Science.gov

Sample records for 2d sph simulations

  1. An improved SPH scheme for cosmological simulations

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Murante, G.; Arth, A.; Remus, R.-S.; Teklu, A. F.; Donnert, J. M. F.; Planelles, S.; Beck, M. C.; Förster, P.; Imgrund, M.; Dolag, K.; Borgani, S.

    2016-01-01

    We present an implementation of smoothed particle hydrodynamics (SPH) with improved accuracy for simulations of galaxies and the large-scale structure. In particular, we implement and test a vast majority of SPH improvement in the developer version of GADGET-3. We use the Wendland kernel functions, a particle wake-up time-step limiting mechanism and a time-dependent scheme for artificial viscosity including high-order gradient computation and shear flow limiter. Additionally, we include a novel prescription for time-dependent artificial conduction, which corrects for gravitationally induced pressure gradients and improves the SPH performance in capturing the development of gas-dynamical instabilities. We extensively test our new implementation in a wide range of hydrodynamical standard tests including weak and strong shocks as well as shear flows, turbulent spectra, gas mixing, hydrostatic equilibria and self-gravitating gas clouds. We jointly employ all modifications; however, when necessary we study the performance of individual code modules. We approximate hydrodynamical states more accurately and with significantly less noise than standard GADGET-SPH. Furthermore, the new implementation promotes the mixing of entropy between different fluid phases, also within cosmological simulations. Finally, we study the performance of the hydrodynamical solver in the context of radiative galaxy formation and non-radiative galaxy cluster formation. We find galactic discs to be colder and more extended and galaxy clusters showing entropy cores instead of steadily declining entropy profiles. In summary, we demonstrate that our improved SPH implementation overcomes most of the undesirable limitations of standard GADGET-SPH, thus becoming the core of an efficient code for large cosmological simulations.

  2. SPH and Eulerian underwater bubble collapse simulations

    SciTech Connect

    Swegle, J.W.; Kipp, M.E.

    1998-05-01

    SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. Previously, the SPH algorithm has been subjected to detailed testing and analysis to determine the feasibility of using the coupled finite-element/SPH code PRONTO/SPH for the analysis of various types of underwater explosion problems involving fluid-structure and shock-structure interactions. Here, SPH and Eulerian simulations are used to study the details of underwater bubble collapse, particularly the formation of re-entrant jets during collapse, and the loads generated on nearby structures by the jet and the complete collapse of the bubble. Jet formation is shown to be due simply to the asymmetry caused by nearby structures which disrupt the symmetry of the collapse. However, the load generated by the jet is a minor precursor to the major loads which occur at the time of complete collapse of the bubble.

  3. SPH (smoothed particle hydrodynamics) simulations of hypervelocity impacts

    SciTech Connect

    Cloutman, L.D.

    1991-01-24

    The smoothed particle hydrodynamics (SPH) method has been used to simulate several cases of hypervelocity impact in an exploratory study to determine the suitability of the method for such problems. The calculations compare favorably with experimental results and with other numerical simulations. We discuss the requirements that must be satisfied for SPH to produce accurate simulations of such problems. 18 refs., 9 figs.

  4. Water Flow Simulation using Smoothed Particle Hydrodynamics (SPH)

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Berg, Jared; Harris, Michael F.

    2014-01-01

    Simulation of water flow from the rainbird nozzles has been accomplished using the Smoothed Particle Hydrodynamics (SPH). The advantage of using SPH is that no meshing is required, thus the grid quality is no longer an issue and accuracy can be improved.

  5. Growth of galaxies in SPH simulations

    NASA Astrophysics Data System (ADS)

    Keres, Dusan

    We explore the growth of galaxies formed in self-consistent Smoothed Particle Hydrodynamic (SPH) cosmological simulations. In the first Chapter, we examine the temperature history of gas accreted by forming galaxies in SPH simulations. Some of this gas follows the track expected in the conventional picture of galaxy formation, shock heating to roughly the virial temperature of the galaxy potential well ( T ~ 10 6 K for a Milky Way type galaxy) before cooling, condensing, and forming stars. However, a large fraction of the accreted gas radiates its acquired gravitational energy at much lower temperatures, typically T < 10 5 K, and the histogram of maximum gas temperatures is clearly bimodal. The "cold mode" of gas accretion dominates for low mass galaxies (baryonic mass M gal [Special characters omitted.] 10 10.3 [Special characters omitted.] or halo mass M halo [Special characters omitted.] 10 11.4 [Special characters omitted.] ), while the conventional "hot mode" dominates the growth of high mass systems. Cold accretion is often directed along filaments, allowing galaxies to efficiently draw gas from large distances, while hot accretion is quasi-spherical. The galaxy and halo mass dependence leads to a redshift and environmental dependence of the cold and hot mode accretion rates, with cold mode dominating at high redshifts and in low density regions today, and hot mode dominating in group and cluster environments at low redshifts. The cosmic star formation rate tracks the overall history of gas accretion, and its decline at low redshifts follows the combined decline of the cold and hot mode accretion rates. The drop in cold accretion is driven by the decreasing infall rate of material into halos, while for hot accretion this slower mass growth is further modified by the longer cooling times within larger halos. If we allowed hot accretion to be suppressed by conduction or AGN feedback, then the simulation predictions would change in interesting ways, perhaps

  6. Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH

    NASA Astrophysics Data System (ADS)

    Leroy, A.; Violeau, D.; Ferrand, M.; Kassiotis, C.

    2014-03-01

    This work aims at improving the 2-D incompressible SPH model (ISPH) by adapting it to the unified semi-analytical wall boundary conditions proposed by Ferrand et al. [10]. The ISPH algorithm considered is as proposed by Lind et al. [25], based on the projection method with a divergence-free velocity field and using a stabilising procedure based on particle shifting. However, we consider an extension of this model to Reynolds-Averaged Navier-Stokes equations based on the k-ɛ turbulent closure model, as done in [10]. The discrete SPH operators are modified by the new description of the wall boundary conditions. In particular, a boundary term appears in the Laplacian operator, which makes it possible to accurately impose a von Neumann pressure wall boundary condition that corresponds to impermeability. The shifting and free-surface detection algorithms have also been adapted to the new boundary conditions. Moreover, a new way to compute the wall renormalisation factor in the frame of the unified semi-analytical boundary conditions is proposed in order to decrease the computational time. We present several verifications to the present approach, including a lid-driven cavity, a water column collapsing on a wedge and a periodic schematic fish-pass. Our results are compared to Finite Volumes methods, using Volume of Fluids in the case of free-surface flows. We briefly investigate the convergence of the method and prove its ability to model complex free-surface and turbulent flows. The results are generally improved when compared to a weakly compressible SPH model with the same boundary conditions, especially in terms of pressure prediction.

  7. RAM simulation model for SPH/RSV systems

    SciTech Connect

    Schryver, J.C.; Primm, A.H.; Nelson, S.C.

    1995-12-31

    The US Army`s Project Manager, Crusader is sponsoring the development of technologies that apply to the Self-Propelled Howitzer (SPH), formerly the Advanced Field Artillery System (AFAS), and Resupply Vehicle (RSV), formerly the Future Armored Resupply Vehicle (FARV), weapon system. Oak Ridge National Laboratory (ORNL) is currently performing developmental work in support of the SPH/PSV Crusader system. Supportive analyses of reliability, availability, and maintainability (RAM) aspects were also performed for the SPH/RSV effort. During FY 1994 and FY 1995 OPNL conducted a feasibility study to demonstrate the application of simulation modeling for RAM analysis of the Crusader system. Following completion of the feasibility study, a full-scale RAM simulation model of the Crusader system was developed for both the SPH and PSV. This report provides documentation for the simulation model as well as instructions in the proper execution and utilization of the model for the conduct of RAM analyses.

  8. Hydrodynamic Simulations with the Godunov SPH

    NASA Astrophysics Data System (ADS)

    Borgani, S.; Murante, G.; Brunino, R.; Cha, S.-H.

    2012-07-01

    We present results based on an implementation of the Godunov Smoothed Particle Hydrodynamics (GSPH). We carry out controlled hydrodynamical three-dimensional tests, namely the Sod shock tube and the development of Kelvin-Helmholtz instabilities in a shear flow test. The results of our tests demonstrate GSPH provides a much improved description of contact discontinuities, with respect to SPH, and is able to follow the development of gas-dynamical instabilities, such as the Kevin-Helmholtz and the Rayleigh-Taylor ones.

  9. Vortical and nonlinear effects in the roll motion of a 2-D body in the free surface investigated by SPH

    NASA Astrophysics Data System (ADS)

    Olmez, O.; Ozbulut, M.; Yildiz, M.; Goren, O.

    2016-06-01

    The present study investigates the vortical and nonlinear effects in the roll motion of a 2-D body with square cross-sections by using Smoothed Particle Hydrodynamics (SPH). A 2-D rigid body with square cross-section is taken into account for the benchmark study and subjected to the oscillatory roll motion with a given angular frequency. The governing equations are continuity equation and Euler's equation with artificial viscosity term. Weakly Compressible SPH (WCSPH) scheme is employed for the discretization of the governing equations. Velocities of the fluid particles are updated by means of XSPH+Artificial Particle Displacement (VXSPH+APD) algorithm. In this method only the free surface fluid particles are subjected to VXSPH algorithm while the APD algorithm is employed for the fully populated flow regions. The hybrid usage of numerical treatment keeps free surface particles together by creating an artificial surface tension on the free surface. VXSPH+APD is a proven numerical treatment to provide the most accurate results for this type of free surface flows (Ozbulut et al. 2014). The results of the present study are compared with those of the experimental studies as well as with those of the numerical methods obtained from the current literature.

  10. An improved sink particle algorithm for SPH simulations

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Walch, S.; Whitworth, A. P.

    2013-04-01

    Numerical simulations of star formation frequently rely on the implementation of sink particles: (a) to avoid expending computational resource on the detailed internal physics of individual collapsing protostars, (b) to derive mass functions, binary statistics and clustering kinematics (and hence to make comparisons with observation), and (c) to model radiative and mechanical feedback; sink particles are also used in other contexts, for example to represent accreting black holes in galactic nuclei. We present a new algorithm for creating and evolving sink particles in smoothed particle hydrodynamic (SPH) simulations, which appears to represent a significant improvement over existing algorithms - particularly in situations where sinks are introduced after the gas has become optically thick to its own cooling radiation and started to heat up by adiabatic compression. (i) It avoids spurious creation of sinks. (ii) It regulates the accretion of matter on to a sink so as to mitigate non-physical perturbations in the vicinity of the sink. (iii) Sinks accrete matter, but the associated angular momentum is transferred back to the surrounding medium. With the new algorithm - and modulo the need to invoke sufficient resolution to capture the physics preceding sink formation - the properties of sinks formed in simulations are essentially independent of the user-defined parameters of sink creation, or the number of SPH particles used.

  11. Computer Simulations of Dwarf-Nova Outbursts with SPH

    NASA Astrophysics Data System (ADS)

    Ruoff, L.; Speith, R.

    Dwarf Novae are cataclysmic variables showing quasi-periodic outbursts of typical durations of a few days with amplitudes of 2-6 mag and recurrence times of days to months. The dwarf nova cycle is now commonly described in the framework of the disk instability (DI) model: The accretion disk which is the main source of luminosity during outburst is thought to be viscously and thermally unstable for a given value of the external mass inflow rate from the secondary. The corresponding surface-density vs. viscosity relation shows a typical S-like shape. This results in a limit cycle behaviour changing the disk structure from a cold state with low viscosity during quiescence to a high viscosity state during outburst, and vice versa. For our calculations we use a SPH algorithm including the entire viscous stress tensor according to the Navier-Stokes equation. In this code we have implemented a standard S-curve for the surface-density vs. viscosity relation based on results of vertical structure calculations performed by various other groups (e.g., Ludwig, Meyer-Hofmeister, Ritter). Our 2D computations show a variety of effects not encountered in the standard 1D approach. The transition to the hot state occurs gradually throughout the disk, as particles tend to mix up early as a result of scattering of density values in SPH. The disk will eventually settle to a steady state or grow and get tidally unstable, resulting in an outburst. We are not able to reproduce concentrical transition fronts in our calculations. Instead, in one class of calculations, outbursts tend to be initiated in spiral-shape density structures.

  12. Gas stripping in galaxy clusters: a new SPH simulation approach

    NASA Astrophysics Data System (ADS)

    Jáchym, P.; Palouš, J.; Köppen, J.; Combes, F.

    2007-09-01

    Aims:The influence of a time-varying ram pressure on spiral galaxies in clusters is explored with a new simulation method based on the N-body SPH/tree code GADGET. Methods: We have adapted the code to describe the interaction of two different gas phases, the diffuse hot intracluster medium (ICM) and the denser and colder interstellar medium (ISM). Both the ICM and ISM components are introduced as SPH particles. As a galaxy arrives on a highly radial orbit from outskirts to cluster center, it crosses the ICM density peak and experiences a time-varying wind. Results: Depending on the duration and intensity of the ISM-ICM interaction, early and late type galaxies in galaxy clusters with either a large or small ICM distribution are found to show different stripping efficiencies, amounts of reaccretion of the extra-planar ISM, and final masses. We compare the numerical results with analytical approximations of different complexity and indicate the limits of the Gunn & Gott simple stripping formula. Conclusions: Our investigations emphasize the role of the galactic orbital history to the stripping amount. We discuss the contribution of ram pressure stripping to the origin of the ICM and its metallicity. We propose gas accumulations like tails, filaments, or ripples to be responsible for stripping in regions with low overall ICM occurrence. Appendix A is only available in electronic form at http://www.aanda.org

  13. SPH numerical simulation of fluid flow through a porous media

    NASA Astrophysics Data System (ADS)

    Klapp-Escribano, Jaime; Mayoral-Villa, Estela; Rodriguez-Meza, Mario Alberto; de La Cruz-Sanchez, Eduardo; di G Sigalotti, Leonardo; Inin-Abacus Collaboration; Ivic Collaboration

    2013-11-01

    We have tested an improved a method for 3D SPH simulations of fluid flow through a porous media using an implementation of this method with the Dual-Physics code. This improvement makes it possible to simulate many particles (of the order of several million) in reasonable computer times because its execution on GPUs processors makes it possible to reduce considerably the simulation cost for large systems. Modifications in the initial configuration have been implemented in order to simulate different arrays and geometries for the porous media. The basic tests were reproduced and the performance was analyzed. Our 3D simulations of fluid flow through a saturated homogeneous porous media shows a discharge velocity proportional to the hydraulic gradient reproducing Darcy's law at small body forces. The results are comparable with values obtained in previous work and published in the literature for simulations of flow through periodic porous media. Our simulations for a non saturated porous media produce adequate qualitative results showing that a non steady state is generated. The relaxation time for these systems were obtained. Work partially supported by Cinvestav-ABACUS, CONACyT grant EDOMEX-2011-C01-165873.

  14. SPH Simulation of Impact of a Surge on a Wall

    NASA Astrophysics Data System (ADS)

    Diwakar, Manoj Kumar; Mohapatra, Pranab Kumar; Tripathi, Shivam

    2014-05-01

    Structures located on the downstream of a dam are prone to impact of the surge due to dam break flow. Ramsden (1996) experimentally studied the run-up height on a vertical wall due to propagation of bore and surge on dry bed and measured their impact on the wall. Mohapatra et al. (2000) applied Navier Stokes equations to numerically study the impact of bore on vertical and inclined walls. They also obtained the evolution of surge on dry bed. In the present work, the impact of a surge wave due to dam break flow against the wall is modeled with a two-dimensional smoothed particle hydrodynamics (SPH) model. SPH is a mesh-free method that relies on the particle view of the field problem and approximates the continuity and momentum equations on a set of particles. The method solves the strong form of Navier-Stokes equations. The governing equations are solved numerically in the vertical plane. The propagation of the surge wave, its impact and the maximum run-up on the wall located at the boundary are analyzed. Surface profile, velocity field and pressure distributions are simulated. Non-dimensional run-up height obtained from the present numerical model is 0.86 and is in good agreement with the available experimental data of Ramsden (1996) which is in the range of 0.75-0.9. Also, the simulated profile of the surge tip was comparable to the empirical equations refereed in Ramsden (1996). The model is applied to the study the maximum force and the run-up height on inclined walls with different inclinations. The results indicate that the maximum force and the run-up height on the wall increase with the increment of wall inclination. Comparison of numerical results with analytical solutions derived from shallow water equations clearly shows the breakdown of shallow water assumption during the impact. In addition to these results, the numerical simulation yields the complete velocity and pressure ?elds which may be used to design structures located in the path of a dam

  15. Realistic and efficient 2D crack simulation

    NASA Astrophysics Data System (ADS)

    Yadegar, Jacob; Liu, Xiaoqing; Singh, Abhishek

    2010-04-01

    Although numerical algorithms for 2D crack simulation have been studied in Modeling and Simulation (M&S) and computer graphics for decades, realism and computational efficiency are still major challenges. In this paper, we introduce a high-fidelity, scalable, adaptive and efficient/runtime 2D crack/fracture simulation system by applying the mathematically elegant Peano-Cesaro triangular meshing/remeshing technique to model the generation of shards/fragments. The recursive fractal sweep associated with the Peano-Cesaro triangulation provides efficient local multi-resolution refinement to any level-of-detail. The generated binary decomposition tree also provides efficient neighbor retrieval mechanism used for mesh element splitting and merging with minimal memory requirements essential for realistic 2D fragment formation. Upon load impact/contact/penetration, a number of factors including impact angle, impact energy, and material properties are all taken into account to produce the criteria of crack initialization, propagation, and termination leading to realistic fractal-like rubble/fragments formation. The aforementioned parameters are used as variables of probabilistic models of cracks/shards formation, making the proposed solution highly adaptive by allowing machine learning mechanisms learn the optimal values for the variables/parameters based on prior benchmark data generated by off-line physics based simulation solutions that produce accurate fractures/shards though at highly non-real time paste. Crack/fracture simulation has been conducted on various load impacts with different initial locations at various impulse scales. The simulation results demonstrate that the proposed system has the capability to realistically and efficiently simulate 2D crack phenomena (such as window shattering and shards generation) with diverse potentials in military and civil M&S applications such as training and mission planning.

  16. An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoyang; Deng, Xiao-Long

    2016-04-01

    In this paper, an improved weakly compressible smoothed particle hydrodynamics (SPH) method is proposed to simulate transient free surface flows of viscous and viscoelastic fluids. The improved SPH algorithm includes the implementation of (i) the mixed symmetric correction of kernel gradient to improve the accuracy and stability of traditional SPH method and (ii) the Rusanov flux in the continuity equation for improving the computation of pressure distributions in the dynamics of liquids. To assess the effectiveness of the improved SPH algorithm, a number of numerical examples including the stretching of an initially circular water drop, dam breaking flow against a vertical wall, the impact of viscous and viscoelastic fluid drop with a rigid wall, and the extrudate swell of viscoelastic fluid have been presented and compared with available numerical and experimental data in literature. The convergent behavior of the improved SPH algorithm has also been studied by using different number of particles. All numerical results demonstrate that the improved SPH algorithm proposed here is capable of modeling free surface flows of viscous and viscoelastic fluids accurately and stably, and even more important, also computing an accurate and little oscillatory pressure field.

  17. SPH_1D: Hierarchical gravity/SPH treecode for simulations of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Olson, Kevin M.; Dorband, John E.

    1999-12-01

    We describe a fast tree algorithm for gravitational N-body simulation on SIMD parallel computers. The tree construction uses fast, parallel sorts. The sorted lists are recursively divided along their x, y and z coordinates. This data structure is a completely balanced tree (i.e., each particle is paired with exactly one other particle) and maintains good spatial locality. An implementation of this tree-building algorithm on a 16k processor Maspar MP-1 performs well and constitutes only a small fraction (approximately 15%) of the entire cycle of finding the accelerations. Each node in the tree is treated as a monopole. The tree search and the summation of accelerations also perform well. During the tree search, node data that is needed from another processor is simply fetched. Roughly 55% of the tree search time is spent in communications between processors. We apply the code to two problems of astrophysical interest. The first is a simulation of the close passage of two gravitationally, interacting, disk galaxies using 65,636 particles. We also simulate the formation of structure in an expanding, model universe using 1,048,576 particles. Our code attains speeds comparable to one head of a Cray Y-MP, so single instruction, multiple data (SIMD) type computers can be used for these simulations. The cost/performance ratio for SIMD machines like the Maspar MP-1 make them an extremely attractive alternative to either vector processors or large multiple instruction, multiple data (MIMD) type parallel computers. With further optimizations (e.g., more careful load balancing), speeds in excess of today's vector processing computers should be possible.

  18. Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu

    2010-09-01

    The methods for simulating surface tension with smoothed particle hydrodynamics (SPH) method in two dimensions and three dimensions are developed. In 2D surface tension model, the SPH particle on the boundary in 2D is detected dynamically according to the algorithm developed by Dilts [G.A. Dilts, Moving least-squares particle hydrodynamics II: conservation and boundaries, International Journal for Numerical Methods in Engineering 48 (2000) 1503-1524]. The boundary curve in 2D is reconstructed locally with Lagrangian interpolation polynomial. In 3D surface tension model, the SPH particle on the boundary in 3D is detected dynamically according to the algorithm developed by Haque and Dilts [A. Haque, G.A. Dilts, Three-dimensional boundary detection for particle methods, Journal of Computational Physics 226 (2007) 1710-1730]. The boundary surface in 3D is reconstructed locally with moving least squares (MLS) method. By transforming the coordinate system, it is guaranteed that the interface function is one-valued in the local coordinate system. The normal vector and curvature of the boundary surface are calculated according to the reconstructed boundary surface and then surface tension force can be calculated. Surface tension force acts only on the boundary particle. Density correction is applied to the boundary particle in order to remove the boundary inconsistency. The surface tension models in 2D and 3D have been applied to benchmark tests for surface tension. The ability of the current method applying to the simulation of surface tension in 2D and 3D is proved.

  19. Simulating the Homunculus Nebula of Eta Carinae with an Innovative Multi-mass SPH Technique

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Benedict J. R.; Podsiadlowski, P.

    2010-01-01

    We present a multi-mass, mixed resolution SPH technique which allows greatly reduced particle number while obtaining high resolution in lower density areas. Two sets of SPH particles are used - high mass for high density regions, low mass for low density regions. Hydrodynamic interaction between the sets is performed with the use of 'buffer' or tracer particles for each set. This technique has many applications in high density contrast simulations such as common envelope spin-up and low mass loss winds and mass transfer in binaries. We use this technique to test a common envelope ejection origin for the Homunculus nebula around Eta Carinae.

  20. The Thermodynamic Model of a Moon Forming Disk Based on SPH Simulations

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Stevenson, D. J.

    2011-12-01

    According to the giant impact hypothesis, a Mars size body hits the proto-Earth in the late stage of Earth forming event (e.g. Benz et al., 1986, Thompson and Stevenson 1988). The impact generates a debris disk around the proto-Earth, from which the Moon is accreted. SPH simulations suggest that the silicate disk has high temperature (~ a few thousands K) and partially vaporized (~10-30% by mass) (Canup 2004). However, SPH does not determine the state of the resulting hydrostatic disk. To do this, we have taken the output of SPH, applied conservation of entropy, mass and angular momentum and corrected for the additional energy released upon quick relaxation to the hydrostatic Keplerian state. We find that the disk is remarkably uniform in entropy but is of lower entropy than the adjacent outer shell of Earth. Constant entropy implies a temperature variation, typically from 4500K (inner disk) to 2500K (outer disk) at the midplane. For grazing impact cases (impact angles: 40 - 60 degrees, impact velocity: escape velocity, mantle material: forsterite), 90% of the disk mass is within 10 Earth radius. The disk vapor mass fractions are about 10-20%, which are consistent with Canup (2004) results. This may be an underestimate because iron is more volatile than magnesium. Mass loss from this disk will be small. The effects of initial condition differences will be discussed in the presentation. This is the first attempt to create a bridge between SPH results and a thermodynamic disk model.

  1. Convergence of AMR and SPH simulations - I. Hydrodynamical resolution and convergence tests

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Falle, S. A. E. G.; Goodwin, S. P.

    2013-06-01

    We compare the results for a set of hydrodynamical tests performed with the adaptive mesh refinement finite volume code, MG, and the smoothed particle hydrodynamics (SPH) code, SEREN. The test suite includes shock tube tests, with and without cooling, the non-linear thin-shell instability and the Kelvin-Helmholtz instability. The main conclusions are the following. (i) The two methods converge in the limit of high resolution and accuracy in most cases. All tests show good agreement when numerical effects (e.g. discontinuities in SPH) are properly treated. (ii) Both methods can capture adiabatic shocks and well-resolved cooling shocks perfectly well with standard prescriptions. However, they both have problems when dealing with under-resolved cooling shocks, or strictly isothermal shocks, at high Mach numbers. The finite volume code only works well at first order and even then requires some additional artificial viscosity. SPH requires either a larger value of the artificial viscosity parameter, αAV, or a modified form of the standard artificial viscosity term using the harmonic mean of the density, rather than the arithmetic mean. (iii) Some SPH simulations require larger kernels to increase neighbour number and reduce particle noise in order to achieve agreement with finite volume simulations (e.g. the Kelvin-Helmholtz instability). However, this is partly due to the need to reduce noise that can corrupt the growth of small-scale perturbations (e.g. the Kelvin-Helmholtz instability). In contrast, instabilities seeded from large-scale perturbations (e.g. the non-linear thin shell instability) do not require more neighbours and hence work well with standard SPH formulations and converge with the finite volume simulations. (iv) For purely hydrodynamical problems, SPH simulations take an order of magnitude longer to run than finite volume simulations when running at equivalent resolutions, i.e. when they both resolve the underlying physics to the same degree. This

  2. Simulation of Yeast Cooperation in 2D.

    PubMed

    Wang, M; Huang, Y; Wu, Z

    2016-03-01

    Evolution of cooperation has been an active research area in evolutionary biology in decades. An important type of cooperation is developed from group selection, when individuals form spatial groups to prevent them from foreign invasions. In this paper, we study the evolution of cooperation in a mixed population of cooperating and cheating yeast strains in 2D with the interactions among the yeast cells restricted to their small neighborhoods. We conduct a computer simulation based on a game theoretic model and show that cooperation is increased when the interactions are spatially restricted, whether the game is of a prisoner's dilemma, snow drifting, or mutual benefit type. We study the evolution of homogeneous groups of cooperators or cheaters and describe the conditions for them to sustain or expand in an opponent population. We show that under certain spatial restrictions, cooperator groups are able to sustain and expand as group sizes become large, while cheater groups fail to expand and keep them from collapse. PMID:26988702

  3. Comparative study of different SPH schemes on simulating violent water wave impact flows

    NASA Astrophysics Data System (ADS)

    Zheng, Xing; Ma, Qing-wei; Duan, Wen-yang

    2014-12-01

    Free surface flows are of significant interest in Computational Fluid Dynamics (CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics (SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH (WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH (ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data.

  4. Incompressible SPH Model for Simulating Violent Free-Surface Fluid Flows

    NASA Astrophysics Data System (ADS)

    Staroszczyk, Ryszard

    2014-06-01

    In this paper the problem of transient gravitational wave propagation in a viscous incompressible fluid is considered, with a focus on flows with fast-moving free surfaces. The governing equations of the problem are solved by the smoothed particle hydrodynamics method (SPH). In order to impose the incompressibility constraint on the fluid motion, the so-called projection method is applied in which the discrete SPH equations are integrated in time by using a fractional-step technique. Numerical performance of the proposed model has been assessed by comparing its results with experimental data and with results obtained by a standard (weakly compressible) version of the SPH approach. For this purpose, a plane dam-break flow problem is simulated, in order to investigate the formation and propagation of a wave generated by a sudden collapse of a water column initially contained in a rectangular tank, as well as the impact of such a wave on a rigid vertical wall. The results of simulations show the evolution of the free surface of water, the variation of velocity and pressure fields in the fluid, and the time history of pressures exerted by an impacting wave on a wall.

  5. SPH simulations of magnetic fields in galaxy clusters

    NASA Astrophysics Data System (ADS)

    Dolag, K.; Bartelmann, M.; Lesch, H.

    1999-08-01

    We perform cosmological, hydrodynamic simulations of magnetic fields in galaxy clusters. The computational code combines the special-purpose hardware Grape for calculating gravitational interaction, and smooth-particle hydrodynamics for the gas component. We employ the usual MHD equations for the evolution of the magnetic field in an ideally conducting plasma. As a first application, we focus on the question what kind of initial magnetic fields yield final field configurations within clusters which are compatible with Faraday-rotation measurements. Our main results can be summarised as follows: (i) Initial magnetic field strengths are amplified by approximately three orders of magnitude in cluster cores, one order of magnitude above the expectation from spherical collapse. (ii) Vastly different initial field configurations (homogeneous or chaotic) yield results that cannot significantly be distinguished. (iii) Micro-Gauss fields and Faraday-rotation observations are well reproduced in our simulations starting from initial magnetic fields of ~ 10(-9) G strength at redshift 15. Our results show that (i) shear flows in clusters are crucial for amplifying magnetic fields beyond simple compression, (ii) final field configurations in clusters are dominated by the cluster collapse rather than by the initial configuration, and (iii) initial magnetic fields of order 10(-9) G are required to match Faraday-rotation observations in real clusters.

  6. High Resolution P3M-GRAPE-SPH Simulations of PopIII Star Formation

    NASA Astrophysics Data System (ADS)

    Suwa, Tamon; Umemura, Masayuki; Sato, Daisuke; Susa, Hajime

    2008-03-01

    In order to investigate the mass distribution of Population III stars, we have developed high-resolution cosmological hydrodynamic simulations in a standard ΛCDM universe. We use a Particle-Particle-Particle-Mesh (P3M) scheme for gravity force calculations, where the PP part is calculated by GRAPE (special purpose board for gravity calculation). The baryon component is treated by Smoothed Particle Hydrodynamics (SPH) method. The simulations are performed on a newly developed dedicated PC-cluster system named FIRST simulator with the peak speed of 36 T flops at the University of Tsukuba. Using this simulator, we perform high-resolution simulations with 2×107 of dark matter and SPH particles, respectively. With this large number of particles, sub-solar mass resolution for baryon particles can be achieved all over the simulation box. Therefore, we can resolve small scale density fluctuations, which may play an important role in the formation of intermediate-mass Pop III stars formation.

  7. SEREN - a new SPH code for star and planet formation simulations. Algorithms and tests

    NASA Astrophysics Data System (ADS)

    Hubber, D. A.; Batty, C. P.; McLeod, A.; Whitworth, A. P.

    2011-05-01

    We present SEREN, a new hybrid Smoothed Particle Hydrodynamics and N-body code designed to simulate astrophysical processes such as star and planet formation. It is written in Fortran 95/2003 and has been parallelised using OpenMP. SEREN is designed in a flexible, modular style, thereby allowing a large number of options to be selected or disabled easily and without compromising performance. SEREN uses the conservative "grad-h" formulation of SPH, but can easily be configured to use traditional SPH or Godunov SPH. Thermal physics is treated either with a barotropic equation of state, or by solving the energy equation and modelling the transport of cooling radiation. A Barnes-Hut tree is used to obtain neighbour lists and compute gravitational accelerations efficiently, and an hierarchical time-stepping scheme is used to reduce the number of computations per timestep. Dense gravitationally bound objects are replaced by sink particles, to allow the simulation to be evolved longer, and to facilitate the identification of protostars and the compilation of stellar and binary properties. At the termination of a hydrodynamical simulation, SEREN has the option of switching to a pure N-body simulation, using a 4th-order Hermite integrator, and following the ballistic evolution of the sink particles (e.g. to determine the final binary statistics once a star cluster has relaxed). We describe in detail all the algorithms implemented in SEREN and we present the results of a suite of tests designed to demonstrate the fidelity of SEREN and its performance and scalability. Further information and additional tests of SEREN can be found at the web-page http://www.astro.group.shef.ac.uk/seren.

  8. SPH-based numerical simulations of flow slides in municipal solid waste landfills.

    PubMed

    Huang, Yu; Dai, Zili; Zhang, Weijie; Huang, Maosong

    2013-03-01

    Most municipal solid waste (MSW) is disposed of in landfills. Over the past few decades, catastrophic flow slides have occurred in MSW landfills around the world, causing substantial economic damage and occasionally resulting in human victims. It is therefore important to predict the run-out, velocity and depth of such slides in order to provide adequate mitigation and protection measures. To overcome the limitations of traditional numerical methods for modelling flow slides, a mesh-free particle method entitled smoothed particle hydrodynamics (SPH) is introduced in this paper. The Navier-Stokes equations were adopted as the governing equations and a Bingham model was adopted to analyse the relationship between material stress rates and particle motion velocity. The accuracy of the model is assessed using a series of verifications, and then flow slides that occurred in landfills located in Sarajevo and Bandung were simulated to extend its applications. The simulated results match the field data well and highlight the capability of the proposed SPH modelling method to simulate such complex phenomena as flow slides in MSW landfills. PMID:23315367

  9. Incompressible SPH method based on Rankine source solution for violent water wave simulation

    NASA Astrophysics Data System (ADS)

    Zheng, X.; Ma, Q. W.; Duan, W. Y.

