NASA Astrophysics Data System (ADS)
Susskind, Leonard
2013-01-01
After reviewing the original motivation for the formulation of string theory and what we learned from it, I discuss some of the implications of the holographic principle and of string dualities for the question of the building blocks of nature.
String Theory and Gauge Theories
Maldacena, Juan
2009-02-20
We will see how gauge theories, in the limit that the number of colors is large, give string theories. We will discuss some examples of particular gauge theories where the corresponding string theory is known precisely, starting with the case of the maximally supersymmetric theory in four dimensions which corresponds to ten dimensional string theory. We will discuss recent developments in this area.
Supersymmetry and String Theory
NASA Astrophysics Data System (ADS)
Dine, Michael
2016-01-01
Preface to the first edition; Preface to the second edition; A note on choice of metric; Text website; Part I. Effective Field Theory: The Standard Model, Supersymmetry, Unification: 1. Before the Standard Model; 2. The Standard Model; 3. Phenomenology of the Standard Model; 4. The Standard Model as an effective field theory; 5. Anomalies, instantons and the strong CP problem; 6. Grand unification; 7. Magnetic monopoles and solitons; 8. Technicolor: a first attempt to explain hierarchies; Part II. Supersymmetry: 9. Supersymmetry; 10. A first look at supersymmetry breaking; 11. The Minimal Supersymmetric Standard Model; 12. Supersymmetric grand unification; 13. Supersymmetric dynamics; 14. Dynamical supersymmetry breaking; 15. Theories with more than four conserved supercharges; 16. More supersymmetric dynamics; 17. An introduction to general relativity; 18. Cosmology; 19. Astroparticle physics and inflation; Part III. String Theory: 20. Introduction; 21. The bosonic string; 22. The superstring; 23. The heterotic string; 24. Effective actions in ten dimensions; 25. Compactification of string theory I. Tori and orbifolds; 26. Compactification of string theory II. Calabi–Yau compactifications; 27. Dynamics of string theory at weak coupling; 28. Beyond weak coupling: non-perturbative string theory; 29. Large and warped extra dimensions; 30. The landscape: a challenge to the naturalness principle; 31. Coda: where are we headed?; Part IV. The Appendices: Appendix A. Two-component spinors; Appendix B. Goldstone's theorem and the pi mesons; Appendix C. Some practice with the path integral in field theory; Appendix D. The beta function in supersymmetric Yang–Mills theory; References; Index.
Universality and string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas Christian
The first run at the Large Hadron Collider has deeply challenged conventional notions of naturalness, and CMB polarization experiments are about to open a new window to early universe cosmology. As a compelling candidate for the ultraviolet completion of the standard model, string theory provides a prime opportunity to study both early universe cosmology and particle physics. However, relating low energy observations to ultraviolet physics requires knowledge of the metastable states of string theory through the study of vacua. While it is difficult to directly obtain infrared data from explicit string theory constructions, string theory imposes constraints on low energy physics. The study of ensembles of low energy theories consistent with ultra-violet constraints provides insight on generic features we might expect to occur in string compactifications. In this thesis we present a statistical treatment of vacuum stability and vacuum properties in the context of random supergravity theories motivated by string theory. Early universe cosmology provides another avenue to high energy physics. From the low energy perspective large field inflation is typically considered highly unnatural: the scale relevant for the diameter of flat regions in moduli space is sub-Planckian in regions of perturbative control. To approach this problem, we consider generic Calabi-Yau compactifications of string theory and find that super-Planckian diameters of axion fundamental domains in fact arise generically. We further demonstrate that such super-Planckian flat regions are plausibly consistent with theWeak Gravity Conjecture.
Ahlén, Olof
2015-12-17
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R{sup 4}-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
NASA Astrophysics Data System (ADS)
Ahlén, Olof
2015-12-01
These proceedings from the second Caesar Lattes meeting in Rio de Janeiro 2015 are a brief introduction to how automorphic forms appear in the low energy effective action of maximally supersymmetric string theory. The explicit example of the R4-interaction of type IIB string theory in ten dimensions is discussed. Its Fourier expansion is interpreted in terms of perturbative and non-perturbative contributions to the four graviton amplitude.
NASA Astrophysics Data System (ADS)
Jejjala, Vishnu; Minic, Djordje; Ng, Y. Jack; Tze, Chia-Hsiung
We propose a string theory of turbulence that explains the Kolmogorov scaling in 3+1 dimensions and the Kraichnan and Kolmogorov scalings in 2+1 dimensions. This string theory of turbulence should be understood in light of the AdS/CFT dictionary. Our argument is crucially based on the use of Migdal's loop variables and the self-consistent solutions of Migdal's loop equations for turbulence. In particular, there is an area law for turbulence in 2+1 dimensions related to the Kraichnan scaling.
NASA Astrophysics Data System (ADS)
Cappelli, Andrea; Castellani, Elena; Colomo, Filippo; Di Vecchia, Paolo
2012-04-01
Part I. Overview: 1. Introduction and synopsis; 2. Rise and fall of the hadronic string G. Veneziano; 3. Gravity, unification, and the superstring J. H. Schwarz; 4. Early string theory as a challenging case study for philosophers E. Castellani; Part II. The Prehistory: The Analytic S-Matrix: 5. Introduction to Part II; 6. Particle theory in the sixties: from current algebra to the Veneziano amplitude M. Ademollo; 7. The path to the Veneziano model H. R. Rubinstein; 8. Two-component duality and strings P. G. O. Freund; 9. Note on the prehistory of string theory M. Gell-Mann; Part III. The Dual Resonance Model: 10. Introduction to Part III; 11. From the S-matrix to string theory P. Di Vecchia; 12. Reminiscence on the birth of string theory J. A. Shapiro; 13. Personal recollections D. Amati; 14. Early string theory at Fermilab and Rutgers L. Clavelli; 15. Dual amplitudes in higher dimensions: a personal view C. Lovelace; 16. Personal recollections on dual models R. Musto; 17. Remembering the 'supergroup' collaboration F. Nicodemi; 18. The '3-Reggeon vertex' S. Sciuto; Part IV. The String: 19. Introduction to Part IV; 20. From dual models to relativistic strings P. Goddard; 21. The first string theory: personal recollections L. Susskind; 22. The string picture of the Veneziano model H. B. Nielsen; 23. From the S-matrix to string theory Y. Nambu; 24. The analogue model for string amplitudes D. B. Fairlie; 25. Factorization in dual models and functional integration in string theory S. Mandelstam; 26. The hadronic origins of string theory R. C. Brower; Part V. Beyond the Bosonic String: 27. Introduction to Part V; 28. From dual fermion to superstring D. I. Olive; 29. Dual models with fermions: memoirs of an early string theorist P. Ramond; 30. Personal recollections A. Neveu; 31. Aspects of fermionic dual models E. Corrigan; 32. The dual quark models K. Bardakci and M. B. Halpern; 33. Remembering the dawn of relativistic strings J.-L. Gervais; 34. Early string theory in
String theory effective action; String loop corrections
Tseytlin, A.A. )
1988-01-01
The authors discuss the general ideology of the computation of string loop corrections to the effective action for the massless modes of the string. Both the S-matrix and the sigma-model approaches are presented. It is emphasized that the effective action is more general and better defined object than the S-matrix. In particular, it is finite in spite of modular infinities that may be present in loop amplitudes computed near a wrong vacuum. The case of the disc topology in the open-closed string theory is treated in some detail. Some issues concerning the soft dilation vertex operators related to the infinities of the string amplitudes are discussed.
Kachru, Shamit; McAllister, Liam; Sundrum, Raman
2007-04-04
We study sequestering, a prerequisite for flavor-blind supersymmetry breaking in several high-scale mediation mechanisms, in compactifications of type IIB string theory. We find that although sequestering is typically absent in unwarped backgrounds, strongly warped compactifications do readily sequester. The AdS/CFT dual description in terms of conformal sequestering plays an important role in our analysis, and we establish how sequestering works both on the gravity side and on the gauge theory side. We pay special attention to subtle compactification effects that can disrupt sequestering. Our result is a step toward realizing an appealing pattern of soft terms in a KKLT compactification.
Svrcek, Peter; Witten, Edward; /Princeton, Inst. Advanced Study
2006-06-09
In the context of string theory, axions appear to provide the most plausible solution of the strong CP problem. However, as has been known for a long time, in many string-based models, the axion coupling parameter Fa is several orders of magnitude higher than the standard cosmological bounds. We re-examine this problem in a variety of models, showing that Fa is close to the GUT scale or above in many models that have GUT-like phenomenology, as well as some that do not. On the other hand, in some models with Standard Model gauge fields supported on vanishing cycles, it is possible for Fa to be well below the GUT scale.
Lyons, A. ); Hawking, S.W. )
1991-12-15
We discuss the wormhole effective interactions in string theory, thought of as a sum over two-dimensional field theories on different world sheets. The effective interactions are calculated in the dilute wormhole approximation,'' initially by considering the Green's functions on higher-genus Riemann surfaces, and then by calculating the effect of a complete basis of wave functions on scattering amplitudes for a surface with a boundary. The sum over wormholes is equivalent to having a world sheet of trivial topology and summing over different space-time and matter-field backgrounds. To leading order these consist of the massless fluctuations, since the tachyon cancels out when a sum is done over different spin structures going through the wormhole. In this way we recover quantized general relativity as an effective theory, from a sum over field theories on higher-genus Riemann surfaces.
NASA Astrophysics Data System (ADS)
Becker, Katrin; Becker, Melanie; Schwarz, John H.
String theory is one of the most exciting and challenging areas of modern theoretical physics. This book guides the reader from the basics of string theory to recent developments. It introduces the basics of perturbative string theory, world-sheet supersymmetry, space-time supersymmetry, conformal field theory and the heterotic string, before describing modern developments, including D-branes, string dualities and M-theory. It then covers string geometry and flux compactifications, applications to cosmology and particle physics, black holes in string theory and M-theory, and the microscopic origin of black-hole entropy. It concludes with Matrix theory, the AdS/CFT duality and its generalizations. This book is ideal for graduate students and researchers in modern string theory, and will make an excellent textbook for a one-year course on string theory. It contains over 120 exercises with solutions, and over 200 homework problems with solutions available on a password protected website for lecturers at www.cambridge.org/9780521860697. Comprehensive coverage of topics from basics of string theory to recent developments Ideal textbook for a one-year course in string theory Includes over 100 exercises with solutions Contains over 200 homework problems with solutions available to lecturers on-line
NASA Astrophysics Data System (ADS)
Hashimoto, Koji; Morita, Takeshi
2011-08-01
In generic holographic QCD, we find that baryons are bound to form a nucleus, and that its radius obeys the empirically-known mass-number (A) dependence r∝A1/3 for large A. Our result is robust, since we use only a generic property of D-brane actions in string theory. We also show that nucleons are bound completely in a finite volume. Furthermore, employing a concrete holographic model (derived by Hashimoto, Iizuka, and Yi, describing a multibaryon system in the Sakai-Sugimoto model), the nuclear radius is evaluated as O(1)×A1/3[fm], which is consistent with experiments.
String theories and millisecond pulsars
NASA Astrophysics Data System (ADS)
Sanchez, N.; Signore, M.
