the angle between the optical waveguide into which the grating is inscribed and the direction along which the mechanical load is applied. Additionally, a 2D PPBG fabricated by writing two Bragg gratings angularly displaced from each other into a single polymer platelet is bonded to a stainless steel plate. The two reflected wavelengths exhibit different sensitivities while tested toward tensile and compressive strain. These characteristics make 2D PPBG suitable for measuring multi-axial tensile and compressive strain. PMID:25686313
Focusing surface wave imaging with flexible 2D array
NASA Astrophysics Data System (ADS)
Zhou, Shiyuan; Fu, Junqiang; Li, Zhe; Xu, Chunguang; Xiao, Dingguo; Wang, Shaohan
2016-04-01
Curved surface is widely exist in key parts of energy and power equipment, such as, turbine blade cylinder block and so on. Cycling loading and harsh working condition of enable fatigue cracks appear on the surface. The crack should be found in time to avoid catastrophic damage to the equipment. A flexible 2D array transducer was developed. 2D Phased Array focusing method (2DPA), Mode-Spatial Double Phased focusing method (MSDPF) and the imaging method using the flexible 2D array probe are studied. Experiments using these focusing and imaging method are carried out. Surface crack image is obtained with both 2DPA and MSDPF focusing method. It have been proved that MSDPF can be more adaptable for curved surface and more calculate efficient than 2DPA.
2D bifurcations and Newtonian properties of memristive Chua's circuits
NASA Astrophysics Data System (ADS)
Marszalek, W.; Podhaisky, H.
2016-01-01
Two interesting properties of Chua's circuits are presented. First, two-parameter bifurcation diagrams of Chua's oscillatory circuits with memristors are presented. To obtain various 2D bifurcation images a substantial numerical effort, possibly with parallel computations, is needed. The numerical algorithm is described first and its numerical code for 2D bifurcation image creation is available for free downloading. Several color 2D images and the corresponding 1D greyscale bifurcation diagrams are included. Secondly, Chua's circuits are linked to Newton's law φ ''= F(t,φ,φ')/m with φ=\\text{flux} , constant m > 0, and the force term F(t,φ,φ') containing memory terms. Finally, the jounce scalar equations for Chua's circuits are also discussed.
Microscale 2D separation systems for proteomic analysis
Xu, Xin; Liu, Ke; Fan, Z. Hugh
2012-01-01
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786
Real-time 2-D temperature imaging using ultrasound.
Liu, Dalong; Ebbini, Emad S
2010-01-01
We have previously introduced methods for noninvasive estimation of temperature change using diagnostic ultrasound. The basic principle was validated both in vitro and in vivo by several groups worldwide. Some limitations remain, however, that have prevented these methods from being adopted in monitoring and guidance of minimally invasive thermal therapies, e.g., RF ablation and high-intensity-focused ultrasound (HIFU). In this letter, we present first results from a real-time system for 2-D imaging of temperature change using pulse-echo ultrasound. The front end of the system is a commercially available scanner equipped with a research interface, which allows the control of imaging sequence and access to the RF data in real time. A high-frame-rate 2-D RF acquisition mode, M2D, is used to capture the transients of tissue motion/deformations in response to pulsed HIFU. The M2D RF data is streamlined to the back end of the system, where a 2-D temperature imaging algorithm based on speckle tracking is implemented on a graphics processing unit. The real-time images of temperature change are computed on the same spatial and temporal grid of the M2D RF data, i.e., no decimation. Verification of the algorithm was performed by monitoring localized HIFU-induced heating of a tissue-mimicking elastography phantom. These results clearly demonstrate the repeatability and sensitivity of the algorithm. Furthermore, we present in vitro results demonstrating the possible use of this algorithm for imaging changes in tissue parameters due to HIFU-induced lesions. These results clearly demonstrate the value of the real-time data streaming and processing in monitoring, and guidance of minimally invasive thermotherapy. PMID:19884075
Design of the LRP airfoil series using 2D CFD
NASA Astrophysics Data System (ADS)
Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas
2014-06-01
This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.
Quantum process tomography by 2D fluorescence spectroscopy
Pachón, Leonardo A.; Marcus, Andrew H.; Aspuru-Guzik, Alán
2015-06-07
Reconstruction of the dynamics (quantum process tomography) of the single-exciton manifold in energy transfer systems is proposed here on the basis of two-dimensional fluorescence spectroscopy (2D-FS) with phase-modulation. The quantum-process-tomography protocol introduced here benefits from, e.g., the sensitivity enhancement ascribed to 2D-FS. Although the isotropically averaged spectroscopic signals depend on the quantum yield parameter Γ of the doubly excited-exciton manifold, it is shown that the reconstruction of the dynamics is insensitive to this parameter. Applications to foundational and applied problems, as well as further extensions, are discussed.
Evaluation of 2D ceramic matrix composites in aeroconvective environments
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza
1992-01-01
An evaluation is conducted of a novel ceramic-matrix composite (CMC) material system for use in the aeroconvective-heating environments encountered by the nose caps and wing leading edges of such aerospace vehicles as the Space Shuttle, during orbit-insertion and reentry from LEO. These CMCs are composed of an SiC matrix that is reinforced with Nicalon, Nextel, or carbon refractory fibers in a 2D architecture. The test program conducted for the 2D CMCs gave attention to their subsurface oxidation.
Radiative heat transfer in 2D Dirac materials
Rodriguez-López, Pablo; Tse, Wang -Kong; Dalvit, Diego A. R.
2015-05-12
We compute the radiative heat transfer between two sheets of 2D Dirac materials, including topological Chern insulators and graphene, within the framework of the local approximation for the optical response of these materials. In this approximation, which neglects spatial dispersion, we derive both numerically and analytically the short-distance asymptotic of the near-field heat transfer in these systems, and show that it scales as the inverse of the distance between the two sheets. In conclusion, we discuss the limitations to the validity of this scaling law imposed by spatial dispersion in 2D Dirac materials.
Nomenclature for human CYP2D6 alleles.
Daly, A K; Brockmöller, J; Broly, F; Eichelbaum, M; Evans, W E; Gonzalez, F J; Huang, J D; Idle, J R; Ingelman-Sundberg, M; Ishizaki, T; Jacqz-Aigrain, E; Meyer, U A; Nebert, D W; Steen, V M; Wolf, C R; Zanger, U M
1996-06-01
To standardize CYP2D6 allele nomenclature, and to conform with international human gene nomenclature guidelines, an alternative to the current arbitrary system is described. Based on recommendations for human genome nomenclature, we propose that alleles be designated by CYP2D6 followed by an asterisk and a combination of roman letters and arabic numerals distinct for each allele with the number specifying the key mutation and, where appropriate, a letter specifying additional mutations. Criteria for classification as a separate allele and protein nomenclature are also presented. PMID:8807658
The 2D large deformation analysis using Daubechies wavelet
NASA Astrophysics Data System (ADS)
Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi
2010-01-01
In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.
Optical imaging systems analyzed with a 2D template.
Haim, Harel; Konforti, Naim; Marom, Emanuel
2012-05-10
Present determination of optical imaging systems specifications are based on performance values and modulation transfer function results carried with a 1D resolution template (such as the USAF resolution target or spoke templates). Such a template allows determining image quality, resolution limit, and contrast. Nevertheless, the conventional 1D template does not provide satisfactory results, since most optical imaging systems handle 2D objects for which imaging system response may be different by virtue of some not readily observable spatial frequencies. In this paper we derive and analyze contrast transfer function results obtained with 1D as well as 2D templates. PMID:22614498
2dF grows up: Echidna for the AAT
NASA Astrophysics Data System (ADS)
McGrath, Andrew; Barden, Sam; Miziarski, Stan; Rambold, William; Smith, Greg
2008-07-01
We present the concept design of a new fibre positioner and spectrograph system for the Anglo-Australian Telescope, as a proposed enhancement to the Anglo-Australian Observatory's well-known 2dF facility. A four-fold multiplex enhancement is accomplished by replacing the 400-fibre 2dF fibre positioning robot with a 1600-fibre Echidna unit, feeding three clones of the AAOmega optical spectrograph. Such a facility has the capability of a redshift 1 survey of a large fraction of the southern sky, collecting five to ten thousand spectra per night for a million-galaxy survey.
CH2D+, the Search for the Holy Grail
NASA Astrophysics Data System (ADS)
Roueff, Evelyne; Gerin, Maryvonne; Lis, Dariusz C.; Wootten, Alwyn; Marcelino, Nuria; Cernicharo, Jose; Tercero, Belen
2013-10-01
CH2D+, the singly deuterated counterpart of CH3+, offers an alternative way to mediate formation of deuterated species at temperatures of several tens of Kelvin, as compared to the release of deuterated species from grains. We report a longstanding observational search for this molecular ion, whose rotational spectroscopy is not yet completely secure. We summarize the main spectroscopic properties of this molecule and discuss the chemical network leading to the formation of CH2D+, with explicit account of the ortho/para forms of H2, H3+, and CH3+. Astrochemical models support the presence of this molecular ion in moderately warm environments at a marginal level.
Energy Science and Technology Software Center (ESTSC)
2012-01-05
Code is for a layered electric medium with 2d structure. Includes air-earth interface at node z=2.. The electric ex and ez fields are calculated on edges of elemental grid and magnetic field hy is calculated on the face of the elemental grid. The code allows for a layered earth with 2d structures. Solutions of coupled first order Maxwell's equations are solved in the two dimensional environment using a finite- difference scheme on a staggered spationamore » and temporal grid.« less
Noninvasive deep Raman detection with 2D correlation analysis
NASA Astrophysics Data System (ADS)
Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug
2014-07-01
The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.
On 2D bisection method for double eigenvalue problems
Ji, X.
1996-06-01
The two-dimensional bisection method presented in (SIAM J. Matrix Anal. Appl. 13(4), 1085 (1992)) is efficient for solving a class of double eigenvalue problems. This paper further extends the 2D bisection method of full matrix cases and analyses its stability. As in a single parameter case, the 2D bisection method is very stable for the tridiagonal matrix triples satisfying the symmetric-definite condition. Since the double eigenvalue problems arise from two-parameter boundary value problems, an estimate of the discretization error in eigenpairs is also given. Some numerical examples are included. 42 refs., 1 tab.
Experimental validation of equations for 2D DIC uncertainty quantification.
Reu, Phillip L.; Miller, Timothy J.
2010-03-01
Uncertainty quantification (UQ) equations have been derived for predicting matching uncertainty in two-dimensional image correlation a priori. These equations include terms that represent the image noise and image contrast. Researchers at the University of South Carolina have extended previous 1D work to calculate matching errors in 2D. These 2D equations have been coded into a Sandia National Laboratories UQ software package to predict the uncertainty for DIC images. This paper presents those equations and the resulting error surfaces for trial speckle images. Comparison of the UQ results with experimentally subpixel-shifted images is also discussed.
NASA Astrophysics Data System (ADS)
Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.
2007-09-01
This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it
Rowley-Neale, Samuel J; Fearn, Jamie M; Brownson, Dale A C; Smith, Graham C; Ji, Xiaobo; Banks, Craig E
2016-08-21
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm(-2) modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR. PMID:27448174
The relationship between 2D static features and 2D dynamic features used in gait recognition
NASA Astrophysics Data System (ADS)
Alawar, Hamad M.; Ugail, Hassan; Kamala, Mumtaz; Connah, David
2013-05-01
In most gait recognition techniques, both static and dynamic features are used to define a subject's gait signature. In this study, the existence of a relationship between static and dynamic features was investigated. The correlation coefficient was used to analyse the relationship between the features extracted from the "University of Bradford Multi-Modal Gait Database". This study includes two dimensional dynamic and static features from 19 subjects. The dynamic features were compromised of Phase-Weighted Magnitudes driven by a Fourier Transform of the temporal rotational data of a subject's joints (knee, thigh, shoulder, and elbow). The results concluded that there are eleven pairs of features that are considered significantly correlated with (p<0.05). This result indicates the existence of a statistical relationship between static and dynamics features, which challenges the results of several similar studies. These results bare great potential for further research into the area, and would potentially contribute to the creation of a gait signature using latent data.
NASA Astrophysics Data System (ADS)
El-Kenawy, Abeer
2013-09-01
Vertical electrical sounding (VES), a resistivity sounding technique, has been applied at two important archaeological sites in the eastern part of the Nile Delta to trace the paleoenvironment, particularly the defunct canals. Like many other archaeological sites in the Nile Delta of Egypt, these two sites have been subjected to urbanisation and agricultural invasion from the local farmers. Therefore, studying the paleoenvironment is an important task for guiding the excavation process and highlighting the importance of these two archaeological sites. The VES stations were arranged to cover the two sites, in the form of traverse profiles for tracing the subsurface sand and gravel facies that intercalated with clay deposits. The acquired VES data were processed based on the available borehole lithological information for the purpose of establishing the resistivity-depth models. Both 1D and 2D processing schemes were applied to the VES data sets to increase the confidence of the obtained results. The clay and silt deposits are characterised by low resistivity values, whereas the sand facies has a relatively high resistivity character. From the constructed cross-sections at the two sites, it was possible to define a consistent character for the clay deposits, which can be inferred as the defunct canals that supplied water to the two sites.
NASA Astrophysics Data System (ADS)
Buchheim, Jakob; Wyss, Roman M.; Shorubalko, Ivan; Park, Hyung Gyu
2016-04-01
We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He+ and Ga+ irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He+ at high energies (10-30 keV) allowing the passage of >97% He+ particles without creating destructive lattice vacancy. Large Ga+ ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ~50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He+ ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration.We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of
NASA Astrophysics Data System (ADS)
Miao, Shun; Lucas, Joseph; Liao, Rui
2012-02-01
Minimally invasive abdominal aortic aneurysm (AAA) stenting can be greatly facilitated by overlaying the preoperative 3-D model of the abdominal aorta onto the intra-operative 2-D X-ray images. Accurate 2-D/3-D registration in 3-D space makes the 2-D/3-D overlay robust to the change of C-Arm angulations. By far, the 2-D/3-D registration methods based on simulated X-ray projection images using multiple image planes have been shown to be able to provide satisfactory 3-D registration accuracy. However, one drawback of the intensity-based 2-D/3-D registration methods is that the similarity measure is usually highly non-convex and hence the optimizer can easily be trapped into local minima. User interaction therefore is often needed in the initialization of the position of the 3-D model in order to get a successful 2-D/3-D registration. In this paper, a novel 3-D pose initialization technique is proposed, as an extension of our previously proposed bi-plane 2-D/3-D registration method for AAA intervention [4]. The proposed method detects vessel bifurcation points and spine centerline in both 2-D and 3-D images, and utilizes landmark information to bring the 3-D volume into a 15mm capture range. The proposed landmark detection method was validated on real dataset, and is shown to be able to provide a good initialization for 2-D/3-D registration in [4], thus making the workflow fully automatic.
Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey
2016-04-01
Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979
Buchheim, Jakob; Wyss, Roman M; Shorubalko, Ivan; Park, Hyung Gyu
2016-04-21
We report experimentally and theoretically the behavior of freestanding graphene subjected to bombardment of energetic ions, investigating the capability of large-scale patterning of freestanding graphene with nanometer sized features by focused ion beam technology. A precise control over the He(+) and Ga(+) irradiation offered by focused ion beam techniques enables investigating the interaction of the energetic particles and graphene suspended with no support and allows determining sputter yields of the 2D lattice. We found a strong dependency of the 2D sputter yield on the species and kinetic energy of the incident ion beams. Freestanding graphene shows material semi-transparency to He(+) at high energies (10-30 keV) allowing the passage of >97% He(+) particles without creating destructive lattice vacancy. Large Ga(+) ions (5-30 keV), in contrast, collide far more often with the graphene lattice to impart a significantly higher sputter yield of ∼50%. Binary collision theory applied to monolayer and few-layer graphene can successfully elucidate this collision mechanism, in great agreement with experiments. Raman spectroscopy analysis corroborates the passage of a large fraction of He(+) ions across graphene without much damaging the lattice whereas several colliding ions create single vacancy defects. Physical understanding of the interaction between energetic particles and suspended graphene can practically lead to reproducible and efficient pattern generation of unprecedentedly small features on 2D materials by design, manifested by our perforation of sub-5 nm pore arrays. This capability of nanometer-scale precision patterning of freestanding 2D lattices shows the practical applicability of focused ion beam technology to 2D material processing for device fabrication and integration. PMID:27043304
The 2d-LCA as an alternative to x-wires
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Hölling, Michael; Peinke, Joachim
2015-11-01
The 2d-Laser Cantilever Anemometer (2d-LCA) is an innovative sensor for two-dimensional velocity measurements in fluids. It uses a micostructured cantilever made of silicon and SU-8 as a sensing element and is capable of performing mesurements with extremly high temporal resolutions up to 150kHz. The size of the cantilever defines its spatial resolution, which is in the order of 150 μm only. Another big feature is a large angular range of 180° in total. The 2d-LCA has been developed as an alternative measurement method to x-wires with the motivation to create a sensor that can operate in areas where the use of hot-wire anemometry is difficult. These areas include measurements in liquids and in near-wall or particle-laden flows. Unlike hot-wires, the resolution power of the 2d-LCA does not decrease with increasing flow velocity, making it particularly suitable for measurements in high speed flows. Comparative measurements with the 2d-LCA and hot-wires have been carried out in order to assess the performance of the new anemometer. The data of both measurement techniques were analyzed using the same stochastic methods including a spectral analysis as well as an inspection of increment statistics and structure functions. Furthermore, key parameters, such as mean values of both velocity components, angles of attack and the characteristic length scales were determined from both data sets. The analysis reveals a great agreement between both anemometers and thus confirms the new approach.
ELLIPT2D: A Flexible Finite Element Code Written Python
Pletzer, A.; Mollis, J.C.
2001-03-22
The use of the Python scripting language for scientific applications and in particular to solve partial differential equations is explored. It is shown that Python's rich data structure and object-oriented features can be exploited to write programs that are not only significantly more concise than their counter parts written in Fortran, C or C++, but are also numerically efficient. To illustrate this, a two-dimensional finite element code (ELLIPT2D) has been written. ELLIPT2D provides a flexible and easy-to-use framework for solving a large class of second-order elliptic problems. The program allows for structured or unstructured meshes. All functions defining the elliptic operator are user supplied and so are the boundary conditions, which can be of Dirichlet, Neumann or Robbins type. ELLIPT2D makes extensive use of dictionaries (hash tables) as a way to represent sparse matrices.Other key features of the Python language that have been widely used include: operator over loading, error handling, array slicing, and the Tkinter module for building graphical use interfaces. As an example of the utility of ELLIPT2D, a nonlinear solution of the Grad-Shafranov equation is computed using a Newton iterative scheme. A second application focuses on a solution of the toroidal Laplace equation coupled to a magnetohydrodynamic stability code, a problem arising in the context of magnetic fusion research.
Rheological Properties of Quasi-2D Fluids in Microgravity
NASA Technical Reports Server (NTRS)
Stannarius, Ralf; Trittel, Torsten; Eremin, Alexey; Harth, Kirsten; Clark, Noel; Maclennan, Joseph; Glaser, Matthew; Park, Cheol; Hall, Nancy; Tin, Padetha
2015-01-01
In recent years, research on complex fluids and fluids in restricted geometries has attracted much attention in the scientific community. This can be attributed not only to the development of novel materials based on complex fluids but also to a variety of important physical phenomena which have barely been explored. One example is the behavior of membranes and thin fluid films, which can be described by two-dimensional (2D) rheology behavior that is quite different from 3D fluids. In this study, we have investigated the rheological properties of freely suspended films of a thermotropic liquid crystal in microgravity experiments. This model system mimics isotropic and anisotropic quasi 2D fluids [46]. We use inkjet printing technology to dispense small droplets (inclusions) onto the film surface. The motion of these inclusions provides information on the rheological properties of the films and allows the study of a variety of flow instabilities. Flat films have been investigated on a sub-orbital rocket flight and curved films (bubbles) have been studied in the ISS project OASIS. Microgravity is essential when the films are curved in order to avoid sedimentation. The experiments yield the mobility of the droplets in the films as well as the mutual mobility of pairs of particles. Experimental results will be presented for 2D-isotropic (smectic-A) and 2D-nematic (smectic-C) phases.
Creation of a scalar potential in 2D dilaton gravity
Behrndt, K.
1994-09-01
The authors investigate quantum corrections of the 2-d dilaton gravity near the singularity. Their motivation comes from a s-wave reduced cosmological solution which is classically singular in the scalar fields (dilaton and moduli). As a result they find, that the singularity disappears and a dilaton/moduli potential is created.
NKG2D ligands mediate immunosurveillance of senescent cells
Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-01-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
Discrepant Results in a 2-D Marble Collision
ERIC Educational Resources Information Center
Kalajian, Peter
2013-01-01
Video analysis of 2-D collisions is an excellent way to investigate conservation of linear momentum. The often-desired experimental design goal is to minimize the momentum loss in order to demonstrate the conservation law. An air table with colliding pucks is an ideal medium for this experiment, but such equipment is beyond the budget of many…
Validation and testing of the VAM2D computer code
Kool, J.B.; Wu, Y.S. )
1991-10-01
This document describes two modeling studies conducted by HydroGeoLogic, Inc. for the US NRC under contract no. NRC-04089-090, entitled, Validation and Testing of the VAM2D Computer Code.'' VAM2D is a two-dimensional, variably saturated flow and transport code, with applications for performance assessment of nuclear waste disposal. The computer code itself is documented in a separate NUREG document (NUREG/CR-5352, 1989). The studies presented in this report involve application of the VAM2D code to two diverse subsurface modeling problems. The first one involves modeling of infiltration and redistribution of water and solutes in an initially dry, heterogeneous field soil. This application involves detailed modeling over a relatively short, 9-month time period. The second problem pertains to the application of VAM2D to the modeling of a waste disposal facility in a fractured clay, over much larger space and time scales and with particular emphasis on the applicability and reliability of using equivalent porous medium approach for simulating flow and transport in fractured geologic media. Reflecting the separate and distinct nature of the two problems studied, this report is organized in two separate parts. 61 refs., 31 figs., 9 tabs.
On Regularity Criteria for the 2D Generalized MHD System
NASA Astrophysics Data System (ADS)
Jiang, Zaihong; Wang, Yanan; Zhou, Yong
2016-06-01
This paper deals with the problem of regularity criteria for the 2D generalized MHD system with fractional dissipative terms {-Λ^{2α}u} for the velocity field and {-Λ^{2β}b} for the magnetic field respectively. Various regularity criteria are established to guarantee smoothness of solutions. It turns out that our regularity criteria imply previous global existence results naturally.
Dispersionless 2D Toda hierarchy, Hurwitz numbers and Riemann theorem
NASA Astrophysics Data System (ADS)
Natanzon, Sergey M.
2016-01-01
We describe all formal symmetric solutions of dispersionless 2D Toda hierarchy. This classification we use for solving of two classical problems: 1) The calculation of conformal mapping of an arbitrary simply connected domain to the standard disk; 2) Calculation of 2- Hurwitz numbers of genus 0.
2D signature for detection and identification of drugs
NASA Astrophysics Data System (ADS)
Trofimov, Vyacheslav A.; Varentsova, Svetlana A.; Shen, Jingling; Zhang, Cunlin; Zhou, Qingli; Shi, Yulei
2011-06-01
The method of spectral dynamics analysis (SDA-method) is used for obtaining the2D THz signature of drugs. This signature is used for the detection and identification of drugs with similar Fourier spectra by transmitted THz signal. We discuss the efficiency of SDA method for the identification problem of pure methamphetamine (MA), methylenedioxyamphetamine (MDA), 3, 4-methylenedioxymethamphetamine (MDMA) and Ketamine.
RADMC: A 2-D Continuum Radiative Transfer Tool
NASA Astrophysics Data System (ADS)
Dullemond, C. P.
2011-08-01
RADMC is a 2-D Monte-Carlo code for dust continuum radiative transfer circumstellar disks and envelopes. It is based on the method of Bjorkman & Wood (ApJ 2001, 554, 615), but with several modifications to produce smoother results with fewer photon packages.
Kinematics of segregating granular mixtures in quasi-2D heaps
NASA Astrophysics Data System (ADS)
Fan, Yi; Umbanhowar, Paul; Ottino, Julio; Lueptow, Richard
2012-11-01
Segregation of granular mixtures of different sized particles in heap flow appears in a variety of contexts. Our recent experiments showed that when bi-disperse mixtures of different sized spherical particles fill a quasi-two dimensional (2D) silo, three different final heap configurations - stratified, segregated, and mixed - occur, depending on either 2D flow rate or heap rise velocity. However, since it is difficult to measure the kinematic details of the segregating granular mixtures in heap flow experimentally, the underlying mechanisms for how 2D flow rate or heap rise velocity influences final particle configurations have not been well understood. In this work, we use the discrete element method (DEM) to simulate heap flow of bi-disperse mixtures in experimental scale quasi-2D heaps. The final particle distributions in the simulations agree quantitatively with experiments. We measure several key kinematic properties of the segregating granular mixtures including the local flow rate, velocity, and flowing layer thickness. We correlate the characteristics of these kinematic properties with the local particle distributions of the mixtures. This provides new insights for understanding the mechanisms of segregation and stratification in heap flow including the linear decrease in flow rate and maximum velocity down the heap as well as the relatively constant flowing layer thickness along the length of the heap. Funded by Dow Chemical Co.
On the phase diagram of 2d Lorentzian Quantum Gravity
NASA Astrophysics Data System (ADS)
Ambjørn, Jan; Anagnostopoulos, K. N.; Loll, R.
The phase diagram of 2d Lorentzian quantum gravity (LQG) coupled to conformal matter is studied. A phase transition is observed at c = c crit ( {1}/{2} < c crit < 4) which can be thought of as the analogue of the c = 1 barrier of Euclidean quantum gravity (EQG). The non-trivial properties of the quantum geometry are discussed.
Optoelectronics of supported and suspended 2D semiconductors
NASA Astrophysics Data System (ADS)
Bolotin, Kirill
2014-03-01
Two-dimensional semiconductors, materials such monolayer molybdenum disulfide (MoS2) are characterized by strong spin-orbit and electron-electron interactions. However, both electronic and optoelectronic properties of these materials are dominated by disorder-related scattering. In this talk, we investigate approaches to reduce scattering and explore physical phenomena arising in intrinsic 2D semiconductors. First, we discuss fabrication of pristine suspended monolayer MoS2 and use photocurrent spectroscopy measurements to study excitons in this material. We observe band-edge and van Hove singularity excitons and estimate their binding energies. Furthermore, we study dissociation of these excitons and uncover the mechanism of their contribution to photoresponse of MoS2. Second, we study strain-induced modification of bandstructures of 2D semiconductors. With increasing strain, we find large and controllable band gap reduction of both single- and bi-layer MoS2. We also detect experimental signatures consistent with strain-induced transition from direct to indirect band gap in monolayer MoS2. Finally, we fabricate heterostructures of dissimilar 2D semiconductors and study their photoresponse. For closely spaced 2D semiconductors we detect charge transfer, while for separation larger than 10nm we observe Forster-like energy transfer between excitations in different layers.
2-D Imaging of Electron Temperature in Tokamak Plasmas
T. Munsat; E. Mazzucato; H. Park; C.W. Domier; M. Johnson; N.C. Luhmann Jr.; J. Wang; Z. Xia; I.G.J. Classen; A.J.H. Donne; M.J. van de Pol
2004-07-08
By taking advantage of recent developments in millimeter wave imaging technology, an Electron Cyclotron Emission Imaging (ECEI) instrument, capable of simultaneously measuring 128 channels of localized electron temperature over a 2-D map in the poloidal plane, has been developed for the TEXTOR tokamak. Data from the new instrument, detailing the MHD activity associated with a sawtooth crash, is presented.
NKG2D ligands mediate immunosurveillance of senescent cells.