    2014-11-01

    With wide applications, the smoothed particle hydrodynamics method (abbreviated as SPH) has become an important numerical tool for solving complex flows, in particular those with a rapidly moving free surface. For such problems, the incompressible Smoothed Particle Hydrodynamics (ISPH) has been shown to yield better and more stable pressure time histories than the traditional SPH by many papers in literature. However, the existing ISPH method directly approximates the second order derivatives of the functions to be solved by using the Poisson equation. The order of accuracy of the method becomes low, especially when particles are distributed in a disorderly manner, which generally happens for modelling violent water waves. This paper introduces a new formulation using the Rankine source solution. In the new approach to the ISPH, the Poisson equation is first transformed into another form that does not include any derivative of the functions to be solved, and as a result, does not need to numerically approximate derivatives. The advantage of the new approach without need of numerical approximation of derivatives is obvious, potentially leading to a more robust numerical method. The newly formulated method is tested by simulating various water waves, and its convergent behaviours are numerically studied in this paper. Its results are compared with experimental data in some cases and reasonably good agreement is achieved. More importantly, numerical results clearly show that the newly developed method does need less number of particles and so less computational costs to achieve the similar level of accuracy, or to produce more accurate results with the same number of particles compared with the traditional SPH and existing ISPH when it is applied to modelling water waves.

  10. Parallel peridynamics-SPH simulation of explosion induced soil fragmentation by using OpenMP

    NASA Astrophysics Data System (ADS)

    Fan, Houfu; Li, Shaofan

    2016-06-01

    In this work, we use the OpenMP-based shared-memory parallel programming to implement the recently developed coupling method of state-based peridynamics and smoothed particle hydrodynamics (PD-SPH), and we then employ the program to simulate dynamic soil fragmentation induced by the explosion of the buried explosives. The paper offers detailed technical description and discussion on the PD-SHP coupling algorithm and how to use the OpenMP shared-memory programming to implement such large-scale computation in a desktop environment, with an example to illustrate the basic computing principle and the parallel algorithm structure. In specific, the paper provides a complete OpenMP parallel algorithm for the PD-SPH scheme with the programming and parallelization details. Numerical examples of soil fragmentation caused by the buried explosives are also presented. Results show that the simulation carried out by the OpenMP parallel code is much faster than that by the corresponding serial computer code.

  11. SPH simulation of free surface flow over a sharp-crested weir

    NASA Astrophysics Data System (ADS)

    Ferrari, Angela

    2010-03-01

    In this paper the numerical simulation of a free surface flow over a sharp-crested weir is presented. Since in this case the usual shallow water assumptions are not satisfied, we propose to solve the problem using the full weakly compressible Navier-Stokes equations with the Tait equation of state for water. The numerical method used consists of the new meshless Smooth Particle Hydrodynamics (SPH) formulation proposed by Ferrari et al. (2009) [8], that accurately tracks the free surface profile and provides monotone pressure fields. Thus, the unsteady evolution of the complex moving material interface (free surface) can been properly solved. The simulations involving about half a million of fluid particles have been run in parallel on two of the most powerful High Performance Computing (HPC) facilities in Europe. The validation of the results has been carried out analysing the pressure field and comparing the free surface profiles obtained with the SPH scheme with experimental measurements available in literature [18]. A very good quantitative agreement has been obtained.

  12. Lahar simulation with SPH and field calibration at the Colima Volcano (Mexico)

    NASA Astrophysics Data System (ADS)

    Calvo, Leticia; Haddad, Bouchra; Capra, Lucia; Palacios, David

    2015-04-01

    As a result of the frequent effusive activity of Volcán de Colima (10° 30'44''N, 103° 37'02'' W), the most active volcano in Mexico, plenty of rain triggered lahars are produced, especially during the rainy season. Along the recent period of activity, particularly from 2010, many of these lahars channelled through the main ravines of the volcano and reach large distances, representing high risk for more than 10,000 people at the surroundings. Modeling of lahars has become an important tool in the assessment of the related hazards, in order to undertake appropriate mitigation actions and reduce the associated risks. Recent lahars at the Colima Volcano are well documented, so they can be used to prove the accuracy of modelling. In this work, we used the SPH (Smoothed Particle Hydrodynamics) method, a depth integrated coupled model created by Pastor in 2005, to replicate the propagation stage of 3 recent Colima lahars occurred on Montegrande ravine in 1992, 2011 and 2012. The studied events include hyperconcentrated, debris and a mixture of the previous flow natures. The inputs used for the SPH simulations were the initial point, volume of each lahar and an adapted morphology of its mass. Field data used to verify the SPH results include the stopping point of the lahar, its path, velocity and height values, as the floodplain area. All this information was a result of fieldwork recognition (cross section profiles of the inner part of the ravine) and free satellite imagery analysis. The best results were obtained using Bingham rheology. The proposed parameters to simulate Colima lahars were 20 Pa of yield strength and 30 Pa.s of viscosity for the 1992 lahar (hyperconcentrated flow), 200 Pa and 50 Pa.s in case of the 2011 debris flow, and finally 20 Pa and 24 Pa.s for the 2012 event, whose nature evolved from debris to an hyperconcentrated flow. In all cases a 1900 kg/m3 density was used. Highly accurate results showed the relevant role played by rheological

  13. SPH Simulation of Liquid Scattering from the Edge of a Rotary Atomizer

    NASA Astrophysics Data System (ADS)

    Izawa, Seiichiro; Ito, Takuya; Shigeta, Masaya; Fukunishi, Yu

    2013-11-01

    Three-dimensional incompressible SPH method is used to simulate the behavior of liquid scattering from the edge of a rotary atomizer. Rotary atomizers have been widely used for spraying, painting and coating, for instance, in the automobile industry. However, how the spray droplets are formed after leaving the edge of the rotary atomizer is not well understood, because the scale of the phenomenon is very small and the speed of rotation is very fast. The present computational result shows that while the liquid forms a film on the surface of the rotating disk of the atomizer, it quickly deforms into many thin columns after leaving the disk edge, and these columns soon break up into fine droplets which spread out in the radial direction. The size of droplets tends to become smaller with the increase in the disk rotating speed. The results show good agreement with the experimental observations.

  14. Development of a coupled discrete element (DEM)-smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles

    NASA Astrophysics Data System (ADS)

    Nassauer, Benjamin; Liedke, Thomas; Kuna, Meinhard

    2016-03-01

    In the present paper, the direct coupling of a discrete element method (DEM) with polyhedral particles and smoothed particle hydrodynamics (SPH) is presented. The two simulation techniques are fully coupled in both ways through interaction forces between the solid DEM particles and the fluid SPH particles. Thus this simulation method provides the possibility to simulate the individual movement of polyhedral, sharp-edged particles as well as the flow field around these particles in fluid-saturated granular matter which occurs in many technical processes e.g. wire sawing, grinding or lapping. The coupled method is exemplified and validated by the simulation of a particle in a shear flow, which shows good agreement with analytical solutions.

  15. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  16. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    SciTech Connect

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  17. A discrete simulation of 2-D fluid flow on TERASYS

    SciTech Connect

    Mullins, P.G.; Krolak, P.D.

    1995-12-01

    A discrete simulation of two-dimensional (2-D) fluid flow, on a recently designed novel architecture called TERASYS is presented. The simulation uses a cellular automaton approach, implemented in a new language called data-parallel bit C (dbC). A performance comparison between our implementation on TERASYS and an implementation on the Connection Machine is discussed. We comment briefly on the suitability of the TERASYS system for modeling fluid flow using cellular automata.

  18. Modeling the Dynamics of Interacting Galaxy Pairs - Testing Identikit Using GADGET SPH Simulations

    NASA Astrophysics Data System (ADS)

    Mortazavi, S. Alireza; Lotz, Jennifer; Barnes, Joshua E.

    2015-01-01

    We develop and test an automated technique to model the dynamics of interacting galaxy pairs. We use Identikit (Barnes & Hibbard 2009; Barnes 2011) as a tool for modeling and matching the morphology and kinematics of the interacting pairs of similar-size galaxies. In order to reduce the effect of subjective human interference, we automate the selection of phase-space regions used to match simulations to data, and we explore how selection of these regions affects the random uncertainties of parameters in the best-fit model. In this work, we used an independent set of GADGET SPH simulations as input data, so we determined the systematic bias in the measured encounter parameters based on the known initial conditions of these simulations. We tested both cold gas and young stellar components in the GADGET simulations to explore the effect of choosing HI vs. Hα as the line of sight velocity tracer. We found that we can group the results into tests with good, fair, and poor convergence based on the distribution of parameters of models close enough to the best-fit model. For tests with good and fair convergence, we ruled out large fractions of parameter space and recovered merger stage, eccentricity, viewing angle, and pericentric distance within 2σ of the correct value. All of tests on gaseous component of prograde systems had either good or fair convergence. Retrograde systems and most of tests on young stars had poor convergence and may require constraints from regions other than the tidal tails. In this work we also present WIYN SparsePak IFU data for a few interacting galaxies, and we show the result of applying our method on this data set.

  19. Simulating non-Newtonian flows with the moving particle semi-implicit method with an SPH kernel

    NASA Astrophysics Data System (ADS)

    Xiang, Hao; Chen, Bin

    2015-02-01

    The moving particle semi-implicit (MPS) method and smoothed particle hydrodynamics (SPH) are commonly used mesh-free particle methods for free surface flows. The MPS method has superiority in incompressible flow simulation and simple programing. However, the crude kernel function is not accurate enough for the discretization of the divergence of the shear stress tensor by the particle inconsistency when the MPS method is extended to non-Newtonian flows. This paper presents an improved MPS method with an SPH kernel to simulate non-Newtonian flows. To improve the consistency of the partial derivative, the SPH cubic spline kernel and the Taylor series expansion are combined with the MPS method. This approach is suitable for all non-Newtonian fluids that can be described with τ = μ(|γ|) Δ (where τ is the shear stress tensor, μ is the viscosity, |γ| is the shear rate, and Δ is the strain tensor), e.g., the Casson and Cross fluids. Two examples are simulated including the Newtonian Poiseuille flow and container filling process of the Cross fluid. The results of Poiseuille flow are more accurate than the traditional MPS method, and different filling processes are obtained with good agreement with previous results, which verified the validation of the new algorithm. For the Cross fluid, the jet fracture length can be correlated with We0.28Fr0.78 (We is the Weber number, Fr is the Froude number).

  20. Simulation of 2D Fields of Raindrop Size Distributions

    NASA Astrophysics Data System (ADS)

    Berne, A.; Schleiss, M.; Uijlenhoet, R.

    2008-12-01

    The raindrop size distribution (DSD hereafter) is of primary importance for quantitative applications of weather radar measurements. The radar reflectivity~Z (directly measured by radar) is related to the power backscattered by the ensemble of hydrometeors within the radar sampling volume. However, the rain rate~R (the flux of water to the surface) is the variable of interest for many applications (hydrology, weather forecasting, air traffic for example). Usually, radar reflectivity is converted into rain rate using a power law such as Z=aRb. The coefficients a and b of the Z-R relationship depend on the DSD. The variability of the DSD in space and time has to be taken into account to improve radar rain rate estimates. Therefore, the ability to generate a large number of 2D fields of DSD which are statistically homogeneous provides a very useful simulation framework that nicely complements experimental approaches based on DSD data, in order to investigate radar beam propagation through rain as well as radar retrieval techniques. The proposed approach is based on geostatistics for structural analysis and stochastic simulation. First, the DSD is assumed to follow a gamma distribution. Hence a 2D field of DSDs can be adequately described as a 2D field of a multivariate random function consisting of the three DSD parameters. Such fields are simulated by combining a Gaussian anamorphosis and a multivariate Gaussian random field simulation algorithm. Using the (cross-)variogram models fitted on data guaranties that the spatial structure of the simulated fields is consistent with the observed one. To assess its validity, the proposed method is applied to data collected during intense Mediterranean rainfall. As only time series are available, Taylor's hypothesis is assumed to convert time series in 1D range profile. Moreover, DSD fields are assumed to be isotropic so that the 1D structure can be used to simulate 2D fields. A large number of 2D fields of DSD parameters are

  1. EvoL: the new Padova Tree-SPH parallel code for cosmological simulations. I. Basic code: gravity and hydrodynamics

    NASA Astrophysics Data System (ADS)

    Merlin, E.; Buonomo, U.; Grassi, T.; Piovan, L.; Chiosi, C.

    2010-04-01

    Context. We present the new release of the Padova N-body code for cosmological simulations of galaxy formation and evolution, EvoL. The basic Tree + SPH code is presented and analysed, together with an overview of the software architectures. Aims: EvoL is a flexible parallel Fortran95 code, specifically designed for simulations of cosmological structure formations on cluster, galactic and sub-galactic scales. Methods: EvoL is a fully Lagrangian self-adaptive code, based on the classical oct-tree by Barnes & Hut (1986, Nature, 324, 446) and on the smoothed particle hydrodynamics algorithm (SPH, Lucy 1977, AJ, 82, 1013). It includes special features like adaptive softening lengths with correcting extra-terms, and modern formulations of SPH and artificial viscosity. It is designed to be run in parallel on multiple CPUs to optimise the performance and save computational time. Results: We describe the code in detail, and present the results of a number of standard hydrodynamical tests.

  2. Kinetic AGN feedback effects on cluster cool cores simulated using SPH

    NASA Astrophysics Data System (ADS)

    Barai, Paramita; Murante, Giuseppe; Borgani, Stefano; Gaspari, Massimo; Granato, Gian Luigi; Monaco, Pierluigi; Ragone-Figueroa, Cinthia

    2016-09-01

    We implement novel numerical models of AGN feedback in the SPH code GADGET-3, where the energy from a supermassive black hole (BH) is coupled to the surrounding gas in the kinetic form. Gas particles lying inside a bi-conical volume around the BH are imparted a one-time velocity (10 000 km s-1) increment. We perform hydrodynamical simulations of isolated cluster (total mass 1014 h-1 M⊙), which is initially evolved to form a dense cool core, having central T ≤ 106 K. A BH resides at the cluster centre, and ejects energy. The feedback-driven fast wind undergoes shock with the slower moving gas, which causes the imparted kinetic energy to be thermalized. Bipolar bubble-like outflows form propagating radially outward to a distance of a few 100 kpc. The radial profiles of median gas properties are influenced by BH feedback in the inner regions (r < 20-50 kpc). BH kinetic feedback, with a large value of the feedback efficiency, depletes the inner cool gas and reduces the hot gas content, such that the initial cool core of the cluster is heated up within a time 1.9 Gyr, whereby the core median temperature rises to above 107 K, and the central entropy flattens. Our implementation of BH thermal feedback (using the same efficiency as kinetic), within the star formation model, cannot do this heating, where the cool core remains. The inclusion of cold gas accretion in the simulations produces naturally a duty cycle of the AGN with a periodicity of 100 Myr.

  3. Comparisons Between SPH and Grid-Based Simulations of the Common Envelope Phase

    NASA Astrophysics Data System (ADS)

    Passy, Jean-Claude; Fryer, C. L.; Diehl, S.; De Marco, O.; Mac Low, M.; Herwig, F.; Oishi, J. S.

    2011-01-01

    The common envelope (CE) interaction between a giant star and a lower-mass companion provides a formation channel leading eventually to Type Ia supernovae, sdB stars and bipolar PNe. More broadly, it is an essential ingredient for any population synthesis study including binaries, e.g. cataclysmic variables. Occurring on a short time scale - typically between one and ten years, the CE interaction itself has so far never been observed with certainty but the existence of companions in close orbits around evolved stars, whose precursor's radius was larger than today's orbital separation, vouches for such interaction taking place frequently. Via a detailed study of the energetics and the use of stellar evolution models, we derived in our previous paper the efficiency α of the CE interaction from a carefully selected and statistically analyzed sample of systems thought to be outcomes of a CE interaction. We deduced the initial configuration of those systems using stellar models, and derived a possible inverse dependence of α with the companion to primary mass ratio. Here, we compare these predictions to numerical simulations with two different codes. Enzo is a 3D adaptive mesh refinement grid-based code. For our stellar problem we have modified the way gravity and boundary conditions are treated in this code. The SNSPH code is a 3D hydrodynamics SPH code using tree gravity. The results from both codes for different companion masses and different types of primary stars are consistent with each other. Those results include a resolution study of a 0.88 M⊙ red giant interacting with a 0.9, 0.6 and 0.3 M⊙ white dwarf, respectively. Those systems reach a final separation of 25, 18 and 10 R⊙, respectively. In this contribution, we present and discuss those results and compare them to our predictions. This research was funded by NSF grant 0607111.

  4. Numerical simulation and experimental validation of biofilm in a multi-physics framework using an SPH based method

    NASA Astrophysics Data System (ADS)

    Soleimani, Meisam; Wriggers, Peter; Rath, Henryke; Stiesch, Meike

    2016-06-01

    In this paper, a 3D computational model has been developed to investigate biofilms in a multi-physics framework using smoothed particle hydrodynamics (SPH) based on a continuum approach. Biofilm formation is a complex process in the sense that several physical phenomena are coupled and consequently different time-scales are involved. On one hand, biofilm growth is driven by biological reaction and nutrient diffusion and on the other hand, it is influenced by fluid flow causing biofilm deformation and interface erosion in the context of fluid and deformable solid interaction. The geometrical and numerical complexity arising from these phenomena poses serious complications and challenges in grid-based techniques such as finite element. Here the solution is based on SPH as one of the powerful meshless methods. SPH based computational modeling is quite new in the biological community and the method is uniquely robust in capturing the interface-related processes of biofilm formation such as erosion. The obtained results show a good agreement with experimental and published data which demonstrates that the model is capable of simulating and predicting overall spatial and temporal evolution of biofilm.

  5. Escape fraction of ionizing photons from high-redshift galaxies in cosmological SPH simulations

    NASA Astrophysics Data System (ADS)

    Yajima, Hidenobu; Choi, Jun-Hwan; Nagamine, Kentaro

    2011-03-01

    Combing the three-dimensional radiative transfer (RT) calculation and cosmological smoothed particle hydrodynamics (SPH) simulations, we study the escape fraction of ionizing photons (fesc) of high-redshift galaxies at z= 3-6. Our simulations cover the halo mass range of Mh= 109-1012 M⊙. We post-process several hundred simulated galaxies with the Authentic Radiative Transfer (ART) code to study the halo mass dependence of fesc. In this paper, we restrict ourselves to the transfer of stellar radiation from local stellar population in each dark matter halo. We find that the average fesc steeply decreases as the halo mass increases, with a large scatter for the lower-mass haloes. The low-mass haloes with Mh˜ 109 M⊙ have large values of fesc (with an average of ˜0.4), whereas the massive haloes with Mh˜ 1011 M⊙ show small values of fesc (with an average of ˜0.07). This is because in our simulations, the massive haloes show more clumpy structure in gas distribution, and the star-forming regions are embedded inside these clumps, making it more difficult for the ionizing photons to escape. On the other hand, in low-mass haloes, there are often conical regions of highly ionized gas due to the shifted location of young star clusters from the centre of dark matter halo, which allows the ionizing photons to escape more easily than in the high-mass haloes. By counting the number of escaped ionizing photons, we show that the star-forming galaxies can ionize the intergalactic medium at z= 3-6. The main contributor to the ionizing photons is the haloes with Mh≲ 1010 M⊙ owing to their high fesc. The large dispersion in fesc suggests that there may be various sizes of H II bubbles around the haloes even with the same mass in the early stages of reionization. We also examine the effect of UV background radiation field on fesc using simple, four different treatments of UV background.

  6. Numerical simulation of rock cutting using 2D AUTODYN

    NASA Astrophysics Data System (ADS)

    Woldemichael, D. E.; Rani, A. M. Abdul; Lemma, T. A.; Altaf, K.

    2015-12-01

    In a drilling process for oil and gas exploration, understanding of the interaction between the cutting tool and the rock is important for optimization of the drilling process using polycrystalline diamond compact (PDC) cutters. In this study the finite element method in ANSYS AUTODYN-2D is used to simulate the dynamics of cutter rock interaction, rock failure, and fragmentation. A two-dimensional single PDC cutter and rock model were used to simulate the orthogonal cutting process and to investigate the effect of different parameters such as depth of cut, and back rake angle on two types of rocks (sandstone and limestone). In the simulation, the cutting tool was dragged against stationary rock at predetermined linear velocity and the depth of cut (1,2, and 3 mm) and the back rake angles(-10°, 0°, and +10°) were varied. The simulation result shows that the +10° back rake angle results in higher rate of penetration (ROP). Increasing depth of cut leads to higher ROP at the cost of higher cutting force.

  7. SPH Simulations of Volatiles Loss from Icy Satellites During a Late Heavy Bombardment

    NASA Astrophysics Data System (ADS)

    Movshovitz, N.; Nimmo, F.; Korycansky, D.; Asphaug, E. I.; Owen, J. M.

    2013-12-01

    in the size range of interest here requires high resolution hydrodynamical simulations. We use a sophisticated, SPH based code developed by one of the authors [9] and run on hundreds of nodes of the UCSC astrophysical computer cluster to achieve the desired resolution. [1] Nimmo, F., & Korycansky, D. G. (2012), Icarus 219(1), 508-510. [2] Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F., 2005, Nature 435, 459-461. [3] Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A., 2005, Nature 435, 466-469. [4] Dones, L., & Levison, H. F. (2013), 44th Lunar and Planetary Science Conference ( 2013 ). [5] Zahnle, K.J., Schenk, P., Levison, H.F., Dones, L., 2003, Icarus 163, 263-289. [6] Kraus, R. G., Senft, L. E., & Stewart, S. T. (2011), Icarus, 214(2), 724-738. [7] Dwyer, C. A., Nimmo, F., Ogihara, M., & Ida, S. (2013), Icarus, 225(1), 390-402. [8] Asphaug, E., & Reufer, A. (2013), Icarus, 223(1), 544-565. [9] Owen, J. M., Villumsen, J. V., Shapiro, P. R., & Martel, H. (1998), ApJ Supp, 116, 155

  8. Multiscale simulation of 2D elastic wave propagation

    NASA Astrophysics Data System (ADS)

    Zhang, Wensheng; Zheng, Hui

    2016-06-01

    In this paper, we develop the multiscale method for simulation of elastic wave propagation. Based on the first-order velocity-stress hyperbolic form of 2D elastic wave equation, the particle velocities are solved first ona coarse grid by the finite volume method. Then the stress tensor is solved by using the multiscale basis functions which can represent the fine-scale variation of the wavefield on the coarse grid. The basis functions are computed by solving a local problem with the finite element method. The theoretical formulae and description of the multiscale method for elastic wave equation are given in more detail. The numerical computations for an inhomogeneous model with random scatter are completed. The results show the effectiveness of the multiscale method.

  9. 3D radiative transfer in colliding wind binaries: Application of the SimpleX algorithm to 3D SPH simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Clementel, Nicola; Kruip, Chael; Icke, Vincent; Gull, Theodore

    2014-09-01

    We present the first results of full 3D radiative transfer simulations of the colliding stellar winds in a massive binary system. We accomplish this by applying the SIMPLEX algorithm for 3D radiative transfer on an unstructured Delaunay grid to recent 3D smoothed particle hydrodynamics (SPH) simulations of the colliding winds in the binary system η Carinae. We use SIMPLEX to obtain detailed ionization fractions of hydrogen and helium, in 3D, at the resolution of the original SPH simulations. We show how the SIMPLEX simulations can be used to generate synthetic spectral data cubes for comparison to data obtained with the Hubble Space Telescope (HST)/Space Telescope Imaging Spectrograph as part of a multi-cycle program to map changes in η Car's extended interacting wind structures across one binary cycle. Comparison of the HST observations to the SIMPLEX models can help lead to more accurate constraints on the orbital, stellar, and wind parameters of the η Car system, such as the primary's mass-loss rate and the companion's temperature and luminosity. While we initially focus specifically on the η Car binary, the numerical methods employed can be applied to numerous other colliding wind (WR140, WR137, WR19) and dusty 'pinwheel' (WR104, WR98a) binary systems. One of the biggest remaining mysteries is how dust can form and survive in such systems that contain a hot, luminous O star. Coupled with 3D hydrodynamical simulations, SIMPLEX simulations have the potential to help determine the regions where dust can form and survive in these unique objects.

  10. Quantum Simulation with 2D Arrays of Trapped Ions

    NASA Astrophysics Data System (ADS)

    Richerme, Philip

    2016-05-01

    The computational difficulty of solving fully quantum many-body spin problems is a significant obstacle to understanding the behavior of strongly correlated quantum matter. This work proposes the design and construction of a 2D quantum spin simulator to investigate the physics of frustrated materials, highly entangled states, mechanisms potentially underpinning high-temperature superconductivity, and other topics inaccessible to current 1D systems. The effective quantum spins will be encoded within the well-isolated electronic levels of trapped ions, confined in a two-dimensional planar geometry, and made to interact using phonon-mediated optical dipole forces. The system will be scalable to 100+ quantum particles, far beyond the realm of classical intractability, while maintaining individual-ion control, long quantum coherence times, and site-resolved projective spin measurements. Once constructed, the two-dimensional quantum simulator will implement a broad range of spin models on a variety of reconfigurable lattices and characterize their behavior through measurements of spin-spin correlations and entanglement. This versatile tool will serve as an important experimental resource for exploring difficult quantum many-body problems in a regime where classical methods fail.

  11. Towards Understanding Simulated Feedback in AMR and SPH Codes and the Multi-Phase Nature of the ISM

    NASA Astrophysics Data System (ADS)

    Mitchell, N. L.; Bower, R. G.; Theuns, T.; Vorobyov, E. I.

    2012-07-01

    Feedback from supernova is believed to be a key ingredient for regulating star formation within galaxies, however modelling it self-consistently is prohibitively expensive. Even superbubbles which are formed from multiple supernova occuring in close proximity, are only a few hundred parsecs across — tiny compared to the sizes of many galaxies. Thus any simulation which aims to study the large scale properties of galaxies, groups and clusters cannot currently resolve the ISM into its true multi-phase nature. In order to overcome this limitation, many cosmological simulations which are run in both AMR and SPH codes, adopt polytropic equations of state. These approximate the physics of the ISM below those scales which can be resolved where the ISM splits to become multi-phase. However we show that when identical sub-grid physical recipes for cooling, star formation and feedback are included into both SPH and AMR codes, they do not necessarily yield the same results. Instead, we find that energy is dissipated far more readily in an AMR code, allowing supernova driven winds to stall. This prevents supernova feedback in AMR simulations from removing sufficient gas to adaquately regulate the star formation rate. Whereas in SPH codes the winds can remove more gas, with wind particles able to stream more freely out of the galaxy. Determining which of these codes provides a more physically correct description is extremely difficult, however it clearly highlights the need for a more robust model for the ISM. For a better understanding of the means by which energy from feedback is redistributed within the ISM, we present our new multi-phase chemodynamic model in the FLASH AMR code. We seperate the ISM into a hot tenuous gas phase and an almost collisionless compact molecular cloud component. Both phases are modelled on the adaptive mesh, the hot gas being modelled by using the standard Euler equations for compressible fluid dynamics whilst the collisionless component is

  12. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  13. The role of the artificial conductivity in SPH simulations of galaxy clusters: effects on the ICM properties

    NASA Astrophysics Data System (ADS)

    Biffi, V.; Valdarnini, R.

    2015-01-01

    We study the thermal structure of the intracluster medium (ICM) in a set of cosmological hydrodynamical cluster simulations performed with a smoothed particle hydrodynamics (SPH) numerical scheme employing an artificial conductivity (AC) term. We explore the effects of this term on the ICM temperature and entropy profiles, thermal distribution, velocity field and expected X-ray emission. We find that in adiabatic runs, the artificial conductivity favours (i) the formation of an entropy core, raising and flattening the central entropy profiles, in better agreement with findings from Eulerian codes; and (ii) a systematic reduction of the cold gas component. In fact, the cluster large-scale structure and dynamical state are preserved across different runs, but the improved gas mixing enabled by the AC term strongly increases the stripping rate of gas from the cold clumps moving through the ICM. This in turn reduces the production of turbulence generated by the instabilities which develop because of the interaction between clumps and ambient ICM. We then find that turbulent motions, enhanced by the time-dependent artificial viscosity scheme we use, are rather damped by the AC term. The ICM synthetic X-ray emission substantially mirrors the changes in its thermodynamical structure, stressing the robustness of the AC impact. All these effects are softened by the introduction of radiative cooling but still present, especially a partial suppression of cold gas. Therefore, not only the physics accounted for, but also the numerical approach itself can have an impact in shaping the ICM thermodynamical structure and ultimately in the use of SPH cluster simulations for cosmological studies.

  14. A 2D simulation model for urban flood management

    NASA Astrophysics Data System (ADS)

    Price, Roland; van der Wielen, Jonathan; Velickov, Slavco; Galvao, Diogo

    2014-05-01

    The European Floods Directive, which came into force on 26 November 2007, requires member states to assess all their water courses and coast lines for risk of flooding, to map flood extents and assets and humans at risk, and to take adequate and coordinated measures to reduce the flood risk in consultation with the public. Flood Risk Management Plans are to be in place by 2015. There are a number of reasons for the promotion of this Directive, not least because there has been much urban and other infrastructural development in flood plains, which puts many at risk of flooding along with vital societal assets. In addition there is growing awareness that the changing climate appears to be inducing more frequent extremes of rainfall with a consequent increases in the frequency of flooding. Thirdly, the growing urban populations in Europe, and especially in the developing countries, means that more people are being put at risk from a greater frequency of urban flooding in particular. There are urgent needs therefore to assess flood risk accurately and consistently, to reduce this risk where it is important to do so or where the benefit is greater than the damage cost, to improve flood forecasting and warning, to provide where necessary (and possible) flood insurance cover, and to involve all stakeholders in decision making affecting flood protection and flood risk management plans. Key data for assessing risk are water levels achieved or forecasted during a flood. Such levels should of course be monitored, but they also need to be predicted, whether for design or simulation. A 2D simulation model (PriceXD) solving the shallow water wave equations is presented specifically for determining flood risk, assessing flood defense schemes and generating flood forecasts and warnings. The simulation model is required to have a number of important properties: -Solve the full shallow water wave equations using a range of possible solutions; -Automatically adjust the time step and

  15. Probing the High Redshift IGM: SPH+P{(3}) MG Simulations of the Lyman-alpha Forest

    NASA Astrophysics Data System (ADS)

    Wadsley, J.; Bond, J. R.

    1996-12-01

    Our understanding of the Lyman-alpha forest has received a great boost with the advent of the Keck Telescope and large 3D hydrodynamical simulations. We simulate the high redshift universe using the SPH technique with a P{(3}) MG (Particle-Particle Particle-MultiGrid) non-periodic gravity solver. We employ a high resolution (1 kpc) inner volume, essential for capturing the complex gas physics, larger medium and low resolution volumes surrounding it, essential for correct larger scale tidal fields, and a self-consistently applied, uniform tidal field to model the influence of ultra long waves. Such care is needed because the power per decade in the density fluctuations falls off very slowly in the dwarf galaxy regime of relevance to Lyman alpha clouds. The oft-used periodic boundary condition approach to simulations is ill-suited to proper treatment of the tides. We use constrained field realizations to probe a selection of environments, including voids, quiescent regions, proto-dwarf galaxies and regions experiencing strong tides, such as large galaxy halos and galaxy-galaxy filamentary bridges. We statistically combine our simulations to provide a more comprehensive sample of the universe, including ``rare event'' regions which are difficult to obtain in unrestricted FFT-based approaches. We fit Voigt profiles to the Lyman alpha spectra computed from our simulations direct comparison with the data, e.g., the column density distribution, line widths, temperatures, multiple line-of-sight correlations and the HI (and HeII) flux decrements. We demonstrate the importance of (1) the photoionizing UV flux level and history, (2) tidal environment and (3) differing cosmologies, including CDM and CDM+Lambda. With galaxy-scale rms fluctuations ~ 1 at z=3 and a UV choice motivated by proximity effect observations, the simulations give results in excellent agreement with the data.

  16. Resolved granular debris-flow simulations with a coupled SPH-DCDEM model

    NASA Astrophysics Data System (ADS)

    Birjukovs Canelas, Ricardo; Domínguez, José M.; Crespo, Alejandro J. C.; Gómez-Gesteira, Moncho; Ferreira, Rui M. L.

    2016-04-01

    Debris flows represent some of the most relevant phenomena in geomorphological events. Due to the potential destructiveness of such flows, they are the target of a vast amount of research (Takahashi, 2007 and references therein). A complete description of the internal processes of a debris-flow is however still an elusive achievement, explained by the difficulty of accurately measuring important quantities in these flows and developing a comprehensive, generalized theoretical framework capable of describing them. This work addresses the need for a numerical model applicable to granular-fluid mixtures featuring high spatial and temporal resolution, thus capable of resolving the motion of individual particles, including all interparticle contacts. This corresponds to a brute-force approach: by applying simple interaction laws at local scales the macro-scale properties of the flow should be recovered by upscaling. This methodology effectively bypasses the complexity of modelling the intermediate scales by resolving them directly. The only caveat is the need of high performance computing, a demanding but engaging research challenge. The DualSPHysics meshless numerical implementation, based on Smoothed Particle Hydrodynamics (SPH), is expanded with a Distributed Contact Discrete Element Method (DCDEM) in order to explicitly solve the fluid and the solid phase. The model numerically solves the Navier-Stokes and continuity equations for the liquid phase and Newton's motion equations for solid bodies. The interactions between solids are modelled with classical DEM approaches (Kruggel-Emden et al, 2007). Among other validation tests, an experimental set-up for stony debris flows in a slit check dam is reproduced numerically, where solid material is introduced trough a hopper assuring a constant solid discharge for the considered time interval. With each sediment particle undergoing tens of possible contacts, several thousand time-evolving contacts are efficiently treated

  17. Comparison of ALE and SPH Simulations of Vertical Drop Tests of a Composite Fuselage Section into Water

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fuchs, Yvonne T.