1988-11-01
We discuss the two ways of connecting string theories (cosmic, fundamental and the connection between them) to the observational reality: (i) radioastronomy observations (millisecond pulsar timing), and (ii) elementary particle phenomenology (compactification schemes). We study the limits imposed on the string parameter Gμ by recent millisecond pulsar timings. Cosmic strings derived from GUTs agree with (i). For cosmic strings derived from fundamental strings themselves there is contradiction between (i) and (ii). One of these scenarios connecting string theory to reality must be revised (or the transition from fundamental into cosmic strings rejected). Meanwhile, millisecond pulsar can select one scenario, or reject both of them. UA 336 Laboratoire Associé au CNRS, Observatoire de Meudon et Ecole Normale Supérieure, 24 rue Lhomond, F-75231 Paris Cedex 05, France.
Non-supersymmetric string theory
NASA Astrophysics Data System (ADS)
Martinec, Emil J.; Robbins, Daniel; Sethi, Savdeep
2011-10-01
A class of non-supersymmetric string backgrounds can be constructed using twists that involve space-time fermion parity. We propose a non-perturbative definition of string theory in these backgrounds via gauge theories with supersymmetry softly broken by twisted boundary conditions. The perturbative string spectrum is reproduced, and qualitative effects of the interactions are discussed. Along the way, we find an interesting mechanism for inflation. The end state of closed string tachyon condensation is a highly excited state in the gauge theory which, in all likelihood, does not have a geometric interpretation.
Classical theory of radiating strings
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Haws, D.; Hindmarsh, M.
1990-01-01
The divergent part of the self force of a radiating string coupled to gravity, an antisymmetric tensor and a dilaton in four dimensions are calculated to first order in classical perturbation theory. While this divergence can be absorbed into a renormalization of the string tension, demanding that both it and the divergence in the energy momentum tensor vanish forces the string to have the couplings of compactified N = 1 D = 10 supergravity. In effect, supersymmetry cures the classical infinities.
Field theory for string fluids
NASA Astrophysics Data System (ADS)
Schubring, Daniel; Vanchurin, Vitaly
2015-08-01
We develop a field theory description of nondissipative string fluids and construct an explicit mapping between field theory degrees of freedom and hydrodynamic variables. The theory generalizes both a perfect particle fluid and pressureless string fluid to what we call a perfect string fluid. Ideal magnetohydrodynamics is shown to be an example of the perfect string fluid whose equations of motion can be obtained from a particular choice of the Lagrangian. The Lagrangian framework suggests a straightforward extension of the perfect string fluid to more general anisotropic fluids describing higher dimensional branes such as domain walls. Other modifications of the Lagrangian are discussed which may be useful in describing relativistic superfluids and fluids containing additional currents.
Comparing double string theory actions
NASA Astrophysics Data System (ADS)
De Angelis, L.; Gionti S. J, G.; Marotta, R.; Pezzella, F.
2014-04-01
Aimed to a deeper comprehension of a manifestly T-dual invariant formulation of string theory, in this paper a detailed comparison between the non-covariant action proposed by Tseytlin and the covariant one proposed by Hull is done. These are obtained by making both the string coordinates and their duals explicitly appear, on the same footing, in the world-sheet action, so "doubling" the string coordinates along the compact dimensions. After a discussion on the nature of the constraints in both the models and the relative quantization, it results that the string coordinates and their duals behave like "non-commuting" phase space coordinates but their expressions in terms of Fourier modes generate the oscillator algebra of the standard bosonic string. A proof of the equivalence of the two formulations is given. Furthermore, open-string solutions are also discussed.
Closed string cohomology in open string field theory
NASA Astrophysics Data System (ADS)
Moeller, Nicolas; Sachs, Ivo
2011-07-01
We show that closed string states in bosonic string field theory are encoded in the cyclic cohomology of cubic open string field theory (OSFT) which, in turn, classifies the deformations of OSFT. This cohomology is then shown to be independent of the open string background. Exact elements correspond to closed string gauge transformations, generic boundary deformations of Witten's 3-vertex and infinitesimal shifts of the open string background. Finally it is argued that the closed string cohomology and the cyclic cohomology of OSFT are isomorphic to each other.
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
NASA Astrophysics Data System (ADS)
Frampton, Paul H.
2016-04-01
In this note, I recollect a two-week period in September 1968 when I factorized the Veneziano model using string variables in Chicago. Professor Yoichiro Nambu went on to calculate the N-particle dual resonance model and then to factorize it on an exponential degeneracy of states. That was in 1968 and the following year 1969 he discovered the string action. I also include some other reminiscences of Nambu who passed away on July 5, 2015.
Nuclear Force from String Theory
NASA Astrophysics Data System (ADS)
Hashimoto, Koji
2010-04-01
Recent "technology" called holography, or gauge/string duality (AdS/CFT correspondence) found in string theory, makes it possible to compute various quantities of strongly coupled gauge theories. This technology was applied to QCD, and it was found that it describes surprisingly well important properties of low energy QCD, the hadron physics. We apply it further to nuclear physics. In this talk, I review a part of the developments of the holographic QCD, and show a computation of nuclear force at short distance, derived using the holographic QCD, which was done in collaboration with T. Sakai and S. Sugimoto [K. Hashimoto, T. Sakai, and S. Sugimoto, "Holographic Baryons: Static Properties and Form Factors from Gauge/String Duality," Prog. Theor. Phys. 120 (2008) 1093-1137, arXiv:0806.3122 [hep-th]; K. Hashimoto, T. Sakai, and S. Sugimoto, "Nuclear Force from String Theory," arXiv:0901.4449 [hep-th
Homotopy Classification of Bosonic String Field Theory
NASA Astrophysics Data System (ADS)
Münster, Korbinian; Sachs, Ivo
2014-09-01
We prove the decomposition theorem for the loop homotopy Lie algebra of quantum closed string field theory and use it to show that closed string field theory is unique up to gauge transformations on a given string background and given S-matrix. For the theory of open and closed strings we use results in open-closed homotopy algebra to show that the space of inequivalent open string field theories is isomorphic to the space of classical closed string backgrounds. As a further application of the open-closed homotopy algebra, we show that string field theory is background independent and locally unique in a very precise sense. Finally, we discuss topological string theory in the framework of homotopy algebras and find a generalized correspondence between closed strings and open string field theories.
Duality symmetries in string theory
Nunez, Carmen A.
1999-10-25
The search for a unified theory of quantum gravity and gauge interactions leads naturally to string theory. This field of research has received a revival of interest after the discovery of duality symmetries in recent years. We present a self contained account of some non-perturbative aspects of string theory which have been recently understood. The spectrum and interactions of the five consistent superstring theories in ten dimensions are recollected and the fundamental principles underlying this initial stage in the construction of the theory are briefly reviewed. We next discuss some evidences that these apparently different superstrings are just different aspects of one unique theory. The key to this development is given by the non-perturbative duality symmetries which have modified and improved our understanding of string dynamics in many ways. In particular, by relating the fundamental objects of one theory to solitons of another theory, they have unraveled the presence of extended objects in the theory which stand on an equal footing with strings. We introduce these higher dimensional objects, named D-branes, and discuss applications of D-brane physics.
Towards Inflation in String Theory
Kachru, Shamit
2003-08-25
We investigate the embedding of brane inflation into stable compactifications of string theory. At first sight a warped compactification geometry seems to produce a naturally flat inflation potential, evading one well-known difficulty of brane-antibrane scenarios. Careful consideration of the closed string moduli reveals a further obstacle: superpotential stabilization of the compactification volume typically modifies the inflation potential and renders it too steep for inflation. We discuss the non-generic conditions under which this problem does not arise. We conclude that brane inflation models can only work if restrictive assumptions about the method of volume stabilization, the warping of the internal space, and the source of inflationary energy are satisfied. We argue that this may not be a real problem, given the large range of available fluxes and background geometries in string theory.
D-brane Falling into 2d Black-hole and Closed String Radiation
NASA Astrophysics Data System (ADS)
Sugawara, Yuji
2005-12-01
We study the dynamics of D0-brane falling into the Lorentzian 2-dimensional black hole (2D BH), typically arising in the near-horizon limit of non-extremal NS5-brane background, by the methods of boundary state. The `falling D0-brane' is expected to be obtained by the Wick rotation from the known D1-brane solution on the Euclidean 2D BH. Despite its easiness in the classical solution, the Wick rotation in the boundary conformal theory is rather non-trivial due to ambiguities of boundary conditions. We propose the exact boundary state describing it, clarifying the role of boundary condition. We also evaluate the closed string radiation from the infalling brane. An expected thermal-like behavior at the Hawking temperature is observed in the outgoing radiation. On the other hand, it is remarkably found that the incoming radiation absorbed by the black hole effectively shows the Hagedorn-like behavior with precise α'-correction. This fact implies that the radiation products are dominated by very massive, highly non-relativistic closed string states like the tachyon matter. The radiation rate curiously depends on the level k of SL(2)/U(1) supercoset, suggesting the `black hole/string phase transition' at k = 1 (k = 3 for the bosonic coset) discussed recently.
Exploring the spectrum of regularized bosonic string theory
Ambjørn, J. Makeenko, Y.
2015-03-15
We implement a UV regularization of the bosonic string by truncating its mode expansion and keeping the regularized theory “as diffeomorphism invariant as possible.” We compute the regularized determinant of the 2d Laplacian for the closed string winding around a compact dimension, obtaining the effective action in this way. The minimization of the effective action reliably determines the energy of the string ground state for a long string and/or for a large number of space-time dimensions. We discuss the possibility of a scaling limit when the cutoff is taken to infinity.
[Mathematics and string theory
Jaffe, A.; Yau, Shing-Tung.
1993-01-01
Work on this grant was centered on connections between non- commutative geometry and physics. Topics covered included: cyclic cohomology, non-commutative manifolds, index theory, reflection positivity, space quantization, quantum groups, number theory, etc.
Ambitwistor string theory in the operator formalism
NASA Astrophysics Data System (ADS)
Reid-Edwards, R. A.
2016-06-01
After a brief overview of the operator formalism for conventional string theory, an operator formalism for ambitwistor string theory is presented. It is shown how tree level supergravity scattering amplitudes are recovered in this formalism. More general applications of this formalism to loop amplitudes and the construction of an ambitwistor string field theory are briefly discussed.
Introduction to the theory of strings
Peskin, M.E.
1985-10-01
These lectures present, from an introductory perspective, some basic aspects of the quantum theory of strings. They treat (1) the kinematics, spectrum, and scattering amplitude of the bosonic string, (2) the spectrum and supersymmetry of Green-Schwarz superstring, and (3) the identification of the underlying gauge invariances of the string theory. 43 refs.
Extended 2D generalized dilaton gravity theories
NASA Astrophysics Data System (ADS)
de Mello, R. O.
2008-09-01
We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2D relativity principle, which introduces a non-trivial centre in the 2D Poincaré algebra. Then we work out the reduced phase space of the anomaly-free 2D relativistic particle, in order to show that it lives in a noncommutative 2D Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2D generalized dilaton gravity models by a specific Maxwell component, which guages the extra symmetry associated with the centre of the 2D Poincaré algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of spacetime. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved spacetime, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson Sigma models based on a nonlinear deformation of the extended Poincaré algebra.
(Mathematics and string theory)
Not Available
1992-01-01
Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.
Introduction to string theory and conformal field theory
Belavin, A. A. Tarnopolsky, G. M.