Sagiv, Adi; Burton, Dominick G A; Moshayev, Zhana; Vadai, Ezra; Wensveen, Felix; Ben-Dor, Shifra; Golani, Ofra; Polic, Bojan; Krizhanovsky, Valery
2016-02-01
Cellular senescence is a stress response mechanism that limits tumorigenesis and tissue damage. Induction of cellular senescence commonly coincides with an immunogenic phenotype that promotes self-elimination by components of the immune system, thereby facilitating tumor suppression and limiting excess fibrosis during wound repair. The mechanisms by which senescent cells regulate their immune surveillance are not completely understood. Here we show that ligands of an activating Natural Killer (NK) cell receptor (NKG2D), MICA and ULBP2 are consistently up-regulated following induction of replicative senescence, oncogene-induced senescence and DNA damage - induced senescence. MICA and ULBP2 proteins are necessary for efficient NK-mediated cytotoxicity towards senescent fibroblasts. The mechanisms regulating the initial expression of NKG2D ligands in senescent cells are dependent on a DNA damage response, whilst continuous expression of these ligands is regulated by the ERK signaling pathway. In liver fibrosis, the accumulation of senescent activated stellate cells is increased in mice lacking NKG2D receptor leading to increased fibrosis. Overall, our results provide new insights into the mechanisms regulating the expression of immune ligands in senescent cells and reveal the importance of NKG2D receptor-ligand interaction in protecting against liver fibrosis. PMID:26878797
Measurements of laboratory turbulence with the 2d-Laser Cantilever Anemometer
NASA Astrophysics Data System (ADS)
Puczylowski, Jaroslaw; Peinke, Joachim; Hoelling, Michael
2013-11-01
A newly developed anemometer, the 2d-Laser Cantilever Anemometer, was used to measure the two-dimensional wind speed vector in laboratory-generated turbulence. The anemometer provides a temporal and spatial resolution comparable or even higher to those of commercial hot-wires and thus is an excellent alternative for high-resolution measurements. The 2d-Laser Cantilever Anemometer uses a previously unseen measurement technique in the range of anemometers. The principle is adopted from atomic force microscopes (AFM). A tiny micro-structured cantilever is brought into the airflow, where it experiences a drag force due to the moving fluid. The resulting deflection is measured using the laser pointer principle. Unlike the measuring principle of hot-wires this technique can be applied in challenging environments such as in liquids or very close to walls. Our comparing measurements with the 2d-Laser Cantilever Anemometer and an x-wire were carried out in the wake of rigid bodies and grids. The results show a great agreement with regards to the increment statistics on various scales, power spectra and turbulence intensity, thus proving the new anemometer.
Two dimensional spectroscopy of Liquids in THz-domain: THz analogue of 2D Raman spectroscopy
NASA Astrophysics Data System (ADS)
Okumura, K.; Tanimura, Y.
1998-03-01
After the initial proposal(Y. Tanimura and S. Mukamel, J. Chem. Phys. 99, 9496 (1993)), the two dimensional Raman spectroscopy in the liquid phase has been received a considerable attention. Both experimental and theoretical activity of this field has been quite high. Since we have two controllable delay times, we can obtain more information than the lower-order experiments such as OKE. The new information includes that on heterogeneous distribution in liquids. Recently, it is found that the coupling between the modes in liquids can be investigated by the technique, both experimentally and theoretically(A. Tokmakoff, M.J. Lang, D.S. Larsen, G.R. Fleming, V. Chernyak, and S. Mukamel, Phys. Rev. Lett. (in press))^,(K. Okumura and Y. Tanimura, Chem. Phys. Lett. 278, 175 (1997)) In this talk, we will emphasize that we can perform the THz analogue of the 2D Raman spectroscopy if the THz short-pulse laser becomes available, which may not be in the far future. Theoretically, we can formulate this novel THz spectroscopy on the same footing as the 2D Raman spectroscopy. We will clarify new aspects of this technique comparing with the 2D Raman spectroscopy--- the reason it worth trying the tough experiment. See
Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data
NASA Astrophysics Data System (ADS)
Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao
2014-07-01
A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.
NASA Astrophysics Data System (ADS)
Rowley-Neale, Samuel J.; Fearn, Jamie M.; Brownson, Dale A. C.; Smith, Graham C.; Ji, Xiaobo; Banks, Craig E.
2016-08-01
Two-dimensional molybdenum disulphide nanosheets (2D-MoS2) have proven to be an effective electrocatalyst, with particular attention being focused on their use towards increasing the efficiency of the reactions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based electrodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Consequently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the underlying/supporting carbon materials that electrically wire the 2D-MoS2 and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca. +0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm-2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the ORR.Two-dimensional molybdenum disulphide nanosheets
Full-waveform inversion in 2D VTI media
NASA Astrophysics Data System (ADS)
Kamath, Nishant
Full-waveform inversion (FWI) is a technique designed to produce a high-resolution model of the subsurface by using information contained in entire seismic waveforms. This thesis presents a methodology for FWI in elastic VTI (transversely isotropic with a vertical axis of symmetry) media and discusses synthetic results for heterogeneous VTI models. First, I develop FWI for multicomponent data from a horizontally layered VTI model. The reflectivity method, which permits computation of only PP reflections or a combination of PP and PSV events, is employed to model the data. The Gauss-Newton technique is used to invert for the interval Thomsen parameters, while keeping the densities fixed at the correct values. Eigenvalue/eigenvector decompostion of the Hessian matrix helps analyze the sensitivity of the objective function to the model parameters. Whereas PP data alone are generally sufficient to constrain all four Thomsen parameters even for conventional spreads, including PS reflections provides better constraints, especially for the deeper part of the model. Next, I derive the gradients of the FWI objective function with respect to the stiffness coefficients of arbitrarily anisotropic media by employing the adjoint-state method. From these expressions, it is straightforward to compute the gradients for parameters of 2D heterogeneous VTI media. FWI is implemented in the time domain with the steepest-descent method used to iteratively update the model. The algorithm is tested on transmitted multicomponent data generated for Gaussian anomalies in Thomsen parameters embedded in homogeneous VTI media. To test the sensitivity of the objective function to different model parameters, I derive an an- alytic expression for the Frechet kernel of FWI for arbitrary anisotropic symmetry by using the Born approximation and asymptotic Green's functions. The amplitude of the kernel, which represents the radiation pattern of a secondary source (that source describes a perturbation
2D/3D Image Registration using Regression Learning
Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen
2013-01-01
In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278
Resonances of piezoelectric plate with embedded 2D electron system
NASA Astrophysics Data System (ADS)
Suslov, A. V.
2009-02-01
A thin GaAs/AlGaAs plate was studied by the resonant ultrasound spectroscopy (RUS) in the temperature range 0.3-10 K and in magnetic fields of up to 18 T. The resonance frequencies and linewidths were measured. Quantum oscillations of both these values were observed and were associated with the quantum Hall effect occurred in the 2D electron system. For an analysis the sample was treated as a dielectric piezoelectric plate covered on one side by a film with a field dependent conductivity. Screening of the strain-driven electric field was changed due to the variation of the electron relaxation time in the vicinity of the metal-dielectric transitions caused by the magnetic field in the 2D system. The dielectric film does not affect properties of GaAs and thus the resonance frequencies are defined only by the elastic, piezoelectric and dielectric constants of GaAs. A metallic 2D sheet effectively screens the parallel electric field, so the ultrasound wave velocities and resonance frequencies decrease when the sheet conductivity increases. Oscillations of the resonance linewidth reflect the influence of the 2D system on the ultrasound attenuation, which is proportional to the linewidth. A metallic film as well as a dielectric one does not affect this attenuation but at some finite nonzero value of the conductivity the linewidth approaches a maximum. In high magnetic field each oscillation of the conductivity produces one oscillation of a resonance frequency and two linewidth peaks. The observed phenomena can be described by the relaxation type equations and the resonant ultrasound spectroscopy opens another opportunity for contactless studies on 2D electron systems.
The physics of 2D microfluidic droplet ensembles
NASA Astrophysics Data System (ADS)
Beatus, Tsevi; Bar-Ziv, Roy H.; Tlusty, Tsvi
2012-07-01
We review non-equilibrium many-body phenomena in ensembles of 2D microfluidic droplets. The system comprises of continuous two-phase flow with disc-shaped droplets driven in a channel, at low Reynolds number of 10-4-10-3. The basic physics is that of an effective potential flow, governed by the 2D Laplace equation, with multiple, static and dynamic, boundaries of the droplets and the walls. The motion of the droplets induces dipolar flow fields, which mediate 1/r2 hydrodynamic interaction between the droplets. Summation of these long-range 2D forces over droplet ensembles converges, in contrast to the divergence of the hydrodynamic forces in 3D. In analogy to electrostatics, the strong effect of boundaries on the equations of motion is calculated by means of image dipoles. We first consider the dynamics of droplets flowing in a 1D crystal, which exhibits unique phonon-like excitations, and a variety of nonlinear instabilities-all stemming from the hydrodynamic interactions. Narrowing the channel results in hydrodynamic screening of the dipolar interactions, which changes salient features of the phonon spectra. Shifting from a 1D ordered crystal to 2D disordered ensemble, the hydrodynamic interactions induce collective density waves and shocks, which are superposed on single-droplet randomized motion and dynamic clustering. These collective modes originate from density-velocity coupling, whose outcome is a 1D Burgers equation. The rich observational phenomenology and the tractable theory render 2D droplet ensembles a suitable table-top system for studying non-equilibrium many-body physics with long-range interactions.
Anderson, Michael T.; Diaz, Aaron A.; Cumblidge, Stephen E.; Doctor, Steven R.
2007-01-01
A study was conducted to assess the ability of advanced ultrasonic techniques to detect and accurately length-size flaws from the far-side of wrought austenitic piping welds. Far-side inspections of nuclear system piping welds are currently performed on a “best effort” basis and do not conform to ASME Code Section XI Appendix VIII performance demonstration requirements. For this study, austenitic stainless steel specimens with flaws located on the far-side of full penetration structural welds were used. The welds were fabricated with varied welding parameters to simulate as-built conditions in the components, and were examined with phased array technology at 2.0 MHz, and low-frequency/Synthetic Aperture Focusing Technique (SAFT) methods in the 250-400 kHz regime. These results were compared to conventional ultrasonic techniques as a baseline. The examinations showed that both phased-array and low-frequency/SAFT were able to reliably detect and length-size, but not depth size, notches and implanted fatigue cracks through the welds.
Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions
Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.
2009-01-21
A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.
Nonrigid point registration for 2D curves and 3D surfaces and its various applications
NASA Astrophysics Data System (ADS)
Wang, Hesheng; Fei, Baowei
2013-06-01
A nonrigid B-spline-based point-matching (BPM) method is proposed to match dense surface points. The method solves both the point correspondence and nonrigid transformation without features extraction. The registration method integrates a motion model, which combines a global transformation and a B-spline-based local deformation, into a robust point-matching framework. The point correspondence and deformable transformation are estimated simultaneously by fuzzy correspondence and by a deterministic annealing technique. Prior information about global translation, rotation and scaling is incorporated into the optimization. A local B-spline motion model decreases the degrees of freedom for optimization and thus enables the registration of a larger number of feature points. The performance of the BPM method has been demonstrated and validated using synthesized 2D and 3D data, mouse MRI and micro-CT images. The proposed BPM method can be used to register feature point sets, 2D curves, 3D surfaces and various image data.
Probing transverse coherence of x-ray beam with 2-D phase grating interferometer
Marathe, Shashidhara; Shi, Xianbo; Wojcik, Michael J.; Kujala, Naresh G.; Divan, Ralu; Mancini, Derrick C.; Macrander, Albert T.; Assoufid, Lahsen
2014-01-01
Transverse coherence of the x-ray beam from a bending magnet source was studied along multiple directions using a 2-D π/2 phase grating by measuring interferogram visibilities at different distances behind the grating. These measurements suggest that the preferred measuring orientation of a 2-D checkerboard grating is along the diagonal directions of the square blocks, where the interferograms have higher visibility and are not sensitive to the deviation of the duty cycle of the grating period. These observations are verified by thorough wavefront propagation simulations. The accuracy of the measured coherence values was also validated by the simulation and analytical results obtained from the source parameters. In addition, capability of the technique in probing spatially resolved local transverse coherence is demonstrated. PMID:24977503
Probing transverse coherence of x-ray beam with 2-D phase grating interferometer.
Marathe, Shashidhara; Shi, Xianbo; Wojcik, Michael J; Kujala, Naresh G; Divan, Ralu; Mancini, Derrick C; Macrander, Albert T; Assoufid, Lahsen
2014-06-16
Transverse coherence of the x-ray beam from a bending magnet source was studied along multiple directions using a 2-D π/2 phase grating by measuring interferogram visibilities at different distances behind the grating. These measurements suggest that the preferred measuring orientation of a 2-D checkerboard grating is along the diagonal directions of the square blocks, where the interferograms have higher visibility and are not sensitive to the deviation of the duty cycle of the grating period. These observations are verified by thorough wavefront propagation simulations. The accuracy of the measured coherence values was also validated by the simulation and analytical results obtained from the source parameters. In addition, capability of the technique in probing spatially resolved local transverse coherence is demonstrated. PMID:24977503
Interpretation of Line-Integrated Signals from 2-D Phase Contrast Imaging on LHD
NASA Astrophysics Data System (ADS)
Michael, Clive; Tanaka, Kenji; Vyacheslavov, Leonid; Sanin, Andrei; Kawahata, Kazuo; Okajima, S.
Two dimensional (2D) phase contrast imaging (PCI) is an excellent method to measure core and edge turbulence with good spatial resolution (Δρ ˜ 0.1). General analytical consideration is given to the signal interpretation of the line-integrated signals, with specific application to images from 2D PCI. It is shown that the Fourier components of fluctuations having any non-zero component propagating along the line of sight are not detected. The ramifications of this constraint are discussed, including consideration of the angle between the sight line and flux surface normal. In the experimental geometry, at the point where the flux surfaces are tangent to the sight line, it is shown that it may be possible to detect large poloidally extended (though with small radial wavelength) structures, such as GAMS. The spatial localization technique of this diagnostic is illustrated with experimental data.