    2008-01-01

    Simulation of multi-terrain impact has been identified as an important research area for improved prediction of rotorcraft crashworthiness within the NASA Subsonic Rotary Wing Aeronautics Program on Rotorcraft Crashworthiness. As part of this effort, two vertical drop tests were conducted of a 5-ft-diameter composite fuselage section into water. For the first test, the fuselage section was impacted in a baseline configuration without energy absorbers. For the second test, the fuselage section was retrofitted with a composite honeycomb energy absorber. Both tests were conducted at a nominal velocity of 25-ft/s. A detailed finite element model was developed to represent each test article and water impact was simulated using both Arbitrary Lagrangian Eulerian (ALE) and Smooth Particle Hydrodynamics (SPH) approaches in LS-DYNA, a nonlinear, explicit transient dynamic finite element code. Analytical predictions were correlated with experimental data for both test configurations. In addition, studies were performed to evaluate the influence of mesh density on test-analysis correlation.

  18. Matching the Dark Matter Profiles of dSph Galaxies with Those of Simulated Satellites: A Two-parameter Comparison

    NASA Astrophysics Data System (ADS)

    Breddels, Maarten A.; Vera-Ciro, Carlos; Helmi, Amina

    2015-12-01

    We compare the dark matter halos’ structural parameters derived for four Milky Way dwarf spheroidal galaxies to those of subhalos found in cosmological N-body simulations. We confirm that estimates of the mass at a single fixed radius are fully consistent with the observations. However, when a second structural parameter such as the logarithmic slope of the dark halo density profile measured close to the half-light radius is included in the comparison, we find little to no overlap between the satellites and the subhalos. Typically the right mass subhalos have steeper profiles at these radii than measurements of the dSph suggest. Using energy arguments we explore if it is possible to solve this discrepancy by invoking baryonic effects. Assuming that feedback from supernovae (SNe) can lead to a reshaping of the halos, we compute the required efficiency and find entirely plausible values for a significant fraction of the subhalos and even as low as 0.1%. This implies that care must be taken not to exaggerate the effect of SNe feedback as this could make the halos too shallow. These results could be used to calibrate and possibly constrain feedback recipes in hydrodynamical simulations.

  19. Atmospheric Outflows from Hot Jupiters: 2D MHD Simulations

    NASA Astrophysics Data System (ADS)

    Uribe, A.; Matsakos, T.; Konigl, A.

    2015-01-01

    Recent observations of stellar hydrogen Ly-α line absorption during transits of some hot Jupiter exoplanets suggest the presence of a dense, fast wind that is blowing from planetary atmosphere tep{2003Natur.422..143V,2007ApJ...671L..61B}. Modeling efforts include 1D hydrodynamic models tep{2009ApJ...693...23M,2004Icar..170..167Y,2007P&SS...55.1426G} and 2D isothermal magnetized wind models tep{2014arXiv1404.5817T}, among others. In this work, we model the 2D structure of the irradiated upper atmosphere of a hot Jupiter planet and its interaction with the planetary magnetic field. We calculate self consistently the heating by stellar UV radiation and the cooling of the atmosphere by Ly-α emission. We solve for the ionization structure assuming a 100% hydrogen atmosphere, accounting for the radiative ionization, recombination and advection of the gas. We show the effect of stellar tides and planetary magnetic field on the planet outflow and calculate the Ly-α transmission spectra of the resulting atmosphere.

  20. Simulations of flow mode distributions on rough fracture surfaces using a parallelized Smoothed Particle Hydrodynamics (SPH) model

    NASA Astrophysics Data System (ADS)

    Kordilla, J.; Shigorina, E.; Tartakovsky, A. M.; Pan, W.; Geyer, T.

    2015-12-01

    Under idealized conditions (smooth surfaces, linear relationship between Bond number and Capillary number of droplets) steady-state flow modes on fracture surfaces have been shown to develop from sliding droplets to rivulets and finally (wavy) film flow, depending on the specified flux. In a recent study we demonstrated the effect of surface roughness on droplet flow in unsaturated wide aperture fractures, however, its effect on other prevailing flow modes is still an open question. The objective of this work is to investigate the formation of complex flow modes on fracture surfaces employing an efficient three-dimensional parallelized SPH model. The model is able to simulate highly intermittent, gravity-driven free-surface flows under dynamic wetting conditions. The effect of surface tension is included via efficient pairwise interaction forces. We validate the model using various analytical and semi-analytical relationships for droplet and complex flow dynamics. To investigate the effect of surface roughness on flow dynamics we construct surfaces with a self-affine fractal geometry and roughness characterized by the Hurst exponent. We demonstrate the effect of surface roughness (on macroscopic scales this can be understood as a tortuosity) on the steady-state distribution of flow modes. Furthermore we show the influence of a wide range of natural wetting conditions (defined by static contact angles) on the final distribution of surface coverage, which is of high importance for matrix-fracture interaction processes.

  1. Modelling the RXTE light curve of η Carinae from a 3D SPH simulation of its binary wind collision

    NASA Astrophysics Data System (ADS)

    Okazaki, A. T.; Owocki, S. P.; Russell, C. M. P.; Corcoran, M. F.

    2008-07-01

    The very massive star system η Carinae exhibits regular 5.54 yr (2024 d) period disruptive events in wavebands ranging from the radio to X-ray. There is a growing consensus that these events likely stem from periastron passage of an (as yet) unseen companion in a highly eccentric (e ~ 0.9) orbit. This Letter presents 3D smoothed particle hydrodynamics (SPH) simulations of the orbital variation of the binary wind-wind collision, and applies these to modelling the X-ray light curve observed by the Rossi X-ray Timing Explorer (RXTE). By providing a global 3D model of the phase variation of the density of the interacting winds, the simulations allow computation of the associated variation in X-ray absorption, presumed here to originate from near the apex of the wind-wind interaction cone. We find that the observed RXTE light curve can be readily fitted if the observer's line of sight is within this cone along the general direction of apastron. Specifically, the data are well fitted by an assumed inclination i = 45° for the orbit's polar axis, which is thus consistent with orbital angular momentum being along the inferred polar axis of the Homunculus nebula. The fits also constrain the position angle φ that an orbital-plane projection makes with the apastron side of the semimajor axis, strongly excluding positions φ < 9° along or to the retrograde side of the axis, with the best-fitting position given by φ = 27°. Overall the results demonstrate the utility of a fully 3D dynamical model for constraining the geometric and physical properties of this complex colliding wind binary system.

  2. 2D numerical simulation of the resistive reconnection layer

    SciTech Connect

    D. A. Uzdensky; R. M. Kulsrud

    2000-07-21

    In this paper the authors present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. They use realistic boundary conditions derived consistently from the outside magnetic field, and they also take into account the effect of the backpressure from flow into the separatrix region. They find that within a few Alfven times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.

  3. 2D Numerical Simulation of the Resistive Reconnection Layer

    SciTech Connect

    Kulsrud, R.M.; Uzdensky, D.A.

    1999-03-01

    In this paper we present a two-dimensional numerical simulation of a reconnection current layer in incompressible resistive magnetohydrodynamics with uniform resistivity in the limit of very large Lundquist numbers. We use realistic boundary conditions derived consistently from the outside magnetic field, and we also take into account the effect of the back pressure from flow into the separatrix region. We find that within a few Alfvén times the system reaches a steady state consistent with the Sweet-Parker model, even if the initial state is Petschek-like.

  4. COYOTE: A computer program for 2-D reactive flow simulations

    SciTech Connect

    Cloutman, L.D.

    1990-04-01

    We describe the numerical algorithm used in the COYOTE two- dimensional, transient, Eulerian hydrodynamics program for reactive flows. The program has a variety of options that provide capabilities for a wide range of applications, and it is designed to be robust and relatively easy to use while maintaining adequate accuracy and efficiency to solve realistic problems. It is based on the ICE method, and it includes a general species and chemical reaction network for simulating reactive flows. It also includes swirl, turbulence transport models, and a nonuniform mesh capability. We describe several applications of the program. 33 refs., 4 figs.

  5. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  6. A simple way to improve AGN feedback prescription in SPH simulations

    NASA Astrophysics Data System (ADS)

    Zubovas, Kastytis; Bourne, Martin A.; Nayakshin, Sergei

    2016-03-01

    Active galactic nuclei (AGN) feedback is an important ingredient in galaxy evolution, however its treatment in numerical simulations is necessarily approximate, requiring subgrid prescriptions due to the dynamical range involved in the calculations. We present a suite of smoothed particle hydrodynamics simulations designed to showcase the importance of the choice of a particular subgrid prescription for AGN feedback. We concentrate on two approaches to treating wide-angle AGN outflows: thermal feedback, where thermal and kinetic energy is injected into the gas surrounding the supermassive black hole (SMBH) particle, and virtual particle feedback, where energy is carried by tracer particles radially away from the AGN. We show that the latter model produces a far more complex structure around the SMBH, which we argue is a more physically correct outcome. We suggest a simple improvement to the thermal feedback model - injecting the energy into a cone, rather than spherically symmetrically - and show that this markedly improves the agreement between the two prescriptions, without requiring any noticeable increase in the computational cost of the simulation.

  7. Size-frequency distributions of fragments from SPH/ N-body simulations of asteroid impacts: Comparison with observed asteroid families

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Bottke, William F.; Nesvorný, David; Enke, Brian L.; Merline, William J.; Asphaug, Erik; Richardson, Derek C.

    2007-02-01

    We investigate the morphology of size-frequency distributions (SFDs) resulting from impacts into 100-km-diameter parent asteroids, represented by a suite of 161 SPH/N-body simulations conducted to study asteroid satellite formation [Durda, D.D., Bottke, W.F., Enke, B.L., Merline, W.J., Asphaug, E., Richardson, D.C., Leinhardt, Z.M., 2004. Icarus 170, 243-257]. The spherical basalt projectiles range in diameter from 10 to 46 km (in equally spaced mass increments in logarithmic space, covering six discrete sizes), impact speeds range from 2.5 to 7 km/s (generally in 1 km/s increments), and impact angles range from 15° to 75° (nearly head-on to very oblique) in 15° increments. These modeled SFD morphologies match very well the observed SFDs of many known asteroid families. We use these modeled SFDs to scale to targets both larger and smaller than 100 km in order to gain insights into the circumstances of the impacts that formed these families. Some discrepancies occur for families with parent bodies smaller than a few tens of kilometers in diameter (e.g., 832 Karin), however, so due caution should be used in applying our results to such small families. We find that ˜20 observed main-belt asteroid families are produced by the catastrophic disruption of D >100 km parent bodies. Using these data as constraints, collisional modeling work [Bottke Jr., W.F., Durda, D.D., Nesvorný, D., Jedicke, R., Morbidelli, A., Vokrouhlický, D., Levison, H.F., 2005b. Icarus 179, 63-94] suggests that the threshold specific energy, QD∗, needed to eject 50% of the target body's mass is very close to that predicted by Benz and Asphaug [Benz, W., Asphaug, E., 1999. Icarus 142, 5-20].

  8. Propagation of gravity waves through an SPH scheme with numerical diffusive terms

    NASA Astrophysics Data System (ADS)

    Antuono, M.; Colagrossi, A.; Marrone, S.; Lugni, C.

    2011-04-01

    Basing on the work by Antuono et al. (2010) [1], an SPH model with numerical diffusive terms (here denoted δ-SPH) is combined with an enhanced treatment of solid boundaries to simulate 2D gravity waves generated by a wave maker and propagating into a basin. Both regular and transient wave systems are considered. In the former, a large number of simulations is performed for different wave steepness and height-to-depth ratio and the results are compared with a BEM Mixed-Eulerian-Lagrangian solver (here denoted BEM-MEL solver). In the latter, the δ-SPH model has been compared with both the experimental measurements available in the literature and with the BEM-MEL solver, at least until the breaking event occurs. The results show a satisfactory agreement between the δ-SPH model, the BEM-MEL solver and the experiments. Finally, the influence of the weakly-compressibility assumption on the SPH results is inspected and a convergence analysis is provided in order to identify the minimal spatial resolution needed to get an accurate representation of gravity waves.

  9. Towards Bayesian Machine Learning for Estimating Parameters of Accretion Disk Models for SPH Simulations

    NASA Astrophysics Data System (ADS)

    Goel, Amit; Montgomery, Michele; Wiegand, Paul

    2016-01-01

    Accretion disks are ubiquitous in Active Galactic Nuclei, in protostellar systems forming protoplanets, and in close binary star systems such as X-ray binaries, Cataclysmic Variables, and Algols, for example. Observations such as disk tilt are found in all of these different accreting system types, suggesting a common physics must be present. To understand the common connections between these different system types, which can help us understand their unique evolutions, we need to better understand the physics of accretion. For example, viscosity is typically a constant value in the disk of a system that is in a specific state such as a quiescent state. However, viscosity can't be constant throughout the disk, especially at the boundaries. To learn more about viscosity and other common parameters in these disk, we use Bayesian Inference and Markov Chain Monte Carlo techniques to make predictions of events to come in the numerical simulations of these accreting disks. In this work, we present our techniques and initial findings.

  10. 2-D simulation of a waveguide free electron laser having a helical undulator

    SciTech Connect

    Kim, S.K.; Lee, B.C.; Jeong, Y.U.

    1995-12-31

    We have developed a 2-D simulation code for the calculation of output power from an FEL oscillator having a helical undulator and a cylindrical waveguide. In the simulation, the current and the energy of the electron beam is 2 A and 400 keV, respectively. The parameters of the permanent-magnet helical undulator are : period = 32 mm, number of periods = 20, magnetic field = 1.3 kG. The gain per pass is 10 and the output power is calculated to be higher than 10 kW The results of the 2-D simulation are compared with those of 1-D simulation.

  11. Comparing the size-frequency distributions of asteroid families to those produced by SPH/N-body impact simulations

    NASA Astrophysics Data System (ADS)

    Durda, D. D.; Bottke, W. F.; Nesvorný, D.; Asphaug, E.; Richardson, D. C.

    2004-11-01

    We investigate the morphology of size-frequency distributions (SFDs) resulting from impacts into 100-km diameter parent asteroids, represented by a suite of 160 SPH/N-body simulations conducted to study asteroid satellite formation (Durda et al. 2004; Icarus 170, 243-257). The spherical basalt projectiles range in diameter from 10 to 46 km (in equally-spaced mass increments in logarithmic space, covering six discrete sizes), impact speeds range from 2.5 to 7 km/s (generally in 1 km/s increments), and impact angles range from 15o to 75o (nearly head-on to very oblique) in 15o increments. For a given impact speed, the shape of the SFD tends to be more ``concave" for the smallest impactors (cratering events) and more ``convex" for the largest impactors (supercatastrophic disruption). At the transition point where ``concave" cratering SFDs begin to transform into more linear power law SFDs, the largest remnant has a diameter of ˜ 20 km. That transition occurs at smaller impactor sizes for greater impactor speeds and at greater impactor sizes for larger impactor angles. Impacts that maximize the number of similar-size largest remnants (at ˜ 20 km) occur at impact speeds of 6-7 km/s with 25-34 km diameter impactors; larger impactors at higher speeds are required to achieve the same results for oblique impacts as for smaller impactors at lower speeds impacting more nearly head-on. The SFDs with the very shallowest slopes overall derive from impacts at about 4-6 km/s with 25-34 km diameter impactors. These modeled SFD morphologies match very well the observed SFDs of actual asteroid families. We find that there are ˜ 20 families produced by catastrophic breakups in the main belt from D > 100 km parent bodies. This suggests that the threshold specific energy, Q*D, is very close to that predicted by Benz and Asphaug (1999; Icarus 142, 5-20).

  12. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.

  13. 3D Radiative Transfer in Eta Carinae: Application of the SimpleX Algorithm to 3D SPH Simulations of Binary Colliding Winds

    NASA Technical Reports Server (NTRS)

    Clementel, N.; Madura, T. I.; Kruip, C.J.H.; Icke, V.; Gull, T. R.

    2014-01-01

    Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in eta Car.We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form.We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for eta Car.

  14. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  15. 3D multiple-point statistics simulation using 2D training images

    NASA Astrophysics Data System (ADS)

    Comunian, A.; Renard, P.; Straubhaar, J.

    2012-03-01

    One of the main issues in the application of multiple-point statistics (MPS) to the simulation of three-dimensional (3D) blocks is the lack of a suitable 3D training image. In this work, we compare three methods of overcoming this issue using information coming from bidimensional (2D) training images. One approach is based on the aggregation of probabilities. The other approaches are novel. One relies on merging the lists obtained using the impala algorithm from diverse 2D training images, creating a list of compatible data events that is then used for the MPS simulation. The other (s2Dcd) is based on sequential simulations of 2D slices constrained by the conditioning data computed at the previous simulation steps. These three methods are tested on the reproduction of two 3D images that are used as references, and on a real case study where two training images of sedimentary structures are considered. The tests show that it is possible to obtain 3D MPS simulations with at least two 2D training images. The simulations obtained, in particular those obtained with the s2Dcd method, are close to the references, according to a number of comparison criteria. The CPU time required to simulate with the method s2Dcd is from two to four orders of magnitude smaller than the one required by a MPS simulation performed using a 3D training image, while the results obtained are comparable. This computational efficiency and the possibility of using MPS for 3D simulation without the need for a 3D training image facilitates the inclusion of MPS in Monte Carlo, uncertainty evaluation, and stochastic inverse problems frameworks.

  16. Numerical simulation of ( T 2, T 1) 2D NMR and fluid responses

    NASA Astrophysics Data System (ADS)

    Tan, Mao-Jin; Zou, You-Long; Zhang, Jin-Yan; Zhao, Xin

    2012-12-01

    One-dimensional nuclear magnetic resonance (1D NMR) logging technology is limited for fluid typing, while two-dimensional nuclear magnetic resonance (2D NMR) logging can provide more parameters including longitudinal relaxation time ( T 1) and transverse relaxation time ( T 2) relative to fluid types in porous media. Based on the 2D NMR relaxation mechanism in a gradient magnetic field, echo train simulation and 2D NMR inversion are discussed in detail. For 2D NMR inversion, a hybrid inversion method is proposed based on the damping least squares method (LSQR) and an improved truncated singular value decomposition (TSVD) algorithm. A series of spin echoes are first simulated with multiple waiting times ( T W s) in a gradient magnetic field for given fluid models and these synthesized echo trains are inverted by the hybrid method. The inversion results are consistent with given models. Moreover, the numerical simulation of various fluid models such as the gas-water, light oil-water, and vicious oil-water models were carried out with different echo spacings ( T E s) and T W s by this hybrid method. Finally, the influences of different signal-to-noise ratios (SNRs) on inversion results in various fluid models are studied. The numerical simulations show that the hybrid method and optimized observation parameters are applicable to fluid typing of gas-water and oil-water models.

  17. 2D and 3D Mass Transfer Simulations in β Lyrae System

    NASA Astrophysics Data System (ADS)

    Nazarenko, V. V.; Glazunova, L. V.; Karetnikov, V. G.

    2001-12-01

    2D and 3D mass transfer simulations of the mass transfer in β Lyrae binary system. We have received that from a point L3 40 per cent of mass transfer from L1-point is lost.The structure of a gas envelope, around system is calculated.3-D mass transfer simulations has shown presence the spiral shock in the disk around primary star's and a jet-like structures (a mass flow in vertical direction) over a stream.

  18. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  19. 2D-simulation of wet steam flow in a steam turbine with spontaneous condensation

    NASA Astrophysics Data System (ADS)

    Sun, Lan-Xin; Zheng, Qun; Liu, Shun-Long

    2007-06-01

    Removal of condensates from wet steam flow in the last stages of steam turbines significantly promotes stage efficiency and prevents erosion of rotors. In this paper, homogeneous spontaneous condensation in transonic steam flow in the 2-D rotor-tip section of a stage turbine is investigated. Calculated results agree with experimental data reasonably well. On the basis of the above work, a 2-D numerical simulation of wet steam flow in adjacent root sections of a complex steam turbine stage was carried out. Computational results were analyzed and provide insights into effective removal of humidity.

  20. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-05-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  1. 2D-3D hybrid stabilized finite element method for tsunami runup simulations

    NASA Astrophysics Data System (ADS)

    Takase, S.; Moriguchi, S.; Terada, K.; Kato, J.; Kyoya, T.; Kashiyama, K.; Kotani, T.

    2016-09-01

    This paper presents a two-dimensional (2D)-three-dimensional (3D) hybrid stabilized finite element method that enables us to predict a propagation process of tsunami generated in a hypocentral region, which ranges from offshore propagation to runup to urban areas, with high accuracy and relatively low computational costs. To be more specific, the 2D shallow water equation is employed to simulate the propagation of offshore waves, while the 3D Navier-Stokes equation is employed for the runup in urban areas. The stabilized finite element method is utilized for numerical simulations for both of the 2D and 3D domains that are independently discretized with unstructured meshes. The multi-point constraint and transmission methods are applied to satisfy the continuity of flow velocities and pressures at the interface between the resulting 2D and 3D meshes, since neither their spatial dimensions nor node arrangements are consistent. Numerical examples are presented to demonstrate the performance of the proposed hybrid method to simulate tsunami behavior, including offshore propagation and runup to urban areas, with substantially lower computation costs in comparison with full 3D computations.

  2. FRANC2D: A two-dimensional crack propagation simulator. Version 2.7: User's guide

    NASA Technical Reports Server (NTRS)

    Wawrzynek, Paul; Ingraffea, Anthony

    1994-01-01

    FRANC 2D (FRacture ANalysis Code, 2 Dimensions) is a menu driven, interactive finite element computer code that performs fracture mechanics analyses of 2-D structures. The code has an automatic mesh generator for triangular and quadrilateral elements. FRANC2D calculates the stress intensity factor using linear elastic fracture mechanics and evaluates crack extension using several methods that may be selected by the user. The code features a mesh refinement and adaptive mesh generation capability that is automatically developed according to the predicted crack extension direction and length. The code also has unique features that permit the analysis of layered structure with load transfer through simulated mechanical fasteners or bonded joints. The code was written for UNIX workstations with X-windows graphics and may be executed on the following computers: DEC DecStation 3000 and 5000 series, IBM RS/6000 series, Hewlitt-Packard 9000/700 series, SUN Sparc stations, and most Silicon Graphics models.

  3. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model.

    PubMed

    Balakrishnan, Minimol; Chakravarthy, V Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  4. Simulation of Cardiac Arrhythmias Using a 2D Heterogeneous Whole Heart Model

    PubMed Central

    Balakrishnan, Minimol; Chakravarthy, V. Srinivasa; Guhathakurta, Soma

    2015-01-01

    Simulation studies of cardiac arrhythmias at the whole heart level with electrocardiogram (ECG) gives an understanding of how the underlying cell and tissue level changes manifest as rhythm disturbances in the ECG. We present a 2D whole heart model (WHM2D) which can accommodate variations at the cellular level and can generate the ECG waveform. It is shown that, by varying cellular-level parameters like the gap junction conductance (GJC), excitability, action potential duration (APD) and frequency of oscillations of the auto-rhythmic cell in WHM2D a large variety of cardiac arrhythmias can be generated including sinus tachycardia, sinus bradycardia, sinus arrhythmia, sinus pause, junctional rhythm, Wolf Parkinson White syndrome and all types of AV conduction blocks. WHM2D includes key components of the electrical conduction system of the heart like the SA (Sino atrial) node cells, fast conducting intranodal pathways, slow conducting atriovenctricular (AV) node, bundle of His cells, Purkinje network, atrial, and ventricular myocardial cells. SA nodal cells, AV nodal cells, bundle of His cells, and Purkinje cells are represented by the Fitzhugh-Nagumo (FN) model which is a reduced model of the Hodgkin-Huxley neuron model. The atrial and ventricular myocardial cells are modeled by the Aliev-Panfilov (AP) two-variable model proposed for cardiac excitation. WHM2D can prove to be a valuable clinical tool for understanding cardiac arrhythmias. PMID:26733873

  5. Nonlinear soil-structure interaction calculations simulating the SIMQUAKE experiment using STEALTH 2D

    NASA Technical Reports Server (NTRS)

    Tang, H. T.; Hofmann, R.; Yee, G.; Vaughan, D. K.

    1980-01-01

    Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to: (1) large (STEALTH) vs. small (TRANAL) strain formulation and/or (2) grid discretization differences.

  6. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  7. Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal

    NASA Astrophysics Data System (ADS)

    Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun

    2013-05-01

    Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.

  8. The influence of slope profile extraction techniques and DEM resolution on 2D rockfall simulation

    NASA Astrophysics Data System (ADS)

    Wang, X.; Frattini, P.; Agliardi, F.; Crosta, G. B.

    2012-04-01

    The development of advanced 3D rockfall modelling algorithms and tools during the last decade has allowed to gain insights in the topographic controls on the quality and reliability of rockfall simulation results. These controls include DEM resolution and roughness, and depend on the adopted rockfall simulation approach and DEM generation techniques. Despite the development of 3D simulations, the 2D modelling approach still remains suitable and convenient in some cases. Therefore, the accuracy of high-quality 3D descriptions of topography must be preserved when extracting slope profiles for 2D simulations. In this perspective, this study compares and evaluates three different techniques commonly used to extract slope profiles from DEM, in order to assess their suitability and effects on rockfall simulation results. These methods include: (A) an "interpolated shape" method (ESRI 3D Analyst), (B) a raw raster sampling method (EZ Profiler), and (C) a vector TIN sampling method (ESRI 3D Analyst). The raster DEMs used in the study were all derived from the same TIN DEM used for method C. For raster DEM, the "interpolated shape" method (A) extracts the profile by bi-linear interpolating the elevation among the four neighbouring cells at each sampling location along the profile trace. The EZ Profiler extension (B) extracts the profile by sampling elevation values directly from the DEM raster grid at each sampling location. These methods have been compared to the extraction of profiles from TIN DEM (C), where slope profile elevations are directly obtained by sampling the TIN triangular facets. 2D rockfall simulations performed using a widely used commercial software (RocfallTM) with the different profiles show that: (1) method A and C provide similar results; (2) runout simulated using profiles obtained by method A is usually shorter than method C; (3) method B presents abrupt horizontal steps in the profiles, resulting in unrealistic runout. To study the influence of DEM

  9. Quantum simulation of 2D topological physics in a 1D array of optical cavities

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Li, Chuan-Feng; Xu, Jin-Shi; Guo, Guang-Can; Zhou, Zheng-Wei

    2015-01-01

    Orbital angular momentum of light is a fundamental optical degree of freedom characterized by unlimited number of available angular momentum states. Although this unique property has proved invaluable in diverse recent studies ranging from optical communication to quantum information, it has not been considered useful or even relevant for simulating nontrivial physics problems such as topological phenomena. Contrary to this misconception, we demonstrate the incredible value of orbital angular momentum of light for quantum simulation by showing theoretically how it allows to study a variety of important 2D topological physics in a 1D array of optical cavities. This application for orbital angular momentum of light not only reduces required physical resources but also increases feasible scale of simulation, and thus makes it possible to investigate important topics such as edge-state transport and topological phase transition in a small simulator ready for immediate experimental exploration. PMID:26145177

  10. A faster method for 3D/2D medical image registration--a simulation study.

    PubMed

    Birkfellner, Wolfgang; Wirth, Joachim; Burgstaller, Wolfgang; Baumann, Bernard; Staedele, Harald; Hammer, Beat; Gellrich, Niels Claudius; Jacob, Augustinus Ludwig; Regazzoni, Pietro; Messmer, Peter

    2003-08-21

    3D/2D patient-to-computed-tomography (CT) registration is a method to determine a transformation that maps two coordinate systems by comparing a projection image rendered from CT to a real projection image. Iterative variation of the CT's position between rendering steps finally leads to exact registration. Applications include exact patient positioning in radiation therapy, calibration of surgical robots, and pose estimation in computer-aided surgery. One of the problems associated with 3D/2D registration is the fact that finding a registration includes solving a minimization problem in six degrees of freedom (dof) in motion. This results in considerable time requirements since for each iteration step at least one volume rendering has to be computed. We show that by choosing an appropriate world coordinate system and by applying a 2D/2D registration method in each iteration step, the number of iterations can be grossly reduced from n6 to n5. Here, n is the number of discrete variations around a given coordinate. Depending on the configuration of the optimization algorithm, this reduces the total number of iterations necessary to at least 1/3 of it's original value. The method was implemented and extensively tested on simulated x-ray images of a tibia, a pelvis and a skull base. When using one projective image and a discrete full parameter space search for solving the optimization problem, average accuracy was found to be 1.0 +/- 0.6(degrees) and 4.1 +/- 1.9 (mm) for a registration in six parameters, and 1.0 +/- 0.7(degrees) and 4.2 +/- 1.6 (mm) when using the 5 + 1 dof method described in this paper. Time requirements were reduced by a factor 3.1. We conclude that this hardware-independent optimization of 3D/2D registration is a step towards increasing the acceptance of this promising method for a wide number of clinical applications. PMID:12974581

  11. Combined PDF/SPH method for compressible turbulent flows

    NASA Astrophysics Data System (ADS)

    Welton, Walter Christian

    A particle method which applies the probability density function (PDF) method to compressible turbulent flows is presented. Solution of the PDF equation is achieved using a Lagrangian/Monte Carlo approach which combines techniques borrowed from the field of smoothed particle hydrodynamics (SPH). This combination gives the method a unique ability to extract mean quantities, including the mean pressure gradient, directly from the particles using a grid-free approach. Two algorithms which greatly reduce the computational work for SPH in 1D and 2D have been developed to implement the method; for a simulation with N particles the computational work scales purely as {cal O}(N). The particle method has also been combined with a variance-reduction technique which can significantly reduce statistical error in first and second moments of selected mean flow quantities. When used with a second-order accurate predictor/corrector scheme, the resulting particle method provides a feasible way to obtain accurate PDF solutions to compressible turbulent flow problems. Results are presented for a variety of quasi-1D and 2D flows to demonstrate the method's robustness. These include solutions to both statistically stationary and nonstationary problems, and use both periodic and characteristic-based inflow/outflow boundary conditions. A 2D plane wake simulation also includes comparisons with experimental data and shows good agreement in spite of the simple turbulence model used. Comprehensive studies of numerical errors have also been performed, including a convergence study of the method. Detailed results are presented which confirm the expected behavior of each error.

  12. 2D radiation-magnetohydrodynamic simulations of SATURN imploding Z-pinches

    SciTech Connect

    Hammer, J.H.; Eddleman, J.L.; Springer, P.T.

    1995-11-06

    Z-pinch implosions driven by the SATURN device at Sandia National Laboratory are modeled with a 2D radiation magnetohydrodynamic (MHD) code, showing strong growth of magneto-Rayleigh Taylor (MRT) instability. Modeling of the linear and nonlinear development of MRT modes predicts growth of bubble-spike structures that increase the time span of stagnation and the resulting x-ray pulse width. Radiation is important in the pinch dynamics keeping the sheath relatively cool during the run-in and releasing most of the stagnation energy. The calculations give x-ray pulse widths and magnitudes in reasonable agreement with experiments, but predict a radiating region that is too dense and radially localized at stagnation. We also consider peaked initial density profiles with constant imploding sheath velocity that should reduce MRT instability and improve performance. 2D krypton simulations show an output x-ray power > 80 TW for the peaked profile.

  13. Comparison between 2D and 3D Numerical Modelling of a hot forging simulative test

    SciTech Connect

    Croin, M.; Ghiotti, A.; Bruschi, S.

    2007-04-07

    The paper presents the comparative analysis between 2D and 3D modelling of a simulative experiment, performed in laboratory environment, in which operating conditions approximate hot forging of a turbine aerofoil section. The plane strain deformation was chosen as an ideal case to analyze the process because of the thickness variations in the final section and the consequent distributions of contact pressure and sliding velocity at the interface that are closed to the conditions of the real industrial process. In order to compare the performances of 2D and 3D approaches, two different analyses were performed and compared with the experiments in terms of loads and temperatures peaks at the interface between the dies and the workpiece.

  14. Spatially Resolved Synthetic Spectra from 2D Simulations of Stainless Steel Wire Array Implosions

    SciTech Connect

    Clark, R. W.; Giuliani, J. L.; Thornhill, J. W.; Chong, Y. K.; Dasgupta, A.; Davis, J.

    2009-01-21

    A 2D radiation MHD model has been developed to investigate stainless steel wire array implosion experiments on the Z and refurbished Z machines. This model incorporates within the Mach2 MHD code a self-consistent calculation of the non-LTE kinetics and ray trace based radiation transport. Such a method is necessary in order to account for opacity effects in conjunction with ionization kinetics of K-shell emitting plasmas. Here the model is used to investigate multi-dimensional effects of stainless steel wire implosions. In particular, we are developing techniques to produce non-LTE, axially and/or radially resolved synthetic spectra based upon snapshots of our 2D simulations. Comparisons between experimental spectra and these synthetic spectra will allow us to better determine the state of the experimental pinches.