2010-05-15
A concise survey of noncritical string theory and two-dimensional conformal field theory is presented. A detailed derivation of a conformal anomaly and the definition and general properties of conformal field theory are given. Minimal string theory, which is a special version of the theory, is considered. Expressions for the string susceptibility and gravitational dimensions are derived.
Black holes and black strings of N = 2, d = 5 supergravity in the H-FGK formalism
NASA Astrophysics Data System (ADS)
Meessen, Patrick; Ortín, Tomás; Perz, Jan; Shahbazi, C. S.
2012-09-01
We study general classes and properties of extremal and non-extremal static black-hole solutions of N = 2, d = 5 supergravity coupled to vector multiplets using the recently proposed H-FGK formalism, which we also extend to static black strings. We explain how to determine the integration constants and physical parameters of the blackhole and black-string solutions. We derive some model-independent statements, including the transformation of non-extremal flow equations to the form of those for the extremal flow. We apply our methods to the construction of example solutions (among others a new extremal string solution of heterotic string theory on K 3 × S 1). In the cases where we have calculated it explicitly, the product of areas of the inner and outer horizon of a non-extremal solution coincides with the square of the moduli-independent area of the horizon of the extremal solution with the same charges.
Bell's Inequalities, Superquantum Correlations, and String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu; Tze, Chia-Hsiung
2011-01-01
We offermore » an interpretation of superquantum correlations in terms of a “doubly” quantum theory. We argue that string theory, viewed as a quantum theory with two deformation parameters, the string tension α ' , and the string coupling constant g s , is such a superquantum theory that transgresses the usual quantum violations of Bell's inequalities. We also discuss the ℏ → ∞ limit of quantum mechanics in this context. As a superquantum theory, string theory should display distinct experimentally observable supercorrelations of entangled stringy states.« less
String theory as a Lilliputian world
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Makeenko, Y.
2016-05-01
Lattice regularizations of the bosonic string do not allow us to probe the tachyon. This has often been viewed as the reason why these theories have never managed to make any contact to standard continuum string theories when the dimension of spacetime is larger than two. We study the continuum string theory in large spacetime dimensions where simple mean field theory is reliable. By keeping carefully the cutoff we show that precisely the existence of a tachyon makes it possible to take a scaling limit which reproduces the lattice-string results. We compare this scaling limit with another scaling limit which reproduces standard continuum-string results. If the people working with lattice regularizations of string theories are akin to Gulliver they will view the standard string-world as a Lilliputian world no larger than a few lattice spacings.
String Theory: Big Problem for Small Size
ERIC Educational Resources Information Center
Sahoo, S.
2009-01-01
String theory is the most promising candidate theory for a unified description of all the fundamental forces that exist in nature. It provides a mathematical framework that combines quantum theory with Einstein's general theory of relativity. The typical size of a string is of the order of 10[superscript -33] cm, called the Planck length. But due…
Introduction to string field theory
Lykken, J.; Raby, S.
1986-01-01
An action is proposed for an interacting closed bosonic string. Our formalism relies heavily on ideas discussed by Witten for the open bosonic string. The gauge fixed quantum action for the fully interacting open bosonic string is obtained.
Chern-Simons theory and topological strings
Marino, Marcos
2005-04-01
A review of the relation between Chern-Simons gauge theory and topological string theory on noncompact Calabi-Yau spaces is given. This relation has made it possible to give an exact solution of topological string theory on these spaces to all orders in the string coupling constant. Here the focus is on the construction of this solution, which is encoded in the topological vertex, and the implications of the physics of string/gauge theory duality for knot theory and for the geometry of Calabi-Yau manifolds.
Big bang models in string theory
NASA Astrophysics Data System (ADS)
Craps, Ben
2006-11-01
These proceedings are based on lectures delivered at the 'RTN Winter School on Strings, Supergravity and Gauge Theories', CERN, 16 20 January 2006. The school was mainly aimed at PhD students and young postdocs. The lectures start with a brief introduction to spacetime singularities and the string theory resolution of certain static singularities. Then they discuss attempts to resolve cosmological singularities in string theory, mainly focusing on two specific examples: the Milne orbifold and the matrix big bang.
Supersymmetry breaking in string theory
Dixon, L.J.
1990-04-01
I briefly review the problems with previous investigations of supersymmetry breaking in string theory --- at tree-level, at one-loop, and non-perturbatively. A variant of the original non-perturbative scenario is proposed, in which gaugino condensation takes place in two different strongly-interacting hidden-sector gauge groups. In the new scenario it is possible to generate a large hierarchy of mass scale and to simultaneously stabilize the dilaton at a large expectation value (weak coupling). However, it is still uncertain whether supersymmetry is broken in such a vacuum. 26 refs.
Planckian axions in string theory
NASA Astrophysics Data System (ADS)
Bachlechner, Thomas C.; Long, Cody; McAllister, Liam
2015-12-01
We argue that super-Planckian diameters of axion fundamental domains can arise in Calabi-Yau compactifications of string theory. In a theory with N axions θ i , the fundamental domain is a polytope defined by the periodicities of the axions, via constraints of the form - π < Q i j θ j < π. We compute the diameter of the fundamental domain in terms of the eigenvalues f 1 2 ≤ … ≤ f N 2 of the metric on field space, and also, crucially, the largest eigenvalue of ( QQ ⊤)-1. At large N, QQ ⊤ approaches a Wishart matrix, due to universality, and we show that the diameter is at least Nf N , exceeding the naive Pythagorean range by a factor > √{N} . This result is robust in the presence of P > N constraints, while for P = N the diameter is further enhanced by eigenvector delocalization to N 3/2 f N . We directly verify our results in explicit Calabi-Yau compactifications of type IIB string theory. In the classic example with h 1,1 = 51 where parametrically controlled moduli stabilization was demonstrated by Denef et al. in [1], the largest metric eigenvalue obeys f N ≈ 0.013 M pl. The random matrix analysis then predicts, and we exhibit, axion diameters ≈ M pl for the precise vacuum parameters found in [1]. Our results provide a framework for pursuing large-field axion inflation in well-understood flux vacua.
The unitary conformal field theory behind 2D Asymptotic Safety
NASA Astrophysics Data System (ADS)
Nink, Andreas; Reuter, Martin
2016-02-01
Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in d > 2 dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge c = 25. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a complete quenching of the a priori expected Knizhnik-Polyakov-Zamolodchikov (KPZ) scaling. A possible connection of this prediction to Monte Carlo results obtained in the discrete approach to 2D quantum gravity based upon causal dynamical triangulations is mentioned. Similarities of the fixed point theory to, and differences from, non-critical string theory are also described. On the technical side, we provide a detailed analysis of an intriguing connection between the Einstein-Hilbert action in d > 2 dimensions and Polyakov's induced gravity action in two dimensions.
Statistical inference and string theory
NASA Astrophysics Data System (ADS)
Heckman, Jonathan J.
2015-09-01
In this paper, we expose some surprising connections between string theory and statistical inference. We consider a large collective of agents sweeping out a family of nearby statistical models for an M-dimensional manifold of statistical fitting parameters. When the agents making nearby inferences align along a d-dimensional grid, we find that the pooled probability that the collective reaches a correct inference is the partition function of a nonlinear sigma model in d dimensions. Stability under perturbations to the original inference scheme requires the agents of the collective to distribute along two dimensions. Conformal invariance of the sigma model corresponds to the condition of a stable inference scheme, directly leading to the Einstein field equations for classical gravity. By summing over all possible arrangements of the agents in the collective, we reach a string theory. We also use this perspective to quantify how much an observer can hope to learn about the internal geometry of a superstring compactification. Finally, we present some brief speculative remarks on applications to the AdS/CFT correspondence and Lorentzian signature space-times.
Natural quintessence in string theory
Cicoli, Michele; Pedro, Francisco G.; Tasinato, Gianmassimo E-mail: f.pedro1@physics.ox.ac.uk
2012-07-01
We introduce a natural model of quintessence in string theory where the light rolling scalar is radiatively stable and couples to Standard Model matter with weaker-than-Planckian strength. The model is embedded in an anisotropic type IIB compactification with two exponentially large extra dimensions and TeV-scale gravity. The bulk turns out to be nearly supersymmetric since the scale of the gravitino mass is of the order of the observed value of the cosmological constant. The quintessence field is a modulus parameterising the size of an internal four-cycle which naturally develops a potential of the order (gravitino mass){sup 4}, leading to a small dark energy scale without tunings. The mass of the quintessence field is also radiatively stable since it is protected by supersymmetry in the bulk. Moreover, this light scalar couples to ordinary matter via its mixing with the volume mode. Due to the fact that the quintessence field is a flat direction at leading order, this mixing is very small, resulting in a suppressed coupling to Standard Model particles which avoids stringent fifth-force constraints. On the other hand, if dark matter is realised in terms of Kaluza-Klein states, unsuppressed couplings between dark energy and dark matter can emerge, leading to a scenario of coupled quintessence within string theory. We study the dynamics of quintessence in our set-up, showing that its main features make it compatible with observations.
String cosmology — Large-field inflation in string theory
NASA Astrophysics Data System (ADS)
Westphal, Alexander
2015-03-01
This is a short review of string cosmology. We wish to connect string-scale physics as closely as possible to observables accessible to current or near-future experiments. Our possible best hope to do so is a description of inflation in string theory. The energy scale of inflation can be as high as that of Grand Unification (GUT). If this is the case, this is the closest we can possibly get in energy scales to string-scale physics. Hence, GUT-scale inflation may be our best candidate phenomenon to preserve traces of string-scale dynamics. Our chance to look for such traces is the primordial gravitational wave, or tensor mode signal produced during inflation. For GUT-scale inflation this is strong enough to be potentially visible as a B-mode polarization of the cosmic microwave background (CMB). Moreover, a GUT-scale inflation model has a trans-Planckian excursion of the inflaton scalar field during the observable amount of inflation. Such large-field models of inflation have a clear need for symmetry protection against quantum corrections. This makes them ideal candidates for a description in a candidate fundamental theory like string theory. At the same time the need of large-field inflation models for UV completion makes them particularly susceptible to preserve imprints of their string-scale dynamics in the inflationary observables, the spectral index ns and the fractional tensor mode power r. Hence, we will focus this review on axion monodromy inflation as a mechanism of large-field inflation in string theory.
Fundamental string solutions in open string field theories
Michishita, Yoji
2006-02-15
In Witten's open cubic bosonic string field theory and Berkovits' superstring field theory we investigate solutions of the equations of motion with appropriate source terms, which correspond to Callan-Maldacena solution in Born-Infeld theory representing fundamental strings ending on the D-branes. The solutions are given in order by order manner, and we show some full order properties in the sense of {alpha}{sup '} expansion. In superstring case we show that the solution is 1/2 BPS in full order.
Baby universes in string theory
Dijkgraaf, Robbert; Gopakumar, Rajesh; Ooguri, Hirosi; Vafa, Cumrun
2006-03-15
We argue that the holographic description of four-dimensional Bogomol'nyi-Prasad-Sommerfield black holes naturally includes multicenter solutions. This suggests that the holographic dual to the gauge theory is not a single AdS{sub 2}xS{sup 2} but a coherent ensemble of them. We verify this in a particular class of examples, where the two-dimensional Yang-Mills theory gives a holographic description of the black holes obtained by branes wrapping Calabi-Yau cycles. Using the free fermionic formulation, we show that O(e{sup -N}) nonperturbative effects entangle the two Fermi surfaces. In an Euclidean description, the wave function of the multicenter black holes gets mapped to the Hartle-Hawking wave function of baby universes. This provides a concrete realization, within string theory, of effects that can be interpreted as the creation of baby universes. We find that, at least in the case we study, the baby universes do not lead to a loss of quantum coherence, in accord with general arguments.