Goetz, Matthew P.; Sun, James X.; Suman, Vera J.; Silva, Grace O.; Perou, Charles M.; Nakamura, Yusuke; Cox, Nancy J.; Stephens, Philip J.; Miller, Vincent A.; Ross, Jeffrey S.; Chen, David; Safgren, Stephanie L.; Kuffel, Mary J.; Ames, Matthew M.; Kalari, Krishna R.; Gomez, Henry L.; Gonzalez-Angulo, Ana M.; Burgues, Octavio; Brauch, Hiltrud B.; Ingle, James N.; Ratain, Mark J.; Yelensky, Roman
2015-01-01
Background: Controversy exists regarding the impact of CYP2D6 genotype on tamoxifen responsiveness. We examined loss of heterozygosity (LOH) at the CYP2D6 locus and determined its impact on genotyping error when tumor tissue is used as a DNA source. Methods: Genomic tumor data from the adjuvant and metastatic settings (The Cancer Genome Atlas [TCGA] and Foundation Medicine [FM]) were analyzed to characterize the impact of CYP2D6 copy number alterations (CNAs) and LOH on Hardy Weinberg equilibrium (HWE). Additionally, we analyzed CYP2D6 *4 genotype from formalin-fixed paraffin-embedded (FFPE) tumor blocks containing nonmalignant tissue and buccal (germline) samples from patients on the North Central Cancer Treatment Group (NCCTG) 89-30-52 tamoxifen trial. All statistical tests were two-sided. Results: In TCGA samples (n =627), the CYP2D6 LOH rate was similar in estrogen receptor (ER)–positive (41.2%) and ER-negative (35.2%) but lower in HER2-positive tumors (15.1%) (P < .001). In FM ER+ samples (n = 290), similar LOH rates were observed (40.8%). In 190 NCCTG samples, the agreement between CYP2D6 genotypes derived from FFPE tumors and FFPE tumors containing nonmalignant tissue was moderate (weighted Kappa = 0.74; 95% CI = 0.63 to 0.84). Comparing CYP2D6 genotypes derived from buccal cells to FFPE tumor DNA, CYP2D6*4 genotype was discordant in six of 31(19.4%). In contrast, there was no disagreement between CYP2D6 genotypes derived from buccal cells with FFPE tumors containing nonmalignant tissue. Conclusions: LOH at the CYP2D6 locus is common in breast cancer, resulting in potential misclassification of germline CYP2D6 genotypes. Tumor DNA should not be used to determine germline CYP2D6 genotype without sensitive techniques to detect low frequency alleles and quality control procedures appropriate for somatic DNA. PMID:25490892
A scanning-mode 2D shear wave imaging (s2D-SWI) system for ultrasound elastography.
Qiu, Weibao; Wang, Congzhi; Li, Yongchuan; Zhou, Juan; Yang, Ge; Xiao, Yang; Feng, Ge; Jin, Qiaofeng; Mu, Peitian; Qian, Ming; Zheng, Hairong
2015-09-01
Ultrasound elastography is widely used for the non-invasive measurement of tissue elasticity properties. Shear wave imaging (SWI) is a quantitative method for assessing tissue stiffness. SWI has been demonstrated to be less operator dependent than quasi-static elastography, and has the ability to acquire quantitative elasticity information in contrast with acoustic radiation force impulse (ARFI) imaging. However, traditional SWI implementations cannot acquire two dimensional (2D) quantitative images of the tissue elasticity distribution. This study proposes and evaluates a scanning-mode 2D SWI (s2D-SWI) system. The hardware and image processing algorithms are presented in detail. Programmable devices are used to support flexible control of the system and the image processing algorithms. An analytic signal based cross-correlation method and a Radon transformation based shear wave speed determination method are proposed, which can be implemented using parallel computation. Imaging of tissue mimicking phantoms, and in vitro, and in vivo imaging test are conducted to demonstrate the performance of the proposed system. The s2D-SWI system represents a new choice for the quantitative mapping of tissue elasticity, and has great potential for implementation in commercial ultrasound scanners. PMID:26025508
2D-2D tunneling field-effect transistors using WSe2/SnSe2 heterostructures
NASA Astrophysics Data System (ADS)
Roy, Tania; Tosun, Mahmut; Hettick, Mark; Ahn, Geun Ho; Hu, Chenming; Javey, Ali
2016-02-01
Two-dimensional materials present a versatile platform for developing steep transistors due to their uniform thickness and sharp band edges. We demonstrate 2D-2D tunneling in a WSe2/SnSe2 van der Waals vertical heterojunction device, where WSe2 is used as the gate controlled p-layer and SnSe2 is the degenerately n-type layer. The van der Waals gap facilitates the regulation of band alignment at the heterojunction, without the necessity of a tunneling barrier. ZrO2 is used as the gate dielectric, allowing the scaling of gate oxide to improve device subthreshold swing. Efficient gate control and clean interfaces yield a subthreshold swing of ˜100 mV/dec for >2 decades of drain current at room temperature, hitherto unobserved in 2D-2D tunneling devices. The subthreshold swing is independent of temperature, which is a clear signature of band-to-band tunneling at the heterojunction. A maximum switching ratio ION/IOFF of 107 is obtained. Negative differential resistance in the forward bias characteristics is observed at 77 K. This work bodes well for the possibilities of two-dimensional materials for the realization of energy-efficient future-generation electronics.
Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko
2013-12-01
Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices. PMID:24263010
2-D linear motion system. Innovative technology summary report
1998-11-01
The US Department of Energy's (DOE's) nuclear facility decontamination and decommissioning (D and D) program requires buildings to be decontaminated, decommissioned, and surveyed for radiological contamination in an expeditious and cost-effective manner. Simultaneously, the health and safety of personnel involved in the D and D activities is of primary concern. D and D workers must perform duties high off the ground, requiring the use of manlifts or scaffolding, often, in radiologically or chemically contaminated areas or in areas with limited access. Survey and decontamination instruments that are used are sometimes heavy or awkward to use, particularly when the worker is operating from a manlift or scaffolding. Finding alternative methods of performing such work on manlifts or scaffolding is important. The 2-D Linear Motion System (2-D LMS), also known as the Wall Walker{trademark}, is designed to remotely position tools and instruments on walls for use in such activities as radiation surveys, decontamination, and painting. Traditional (baseline) methods for operating equipment for these tasks require workers to perform duties on elevated platforms, sometimes several meters above the ground surface and near potential sources of contamination. The Wall Walker 2-D LMS significantly improves health and safety conditions by facilitating remote operation of equipment. The Wall Walker 2-D LMS performed well in a demonstration of its precision, accuracy, maneuverability, payload capacity, and ease of use. Thus, this innovative technology is demonstrated to be a viable alternative to standard methods of performing work on large, high walls, especially those that have potential contamination concerns. The Wall Walker was used to perform a final release radiological survey on over 167 m{sup 2} of walls. In this application, surveying using a traditional (baseline) method that employs an aerial lift for manual access was 64% of the total cost of the improved technology
Micro/nanoscale electrohydrodynamic printing: from 2D to 3D.
Zhang, Bing; He, Jiankang; Li, Xiao; Xu, Fangyuan; Li, Dichen
2016-08-25
Electrohydrodynamic printing (EHDP), based on the electrohydrodynamically induced flow of materials, enables the production of micro/nanoscale fibers or droplets and has recently attracted extensive interest to fabricate user-specific patterns in a controlled and high-efficiency manner. However, most of the existing EHDP techniques can only print two-dimensional (2D) micropatterns which cannot meet the increasing demands for the direct fabrication of three-dimensional (3D) microdevices. The integration of EHDP techniques with the layer-by-layer stacking principle of additive manufacturing has emerged as a promising solution to this limitation. Here we present a state-of-the-art review on the translation of 2D EHDP technique into a viable micro/nanoscale 3D printing strategy. The working principle, essential components as well as critical process parameters for EHDP are discussed. We highlight recent explorations on both solution-based and melt-based 3D EHDP techniques in cone-jet and microdripping modes for the fabrication of multimaterial structures, microelectronics and biological constructs. Finally, we discuss the major challenges as well as possible solutions with regard to translating the 3D EHDP process into a real micro/nanoscale additive manufacturing strategy for the freeform fabrication of 3D structures. PMID:27479715
Parameterising root system growth models using 2D neutron radiography images
NASA Astrophysics Data System (ADS)
Schnepf, Andrea; Felderer, Bernd; Vontobel, Peter; Leitner, Daniel
2013-04-01
Root architecture is a key factor for plant acquisition of water and nutrients from soil. In particular in view of a second green revolution where the below ground parts of agricultural crops are important, it is essential to characterise and quantify root architecture and its effect on plant resource acquisition. Mathematical models can help to understand the processes occurring in the soil-plant system, they can be used to quantify the effect of root and rhizosphere traits on resource acquisition and the response to environmental conditions. In order to do so, root architectural models are coupled with a model of water and solute transport in soil. However, dynamic root architectural models are difficult to parameterise. Novel imaging techniques such as x-ray computed tomography, neutron radiography and magnetic resonance imaging enable the in situ visualisation of plant root systems. Therefore, these images facilitate the parameterisation of dynamic root architecture models. These imaging techniques are capable of producing 3D or 2D images. Moreover, 2D images are also available in the form of hand drawings or from images of standard cameras. While full 3D imaging tools are still limited in resolutions, 2D techniques are a more accurate and less expensive option for observing roots in their environment. However, analysis of 2D images has additional difficulties compared to the 3D case, because of overlapping roots. We present a novel algorithm for the parameterisation of root system growth models based on 2D images of root system. The algorithm analyses dynamic image data. These are a series of 2D images of the root system at different points in time. Image data has already been adjusted for missing links and artefacts and segmentation was performed by applying a matched filter response. From this time series of binary 2D images, we parameterise the dynamic root architecture model in the following way: First, a morphological skeleton is derived from the binary
A SAFT Equation of State for the Quaternary H2S-CO2-H2O-NaCl system
NASA Astrophysics Data System (ADS)
Ji, X.; Zhu, C.
2011-12-01
Phase equilibria and thermodynamic properties of the quaternary H2S-CO2-H2O-NaCl system were studied using a statistical associating fluid theory (SAFT)-based equation of state (EOS). The understanding of the physical-chemical properties of this system is critical for predicting the consequences of co-injection of CO2 and H2S into geological formations (geological carbon sequestration) as an option for mitigating the global warming trend. Previous studies of the subsystems within this quaternary have provided many parameters for the EOS. In this study, the subsystems of H2S-CO2 and H2S-H2O-NaCl were investigated in order to obtain the cross parameters for the EOS. For the binary system H2S-CO2, cross association between the site H in H2S and the site O in CO2 was allowed and temperature-independent parameters were used to describe this cross association. Meanwhile, a temperature-dependent binary interaction parameter was used to adjust the cross dispersive energy for this binary system. For the H2S-H2O-NaCl system, one temperature-dependent cross parameter was allowed in order to adjust the cross dispersive energy between H2S and ions of Na+ and Cl-. All cross parameters were fitted to the reliable phase equilibrium experimental data. Densities were predicted and compared with available experimental results. Using the EOS developed in this study, we predicted equilibrium composition in both liquid and vapor phases, the equilibrium pressures at a given composition of the H2O-rich phase in electrolyte solutions with NaCl varying from 0 to 4 mol/kgH2O, and the aqueous solution densities. These predictions provide information and guidance for future experiments regarding the thermodynamic properties and phase behaviors in the H2S-CO2-H2O-NaCl system.
MPEG-4-based 2D facial animation for mobile devices
NASA Astrophysics Data System (ADS)
Riegel, Thomas B.
2005-03-01
The enormous spread of mobile computing devices (e.g. PDA, cellular phone, palmtop, etc.) emphasizes scalable applications, since users like to run their favorite programs on the terminal they operate at that moment. Therefore appliances are of interest, which can be adapted to the hardware realities without loosing a lot of their functionalities. A good example for this is "Facial Animation," which offers an interesting way to achieve such "scalability." By employing MPEG-4, which provides an own profile for facial animation, a solution for low power terminals including mobile phones is demonstrated. From the generic 3D MPEG-4 face a specific 2D head model is derived, which consists primarily of a portrait image superposed by a suited warping mesh and adapted 2D animation rules. Thus the animation process of MPEG-4 need not be changed and standard compliant facial animation parameters can be used to displace the vertices of the mesh and warp the underlying image accordingly.
In search of a 2-dB coding gain
NASA Technical Reports Server (NTRS)
Yuen, J. H.; Vo, Q. D.
1985-01-01
A recent code search found a (15,1/5), a (14,1/6), and a (15,1/6) convolutional code which, when concatenated with a 10-bit (1023,959) Reed-Solomon (RS) code, achieves a bit-error rate (BER) of 0.000001 at a bit signal-to-noise ratio (SNR) of 0.50 dB, 0.47 dB and 0.42 B, respectively. All of these three codes outperform the Voyager communication system, our baseline, which achieves a BER of 10.000001 at bit SNR of 2.53 db, by more than 2 dB. The 2 dB coding improvement goal was exceeded.
Critical Dynamics in Quenched 2D Atomic Gases
NASA Astrophysics Data System (ADS)
Larcher, F.; Dalfovo, F.; Proukakis, N. P.
2016-05-01
Non-equilibrium dynamics across phase transitions is a subject of intense investigations in diverse physical systems. One of the key issues concerns the validity of the Kibble-Zurek (KZ) scaling law for spontaneous defect creation. The KZ mechanism has been recently studied in cold atoms experiments. Interesting open questions arise in the case of 2D systems, due to the distinct nature of the Berezinskii-Kosterlitz-Thouless (BKT) transition. Our studies rely on the stochastic Gross-Pitaevskii equation. We perform systematic numerical simulations of the spontaneous emergence and subsequent dynamics of vortices in a uniform 2D Bose gas, which is quenched across the BKT phase transition in a controlled manner, focusing on dynamical scaling and KZ-type effects. By varying the transverse confinement, we also look at the extent to which such features can be seen in current experiments. Financial support from EPSRC and Provincia Autonoma di Trento.
Graphical representations of DNA as 2-D map
NASA Astrophysics Data System (ADS)
Randić, Milan
2004-03-01
We describe a modification of the compact representation of DNA sequences which transforms the sequence into a 2-D diagram in which the 'spots' have integer coordinates. As a result the accompanying numerical characterization of DNA is quite simple and straightforward. This is an important advantage, particularly when considering DNA sequences having thousands of nucleic bases. The approach starts with the compact representation of DNA based on zigzag spiral template used for placing 'spots' associated with binary codes of the nucleic acids and subsequent suppression of the underlying zigzag curve. As a result, a 2-D map is formed in which all 'spots' have integer coordinates. By using only distances between spots having the same x or the same y coordinate one can construct a 'map profile' using integer arithmetic. The approach is illustrated on DNA sequences of the first exon of human β-globin.
FPCAS2D user's guide, version 1.0
NASA Astrophysics Data System (ADS)
Bakhle, Milind A.