  15. Simulation of the flow and mass transfer for KDP crystals undergoing 2D translation during growth

    NASA Astrophysics Data System (ADS)

    Zhou, Chuan; Li, Mingwei; Hu, Zhitao; Yin, Huawei; Wang, Bangguo; Cui, Qidong

    2016-09-01

    In this study, a novel motion mode for crystals during growth, i.e., 2D translation, is proposed. Numerical simulations of flow and mass transfer are conducted for the growth of large-scale potassium dihydrogen phosphate (KDP) crystals subjected to the new motion mode. Surface supersaturation and shear stress are obtained as functions of the translational velocity, distance, size, orientation of crystals. The dependence of these two parameters on the flow fields around the crystals is also discussed. The thicknesses of the solute boundary layer varied with translational velocity are described. The characteristics of solution flow and surface supersaturation distribution are summarized, where it suggests that the morphological stability of a crystal surface can be enhanced if the proposed 2D translation is applied to crystal growth.

  16. Simulation of 2D NMR Spectra of Carbohydrates Using GODESS Software.

    PubMed

    Kapaev, Roman R; Toukach, Philip V

    2016-06-27

    Glycan Optimized Dual Empirical Spectrum Simulation (GODESS) is a web service, which has been recently shown to be one of the most accurate tools for simulation of (1)H and (13)C 1D NMR spectra of natural carbohydrates and their derivatives. The new version of GODESS supports visualization of the simulated (1)H and (13)C chemical shifts in the form of most 2D spin correlation spectra commonly used in carbohydrate research, such as (1)H-(1)H TOCSY, COSY/COSY-DQF/COSY-RCT, and (1)H-(13)C edHSQC, HSQC-COSY, HSQC-TOCSY, and HMBC. Peaks in the simulated 2D spectra are color-coded and labeled according to the signal assignment and can be exported in JCAMP-DX format. Peak widths are estimated empirically from the structural features. GODESS is available free of charge via the Internet at the platform of the Carbohydrate Structure Database project ( http://csdb.glycoscience.ru ). PMID:27227420

  17. Application of 2-D simulations to hollow z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.

    1997-12-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus 1 and Pegasus 2 capacitor banks, the authors have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy. This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters are required. Currently the authors are applying this capability to the analysis of recent Saturn and PBFA-Z experiments. The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has also been applied to the analysis of Saturn dynamic hohlraum experiments and is being used in the design of this and other Z-Pinch applications on PBFA-Z.

  18. Fast Acceleration of 2D Wave Propagation Simulations Using Modern Computational Accelerators

    PubMed Central

    Wang, Wei; Xu, Lifan; Cavazos, John; Huang, Howie H.; Kay, Matthew

    2014-01-01

    Recent developments in modern computational accelerators like Graphics Processing Units (GPUs) and coprocessors provide great opportunities for making scientific applications run faster than ever before. However, efficient parallelization of scientific code using new programming tools like CUDA requires a high level of expertise that is not available to many scientists. This, plus the fact that parallelized code is usually not portable to different architectures, creates major challenges for exploiting the full capabilities of modern computational accelerators. In this work, we sought to overcome these challenges by studying how to achieve both automated parallelization using OpenACC and enhanced portability using OpenCL. We applied our parallelization schemes using GPUs as well as Intel Many Integrated Core (MIC) coprocessor to reduce the run time of wave propagation simulations. We used a well-established 2D cardiac action potential model as a specific case-study. To the best of our knowledge, we are the first to study auto-parallelization of 2D cardiac wave propagation simulations using OpenACC. Our results identify several approaches that provide substantial speedups. The OpenACC-generated GPU code achieved more than speedup above the sequential implementation and required the addition of only a few OpenACC pragmas to the code. An OpenCL implementation provided speedups on GPUs of at least faster than the sequential implementation and faster than a parallelized OpenMP implementation. An implementation of OpenMP on Intel MIC coprocessor provided speedups of with only a few code changes to the sequential implementation. We highlight that OpenACC provides an automatic, efficient, and portable approach to achieve parallelization of 2D cardiac wave simulations on GPUs. Our approach of using OpenACC, OpenCL, and OpenMP to parallelize this particular model on modern computational accelerators should be applicable to other computational models of wave propagation in

  19. 2D PIC/MC simulations of electrical asymmetry effect in capacitive coupled plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Quan-Zhi; Jiang, Wei; Wang, You-Nian

    2011-10-01

    Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled plasmas, was discovered theoretically by Heil et al. and was confirmed by experiments and theory/numerical simulations later on. However, since there always is a bigger grounded surface area for experiment devices, which reduces the geometrical symmetry, and all the simulations were limited to 1D before, it is, thus, worth studying the EAE when coupling the electrically and geometrically asymmetric discharges theoretically. Here, we perform 2D PIC/MC simulations, which can include both electrically and geometrically asymmetric factors. The EAE on plasma parameters, such as dc self-bias voltage, density profiles, ion energy distribution and power absorption of electron have been examined for different pressures and geometry conditions. This work was supported by the National Natural Science Foundation of China (Grant No 10635010) and the Important National Science & Technology Specific Project (Grant No

  20. Phase Transitions in Quasi-2D Plasma-Dust Systems: Simulations and Experiments

    NASA Astrophysics Data System (ADS)

    Petrov, Oleg; Vasiliev, Mikhail; Statsenko, Konstantin; Koss, Xeniya; Vasilieva, Elena; Myasnikov, Maxim; Lisin, Evgeny

    2015-11-01

    A nature of phase transition in quasi-2D dusty plasma structures was studied and the influence of the quasi-2D cluster size (a number of particles in it) on the features of the phase transition was investigated. Experiments and numerical simulation was conducted for the systems consisting of small (~ 10) and large (~ 103) number of particles. To investigate the phase state of the system with 7, 18 and 100 particles observed in numerical and laboratory experiments, we used the method based on analysis of dynamic entropy. Numerical modeling of small systems was conducted by the Langevin molecular dynamic method with the Langevin force, responsible for the stochastic nature of the motion of particles with a given kinetic temperature. Phase state of systems with the number of elements in the order of 103, was studied using the methods of statistical thermodynamics. Here we present new results of an experimental study of the change of translational and orientational order and topological defects, and the pair interactions at 2D melting of dust cluster in rf discharge plasma. The experimental results have revealed the existence of hexatic phase as well as solid-to-hexatic phase and hexatic-to-liquid transitions. This work was supported by the Russian Science Foundation (O.F. Petrov, M.M.Vasiliev, K.B. Stacenko, X.G. Koss, E.V. Vasilieva, M.I.Myasnikov and E.?.Lisin) through Grant No. 14-12-01440).

  1. 2-D/3-D ECE imaging data for validation of turbulence simulations

    NASA Astrophysics Data System (ADS)

    Choi, Minjun; Lee, Jaehyun; Yun, Gunsu; Lee, Woochang; Park, Hyeon K.; Park, Young-Seok; Sabbagh, Steve A.; Wang, Weixing; Luhmann, Neville C., Jr.

    2015-11-01

    The 2-D/3-D KSTAR ECEI diagnostic can provide a local 2-D/3-D measurement of ECE intensity. Application of spectral analysis techniques to the ECEI data allows local estimation of frequency spectra S (f) , wavenumber spectra S (k) , wavernumber and frequency spectra S (k , f) , and bispectra b (f1 ,f2) of ECE intensity over the 2-D/3-D space, which can be used to validate turbulence simulations. However, the minimum detectable fluctuation amplitude and the maximum detectable wavenumber are limited by the temporal and spatial resolutions of the diagnostic system, respectively. Also, the finite measurement area of the diagnostic channel could introduce uncertainty in the spectra estimation. The limitations and accuracy of the ECEI estimated spectra have been tested by a synthetic ECEI diagnostic with the model and/or fluctuations calculated by GTS. Supported by the NRF of Korea under Contract No. NRF-2014M1A7A1A03029881 and NRF-2014M1A7A1A03029865 and by U.S. DOE grant DE-FG02-99ER54524.

  2. Tuning and simulating a 193-nm resist for 2D applications

    NASA Astrophysics Data System (ADS)

    Howard, William B.; Wiaux, Vincent; Ercken, Monique; Bui, Bang; Byers, Jeff D.; Pochkowski, Mike

    2002-07-01

    For some applications, the usefulness of lithography simulation results depends strongly on the matching between experimental conditions and the simulation input parameters. If this matching is optimized and other sources of error are minimized, then the lithography model can be used to explain printed wafer experimental results. Further, simulation can be useful in predicting the results or in choosing the correct set of experiments. In this paper, PROLITH and ProDATA AutoTune were used to systematically vary simulation input parameters to match measured results on printed wafers used in a 193 nm process. The validity of the simulation parameters was then checked using 3D simulation compared to 2D top-down SEM images. The quality of matching was evaluated using the 1D metrics of average gate CD and Line End Shortening (LES). To ensure the most accurate simulation, a new approach was taken to create a compound mask from GDSII contextual information surrounding an accurate SEM image of the reticle region of interest. Corrections were made to account for all metrology offsets.

  3. Multipacting Simulation Study for 56 MHz Quarter Wave Resonator using 2D Code

    SciTech Connect

    Naik,D.; Ben-Zvi, I.

    2009-01-02

    A beam excited 56 MHz Radio Frequency (RF) Niobium Quarter Wave Resonator (QWR) has been proposed to enhance RHIC beam luminosity and bunching. Being a RF cavity, multipacting is expected; therefore an extensive study was carried out with the Multipac 2.1 2D simulation code. The study revealed that multipacting occurs in various bands up to peak surface electric field 50 kV/m and is concentrated mostly above the beam gap and on the outer conductor. To suppress multipacting, a ripple structure was introduced to the outer conductor and the phenomenon was successfully eliminated from the cavity.

  4. Ion acoustic wave collapse via two-ion wave decay: 2D Vlasov simulation and theory

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2015-11-01

    The decay of ion acoustic waves (IAWs) via two-ion wave decay may transfer energy from the electric field of the IAWs to the particles, resulting in a significant heating of resonant particles. This process has previously been shown in numerical simulations to decrease the plasma reflectivity due to stimulated Brillouin scattering. Two-ion wave decay is a fundamental property of ion acoustic waves that occurs over most if not all of the parameter space of relevance to inertial confinement fusion experiments, and can lead to a sudden collapse of IAWs. The treatment of all species kinetically, and in particular the electrons, is required to describe the decay process correctly. We present fully kinetic 2D+2V Vlasov simulations of IAWs undergoing decay to a highly nonlinear turbulent state using the code LOKI. The scaling of the decay rate with characteristic plasma parameters and wave amplitude is shown. A new theory describing two-ion wave decay in 2D, that incorporates key kinetic properties of the electrons, is presented and used to explain quantitatively for the first time the observed decay of IAWs. Work performed under auspices of U.S. DoE by LLNL, Contract DE-AC52-07NA2734. Funded by LDRD 15-ERD-038 and supported by LLNL Grand Challenge allocation.

  5. Calibration and simulation of ASM2d at different temperatures in a phosphorus removal pilot plant.

    PubMed

    García-Usach, F; Ferrer, J; Bouzas, A; Seco, A

    2006-01-01

    In this work, an organic and nutrient removal pilot plant was used to study the temperature influence on phosphorus accumulating organisms. Three experiments were carried out at 13, 20 and 24.5 degrees C, achieving a high phosphorus removal percentage in all cases. The ASM2d model was calibrated at 13 and 20 degrees C and the Arrhenius equation constant was obtained for phosphorus removal processes showing that the temperature influences on the biological phosphorus removal subprocesses in a different degree. The 24.5 degrees C experiment was simulated using the model parameters obtained by means of the Arrhenius equation. The simulation results for the three experiments showed good correspondence with the experimental data, demonstrating that the model and the calibrated parameters were able to predict the pilot plant behaviour. PMID:16889256

  6. Well-posedness and generalized plane waves simulations of a 2D mode conversion model

    NASA Astrophysics Data System (ADS)

    Imbert-Gérard, Lise-Marie

    2015-12-01

    Certain types of electro-magnetic waves propagating in a plasma can undergo a mode conversion process. In magnetic confinement fusion, this phenomenon is very useful to heat the plasma, since it permits to transfer the heat at or near the plasma center. This work focuses on a mathematical model of wave propagation around the mode conversion region, from both theoretical and numerical points of view. It aims at developing, for a well-posed equation, specific basis functions to study a wave mode conversion process. These basis functions, called generalized plane waves, are intrinsically based on variable coefficients. As such, they are particularly adapted to the mode conversion problem. The design of generalized plane waves for the proposed model is described in detail. Their implementation within a discontinuous Galerkin method then provides numerical simulations of the process. These first 2D simulations for this model agree with qualitative aspects studied in previous works.

  7. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations

    SciTech Connect

    Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; Jaaniste, J.; Heinamaki, P.; Muller, V.; Knebe, A.; Tucker, D.; /Fermilab

    2006-04-01

    We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.

  8. Comparative modeling of vertical and planar organic phototransistors with 2D drift-diffusion simulations

    NASA Astrophysics Data System (ADS)

    Bezzeccheri, E.; Colasanti, S.; Falco, A.; Liguori, R.; Rubino, A.; Lugli, P.

    2016-05-01

    Vertical Organic Transistors and Phototransistors have been proven to be promising technologies due to the advantages of reduced channel length and larger sensitive area with respect to planar devices. Nevertheless, a real improvement of their performance is subordinate to the quantitative description of their operation mechanisms. In this work, we present a comparative study on the modeling of vertical and planar Organic Phototransistor (OPT) structures. Computer-based simulations of the devices have been carried out with Synopsys Sentaurus TCAD in a 2D Drift-Diffusion framework. The photoactive semiconductor material has been modeled using the virtual semiconductor approach as the archetypal P3HT:PC61BM bulk heterojunction. It has been found that both simulated devices have comparable electrical and optical characteristics, accordingly to recent experimental reports on the subject.

  9. Highly-resolved 2D HYDRA simulations of Double-Shell Ignition Designs

    SciTech Connect

    Milovich, J L; Amendt, P; Hamza, A; Marinak, M; Robey, H

    2006-06-30

    Double-shell (DS) targets (Amendt, P. A. et al., 2002) offer a complementary approach to the cryogenic baseline design (Lindl, J. et al., 2004) for achieving ignition on the National Ignition Facility (NIF). Among the expected benefits are the ease of room temperature preparation and fielding, the potential for lower laser backscatter and the reduced need for careful shock timing. These benefits are offset, however, by demanding fabrication tolerances, e.g., shell concentricity and shell surface smoothness. In particular, the latter is of paramount importance since DS targets are susceptible to the growth of interface perturbations from impulsive and time-dependent accelerations. Previous work (Milovich, J. L. et al., 2004) has indicated that the growth of perturbations on the outer surface of the inner shell is potentially disruptive. To control this instability new designs have been proposed requiring bimetallic inner shells and material-matching mid-Z nanoporous foam. The challenges in manufacturing such exotic foams have led to a further evaluation of the densities and pore sizes needed to reduce the seeding of perturbations on the outer surface of the inner shell, thereby guiding the ongoing material science research efforts. Highly-resolved 2D simulations of porous foams have been performed to establish an upper limit on the allowable pore sizes for instability growth. Simulations indicate that foams with higher densities than previously thought are now possible. Moreover, while at the present time we are only able to simulate foams with average pore sizes larger than 1 micron (due to computational limitations), we can conclude that these pore sizes are potentially problematic. Furthermore, the effect of low-order hohlraum radiation asymmetries on the growth of intrinsic surface perturbations is also addressed. Highly-resolved 2D simulations indicate that the transverse flows that are set up by these low-order mode features (which can excite Kelvin

  10. Progress and Challenges in SPH Simulations of Disk Galaxy Formation: The Combined Role of Resolution and the Star Formation Density Threshold

    NASA Astrophysics Data System (ADS)

    Mayer, L.

    2012-07-01

    We review progress in cosmological SPH simulations of disk galaxy formation. We discuss the role of numerical resolution and sub-grid recipes of star formation and feedback from supernovae, higlighting the important role of a high star formation density threshold comparable to that of star forming molecular gas phase. Two recent succesfull examples, in simulations of the formation of gas-rich bulgeless dwarf galaxies and in simulations of late-type spirals (the ERIS simulations), are presented and discussed. In the ERIS simulations, already in the progenitors at z = 3 the resolution is above the threshold indicated by previous idealized numerical experiments as necessary to minimize numerical angular momentum loss (Kaufmann et al. 2007). A high star formation density threshold maintains an inhomogeneous interstellar medium, where star formation is clustered, and thus the local effect of supernovae feedback is enhanced. As a result, outflows are naturally generated removing 2/3 of the baryons in galaxies with Vvir˜50 km/s and ˜ 30% of the baryons in galaxies with (Vvir ˜ 150 km/s). Low angular momentum baryons are preferentially removed since the strongest bursts of star formation occur predominantly near the center, especially after a merger event. This produces pure exponential disks or small bulges depending on galaxy mass, and, correspondingly, slowly rising or nearly flat rotation curves that match those of observed disk galaxies. In dwarfs the rapid mass removal by outflows generates a core-like distribution in the dark matter. Furthermore, contrary to the common picture, in the ERIS spiral galaxies a bar/pseudobulge forms rapidly, and not secularly, as a result of mergers and interactions at high-z.

  11. Reynolds-Averaged Navier-Stokes Simulation of a 2D Circulation Control Wind Tunnel Experiment

    NASA Technical Reports Server (NTRS)

    Allan, Brian G.; Jones, Greg; Lin, John C.

    2011-01-01

    Numerical simulations are performed using a Reynolds-averaged Navier-Stokes (RANS) flow solver for a circulation control airfoil. 2D and 3D simulation results are compared to a circulation control wind tunnel test conducted at the NASA Langley Basic Aerodynamics Research Tunnel (BART). The RANS simulations are compared to a low blowing case with a jet momentum coefficient, C(sub u), of 0:047 and a higher blowing case of 0.115. Three dimensional simulations of the model and tunnel walls show wall effects on the lift and airfoil surface pressures. These wall effects include a 4% decrease of the midspan sectional lift for the C(sub u) 0.115 blowing condition. Simulations comparing the performance of the Spalart Allmaras (SA) and Shear Stress Transport (SST) turbulence models are also made, showing the SST model compares best to the experimental data. A Rotational/Curvature Correction (RCC) to the turbulence model is also evaluated demonstrating an improvement in the CFD predictions.

  12. Spot size variation FCS in simulations of the 2D Ising model

    NASA Astrophysics Data System (ADS)

    Burns, Margaret C.; Nouri, Mariam; Veatch, Sarah L.

    2016-06-01

    Spot variation fluorescence correlation spectroscopy (svFCS) was developed to study the movement and organization of single molecules in plasma membranes. This experimental technique varies the size of an illumination area while measuring correlations in time using standard fluorescence correlation methods. Frequently, this data is interpreted using the assumption that correlation measurements reflect the dynamics of single molecule motions, and not motions of the average composition. Here, we explore how svFCS measurements report on the dynamics of components diffusing within simulations of a 2D Ising model with a conserved order parameter. Simulated correlation functions report on both the fast dynamics of single component mobility and the slower dynamics of the average composition. Over a range of simulation conditions, a conventional svFCS analysis suggests the presence of anomalous diffusion even though single molecule motions are nearly Brownian in these simulations. This misinterpretation is most significant when the surface density of the fluorescent label is elevated, therefore we suggest future measurements be made over a range of tracer densities. Some simulation conditions reproduce qualitative features of published svFCS experimental data. Overall, this work emphasizes the need to probe membranes using multiple complimentary experimental methodologies in order to draw conclusions regarding the nature of spatial and dynamical heterogeneity in these systems.

  13. A Molecular Dynamics simulation of Hugoniot curves of HMX using ReaxFF and its application in SPH modeling of macroscale terminal effects

    NASA Astrophysics Data System (ADS)

    Liu, Gui-Rong; Wang, Gangyu; Peng, Qing; de, Suvranu

    2015-06-01

    HMX is a widely used high explosive. Hugoniot curve is a valuable tool for analyzing the equations of state, and is of importance for all energetic materials including HMX. The Hugoniot curves serve as one of the key character in continuum modeling of high explosives. It can be obtained from experimental measurements, and recently also from computational studies. In this study, the Hugoniot curve of HMX is calculated using a multi-scale shock technique via Molecular Dynamics (MD) simulations, where the reactive force field ReaxFF is obtained from Quantum Mechanics calculations and tailored for HMX. It is found that our MD Hugoniot curve of HMX from the optimized ReaxFF potential agree well with experiments. The MD Hugoniot curve of HMX is also incorporated in our in-house Smoothed Particle Hydrodynamics (SPH) code for the modeling of the macro-scale explosive behaviors of HMX explosives and HMX cased in a 3D cylinder. The authors would like to acknowledge the generous financial support from the Defense Threat Reduction Agency (DTRA) Grant HDTRA1-13-1-0025.

  14. 3D Radiative Transfer in Eta Carinae: The SimpleX Radiative Transfer Algorithm Applied to 3D SPH Simulations of Eta Car's Colliding Winds

    NASA Astrophysics Data System (ADS)

    Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.

    2014-04-01

    At the heart of the spectacular bipolar Homunculus nebula lies an extremely luminous (5*10^6 L_sun) colliding wind binary with a highly eccentric (e ~ 0.9), 5.54-year orbit and a total mass ~ 110 M_sun. Our closest (D ~ 2.3 kpc) and best example of a pre-hypernova environment, Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions, stellar wind-wind collisions, and massive star evolution. In order to improve our knowledge of the system, we need to generate synthetic observations and compare them with the already available and future HST/STIS data. We present initial results from full 3D radiative transfer post-processing of 3D SPH hydrodynamical simulations of the interacting winds of Eta Carinae. We use SimpleX algorithm to obtain the ionization fractions of hydrogen and helium, this results in ionization maps of both species that constrain the regions where these lines can form. These results will allow us to put constraints on the number of ionizing photons coming from the companion. This construction of synthetic observations allows us to obtain insight into the highly complex 3D flows in Eta, from the shape of the ionized volume and its resulting optical/spectral appearance.

  15. Numerical simulation of 2D buoyant jets in ice-covered and temperature-stratified water

    NASA Astrophysics Data System (ADS)

    Gu, Ruochuan

    A two-dimensional (2D) unsteady simulation model is applied to the problem of a submerged warm water discharge into a stratified lake or reservoir with an ice cover. Numerical simulations and analyses are conducted to gain insight into large-scale convective recirculation and flow processes in a cold waterbody induced by a buoyant jet. Jet behaviors under various discharge temperatures are captured by directly modeling flow and thermal fields. Flow structures and processes are described by the simulated spatial and temporal distributions of velocity and temperature in various regions: deflection, recirculation, attachment, and impingement. Some peculiar hydrothermal and dynamic features, e.g. reversal of buoyancy due to the dilution of a warm jet by entraining cold ambient water, are identified and examined. Simulation results show that buoyancy is the most important factor controlling jet behavior and mixing processes. The inflow boundary is treated as a liquid wall from which the jet is offset. Similarity and difference in effects of boundaries perpendicular and parallel to flow, and of buoyancy on jet attachment and impingement, are discussed. Symmetric flow configuration is used to de-emphasize the Coanda effect caused by offset.

  16. Incorporating a Turbulence Transport Model into 2-D Hybrid Hall Thruster Simulations

    NASA Astrophysics Data System (ADS)

    Cha, Eunsun; Cappelli, Mark A.; Fernandez, Eduardo

    2014-10-01

    2-D hybrid simulations of Hall plasma thrusters that do not resolve cross-field transport-generating fluctuations require a model to capture how electrons migrate across the magnetic field. We describe the results of integrating a turbulent electron transport model into simulations of plasma behavior in a plane spanned by the E and B field vectors. The simulations treat the electrons as a fluid and the heavy species (ions/neutrals) as discrete particles. The transport model assumes that the turbulent eddy cascade in the electron fluid to smaller scales is the primary means of electron energy dissipation. Using this model, we compare simulations to experimental measurements made on a laboratory Hall discharge over a range of discharge voltage. Both the current-voltage trends as well as the plasma properties such as plasma temperature, electron density, and ion velocities seem agree favorably with experiments, where a simple Bohm transport model tends to perform poorly in capturing much of the discharge behavior.

  17. Rise characteristics of gas bubbles in a 2D rectangular column: VOF simulations vs experiments

    SciTech Connect

    Krishna, R.; Baten, J.M. van

    1999-10-01

    About five centuries ago, Leonardo da Vinci described the sinuous motion of gas bubbles rising in water. The authors have attempted to simulate the rise trajectories of bubbles of 4, 5, 7, 8, 9, 12, and 20 mm in diameter rising in a 2D rectangular column filled with water. The simulations were carried out using the volume-of-fluid (VOF) technique developed by Hirt and Nichols (J. Computational Physics, 39, 201--225 (1981)). To solve the Navier-Stokes equations of motion the authors used a commercial solver, CFX 4.1c of AEA Technology, UK. They developed their own bubble-tracking algorithm to capture sinuous bubble motions. The 4 and 5 mm bubbles show large lateral motions observed by Da Vinci. The 7, 8 and 9 mm bubble behave like jellyfish. The 12 mm bubble flaps its wings like a bird. The extent of lateral motion of the bubbles decreases with increasing bubble size. Bubbles larger than 20 mm in size assume a spherical cap form and simulations of the rise characteristics match experiments exactly. VOF simulations are powerful tools for a priori determination of the morphology and rise characteristics of bubbles rising in a liquid. Bubble-bubble interactions are also properly modeled by the VOF technique.

  18. Multi-phase SPH modelling of violent hydrodynamics on GPUs

    NASA Astrophysics Data System (ADS)

    Mokos, Athanasios; Rogers, Benedict D.; Stansby, Peter K.; Domínguez, José M.

    2015-11-01

    This paper presents the acceleration of multi-phase smoothed particle hydrodynamics (SPH) using a graphics processing unit (GPU) enabling large numbers of particles (10-20 million) to be simulated on just a single GPU card. With novel hardware architectures such as a GPU, the optimum approach to implement a multi-phase scheme presents some new challenges. Many more particles must be included in the calculation and there are very different speeds of sound in each phase with the largest speed of sound determining the time step. This requires efficient computation. To take full advantage of the hardware acceleration provided by a single GPU for a multi-phase simulation, four different algorithms are investigated: conditional statements, binary operators, separate particle lists and an intermediate global function. Runtime results show that the optimum approach needs to employ separate cell and neighbour lists for each phase. The profiler shows that this approach leads to a reduction in both memory transactions and arithmetic operations giving significant runtime gains. The four different algorithms are compared to the efficiency of the optimised single-phase GPU code, DualSPHysics, for 2-D and 3-D simulations which indicate that the multi-phase functionality has a significant computational overhead. A comparison with an optimised CPU code shows a speed up of an order of magnitude over an OpenMP simulation with 8 threads and two orders of magnitude over a single thread simulation. A demonstration of the multi-phase SPH GPU code is provided by a 3-D dam break case impacting an obstacle. This shows better agreement with experimental results than an equivalent single-phase code. The multi-phase GPU code enables a convergence study to be undertaken on a single GPU with a large number of particles that otherwise would have required large high performance computing resources.

  19. Multiple Frequency Contrast Source Inversion Method for Vertical Electromagnetic Profiling: 2D Simulation Results and Analyses

    NASA Astrophysics Data System (ADS)

    Li, Jinghe; Song, Linping; Liu, Qing Huo

    2016-02-01

    A simultaneous multiple frequency contrast source inversion (CSI) method is applied to reconstructing hydrocarbon reservoir targets in a complex multilayered medium in two dimensions. It simulates the effects of a salt dome sedimentary formation in the context of reservoir monitoring. In this method, the stabilized biconjugate-gradient fast Fourier transform (BCGS-FFT) algorithm is applied as a fast solver for the 2D volume integral equation for the forward computation. The inversion technique with CSI combines the efficient FFT algorithm to speed up the matrix-vector multiplication and the stable convergence of the simultaneous multiple frequency CSI in the iteration process. As a result, this method is capable of making quantitative conductivity image reconstruction effectively for large-scale electromagnetic oil exploration problems, including the vertical electromagnetic profiling (VEP) survey investigated here. A number of numerical examples have been demonstrated to validate the effectiveness and capacity of the simultaneous multiple frequency CSI method for a limited array view in VEP.

  20. Relaxation of ferroelectric states in 2D distributions of quantum dots: EELS simulation

    NASA Astrophysics Data System (ADS)

    Cortés, C. M.; Meza-Montes, L.; Moctezuma, R. E.; Carrillo, J. L.

    2016-06-01

    The relaxation time of collective electronic states in a 2D distribution of quantum dots is investigated theoretically by simulating EELS experiments. From the numerical calculation of the probability of energy loss of an electron beam, traveling parallel to the distribution, it is possible to estimate the damping time of ferroelectric-like states. We generate this collective response of the distribution by introducing a mean field interaction among the quantum dots, and then, the model is extended incorporating effects of long-range correlations through a Bragg–Williams approximation. The behavior of the dielectric function, the energy loss function, and the relaxation time of ferroelectric-like states is then investigated as a function of the temperature of the distribution and the damping constant of the electronic states in the single quantum dots. The robustness of the trends and tendencies of our results indicate that this scheme of analysis can guide experimentalists to develop tailored quantum dots distributions for specific applications.

  1. A new model for two-dimensional numerical simulation of pseudo-2D gas-solids fluidized beds

    SciTech Connect

    Li, Tingwen; Zhang, Yongmin

    2013-10-11

    Pseudo-two dimensional (pseudo-2D) fluidized beds, for which the thickness of the system is much smaller than the other two dimensions, is widely used to perform fundamental studies on bubble behavior, solids mixing, or clustering phenomenon in different gas-solids fluidization systems. The abundant data from such experimental systems are very useful for numerical model development and validation. However, it has been reported that two-dimensional (2D) computational fluid dynamic (CFD) simulations of pseudo-2D gas-solids fluidized beds usually predict poor quantitative agreement with the experimental data, especially for the solids velocity field. In this paper, a new model is proposed to improve the 2D numerical simulations of pseudo-2D gas-solids fluidized beds by properly accounting for the frictional effect of the front and back walls. Two previously reported pseudo-2D experimental systems were simulated with this model. Compared to the traditional 2D simulations, significant improvements in the numerical predictions have been observed and the predicted results are in better agreement with the available experimental data.

  2. Hall-Effect Thruster Simulations with 2-D Electron Transport and Hydrodynamic Ions

    NASA Technical Reports Server (NTRS)

    Mikellides, Ioannis G.; Katz, Ira; Hofer, Richard H.; Goebel, Dan M.

    2009-01-01

    A computational approach that has been used extensively in the last two decades for Hall thruster simulations is to solve a diffusion equation and energy conservation law for the electrons in a direction that is perpendicular to the magnetic field, and use discrete-particle methods for the heavy species. This "hybrid" approach has allowed for the capture of bulk plasma phenomena inside these thrusters within reasonable computational times. Regions of the thruster with complex magnetic field arrangements (such as those near eroded walls and magnets) and/or reduced Hall parameter (such as those near the anode and the cathode plume) challenge the validity of the quasi-one-dimensional assumption for the electrons. This paper reports on the development of a computer code that solves numerically the 2-D axisymmetric vector form of Ohm's law, with no assumptions regarding the rate of electron transport in the parallel and perpendicular directions. The numerical challenges related to the large disparity of the transport coefficients in the two directions are met by solving the equations in a computational mesh that is aligned with the magnetic field. The fully-2D approach allows for a large physical domain that extends more than five times the thruster channel length in the axial direction, and encompasses the cathode boundary. Ions are treated as an isothermal, cold (relative to the electrons) fluid, accounting for charge-exchange and multiple-ionization collisions in the momentum equations. A first series of simulations of two Hall thrusters, namely the BPT-4000 and a 6-kW laboratory thruster, quantifies the significance of ion diffusion in the anode region and the importance of the extended physical domain on studies related to the impact of the transport coefficients on the electron flow field.

  3. What Can We Learn about Magnetotail Reconnection from 2D PIC Harris-Sheet Simulations?

    NASA Astrophysics Data System (ADS)

    Goldman, M. V.; Newman, D. L.; Lapenta, G.

    2016-03-01

    The Magnetosphere Multiscale Mission (MMS) will provide the first opportunity to probe electron-scale physics during magnetic reconnection in Earth's magnetopause and magnetotail. This article will address only tail reconnection—as a non-steady-state process in which the first reconnected field lines advance away from the x-point in flux pile-up fronts directed Earthward and anti-Earthward. An up-to-date microscopic physical picture of electron and ion-scale collisionless tail reconnection processes is presented based on 2-D Particle-In-Cell (PIC) simulations initiated from a Harris current sheet and on Cluster and Themis measurements of tail reconnection. The successes and limitations of simulations when compared to measured reconnection are addressed in detail. The main focus is on particle and field diffusion region signatures in the tail reconnection geometry. The interpretation of these signatures is vital to enable spacecraft to identify physically significant reconnection events, to trigger meaningful data transfer from MMS to Earth and to construct a useful overall physical picture of tail reconnection. New simulation results and theoretical interpretations are presented for energy transport of particles and fields, for the size and shape of electron and ion diffusion regions, for processes occurring near the fronts and for the j × B (Hall) electric field.