Toward cosmology in string theory
NASA Astrophysics Data System (ADS)
Boyda, Edward Kenneth
2004-12-01
String theory purports to be the correct theory of quantum gravity, and as such it is expected to provide a viable quantum cosmology. But stable time-dependent backgrounds with well-defined quantum-mechanical observables remain elusive. We first address quantum cosmology by discussing holography in Gödel universes, with an eye toward de Sitter space. Holography may someday provide a good definition of quantum cosmology in spacetimes without simple asymptotic behavior. Supersymmetry is the best candidate for understanding stability and naturalness in quantum cosmology. But if it exists, supersymmetry is broken at low energies. We study in technical detail anomaly-mediated supersymmetry breaking, demonstrating its phenomenologically attractive insensitivty to the details of high-energy physics. The final part of this dissertation presents an alternative to inflationary cosmology which is embedded in heterotic M-theory. This modification of the ekpyrotic scenario offers better calculability than the original, the ekpyrotic phase transition occuring when a membrane tunnels into our visible universe from a computed potential well in the extra dimension.
Exact solutions and singularities in string theory
Horowitz, G.T. ); Tseytlin, A.A. )
1994-10-15
We construct two new classes of exact solutions to string theory which are not of the standard plane wave of gauged WZW type. Many of these solutions have curvature singularities. The first class includes the fundamental string solution, for which the string coupling vanishes near the singularity. This suggests that the singularity may not be removed by quantum corrections. The second class consists of hybrids of plane wave and gauged WZW solutions. We discuss a four-dimensional example in detail.
Closed string field theory from polyhedra
NASA Astrophysics Data System (ADS)
Saadi, Maha; Zwiebach, Barton
1989-05-01
A fully nonpolynomial framework for closed string field theory is studied. All interactions are geometrical, the pattern of string overlaps gives polyhedra with equal perimeter faces and three edges at each vertex. All interactions are cubic in the sense that at most three strings can coincide at a point. The three point vertex used is that of Witten which is seen to be quite natural in the framework of quadratic differentials and to induce a very symmetric decomposition of moduli space.
F-theory and 2d (0, 2) theories
NASA Astrophysics Data System (ADS)
Schäfer-Nameki, Sakura; Weigand, Timo
2016-05-01
F-theory compactified on singular, elliptically fibered Calabi-Yau five-folds gives rise to two-dimensional gauge theories preserving N = (0 , 2) supersymmetry. In this paper we initiate the study of such compactifications and determine the dictionary between the geometric data of the elliptic fibration and the 2d gauge theory such as the matter content in terms of (0 , 2) superfields and their supersymmetric couplings. We study this setup both from a gauge-theoretic point of view, in terms of the partially twisted 7-brane theory, and provide a global geometric description based on the structure of the elliptic fibration and its singularities. Global consistency conditions are determined and checked against the dual M-theory compactification to one dimension. This includes a discussion of gauge anomalies, the structure of the Green-Schwarz terms and the Chern-Simons couplings in the dual M-theory supersymmetric quantum mechanics. Furthermore, by interpreting the resulting 2d (0 , 2) theories as heterotic worldsheet theories, we propose a correspondence between the geometric data of elliptically fibered Calabi-Yau five-folds and the target space of a heterotic gauged linear sigma-model (GLSM). In particular the correspondence between the Landau-Ginsburg and sigma-model phase of a 2d (0 , 2) GLSM is realized via different T-branes or gluing data in F-theory.
Cosmic necklaces from string theory
Leblond, Louis; Wyman, Mark
2007-06-15
We present the properties of a cosmic superstring network in the scenario of flux compactification. An infinite family of strings, the (p,q) strings, are allowed to exist. The flux compactification leads to a string tension that is periodic in p. Monopoles, appearing here as beads on a string, are formed in certain interactions in such networks. This allows bare strings to become cosmic necklaces. We study network evolution in this scenario, outlining what conditions are necessary to reach a cosmologically viable scaling solution. We also analyze the physics of the beads on a cosmic necklace, and present general conditions for which they will be cosmologically safe, leaving the network's scaling undisturbed. In particular, we find that a large average loop size is sufficient for the beads to be cosmologically safe. Finally, we argue that loop formation will promote a scaling solution for the interbead distance in some situations.
String theory of the Regge intercept.
Hellerman, S; Swanson, I
2015-03-20
Using the Polchinski-Strominger effective string theory in the covariant gauge, we compute the mass of a rotating string in D dimensions with large angular momenta J, in one or two planes, in fixed ratio, up to and including first subleading order in the large J expansion. This constitutes a first-principles calculation of the value for the order-J(0) contribution to the mass squared of a meson on the leading Regge trajectory in planar QCD with bosonic quarks. For open strings with Neumann boundary conditions, and for closed strings in D≥5, the order-J(0) term in the mass squared is exactly calculated by the semiclassical approximation. This term in the expansion is universal and independent of the details of the theory, assuming only D-dimensional Poincaré invariance and the absence of other infinite-range excitations on the string world volume, beyond the Nambu-Goldstone bosons. PMID:25839257
Introduction to string and superstring theory II
Peskin, M.E.
1987-03-01
Conformal field theory is reviewed, then conformal invariance is used to rederive the basic results on the embedding dimensionality for bosonic and fermionic strings. The spectrum of the bosonic and the computation of scattering amplitudes are discussed. The formalism used is extended to clarify the origin of Yang-Mills gauge invariance in the open bosonic string theory. The question of the general-coordinate gauge invariance of string theory is addressed, presenting two disparate viewpoints on this question. A brief introduction is then given of the reduction from the idealized string theory in 10 extended dimensions to more realistic solutions in which all but 4 of these dimensions are compactified. The state of knowledge about the space-time supersymmetry of the superstring from the covariant viewpoint is outlined. An approach for identifying possible 6-dimensional spaces which might represent the form of the compact dimensions is discussed, and the orbifold scheme of compactification is presented. 77 refs., 18 figs. (LEW)
Whiteheadian Actual Entitities and String Theory
NASA Astrophysics Data System (ADS)
Bracken, Joseph A.
2012-06-01
In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.
String field theory and tachyon field
NASA Astrophysics Data System (ADS)
Yang, Yi
In this thesis, we study Sen's conjecture on tachyon condensation by using string field theories, i.e. boundary string field theory (BSFT) and cubic string field theory (CSFT). In the BSFT side, the first explicit calculation of effective tachyon action for the bosonic string was given by Witten ten years ago and by many other authors in the last two years. It was extended to the superstring case shortly after. In our work, we give an explicit calculation of Green functions for the fermionic fields and compute the effective tachyon action for the superstring. The results we obtain agree with earlier results. We then generalize the BSFT method to one loop level. The tachyon condensation at one loop level is systematically studied, and many interesting results are obtained which verify Sen's conjecture. We also apply this method to the non-orientable theory at one loop level, where the expected divergence cancellation is reproduced and the similar effective tachyon action is obtained. By using the boundary state formalism, we verify the duality between open and closed strings. In the CSFT side, since there is no known solution to this theory, tachyon condensation can only be studied by numerical methods, i.e. level truncation. However, at the tachyon vacuum, CSFT is simplified to vacuum string field theory (VSFT) which has a solution - sliver state. By adding a tachyon vertex to the boundary of the sliver state, we have calculated the effective action.
Hadronic density of states from string theory.
Pando Zayas, Leopoldo A; Vaman, Diana
2003-09-12
We present an exact calculation of the finite temperature partition function for the hadronic states corresponding to a Penrose-Güven limit of the Maldacena-Nùñez embedding of the N=1 super Yang-Mills (SYM) into string theory. It is established that the theory exhibits a Hagedorn density of states. We propose a semiclassical string approximation to the finite temperature partition function for confining gauge theories admitting a supergravity dual, by performing an expansion around classical solutions characterized by temporal windings. This semiclassical approximation reveals a hadronic energy density of states of a Hagedorn type, with the coefficient determined by the gauge theory string tension as expected for confining theories. We argue that our proposal captures primarily information about states of pure N=1 SYM theory, given that this semiclassical approximation does not entail a projection onto states of large U(1) charge. PMID:14525414
Open string Regge trajectory and its field theory limit
NASA Astrophysics Data System (ADS)
Rojas, Francisco; Thorn, Charles B.
2011-07-01
We study the properties of the leading Regge trajectory in open string theory including the open string planar one-loop corrections. With SU(N) Chan-Paton factors, the sum over planar open string multiloop diagrams describes the ’t Hooft limit N→∞ with Ngs2 fixed. Our motivation is to improve the understanding of open string theory at finite α' as a model of gauge field theories. SU(N) gauge theories in D space-time dimensions are described by requiring open strings to end on a stack of N Dp-branes of space-time dimension D=p+1. The large N leading trajectory α(t)=1+α't+Σ(t) can be extracted, through order g2, from the s→-∞ limit, at fixed t, of the four open string tree and planar loop diagrams. We analyze the t→0 behavior with the result that Σ(t)˜-Cg2(-α't)(D-4)/2/(D-4). This result precisely tracks the 1-loop Reggeized gluon of gauge theory in D>4 space-time dimensions. In particular, for D→4 it reproduces the known infrared divergences of gauge theory in 4 dimensions with a Regge trajectory behaving as -ln(-α't). We also study Σ(t) in the limit t→-∞ and show that, when D<8, it behaves as α't/(ln(-α't))γ, where γ>0 depends on D and the number of massless scalars. Thus, as long as 4
Exotic geometry in string theory and cosmology
NASA Astrophysics Data System (ADS)
Haque, Sheikh Shajid
One of the main features expected of a quantum theory of gravity is non-locality. Implementing non-locality in quantum field theories turns out to be already challenging both conceptually and technically and requires the use of several techniques, such as string dualities and twists in order to construct and understand the effects of non-locality. This thesis explored these concepts in the construction of quantum field theories with a particular type of non- locality, non-commutative geometry, as an opportunity to study non-locality in a broader context. Another important challenge of theoretical physics is to connect the microscopic structure of spacetime implied by string theory to the empirical fact that the cosmological constant is positive and that the universe is asymptotically de Sitter. Constructing de Sitter space from string theory has proven to be extremely difficult over the years. In this thesis, I will discuss recent work in these areas.
Effective string theory and QCD scattering amplitudes
Makeenko, Yuri
2011-01-15
QCD string is formed at distances larger than the confinement scale and can be described by the Polchinski-Strominger effective string theory with a nonpolynomial action, which has nevertheless a well-defined semiclassical expansion around a long-string ground state. We utilize modern ideas about the Wilson-loop/scattering-amplitude duality to calculate scattering amplitudes and show that the expansion parameter in the effective string theory is small in the Regge kinematical regime. For the amplitudes we obtain the Regge behavior with a linear trajectory of the intercept (d-2)/24 in d dimensions, which is computed semiclassically as a momentum-space Luescher term, and discuss an application to meson scattering amplitudes in QCD.
Bosonic and Baryonic String Theory in Quantum Chromodynamics
Kuti, Julius
2007-02-27
Bosonic string formation in gauge theories is reviewed with particular attention to the confining flux in lattice QCD and its effective string theory description. Recent results on the Casimir energy of the ground state and the string excitation spectrum are analyzed in the Dirichlet string limit of large separation between static sources. The closed string-soliton (torelon) with electric flux winding around a compact dimension is discussed and a new bound state tower spectrum at baryon string junctions is presented.