1994-12-01
The FPCAS2D computer code has been developed for aeroelastic stability analysis of bladed disks such as those in fans, compressors, turbines, propellers, or propfans. The aerodynamic analysis used in this code is based on the unsteady two-dimensional full potential equation which is solved for a cascade of blades. The structural analysis is based on a two degree-of-freedom rigid typical section model for each blade. Detailed explanations of the aerodynamic analysis, the numerical algorithms, and the aeroelastic analysis are not given in this report. This guide can be used to assist in the preparation of the input data required by the FPCAS2D code. A complete description of the input data is provided in this report. In addition, four test cases, including inputs and outputs, are provided.
2-D Magnetohydrodynamic Modeling of A Pulsed Plasma Thruster
NASA Technical Reports Server (NTRS)
Thio, Y. C. Francis; Cassibry, J. T.; Wu, S. T.; Rodgers, Stephen L. (Technical Monitor)
2002-01-01
Experiments are being performed on the NASA Marshall Space Flight Center (MSFC) MK-1 pulsed plasma thruster. Data produced from the experiments provide an opportunity to further understand the plasma dynamics in these thrusters via detailed computational modeling. The detailed and accurate understanding of the plasma dynamics in these devices holds the key towards extending their capabilities in a number of applications, including their applications as high power (greater than 1 MW) thrusters, and their use for producing high-velocity, uniform plasma jets for experimental purposes. For this study, the 2-D MHD modeling code, MACH2, is used to provide detailed interpretation of the experimental data. At the same time, a 0-D physics model of the plasma initial phase is developed to guide our 2-D modeling studies.
2D FEM Heat Transfer & E&M Field Code
Energy Science and Technology Software Center (ESTSC)
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation.more » By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.« less
2D ice from first principles: structures and phase transitions
NASA Astrophysics Data System (ADS)
Chen, Ji; Schusteritsch, Georg; Pickard, Chris J.; Salzmann, Christoph G.; Michaelides, Angelos
Despite relevance to disparate areas such as cloud microphysics and tribology, major gaps in the understanding of the structures and phase transitions of low-dimensional water ice remain. Here we report a first principles study of confined 2D ice as a function of pressure. We find that at ambient pressure hexagonal and pentagonal monolayer structures are the two lowest enthalpy phases identified. Upon mild compression the pentagonal structure becomes the most stable and persists up to ca. 2 GPa at which point square and rhombic phases are stable. The square phase agrees with recent experimental observations of square ice confined within graphene sheets. We also find a double layer AA stacked square ice phase, which clarifies the difference between experimental observations and earlier force field simulations. This work provides a fresh perspective on 2D confined ice, highlighting the sensitivity of the structures observed to both the confining pressure and width.
2-D and 3-D computations of curved accelerator magnets
Turner, L.R.
1991-01-01
In order to save computer memory, a long accelerator magnet may be computed by treating the long central region and the end regions separately. The dipole magnets for the injector synchrotron of the Advanced Photon Source (APS), now under construction at Argonne National Laboratory (ANL), employ magnet iron consisting of parallel laminations, stacked with a uniform radius of curvature of 33.379 m. Laplace's equation for the magnetic scalar potential has a different form for a straight magnet (x-y coordinates), a magnet with surfaces curved about a common center (r-{theta} coordinates), and a magnet with parallel laminations like the APS injector dipole. Yet pseudo 2-D computations for the three geometries give basically identical results, even for a much more strongly curved magnet. Hence 2-D (x-y) computations of the central region and 3-D computations of the end regions can be combined to determine the overall magnetic behavior of the magnets. 1 ref., 6 figs.
2D FEM Heat Transfer & E&M Field Code
1992-04-02
TOPAZ and TOPAZ2D are two-dimensional implicit finite element computer codes for heat transfer analysis. TOPAZ2D can also be used to solve electrostatic and magnetostatic problems. The programs solve for the steady-state or transient temperature or electrostatic and magnetostatic potential field on two-dimensional planar or axisymmetric geometries. Material properties may be temperature or potential-dependent and either isotropic or orthotropic. A variety of time and temperature-dependent boundary conditions can be specified including temperature, flux, convection, and radiation. By implementing the user subroutine feature, users can model chemical reaction kinetics and allow for any type of functional representation of boundary conditions and internal heat generation. The programs can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in the material surrounding the enclosure. Additional features include thermal contact resistance across an interface, bulk fluids, phase change, and energy balances.
MasterChem: cooking 2D-polymers.
Rodríguez-San-Miguel, D; Amo-Ochoa, P; Zamora, F
2016-03-18
2D-polymers are still dominated by graphene and closely related materials such as boron nitride, transition metal sulphides and oxides. However, the rational combination of molecules with suitable design is already showing the high potential of chemistry in this new research field. The aim of this feature article is to illustrate, and provide some perspectives, the current state-of-the-art in the field of synthetic 2D-polymers showing different alternatives to prepare this novel type of polymers based on the rational use of chemistry. This review comprises a brief revision of the essential concepts, the strategies of preparation following the two general approaches, bottom-up and top-down, and a revision of the promising seminal properties showed by some of these nanomaterials. PMID:26790817
Controlling avalanche criticality in 2D nano arrays
NASA Astrophysics Data System (ADS)
Zohar, Y. C.; Yochelis, S.; Dahmen, K. A.; Jung, G.; Paltiel, Y.
2013-05-01
Many physical systems respond to slowly changing external force through avalanches spanning broad range of sizes. Some systems crackle even without apparent external force, such as bursts of neuronal activity or charge transfer avalanches in 2D molecular layers. Advanced development of theoretical models describing disorder-induced critical phenomena calls for experiments probing the dynamics upon tuneable disorder. Here we show that isomeric structural transitions in 2D organic self-assembled monolayer (SAM) exhibit critical dynamics with experimentally tuneable disorder. The system consists of field effect transistor coupled through SAM to illuminated semiconducting nanocrystals (NCs). Charges photoinduced in NCs are transferred through SAM to the transistor surface and modulate its conductivity. Avalanches of isomeric structural transitions are revealed by measuring the current noise I(t) of the transistor. Accumulated surface traps charges reduce dipole moments of the molecules, decrease their coupling, and thus decrease the critical disorder of the SAM enabling its tuning during experiments.
A 2D MEMS stage for optical applications
NASA Astrophysics Data System (ADS)
Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.
2006-04-01
A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.
A Better 2-D Mechanical Energy Conservation Experiment
NASA Astrophysics Data System (ADS)
Paesler, Michael
2012-02-01
A variety of simple classical mechanics energy conservation experiments are used in teaching laboratories. Typical one-dimensional (1-D) setups may involve falling balls or oscillating springs. Many of these can be quite satisfying in that students can confirm—within a few percent—that mechanical energy is conserved. Students generally have little trouble identifying discrepancies such as the loss of a few percent of the gravitational potential energy due to air friction encountered by a falling ball. Two-dimensional (2-D) systems can require more sophisticated analysis for higher level laboratories, but such systems often incorporate complicating components that can make the exercise academically incomplete and experimentally less accurate. The following describes a simple 2-D energy conservation experiment based on the popular "Newton's Cradle" toy that allows students to account for nearly all of the mechanical energy in the system in an academically complete analysis.
Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
NASA Astrophysics Data System (ADS)
Mak, Kin Fai; Shan, Jie
2016-04-01
Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.
Thermal conductivity measurements in a 2D Yukawa system
NASA Astrophysics Data System (ADS)
Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.
2007-03-01
Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.
A discrete simulation of 2-D fluid flow on TERASYS
Mullins, P.G.; Krolak, P.D.
1995-12-01
A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.
An inverse design method for 2D airfoil
NASA Astrophysics Data System (ADS)
Liang, Zhi-Yong; Cui, Peng; Zhang, Gen-Bao
2010-03-01
The computational method for aerodynamic design of aircraft is applied more universally than before, in which the design of an airfoil is a hot problem. The forward problem is discussed by most relative papers, but inverse method is more useful in practical designs. In this paper, the inverse design of 2D airfoil was investigated. A finite element method based on the variational principle was used for carrying out. Through the simulation, it was shown that the method was fit for the design.
NASA High-Speed 2D Photogrammetric Measurement System
NASA Technical Reports Server (NTRS)
Dismond, Harriett R.
2012-01-01
The object of this report is to provide users of the NASA high-speed 2D photogrammetric measurement system with procedures required to obtain drop-model trajectory and impact data for full-scale and sub-scale models. This guide focuses on use of the system for vertical drop testing at the NASA Langley Landing and Impact Research (LandIR) Facility.
Report of the 1988 2-D Intercomparison Workshop, chapter 3
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Brasseur, Guy; Soloman, Susan; Guthrie, Paul D.; Garcia, Rolando; Yung, Yuk L.; Gray, Lesley J.; Tung, K. K.; Ko, Malcolm K. W.; Isaken, Ivar
1989-01-01
Several factors contribute to the errors encountered. With the exception of the line-by-line model, all of the models employ simplifying assumptions that place fundamental limits on their accuracy and range of validity. For example, all 2-D modeling groups use the diffusivity factor approximation. This approximation produces little error in tropospheric H2O and CO2 cooling rates, but can produce significant errors in CO2 and O3 cooling rates at the stratopause. All models suffer from fundamental uncertainties in shapes and strengths of spectral lines. Thermal flux algorithms being used in 2-D tracer tranport models produce cooling rates that differ by as much as 40 percent for the same input model atmosphere. Disagreements of this magnitude are important since the thermal cooling rates must be subtracted from the almost-equal solar heating rates to derive the net radiative heating rates and the 2-D model diabatic circulation. For much of the annual cycle, the net radiative heating rates are comparable in magnitude to the cooling rate differences described. Many of the models underestimate the cooling rates in the middle and lower stratosphere. The consequences of these errors for the net heating rates and the diabatic circulation will depend on their meridional structure, which was not tested here. Other models underestimate the cooling near 1 mbar. Suchs errors pose potential problems for future interactive ozone assessment studies, since they could produce artificially-high temperatures and increased O3 destruction at these levels. These concerns suggest that a great deal of work is needed to improve the performance of thermal cooling rate algorithms used in the 2-D tracer transport models.
Statistical analysis of quiet stance sway in 2-D
DiZio, Paul; Lackner, James R.
2014-01-01
Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760
Energy level transitions of gas in a 2D nanopore
Grinyaev, Yurii V.; Chertova, Nadezhda V.; Psakhie, Sergei G.
2015-10-27
An analytical study of gas behavior in a 2D nanopore was performed. It is shown that the temperature dependence of gas energy can be stepwise due to transitions from one size-quantized subband to another. Taking into account quantum size effects results in energy level transitions governed by the nanopore size, temperature and gas density. This effect leads to an abrupt change of gas heat capacity in the nanopore at the above varying system parameters.
2D imaging of functional structures in perfused pig heart
NASA Astrophysics Data System (ADS)
Kessler, Manfred D.; Cristea, Paul D.; Hiller, Michael; Trinks, Tobias
2002-06-01
In 2000 by 2D-imaging we were able for the first time to visualize in subcellular space functional structures of myocardium. For these experiments we used hemoglobin-free perfused pig hearts in our lab. Step by step we learned to understand the meaning of subcellular structures. Principally, the experiment revealed that in subcellular space very fast changes of light scattering can occur. Furthermore, coefficients of different parameters were determined on the basis of multicomponent system theory.
Multicolor symbology for remotely scannable 2D barcodes
NASA Astrophysics Data System (ADS)
Wissner-Gross, Alexander D.; Sullivan, Timothy M.
2008-03-01
There has been much recent interest in mobile systems for augmented reality. However, existing visual tagging solutions are not robust at the low resolutions typical of current camera phones or at the low solid angles needed for "across-the-room" reality augmentation. In this paper, we propose a new 2D barcode symbology that uses multiple colors in order to address these challenges. We present preliminary results, showing the detection of example barcodes in this scheme over a range of angles.
2 1/2 -D compressible reconnection model
NASA Astrophysics Data System (ADS)
Skender, M.; Vršnak, B.
The exact solution of the jump conditions on the RD/SMS discontinuity system in a two-and-half-dimensional (2 1/2 -D) symmetrical reconnection model enables one to analyse the outflowing jet characteristics in dependence on the inflow velocity, and to follow changes in transition to the two-dimensional model. Implications arising from the exact solution and its relevance for solar flares are discussed.
CBEAM. 2-D: a two-dimensional beam field code
Dreyer, K.A.
1985-05-01
CBEAM.2-D is a two-dimensional solution of Maxwell's equations for the case of an electron beam propagating through an air medium. Solutions are performed in the beam-retarded time frame. Conductivity is calculated self-consistently with field equations, allowing sophisticated dependence of plasma parameters to be handled. A unique feature of the code is that it is implemented on an IBM PC microcomputer in the BASIC language. Consequently, it should be available to a wide audience.
Statistical analysis of quiet stance sway in 2-D.
Bakshi, Avijit; DiZio, Paul; Lackner, James R
2014-04-01
Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760
Valley and electric photocurrents in 2D silicon and graphene
Tarasenko, S. A.; Ivchenko, E. L.; Olbrich, P.; Ganichev, S. D.
2013-12-04
We show that the optical excitation of multi-valley systems leads to valley currents which depend on the light polarization. The net electric current, determined by the vector sum of single-valley contributions, vanishes for some peculiar distributions of carriers in the valley and momentum spaces forming a pure valley current. We report on the study of this phenomenon, both experimental and theoretical, for graphene and 2D electron channels on the silicon surface.
Baby universes and fractal structure of 2d gravity
NASA Astrophysics Data System (ADS)
Thorleifsson, Gudmar
1994-04-01
We extract the string susceptibility exponent γstr by measuring the distribution of baby universes on surfaces in the case of various matter fields coupled to discrete 2d quantum gravity. For c <= 1 the results are in good agreement with the KPZ-formula, if logarithmic corrections are taken into account for c = 1. For c > 1 it is not as clear how to extract γstr but universality with respect to c is observed in the fractal structure.