  4. Lattice Boltzmann simulations of 2D laminar flows past two tandem cylinders

    NASA Astrophysics Data System (ADS)

    Mussa, Alberto; Asinari, Pietro; Luo, Li-Shi

    2009-03-01

    We apply the lattice Boltzmann equation (LBE) with multiple-relaxation-time (MRT) collision model to simulate laminar flows in two-dimensions (2D). In order to simulate flows in an unbounded domain with the LBE method, we need to address two issues: stretched non-uniform mesh and inflow and outflow boundary conditions. We use the interpolated grid stretching method to address the need of non-uniform mesh. We demonstrate that various inflow and outflow boundary conditions can be easily and consistently realized with the MRT-LBE. The MRT-LBE with non-uniform stretched grids is first validated with a number of test cases: the Poiseuille flow, the flow past a cylinder asymmetrically placed in a channel, and the flow past a cylinder in an unbounded domain. We use the LBE method to simulate the flow past two tandem cylinders in an unbounded domain with Re = 100. Our results agree well with existing ones. Through this work we demonstrate the effectiveness of the MRT-LBE method with grid stretching.

  5. Numerical simulation of HTPB combustion in a 2D hybrid slab combustor

    NASA Astrophysics Data System (ADS)

    Gariani, Gabriela; Maggi, Filippo; Galfetti, Luciano

    2011-09-01

    A code for the numerical simulation of combustion processes in hybrid rockets, developed at the Space Propulsion Laboratory of Politecnico di Milano (SPLab), is presented. The code deals with Navier-Stokes equations solved with RANS approach, blowing effect, combustion kinetics and radiation. The equations are closed with k-epsilon turbulence model and well stirred reactor model. The P1 model, a simplification of the PN radiation model, is adopted. Specific simulation tools were developed using OpenFOAM®open source technology. The computational domain is 2D and split in two subdomains, simulating the reacting gas mixture on one side and the solid fuel grain on the other. The interface between the two regions plays a key role as the solid grain pyrolysis comes from a straight solution of the model without shortcuts. A propellant combination with polybutadiene and gaseous oxygen has been chosen and a reduced kinetic model for combustion of butadiene, considered as the major gaseous constituent coming from polybutadiene pyrolysis, has been developed for reactions occurring in oxygen atmosphere. The computational domain tries to replicate the real experimental setup and is split into three areas: pre-chamber, slab zone and post-chamber. High speed camera visualizations of the combustion processes allow to compare the flame height, obtained by the code and by experimental tests, along the grain for given boundary conditions.

  6. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  7. Application of 2-D simulations to hollow Z-pinch implosions

    SciTech Connect

    Peterson, D. L.; Bowers, R. L.; Brownell, J. H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R. B.; Nash, T. J.; Chandler, G.; Mock, R. C.; Sanford, T. W. L.; Matzen, M. K.; Roderick, N. F.

    1997-05-05

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known a priori. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii (<1 cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D modeling has

  8. Application of 2-D simulations to hollow Z-pinch implosions

    SciTech Connect

    Peterson, D.L.; Bowers, R.L.; Brownell, J.H.; Lund, C.; Matuska, W.; McLenithan, K.; Oona, H.; Deeney, C.; Derzon, M.; Spielman, R.B.; Nash, T.J.; Chandler, G.; Mock, R.C.; Sanford, T.W.; Matzen, M.K.; Roderick, N.F.

    1997-05-01

    The application of simulations of z-pinch implosions should have at least two goals: first, to properly model the most important physical processes occurring in the pinch allowing for a better understanding of the experiments and second, provide a design capability for future experiments. Beginning with experiments fielded at Los Alamos on the Pegasus I and Pegasus II capacitor banks, we have developed a methodology for simulating hollow z-pinches in two dimensions which has reproduced important features of the measured experimental current drive, spectrum, radiation pulse shape, peak power and total radiated energy (1,2,3). This methodology employs essentially one free parameter, the initial level of the random density perturbations imposed at the beginning of the 2-D simulation, but in general no adjustments to other parameters (such as the resistivity) are required (1). Limitations in the use of this approach include the use of the 3-T, gray diffusion treatment of radiation and the fact that the initial perturbation conditions are not known {ital a priori}. Nonetheless, the approach has been successful in reproducing important experimental features of such implosions over a wide variety of timescales (tens of nanoseconds to microseconds), current drives (3 to 16 MA), masses (submilligram to tens of milligrams), initial radii ({lt}1cm to 5 cm), materials (Al and W) and initial configurations (thin foils and wire arrays with 40 to 240 wires). Currently we are applying this capability to the analysis of recent Saturn and PBFA-Z experiments (4,5). The code results provide insight into the nature of the pinch plasma prior to arrival on-axis, during thermalization and development after peak pinch time. Among other things, the simulation results provide an explanation for the production of larger amounts of radiated energy than would be expected from a simple slug-model kinetic energy analysis and the appearance of multiple peaks in the radiation power. The 2-D

  9. Radioactive Sediment Transport on Ogaki Dam Reservoir in Fukushima Evacuated Zone: Numerical Simulation Studies by 2-D River Simulation Code

    NASA Astrophysics Data System (ADS)

    Yamada, Susumu; Kitamura, Akihiro; Kurikami, Hiroshi; Machida, Masahiko

    2015-04-01

    Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 2011 released significant quantities of radionuclides to atmosphere. The most significant nuclide is radioactive cesium isotopes. Therefore, the movement of the cesium is one of the critical issues for the environmental assessment. Since the cesium is strongly sorbed by soil particles, the cesium transport can be regarded as the sediment transport which is mainly brought about by the aquatic system such as a river and a lake. In this research, our target is the sediment transport on Ogaki dam reservoir which is located in about 16 km northwest from FDNPP. The reservoir is one of the principal irrigation dam reservoirs in Fukushima Prefecture and its upstream river basin was heavily contaminated by radioactivity. We simulate the sediment transport on the reservoir using 2-D river simulation code named Nays2D originally developed by Shimizu et al. (The latest version of Nays2D is available as a code included in iRIC (http://i-ric.org/en/), which is a river flow and riverbed variation analysis software package). In general, a 2-D simulation code requires a huge amount of calculation time. Therefore, we parallelize the code and execute it on a parallel computer. We examine the relationship between the behavior of the sediment transport and the height of the reservoir exit. The simulation result shows that almost all the sand that enter into the reservoir deposit close to the entrance of the reservoir for any height of the exit. The amounts of silt depositing within the reservoir slightly increase by raising the height of the exit. However, that of the clay dramatically increases. Especially, more than half of the clay deposits, if the exit is sufficiently high. These results demonstrate that the water level of the reservoir has a strong influence on the amount of the clay discharged from the reservoir. As a result, we conclude that the tuning of the water level has a possibility for controlling the

  10. 2-D Three Fluid Simulation of Upstreaming Ions Above Auroral Precipitation

    NASA Astrophysics Data System (ADS)

    Danielides, M. A.; Lummerzheim, D.; Otto, A.; Stevens, R. J.

    2006-12-01

    The ionosphere is a rich reservoir of charged particles from which a variable fraction is transported to the magnetosphere. An important transport phenomena is the formation of upward ion flow above auroral structure. A primary region of the outflow is not known, but contributions come from polar cap, dayside cusp/cleft region, auroral oval, or even from mid-latitudes. In the past global magnetospheric models and fluid codes were used to simulate large scale ion outflow above, e.g., the polar-cap aurora. However, satellites orbiting at low- altitudes have repeatingly detected localized ion outflow above the auroral oval. Ionosphere-magnetosphere coupling simulations gave first insides into the small-scale dynamics of aurora. The aim of this study is the investigation of coupled plasma and neutral dynamics in smaller scale aurora to explain the generation, structure, and dynamics of vertical ion upstream. We consider auroral electron precipitation at ionospheric heights in a 2-D three fluid ionospheric-magnetospheric coupling code (Otto and Zhu, 2003). Specially we examine the effects of the electron precipitation, heat conduction and heating in field- aligned current through coulomb collisions or turbulence causing: i) electron heating, ii) electron pressure gradients, and iii) upstreaming of ions through a resulting ambipolar electric field. Our first case studies are performed for different boundary conditions and for different auroral electron precipitation parameters (variation in characteristic auroral energy, auroral energy flux and horizontal scale). The results shall clarify how auroral precipitation can drive ions upwards. Finally we discuss the effect of ion drag and the interaction of the upstreaming ions with a stable neutral constituent. Otto, O. and H. Zhu, Fluid plasma simulation of coupled systems: Ionosphere and magnetosphere, Space Plasma Simulation. Edited by J. Buechner, C. Dum, and M. Scholer., Lecture Notes in Physics, vol. 615, p.193

  11. 1D and 2D simulations of seismic wave propagation in fractured media

    NASA Astrophysics Data System (ADS)

    Möller, Thomas; Friederich, Wolfgang

    2016-04-01

    Fractures and cracks have a significant influence on the propagation of seismic waves. Their presence causes reflections and scattering and makes the medium effectively anisotropic. We present a numerical approach to simulation of seismic waves in fractured media that does not require direct modelling of the fracture itself, but uses the concept of linear slip interfaces developed by Schoenberg (1980). This condition states that at an interface between two imperfectly bonded elastic media, stress is continuous across the interface while displacement is discontinuous. It is assumed that the jump of displacement is proportional to stress which implies a jump in particle velocity at the interface. We use this condition as a boundary condition to the elastic wave equation and solve this equation in the framework of a Nodal Discontinuous Galerkin scheme using a velocity-stress formulation. We use meshes with tetrahedral elements to discretise the medium. Each individual element face may be declared as a slip interface. Numerical fluxes have been derived by solving the 1D Riemann problem for slip interfaces with elastic and viscoelastic rheology. Viscoelasticity is realised either by a Kelvin-Voigt body or a Standard Linear Solid. These fluxes are not limited to 1D and can - with little modification - be used for simulations in higher dimensions as well. The Nodal Discontinuous Galerkin code "neXd" developed by Lambrecht (2013) is used as a basis for the numerical implementation of this concept. We present examples of simulations in 1D and 2D that illustrate the influence of fractures on the seismic wavefield. We demonstrate the accuracy of the simulation through comparison to an analytical solution in 1D.

  12. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  13. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations.

    PubMed

    Lee, Myung Won; Carr, Joshua K; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN(-) solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN(-) molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN(-) and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN(-) is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm(-1) vs. 14.9 cm(-1)) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements. PMID:23927269

  14. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-08-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN- solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN- molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN- and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T1 times are sensitive to the van der Waals ranges on the CN- is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm-1 vs. 14.9 cm-1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  15. 2D properties of core turbulence on DIII-D and comparison to gyrokinetic simulations

    SciTech Connect

    Shafer, Morgan W; Fonck, R. J.; McKee, G. R.; Holland, Chris; White, A. E.; Schlossberg, D J

    2012-01-01

    Quantitative 2D characteristics of localized density fluctuations are presented over the range of 0.3 < r/a < 0.9 in L-mode plasmas on DIII-D [J. L. Luxon, Nucl. Fusion 42, 614 (2002)]. Broadband density fluctuations increase in amplitude from (n) over tilde/n < 0.5% in the deep core to (n) over tilde/n similar to 2.5% near the outer region. The observed Doppler-shift due to the E x B velocity matches well with the measured turbulence group and phase velocities (in toroidally rotating neutral beam heated plasmas). Turbulence decorrelation rates are found to be similar to 200 kHz at the edge and to decrease toward the core (0.45 < r/a < 0.9) where they approach the E x B shearing rate (similar to 50 kHz). Radial and poloidal correlation lengths are found to scale with the ion gyroradius and exhibit an asymmetric poloidally elongated eddy structure. The ensemble-averaged turbulent eddy structure changes its tilt with respect to the radial-poloidal coordinates in the core, consistent with an E x B shear mechanism. The 2D spatial correlation and wavenumber spectra [S(k(r); k(theta))] are presented and compared to nonlinear flux-tube GYRO simulations at two radii, r/a = 0.5 and r/a = 0.75, showing reasonable overall agreement, but the GYRO spectrum exhibits a peak at finite kr for r/a = 0.75 that is not observed experimentally; E x B shear may cause this discrepancy. (C) 2012 American Institute of Physics.

  16. 2D IR spectra of cyanide in water investigated by molecular dynamics simulations

    USGS Publications Warehouse

    Lee, Myung Won; Carr, Joshua K.; Göllner, Michael; Hamm, Peter; Meuwly, Markus

    2013-01-01

    Using classical molecular dynamics simulations, the 2D infrared (IR) spectroscopy of CN− solvated in D2O is investigated. Depending on the force field parametrizations, most of which are based on multipolar interactions for the CN− molecule, the frequency-frequency correlation function and observables computed from it differ. Most notably, models based on multipoles for CN− and TIP3P for water yield quantitatively correct results when compared with experiments. Furthermore, the recent finding that T 1 times are sensitive to the van der Waals ranges on the CN− is confirmed in the present study. For the linear IR spectrum, the best model reproduces the full widths at half maximum almost quantitatively (13.0 cm−1 vs. 14.9 cm−1) if the rotational contribution to the linewidth is included. Without the rotational contribution, the lines are too narrow by about a factor of two, which agrees with Raman and IR experiments. The computed and experimental tilt angles (or nodal slopes) α as a function of the 2D IR waiting time compare favorably with the measured ones and the frequency fluctuation correlation function is invariably found to contain three time scales: a sub-ps, 1 ps, and one on the 10-ps time scale. These time scales are discussed in terms of the structural dynamics of the surrounding solvent and it is found that the longest time scale (≈10 ps) most likely corresponds to solvent exchange between the first and second solvation shell, in agreement with interpretations from nuclear magnetic resonance measurements.

  17. Simulations of SH wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Kawahara, J.; Okamoto, T.; Miyashita, K.

    2006-05-01

    We simulate SH wave scattering by 2-D parallel cracks using the finite difference method (FDM), instead of the popularly used boundary integral equation method (BIEM). Here special emphasis is put on simplicity; we apply a standard FDM (fourth-order velocity-stress scheme with a staggered grid) to media in cluding traction-freecracks, which are expressed by arrays of grid points with zero traction. Two types of accuracy tests based oncomparison with a reliable BIEM, suggest that the present method gives practically sufficient accuracy, except for the wavefields in the vicinity of cracks, which can be well handled if the second-order FDM is used instead. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks of the same length. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation for crack densities of up to about 01. The presence of a free surface does not affect the validity of the theory. A preliminary experiment also suggests that the validity will not change even for multi-scale cracks.

  18. 2D simulation of transport and degradation in the River Rhine.

    PubMed

    Teichmann, L; Reuschenbach, P; Müller, B; Horn, H

    2002-01-01

    A simple 2D model has been developed for the simulation of mass transport and degradation of substances in the river Rhine. The model describes mass transport in the flow direction with a convective and a dispersive term. Transversal transport is described by segmenting the river and formulating a transversal exchange coefficient between the segments. Degradation can be formulated with any kinetics from first order to complex enzyme kinetics. The model was verified with monitoring data from the river Rhine. The hydrodynamic parameters such as dispersion coefficients and exchange coefficients were fitted to the conductivity, which was assumed to be non-degradable. The degradation term was fitted to ammonia values. The model was used to simulate measured concentrations of a readily (Aniline) and a poorly biodegradable substance (1,4-Dioxan) 10 m from the left river bank. It was the objective of this research program to develop a model which allows a realistic estimation of the locally and regionally predicted environmental concentration of chemical substances in the EU risk assessment scheme. PMID:12380980

  19. 2D Mesoscale Simulation of Shock Response of Dry Sand in Plate Impact Experiments

    NASA Astrophysics Data System (ADS)

    Pei, L.; Teeter, R. D.; Dwivedi, S. K.; Gupta, Y. M.

    2007-06-01

    The one-dimensional approach with a homogenized continuum model used in the literature to derive the shock Hugoniot of sand from plate impact experimental data neglects heterogeneous deformation and cannot incorporate mesoscale phenomena. We present a 2D mesoscale simulation approach to probe the shock response of dry sand with the main objectives to identify important mesoscale phenomena and the role of inter granular friction. The in-house code ISP-SAND was used to generate sand with desired grain size distribution and porosity. The explicit finite element code ISP-TROTP was used to simulate plate impact experiments of assumed configurations. The deformation of individual sand grains was modeled by non-linear mean stress volume compression relation with an assumed mean stress dependent yield strength. The results show heterogeneous deformation with finite lateral velocity and regions of stress concentrations in the sand sample. The effects of grain size distribution, porosity and friction between grains are discussed by comparing the particle velocity profiles at the window interface. Work supported by DOE and AFOSR.

  20. Simulation of Subgrid Orographic Convection and Precipitation with 2-D Cloud-Resolving Models Embedded in a GCM Grid

    NASA Astrophysics Data System (ADS)

    Jung, J.; Arakawa, A.

    2015-12-01

    Through explicitly resolved cloud-scale processes by embedded 2-D cloud-resolving models (CRMs), the Multiscale Modeling Framework (MMF) known as the superparameterization has been reasonably successful to simulate various atmospheric events over a wide range of time scales. One thing to be justified is, however, if the influence of complex 3-D topography can be adequately represented by the embedded 2-D CRMs. In this study, simulations are performed in the presence of a variety of topography with embedded 3-D and 2-D CRMs in a single-column inactive GCM. Through the comparison between these simulations, it is demonstrated that the 2-D representation of topography is able to simulate the statistics of precipitation due to 3-D topography reasonably well as long as the topographic characteristics, such as the mean and standard deviation, are closely recognized. It is also shown that the use of two perpendicular sets of 2-D representations tends to reduce the error due to a 2-D representation.

  1. Using high resolution bathymetric lidar data for a Telemac2D simulation

    NASA Astrophysics Data System (ADS)

    Dobler, Wolfgang; Baran, Ramona; Steinbacher, Frank; Ritter, Marcel; Aufleger, Markus

    2014-05-01

    Knowledge about the hydraulic situation in a mountain torrent is relevant to quantify flood risks, to study sediment transport and to assess the waterbodies' ecology. To conduct reliable calculations, high-quality terrain data of riverbeds, riverbanks and floodplains are required. Typically, digital terrain models (DTMs) of floodplains are derived from classical airborne laserscanning (red wavelength) together with terrestrial surveys along riverbeds and riverbanks. Usually, these are restricted to a limited number of cross sections. Terrestrial surveys are required since laser measurement systems cannot penetrate the water column of the observed waterbodies. Consequently, data describing the geometry of riverbeds and bank structures are hardly available at high spatial resolutions and extents, comparable to the airborne-laser scanning derived data for river floodplains. In this study, a newly available, water-penetrating airborne laser system (green wavelength, FFG research project between the University of Innsbruck and Riegl LMS) was used to survey a mountain torrent. Detailed and extensive data (~30 points/m² on topo-bathy side) of the riverbed and the riverbanks were acquired with this single sensor. In order to construct a 2D-Telemac simulation, the point cloud was down-sampled to an appropriate resolution required for the simulation. The creation of the mesh was carried out with the Software HydroVish and imported into Blue Kenue for further boundary treatment. On one hand the calibration of the numerical model was based on a known water discharge-rate and on the other on abundant data points of the water surface. The green laser system demonstrates its great potential for such an analysis. The final results of the numerical simulation show clearly the supremacy of using such a high resolution data basis in contrast to the traditional way of terrestrial surveying of cross sections along riverbeds.

  2. A sharp interface method for SPH

    NASA Astrophysics Data System (ADS)

    Zhang, Mingyu; Deng, Xiao-Long

    2015-12-01

    A sharp interface method (SIM) for smoothed particle hydrodynamics (SPH) has been developed to simulate two-phase flows with clear interfaces. The level set function is introduced to capture the interface implicitly. The interface velocity is used to evolve the level set function. The smoothness of the level set function helps to improve the accuracy of the interface curvature. Material discontinuity across the interface is dealt with by the ghost fluid method. The interface states are calculated by applying the jump conditions and are extended to the corresponding ghost fluid particles. The ghost fluid method helps to get smooth and stable calculation near the interface. The performance of the developed method is validated by benchmark tests. The developed SIM for SPH can be applied to simulate low speed two-phase flows of high density ratios with clear interface accurately and stably.

  3. 2D fluid simulations of acoustic waves in pulsed ICP discharges: Comparison with experiments

    NASA Astrophysics Data System (ADS)

    Despiau-Pujo, Emilie; Cunge, Gilles; Sadeghi, Nader; Braithwaite, N. St. J.

    2012-10-01

    Neutral depletion, which is mostly caused by gas heating under typical material processing conditions, is an important phenomenon in high-density plasmas. In low pressure pulsed discharges, experiments show that additional depletion due to electron pressure (Pe) may have a non-negligible influence on radical transport [1]. To evaluate this effect, comparisons between 2D fluid simulations and measurements of gas convection in Ar/Cl2 pulsed ICP plasmas are reported. In the afterglow, Pe drops rapidly by electron cooling which generates a neutral pressure gradient between the plasma bulk and the reactor walls. This in turn forces the cold surrounding gas to move rapidly towards the center, thus launching an acoustic wave in the reactor. Time-resolved measurements of atoms drift velocity and gas temperature by LIF and LAS in the early afterglow are consistent with gas drifting at acoustic wave velocity followed by rapid gas cooling. Similar results are predicted by the model. The ion flux at the reactor walls is also shown to oscillate in phase with the acoustic wave due to ion-neutral friction forces. Finally, during plasma ignition, experiments show opposite phenomena when Pe rises.[4pt] [1] Cunge et al, APL 96, 131501 (2010)

  4. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  5. Numerical modeling of surf zone dynamics under weakly plunging breakers with SPH method

    NASA Astrophysics Data System (ADS)

    Makris, Christos V.; Memos, Constantine D.; Krestenitis, Yannis N.

    2016-02-01

    The wave breaking of weak plungers over a relatively mild slope is investigated in this paper. Numerical modeling aspects are studied, concerning the propagation and breaking of shore-normal, nonlinear and regular waves. The two-dimensional (2-D) kinematics and dynamics (fluctuating flow features and large 2-D eddies) of the wave-induced flow on a vertical cross-section over the entire surf zone are simulated with the use of Smoothed Particle Hydrodynamics (SPH). The academic 'open source' code SPHysics v.2 is employed and the viscosity treatment is based on a Sub-Particle Scale (SPS) approach, similarly to the Large Eddy Simulations (LES) concept. Thorough analysis of the turbulent flow scales determines the necessary refinement of the spatial resolution. The initial particle discretization reaches down to the demarcation point between integral turbulence length scales and Taylor micro-scales. A convolution-type integration method is implemented for the transformation of scattered Lagrangian particle data to Eulerian values at fixed gauges. A heuristic technique of ensemble-averaging is used for the discrimination of the fluctuating flow components from coherent structures and ordered wave motion. Comparisons between numerical and experimental data give encouraging results for several wave features. The wave-induced mean flows are simulated plausibly, and even the 'streaming' effect near the bed is reproduced. The recurring vorticity patterns are derived, and coherent 2-D structures inside the surf zone are identified. Fourier spectral analysis of velocities reveals isotropy of 2-D fluctuating dynamics up to rather high frequencies in shear intensified regions. The simulated Reynolds stresses follow patterns that define the characteristic mechanism of wave breaking for weak plungers. Persisting discrepancies at the incipient breaking region confirm the need for fine, massively 'parallel' 3-D SPS-SPH simulations.

  6. A New 2D-Advection-Diffusion Model Simulating Trace Gas Distributions in the Lowermost Stratosphere

    NASA Astrophysics Data System (ADS)

    Hegglin, M. I.; Brunner, D.; Peter, T.; Wirth, V.; Fischer, H.; Hoor, P.

    2004-12-01

    Tracer distributions in the lowermost stratosphere are affected by both, transport (advective and non-advective) and in situ sources and sinks. They influence ozone photochemistry, radiative forcing, and heating budgets. In-situ measurements of long-lived species during eight measurement campaigns revealed relatively simple behavior of the tracers in the lowermost stratosphere when represented in an equivalent-latitude versus potential temperature framework. We here present a new 2D-advection-diffusion model that simulates the main transport pathways influencing the tracer distributions in the lowermost stratosphere. The model includes slow diabatic descent of aged stratospheric air and vertical and/or horizontal diffusion across the tropopause and within the lowermost stratosphere. The diffusion coefficients used in the model represent the combined effects of different processes with the potential of mixing tropospheric air into the lowermost stratosphere such as breaking Rossby and gravity waves, deep convection penetrating the tropopause, turbulent diffusion, radiatively driven upwelling etc. They were specified by matching model simulations to observed distributions of long-lived trace gases such as CO and N2O obtained during the project SPURT. The seasonally conducted campaigns allow us to study the seasonal dependency of the diffusion coefficients. Despite its simplicity the model yields a surprisingly good description of the small scale features of the measurements and in particular of the observed tracer gradients at the tropopause. The correlation coefficients between modeled and measured trace gas distributions were up to 0.95. Moreover, mixing across isentropes appears to be more important than mixing across surfaces of constant equivalent latitude (or PV). With the aid of the model, the distribution of the fraction of tropospheric air in the lowermost stratosphere can be determined.

  7. Icarus: A 2-D Direct Simulation Monte Carlo (DSMC) Code for Multi-Processor Computers

    SciTech Connect

    BARTEL, TIMOTHY J.; PLIMPTON, STEVEN J.; GALLIS, MICHAIL A.

    2001-10-01

    Icarus is a 2D Direct Simulation Monte Carlo (DSMC) code which has been optimized for the parallel computing environment. The code is based on the DSMC method of Bird[11.1] and models from free-molecular to continuum flowfields in either cartesian (x, y) or axisymmetric (z, r) coordinates. Computational particles, representing a given number of molecules or atoms, are tracked as they have collisions with other particles or surfaces. Multiple species, internal energy modes (rotation and vibration), chemistry, and ion transport are modeled. A new trace species methodology for collisions and chemistry is used to obtain statistics for small species concentrations. Gas phase chemistry is modeled using steric factors derived from Arrhenius reaction rates or in a manner similar to continuum modeling. Surface chemistry is modeled with surface reaction probabilities; an optional site density, energy dependent, coverage model is included. Electrons are modeled by either a local charge neutrality assumption or as discrete simulational particles. Ion chemistry is modeled with electron impact chemistry rates and charge exchange reactions. Coulomb collision cross-sections are used instead of Variable Hard Sphere values for ion-ion interactions. The electro-static fields can either be: externally input, a Langmuir-Tonks model or from a Green's Function (Boundary Element) based Poison Solver. Icarus has been used for subsonic to hypersonic, chemically reacting, and plasma flows. The Icarus software package includes the grid generation, parallel processor decomposition, post-processing, and restart software. The commercial graphics package, Tecplot, is used for graphics display. All of the software packages are written in standard Fortran.

  8. Debris Flow Hazard Map Simulation using FLO-2D For Selected Areas in the Philippines

    NASA Astrophysics Data System (ADS)

    Khallil Ferrer, Peter; Llanes, Francesca; dela Resma, Marvee; Realino, Victoriano, II; Obrique, Julius; Ortiz, Iris Jill; Aquino, Dakila; Narod Eco, Rodrigo; Mahar Francisco Lagmay, Alfredo

    2014-05-01

    On December 4, 2012, Super Typhoon Bopha wreaked havoc in the southern region of Mindanao, leaving 1,067 people dead and causing USD 800 million worth of damage. Classified as a Category 5 typhoon by the Joint Typhoon Warning Center (JTWC), Bopha brought intense rainfall and strong winds that triggered landslides and debris flows, particularly in Barangay (village) Andap, New Bataan municipality, in the southern Philippine province of Compostela Valley. The debris flow destroyed school buildings and covered courts and an evacuation center. Compostela Valley also suffered the most casualties of any province: 612 out of a total of 1,067. In light of the disaster in Compostela, measures were immediately devised to improve available geohazard maps to raise public awareness about landslides and debris flows. A debris flow is a very rapid to extremely rapid flow of saturated non-plastic debris in a steep channel. They are generated when heavy rainfall saturates sediments, causing them to flow down river channels within an alluvial fan situated at the base of the slope of a mountain drainage network. Many rural communities in the Philippines, such as Barangay Andap, are situated at the apex of alluvial fans and in the path of potential debris flows. In this study, we conducted simulations of debris flows to assess the risks in inhabited areas throughout the Philippines and validated the results in the field, focusing on the provinces of Pangasinan and Aurora as primary examples. Watersheds that drain in an alluvial fan using a 10-m resolution Synthetic Aperture Radar (SAR)-derived Digital Elevation Model (DEM) was first delineated, and then a 1 in 100-year rain return rainfall scenario for the watershed was used to simulate debris flows using FLO-2D, a flood-routing software. The resulting simulations were used to generate debris flow hazard maps which are consistent with danger zones in alluvial fans delineated previously from satellite imagery and available DEMs. The

  9. Simulation of Inundation Zone triggered by Dam Failure using FLO-2D

    NASA Astrophysics Data System (ADS)

    Lee, K.; Kim, S. W.; Kim, J. M.

    2014-12-01

    Floods due to gradual dam breach can lead to devastating disasters with tremendous loss of life and property. Hence it is important to identify the potential risk areas for natural hazard problem such as dam failure. A numerical modeling approach is often used to build a flood hazard map caused by dam failure. The two primary tasks in the analysis of a dam breach are the prediction of the reservoir outflow hydrograph and the routing of the hydrograph through the downstream valley. The hydrograph to be routed downstream may be prescribed, and parametric models could be used to build a outflow hydrograph once breach parameters capturing breach formation and progress are specified. Even though breach growth is one of the most important parameter in building the reservoir outflow hydrograph, observations are rarely available. In the mean while lake level data is often measured during the dam failure on the real time basis and they may capture the characteristics of breach formation and progress. Thus a simple method is developed to reproduce breach formation. The breach formation is retrieved from lake level data as a function of time during dam failure event. The new method uses an optimization scheme as a primary tool. Because observation for breach formation doesn't exist, it is hard to validate the performance of the new method. Alternatively the retrieved breach formation curve is linked with a parametric dam failure model to give outflow hydrograph. Then FLO-2D is run to route the outflow hydrograph through the downstream valley for the test site. To validate the new method the simulation of FLO-2D is relatively compared with the on-site investigation for the inundation zone. The new method is promising in that it provides reasonable accuracy in the test site. Keywords: Dam failure, Natural hazard, Breach, Hydrograph AcknowledgementThis research was supported by a grant (13SCIPS01) from Smart Civil Infrastructure Research Program funded by Ministry of Land

  10. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  11. Numerical Simulation of Supersonic Compression Corners and Hypersonic Inlet Flows Using the RPLUS2D Code

    NASA Technical Reports Server (NTRS)

    Kapoor, Kamlesh; Anderson, Bernhard H.; Shaw, Robert J.

    1994-01-01

    A two-dimensional computational code, PRLUS2D, which was developed for the reactive propulsive flows of ramjets and scramjets, was validated for two-dimensional shock-wave/turbulent-boundary-layer interactions. The problem of compression corners at supersonic speeds was solved using the RPLUS2D code. To validate the RPLUS2D code for hypersonic speeds, it was applied to a realistic hypersonic inlet geometry. Both the Baldwin-Lomax and the Chien two-equation turbulence models were used. Computational results showed that the RPLUS2D code compared very well with experimentally obtained data for supersonic compression corner flows, except in the case of large separated flows resulting from the interactions between the shock wave and turbulent boundary layer. The computational results compared well with the experiment results in a hypersonic NASA P8 inlet case, with the Chien two-equation turbulence model performing better than the Baldwin-Lomax model.

  12. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.

    2011-08-01

    A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C well throughout the simulation period. By comparing measurements of the O:C from FAME-08, several sensitivity cases including a high oxygenation case, a low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging, keeping in mind that this study does not consider possibly important processes

  13. Simulating the oxygen content of ambient organic aerosol with the 2D volatility basis set

    NASA Astrophysics Data System (ADS)

    Murphy, B. N.; Donahue, N. M.; Fountoukis, C.; Pandis, S. N.

    2011-03-01

    A module predicting the oxidation state of organic aerosol (OA) has been developed using the two-dimensional volatility basis set (2D-VBS) framework. This model is an extension of the 1D-VBS framework and tracks saturation concentration and oxygen content of organic species during their atmospheric lifetime. The host model, a one-dimensional Lagrangian transport model, is used to simulate air parcels arriving at Finokalia, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-08). Extensive observations were collected during this campaign using an aerosol mass spectrometer (AMS) and a thermodenuder to determine the chemical composition and volatility, respectively, of the ambient OA. Although there are several uncertain model parameters, the consistently high oxygen content of OA measured during FAME-08 (O:C = 0.8) can help constrain these parameters and elucidate OA formation and aging processes that are necessary for achieving the high degree of oxygenation observed. The base-case model reproduces observed OA mass concentrations (measured mean = 3.1 μg m-3, predicted mean = 3.3 μg m-3) and O:C ratio (predicted O:C = 0.78) accurately. A suite of sensitivity studies explore uncertainties due to (1) the anthropogenic secondary OA (SOA) aging rate constant, (2) assumed enthalpies of vaporization, (3) the volatility change and number of oxygen atoms added for each generation of aging, (4) heterogeneous chemistry, (5) the oxidation state of the first generation of compounds formed from SOA precursor oxidation, and (6) biogenic SOA aging. Perturbations in most of these parameters do impact the ability of the model to predict O:C ratios well throughout the simulation period. By comparing measurements of the O:C ratio from FAME-08, several sensitivity cases including a high oxygenation case, low oxygenation case, and biogenic SOA aging case are found to unreasonably depict OA aging. However, many of the cases chosen for this study predict average

  14. 2-D Numerical Simulation of Eruption Clouds : Effects of Turbulent Mixing between Eruption Cloud and Air

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; KOYAGUCHI, T.; OGAWA, M.; Hachisu, I.