String perturbation theory and effective Lagrangians
Klebanov, I.
1987-09-01
We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to ..beta..-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string.
Cosmological Constant and Axions in String Theory
Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC
2006-08-18
String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.
BCFW recursion relations and string theory
NASA Astrophysics Data System (ADS)
Cheung, Clifford; O'Connell, Donal; Wecht, Brian
2010-09-01
We demonstrate that all tree-level string theory amplitudes can be computed using the BCFW recursion relations. Our proof utilizes the pomeron vertex operator introduced by Brower, Polchinski, Strassler, and Tan. Surprisingly, we find that in a particular large complex momentum limit, the asymptotic expansion of massless string amplitudes is identical in form to that of the corresponding field theory amplitudes. This observation makes manifest the fact that field-theoretic Yang-Mills and graviton amplitudes obey KLT-like relations. Moreover, we conjecture that in this large momentum limit certain string theory and field theory amplitudes are identical, and provide evidence for this conjecture. Additionally, we find a new recursion relation which relates tachyon amplitudes to lower-point tachyon amplitudes.
BOOK REVIEW: String Theory in a Nutshell
NASA Astrophysics Data System (ADS)
Skenderis, Kostas
2007-11-01
The book 'String Theory in a Nutshell' by Elias Kiritsis provides a comprehensive introduction to modern string theory. String theory is the leading candidate for a theory that successfully unifies all fundamental forces of nature, including gravity. The subject has been continuously developing since the early 1970s, with classic textbooks on the subject being those of Green, Schwarz and Witten (1987) and Polchinski (1998). Since the latter was published there have been substantial developments, in particular in understanding black holes and gravity/gauge theory dualities. A textbook treatment of this important material is clearly needed, both by students and researchers in string theory and by mathematicians and physicists working in related fields. This book has a good selection of material, starting from basics and moving into classic and modern topics. In particular, Kiritsis' presentation of the basic material is complementary to that of the earlier textbooks and he includes a number of topics which are not easily found or covered adequately elsewhere, for example, loop corrections to string effective couplings. Overall the book nicely covers the major advances of the last ten years, including (non-perturbative) string dualities, black hole physics, AdS/CFT and matrix models. It provides a concise but fairly complete introduction to these subjects which can be used both by students and by researchers. Moreover the emphasis is on results that are reasonably established, as is appropriate for a textbook; concise summaries are given for subjects which are still in flux, with references to relevant reviews and papers. A positive feature of the book is that the bibliography sections at the end of each chapter provide a comprehensive guide to the literature. The bibliographies point to reviews and pedagogical papers on subjects covered in this book as well as those that were omitted. It is rare for a textbook to contain such a self-contained and detailed guide to
Blackfolds in supergravity and string theory
NASA Astrophysics Data System (ADS)
Emparan, Roberto; Harmark, Troels; Niarchos, Vasilis; Obers, Niels A.
2011-08-01
We develop the effective worldvolume theory for the dynamics of black branes with charges of the kind that arise in many supergravities and low-energy limits of string theory. Using this theory, we construct numerous new rotating blackholes with charges and dipoles of D-branes, fundamental strings and other branes. In some instances, the black holes can be dynamically stable close enough to extremality. Some of these black holes, such as those based on the D1-D5-P system, have extremal, non-supersymmetric limits with regular horizons of finite area and a wide variety of horizon topologies and geometries.
Towards a kinetic theory of strings
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2011-05-01
We study the dynamics of strings by means of a distribution function f(A,B,x,t), defined on a 9+1D phase space, where A and B are the correlation vectors of right- and left-moving waves. We derive a transport equation (analogous to a Boltzmann transport equation for particles) that governs the evolution of long strings with Nambu-Goto dynamics, as well as reconnections taken into account. We also derive a system of coupled transport equations (analogous to a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for particles) which can simultaneously describe long strings f˜(A,B,x,t) as well as simple loops f∘(A,B,x,t) made out of four correlation vectors. The formalism can be used to study nonlinear dynamics of fundamental strings, D-brane strings, or field theory strings. For example, the complicated semiscaling behavior of cosmic strings translates into a simple solution of the transport system at small energy densities.
Towards a kinetic theory of strings
Vanchurin, Vitaly
2011-05-15
We study the dynamics of strings by means of a distribution function f(A,B,x,t), defined on a 9+1D phase space, where A and B are the correlation vectors of right- and left-moving waves. We derive a transport equation (analogous to a Boltzmann transport equation for particles) that governs the evolution of long strings with Nambu-Goto dynamics, as well as reconnections taken into account. We also derive a system of coupled transport equations (analogous to a Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy for particles) which can simultaneously describe long strings f-tilde(A,B,x,t) as well as simple loops f(convolution sign)(A,B,x,t) made out of four correlation vectors. The formalism can be used to study nonlinear dynamics of fundamental strings, D-brane strings, or field theory strings. For example, the complicated semiscaling behavior of cosmic strings translates into a simple solution of the transport system at small energy densities.
Entanglement renormalization and two dimensional string theory
NASA Astrophysics Data System (ADS)
Molina-Vilaplana, J.
2016-04-01
The entanglement renormalization flow of a (1 + 1) free boson is formulated as a path integral over some auxiliary scalar fields. The resulting effective theory for these fields amounts to the dilaton term of non-critical string theory in two spacetime dimensions. A connection between the scalar fields in the two theories is provided, allowing to acquire novel insights into how a theory of gravity emerges from the entanglement structure of another one without gravity.
String theory and the real world
Kane, Gordon
2010-11-15
We live in exciting times for particle physics. The Large Hadron Collider (LHC) at CERN has begun to collect data, and laboratory and satellite experiments are investigating the dark matter of the universe. Another, less appreciated fact increases the excitement. Physicists now have a coherent, consistent theoretical framework to address basic questions about particles, the interactions and forces between them, why they are what they are, and how numerous phenomena are related in a broader picture. That framework is ''string theory''. I put the term in scare quotes because there is not yet a final formulation of the theory. But the lack of a finished picture is not important for my purposes, so in this article I refer to the framework as string theory or M-theory. The perspective that string theory is the underlying framework to address many issues facing particle physics and cosmology is different from the more standard description of it as a consistent quantum theory of gravity. But it is a fruitful way to think about what string theory means.
Tensor modes on the string theory landscape
NASA Astrophysics Data System (ADS)
Westphal, Alexander
2013-04-01
We attempt an estimate for the distribution of the tensor mode fraction r over the landscape of vacua in string theory. The dynamics of eternal inflation and quantum tunneling lead to a kind of democracy on the landscape, providing no bias towards large-field or small-field inflation regardless of the class of measure. The tensor mode fraction then follows the number frequency distributions of inflationary mechanisms of string theory over the landscape. We show that an estimate of the relative number frequencies for small-field vs large-field inflation, while unattainable on the whole landscape, may be within reach as a regional answer for warped Calabi-Yau flux compactifications of type IIB string theory.
Solution of the dilaton problem in open bosonic string theories
Bern, Z. ); Dunbar, D.C. )
1991-01-01
One of the most remarkable features of string theories is that they seem to provide a framework for a consistent theory of quantum gravity which is unified with all other forces. String theories fall into the two basic, a priori equally interesting, categories of open and closed string theories. For the past five years virtually all attention has been focused on purely closed string theories even though the reincarnation of string theory began with the discovery of anomaly cancellation and finiteness in the Green-Schwarz open superstring. It is the authors' purpose in this essay to rekindle interest in open string theories as potential theories of nature, including gravity. All string theories naively contain a massless dilaton which couples with the strength of gravity in direct violation of experiment. They present a simple mechanism for giving the dilaton a mass in unoriented open bosonic string theories.
Aligned natural inflation in string theory
NASA Astrophysics Data System (ADS)
Long, Cody; McAllister, Liam; McGuirk, Paul
2014-07-01
We propose a scenario for realizing super-Planckian axion decay constants in Calabi-Yau orientifolds of type IIB string theory, leading to large-field inflation. Our construction is a simple embedding in string theory of the mechanism of Kim, Nilles, and Peloso, in which a large effective decay constant arises from alignment of two smaller decay constants. The key ingredient is gaugino condensation on magnetized or multiply-wound D7-branes. We argue that, under very mild assumptions about the topology of the Calabi-Yau, there are controllable points in moduli space with large effective decay constants.
Phase transitions in QCD and string theory
NASA Astrophysics Data System (ADS)
Campell, Bruce A.; Ellis, John; Kalara, S.; Nanopoulos, D. V.; Olive, Keith A.
1991-02-01
We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. On leave of absence from the School of Physics & Astronomy, University of Minnesota, Minneapolis, Minnesota, USA.
Topological insulators and superconductors from string theory
Ryu, Shinsei; Takayanagi, Tadashi
2010-10-15
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Topological insulators and superconductors from string theory
NASA Astrophysics Data System (ADS)
Ryu, Shinsei; Takayanagi, Tadashi
2010-10-01
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the θ term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Super-Higgs mechanism in string theory
Bagger, Jonathan; Giannakis, Ioannis
2006-05-15
We exhibit the super-Higgs effect in heterotic string theory by turning on a background antisymmetric tensor B field and deforming the Becchi-Rouet-Stora-Tyutin operator consistent with superconformal invariance. The B field spontaneously breaks spacetime supersymmetry. We show how the gravitini and the physical dilatini gain mass by eating the would-be Goldstone fermions.
Origin of gauge invariance in string theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Strominger, A.
1986-01-01
A first quantization of the space-time embedding Chi exp mu and the world-sheet metric rho of the open bosonic string. The world-sheet metric rho decouples from S-matrix elements in 26 dimensions. This formulation of the theory naturally includes 26-dimensional gauge transformations. The gauge invariance of S-matrix elements is a direct consequence of the decoupling of rho. Second quantization leads to a string field Phi(Chi exp mu, rho) with a gauge-covariant equation of motion.
Purely cubic action for string field theory
NASA Technical Reports Server (NTRS)
Horowitz, G. T.; Lykken, J.; Rohm, R.; Strominger, A.
1986-01-01
It is shown that Witten's (1986) open-bosonic-string field-theory action and a closed-string analog can be written as a purely cubic interaction term. The conventional form of the action arises by expansion around particular solutions of the classical equations of motion. The explicit background dependence of the conventional action via the Becchi-Rouet-Stora-Tyutin operator is eliminated in the cubic formulation. A closed-form expression is found for the full nonlinear gauge-transformation law.
Local Grand Unification and String Theory
Nilles, Hans Peter; Ramos-Sanchez, Saul; Vaudrevange, Patrick K. S.
2010-02-10
The low energy effective action of string theory depends strongly on the process of compactification and the localization of fields in extra dimensions. Explicit string constructions towards the minimal supersymmetric standard model (MSSM) reveal interesting results leading to the concept of local grand unification. Properties of the MSSM indicate that we might live at a special location close to an orbifold fixed point rather than a generic point in Calabi-Yau moduli space. We observe an enhancement of (discrete) symmetries that have various implications for the properties of the MSSM such as proton stability as well as solutions to the flavor problem, the mu-problem and the strong CP-problem.
Semi-infinite cohomology and string theory
Frenkel, I. B.; Garland, H.; Zuckerman, G. J.