An Intercomparison of 2-D Models Within a Common Framework
NASA Technical Reports Server (NTRS)
Weisenstein, Debra K.; Ko, Malcolm K. W.; Scott, Courtney J.; Jackman, Charles H.; Fleming, Eric L.; Considine, David B.; Kinnison, Douglas E.; Connell, Peter S.; Rotman, Douglas A.; Bhartia, P. K. (Technical Monitor)
2002-01-01
A model intercomparison among the Atmospheric and Environmental Research (AER) 2-D model, the Goddard Space Flight Center (GSFC) 2-D model, and the Lawrence Livermore National Laboratory 2-D model allows us to separate differences due to model transport from those due to the model's chemical formulation. This is accomplished by constructing two hybrid models incorporating the transport parameters of the GSFC and LLNL models within the AER model framework. By comparing the results from the native models (AER and e.g. GSFC) with those from the hybrid model (e.g. AER chemistry with GSFC transport), differences due to chemistry and transport can be identified. For the analysis, we examined an inert tracer whose emission pattern is based on emission from a High Speed Civil Transport (HSCT) fleet; distributions of trace species in the 2015 atmosphere; and the response of stratospheric ozone to an HSCT fleet. Differences in NO(y) in the upper stratosphere are found between models with identical transport, implying different model representations of atmospheric chemical processes. The response of O3 concentration to HSCT aircraft emissions differs in the models from both transport-dominated differences in the HSCT-induced perturbations of H2O and NO(y) as well as from differences in the model represent at ions of O3 chemical processes. The model formulations of cold polar processes are found to be the most significant factor in creating large differences in the calculated ozone perturbations
Resolving 2D Amorphous Materials with Scanning Probe Microscopy
NASA Astrophysics Data System (ADS)
Burson, Kristen M.; Buechner, Christin; Lewandowski, Adrian; Heyde, Markus; Freund, Hans-Joachim
Novel two-dimensional (2D) materials have garnered significant scientific interest due to their potential technological applications. Alongside the emphasis on crystalline materials, such as graphene and hexagonal BN, a new class of 2D amorphous materials must be pursued. For amorphous materials, a detailed understanding of the complex structure is necessary. Here we present a structural study of 2D bilayer silica on Ru(0001), an insulating material which is weakly coupled to the substrate. Atomic structure has been determined with a dual mode atomic force microscopy (AFM) and scanning tunneling microscopy (STM) sensor in ultra-high vacuum (UHV) at low temperatures, revealing a network of different ring sizes. Liquid AFM measurements with sub-nanometer resolution bridge the gap between clean UHV conditions and the environments that many material applications demand. Samples are grown and characterized in vacuum and subsequently transferred to the liquid AFM. Notably, the key structural features observed, namely nanoscale ring networks and larger holes to the substrate, show strong quantitative agreement between the liquid and UHV microscopy measurements. This provides direct evidence for the structural stability of these silica films for nanoelectronics and other applications. KMB acknowledges support from the Alexander von Humboldt Foundation.
Hunting down magnetic monopoles in 2D topological insulators?
NASA Astrophysics Data System (ADS)
He, Xugang; Cmpmsd At Bnl Team
Contrary to the existence of electric charge, magnetic monopole does not exist in nature. It is thus extraordinary to find that magnetic monopoles can be pictured conceptually in topological insulators. For 2D topological insulators, the topological invariant corresponds to the total flux of an effective magnetic field (the Berry curvature) over the reciprocal space. Upon wrapping the 2D reciprocal space into a compact manifold as a torus, the non-zero total flux can be considered to originate from magnetic monopoles with quantized charge. We will first illustrate the intrinsic difficulty via extending a 2D problem to a 3D reciprocal space, and then demonstrate that analytical continuation to the complex momentum space offers a natural solution in which 1) the magnetic monopoles emerge naturally in pairs each forming a string above and below the real axis possessing opposite charge, and 2) the total charge below the real axis gives exactly the topological invariant. In essence, the robustness of the topology is mapped to the robustness of the total charge in the lower complex plan, a mapping intriguing even mathematically. Finally, we will illustrate the evolution across the topological phase transition, providing a natural description of the metallic nature in the phase boundary, and offering a clear explanation why a change of global topology can be induced via a local change in reciprocal space. Work supported by US DOE BES DE-AC02-98CH10886.
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Region-based Statistical Analysis of 2D PAGE Images
Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.
2011-01-01
A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152
Dopamine D2/D3 receptor availability and venturesomeness.
Bernow, Nina; Yakushev, Igor; Landvogt, Christian; Buchholz, Hans-Georg; Smolka, Michael N; Bartenstein, Peter; Lieb, Klaus; Gründer, Gerhard; Vernaleken, Ingo; Schreckenberger, Mathias; Fehr, Christoph
2011-08-30
The construct of impulsivity is considered as a major trait of personality. There is growing evidence that the mesolimbic dopamine system plays an important role in the modulation of impulsivity and venturesomeness, the two key components within the impulsivity-construct. The aim of the present study was to explore an association between trait impulsivity measured with self-assessment and the dopaminergic neurotransmission as measured by positron emission tomography (PET) in a cohort of healthy male subjects. In vivo D2/D3 receptor availability was determined with [(18)F]fallypride PET in 18 non-smoking healthy subjects. The character trait impulsivity was measured using the Impulsiveness-Venturesomeness-Empathy questionnaire (I7). Image processing and statistical analysis was performed on a voxel-by-voxel basis using statistical parametric mapping (SPM) software. The I7 subscale venturesomeness correlated positively with the D2/D3 receptor availability within the left temporal cortex and the thalamus. Measures on the I7 subscale impulsiveness and empathy did not correlate with the D2/D3 receptor availability in any brain region investigated. Our results suggest the involvement of extrastriatal dopaminergic neurotransmission in venturesomeness, a component of impulsivity. PMID:21689908
Broadband THz Spectroscopy of 2D Nanoscale Materials
NASA Astrophysics Data System (ADS)
Chen, Lu; Tripathi, Shivendra; Huang, Mengchen; Hsu, Jen-Feng; D'Urso, Brian; Lee, Hyungwoo; Eom, Chang-Beom; Irvin, Patrick; Levy, Jeremy
Two-dimensional (2D) materials such as graphene and transition-metal dichalcogenides (TMDC) have attracted intense research interest in the past decade. Their unique electronic and optical properties offer the promise of novel optoelectronic applications in the terahertz regime. Recently, generation and detection of broadband terahertz (10 THz bandwidth) emission from 10-nm-scale LaAlO3/SrTiO3 nanostructures created by conductive atomic force microscope (c-AFM) lithography has been demonstrated . This unprecedented control of THz emission at 10 nm length scales creates a pathway toward hybrid THz functionality in 2D-material/LaAlO3/SrTiO3 heterostructures. Here we report initial efforts in THz spectroscopy of 2D nanoscale materials with resolution comparable to the dimensions of the nanowire (10 nm). Systems under investigation include graphene, single-layer molybdenum disulfide (MoS2), and tungsten diselenide (WSe2) nanoflakes. 1. Y. Ma, et al., Nano Lett. 13, 2884 (2013). We gratefully acknowledge financial support from the following agencies and grants: AFOSR (FA9550-12-1-0268 (JL, PRI), FA9550-12-1-0342 (CBE)), ONR (N00014-13-1-0806 (JL, CBE), N00014-15-1-2847 (JL)), NSF DMR-1124131 (JL, CBE) and DMR-1234096 (CBE).
Cytochrome P450-2D6 Screening Among Elderly Using Antidepressants (CYSCE)
2015-12-09
Depression; Depressive Disorder; Poor Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Intermediate Metabolizer Due to Cytochrome P450 CYP2D6 Variant; Ultrarapid Metabolizer Due to Cytochrome P450 CYP2D6 Variant
2D resistivity inversion using conjugate gradients for a finite element discretization
NASA Astrophysics Data System (ADS)
Bortolozo, C. A.; Santos, F. M.; Porsani, J. L.
2014-12-01
In this work we present a DC 2D inversion algorithm using conjugate gradients relaxation to solve the maximum likelihood inverse equations. We apply, according to Zhang (1995), the maximum likelihood inverse theory developed by Tarantola and Valette (1982) to our 2D resistivity inversion. This algorithm was chosen to this research because it doesn't need to calculate the field's derivatives. Since conjugate gradient techniques only need the results of the sensitivity matrix Ã or its transpose ÃT multiplying a vector, the actual computation of the sensitivity matrix are not performed, according to the methodology described in Zhang (1995). In Zhang (1995), the terms Ãx and ÃTy, are dependent of the stiffness matrix K and its partial derivative ∂K⁄∂ρ. The inversion methodology described in Zhang (1995) is for the case of 3D electrical resistivity by finite differences discretization. So it was necessary to make a series of adjustments to obtain a satisfactory result for 2D electrical inversion using finite element method. The difference between the modeling of 3D resistivity with finite difference and the 2D finite element method are in the integration variable, used in the 2D case. In the 2D case the electrical potential are initially calculated in the transformed domain, including the stiffness matrix, and only in the end is transformed in Cartesian domain. In the case of 3D, described by Zhang (1995) this is done differently, the calculation is done directly in the Cartesian domain. In the literature was not found any work describing how to deal with this problem. Because the calculations of Ãx and ÃTy must be done without having the real stiffness matrix, the adaptation consist in calculate the stiffness matrix and its partial derivative using a set of integration variables. We transform those matrix in the same form has in the potential case, but with different sets of variables. The results will be presented and are very promising.
NASA Astrophysics Data System (ADS)
Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.
A new gold-standard dataset for 2D/3D image registration evaluation
NASA Astrophysics Data System (ADS)
Pawiro, Supriyanto; Markelj, Primoz; Gendrin, Christelle; Figl, Michael; Stock, Markus; Bloch, Christoph; Weber, Christoph; Unger, Ewald; Nöbauer, Iris; Kainberger, Franz; Bergmeister, Helga; Georg, Dietmar; Bergmann, Helmar; Birkfellner, Wolfgang
2010-02-01
In this paper, we propose a new gold standard data set for the validation of 2D/3D image registration algorithms for image guided radiotherapy. A gold standard data set was calculated using a pig head with attached fiducial markers. We used several imaging modalities common in diagnostic imaging or radiotherapy which include 64-slice computed tomography (CT), magnetic resonance imaging (MRI) using T1, T2 and proton density (PD) sequences, and cone beam CT (CBCT) imaging data. Radiographic data were acquired using kilovoltage (kV) and megavoltage (MV) imaging techniques. The image information reflects both anatomy and reliable fiducial marker information, and improves over existing data sets by the level of anatomical detail and image data quality. The markers of three dimensional (3D) and two dimensional (2D) images were segmented using Analyze 9.0 (AnalyzeDirect, Inc) and an in-house software. The projection distance errors (PDE) and the expected target registration errors (TRE) over all the image data sets were found to be less than 1.7 mm and 1.3 mm, respectively. The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D registration algorithms for image guided therapy.
Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking.
Lee, Jehoon; Sandhu, Romeil; Tannenbaum, Allen
2013-08-01
In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object's pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios. PMID:24058277
Validation for 2D/3D registration I: A new gold standard data set
Pawiro, S. A.; Markelj, P.; Pernuš, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Nöbauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.
2011-01-01
Purpose In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using analyze 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy. PMID:21520860
Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon
2015-05-01
There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. PMID:25863895
Decoupled 2D direction-of-arrival estimation based on sparse signal reconstruction
NASA Astrophysics Data System (ADS)
Wang, Feng; Cui, Xiaowei; Lu, Mingquan; Feng, Zhenming
2015-12-01
A new two-dimensional direction-of-arrival estimation algorithm called 2D- l 1-singular value decomposition (SVD) and its improved version called enhanced-2D- l 1-SVD are proposed in this paper. They are designed for rectangular arrays and can also be extended to rectangular arrays with faulty or missing elements. The key idea is to represent direction-of-arrival with two decoupled angles and then successively estimate them. Therefore, two-dimensional direction finding can be achieved by applying several times of one-dimensional sparse reconstruction-based direction finding methods instead of directly extending them to two-dimensional situation. Performance analysis and simulation results reveal that the proposed method has a much lower computational complexity and a similar statistical performance compared with the well-known l 1-SVD algorithm, which has several advantages over conventional direction finding techniques due to the application of sparse signal reconstruction. Moreover, 2D- l 1-SVD has better robustness to the assumed number of sources over l 1-SVD.
Validation for 2D/3D registration I: A new gold standard data set
Pawiro, S. A.; Markelj, P.; Pernus, F.; Gendrin, C.; Figl, M.; Weber, C.; Kainberger, F.; Noebauer-Huhmann, I.; Bergmeister, H.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.
2011-03-15
Purpose: In this article, the authors propose a new gold standard data set for the validation of two-dimensional/three-dimensional (2D/3D) and 3D/3D image registration algorithms. Methods: A gold standard data set was produced using a fresh cadaver pig head with attached fiducial markers. The authors used several imaging modalities common in diagnostic imaging or radiotherapy, which include 64-slice computed tomography (CT), magnetic resonance imaging using Tl, T2, and proton density sequences, and cone beam CT imaging data. Radiographic data were acquired using kilovoltage and megavoltage imaging techniques. The image information reflects both anatomy and reliable fiducial marker information and improves over existing data sets by the level of anatomical detail, image data quality, and soft-tissue content. The markers on the 3D and 2D image data were segmented using ANALYZE 10.0 (AnalyzeDirect, Inc., Kansas City, KN) and an in-house software. Results: The projection distance errors and the expected target registration errors over all the image data sets were found to be less than 2.71 and 1.88 mm, respectively. Conclusions: The gold standard data set, obtained with state-of-the-art imaging technology, has the potential to improve the validation of 2D/3D and 3D/3D registration algorithms for image guided therapy.
2-D/3-D ECE imaging data for validation of turbulence simulations
NASA Astrophysics Data System (ADS)
Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.
2015-11-01
The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.
Functional Stereology for 3D Particle Size Distributions from 2D Observations: a Practical Approach
NASA Astrophysics Data System (ADS)
Proussevitch, A. A.; Sahagian, D. L.; Jutzeler, M.