    2001-05-01

    Mixing of eruption cloud and air is one of the most important processes for eruption cloud dynamics. The critical condition of eruption types (eruption column or pyroclastic flow) depends on efficiency of mixing of eruption cloud and the ambient air. However, in most of the previous models (e.g., Sparks,1986; Woods, 1988), the rate of mixing between cloud and air is taken into account by introducing empirical parameters such as entrainment coefficient or turbulent diffusion coefficient. We developed a numerical model of 2-D (axisymmetrical) eruption columns in order to simulate the turbulent mixing between eruption column and air. We calculated the motion of an eruption column from a circular vent on the flat surface of the earth. Supposing that relative velocity of gas and ash particles is sufficiently small, we can treat eruption cloud as a single gas. Equation of state (EOS) for the mixture of the magmatic component (i.e. volcanic gas plus pyroclasts) and air can be expressed by EOS for an ideal gas, because volume fraction of the gas phase is very large. The density change as a function of mixing ratio between air and the magmatic component has a strong non-linear feature, because the density of the mixture drastically decreases as entrained air expands by heating. This non-linear feature can be reproduced by changing the gas constant and the ratio of specific heat in EOS for ideal gases; the molecular weight increases and the ratio of specific heat approaches 1 as the magmatic component increases. It is assumed that the dynamics of eruption column follows the Euler equation, so that no viscous effect except for the numerical viscosity is taken into account. Roe scheme (a general TVD scheme for compressible flow) is used in order to simulate the generation of shock waves inside and around the eruption column. The results show that many vortexes are generated around the boundary between eruption cloud and air, which results in violent mixing. When the size of

  15. SmaggIce 2D Version 1.8: Software Toolkit Developed for Aerodynamic Simulation Over Iced Airfoils

    NASA Technical Reports Server (NTRS)

    Choo, Yung K.; Vickerman, Mary B.

    2005-01-01

    SmaggIce 2D version 1.8 is a software toolkit developed at the NASA Glenn Research Center that consists of tools for modeling the geometry of and generating the grids for clean and iced airfoils. Plans call for the completed SmaggIce 2D version 2.0 to streamline the entire aerodynamic simulation process--the characterization and modeling of ice shapes, grid generation, and flow simulation--and to be closely coupled with the public-domain application flow solver, WIND. Grid generated using version 1.8, however, can be used by other flow solvers. SmaggIce 2D will help researchers and engineers study the effects of ice accretion on airfoil performance, which is difficult to do with existing software tools because of complex ice shapes. Using SmaggIce 2D, when fully developed, to simulate flow over an iced airfoil will help to reduce the cost of performing flight and wind-tunnel tests for certifying aircraft in natural and simulated icing conditions.

  16. An adaptive SPH method for strong shocks

    NASA Astrophysics Data System (ADS)

    Sigalotti, Leonardo Di G.; López, Hender; Trujillo, Leonardo

    2009-09-01

    We propose an alternative SPH scheme to usual SPH Godunov-type methods for simulating supersonic compressible flows with sharp discontinuities. The method relies on an adaptive density kernel estimation (ADKE) algorithm, which allows the width of the kernel interpolant to vary locally in space and time so that the minimum necessary smoothing is applied in regions of low density. We have performed a von Neumann stability analysis of the SPH equations for an ideal gas and derived the corresponding dispersion relation in terms of the local width of the kernel. Solution of the dispersion relation in the short wavelength limit shows that stability is achieved for a wide range of the ADKE parameters. Application of the method to high Mach number shocks confirms the predictions of the linear analysis. Examples of the resolving power of the method are given for a set of difficult problems, involving the collision of two strong shocks, the strong shock-tube test, and the interaction of two blast waves.

  17. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  18. GodunovSPH with shear viscosity: implementation and tests

    NASA Astrophysics Data System (ADS)

    Cha, Seung-Hoon; Wood, Matt A.

    2016-05-01

    The acceleration and energy dissipation terms due to the shear viscosity have been implemented and tested in GodunovSPH. The double summation method has been employed to avoid the well-known numerical noise of the second derivative in particle based codes. The plane Couette flow with various initial and boundary conditions have been used as tests, and the numerical and analytical results show a good agreement. Not only the viscosity-only calculation, but the full hydrodynamics simulations have been performed, and they show expected results as well. The very low kinematic viscosity simulations show a turbulent pattern when the Reynolds number exceeds ˜102. The critical value of the Reynolds number at the transition point of the laminar and turbulent flows coincides with the previous works approximately. A smoothed dynamic viscosity has been suggested to describe the individual kinematic viscosity of particles. The infinitely extended Couette flow which has two layers of different viscosities has been simulated to check the smoothed dynamic viscosity, and the result agrees well with the analytic solution. In order to compare the standard smoothed particle hydrodynamics (SPH) and GodunovSPH, the two layers test has been performed again with a density contrast. GodunovSPH shows less dispersion than the standard SPH, but there is no significant difference in the results. The results of the viscous ring evolution has also been presented as well, and the numerical results agrees with the analytic solution.

  19. An improved parallel SPH approach to solve 3D transient generalized Newtonian free surface flows

    NASA Astrophysics Data System (ADS)

    Ren, Jinlian; Jiang, Tao; Lu, Weigang; Li, Gang

    2016-08-01

    In this paper, a corrected parallel smoothed particle hydrodynamics (C-SPH) method is proposed to simulate the 3D generalized Newtonian free surface flows with low Reynolds number, especially the 3D viscous jets buckling problems are investigated. The proposed C-SPH method is achieved by coupling an improved SPH method based on the incompressible condition with the traditional SPH (TSPH), that is, the improved SPH with diffusive term and first-order Kernel gradient correction scheme is used in the interior of the fluid domain, and the TSPH is used near the free surface. Thus the C-SPH method possesses the advantages of two methods. Meanwhile, an effective and convenient boundary treatment is presented to deal with 3D multiple-boundary problem, and the MPI parallelization technique with a dynamic cells neighbor particle searching method is considered to improve the computational efficiency. The validity and the merits of the C-SPH are first verified by solving several benchmarks and compared with other results. Then the viscous jet folding/coiling based on the Cross model is simulated by the C-SPH method and compared with other experimental or numerical results. Specially, the influences of macroscopic parameters on the flow are discussed. All the numerical results agree well with available data, and show that the C-SPH method has higher accuracy and better stability for solving 3D moving free surface flows over other particle methods.

  20. Justification for a 2D versus 3D fingertip finite element model during static contact simulations.

    PubMed

    Harih, Gregor; Tada, Mitsunori; Dolšak, Bojan

    2016-10-01

    The biomechanical response of a human hand during contact with various products has not been investigated in details yet. It has been shown that excessive contact pressure on the soft tissue can result in discomfort, pain and also cumulative traumatic disorders. This manuscript explores the benefits and limitations of a simplified two-dimensional vs. an anatomically correct three-dimensional finite element model of a human fingertip. Most authors still use 2D FE fingertip models due to their simplicity and reduced computational costs. However we show that an anatomically correct 3D FE fingertip model can provide additional insight into the biomechanical behaviour. The use of 2D fingertip FE models is justified when observing peak contact pressure values as well as displacement during the contact for the given studied cross-section. On the other hand, an anatomically correct 3D FE fingertip model provides a contact pressure distribution, which reflects the fingertip's anatomy. PMID:26856769

  1. Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations

    NASA Technical Reports Server (NTRS)

    Strash, Daniel J.; Summa, Michael; Yoo, Sungyul

    1991-01-01

    A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.

  2. Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian

    2016-04-01

    We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.

  3. Development and validation of a modelling framework for simulating 2D-mammography and breast tomosynthesis images

    NASA Astrophysics Data System (ADS)

    Elangovan, Premkumar; Warren, Lucy M.; Mackenzie, Alistair; Rashidnasab, Alaleh; Diaz, Oliver; Dance, David R.; Young, Kenneth C.; Bosmans, Hilde; Strudley, Celia J.; Wells, Kevin

    2014-08-01

    Planar 2D x-ray mammography is generally accepted as the preferred screening technique used for breast cancer detection. Recently, digital breast tomosynthesis (DBT) has been introduced to overcome some of the inherent limitations of conventional planar imaging, and future technological enhancements are expected to result in the introduction of further innovative modalities. However, it is crucial to understand the impact of any new imaging technology or methodology on cancer detection rates and patient recall. Any such assessment conventionally requires large scale clinical trials demanding significant investment in time and resources. The concept of virtual clinical trials and virtual performance assessment may offer a viable alternative to this approach. However, virtual approaches require a collection of specialized modelling tools which can be used to emulate the image acquisition process and simulate images of a quality indistinguishable from their real clinical counterparts. In this paper, we present two image simulation chains constructed using modelling tools that can be used for the evaluation of 2D-mammography and DBT systems. We validate both approaches by comparing simulated images with real images acquired using the system being simulated. A comparison of the contrast-to-noise ratios and image blurring for real and simulated images of test objects shows good agreement ( < 9% error). This suggests that our simulation approach is a promising alternative to conventional physical performance assessment followed by large scale clinical trials.

  4. Enhanced job control language procedures for the SIMSYS2D two-dimensional water-quality simulation system

    USGS Publications Warehouse

    Karavitis, G.A.

    1984-01-01

    The SIMSYS2D two-dimensional water-quality simulation system is a large-scale digital modeling software system used to simulate flow and transport of solutes in freshwater and estuarine environments. Due to the size, processing requirements, and complexity of the system, there is a need to easily move the system and its associated files between computer sites when required. A series of job control language (JCL) procedures was written to allow transferability between IBM and IBM-compatible computers. (USGS)

  5. SEM simulation for 2D and 3D inspection metrology and defect review

    NASA Astrophysics Data System (ADS)

    Levi, Shimon; Schwartsband, Ishai; Khristo, Sergey; Ivanchenko, Yan; Adan, Ofer

    2014-03-01

    Advanced SEM simulation has become a key element in the ability of SEM inspection, metrology and defect review to meet the challenges of advanced technologies. It grants additional capabilities to the end user, such as 3D height measurements, accurate virtual metrology, and supports Design Based Metrology to bridge the gap between design layout and SEM image. In this paper we present SEM simulations capabilities, which take into consideration all parts of the SEM physical and electronic path, interaction between Electron beam and material, multi perspective SEM imaging and shadowing derived from proximity effects caused by the interaction of the Secondary Electrons signal with neighboring pattern edges. Optimizing trade-off between simulation accuracy, calibration procedures and computational complexity, the simulation is running in real-time with minimum impact on throughput. Experiment results demonstrate Height measurement capacities, and CAD based simulated pattern is compared with SEM image to evaluate simulated pattern fidelity.

  6. Simulation of Ultra-Small MOSFETs Using a 2-D Quantum-Corrected Drift-Diffusion Model

    NASA Technical Reports Server (NTRS)

    Biegal, Bryan A.; Rafferty, Connor S.; Yu, Zhiping; Ancona, Mario G.; Dutton, Robert W.; Saini, Subhash (Technical Monitor)

    1998-01-01

    The continued down-scaling of electronic devices, in particular the commercially dominant MOSFET, will force a fundamental change in the process of new electronics technology development in the next five to ten years. The cost of developing new technology generations is soaring along with the price of new fabrication facilities, even as competitive pressure intensifies to bring this new technology to market faster than ever before. To reduce cost and time to market, device simulation must become a more fundamental, indeed dominant, part of the technology development cycle. In order to produce these benefits, simulation accuracy must improve markedly. At the same time, device physics will become more complex, with the rapid increase in various small-geometry and quantum effects. This work describes both an approach to device simulator development and a physical model which advance the effort to meet the tremendous electronic device simulation challenge described above. The device simulation approach is to specify the physical model at a high level to a general-purpose (but highly efficient) partial differential equation solver (in this case PROPHET, developed by Lucent Technologies), which then simulates the model in 1-D, 2-D, or 3-D for a specified device and test regime. This approach allows for the rapid investigation of a wide range of device models and effects, which is certainly essential for device simulation to catch up with, and then stay ahead of, electronic device technology of the present and future. The physical device model used in this work is the density-gradient (DG) quantum correction to the drift-diffusion model [Ancona, Phys. Rev. B 35(5), 7959 (1987)]. This model adds tunneling and quantum smoothing of carrier density profiles to the drift-diffusion model. We used the DG model in 1-D and 2-D (for the first time) to simulate both bipolar and unipolar devices. Simulations of heavily-doped, short-base diodes indicated that the DG quantum

  7. Direct MD Simulations of Terahertz Absorption and 2D Spectroscopy Applied to Explosive Crystals.

    PubMed

    Katz, G; Zybin, S; Goddard, W A; Zeiri, Y; Kosloff, R

    2014-03-01

    A direct molecular dynamics simulation of the THz spectrum of a molecular crystal is presented. A time-dependent electric field is added to a molecular dynamics simulation of a crystal slab. The absorption spectrum is composed from the energy dissipated calculated from a series of applied pulses characterized by a carrier frequency. The spectrum of crystalline cyclotrimethylenetrinitramine (RDX) and triacetone triperoxide (TATP) were simulated with the ReaxFF force field. The proposed direct method avoids the linear response and harmonic approximations. A multidimensional extension of the spectroscopy is suggested and simulated based on the nonlinear response to a single polarized pulse of radiation in the perpendicular polarization direction. PMID:26274066

  8. HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D

    NASA Technical Reports Server (NTRS)

    Vigue, Y.

    1994-01-01

    HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are

  9. 2D grating simulation for X-ray phase-contrast and dark-field imaging with a Talbot interferometer

    NASA Astrophysics Data System (ADS)

    Zanette, Irene; David, Christian; Rutishauser, Simon; Weitkamp, Timm

    2010-04-01

    Talbot interferometry is a recently developed and an extremely powerful X-ray phase-contrast imaging technique. Besides giving access to ultra-high sensitivity differential phase contrast images, it also provides the dark field image, which is a map of the scattering power of the sample. In this paper we investigate the potentialities of an improved version of the interferometer, in which two dimensional gratings are used instead of standard line grids. This approach allows to overcome the difficulties that might be encountered in the images produced by a one dimensional interferometer. Among these limitations there are the phase wrapping and quantitative phase retrieval problems and the directionality of the differential phase and dark-field signals. The feasibility of the 2D Talbot interferometer has been studied with a numerical simulation on the performances of its optical components under different circumstances. The gratings can be obtained either by an ad hoc fabrication of the 2D structures or by a superposition of two perpendicular linear grids. Through this simulation it has been possible to find the best parameters for a practical implementation of the 2D Talbot interferometer.

  10. 2D Quantum Simulation of MOSFET Using the Non Equilibrium Green's Function Method

    NASA Technical Reports Server (NTRS)

    Svizhenko, Alexel; Anantram, M. P.; Govindan, T. R.; Yan, Jerry (Technical Monitor)

    2000-01-01

    The objectives this viewgraph presentation summarizes include: (1) the development of a quantum mechanical simulator for ultra short channel MOSFET simulation, including theory, physical approximations, and computer code; (2) explore physics that is not accessible by semiclassical methods; (3) benchmarking of semiclassical and classical methods; and (4) study other two-dimensional devices and molecular structure, from discretized Hamiltonian to tight-binding Hamiltonian.

  11. Numerical Simulations of High-Frequency Respiratory Flows in 2D and 3D Lung Bifurcation Models

    NASA Astrophysics Data System (ADS)

    Chen, Zixi; Parameswaran, Shamini; Hu, Yingying; He, Zhaoming; Raj, Rishi; Parameswaran, Siva

    2014-07-01

    To better understand the human pulmonary system and optimize the high-frequency oscillatory ventilation (HFOV) design, numerical simulations were conducted under normal breathing frequency and HFOV condition using a CFD code Ansys Fluent and its user-defined C programs. 2D and 3D double bifurcating lung models were created, and the geometry corresponds to fifth to seventh generations of airways with the dimensions based on the Weibel's pulmonary model. Computations were carried out for different Reynolds numbers (Re = 400 and 1000) and Womersley numbers (α = 4 and 16) to study the air flow fields, gas transportation, and wall shear stresses in the lung airways. Flow structure was compared with experimental results. Both 2D and 3D numerical models successfully reproduced many results observed in the experiment. The oxygen concentration distribution in the lung model was investigated to analyze the influence of flow oscillation on gas transport inside the lung model.

  12. SAGE 2D and 3D Simulations of the Explosive Venting of Supercritical Fluids Through Porous Media

    NASA Astrophysics Data System (ADS)

    Weaver, R.; Gisler, G.; Svensen, H.; Mazzini, A.

    2008-12-01

    Magmatic intrusive events in large igneous provinces heat sedimentary country rock leading to the eventual release of volatiles. This has been proposed as a contributor to climate change and other environmental impacts. By means of numerical simulations, we examine ways in which these volatiles can be released explosively from depth. Gases and fluids cooked out of country rock by metamorphic heating may be confined for a time by impermeable clays or other barriers, developing high pressures and supercritical fluids. If confinement is suddenly breached (by an earthquake for example) in such a way that the fluid has access to porous sediments, a violent eruption of a non-magmatic mixture of fluid and sediment may result. Surface manifestations of these events could be hydrothermal vent complexes, kimberlite pipes, pockmarks, or mud volcanoes. These are widespread on Earth, especially in large igneous provinces, as in the Karoo Basin of South Africa, the North Sea off the Norwegian margin, and the Siberian Traps. We have performed 2D and 3D simulations with the Sage hydrocode (from Los Alamos and Science Applications International) of supercritical venting in a variety of geometries and configurations. The simulations show several different patterns of propagation and fracturing in porous or otherwise weakened overburden, dependent on depth, source conditions (fluid availability, temperature, and pressure), and manner of confinement breach. Results will be given for a variety of 2D and 3D simulations of these events exploring the release of volatiles into the atmosphere.

  13. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores.

    PubMed

    Burris, Paul C; Laage, Damien; Thompson, Ward H

    2016-05-21

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra. PMID:27208967

  14. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    DOE PAGESBeta

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-20

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this Paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is usedmore » to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. Lastly, the simulated spectra indicate that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.« less

  15. Simulations of the infrared, Raman, and 2D-IR photon echo spectra of water in nanoscale silica pores

    NASA Astrophysics Data System (ADS)

    Burris, Paul C.; Laage, Damien; Thompson, Ward H.

    2016-05-01

    Vibrational spectroscopy is frequently used to characterize nanoconfined liquids and probe the effect of the confining framework on the liquid structure and dynamics relative to the corresponding bulk fluid. However, it is still unclear what molecular-level information can be obtained from such measurements. In this paper, we address this question by using molecular dynamics (MD) simulations to reproduce the linear infrared (IR), Raman, and two-dimensional IR (2D-IR) photon echo spectra for water confined within hydrophilic (hydroxyl-terminated) silica mesopores. To simplify the spectra the OH stretching region of isotopically dilute HOD in D2O is considered. An empirical mapping approach is used to obtain the OH vibrational frequencies, transition dipoles, and transition polarizabilities from the MD simulations. The simulated linear IR and Raman spectra are in good general agreement with measured spectra of water in mesoporous silica reported in the literature. The key effect of confinement on the water spectrum is a vibrational blueshift for OH groups that are closest to the pore interface. The blueshift can be attributed to the weaker hydrogen bonds (H-bonds) formed between the OH groups and silica oxygen acceptors. Non-Condon effects greatly diminish the contribution of these OH moieties to the linear IR spectrum, but these weaker H-bonds are readily apparent in the Raman spectrum. The 2D-IR spectra have not yet been measured and thus the present results represent a prediction. The simulated spectra indicates that it should be possible to probe the slower spectral diffusion of confined water compared to the bulk liquid by analysis of the 2D-IR spectra.

  16. Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system

    NASA Astrophysics Data System (ADS)

    Anfossi, D.; Alessandrini, S.; Trini Castelli, S.; Ferrero, E.; Oettl, D.; Degrazia, G.

    The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results.

  17. Radar Reflectivity Simulated by a 2-D Spectra Bin Model: Sensitivity of Cloud-aerosol Interaction

    NASA Technical Reports Server (NTRS)

    Li, Kiaowen; Tao, Wei-Kuo; Khain, Alexander; Simpson, Joanne; Johnson, Daniel

    2003-01-01

    The Goddard Cumulus Ensemble (GCE) model with bin spectra microphysics is used to simulate mesoscale convective systems.The model uses explicit bins to represent size spectra of cloud nuclei, water drops, ice crystals, snow and graupel. Each hydrometeorite category is described by 33 mass bins. The simulations provide a unique data set of simulated raindrop size distribution in a realistic dynamic frame. Calculations of radar parameters using simulated drop size distribution serve as an evaluation of numerical model performance. In addition, the GCE bin spectra modes is a very useful tool to study uncertainties related to radar observations; all the environmental parameters are precisely known. In this presentation, we concentrate on the discussion of Z-R (ZDR-R) relation in the simulated systems. Due to computational limitations, the spectra bin model has been run in two dimensions with 31 stretched vertical layers and 1026 horizontal grid points (1 km resolution). Two different cases, one in midlatitude continent, the other in tropical ocean, have been simulated. The continental case is a strong convection which lasted for two hours. The oceanic case is a persistent system with more than 10 hours' life span. It is shown that the simulated Z-R (ZDR-R) relations generally agree with observations using radar and rain gauge data. The spatial and temporal variations of Z-R relation in different locations are also analyzed. Impact of aerosols on cloud formation and raindrop size distribution was studied. Both clean (low CCN) and dirty (high CCN) cases are simulated. The Z-R relation is shown to vary considerable in the initial CCN concentrations.

  18. Modelling multi-phase liquid-sediment scour and resuspension induced by rapid flows using Smoothed Particle Hydrodynamics (SPH) accelerated with a Graphics Processing Unit (GPU)

    NASA Astrophysics Data System (ADS)

    Fourtakas, G.; Rogers, B. D.

    2016-06-01

    A two-phase numerical model using Smoothed Particle Hydrodynamics (SPH) is applied to two-phase liquid-sediments flows. The absence of a mesh in SPH is ideal for interfacial and highly non-linear flows with changing fragmentation of the interface, mixing and resuspension. The rheology of sediment induced under rapid flows undergoes several states which are only partially described by previous research in SPH. This paper attempts to bridge the gap between the geotechnics, non-Newtonian and Newtonian flows by proposing a model that combines the yielding, shear and suspension layer which are needed to predict accurately the global erosion phenomena, from a hydrodynamics prospective. The numerical SPH scheme is based on the explicit treatment of both phases using Newtonian and the non-Newtonian Bingham-type Herschel-Bulkley-Papanastasiou constitutive model. This is supplemented by the Drucker-Prager yield criterion to predict the onset of yielding of the sediment surface and a concentration suspension model. The multi-phase model has been compared with experimental and 2-D reference numerical models for scour following a dry-bed dam break yielding satisfactory results and improvements over well-known SPH multi-phase models. With 3-D simulations requiring a large number of particles, the code is accelerated with a graphics processing unit (GPU) in the open-source DualSPHysics code. The implementation and optimisation of the code achieved a speed up of x58 over an optimised single thread serial code. A 3-D dam break over a non-cohesive erodible bed simulation with over 4 million particles yields close agreement with experimental scour and water surface profiles.

  19. Fourier based methodology for simulating 2D-random shapes in heterogeneous materials

    NASA Astrophysics Data System (ADS)

    Mattrand, C.; Béakou, A.; Charlet, K.

    2015-08-01

    Gaining insights into the effects of microstructural details on materials behavior may be achieved by incorporating their attributes into numerical modeling. This requires us to make considerable efforts to feature heterogeneity morphology distributions and their spatial arrangement. This paper focuses on modeling the scatter observed in materials heterogeneity geometry. The proposed strategy is based on the development of a 1D-shape signature function representing the 2D-section of a given shape, on Fourier basis functions. The Fourier coefficients are then considered as random variables. This methodology has been applied to flax fibers which are gradually introduced into composite materials as a potential alternative to synthetic reinforcements. In this contribution, the influence of some underlying assumptions regarding the choice of one 1D-shape signature function, its discretization scheme and truncation level, and the best way of modeling the associated random variables is also investigated. Some configurations coming from the combination of these tuning parameters are found to be sufficiently relevant to render efficiently the morphometric factors of the observed fibers statistically speaking.

  20. Monte Carlo simulations of a novel Micromegas 2D array for proton dosimetry

    NASA Astrophysics Data System (ADS)

    Dolney, D.; Ainsley, C.; Hollebeek, R.; Maughan, R.

    2016-02-01

    Modern proton therapy affords control of the delivery of radiotherapeutic dose on fine length and temporal scales. The authors have developed a novel detector technology based on Micromesh Gaseous Structure (Micromegas) that is uniquely tailored for applications using therapeutic proton beams. An implementation of a prototype Micromegas detector for Monte Carlo using Geant4 is presented here. Comparison of simulation results with measurements demonstrates agreement in relative dose along the proton longitudinal dose profile to be 1%. The effect of a radioactive calibration source embedded in the chamber gas is demonstrated by measurements and reproduced by simulations, also at the 1% level. Our Monte Carlo simulations are shown to reproduce the time structure of ionization pulses produced by a double-scattering delivery system.

  1. Impact of uncertainties in parameterized cloud-microphysical processes on the simulated development of an idealized 2-D squall line

    NASA Astrophysics Data System (ADS)

    Michelson, Sara; Bao, Jian-Wen; Grell, Evelyn

    2016-04-01

    In this study, numerical model simulations of an idealized 2-D squall line are investigated using microphysics budget analysis. Four commonly-used microphysics schemes of various complexity are used in the simulations. Diagnoses of the source and sink terms of the hydrometeor budget equations reveal that the differences related to the assumptions of hydrometeor size-distributions between the schemes lead to the differences in the simulations due to the net effect of various microphysical processes on the interaction between latent heating/evaporative cooling and flow dynamics as the squall line develops. Results from this study also highlight the possibility that the advantage of double-moment formulations can be overshadowed by the uncertainties in the spectral definition of individual hydrometeor categories and spectrum-dependent microphysical processes.

  2. A Mass Conservative Method for Integrating 1-D Vadose Zone Simulations Discretized in the Moisture Content Domain with 2-D Groundwater Interflow Simulations

    NASA Astrophysics Data System (ADS)

    Steinke, R. C.

    2015-12-01

    Discretizing 1-D vadose zone simulations in the moisture content domain, such as is done in the Talbot-Ogden method, provides some advantages over discretizing in depth, such as is done in Richards' Equation. These advantages include inherent mass conservation and lower computational cost. However, doing so presents a difficulty for integration with 2-D groundwater interflow simulations. The equations of motion of the bins of discrete moisture content take the depth of the water table as an input. They do not produce it as an output. Finding the correct water table depth so that the groundwater recharge from the 1-D vadose zone simulation mass balances with the lateral flows from the 2-D groundwater interflow simulation was a previously unsolved problem. In this paper we present a net-groundwater-recharge method to solve to this problem and compare it with the source-term method used with Richards' Equation.

  3. 2D and 3D PIC-MCC simulations of a low temperature magnetized plasma on CPU and GPU

    NASA Astrophysics Data System (ADS)

    Claustre, Jonathan; Chaudhury, Bhaskar; Fubiani, Gwenael; Boeuf, Jean-Pierre

    2012-10-01

    A Particle-In-Cell Monte Carlo Collisions model is used to described plasma transport in a low temperature magnetized plasma under conditions similar to those of the negative ion source for the neutral beam injector of ITER. A large diamagnetic electron current is present in the plasma because of the electron pressure gradient between the ICP driver of the source and the entrance of the magnetic filter, and is directed toward the chamber walls. The plasma potential adjusts to limit the diamagnetic electron current to the wall, leading to large electron current flow through the filter, and to a non uniform plasma density in the region between magnetic filter and extracting grids. On the basis of the PIC-MCC simulation results, we describe the plasma properties and electron current density distributions through the filter in 2D and 3D situations and use these models to better understand plasma transport across the filter in these conditions. We also present comparisons between computation times of two PIC-MCC simulation codes that have been developed for operations on standard CPU (Central Processing Units, code in Fortran) and on GPU (Graphics Processing Units, code in CUDA). The results show that the GPU simulation is about 25 times faster than the CPU one for a 2D domain with 512x512 grid points. The computation time ratio increases with the number of grid points.

  4. Numerical simulations of heavily polluted fine-grained sediment remobilization using 1D, 1D+, and 2D channel schematization.

    PubMed

    Kaiglová, Jana; Langhammer, Jakub; Jiřinec, Petr; Janský, Bohumír; Chalupová, Dagmar

    2015-03-01

    This article used various hydrodynamic and sediment transport models to analyze the potential and the limits of different channel schematizations. The main aim was to select and evaluate the most suitable simulation method for fine-grained sediment remobilization assessment. Three types of channel schematization were selected to study the flow potential for remobilizing fine-grained sediment in artificially modified channels. Schematization with a 1D cross-sectional horizontal plan, a 1D+ approach, splitting the riverbed into different functional zones, and full 2D mesh, adopted in MIKE by the DHI modeling suite, was applied to the study. For the case study, a 55-km stretch of the Bílina River, in the Czech Republic, Central Europe, which has been heavily polluted by the chemical and coal mining industry since the mid-twentieth century, was selected. Long-term exposure to direct emissions of toxic pollutants including heavy metals and persistent organic pollutants (POPs) resulted in deposits of pollutants in fine-grained sediments in the riverbed. Simulations, based on three hydrodynamic model schematizations, proved that for events not exceeding the extent of the riverbed profile, the 1D schematization can provide comparable results to a 2D model. The 1D+ schematization can improve accuracy while keeping the benefits of high-speed simulation and low requirements of input DEM data, but the method's suitability is limited by the channel properties. PMID:25687259

  5. The 2-D simulations of the NRL (Naval Research Laboratory) laser experiment

    NASA Astrophysics Data System (ADS)

    Lyon, J. G.

    1985-05-01

    Two-dimensional gas-dynamic simulations of the NRL laser experiment have been performed to study the formation of aneurysms in the blast wave and to study the formation of structure internal to the blast front itself. In one set of simulations the debris shell was perturbed sinusoidally in mass and position and also perturbed to mimic the action of a slow jet of material leaving the target at slower speeds than the bulk of the debris. In all cases the blast wave remained stable to any aneurysm-like instability. Internal structure, however, was quite easily produced and grew as a function of time. In the other set of simulations the effect of a pre-heated channel upon the propagation of the blast wave was examined. Bulges in the blast wave shock front were produced in these simulations that could be the beginning of the aneurysm phenomenon, but the preheated channel by itself appears to be insufficient to produce the observed aneurysm.

  6. A convergent 2D finite-difference scheme for the Dirac–Poisson system and the simulation of graphene

    SciTech Connect

    Brinkman, D.; Heitzinger, C.; Markowich, P.A.

    2014-01-15

    We present a convergent finite-difference scheme of second order in both space and time for the 2D electromagnetic Dirac equation. We apply this method in the self-consistent Dirac–Poisson system to the simulation of graphene. The model is justified for low energies, where the particles have wave vectors sufficiently close to the Dirac points. In particular, we demonstrate that our method can be used to calculate solutions of the Dirac–Poisson system where potentials act as beam splitters or Veselago lenses.

  7. Simulation with cells in vitro of tamoxifen treatment in premenopausal breast cancer patients with different CYP2D6 genotypes

    PubMed Central

    Maximov, Philipp Y; McDaniel, Russell E; Fernandes, Daphne J; Korostyshevskiy, Valeriy R; Bhatta, Puspanjali; Mürdter, Thomas E; Flockhart, David A; Jordan, V Craig

    2014-01-01

    Background and Purpose Tamoxifen is a prodrug that is metabolically activated by 4-hydroxylation to the potent primary metabolite 4-hydroxytamoxifen (4OHT) or via another primary metabolite N-desmethyltamoxifen (NDMTAM) to a biologically active secondary metabolite endoxifen through a cytochrome P450 2D6 variant system (CYP2D6). To elucidate the mechanism of action of tamoxifen and the importance of endoxifen for its effect, we determined the anti-oestrogenic efficacy of tamoxifen and its metabolites, including endoxifen, at concentrations corresponding to serum levels measured in breast cancer patients with various CYP2D6 genotypes (simulating tamoxifen treatment). Experimental Approach The biological effects of tamoxifen and its metabolites on cell growth and oestrogen-responsive gene modulation were evaluated in a panel of oestrogen receptor-positive breast cancer cell lines. Actual clinical levels of tamoxifen metabolites in breast cancer patients were used in vitro along with actual levels of oestrogens observed in premenopausal patients taking tamoxifen. Key Results Tamoxifen and its primary metabolites (4OHT and NDMTAM) only partially inhibited the stimulant effects of oestrogen on cells. The addition of endoxifen at concentrations corresponding to different CYP2D6 genotypes was found to enhance the anti-oestrogenic effect of tamoxifen and its metabolites with an efficacy that correlated with the concentration of endoxifen; at concentrations corresponding to the extensive metabolizer genotype it further inhibited the actions of oestrogen. In contrast, lower concentrations of endoxifen (intermediate and poor metabolizers) had little or no anti-oestrogenic effects. Conclusions and Implications Endoxifen may be a clinically relevant metabolite in premenopausal patients as it provides additional anti-oestrogenic actions during tamoxifen treatment. PMID:25073551

  8. Reliability of astrophysical jet simulations in 2D. On inter-code reliability and numerical convergence

    NASA Astrophysics Data System (ADS)

    Krause, M.; Camenzind, M.