1986-01-01
We develop the theory of semi-infinite cohomology of graded Lie algebras first introduced by Feigin. We show that the relative semi-infinite cohomology has a structure analogous to that of the de Rham cohomology in Kähler geometry. We prove a vanishing theorem for a special class of modules, and we apply our results to the case of the Virasoro algebra and the Fock module. In this case the zero cohomology is identified as the physical subspace of the Fock module and the no-ghost theorem follows. We reveal the profound relation of semi-infinite cohomology theory to the gauge-invariant free string theory constructed by Banks and Peskin. We then indicate the connection between gauge-invariant interacting string theories and the geometric realizations of the infinite-dimensional Lie algebras. PMID:16578792
Semi-infinite cohomology and string theory.
Frenkel, I B; Garland, H; Zuckerman, G J
1986-11-01
We develop the theory of semi-infinite cohomology of graded Lie algebras first introduced by Feigin. We show that the relative semi-infinite cohomology has a structure analogous to that of the de Rham cohomology in Kähler geometry. We prove a vanishing theorem for a special class of modules, and we apply our results to the case of the Virasoro algebra and the Fock module. In this case the zero cohomology is identified as the physical subspace of the Fock module and the no-ghost theorem follows. We reveal the profound relation of semi-infinite cohomology theory to the gauge-invariant free string theory constructed by Banks and Peskin. We then indicate the connection between gauge-invariant interacting string theories and the geometric realizations of the infinite-dimensional Lie algebras. PMID:16578792
Noyes, H.P.
1990-01-29
We construct discrete space-time coordinates separated by the Lorentz-invariant intervals h/mc in space and h/mc{sup 2} in time using discrimination (XOR) between pairs of independently generated bit-strings; we prove that if this space is homogeneous and isotropic, it can have only 1, 2 or 3 spacial dimensions once we have related time to a global ordering operator. On this space we construct exact combinatorial expressions for free particle wave functions taking proper account of the interference between indistinguishable alternative paths created by the construction. Because the end-points of the paths are fixed, they specify completed processes; our wave functions are born collapsed''. A convenient way to represent this model is in terms of complex amplitudes whose squares give the probability for a particular set of observable processes to be completed. For distances much greater than h/mc and times much greater than h/mc{sup 2} our wave functions can be approximated by solutions of the free particle Dirac and Klein-Gordon equations. Using a eight-counter paradigm we relate this construction to scattering experiments involving four distinguishable particles, and indicate how this can be used to calculate electromagnetic and weak scattering processes. We derive a non-perturbative formula relating relativistic bound and resonant state energies to mass ratios and coupling constants, equivalent to our earlier derivation of the Bohr relativistic formula for hydrogen. Using the Fermi-Yang model of the pion as a relativistic bound state containing a nucleon-antinucleon pair, we find that (G{sub {pi}N}{sup 2}){sup 2} = (2m{sub N}/m{sub {pi}}){sup 2} {minus} 1. 21 refs., 1 fig.
String theory realizations of the nilpotent goldstino
NASA Astrophysics Data System (ADS)
Kallosh, Renata; Quevedo, Fernando; Uranga, Angel M.
2015-12-01
We describe in detail how the spectrum of a single anti-D3-brane in four-dimensional orientifolded IIB string models reproduces precisely the field content of a nilpotent chiral superfield with the only physical component corresponding to the fermionic goldstino. In particular we explicitly consider a single anti-D3-brane on top of an O3-plane in warped throats, induced by (2, 1) fluxes. More general systems including several anti-branes and other orientifold planes are also discussed. This provides further evidence to the claim that non-linearly realized supersymmetry due to the presence of antibranes in string theory can be described by supersymmetric theories including nilpotent superfields. Implications to the KKLT and related scenarios of de Sitter moduli stabilization, to cosmology and to the structure of soft SUSY-breaking terms are briefly discussed.
A monopole solution in open string theory
NASA Astrophysics Data System (ADS)
Behrndt, K.
1994-02-01
We investigate a solution of the Weyl invariance conditions in open string theory in four dimensions. In the closed string sector this solution is a combination of the SU(2) Wess-Zumino-Witten model and a Liouville theory. The investigation is carried out in the σ model approach where we have coupled all massless modes (especiallyan abelian gauge field via the boundary) and tachyon fields. Neglecting all higher derivatives in the field strength we get an exact result which can be interpreted as a monopole configuration living in non-trivia space-time. The masses of both tachyon fields are quantized by cWZW. But only for massless tachyons ( cWZW = 1) the corresponding vertex operators are well defined.
Obstacle to populating the string theory landscape
Johnson, Matthew C; Larfors, Magdalena
2008-12-15
We construct domain walls and instantons in a class of models with coupled scalar fields, determining, in agreement with previous studies, that many such solutions contain naked timelike singularities. Vacuum bubble solutions of this type do not contain a region of true vacuum, obstructing the ability of eternal inflation to populate other vacua. We determine a criterion that potentials must satisfy to avoid the existence of such singularities and show that many domain wall solutions in type IIB string theory are singular.
Dynamical topology change in string theory
NASA Astrophysics Data System (ADS)
Kiritsis, Elias; Kounnas, Costas
1994-06-01
Exact string solutions are presented, providing backgrounds where a dynamical change of topology is occuring. This is induced by the time variation of a modulus field. Some lessons are drawn concerning the region of validity of effective theories and how they can be glued together, using stringy information in the region where the topology changes. On leave from Ecole Normale Supérieure, 24 rue Lhomond, F-75231, Paris, Cedex 05, France.
Stable vector bundles and string theory
Gomez, Tomas L.; Sols, Ignacio; Lukic, Sergio
2009-05-06
In [4], Braun, He, Ovrut and Pantev proposed a model of string theory (based on the Calabi-Yau 3-fold X) whose low energy limit predicts certain properties of the Standard Model of particle Physics. This model depends on two vector bundles that have to be stable. We calculate the ample cone of X, and prove that one of them is stable, and the other one is not.
Introduction to conformal field theory and string theory
Dixon, L.J.
1989-12-01
These lectures are meant to provide a brief introduction to conformal field theory (CFT) and string theory for those with no prior exposure to the subjects. There are many excellent reviews already available, and most of these go in to much more detail than I will be able to here. 52 refs., 11 figs.
Differential geometry of groups in string theory
Schmidke, W.B. Jr.
1990-09-01
Techniques from differential geometry and group theory are applied to two topics from string theory. The first topic studied is quantum groups, with the example of GL (1{vert bar}1). The quantum group GL{sub q}(1{vert bar}1) is introduced, and an exponential description is derived. The algebra and coproduct are determined using the invariant differential calculus method introduced by Woronowicz and generalized by Wess and Zumino. An invariant calculus is also introduced on the quantum superplane, and a representation of the algebra of GL{sub q}(1{vert bar}1) in terms of the super-plane coordinates is constructed. The second topic follows the approach to string theory introduced by Bowick and Rajeev. Here the ghost contribution to the anomaly of the energy-momentum tensor is calculated as the Ricci curvature of the Kaehler quotient space Diff(S{sup 1})/S{sup 1}. We discuss general Kaehler quotient spaces and derive an expression for their Ricci curvatures. Application is made to the string and superstring diffeomorphism groups, considering all possible choices of subgroup. The formalism is extended to associated holomorphic vector bundles, where the Ricci curvature corresponds to the anomaly for different ghost sea levels. 26 refs.
World-sheet dynamics of bosonic string theory
NASA Astrophysics Data System (ADS)
Green, Michael B.
1987-07-01
Bosonic string theory may emerge as an approximation to a two-dimensional string theory in which strings replace the usual pointlike world-sheet fields. In this context the energy of the ground state of the bosonic string (the mass of the tachyon) is shown to arise from the breaking of Atkin-Lehner symmetry on a cylindrical target space. No normal ordering infinities are encountered.
String theory effects on black hole physics
NASA Astrophysics Data System (ADS)
Castro, Alejandra
2009-09-01
This thesis focuses on recent developments in black hole physics in the context of string theory. The two main topics discussed here are: the effects of quantum/string corrections to five dimensional black holes; and the holographic description of two dimensional black holes. In the gravitational theory the quantum/string corrections are encoded in higher derivative terms in the supergravity action, which are governed by the mixed gauge-gravitational Chern-Simons term. We describe the full asymptotically flat solution of black strings and black holes, and construct the near horizon attractor geometries. With these solutions in hand, we study the thermodynamic properties of black holes beyond the leading order. One important achievement was finding the corrected attractor geometries that contain a three dimensional Anti-de Sitter factor. This allows us to verify that the space-time central charge and the anomaly based derivation of it exactly agree. Another motivation to study higher derivative corrections is to resolve the singularities of small black strings. These objects correspond to classical solutions with a naked singularity and vanishing entropy. Once the stringy corrections are included, we obtain completely smooth geometries with the correct asymptotic behavior. We also studied the effect of the Taub-NUT geometry on the sub-leading corrections to the black hole entropy. This space contains a contractible circle that allows one to lift a four dimensional black hole to a five dimensional black hole by tuning the size of the circle. In the microscopic theory, due to the presence of Taub-NUT, the spectrum of states acquires additional modes. These states exactly account for the shift between 5D and 4D corrections to the entropy. Finally, we develop holographic renormalization for two dimensional gravity on Anti-de Sitter space. The transformation properties of the stress tensor indicate that the asymptotic SL(2,R) conformal symmetry of the theory is enhanced
String theory on parallelizable PP-waves
NASA Astrophysics Data System (ADS)
Sadri, Darius; Sheikh-Jabbari, Mohammad M.
2003-06-01
The most general parallelizable pp-wave backgrounds which are non-dilatonic solutions in the NS-NS sector of type IIA and IIB string theories are considered. We demonstrate that parallelizable pp-wave backgrounds are necessarily homogeneous plane-waves, and that a large class of homogeneous plane-waves are parallelizable, stating the necessary conditions. Such plane-waves can be classified according to the number of preserved supersymmetries. In type IIA, these include backgrounds preserving 16, 18, 20, 22 and 24 supercharges, while in the IIB case they preserve 16, 20, 24 or 28 supercharges. An intriguing property of parallelizable pp-wave backgrounds is that the bosonic part of these solutions are invariant under T-duality, while the number of supercharges might change under T-duality. Due to their alpha' exactness, they provide interesting backgrounds for studying string theory. Quantization of string modes, their compactification and behaviour under T-duality are studied. In addition, we consider BPS Dp-branes, and show that these Dp-branes can be classified in terms of the locations of their world volumes with respect to the background H-field.
Group theory aspects of chaotic strings
NASA Astrophysics Data System (ADS)
Groote, S.; Saar, R.
2014-09-01
Chaotic strings are a special type of non-hyperbolic coupled map lattices, exhibiting a rich structure of complex dynamical phenomena with a surprising correspondence to physical contents. Chaotic strings are generated by the Chebyshev maps T2(phi) and T3(phi). In this paper we connect the Chebyshev maps via the Galois theory to the cyclic groups Z2 and Z3 and give some ideas how this fundamental connection might lead to the emergence of the familiar Lie group structure of particle physics and, finally, even to the emergence of space-time. The Z3-graded cubic and ternary algebras presented here have been introduced by R. Kerner in 1991 and then developed and elaborated in collaboration with many researches. We present here the most important results associated with these papers.
Non-linear sigma-models and string theories
Sen, A.