2010-12-01
Functional stereology applies known deconvolution techniques to obtain 3D size distributions from 2D cross-section data based on an assumption that both 2D and 3D statistics have known distribution functions with unknown parameters. A new stereological approach enables us to solve this problem by utilizing function minimization to find parameters of the distribution functions. There is no limit to continuous distribution function types that could be used, such as Gaussian, Logistic, Weibull, Gamma, and others. As compared to previously known 2D to 3D conversion methods (e.g. Sahagian and Proussevitch, 1998), functional stereology has much greater practical application to non-spherical particles/objects because it is free of uncontrollable error propagation for all particles shapes. The new practical method of functional stereology has been implemented in Stereonet software adapted for both a) direct logarithmic scales of particle/voids volumes, and b) Phi units of linear dimensions (-log2 of size). Applications of the method include distribution of voids/bubbles in all types of volcanic rocks, pore networks in sedimentary rocks, mineral and grain sizes, volcanic clasts, breccia, and texture features of a wide range of rock formations. Such applications demonstrate utility of this functional stereology approach.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-01-01
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513
Using Microfluidics to Measure the Equation of State for a 2D Colloidal Membrane
NASA Astrophysics Data System (ADS)
Balchunas, Andrew; Cabanas, Rafael; Fraden, Seth; Dogic, Zvonimir
2015-03-01
In the presence of non-adsorbing polymer, monodisperse filamentous viruses assembles into colloidal membranes which are 2D liquid-like one-rod-length-thick monolayers of aligned rods. Colloidal membranes are of particular interest because their properties are accounted for by the same theoretical models that are used to describe biophysics of conventional lipid bilayers. However, bulk membrane formation only occurs over a very limited range of depletant concentrations and ionic strengths. In order to explore the properties of the colloidal membranes under a much wider range of molecular parameters, we have develop a microfluidics technique that allows for in-site exchange of the enveloping polymer suspension thus allowing us to access the region of phase space where membranes are metastable. Using our technique we determine how the colloidal membrane area depends on applied osmotic pressure allowing us to determine its equation of state. We also characterize the dynamics of the constituent rods by using single molecules tracking techniques.
Bingi, Jayachandra; Murukeshan, Vadakke Matham
2015-01-01
Laser speckle pattern is a granular structure formed due to random coherent wavelet interference and generally considered as noise in optical systems including photolithography. Contrary to this, in this paper, we use the speckle pattern to generate predictable and controlled Gaussian random structures and quasi-random structures photo-lithographically. The random structures made using this proposed speckle lithography technique are quantified based on speckle statistics, radial distribution function (RDF) and fast Fourier transform (FFT). The control over the speckle size, density and speckle clustering facilitates the successful fabrication of black silicon with different surface structures. The controllability and tunability of randomness makes this technique a robust method for fabricating predictable 2D Gaussian random structures and black silicon structures. These structures can enhance the light trapping significantly in solar cells and hence enable improved energy harvesting. Further, this technique can enable efficient fabrication of disordered photonic structures and random media based devices. PMID:26679513
VectorLens: Angular Selection of Curves within 2D Dense Visualizations.
Dumas, Maxime; McGuffin, Michael J; Chassé, Patrick
2015-03-01
We investigate the selection of curves within a 2D visualization by specifying their angle or slope. Such angular selection has applications in parallel coordinates, time series visualizations, spatio-temporal movement data, etc. Our interaction technique specifies a region of interest in the visualization (with a position and diameter), a direction, and an angular tolerance, all with a single drag. We experimentally compared this angular selection technique with other techniques for selecting curves, and found that angular selection resulted in a higher number of trials that were successful on the first attempt and fewer incorrectly selected curves, and was also subjectively preferred by participants. We then present the design of a popup lens widget, called the VectorLens, that allows for easy angular selection and also allows the user to perform additional filtering operations based on type of curve. Multiple VectorLens widgets can also be instantiated to combine the results of their filtering operations with boolean operators. PMID:26357071
Revisiting the stability of 2D passive biped walking: Local behavior
NASA Astrophysics Data System (ADS)
Norris, James A.; Marsh, Anthony P.; Granata, Kevin P.; Ross, Shane D.
2008-12-01
Models of biped walking have demonstrated that stable walking motions are possible without active control. Stability of these motions has typically been quantified by studying the stability of an associated Poincaré map (orbital stability). However, additional insight may be obtained by examining how perturbations evolve over the short-term (local stability). For example, there may be regions where small perturbations actually diverge from the unperturbed trajectory, even if over the entire cycle small (but perhaps not large) perturbations are dissipated. We present techniques to calculate local stability, and demonstrate the utility of these techniques by examining the local stability of the 2D compass biped. These techniques are relevant to the design of controllers to maintain stability in robots, and in understanding how the neuromuscular system maintains stability in humans.
2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao
2015-11-01
Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics. PMID:26115102
Human factors flight trial analysis for 2D/3D SVS
NASA Astrophysics Data System (ADS)
Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick
2004-08-01
The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional
Separation of image parts using 2-D parallel form recursive filters.
Sivaramakrishna, R
1996-01-01
This correspondence deals with a new technique to separate objects or image parts in a composite image. A parallel form extension of a 2-D Steiglitz-McBride method is applied to the discrete cosine transform (DCT) of the image containing the objects that are to be separated. The obtained parallel form is the sum of several filters or systems, where the impulse response of each filter corresponds to the DCT of one object in the original image. Preliminary results on an image with two objects show that the algorithm works well, even in the case where one object occludes another as well as in the case of moderate noise. PMID:18285105
Numerical computation of 2D Sommerfeld integrals - Decomposition of the angular integral
NASA Astrophysics Data System (ADS)
Dvorak, Steven L.; Kuester, Edward F.
1992-02-01
The computational efficiency of the 2D Sommerfeld integrals is shown to undergo improvement through the discovery of novel ways to compute the inner angular integral in polar representations. It is shown that the angular integral can be decomposed into a finite number of incomplete Lipschitz-Hankel integrals; these can in turn be calculated through a series of expansions, so that the angular integral can be computed by summing a series rather than applying a standard numerical integration algorithm. The technique is most efficient and accurate when piecewise-sinusoidal basis functions are employed to analyze a printed strip-dipole antenna in a layered medium.
Snapshot 2D tomography via coded aperture x-ray scatter imaging
MacCabe, Kenneth P.; Holmgren, Andrew D.; Tornai, Martin P.; Brady, David J.
2015-01-01
This paper describes a fan beam coded aperture x-ray scatter imaging system which acquires a tomographic image from each snapshot. This technique exploits cylindrical symmetry of the scattering cross section to avoid the scanning motion typically required by projection tomography. We use a coded aperture with a harmonic dependence to determine range, and a shift code to determine cross-range. Here we use a forward-scatter configuration to image 2D objects and use serial exposures to acquire tomographic video of motion within a plane. Our reconstruction algorithm also estimates the angular dependence of the scattered radiance, a step toward materials imaging and identification. PMID:23842254
Image denoising with 2D scale-mixing complex wavelet transforms.
Remenyi, Norbert; Nicolis, Orietta; Nason, Guy; Vidakovic, Brani
2014-12-01
This paper introduces an image denoising procedure based on a 2D scale-mixing complex-valued wavelet transform. Both the minimal (unitary) and redundant (maximum overlap) versions of the transform are used. The covariance structure of white noise in wavelet domain is established. Estimation is performed via empirical Bayesian techniques, including versions that preserve the phase of the complex-valued wavelet coefficients and those that do not. The new procedure exhibits excellent quantitative and visual performance, which is demonstrated by simulation on standard test images. PMID:25312931
Widom, Julia R.; Johnson, Neil P.; von Hippel, Peter H.; Marcus, Andrew H.
2013-01-01
We have observed the conformation-dependent electronic coupling between the monomeric subunits of a dinucleotide of 2-aminopurine (2-AP), a fluorescent analog of the nucleic acid base adenine. This was accomplished by extending two-dimensional fluorescence spectroscopy (2D FS) – a fluorescence-detected variation of 2D electronic spectroscopy – to excite molecular transitions in the ultraviolet (UV) regime. A collinear sequence of four ultrafast laser pulses centered at 323 nm was used to resonantly excite the coupled transitions of 2-AP dinucleotide. The phases of the optical pulses were continuously swept at kilohertz frequencies, and the ensuing nonlinear fluorescence was phase-synchronously detected at 370 nm. Upon optimization of a point-dipole coupling model to our data, we found that in aqueous buffer the 2-AP dinucleotide adopts an average conformation in which the purine bases are non-helically stacked (center-to-center distance R12 = 3.5 Å ± 0.5 Å, twist angle θ12 = 5° ± 5°), which differs from the conformation of such adjacent bases in duplex DNA. These experiments establish UV-2D FS as a method for examining the local conformations of an adjacent pair of fluorescent nucleotides substituted into specific DNA or RNA constructs, which will serve as a powerful probe to interpret, in structural terms, biologically significant local conformational changes within the nucleic acid framework of protein-nucleic acid complexes. PMID:24223491
Water of Hydration Dynamics in Minerals Gypsum and Bassanite: Ultrafast 2D IR Spectroscopy of Rocks.
Yan, Chang; Nishida, Jun; Yuan, Rongfeng; Fayer, Michael D
2016-08-01
Water of hydration plays an important role in minerals, determining their crystal structures and physical properties. Here ultrafast nonlinear infrared (IR) techniques, two-dimensional infrared (2D IR) and polarization selective pump-probe (PSPP) spectroscopies, were used to measure the dynamics and disorder of water of hydration in two minerals, gypsum (CaSO4·2H2O) and bassanite (CaSO4·0.5H2O). 2D IR spectra revealed that water arrangement in freshly precipitated gypsum contained a small amount of inhomogeneity. Following annealing at 348 K, water molecules became highly ordered; the 2D IR spectrum became homogeneously broadened (motional narrowed). PSPP measurements observed only inertial orientational relaxation. In contrast, water in bassanite's tubular channels is dynamically disordered. 2D IR spectra showed a significant amount of inhomogeneous broadening caused by a range of water configurations. At 298 K, water dynamics cause spectral diffusion that sampled a portion of the inhomogeneous line width on the time scale of ∼30 ps, while the rest of inhomogeneity is static on the time scale of the measurements. At higher temperature, the dynamics become faster. Spectral diffusion accelerates, and a portion of the lower temperature spectral diffusion became motionally narrowed. At sufficiently high temperature, all of the dynamics that produced spectral diffusion at lower temperatures became motionally narrowed, and only homogeneous broadening and static inhomogeneity were observed. Water angular motions in bassanite exhibit temperature-dependent diffusive orientational relaxation in a restricted cone of angles. The experiments were made possible by eliminating the vast amount of scattered light produced by the granulated powder samples using phase cycling methods. PMID:27385320
2D-ELDOR using full Sc- fitting and absorption lineshapes
NASA Astrophysics Data System (ADS)
Chiang, Yun-Wei; Costa-Filho, Antonio; Freed, Jack H.
2007-10-01
Recent progress in developing 2D-ELDOR (2D electron-electron double resonance) techniques to better capture molecular dynamics in complex fluids, particularly in model and biological membranes, is reported. The new "full Sc- method", which corrects the spectral analysis for the phase distortion effects present in the experiments, is demonstrated to enhance the sensitivity of 2D-ELDOR in reporting on molecular dynamics in complex membrane environments. That is, instead of performing spectral fitting in the magnitude mode, our new method enables simultaneous fitting of both the real and imaginary components of the Sc- signal. The full Sc- fitting not only corrects the phase distortions in the experimental data but also more accurately determines instrumental dead times. The phase corrections applied to the Sc- spectrum enable the extraction of the pure absorption-mode spectrum, which is characterized by much better resolution than the magnitude-mode spectrum. In the absorption mode, the variation of homogeneous broadening, which reports on the dynamics of the spin probe, can even be observed by visual inspection. This new method is illustrated with results from model membranes of dipalmitoyl-sn-glycero-phosphatidylcholine (DPPC)-cholesterol binary mixtures, as well as with results from plasma membrane vesicles of mast cells. In addition to the dynamic parameters, which provide quantitative descriptions for membranes at the molecular level, the high-resolution absorption spectra themselves may be used as a "fingerprint" to characterize membrane phases and distinguish coexisting components in biomembranes. Thus we find that 2D-ELDOR is greatly improved with the new "full Sc- method" especially for exploring the complexity of model and biological membranes.
Sun, Liyun; Gu, Shaohua; Sun, Yaqiong; Zheng, Dan; Wu, Qihan; Li, Xin; Dai, Jianfeng; Dai, Jianliang; Ji, Chaoneng; Xie, Yi; Mao, Yumin
2005-04-01
This study reports the cloning and characterization of a novel human phosphatidic acid phosphatase type 2 isoform cDNAs (PAP2d) from the foetal brain cDNA library. The PAP2d gene is localized on chromosome 1p21.3. It contains six exons and spans 112 kb of the genomic DNA. By large-scale cDNA sequencing we found two splice variants of PAP2d, PAP2d_v1 and PAP2d_v2. The PAP2d_v1 cDNA is 1722 bp in length and spans an open reading frame from nucleotide 56 to 1021, encoding a 321aa protein. The PAP2d_v2 cDNA is 1707 bp in length encoding a 316aa protein from nucleotide 56-1006. The PAP2d_v1 cDNA is 15 bp longer than the PAP2d_v2 cDNA in the terminal of the fifth exon and it creates different ORF. Both of the proteins contain a well-conserved PAP2 motif. The PAP2d_v1 is mainly expressed in human brain, lung, kidney, testis and colon, while PAP2d_v2 is restricted to human placenta, skeletal muscle, and kidney. The two splice variants are co-expressed only in kidney. PMID:16010976
NASA Astrophysics Data System (ADS)
Sun, Rui; Dubessy, Jean
2010-04-01
Molecular based equations of state (EOS) are attractive because they can take into account the energetic contribution of the main types of molecular interactions. This study models vapor-liquid equilibrium (VLE) and PVTx properties of the H 2O-CO 2 binary system using a Lennard-Jones (LJ) referenced SAFT (Statistical Associating Fluid Theory) EOS. The improved SAFT-LJ EOS is defined in terms of the residual molar Helmholtz energy, which is a sum of four terms representing the contributions from LJ segment-segment interactions, chain-forming among the LJ segments, short-range associations and long-range multi-polar interactions. CO 2 is modeled as a linear chain molecule with a constant quadrupole moment, and H 2O is modeled as a spherical molecule with four association sites and a dipole moment. The multi-polar contribution to Helmholtz energy, including the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contribution for H 2O-CO 2 system, is calculated using the theory of Gubbins and Twu (1978). Six parameters for pure H 2O and four parameters for pure CO 2 are needed in our model. The Van der Waals one-fluid mixing rule is used to calculate the Lennard-Jones energy parameter and volume parameter for the mixture. Two or three binary parameters are needed for CO 2-H 2O mixtures, which are evaluated from phase equilibrium data of the binary system. Comparison with the experimental data shows that our model represents the PVT properties of CO 2 better than other SAFT EOS without a quadrupole contribution. For the CO 2-H 2O system, our model agrees well with the vapor-liquid equilibrium data from 323-623 K. The average relative deviation for CO 2 solubility (expressed in mole fraction) in water is within 6%. Our model can also predict the PVTx properties of CO 2-H 2O mixtures up to 1073 K and 3000 bar. The good performance of this model indicates that: (1) taking account of the multi-polar contribution explicitly improves the agreement of calculated
Application of a Hybrid 3D-2D Laser Scanning System to the Characterization of Slate Slabs
López, Marcos; Martínez, Javier; Matías, José María; Vilán, José Antonio; Taboada, Javier
2010-01-01
Dimensional control based on 3D laser scanning techniques is widely used in practice. We describe the application of a hybrid 3D-2D laser scanning system to the characterization of slate slabs with structural defects that are difficult for the human eye to characterize objectively. Our study is based on automating the process using a 3D laser scanner and a 2D camera. Our results demonstrate that the application of this hybrid system optimally characterizes slate slabs in terms of the defects described by the Spanish UNE-EN 12326-1 standard. PMID:22219696
Shao, Yonghong; Liu, Honghai; Qin, Wan; Qu, Junle; Peng, Xiang; Niu, Hanben
2013-01-01
We present an addressable, large-field second harmonic generation microscope by combining a 2D acousto-optical deflector with a spatial light modulator. The SLM shapes an incoming mode-locked, near-infrared Ti:Sapphire laser beam into a multifocus array, which can be rapidly scanned by changing the incident angle of the laser beam using a 2D acousto-optical deflector. Compared to the single-beam-scan technique, the multifocus array scan can increase the scanning rate and the field-of-view size with the multi-region imaging ability. PMID:24307756
Development of models for the two-dimensional, two-fluid code for sodium boiling NATOF-2D. [LMFBR
Zielinski, R.G.; Kazimi, M.S.