    2001-12-01

    In the present paper, we examine the convergence behavior and inter-code reliability of astrophysical jet simulations in axial symmetry. We consider both pure hydrodynamic jets and jets with a dynamically significant magnetic field. The setups were chosen to match the setups of two other publications, and recomputed with the MHD code NIRVANA. We show that NIRVANA and the two other codes give comparable, but not identical results. We explain the differences by the different application of artificial viscosity in the three codes and numerical details, which can be summarized in a resolution effect, in the case without magnetic field: NIRVANA turns out to be a fair code of medium efficiency. It needs approximately twice the resolution as the code by Lind (Lind et al. 1989) and half the resolution as the code by Kössl (Kössl & Müller 1988). We find that some global properties of a hydrodynamical jet simulation, like e.g. the bow shock velocity, converge at 100 points per beam radius (ppb) with NIRVANA. The situation is quite different after switching on the toroidal magnetic field: in this case, global properties converge even at 10 ppb. In both cases, details of the inner jet structure and especially the terminal shock region are still insufficiently resolved, even at our highest resolution of 70 ppb in the magnetized case and 400 ppb for the pure hydrodynamic jet. The magnetized jet even suffers from a fatal retreat of the Mach disk towards the inflow boundary, which indicates that this simulation does not converge, in the end. This is also in definite disagreement with earlier simulations, and challenges further studies of the problem with other codes. In the case of our highest resolution simulation, we can report two new features: first, small scale Kelvin-Helmholtz instabilities are excited at the contact discontinuity next to the jet head. This slows down the development of the long wavelength Kelvin-Helmholtz instability and its turbulent cascade to smaller

  9. 2D simulations based on general time-dependent reciprocal relation for LFEIT.

    PubMed

    Karadas, Mursel; Gencer, Nevzat Guneri

    2015-08-01

    Lorentz field electrical impedance tomography (LFEIT) is a newly proposed technique for imaging the conductivity of the tissues by measuring the electromagnetic induction under the ultrasound pressure field. In this paper, the theory and numerical simulations of the LFEIT are reported based on the general time dependent formulation. In LFEIT, a phased array ultrasound probe is used to introduce a current distribution inside a conductive body. The velocity current occurs, due to the movement of the conductive particles under a static magnetic field. In order to sense this current, a receiver coil configuration that surrounds the volume conductor is utilized. Finite Element Method (FEM) is used to carry out the simulations of LFEIT. It is shown that, LFEIT can be used to reconstruct the conductivity even up to 50% perturbation in the initial conductivity distribution. PMID:26736569

  10. A mathematical model for a didactic device able to simulate a 2D Newtonian gravitational field

    NASA Astrophysics Data System (ADS)

    De Marchi, Fabrizio

    2015-01-01

    In this paper we propose a mathematical model to describe a theoretical device able to simulate an inverse-square force on a test mass moving on a horizontal plane. We use two pulleys, a counterweight, a wire and a smooth rail, in addition to the test mass. The tension of the wire (i.e. the attractive force on the test mass) is determined by the position of a counterweight free to move on a rail placed under the plane. The profile of the rail is calculated in order to obtain the required Newtonian force. Details of this calculation are reported in the paper, and numerical simulations are provided in order to investigate the stability of the orbits under the effect of the main friction forces and other perturbative effects. This work points out that there are some criticalities intrinsic to the apparatus and gives some suggestions about how to minimize their impact.

  11. Mixed-RKDG Finite Element Methods for the 2-D Hydrodynamic Model for Semiconductor Device Simulation

    DOE PAGESBeta

    Chen, Zhangxin; Cockburn, Bernardo; Jerome, Joseph W.; Shu, Chi-Wang

    1995-01-01

    In this paper we introduce a new method for numerically solving the equations of the hydrodynamic model for semiconductor devices in two space dimensions. The method combines a standard mixed finite element method, used to obtain directly an approximation to the electric field, with the so-called Runge-Kutta Discontinuous Galerkin (RKDG) method, originally devised for numerically solving multi-dimensional hyperbolic systems of conservation laws, which is applied here to the convective part of the equations. Numerical simulations showing the performance of the new method are displayed, and the results compared with those obtained by using Essentially Nonoscillatory (ENO) finite difference schemes. Frommore » the perspective of device modeling, these methods are robust, since they are capable of encompassing broad parameter ranges, including those for which shock formation is possible. The simulations presented here are for Gallium Arsenide at room temperature, but we have tested them much more generally with considerable success.« less

  12. Seismic wavefield propagation in 2D anisotropic media: Ray theory versus wave-equation simulation

    NASA Astrophysics Data System (ADS)

    Bai, Chao-ying; Hu, Guang-yi; Zhang, Yan-teng; Li, Zhong-sheng

    2014-05-01

    Despite the ray theory that is based on the high frequency assumption of the elastic wave-equation, the ray theory and the wave-equation simulation methods should be mutually proof of each other and hence jointly developed, but in fact parallel independent progressively. For this reason, in this paper we try an alternative way to mutually verify and test the computational accuracy and the solution correctness of both the ray theory (the multistage irregular shortest-path method) and the wave-equation simulation method (both the staggered finite difference method and the pseudo-spectral method) in anisotropic VTI and TTI media. Through the analysis and comparison of wavefield snapshot, common source gather profile and synthetic seismogram, it is able not only to verify the accuracy and correctness of each of the methods at least for kinematic features, but also to thoroughly understand the kinematic and dynamic features of the wave propagation in anisotropic media. The results show that both the staggered finite difference method and the pseudo-spectral method are able to yield the same results even for complex anisotropic media (such as a fault model); the multistage irregular shortest-path method is capable of predicting similar kinematic features as the wave-equation simulation method does, which can be used to mutually test each other for methodology accuracy and solution correctness. In addition, with the aid of the ray tracing results, it is easy to identify the multi-phases (or multiples) in the wavefield snapshot, common source point gather seismic section and synthetic seismogram predicted by the wave-equation simulation method, which is a key issue for later seismic application.

  13. 2-D transmitral flows simulation by means of the immersed boundary method on unstructured grids

    NASA Astrophysics Data System (ADS)

    Denaro, F. M.; Sarghini, F.

    2002-04-01

    Interaction between computational fluid dynamics and clinical researches recently allowed a deeper understanding of the physiology of complex phenomena involving cardio-vascular mechanisms. The aim of this paper is to develop a simplified numerical model based on the Immersed Boundary Method and to perform numerical simulations in order to study the cardiac diastolic phase during which the left ventricle is filled with blood flowing from the atrium throughout the mitral valve. As one of the diagnostic problems to be faced by clinicians is the lack of a univocal definition of the diastolic performance from the velocity measurements obtained by Eco-Doppler techniques, numerical simulations are supposed to provide an insight both into the physics of the diastole and into the interpretation of experimental data. An innovative application of the Immersed Boundary Method on unstructured grids is presented, fulfilling accuracy requirements related to the development of a thin boundary layer along the moving immersed boundary. It appears that this coupling between unstructured meshes and the Immersed Boundary Method is a promising technique when a wide range of spatial scales is involved together with a moving boundary. Numerical simulations are performed in a range of physiological parameters and a qualitative comparison with experimental data is presented, in order to demonstrate that, despite the simplified model, the main physiological characteristics of the diastole are well represented. Copyright

  14. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    DOE PAGESBeta

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-09

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Furthermore, two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density,more » heat and momentum transport equations along with neutral density, and momentum transport equations. In transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. Moreover, it is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.« less

  15. Comparisons between tokamak fueling of gas puffing and supersonic molecular beam injection in 2D simulations

    SciTech Connect

    Zhou, Y. L.; Wang, Z. H.; Xu, X. Q.; Li, H. D.; Feng, H.; Sun, W. G.

    2015-01-15

    Plasma fueling with high efficiency and deep injection is very important to enable fusion power performance requirements. It is a powerful and efficient way to study neutral transport dynamics and find methods of improving the fueling performance by doing large scale simulations. Two basic fueling methods, gas puffing (GP) and supersonic molecular beam injection (SMBI), are simulated and compared in realistic divertor geometry of the HL-2A tokamak with a newly developed module, named trans-neut, within the framework of BOUT++ boundary plasma turbulence code [Z. H. Wang et al., Nucl. Fusion 54, 043019 (2014)]. The physical model includes plasma density, heat and momentum transport equations along with neutral density, and momentum transport equations. Transport dynamics and profile evolutions of both plasma and neutrals are simulated and compared between GP and SMBI in both poloidal and radial directions, which are quite different from one and the other. It finds that the neutrals can penetrate about four centimeters inside the last closed (magnetic) flux surface during SMBI, while they are all deposited outside of the LCF during GP. It is the radial convection and larger inflowing flux which lead to the deeper penetration depth of SMBI and higher fueling efficiency compared to GP.

  16. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging

    PubMed Central

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  17. A GPU Simulation Tool for Training and Optimisation in 2D Digital X-Ray Imaging.

    PubMed

    Gallio, Elena; Rampado, Osvaldo; Gianaria, Elena; Bianchi, Silvio Diego; Ropolo, Roberto

    2015-01-01

    Conventional radiology is performed by means of digital detectors, with various types of technology and different performance in terms of efficiency and image quality. Following the arrival of a new digital detector in a radiology department, all the staff involved should adapt the procedure parameters to the properties of the detector, in order to achieve an optimal result in terms of correct diagnostic information and minimum radiation risks for the patient. The aim of this study was to develop and validate a software capable of simulating a digital X-ray imaging system, using graphics processing unit computing. All radiological image components were implemented in this application: an X-ray tube with primary beam, a virtual patient, noise, scatter radiation, a grid and a digital detector. Three different digital detectors (two digital radiography and a computed radiography systems) were implemented. In order to validate the software, we carried out a quantitative comparison of geometrical and anthropomorphic phantom simulated images with those acquired. In terms of average pixel values, the maximum differences were below 15%, while the noise values were in agreement with a maximum difference of 20%. The relative trends of contrast to noise ratio versus beam energy and intensity were well simulated. Total calculation times were below 3 seconds for clinical images with pixel size of actual dimensions less than 0.2 mm. The application proved to be efficient and realistic. Short calculation times and the accuracy of the results obtained make this software a useful tool for training operators and dose optimisation studies. PMID:26545097

  18. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  19. Quantitative comparisons between experimentally measured 2-D carbon radiation and Monte Carlo impurity (MCI) code simulations

    SciTech Connect

    Evans, T.E.; Leonard, A.W.; West, W.P.; Finkenthal, D.F.; Fenstermacher, M.E.; Porter, G.D.

    1998-08-01

    Experimentally measured carbon line emissions and total radiated power distributions from the DIII-D divertor and Scrape-Off Layer (SOL) are compared to those calculated with the Monte Carlo Impurity (MCI) model. A UEDGE background plasma is used in MCI with the Roth and Garcia-Rosales (RG-R) chemical sputtering model and/or one of six physical sputtering models. While results from these simulations do not reproduce all of the features seen in the experimentally measured radiation patterns, the total radiated power calculated in MCI is in relatively good agreement with that measured by the DIII-D bolometric system when the Smith78 physical sputtering model is coupled to RG-R chemical sputtering in an unaltered UEDGE plasma. Alternatively, MCI simulations done with UEDGE background ion temperatures along the divertor target plates adjusted to better match those measured in the experiment resulted in three physical sputtering models which when coupled to the RG-R model gave a total radiated power that was within 10% of measured value.

  20. Quantum simulation of a heterojunction vertical tunnel FET based on 2D transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Cao, Jiang; Cresti, Alessandro; Esseni, David; Pala, Marco

    2016-02-01

    We simulate a band-to-band tunneling field-effect transistor based on a vertical heterojunction of single-layer MoS2 and WTe2, by exploiting the non-equilibrium Green's function method and including electron-phonon scattering. For both in-plane and out-of-plane transport, we attempt to calibrate out models to the few available experimental results. We focus on the role of chemical doping and back-gate biasing, and investigate the off-state physics of this device by analyzing the influence of the top-gate geometrical alignment on the device performance. The device scalability as a function of gate length is also studied. Finally, we present two metrics for the switching delay and energy of the device. Our simulations indicate that vertical field-effect transistors based on transition metal dichalcogenides can provide very small values of sub-threshold swing when properly designed in terms of doping concentration and top-gate extension length.

  1. Real-time 2D floating-point fast Fourier transforms for seeker simulation

    NASA Astrophysics Data System (ADS)

    Chamberlain, Richard; Lord, Eric; Shand, David J.

    2002-07-01

    The floating point Fast Fourier Transform (FFT) is one of the most useful basic functions available to the image and signal processing engineer allowing many complex and detailed special functions to be implemented more simply in the frequency domain. In the Hardware-in-the-Loop field an image transformed using FFT would allow the designer to think about accurate frequency based simulation of seeker lens effects, motion blur, detector transfer functions and much more. Unfortunately, the transform requires many hundreds of thousands or millions of floating point operations on a single modest sized image making it impractical for realtime Hardware-in-the-Loop systems. .until now. This paper outlines the development, by Nallatech, of an FPGA based IEEE floating point core. It traces the subsequent use of this core to develop a full 256 X 256 FFT and filter process implemented on COTS hardware at frame rates up to 150Hz. This transform can be demonstrated to model optical transfer functions at a far greater accuracy than the current spatial models. Other applications and extensions of this technique will be discussed such as filtering for image tracking algorithms and in the simulation of radar processing in the frequency domain.

  2. Gyrokinetic simulations of 2D magnetic reconnection turbulence in guide fields

    NASA Astrophysics Data System (ADS)

    Terry, P. W.; Pueschel, M. J.; Jenko, F.; Zweibel, E.; Zhdankin, V.; Told, D.

    2012-10-01

    Following the analyses in [M.J. Pueschel et al., Phys. Plasmas 18, 112102 (2011)], a study of turbulence in driven reconnection is commenced, with a sinusoidal current sheet providing the drive through a Krook-type operator in a bi-periodic box. Simulations with the Gene code cover all relevant physical parameters, allowing for encompassing comparisons with expectations from linear simulations. A central observed feature are coherent circular current structures which may be identified as plasmoids. These objects move randomly in the plane perpendicular to the guide field, and may either disappear again after some time or instead merge with one another---the setup can thus be described as turbulence driven by reconnection, but simultaneously creating its own reconnection. Such merger events are associated with large bursts in the heating rate jE, and display strong non-Maxwellian components of the distribution function in parallel velocity space. The plasmoid energetics are studied, as are their ability to produce populations of fast particles. Statistics of such populations are used to facilitate direct comparisons with astrophysical scenarios of energetic particle production.

  3. The cone penetration test and 2D imaging resistivity as tools to simulate the distribution of hydrocarbons in soil

    NASA Astrophysics Data System (ADS)

    Pérez-Corona, M.; García, J. A.; Taller, G.; Polgár, D.; Bustos, E.; Plank, Z.

    2016-02-01

    The purpose of geophysical electrical surveys is to determine the subsurface resistivity distribution by making measurements on the ground surface. From these measurements, the true resistivity of the subsurface can be estimated. The ground resistivity is related to various geological parameters, such as the mineral and fluid content, porosity and degree of water saturation in the rock. Electrical resistivity surveys have been used for many decades in hydrogeological, mining and geotechnical investigations. More recently, they have been used for environmental surveys. To obtain a more accurate subsurface model than is possible with a simple 1-D model, a more complex model must be used. In a 2-D model, the resistivity values are allowed to vary in one horizontal direction (usually referred to as the x direction) but are assumed to be constant in the other horizontal (the y) direction. A more realistic model would be a fully 3-D model where the resistivity values are allowed to change in all three directions. In this research, a simulation of the cone penetration test and 2D imaging resistivity are used as tools to simulate the distribution of hydrocarbons in soil.

  4. SIMULATION REAL SCALE EXPERIMENT ON LEVEE BREACH USING 2D SHALLOW FLOW MODEL

    NASA Astrophysics Data System (ADS)

    Zenno, Hiroki; Iwasaki, Toshiki; Shimizu, Yasuyuki; Kimura, Ichiro

    Flood in rivers is a common disaster all over the world. If a levee breach happens, it sometimes causes a fatal disaster. In addition, many buildings, urban facilities, lifelines, etc. are seriously damaged. Detailed mechanism of a levee breach has not been clarified yet. Therefore, it is important to predict the collapsing process of riverbank and behavior of overtop flow for reducing damage. We applied a two-dimensional shallow flow computational model to levee breach phenomena caused by overflow and the performance of the model was elucidated. A calibration of the numerical model is made through the comparison with field experimental data. Recently, a real-scale experiment on a levee breach was carried out at the Chiyoda Experimental Channel in Hokkaido, Japan. We performed the computation under the same conditions in the experiment. The computational results showed the excellent performance for simulating levee breach phenomena.

  5. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  6. A hierarchical lattice spring model to simulate the mechanics of 2-D materials-based composites

    NASA Astrophysics Data System (ADS)

    Brely, Lucas; Bosia, Federico; Pugno, Nicola

    2015-07-01

    In the field of engineering materials, strength and toughness are typically two mutually exclusive properties. Structural biological materials such as bone, tendon or dentin have resolved this conflict and show unprecedented damage tolerance, toughness and strength levels. The common feature of these materials is their hierarchical heterogeneous structure, which contributes to increased energy dissipation before failure occurring at different scale levels. These structural properties are the key to exceptional bioinspired material mechanical properties, in particular for nanocomposites. Here, we develop a numerical model in order to simulate the mechanisms involved in damage progression and energy dissipation at different size scales in nano- and macro-composites, which depend both on the heterogeneity of the material and on the type of hierarchical structure. Both these aspects have been incorporated into a 2-dimensional model based on a Lattice Spring Model, accounting for geometrical nonlinearities and including statistically-based fracture phenomena. The model has been validated by comparing numerical results to continuum and fracture mechanics results as well as finite elements simulations, and then employed to study how structural aspects impact on hierarchical composite material properties. Results obtained with the numerical code highlight the dependence of stress distributions on matrix properties and reinforcement dispersion, geometry and properties, and how failure of sacrificial elements is directly involved in the damage tolerance of the material. Thanks to the rapidly developing field of nanocomposite manufacture, it is already possible to artificially create materials with multi-scale hierarchical reinforcements. The developed code could be a valuable support in the design and optimization of these advanced materials, drawing inspiration and going beyond biological materials with exceptional mechanical properties.

  7. Ion Dynamics at a Rippled Quasi-parallel Shock: 2D Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Hao, Yufei; Lu, Quanming; Gao, Xinliang; Wang, Shui

    2016-05-01

    In this paper, two-dimensional hybrid simulations are performed to investigate ion dynamics at a rippled quasi-parallel shock. The results show that the ripples around the shock front are inherent structures of a quasi-parallel shock, and the re-formation of the shock is not synchronous along the surface of the shock front. By following the trajectories of the upstream ions, we find that these ions behave differently when they interact with the shock front at different positions along the shock surface. The upstream particles are transmitted more easily through the upper part of a ripple, and the corresponding bulk velocity downstream is larger, where a high-speed jet is formed. In the lower part of the ripple, the upstream particles tend to be reflected by the shock. Ions reflected by the shock may suffer multiple-stage acceleration when moving along the shock surface or trapped between the upstream waves and the shock front. Finally, these ions may escape further upstream or move downstream; therefore, superthermal ions can be found both upstream and downstream.

  8. Power production locality of bluff body flutter mills using fully coupled 2D direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Kuhl, J. M.; Desjardin, P. E.

    2012-01-01

    Two-dimensional, fully coupled direct numerical simulations (DNS) are conducted to examine the local energy dynamics of a flexible cantilevered plate in the wake of a two-dimensional circular cylinder. The motion of the cantilevered plate is described using a finite element formulation and a fully compressible, finite volume Navier Stokes solver is used to compute the flow field. A sharp interface level set method is employed in conjunction with a ghost fluid method to describe the immersed boundaries of the bluff body and flexible plate. DNS is first conducted to validate the numerical methodology and compared with previous studies of flexible cantilevered plates and flow over bluff bodies; excellent agreement with previous results is observed. A newly defined power production/loss geometry metric is introduced based on surface curvature and plate velocity. The metric is found to be useful for determining which sections of the plate will produce energy based on curvature and deflection rate. Scatter plots and probability measures are presented showing a high correlation between the direction of energy transfer (i.e., to or from the plate) and the sign of the newly defined curvature-deflection-rate metric. The findings from this study suggest that a simple local geometry/kinematic based metric can be devised to aid in the development and design of flexible wind energy harvesting flutter mills.

  9. KEEN and KEEPN wave simulations from 2D to 4D

    NASA Astrophysics Data System (ADS)

    Mehrenberger, Michel; Afeyan, Bedros; Larson, David; Crouseilles, Nicolas; Casas, Fernando; Faou, Erwan; Dodhy, Adila; Sonnendrucker, Eric; Shoucri, Magdi

    2015-11-01

    We show for well-driven KEEN (Kinetic Electrostatic Electron Nonlinear) waves and their analogs in pair plasmas KEEPN (Positron) waves, how the dynamics is captured in a variety of complimentary numerical approaches. Symplectic integration and quadrature node based techniques are deployed to achieve satisfactory results in the long time evolution of highly nonlinear, kinetic, non-stationary, self-organized structures in phase space. Fixed and composite velocity grid arbitrary-order interpolation approaches have advantages we highlight. Adaptivity to local phase space density morphological structures will be discussed starting within the framework of the Shape Function Kinetics (SFK) approach. Fine resolution in velocity only in the range affected by KEEN waves makes for more efficient simulations, especially in higher dimensions. We explore the parameter space of unequal electron and positron temperatures as well as the effects of a relative drift velocity in their initial conditions. Ponderomotively driven KEEPN waves have many novelties when compared to KEEN waves, such as double, staggered, vortex structures, which we highlight. Work supported by the AFOSR and OFES.

  10. The Plasma Wake Downstream of Lunar Topographic Obstacles: Preliminary Results from 2D Particle Simulations

    NASA Technical Reports Server (NTRS)

    Zimmerman, Michael I.; Farrell, W. M.; Snubbs, T. J.; Halekas, J. S.

    2011-01-01

    Anticipating the plasma and electrical environments in permanently shadowed regions (PSRs) of the moon is critical in understanding local processes of space weathering, surface charging, surface chemistry, volatile production and trapping, exo-ion sputtering, and charged dust transport. In the present study, we have employed the open-source XOOPIC code [I] to investigate the effects of solar wind conditions and plasma-surface interactions on the electrical environment in PSRs through fully two-dimensional pattic1e-in-cell simulations. By direct analogy with current understanding of the global lunar wake (e.g., references) deep, near-terminator, shadowed craters are expected to produce plasma "mini-wakes" just leeward of the crater wall. The present results (e.g., Figure I) are in agreement with previous claims that hot electrons rush into the crater void ahead of the heavier ions, fanning a negative cloud of charge. Charge separation along the initial plasma-vacuum interface gives rise to an ambipolar electric field that subsequently accelerates ions into the void. However, the situation is complicated by the presence of the dynamic lunar surface, which develops an electric potential in response to local plasma currents (e.g., Figure Ia). In some regimes, wake structure is clearly affected by the presence of the charged crater floor as it seeks to achieve current balance (i.e. zero net current to the surface).

  11. Origin of energetic ions observed in the terrestrial ion foreshock : 2D full-particle simulations

    NASA Astrophysics Data System (ADS)

    Savoini, Philippe; Lembege, bertrand

    2016-04-01

    Collisionless shocks are well-known structures in astrophysical environments which dissipate bulk flow kinetic energy and accelerate large fraction of particle. Spacecrafts have firmly established the existence of the so-called terrestrial foreshock region magnetically connected to the shock and filled by two distinct populations in the quasi-perpendicular shock region (i.e. for 45r{ } ≤ quad θ Bn quad ≤ 90r{ }, where θ Bn is the angle between the shock normal and the upstream magnetic field) : (i) the field-aligned ion beams or `` FAB '' characterized by a gyrotropic distributionsout{,} and (ii) the gyro-phase bunched ions or `` GPB '' characterized by a NON gyrotropic distribution. The present work is based on the use of two dimensional PIC simulation of a curved shock and associated foreshock region where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described by a self consistent approach. Our previous analysis (Savoini et Lembège, 2015) has evidenced that these two types of backstreaming populations can originate from the shock front itself without invoking any local diffusion by ion beam instabilities. Present results are focussed on individual ion trajectories and evidence that "FAB" population is injected into the foreshock mainly along the shock front whereas the "GPB" population penetrates more deeply the shock front. Such differences explain why the "FAB" population loses their gyro-phase coherency and become gyrotropic which is not the case for the "GPB". The impact of these different injection features on the energy gain for each ion population will be presented in détails. Savoini, P. and B. Lembège (2015), `` Production of nongyrotropic and gyrotropic backstreaming ion distributions in the quasi-perpendicular ion foreshock région '', J. Geophys. Res., 120, pp 7154-7171, doi = 10.1002/2015JA021018.

  12. Observation and simulation of heterogeneous 2D water and solute flow processes in ditch beds for subsequent catchment modelling

    NASA Astrophysics Data System (ADS)

    Dages, Cecile; Samouelian, Anatja; Lanoix, Marthe; Dollinger, Jeanne; Chakkour, Sara; Chovelon, Gabrielle; Trabelsi, Khouloud; Voltz, Marc

    2015-04-01

    Ditches are involved in the transfer of pesticide to surface and groundwaters (e.g. Louchart et al., 2001). Soil horizons underlying ditch beds may present specific soil characteristics compared to neighbouring field soils due to erosion/deposition processes, to the specific biological activities (rooting dynamic and animal habitat) in the ditches (e.g. Vaughan et al., 2008) and to management practices (burning, dredging, mowing,...). Moreover, in contrast to percolation processes in field soils that can be assumed to be mainly 1D vertical, those occurring in the ditch beds are by essence 2D or even 3D. Nevertheless, due to a lake of knowledge, these specific aspects of transfer within ditch beds are generally omitted for hydrological simulation at the catchment scale (Mottes et al., 2014). Accordingly, the aims of this study were i) to characterize subsurface solute transfer through ditch beds and ii) to determine equivalent hydraulic parameters of the ditch beds for use in catchment scale hydrological simulations. A complementary aim was to evaluate the error in predictions performed when percolation in ditches is assumed to be similar to that in the neighbouring field soil. First, bromide transfer experiments were performed on undisturbed soil column (15 cm long with a 15 cm inner-diameter), horizontally and vertically sampled within each soil horizon underlying a ditch bed and within the neighboring field. Columns were sampled at the Roujan catchment (Hérault, France), which belongs to the long term Mediterranean hydrological observatory OMERE (Voltz and Albergel, 2002). Second, for each column, a set of parameters was determined by inverse optimization with mobile-immobile or dual permeability models, with CXTFIT (Toride et al., 1999) or with HYDRUS (Simunek et al., 1998). Third, infiltration and percolation in the ditch was simulated by a 2D flow domain approach considering the 2D variation in hydraulic properties of the cross section of a ditch bed. Last

  13. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard

    2016-04-01

    Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.

  14. FireStem2D – A Two-Dimensional Heat Transfer Model for Simulating Tree Stem Injury in Fires

    PubMed Central

    Chatziefstratiou, Efthalia K.; Bohrer, Gil; Bova, Anthony S.; Subramanian, Ravishankar; Frasson, Renato P. M.; Scherzer, Amy; Butler, Bret W.; Dickinson, Matthew B.

    2013-01-01

    FireStem2D, a software tool for predicting tree stem heating and injury in forest fires, is a physically-based, two-dimensional model of stem thermodynamics that results from heating at the bark surface. It builds on an earlier one-dimensional model (FireStem) and provides improved capabilities for predicting fire-induced mortality and injury before a fire occurs by resolving stem moisture loss, temperatures through the stem, degree of bark charring, and necrotic depth around the stem. We present the results of numerical parameterization and model evaluation experiments for FireStem2D that simulate laboratory stem-heating experiments of 52 tree sections from 25 trees. We also conducted a set of virtual sensitivity analysis experiments to test the effects of unevenness of heating around the stem and with aboveground height using data from two studies: a low-intensity surface fire and a more intense crown fire. The model allows for improved understanding and prediction of the effects of wildland fire on injury and mortality of trees of different species and sizes. PMID:23894599

  15. Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Rumsey Christopher

    2013-01-01

    Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.

  16. SPH non-Newtonian Model for Ice Sheet and Ice Shelf Dynamics

    SciTech Connect

    Tartakovsky, Alexandre M.; Pan, Wenxiao; Monaghan, Joseph J.

    2012-07-07

    We propose a new three-dimensional smoothed particle hydrodynamics (SPH) non-Newtonian model to study coupled ice sheet and ice shelf dynamics. Most existing ice sheet numerical models use a grid-based Eulerian approach, and are usually restricted to shallow ice sheet and ice shelf approximations of the momentum conservation equation. SPH, a fully Lagrangian particle method, solves the full momentum conservation equation. SPH method also allows modeling of free-surface flows, large material deformation, and material fragmentation without employing complex front-tracking schemes, and does not require re-meshing. As a result, SPH codes are highly scalable. Numerical accuracy of the proposed SPH model is first verified by simulating a plane shear flow with a free surface and the propagation of a blob of ice along a horizontal surface. Next, the SPH model is used to investigate the grounding line dynamics of ice sheet/shelf. The steady position of the grounding line, obtained from our SPH simulations, is in good agreement with laboratory observations for a wide range of bedrock slopes, ice-to-fluid density ratios, and flux. We examine the effect of non-Newtonian behavior of ice on the grounding line dynamics. The non-Newtonian constitutive model is based on Glen's law for a creeping flow of a polycrystalline ice. Finally, we investigate the effect of a bedrock geometry on a steady-state position of the grounding line.

  17. 2D Numerical Model And Self-Consistent Particle-In-Cell Simulations Of Coherent Synchrotron Radiation

    NASA Astrophysics Data System (ADS)

    Kwan, Thomas; Huang, Chengkun; Carlsten, Bruce

    2012-10-01

    Understanding CSR effects in a bunch compressor requires accurate and self-consistent dynamical simulations accounting for the realistic beam shape and parameters, transient dynamics and possibly a material boundary. We first extend the well-known 1D CSR model into two dimensions and develop a simple numerical algorithm based on the Lienard-Wiechert formula for the electric field of a stiff beam. This numerical model includes the 2D spatial dependence of the field in the bending plane and is accurate for arbitrary beam energy. It also removes the singularity in space charge field presented in a 1D model. Good agreement is obtained with 1D CSR analytic [1] result for FEL related beam parameters but deviations are also found for low-energy or large spot size beams and off-axis fields. We also employ fully electromagnetic Particle-In-Cell (PIC) simulations for self-consistent CSR modeling. The relatively large numerical phase error and anisotropy in a standard PIC algorithm is improved with a high order Finite Difference Time Domain scheme. Detail self-consistent PIC simulations of the CSR fields and beam dynamics will be presented and discussed.

  18. Spectrum simulation of rough and nanostructured targets from their 2D and 3D image by Monte Carlo methods

    NASA Astrophysics Data System (ADS)

    Schiettekatte, François; Chicoine, Martin

    2016-03-01

    Corteo is a program that implements Monte Carlo (MC) method to simulate ion beam analysis (IBA) spectra of several techniques by following the ions trajectory until a sufficiently large fraction of them reach the detector to generate a spectrum. Hence, it fully accounts for effects such as multiple scattering (MS). Here, a version of Corteo is presented where the target can be a 2D or 3D image. This image can be derived from micrographs where the different compounds are identified, therefore bringing extra information into the solution of an IBA spectrum, and potentially significantly constraining the solution. The image intrinsically includes many details such as the actual surface or interfacial roughness, or actual nanostructures shape and distribution. This can for example lead to the unambiguous identification of structures stoichiometry in a layer, or at least to better constraints on their composition. Because MC computes in details the trajectory of the ions, it simulates accurately many of its aspects such as ions coming back into the target after leaving it (re-entry), as well as going through a variety of nanostructures shapes and orientations. We show how, for example, as the ions angle of incidence becomes shallower than the inclination distribution of a rough surface, this process tends to make the effective roughness smaller in a comparable 1D simulation (i.e. narrower thickness distribution in a comparable slab simulation). Also, in ordered nanostructures, target re-entry can lead to replications of a peak in a spectrum. In addition, bitmap description of the target can be used to simulate depth profiles such as those resulting from ion implantation, diffusion, and intermixing. Other improvements to Corteo include the possibility to interpolate the cross-section in angle-energy tables, and the generation of energy-depth maps.