1986-10-01
The connection between sigma-models and string theories is discussed, as well as how the sigma-models can be used as tools to prove various results in string theories. Closed bosonic string theory in the light cone gauge is very briefly introduced. Then, closed bosonic string theory in the presence of massless background fields is discussed. The light cone gauge is used, and it is shown that in order to obtain a Lorentz invariant theory, the string theory in the presence of background fields must be described by a two-dimensional conformally invariant theory. The resulting constraints on the background fields are found to be the equations of motion of the string theory. The analysis is extended to the case of the heterotic string theory and the superstring theory in the presence of the massless background fields. It is then shown how to use these results to obtain nontrivial solutions to the string field equations. Another application of these results is shown, namely to prove that the effective cosmological constant after compactification vanishes as a consequence of the classical equations of motion of the string theory. 34 refs. (LEW)
Wilson loops from supergravity and string theory
NASA Astrophysics Data System (ADS)
Sonnenschein, J.
2000-03-01
We present a theorem that determines the value of the Wilson loop associated with a Nambu-Goto action which generalizes the action of the AdS 5 × S 5 model. In particular, we derive sufficient conditions for confining behaviour. We then apply this theorem to various string models. We go beyond the classical string picture by incorporating quadratic quantum fluctuations. We show that the bosonic determinant of Dp -branes with 16 supersymmetries yields a Lüscher term. We confirm that the free energy associated with a BPS configuration of a single quark is free from divergences. We show that unlike for a string in flat spacetime in the case of AdS 5 × S 5 the fermionic determinant does not cancel the bosonic one. For a set-up that corresponds to a confining gauge theory the correction to the potential is attractive. We determine the form of the Wilson loop for actions that include non-trivial B µicons/Journals/Common/nu" ALT="nu" ALIGN="TOP"/> field. The issue of an exact determination of the value of the stringy Wilson loop is discussed.
Gauge field theory of covariant strings
NASA Astrophysics Data System (ADS)
Kaku, Michio
1986-03-01
We present a gauge covariant second-quantized field theory of strings which is explicitly invariant under the gauge transformations generated by the Virasoro algebra. Unlike the old field theory strings [1] this new formulation is Lorentz covariant as well as gauge covariant under the continuous group Diff( S1) and its central extension. We derive the free action: L=Φ(X) †P[i∂ τ-(L 0-1)]PΦ(X) , in the same way that Feynman derived the Schrödinger equation from the path integral formalism. The action is manifestly invariant under the gauge transformation δΦ(X)= limit∑n=1∞ɛ -nL -nΦ(X) , where P is a projection operator which annihilates spurious states. We give three distinct formulations of this operator P to all orders, the first based on extracting the operator from the functional formulation of the Nambu-Goto action, and the second and third based on inverting the Shapovalov matrix on a Verma module. This gauge covariant formulation can be easily extended to the Green-Schwarz superstring [2,3]. One element application of these methods is to re-express the old Neveu-Schwarz-Ramond model as a field theory which is manifestly invariant under space-time supersymmetric transformations.
PHYSICS OF OUR DAYS: String theory: what is it?
NASA Astrophysics Data System (ADS)
Morozov, A. Yu
1992-08-01
This is an attempt to describe the subject and the methodology of string theory as we understand them today, i.e., the entire set of problems which attract attention of theorists working in the field. The string model of Grand Unification of fundamental interactions is briefly discussed along with a broader string scenario of the unified field theory, a more mathematical concept, designed to facilitate understanding of the generic features of equivalence classes in different models of quantum field theory. A concise glossary of the most important notions unusual in physical literature but frequently used in papers on string theory is also included.
Non-perturbative String Theory from Water Waves
Iyer, Ramakrishnan; Johnson, Clifford V.; Pennington, Jeffrey S.; /SLAC
2012-06-14
We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.
Big bang and big crunch in matrix string theory
Bedford, J.; Ward, J.; Papageorgakis, C.; Rodriguez-Gomez, D.
2007-04-15
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.
Supersymmetry of Green-Schwarz superstring and matrix string theory
Hyun, Seungjoon; Shin, Hyeonjoon
2001-08-15
We study the dynamics of a Green-Schwarz superstring on the gravitational wave background corresponding to the matrix string theory and the supersymmetry transformation rules of the superstring. The dynamics is obtained in the light-cone formulation and is shown to agree with that derived from matrix string theory. The supersymmetry structure has corrections due to the effect of the background and is identified with that of the low-energy one-loop effective action of matrix string theory in a two superstring background in the weak string coupling limit.
Big bang and big crunch in matrix string theory
NASA Astrophysics Data System (ADS)
Bedford, J.; Papageorgakis, C.; Rodríguez-Gómez, D.; Ward, J.
2007-04-01
Following the holographic description of linear dilaton null cosmologies with a big bang in terms of matrix string theory put forward by Craps, Sethi, and Verlinde, we propose an extended background describing a universe including both big bang and big crunch singularities. This belongs to a class of exact string backgrounds and is perturbative in the string coupling far away from the singularities, both of which can be resolved using matrix string theory. We provide a simple theory capable of describing the complete evolution of this closed universe.
From string theory to algebraic geometry and back
Brinzanescu, Vasile
2011-02-10
We describe some facts in physics which go up to the modern string theory and the related concepts in algebraic geometry. Then we present some recent results on moduli-spaces of vector bundles on non-Kaehler Calabi-Yau 3-folds and their consequences for heterotic string theory.
Aspects of inflation in string theory
NASA Astrophysics Data System (ADS)
Baumann, Daniel
2008-10-01
In this thesis we make small steps towards the ambitious goal of a microphysical understanding of the inflationary era in the early universe. We identify three key questions that require a proper understanding of the ultraviolet limit of the theory: (i) the delicate flatness of the inflaton potential, (ii) the possibility of observable gravitational waves and (iii) a large non-Gaussianity of the primordial density fluctuations. We study these fundamental aspects of inflation in the context of string theory. V (φ): In the first half of the thesis, we give the first fully explicit derivation of the potential for warped D-brane inflation. The analysis exposes the eta-problem, relates effective parameters in the inflaton Lagrangian to microscopic string theory input, and illustrates important correlations between the parameters of the potential. We show that compactification constraints significantly limit the possibility of obtaining inflationary solutions in these scenarios. r: All inflationary models that predict an observable gravitational wave signal require that the inflaton field evolves over a super-Planckian range. In the second half of the thesis, we derive a microscopic bound on the maximal inflaton field variation for D-brane models. The bound arises from the compact nature of the extra dimensions and puts a strong upper limit on the gravitational wave signal. fNL: Finally, we explain that our limit on the field range also significantly constrains the parameter space of Dirac-Born-Infeld inflation. In this case the bound strongly restricts the possibility of a large non-Gaussianity in the primordial fluctuations.
Pre-inflationary clues from String Theory?
Kitazawa, N.; Sagnotti, A. E-mail: sagnotti@sns.it
2014-04-01
''Brane supersymmetry breaking'' occurs in String Theory when the only available combinations of D-branes and orientifolds are not mutually BPS and yet do not introduce tree-level tachyon instabilities. It is characterized by the emergence of a steep exponential potential, and thus by the absence of maximally symmetric vacua. The corresponding low-energy supergravity admits intriguing spatially-flat cosmological solutions where a scalar field is forced to climb up toward the steep potential after an initial singularity, and additional milder terms can inject an inflationary phase during the ensuing descent. We show that, in the resulting power spectra of scalar perturbations, an infrared suppression is typically followed by a pre-inflationary peak that reflects the end of the climbing phase and can lie well apart from the approximately scale invariant profile. A first look at WMAP9 raw data shows that, while the χ{sup 2} fits for the low-ℓ CMB angular power spectrum are clearly compatible with an almost scale invariant behavior, they display nonetheless an eye-catching preference for this type of setting within a perturbative string regime.
Axions as quintessence in string theory
Panda, Sudhakar; Sumitomo, Yoske; Trivedi, Sandip P.
2011-04-15
We construct a model of quintessence in string theory based on the idea of axion monodromy as discussed by McAllister, Silverstein and Westphal [L. McAllister, E. Silverstein, and A. Westphal, Phys. Rev. D 82, 046003 (2010)]. In the model, the quintessence field is an axion whose shift symmetry is broken by the presence of 5-branes which are placed in highly warped throats. This gives rise to a potential for the axion field which is slowly varying, even after incorporating the effects of moduli stabilization and supersymmetry breaking. We find that the resulting time dependence in the equation of state of dark energy is potentially detectable, depending on the initial conditions. The model has many very light extra particles which live in the highly warped throats, but these are hard to detect. A signal in the rotation of the CMB polarization can also possibly arise.
Backreacted axion field ranges in string theory
NASA Astrophysics Data System (ADS)
Baume, Florent; Palti, Eran
2016-08-01
String theory axions are interesting candidates for fields whose potential might be controllable over super-Planckian field ranges and therefore as possible candidates for inflatons in large field inflation. Axion monodromy scenarios are setups where the axion shift symmetry is broken by some effect such that the axion can traverse a large number of periods potentially leading to super-Planckian excursions. We study such scenarios in type IIA string theory where the axion shift symmetry is broken by background fluxes. In particular we calculate the backreaction of the energy density induced by the axion vacuum expectation value on its own field space metric. We find universal behaviour for all the compactifications studied where up to a certain critical axion value there is only a small backreaction effect. Beyond the critical value the backreaction is strong and implies that the proper field distance as measured by the backreacted metric increases at best logarithmically with the axion vev, thereby placing strong limitations on extending the field distance any further. The critical axion value can be made arbitrarily large by the choice of fluxes. However the backreaction of these fluxes on the axion field space metric ensures a precise cancellation such that the proper field distance up to the critical axion value is flux independent and remains sub-Planckian. We also study an axion alignment scenario for type IIA compactifications on a twisted torus with four fundamental axions mixing to leave an axion with an effective decay constant which is flux dependent. There is a choice of fluxes for which the alignment parameter controlling the effective decay constant is unconstrained by tadpoles and can in principle lead to an arbitrarily large effective decay constant. However we show that these fluxes backreact on the fundamental decay constants so as to precisely cancel any enhancement leaving a sub-Planckian effective decay constant.
The 2d MIT: The Pseudogap and Fermi Liquid Theory
NASA Astrophysics Data System (ADS)
Castner, T. G.
2005-06-01
Fermi liquid theory for the 2d metal-insulator transition is extended to include the correlation gap in the density-of-states. The results are consistent with the scaling form g=gce[on(To/T)] at T larger than a characteristic T* ∝ xTc (Tc=Ec= mobility edge). The two-component model n1+nloc=n=nc(1+x) for n>nc is required and the theory explains the T-dependence of the data of Hanein et al. for p-type GaAs.
K-theoretic aspects of string theory dualities
NASA Astrophysics Data System (ADS)
Mendez-Diez, Stefan Milo
String theory is a a physical field theory in which point particles are replaced by 1-manifolds propagating in time, called strings. The 2-manifold representing the time evolution of a string is called the string worldsheet. Strings can be either closed (meaning their worldsheets are closed surfaces) or open (meaning their worldsheets have boundary). A D-brane is a submanifold of the spacetime manifold on which string endpoints are constrained to lie. There are five different string theories that have supersymmetry, and they are all related by various dualities. This dissertation will review how D-branes are classified by K-theory. We will then explore the K-theoretic aspects of a hypothesized duality between the type I theory compactified on a 4-torus and the type IIA theory compactified on a K3 surface, by looking at a certain blow down of the singular limit of K3. This dissertation concludes by classifying D-branes on the type II orientifold Tn/Z2 when the Z2 action is multiplication by -1 and the H-flux is trivial. We find that classifying D-branes on the singular limit of K3, T4/Z2 by equivariant K-theory agrees with the classification of D-branes on a smooth K3 surface by ordinary K-theory.