1981-09-01
Several features were incorporated into NATOF-2D, a two-dimensional, two fluid code developed at MIT for the purpose of analysis of sodium boiling transients under LMFBR conditions. They include improved interfacial mass, momentum and energy exchange rate models, and a cell-to-cell radial heat conduction mechanism which was calibrated by simulation of Westinghouse Blanket Heat Transfer Test Program Runs 544 and 545. Finally, a direct method of pressure field solution was implemented into a direct method of pressure field solution was implemented into NATOF-2D, replacing the iterative technique previously available, and resulted in substantially reduced computational costs.
NASA Technical Reports Server (NTRS)
Johnsen, R.; Biondi, M. A.
1980-01-01
An investigation of the reactions of metastable O(+) ions and O2 using drift tube-mass spectrometer techniques is presented. It was shown that ordinary charge transfer is the dominant reaction branch in both cases; it occurs with large rate coefficients, k(N2) = (8 + or - 2) x 10 to the -10th cu cm/s and k(O2) = (7 + or - 2) x 10 to the -10th cu cm/s, at an effective ion temperature of about 550 K. The reaction He(+) + O2 is used as a source of metastable O(+) ions, and evidence is presented that the O(+) ions so produced are in the 2D state rather than the 2P state. The results are compared with previous measurements, and inferences drawn from ionospheric observations.
Human erythrocytes analyzed by generalized 2D Raman correlation spectroscopy
NASA Astrophysics Data System (ADS)
Wesełucha-Birczyńska, Aleksandra; Kozicki, Mateusz; Czepiel, Jacek; Łabanowska, Maria; Nowak, Piotr; Kowalczyk, Grzegorz; Kurdziel, Magdalena; Birczyńska, Malwina; Biesiada, Grażyna; Mach, Tomasz; Garlicki, Aleksander
2014-07-01
The most numerous elements of the blood cells, erythrocytes, consist mainly of two components: homogeneous interior filled with hemoglobin and closure which is the cell membrane. To gain insight into their specific properties we studied the process of disintegration, considering these two constituents, and comparing the natural aging process of human healthy blood cells. MicroRaman spectra of hemoglobin within the single RBC were recorded using 514.5, and 785 nm laser lines. The generalized 2D correlation method was applied to analyze the collected spectra. The time passed from blood donation was regarded as an external perturbation. The time was no more than 40 days according to the current storage limit of blood banks, although, the average RBC life span is 120 days. An analysis of the prominent synchronous and asynchronous cross peaks allow us to get insight into the mechanism of hemoglobin decomposition. Appearing asynchronous cross-peaks point towards globin and heme separation from each other, while synchronous shows already broken globin into individual amino acids. Raman scattering analysis of hemoglobin “wrapping”, i.e. healthy erythrocyte ghosts, allows for the following peculiarity of their behavior. The increasing power of the excitation laser induced alterations in the assemblage of membrane lipids. 2D correlation maps, obtained with increasing laser power recognized as an external perturbation, allows for the consideration of alterations in the erythrocyte membrane structure and composition, which occurs first in the proteins. Cross-peaks were observed indicating an asynchronous correlation between the senescent-cell antigen (SCA) and heme or proteins vibrations. The EPR spectra of the whole blood was analyzed regarding time as an external stimulus. The 2D correlation spectra points towards participation of the selected metal ion centers in the disintegration process.
3D track initiation in clutter using 2D measurements
NASA Astrophysics Data System (ADS)
Lin, Lin; Kirubarajan, Thiagalingam; Bar-Shalom, Yaakov
2001-11-01
In this paper we present an algorithm for initiating 3-D tracks using range and azimuth (bearing) measurements from a 2-D radar on a moving platform. The work is motivated by the need to track possibly low-flying targets, e.g., cruise missiles, using reports from an aircraft-based surveillance radar. Previous work on this problem considered simple linear motion in a flat earth coordinate frame. Our research extends this to a more realistic scenario where the earth"s curvature is also considered. The target is assumed to be moving along a great circle at a constant altitude. After the necessary coordinate transformations, the measurements are nonlinear functions of the target state and the observability of target altitude is severely limited. The observability, quantified by the Cramer-Rao Lower Bound (CRLB), is very sensitive to the sensor-to-target geometry. The paper presents a Maximum Likelihood (ML) estimator for estimating the target motion parameters in the Earth Centered Earth Fixed coordinate frame from 2-D range and angle measurements. In order to handle the possibility of false measurements and missed detections, which was not considered in, we use the Probabilistic Data Association (PDA) algorithm to weight the detections in a frame. The PDA-based modified global likelihood is optimized using a numerical search. The accuracies obtained by the resulting ML-PDA estimator are quantified using the CRLB for different sensor-target configurations. It is shown that the proposed estimator is efficient, that is, it meets the CRLB. Of particular interest is the achievable accuracy for estimating the target altitude, which is not observed directly by the 2-D radar, but can be only inferred from the range and bearing observations.
Synthesis and Characterization of 9-Hydroxyphenalenone Using 2D NMR Techniques
ERIC Educational Resources Information Center
Caes, Benjamin; Jensen, Dell, Jr.
2008-01-01
9-Hydroxyphenalenone is a planar multicyclic [beta]-keto-enol, which is synthesized via a Friedel-Crafts acylation followed by acid-catalyzed intramolecular Michael addition with the loss of a phenyl group in a one-pot reaction during a four-hour lab period. Tautomerization of the [beta]-keto-enol results in C[subscript 2v] symmetry on the NMR…
2D induced gravity from the canonically gauged WZNW system
NASA Astrophysics Data System (ADS)
Blagojević, M.; Popović, D. S.; Sazdović, B.
1999-02-01
Starting from the Kac-Moody structure of the WZNW model for SL(2,R) and using the general canonical formalism, we formulate a gauge theory invariant under local SL(2,R)×SL(2,R) and diffeomorphisms. This theory represents a gauge extension of the WZNW system, defined by a difference of two simple WZNW actions. By performing a partial gauge fixing and integrating out some dynamical variables, we prove that the resulting effective theory coincides with the induced gravity in 2D. The geometric properties of the induced gravity are obtained out of the gauge properties of the WZNW system with the help of the Dirac brackets formalism.
Recent update of the RPLUS2D/3D codes
NASA Technical Reports Server (NTRS)
Tsai, Y.-L. Peter
1991-01-01
The development of the RPLUS2D/3D codes is summarized. These codes utilize LU algorithms to solve chemical non-equilibrium flows in a body-fitted coordinate system. The motivation behind the development of these codes is the need to numerically predict chemical non-equilibrium flows for the National AeroSpace Plane Program. Recent improvements include vectorization method, blocking algorithms for geometric flexibility, out-of-core storage for large-size problems, and an LU-SW/UP combination for CPU-time efficiency and solution quality.
Quantifying Therapeutic and Diagnostic Efficacy in 2D Microvascular Images
NASA Technical Reports Server (NTRS)
Parsons-Wingerter, Patricia; Vickerman, Mary B.; Keith, Patricia A.
2009-01-01
VESGEN is a newly automated, user-interactive program that maps and quantifies the effects of vascular therapeutics and regulators on microvascular form and function. VESGEN analyzes two-dimensional, black and white vascular images by measuring important vessel morphology parameters. This software guides the user through each required step of the analysis process via a concise graphical user interface (GUI). Primary applications of the VESGEN code are 2D vascular images acquired as clinical diagnostic images of the human retina and as experimental studies of the effects of vascular regulators and therapeutics on vessel remodeling.
Transport Experiments on 2D Correlated Electron Physics in Semiconductors
Tsui, Daniel
2014-03-24
This research project was designed to investigate experimentally the transport properties of the 2D electrons in Si and GaAs, two prototype semiconductors, in several new physical regimes that were previously inaccessible to experiments. The research focused on the strongly correlated electron physics in the dilute density limit, where the electron potential energy to kinetic energy ratio rs>>1, and on the fractional quantum Hall effect related physics in nuclear demagnetization refrigerator temperature range on samples with new levels of purity and controlled random disorder.
2D/3D Synthetic Vision Navigation Display
NASA Technical Reports Server (NTRS)
Prinzel, Lawrence J., III; Kramer, Lynda J.; Arthur, J. J., III; Bailey, Randall E.; Sweeters, jason L.
2008-01-01
Flight-deck display software was designed and developed at NASA Langley Research Center to provide two-dimensional (2D) and three-dimensional (3D) terrain, obstacle, and flight-path perspectives on a single navigation display. The objective was to optimize the presentation of synthetic vision (SV) system technology that permits pilots to view multiple perspectives of flight-deck display symbology and 3D terrain information. Research was conducted to evaluate the efficacy of the concept. The concept has numerous unique implementation features that would permit enhanced operational concepts and efficiencies in both current and future aircraft.
Efficient 2d full waveform inversion using Fortran coarray
NASA Astrophysics Data System (ADS)
Ryu, Donghyun; Kim, ahreum; Ha, Wansoo
2016-04-01
We developed a time-domain seismic inversion program using the coarray feature of the Fortran 2008 standard to parallelize the algorithm. We converted a 2d acoustic parallel full waveform inversion program with Message Passing Interface (MPI) to a coarray program and examined performance of the two inversion programs. The results show that the speed of the waveform inversion program using the coarray is slightly faster than that of the MPI version. The standard coarray lacks features for collective communication; however, it can be improved in following standards since it is introduced recently. The parallel algorithm can be applied for 3D seismic data processing.
Unitary matrix models and 2D quantum gravity
Dalley, S. . Joseph Henry Labs.); Johnson, C.V.; Morris, T.R. . Dept. of Physics); Watterstam, A. )
1992-09-21
In this paper the KdV and modified KdV integrable hierarchies are shown to be different descriptions of the same 2D gravitational system - open-closed string theory. Non-perturbative solutions of the multicritical unitary matrix models map to non-singular solutions of the renormalization group equation for the string susceptibility, [P, Q] = Q. The authors also demonstrate that the large-N solutions of unitary matrix integrals in external fields, studied by Gross and Newman, equal the non-singular pure closed-string solutions of [[bar P], Q] = Q.
2-D scalable optical controlled phased-array antenna system
NASA Astrophysics Data System (ADS)
Chen, Maggie Yihong; Howley, Brie; Wang, Xiaolong; Basile, Panoutsopoulos; Chen, Ray T.
2006-02-01
A novel optoelectronically-controlled wideband 2-D phased-array antenna system is demonstrated. The inclusion of WDM devices makes a highly scalable system structure. Only (M+N) delay lines are required to control a M×N array. The optical true-time delay lines are combination of polymer waveguides and optical switches, using a single polymeric platform and are monolithically integrated on a single substrate. The 16 time delays generated by the device are measured to range from 0 to 175 ps in 11.6 ps. Far-field patterns at different steering angles in X-band are measured.
Ring Correlations in Two-Dimensional (2D) Random Networks
NASA Astrophysics Data System (ADS)
Sadjadi, Mahdi; Thorpe, M. F.
Amorphous materials can be characterized by their ring structure. Recently, two experimental groups imaged bilayers of vitreous silica at atomic resolution which provides a direct access to the ring structure of a 2D glass. It has been shown that experimental samples have various ring statistics, obey Aboav-Weaire law and have a distinct area law. In this work, we study correlations between rings as a function of their size and topological separation. We show that correlation is medium-range and vanishes when the separation is about three rings apart. We also present a generalization of the Aboav-Weaire law.
Breakdown of wave diffusion in 2D due to loops.
Haney, Matthew; Snieder, Roel
2003-08-29
The validity of the diffusion approximation for the intensity of multiply scattered waves is tested with numerical simulations in a strongly scattering 2D medium of finite extent. We show that the diffusion equation underestimates the intensity and attribute this to both the neglect of recurrent scattering paths and interference within diffusion theory. We present a theory to quantify this discrepancy based on counting all possible scattering paths between point scatterers. Interference phenomena, due to loop paths, are incorporated in a way similar to coherent backscattering. PMID:14525183
Anomalous Hall Effect in a 2D Rashba Ferromagnet.
Ado, I A; Dmitriev, I A; Ostrovsky, P M; Titov, M
2016-07-22
Skew scattering on rare impurity configurations is shown to dominate the anomalous Hall effect in a 2D Rashba ferromagnet. The mechanism originates in scattering on rare impurity pairs separated by distances of the order of the Fermi wavelength. The corresponding theoretical description goes beyond the conventional noncrossing approximation. The mechanism provides the only contribution to the anomalous Hall conductivity in the most relevant metallic regime and strongly modifies previously obtained results for lower energies in the leading order with respect to impurity strength. PMID:27494487