  19. Efficient Neighborhood Search in SPH

    NASA Astrophysics Data System (ADS)

    Cruz Pérez, Juan Pablo; González Cervera, José Antonio

    2013-10-01

    One of the main problems found during the implementation of an N-body algorithm, is its inefficiency when the number of points to evaluate is increased. This is a consequence of the order O(N^2) of these methods. With this in mind, when we use the method of Smoothed Particle Hydrodynamics (SPH), it is necessary to find an algorithm that allows us to make the computation in an efficient way. The method presented in this article is of order O(N) , being more efficient as well as easy to implement, reducing the computing time.

  20. Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data

    NASA Astrophysics Data System (ADS)

    Simão Ferreira, C. J.; Bijl, H.; van Bussel, G.; van Kuik, G.

    2007-07-01

    The implementation of wind energy conversion systems in the built environment renewed the interest and the research on Vertical Axis Wind Turbines (VAWT), which in this application present several advantages over Horizontal Axis Wind Turbines (HAWT). The VAWT has an inherent unsteady aerodynamic behavior due to the variation of angle of attack with the angle of rotation, perceived velocity and consequentially Reynolds number. The phenomenon of dynamic stall is then an intrinsic effect of the operation of a Vertical Axis Wind Turbine at low tip speed ratios, having a significant impact in both loads and power. The complexity of the unsteady aerodynamics of the VAWT makes it extremely attractive to be analyzed using Computational Fluid Dynamics (CFD) models, where an approximation of the continuity and momentum equations of the Navier-Stokes equations set is solved. The complexity of the problem and the need for new design approaches for VAWT for the built environment has driven the authors of this work to focus the research of CFD modeling of VAWT on: •comparing the results between commonly used turbulence models: URANS (Spalart-Allmaras and k-epsilon) and large eddy models (Large Eddy Simulation and Detached Eddy Simulation) •verifying the sensitivity of the model to its grid refinement (space and time), •evaluating the suitability of using Particle Image Velocimetry (PIV) experimental data for model validation. The 2D model created represents the middle section of a single bladed VAWT with infinite aspect ratio. The model simulates the experimental work of flow field measurement using Particle Image Velocimetry by Simão Ferreira et al for a single bladed VAWT. The results show the suitability of the PIV data for the validation of the model, the need for accurate simulation of the large eddies and the sensitivity of the model to grid refinement.

  1. 2D fluid-analytical simulation of electromagnetic effects in low pressure, high frequency electronegative capacitive discharges

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lichtenberg, A. J.; Lieberman, M. A.; Marakhtanov, A. M.

    2016-06-01

    A fast 2D axisymmetric fluid-analytical multifrequency capacitively coupled plasma (CCP) reactor code is used to study center high nonuniformity in a low pressure electronegative chlorine discharge. In the code, a time-independent Helmholtz wave equation is used to solve for the capacitive fields in the linearized frequency domain. This eliminates the time dependence from the electromagnetic (EM) solve, greatly speeding up the simulations at the cost of neglecting higher harmonics. However, since the code allows up to three driving frequencies, we can add the two most important harmonics to the CCP simulations as the second and third input frequencies. The amplitude and phase of these harmonics are estimated by using a recently developed 1D radial nonlinear transmission line (TL) model of a highly asymmetric cylindrical discharge (Lieberman et al 2015 Plasma Sources Sci. Technol. 24 055011). We find that at higher applied frequencies, the higher harmonics contribute significantly to the center high nonuniformity due to their shorter plasma wavelengths.

  2. 2D simulation of active species and ozone production in a multi-tip DC air corona discharge

    NASA Astrophysics Data System (ADS)

    Meziane, M.; Eichwald, O.; Sarrette, J. P.; Ducasse, O.; Yousfi, M.

    2011-11-01

    The present paper shows for the first time in the literature a complete 2D simulation of the ozone production in a DC positive multi-tip to plane corona discharge reactor crossed by a dry air flow at atmospheric pressure. The simulation is undertaken until 1 ms and involves tens of successive discharge and post-discharge phases. The air flow is stressed by several monofilament corona discharges generated by a maximum of four anodic tips distributed along the reactor. The nonstationary hydrodynamics model for reactive gas mixture is solved using the commercial FLUENT software. During each discharge phase, thermal and vibrational energies as well as densities of radical and metastable excited species are locally injected as source terms in the gas medium surrounding each tip. The chosen chemical model involves 10 neutral species reacting following 24 reactions. The obtained results allow us to follow the cartography of the temperature and the ozone production inside the corona reactor as a function of the number of high voltage anodic tips.

  3. PC2D simulation and optimization of the selective emitter solar cells fabricated by screen printing phosphoric paste method

    NASA Astrophysics Data System (ADS)

    Jia, Xiaojie; Ai, Bin; Deng, Youjun; Xu, Xinxiang; Peng, Hua; Shen, Hui

    2015-08-01

    On the basis of perfect PC2D simulation to the measured current density vs voltage (J-V) curve of the best selective emitter (SE) solar cell fabricated by the CSG Company using the screen printing phosphoric paste method, we systematically investigated the effect of the parameters of gridline, base, selective emitter, back surface field (BSF) layer and surface recombination rate on performance of the SE solar cell. Among these parameters, we identified that the base minority carrier lifetime, the front and back surface recombination rate and the ratio of the sheet-resistance of heavily and lightly doped region are the four largest efficiency-affecting factors. If all the parameters have ideal values, the SE solar cell fabricated on a p-type monocrystalline silicon wafer can even obtain the efficiency of 20.45%. In addition, the simulation also shows that fine gridline combining dense gridline and increasing bus bar number while keeping the lower area ratio can offer the other ways to improve the efficiency.

  4. Simulations of P-SV wave scattering due to cracks by the 2-D finite difference method

    NASA Astrophysics Data System (ADS)

    Suzuki, Yuji; Shiina, Takahiro; Kawahara, Jun; Okamoto, Taro; Miyashita, Kaoru

    2013-12-01

    We simulate P-SV wave scattering by 2-D parallel cracks using the finite difference method (FDM). Here, special emphasis is put on simplicity; we apply a standard FDM (second-order velocity-stress scheme with a staggered grid) to media including traction-free, infinitesimally thin cracks, which are expressed in a simple manner. As an accuracy test of the present method, we calculate the displacement discontinuity along an isolated crack caused by harmonic waves using the method, which is compared with the corresponding results based on a reliable boundary integral equation method. The test resultantly indicates that the present method yields sufficient accuracy. As an application of this method, we also simulate wave propagation in media with randomly distributed cracks. We experimentally determine the attenuation and velocity dispersion induced by scattering from the synthetic seismograms, using a waveform averaging technique. It is shown that the results are well explained by a theory based on the Foldy approximation, if the crack density is sufficiently low. The theory appears valid with a crack density up to at least 0.1 for SV wave incidence, whereas the validity limit appears lower for P wave incidence.

  5. Debris Flow Simulation using FLO-2D on the 2004 Landslide Area of Real, General Nakar, and Infanta, Philippines

    NASA Astrophysics Data System (ADS)

    Llanes, F.; dela Resma, M.; Ferrer, P.; Realino, V.; Aquino, D. T.; Eco, R. C.; Lagmay, A.

    2013-12-01

    From November 14 to December 3, 2004, Luzon Island was ravaged by 4 successive typhoons: Typhoon Mufia, Tropical Storm Merbok, Tropical Depression Winnie, and Super Typhoon Nanmadol. Tropical Depression Winnie was the most destructive of the four when it triggered landslides on November 29 that devastated the municipalities of Infanta, General Nakar, and Real in Quezon Province, southeast Luzon. Winnie formed east of Central Luzon on November 27 before it moved west-northwestward over southeastern Luzon on November 29. A total of 1,068 lives were lost and more than USD 170 million worth of damages to crops and infrastructure were incurred from the landslides triggered by Typhoon Winnie on November 29 and the flooding caused by the 4 typhoons. FLO-2D, a flood routing software for generating flood and debris flow hazard maps, was utilized to simulate the debris flows that could potentially affect the study area. Based from the rainfall intensity-duration-frequency analysis, the cumulative rainfall from typhoon Winnie on November 29 which was approximately 342 mm over a 9-hour period was classified within a 100-year return period. The Infanta station of the Philippine Atmospheric Geophysical and Astronomical Services Administration (PAGASA) was no longer able to measure the amount of rainfall after this period because the rain gauge in that station was washed away by floods. Rainfall data with a 100-year return period was simulated over the watersheds delineated from a SAR-derived digital elevation model. The resulting debris flow hazard map was compared with results from field investigation and previous studies made on the landslide event. The simulation identified 22 barangays (villages) with a total of 45,155 people at risk of turbulent flow and flooding.

  6. A nonlocal finite difference scheme for simulation of wave propagation in 2D models with reduced numerical dispersion

    NASA Astrophysics Data System (ADS)

    Martowicz, A.; Ruzzene, M.; Staszewski, W. J.; Rimoli, J. J.; Uhl, T.

    2014-03-01

    The work deals with the reduction of numerical dispersion in simulations of wave propagation in solids. The phenomenon of numerical dispersion naturally results from time and spatial discretization present in a numerical model of mechanical continuum. Although discretization itself makes possible to model wave propagation in structures with complicated geometries and made of different materials, it inevitably causes simulation errors when improper time and length scales are chosen for the simulations domains. Therefore, by definition, any characteristic parameter for spatial and time resolution must create limitations on maximal wavenumber and frequency for a numerical model. It should be however noted that expected increase of the model quality and its functionality in terms of affordable wavenumbers, frequencies and speeds should not be achieved merely by denser mesh and reduced time integration step. The computational cost would be simply unacceptable. The authors present a nonlocal finite difference scheme with the coefficients calculated applying a Fourier series, which allows for considerable reduction of numerical dispersion. There are presented the results of analyses for 2D models, with isotropic and anisotropic materials, fulfilling the planar stress state. Reduced numerical dispersion is shown in the dispersion surfaces for longitudinal and shear waves propagating for different directions with respect to the mesh orientation and without dramatic increase of required number of nonlocal interactions. A case with the propagation of longitudinal wave in composite material is studied with given referential solution of the initial value problem for verification of the time-domain outcomes. The work gives a perspective of modeling of any type of real material dispersion according to measurements and with assumed accuracy.

  7. The effect of bone fracture unevenness on ultrasound axial transmission measurements: A pilot 2D simulation study

    NASA Astrophysics Data System (ADS)

    Machado, Christiano B.; Pereira, Wagner C. A.; Padilla, Frédéric; Laugier, Pascal

    2012-05-01

    Ultrasound axial transmission (UAT) has been proposed to the diagnosis and follow-up of fracture healing. Some researchers have already pointed out the influence of fracture length, geometry and callus composition on the ultrasound time-of-flight and attenuation, with experimental and simulation studies. The aim of this work was to develop a pilot study on the effect of bone fracture unevenness on UAT measurements. Two-dimensional (2D) numerical simulations of ultrasound wave propagation were run using a custom-made finite-difference time domain code (SimSonic2D). Numerical models were composed of two 4-mm thick bone plates, with fracture lengths varying from 0 to 4 mm. For each case, an upward (UWun) and downward (DWun) unevenness of 0.5, 1.0 and 1.5 mm was implemented in the second plate. The 1-MHz emitter and receptor transducers were placed at 40 mm from each other, 20 mm apart from the center fracture. Two configurations were considered: 1.5 mm above the plates (for the 0-mm unevenness case) and transducers in contact with bone plate. For each situation, the time-of-flight of the first arriving signal (TOFFAS) and the FAS energy amplitude loss measured by the sound pressure level (SPLFAS) were computed. Results showed that there was a linear increase in TOFFAS with increasing fracture length, and a decrease of SPLFAS with the presence of a discontinuity. TOFFAS values were decreased with UWun (-0.87 μs for UWun = 1.5 mm), and increased with DWun (+0.99 μs for DWun = 1.5 mm). The SPLFAS increased with both UWun (+3.54 dB for UWun = 1.5 mm) and DWun (+8.15 dB for DWun = 1.5 mm). Both parameters showed the same variability. When transducers were put in contact with bone surface, fracture unevenness had no influence on TOF and SPL estimates. Previous works have already demonstrated that a fracture of 3 mm can increase TOFFAS in an order of 1 μs. Considering these preliminary results, it can be concluded that, although the variable fracture unevenness (until 1

  8. On the parameterization of 1D vertical mixing in planetary atmospheres: insights from 2D and 3D simulations

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Showman, Adam P.

    2015-11-01

    Most of the current atmospheric chemistry models for planets (e.g., Krasnopolsky & Parshev 1981; Yung & Demore 1982; Yung, Allen & Pinto 1984; Lavvas et al. 2008; Zhang et al. 2012) and exoplanets (e.g., Line, Liang & Yung 2010; Moses et al. 2011; Hu & Seager 2014) adopt a one-dimensional (1D) chemical-diffusion approach in the vertical coordinate. Although only a crude approximation, these 1D models have succeeded in explaining the global-averaged vertical profiles of many chemical species in observations. One of the important assumptions of these models is that all chemical species are transported via the same eddy diffusion profile--that is, the assumption is made that the eddy diffusivity is a fundamental property of the dynamics alone, and does not depend on the chemistry. Here we show that, as also noticed in the Earth community (e.g., Holton 1986), this “homogenous eddy diffusion” assumption generally breaks down. We first show analytically why the 1D eddy diffusivity must generally depend both on the horizontal eddy mixing and the chemical lifetime of the species. This implies that the long-lived species and short-lived chemical species will generally exhibit different eddy diffusion profiles, even in a given atmosphere with identical dynamics. Next, we present tracer-transport simulations in a 2D chemical-diffusion-advection model (Shia et al. 1989; Zhang, Shia & Yung 2013) and a 3D general circulation model (MITgcm, e.g., Liu & Showman 2013), for both rapid-rotating planets and tidally-locked exoplanets, to further explore the effect of chemical timescales on the eddy diffusivity. From the 2D and 3D simulation outputs, we derive effective 1D eddy diffusivity profiles for chemical tracers exhibiting a range of chemical timescales. We show that the derived eddy diffusivity can depend strongly on the horizontal eddy mixing and chemistry, although the dependences are more complex than the analytic model predicts. Overall, these results suggest that

  9. A parallel TreeSPH code for galaxy formation

    NASA Astrophysics Data System (ADS)

    Lia, Cesario; Carraro, Giovanni

    2000-05-01

    We describe a new implementation of a parallel TreeSPH code with the aim of simulating galaxy formation and evolution. The code has been parallelized using shmem, a Cray proprietary library to handle communications between the 256 processors of the Silicon Graphics T3E massively parallel supercomputer hosted by the Cineca Super-computing Center (Bologna, Italy).1 The code combines the smoothed particle hydrodynamics (SPH) method for solving hydrodynamical equations with the popular Barnes & Hut tree-code to perform gravity calculation with an N×logN scaling, and it is based on the scalar TreeSPH code developed by Carraro et al. Parallelization is achieved by distributing particles along processors according to a workload criterion. Benchmarks, in terms of load balance and scalability, of the code are analysed and critically discussed against the adiabatic collapse of an isothermal gas sphere test using 2×104 particles on 8 processors. The code results balance at more than the 95per cent level. Increasing the number of processors, the load balance slightly worsens. The deviation from perfect scalability for increasing number of processors is almost negligible up to 32 processors. Finally, we present a simulation of the formation of an X-ray galaxy cluster in a flat cold dark matter cosmology, using 2×105 particles and 32 processors, and compare our results with Evrard's P3M-SPH simulations. Additionally we have incorporated radiative cooling, star formation, feedback from SNe of types II and Ia, stellar winds and UV flux from massive stars, and an algorithm to follow the chemical enrichment of the interstellar medium. Simulations with some of these ingredients are also presented.

  10. Numerical simulations of instabilities in the implosion process of inertial confined fusion in 2D cylindrical coordinates

    NASA Astrophysics Data System (ADS)

    Yong, Heng; Zhai, ChuanLei; Jiang, Song; Song, Peng; Dai, ZhenSheng; Gu, JianFa

    2016-01-01

    In this paper, we introduce a multi-material arbitrary Lagrangian and Eulerian method for the hydrodynamic radiative multi-group diffusion model in 2D cylindrical coordinates. The basic idea in the construction of the method is the following: In the Lagrangian step, a closure model of radiation-hydrodynamics is used to give the states of equations for materials in mixed cells. In the mesh rezoning step, we couple the rezoning principle with the Lagrangian interface tracking method and an Eulerian interface capturing scheme to compute interfaces sharply according to their deformation and to keep cells in good geometric quality. In the interface reconstruction step, a dual-material Moment-of-Fluid method is introduced to obtain the unique interface in mixed cells. In the remapping step, a conservative remapping algorithm of conserved quantities is presented. A number of numerical tests are carried out and the numerical results show that the new method can simulate instabilities in complex fluid field under large deformation, and are accurate and robust.

  11. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  12. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-05-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  13. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities. Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-04-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  14. Hourglass control for Smooth Particle Hydrodynamics removes tensile and rank-deficiency instabilities - Hourglass control for SPH

    NASA Astrophysics Data System (ADS)

    Ganzenmüller, G. C.; Sauer, M.; May, M.; Hiermaier, S.

    2016-03-01

    We present a stabilization scheme for elastoplastic Smooth-Particle Hydrodynamics (SPH) which overcomes two major challenges: (i) the tensile instability inherent to the updated Lagrangian approach is suppressed and (ii) the rank-deficiency instability inherent to the nodal integration approach is cured. To achieve these goals, lessons learned from the Finite-Element Method are transferred to SPH. In particular, an analogue of hourglass control is derived for SPH, which locally linearizes the deformation field to obtain stable and accurate solutions, without the need to resort to stabilization via excessive artificial viscosity. The resulting SPH scheme combines the ability of updated Lagrangian SPH to model truly large deformations with the accuracy and stability needed to faithfully perform simulations. This claim is supported by the analysis of problematic cases and the simulation of an impact scenario.

  15. TITAN2D simulations of pyroclastic flows at Cerro Machín Volcano, Colombia: Hazard implications

    NASA Astrophysics Data System (ADS)

    Murcia, H. F.; Sheridan, M. F.; Macías, J. L.; Cortés, G. P.

    2010-03-01

    Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo-Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km 3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km 2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km 3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km 2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard

  16. Complex fluid flow modeling with SPH on GPU

    NASA Astrophysics Data System (ADS)

    Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro; Russo, Giovanni; Vicari, Annamaria

    2010-05-01

    We describe an implementation of the Smoothed Particle Hydrodynamics (SPH) method for the simulation of complex fluid flows. The algorithm is entirely executed on Graphic Processing Units (GPUs) using the Compute Unified Device Architecture (CUDA) developed by NVIDIA and fully exploiting their computational power. An increase of one to two orders of magnitude in simulation speed over equivalent CPU code is achieved. A complete modeling of the flow of a complex fluid such as lava is challenging from the modelistic, numerical and computational points of view. The natural topography irregularities, the dynamic free boundaries and phenomena such as solidification, presence of floating solid bodies or other obstacles and their eventual fragmentation make the problem difficult to solve using traditional numerical methods (finite volumes, finite elements): the need to refine the discretization grid in correspondence of high gradients, when possible, is computationally expensive and with an often inadequate control of the error; for real-world applications, moreover, the information needed by the grid refinement may not be available (e.g. because the Digital Elevation Models are too coarse); boundary tracking is also problematic with Eulerian discretizations, more so with complex fluids due to the presence of internal boundaries given by fluid inhomogeneity and presence of solidification fronts. An alternative approach is offered by mesh-free particle methods, that solve most of the problems connected to the dynamics of complex fluids in a natural way. Particle methods discretize the fluid using nodes which are not forced on a given topological structure: boundary treatment is therefore implicit and automatic; the movement freedom of the particles also permits the treatment of deformations without incurring in any significant penalty; finally, the accuracy is easily controlled by the insertion of new particles where needed. Our team has developed a new model based on the

  17. The modular approach enables a fully ab initio simulation of the contacts between 3D and 2D materials.

    PubMed

    Fediai, Artem; Ryndyk, Dmitry A; Cuniberti, Gianaurelio

    2016-10-01

    Up to now, the electrical properties of the contacts between 3D metals and 2D materials have never been computed at a fully ab initio level due to the huge number of atomic orbitals involved in a current path from an electrode to a pristine 2D material. As a result, there are still numerous open questions and controversial theories on the electrical properties of systems with 3D/2D interfaces-for example, the current path and the contact length scalability. Our work provides a first-principles solution to this long-standing problem with the use of the modular approach, a method which rigorously combines a Green function formalism with the density functional theory (DFT) for this particular contact type. The modular approach is a general approach valid for any 3D/2D contact. As an example, we apply it to the most investigated among 3D/2D contacts-metal/graphene contacts-and show its abilities and consistency by comparison with existing experimental data. As it is applicable to any 3D/2D interface, the modular approach allows the engineering of 3D/2D contacts with the pre-defined electrical properties. PMID:27502169

  18. Influence of Transport on Two-Dimensional Model Simulation. Tracer Sensitivity to 2-D Model Transport. 1; Long Lived Tracers

    NASA Technical Reports Server (NTRS)

    Fleming, Eric L.; Jackman, Charles H.; Considine, David B.; Stolarski, Richard S.

    1999-01-01

    In this study, we examine the sensitivity of long lived tracers to changes in the base transport components in our 2-D model. Changes to the strength of the residual circulation in the upper troposphere and stratosphere and changes to the lower stratospheric K(sub zz) had similar effects in that increasing the transport rates decreased the overall stratospheric mean age, and increased the rate of removal of material from the stratosphere. Increasing the stratospheric K(sub yy) increased the mean age due to the greater recycling of air parcels through the middle atmosphere, via the residual circulation, before returning to the troposphere. However, increasing K(sub yy) along with self-consistent increases in the corresponding planetary wave drive, which leads to a stronger residual circulation, more than compensates for the K(sub yy)-effect, and produces significantly younger ages throughout the stratosphere. Simulations with very small tropical stratospheric K(sub yy) decreased the globally averaged age of air by as much as 25% in the middle and upper stratosphere, and resulted in substantially weaker vertical age gradients above 20 km in the extratropics. We found only very small stratospheric tracer sensitivity to the magnitude of the horizontal mixing across the tropopause, and to the strength of the mesospheric gravity wave drag and diffusion used in the model. We also investigated the transport influence on chemically active tracers and found a strong age-tracer correlation, both in concentration and calculated lifetimes. The base model transport gives the most favorable overall comparison with a variety of inert tracer observations, and provides a significant improvement over our previous 1995 model transport. Moderate changes to the base transport were found to provide modest agreement with some of the measurements. Transport scenarios with residence times ranging from moderately shorter to slightly longer relative to the base case simulated N2O lifetimes

  19. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters

    NASA Astrophysics Data System (ADS)

    Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar

    2016-05-01

    One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.

  20. Analysis of the terrestrial ion foreshock: 2D Full-Particle simulation of a curved supercritical shock

    NASA Astrophysics Data System (ADS)

    Lembege, B.; Savoini, P.; Stienlet, J.

    2013-05-01

    Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental

  1. Fundamental differences between SPH and grid methods

    NASA Astrophysics Data System (ADS)

    Agertz, Oscar; Moore, Ben; Stadel, Joachim; Potter, Doug; Miniati, Francesco; Read, Justin; Mayer, Lucio; Gawryszczak, Artur; Kravtsov, Andrey; Nordlund, Åke; Pearce, Frazer; Quilis, Vicent; Rudd, Douglas; Springel, Volker; Stone, James; Tasker, Elizabeth; Teyssier, Romain; Wadsley, James; Walder, Rolf

    2007-09-01

    We have carried out a comparison study of hydrodynamical codes by investigating their performance in modelling interacting multiphase fluids. The two commonly used techniques of grid and smoothed particle hydrodynamics (SPH) show striking differences in their ability to model processes that are fundamentally important across many areas of astrophysics. Whilst Eulerian grid based methods are able to resolve and treat important dynamical instabilities, such as Kelvin-Helmholtz or Rayleigh-Taylor, these processes are poorly or not at all resolved by existing SPH techniques. We show that the reason for this is that SPH, at least in its standard implementation, introduces spurious pressure forces on particles in regions where there are steep density gradients. This results in a boundary gap of the size of an SPH smoothing kernel radius over which interactions are severely damped.

  2. Implicit integrations for SPH in semi-Lagrangian approach: Application to the accretion disc modeling in a microquasar

    NASA Astrophysics Data System (ADS)

    Lanzafame, G.

    2013-03-01

    Current explicit integration techniques in fluid dynamics are deeply limited by the Courant-Friedrichs-Lewy condition of the time step progression, based on the adopted spatial resolution coupled with the maximum value between the kinetic velocity or the signal transmission speed in the computational domain. Eulerian implicit integration techniques, even though more time consuming, can allow us to perform stable computational fluid dynamics paying the price of a relatively larger inaccuracy in the calculations, without suffering such a strict temporal limitation. In this paper, we present a simple and effective scheme to perform free Lagrangian Smooth Particle Hydrodynamics (SPH) implicit integrations in the semi-Lagrangian approach without any Jacobian matrix inversion operations for viscous Navier-Stokes flows. Applications to SPH accretion disc simulation around a massive black hole (MBH) in a binary stellar system are shown, together with the comparison to the same results obtained according to the traditional explicit integration techniques. Some 1D and 2D critical tests are also discussed to check the validity of the technique.

  3. MODELING HIGH-ENERGY LIGHT CURVES OF THE PSR B1259-63/LS 2883 BINARY BASED ON 3D SPH SIMULATIONS

    SciTech Connect

    Takata, J.; Okazaki, A. T.; Nagataki, S.; Lee, S.-H.; Naito, T.; Kawachi, A.; Mori, M.; Hayasaki, K.; Yamaguchi, M. S.; Owocki, S. P.

    2012-05-01

    Temporal changes of X-ray to very high energy gamma-ray emissions from the pulsar-Be-star binary PSR B1259-63/LS 2883 are studied based on three-dimensional smoothed particle hydrodynamic simulations of pulsar wind interaction with Be-disk and wind. We focus on the periastron passage of the binary and calculate the variation of the synchrotron and inverse-Compton emissions using the simulated shock geometry and pressure distribution of the pulsar wind. The characteristic double-peaked X-ray light curve from observations is reproduced by our simulation under a dense Be-disk condition (base density {approx}10{sup -9} g cm{sup -3}). We interpret the pre- and post-periastron peaks as being due to a significant increase in the conversion efficiency from pulsar spin-down power to the shock-accelerated particle energy at orbital phases when the pulsar crosses the disk before periastron passage, and when the pulsar wind creates a cavity in the disk gas after periastron passage, respectively. On the contrary, in the model TeV light curve, which also shows a double-peak feature, the first peak appears around the periastron phase. The possible effects of cooling processes on the TeV light curve are briefly discussed.

  4. Balancing the source terms in a SPH model for solving the shallow water equations

    NASA Astrophysics Data System (ADS)

    Xia, Xilin; Liang, Qiuhua; Pastor, Manuel; Zou, Weilie; Zhuang, Yan-Feng

    2013-09-01

    A shallow flow generally features complex hydrodynamics induced by complicated domain topography and geometry. A numerical scheme with well-balanced flux and source term gradients is therefore essential before a shallow flow model can be applied to simulate real-world problems. The issue of source term balancing has been exhaustively investigated in grid-based numerical approaches, e.g. discontinuous Galerkin finite element methods and finite volume Godunov-type methods. In recent years, a relatively new computational method, smooth particle hydrodynamics (SPH), has started to gain popularity in solving the shallow water equations (SWEs). However, the well-balanced problem has not been fully investigated and resolved in the context of SPH. This work aims to discuss the well-balanced problem caused by a standard SPH discretization to the SWEs with slope source terms and derive a corrected SPH algorithm that is able to preserve the solution of lake at rest. In order to enhance the shock capturing capability of the resulting SPH model, the Monotone Upwind-centered Scheme for Conservation Laws (MUSCL) is also explored and applied to enable Riemann solver based artificial viscosity. The new SPH model is validated against several idealized benchmark tests and a real-world dam-break case and promising results are obtained.

  5. Parallel Tree-SPH: A Tool for Galaxy Formation

    NASA Astrophysics Data System (ADS)

    Lia, C.; Carraro, G.

    We describe a new implementation of a parallel Tree-SPH code with the aim of simulating galaxy formation and evolution. The code has been parallelized using SHMEM, a Cray proprietary library to handle communications between the 256 processors of the Silicon Graphics T3E massively parallel supercomputer hosted by the Cineca Super-computing Center (Bologna, Italy). The code combines the smoothed particle hydrodynamics (SPH) method to solve hydrodynamical equations with the popular Barnes and Hut (1986) tree-code to perform gravity calculation with a N × log N scaling, and it is based on the scalar Tree-SPH code developed by Carraro et al. (1998). Parallelization is achieved by distributing particles along processors according to a workload criterion. Benchmarks of the code, in terms of load balance and scalability, are analysed and critically discussed against the adiabatic collapse of an isothermal gas sphere test using 2 × 10^4 particles on eight processors. The code turns out to be balanced at more than 95% level. If the number of processors is increased, the load balance worsens slightly. The deviation from perfect scalability at increasing number of processors is negligible up to 64 processors. Additionally we have incorporated radiative cooling, star formation, feedback and an algorithm to follow the chemical enrichment of the interstellar medium.

  6. Density estimators in particle hydrodynamics. DTFE versus regular SPH

    NASA Astrophysics Data System (ADS)

    Pelupessy, F. I.; Schaap, W. E.; van de Weygaert, R.

    2003-05-01

    We present the results of a study comparing density maps reconstructed by the Delaunay Tessellation Field Estimator (DTFE) and by regular SPH kernel-based techniques. The density maps are constructed from the outcome of an SPH particle hydrodynamics simulation of a multiphase interstellar medium. The comparison between the two methods clearly demonstrates the superior performance of the DTFE with respect to conventional SPH methods, in particular at locations where SPH appears to fail. Filamentary and sheetlike structures form telling examples. The DTFE is a fully self-adaptive technique for reconstructing continuous density fields from discrete particle distributions, and is based upon the corresponding Delaunay tessellation. Its principal asset is its complete independence of arbitrary smoothing functions and parameters specifying the properties of these. As a result it manages to faithfully reproduce the anisotropies of the local particle distribution and through its adaptive and local nature proves to be optimally suited for uncovering the full structural richness in the density distribution. Through the improvement in local density estimates, calculations invoking the DTFE will yield a much better representation of physical processes which depend on density. This will be crucial in the case of feedback processes, which play a major role in galaxy and star formation. The presented results form an encouraging step towards the application and insertion of the DTFE in astrophysical hydrocodes. We describe an outline for the construction of a particle hydrodynamics code in which the DTFE replaces kernel-based methods. Further discussion addresses the issue and possibilities for a moving grid-based hydrocode invoking the DTFE, and Delaunay tessellations, in an attempt to combine the virtues of the Eulerian and Lagrangian approaches.

  7. Volcanic flood simulation of magma effusion using FLO-2D for drainage of a caldera lake at the Mt. Baekdusan

    NASA Astrophysics Data System (ADS)

    Lee, Khil-Ha; Kim, Sung-Wook; Kim, Sang-Hyun

    2014-05-01

    model, called FLO-2D runs to simulate channel routing downstream to give the maximum water level. Once probable inundation areas are identified by the huge volume of water in the caldera lake, the unique geography, and the limited control capability, a potential hazard assessment can be represented. The study will contribute to build a geohazard map for the decision-makers and practitioners. Keywords: Volcanic flood, Caldera lake, Hazard assessment, Magma effusion Acknowledgement This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-2] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  8. SIMULATIONS OF 2D AND 3D THERMOCAPILLARY FLOWS BY A LEAST-SQUARES FINITE ELEMENT METHOD. (R825200)

    EPA Science Inventory

    Numerical results for time-dependent 2D and 3D thermocapillary flows are presented in this work. The numerical algorithm is based on the Crank-Nicolson scheme for time integration, Newton's method for linearization, and a least-squares finite element method, together with a matri...

  9. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors.

    PubMed

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168

  10. ScintSim1: A new Monte Carlo simulation code for transport of optical photons in 2D arrays of scintillation detectors

    PubMed Central

    Mosleh-Shirazi, Mohammad Amin; Zarrini-Monfared, Zinat; Karbasi, Sareh; Zamani, Ali

    2014-01-01

    Two-dimensional (2D) arrays of thick segmented scintillators are of interest as X-ray detectors for both 2D and 3D image-guided radiotherapy (IGRT). Their detection process involves ionizing radiation energy deposition followed by production and transport of optical photons. Only a very limited number of optical Monte Carlo simulation models exist, which has limited the number of modeling studies that have considered both stages of the detection process. We present ScintSim1, an in-house optical Monte Carlo simulation code for 2D arrays of scintillation crystals, developed in the MATLAB programming environment. The code was rewritten and revised based on an existing program for single-element detectors, with the additional capability to model 2D arrays of elements with configurable dimensions, material, etc., The code generates and follows each optical photon history through the detector element (and, in case of cross-talk, the surrounding ones) until it reaches a configurable receptor, or is attenuated. The new model was verified by testing against relevant theoretically known behaviors or quantities and the results of a validated single-element model. For both sets of comparisons, the discrepancies in the calculated quantities were all <1%. The results validate the accuracy of the new code, which is a useful tool in scintillation detector optimization. PMID:24600168