String Theory on Elliptic Curve Orientifolds and KR-Theory
NASA Astrophysics Data System (ADS)
Doran, Charles; Méndez-Diez, Stefan; Rosenberg, Jonathan
2015-04-01
We analyze the brane content and charges in all of the orientifold string theories on space-times of the form , where E is an elliptic curve with holomorphic or anti-holomorphic involution. Many of these theories involve "twistings" coming from the B-field and/or sign choices on the orientifold planes. A description of these theories from the point of view of algebraic geometry, using the Legendre normal form, naturally divides them into three groupings. The physical theories within each grouping are related to one another via sequences of T-dualities. Our approach agrees with both previous topological calculations of twisted KR-theory and known physics arguments, and explains how the twistings originate from both a mathematical and a physical perspective.
Discrete field theories and spatial properties of strings
Klebanov, I.; Susskind, L.
1988-10-01
We use the ground-state wave function in the light-cone gauge to study the spatial properties of fundamental strings. We find that, as the cut-off in the parameter space is removed, the strings are smooth and have a divergent size. Guided by these properties, we consider a large-N lattice gauge theory which has an unstable phase where the size of strings diverges. We show that this phase exactly describes free fundamental strings. The lattice spacing does not have to be taken to zero for this equivalence to hold. Thus, exact rotation and translation invariance is restored in a discrete space. This suggests that the number of fundamental short-distance degrees of freedom in string theory is much smaller than in a conventional field theory. 11 refs., 4 figs.
Consistent superstrings as solutions of the D = 26 bosonic string theory
NASA Astrophysics Data System (ADS)
Casher, A.; Englert, F.; Nicolai, H.; Taormina, A.
1985-11-01
Consistent closed ten-dimensional superstrings, i.e., the two N = 1 heterotic strings and the two N = 2 superstrings, are contained in the 26-dimensional bosonic closed string theory. The latter thus appears as the fundamental string theory.
Burg-Metzner-Sachs symmetry, string theory, and soft theorems
NASA Astrophysics Data System (ADS)
Avery, Steven G.; Schwab, Burkhard U. W.
2016-01-01
We study the action of the Burg-Metzner-Sachs (BMS) group in critical, bosonic string theory living on a target space of the form Md×C . Here Md is d -dimensional (asymptotically) flat spacetime and C is an arbitrary compactification. We provide a treatment of generalized Ward-Takahashi identities and derive consistent boundary conditions for any d from string theory considerations. Finally, we derive BMS transformations in higher-dimensional spacetimes and show that the generalized Ward-Takahashi identity of BMS produces Weinberg's soft theorem in string theory.
COSMOS- e'-GTachyon from string theory
NASA Astrophysics Data System (ADS)
Choudhury, Sayantan; Panda, Sudhakar
2016-05-01
In this article, our prime objective is to study the inflationary paradigm in the context of the generalized tachyon (GTachyon) living on the world volume of a non-BPS string theory. The tachyon action is considered here is modified compared to the original action. One can quantify the amount of the modification via a power q instead of 1 / 2 in the effective action. Using this set-up we study inflation by various types of tachyonic potentials, using which we constrain the index q within, 1/2string coupling constant gs and the mass scale of tachyon M_s, from the recent Planck 2015 and Planck+BICEP2/Keck Array joint data. We explicitly study the inflationary consequences from single field, assisted field and multi-field tachyon set-ups. Specifically for the single field and assisted field cases we derive the results in the quasi-de Sitter background in which we will utilize the details of cosmological perturbations and quantum fluctuations. Also we derive the expressions for all inflationary observables using any arbitrary vacuum and the Bunch-Davies vacuum. For the single field and the assisted field cases we derive the inflationary flow equations, new sets of consistency relations. Also we derive the field excursion formula for the tachyon, which shows that assisted inflation is on the safe side compared to the single field case to validate the effective field theory framework. Further we study the features of the CMB angular power spectrum from TT, TE and EE correlations from scalar fluctuations within the allowed range of q for each of the potentials from the single field set-up. We also put constraints from the temperature anisotropy and polarization spectra, which shows that our analysis is consistent with the Planck 2015 data. Finally, using the δ N formalism we derive the expressions for inflationary observables in the context of multi-field tachyons.
From surface roughening to QCD string theory
Keisuke Jimmy Juge et al.
2001-05-23
Surface critical phenomena and the related onset of Goldstone modes represent fundamental properties of the confining flux in Quantum Chromodynamics. New ideas on surface roughening and their implications for lattice studies of quark confinement and string formation are presented. Problems with a simple string description of the large Wilson surface are discussed.
Chasing brane inflation in string theory
NASA Astrophysics Data System (ADS)
Krause, Axel; Pajer, Enrico
2008-07-01
We investigate the embedding of brane-antibrane inflation into a concrete type IIB string theory compactification with all moduli fixed. Specifically, we are considering a D3-brane, whose position represents the inflaton phi, in a warped conifold throat in the presence of supersymmetrically embedded D7-branes and an anti-D3-brane localized at the tip of the warped conifold cone. After presenting the moduli stabilization analysis for a general D7-brane embedding, we concentrate on two explicit models, the Ouyang and the Kuperstein embeddings. We analyze whether the forces induced by moduli stabilization and acting on the D3-brane might be canceled by fine-tuning so as to leave us with the original Coulomb attraction of the anti-D3-brane as the driving force for inflation. For a large class of D7-brane embeddings we obtain a negative result. Cancelations are possible only for very small intervals of phi around an inflection point and not globally. For the most part of its motion the inflaton then feels a steep, non-slow-roll potential. We study the inflationary dynamics induced by this potential.
Massive neutral particles on heterotic string theory
NASA Astrophysics Data System (ADS)
Olivares, Marco; Villanueva, J. R.
2013-12-01
The motion of massive particles in the background of a charged black hole in heterotic string theory, which is characterized by a parameter α, is studied in detail in this paper. Since it is possible to write this space-time in the Einstein frame, we perform a quantitative analysis of the time-like geodesics by means of the standard Lagrange procedure. Thus, we obtain and solve a set of differential equations and then we describe the orbits in terms of the elliptic ℘-Weierstraß function. Also, by making an elementary derivation developed by Cornbleet (Am. J. Phys. 61(7):650-651, 1993) we obtain the correction to the angle of advance of perihelion to first order in α, and thus, by comparing with Mercury's data we give an estimation for the value of this parameter, which yields an heterotic solar charge Q ⊙≃0.728 [Km]=0.493 M ⊙. Therefore, in addition to the study on null geodesics performed by Fernando (Phys. Rev. D 85:024033, 2012), this work completes the geodesic structure for this class of space-time.
Steady 2D Detonations and the DSD Theory
NASA Astrophysics Data System (ADS)
Lubyatinsky, S. N.; Loboiko, B. G.; Filin, V. P.; Kostitsin, O. V.; Smirnov, E. B.
2006-07-01
In the framework of the simplest DSD theory we obtained ODEs describing steady 2D detonation front shapes for slab, cylinder, and rib geometries. It was found that one solution (a steady detonation front shape) corresponds to several combinations of the confinement material and the defining charge dimension (slab thickness, cylinder radius, or inner rib radius). Comparing experimental data for these combinations and analyzing the shape difference at the edge provide information on the D(κ) relation at low D. The analysis of the data on IHE ribs detonation indicates that as D decreases total curvature κ tends to a limit of about 0.1 mm-1, i.e., double the reciprocal critical diameter. This correction makes the DSD theory consistent with the experimental critical diameter.
Phenomenology and cosmology of weakly coupled string theory
Gaillard, Mary K.
1998-05-18
The weakly coupled vacuum of E{sub 8} {circle_times} E{sub 8} heterotic string theory remains an attractive scenario for phenomenology and cosmology. The particle spectrum is reviewed and the issues of gauge coupling unification, dilaton stabilization and modular cosmology are discussed. A specific model for condensation and supersymmetry breaking, that respects known constraints from string theory and is phenomenologically viable, is described.
Classical probes of string/gauge theory duality
NASA Astrophysics Data System (ADS)
Ishizeki, Riei
The AdS/CFT correspondence has played an important role in the recent development of string theory. The reason is that it proposes a description of certain gauge theories in terms of string theory. It is such that simple string theory computations give information about the strong coupling regime of the gauge theory. Vice versa, gauge theory computations give information about string theory and quantum gravity. Although much is known about AdS/CFT, the precise map between the two sides of the correspondence is not completely understood. In the unraveling of such map classical string solutions play a vital role. In this thesis, several classical string solutions are proposed to help understand the AdS/CFT duality. First, rigidly rotating strings on a two-sphere are studied. Taking special limits of such solutions leads to two cases: the already known giant magnon solution, and a new solution which we call the single spike solution. Next, we compute the scattering phase shift of the single spike solutions and compare the result with the giant magnon solutions. Intriguingly, the results are the same up to non-logarithmic terms, indicating that the single spike solution should have the same rich spin chain structure as the giant magnon solution. Afterward, we consider open string solutions ending on the boundary of AdS5. The lines traced by the ends of such open strings can be viewed as Wilson loops in N = 4 SYM theory. After applying an inversion transformation, the open Wilson loops become closed Wilson loops whose expectation value is consistent with previously conjectured results. Next, several Wilson loops for N = 4 SYM in an AdS5 pp-wave background are considered and translated to the pure AdS 5 background and their interpretation as forward quark-gluon scattering is suggested. In the last part of this thesis, a class of classical solutions for closed strings moving in AdS3 x S 1 ⊂ AdS5 x S5 with energy E and spin S in AdS3 and angular momentum J and winding m
Matrix theory interpretation of discrete light cone quantization string worldsheets
Grignani; Orland; Paniak; Semenoff
2000-10-16
We study the null compactification of type-IIA string perturbation theory at finite temperature. We prove a theorem about Riemann surfaces establishing that the moduli spaces of infinite-momentum-frame superstring worldsheets are identical to those of branched-cover instantons in the matrix-string model conjectured to describe M theory. This means that the identification of string degrees of freedom in the matrix model proposed by Dijkgraaf, Verlinde, and Verlinde is correct and that its natural generalization produces the moduli space of Riemann surfaces at all orders in the genus expansion. PMID:11030892
The pomeron in closed bosonic string theory
Fazio, A. R.
2010-12-22
We compute the couplings of the pomeron to the first few mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.
Observational Consequences of Eternal Ination, String Theory, and the Multiverse
NASA Astrophysics Data System (ADS)
Schillo, Marjorie
This thesis details certain connections between string theory and an eternally inflating multiverse, and observational cosmology. It contains a non-trivial observational check of theories of an eternally inflating multiverse, whereby eternal inflation can be ruled out by a measurement of spatial curvature. It introduces a new model for inflation - Unwinding Inflation - which is motivated by string theory. Some possible realizations of Unwinding Inflation are described including their predictions for cosmological observables. Finally an effective field theory of Unwinding Inflation is presented and used to propose a mechanism to produce the anomalous measurements of the large scale cosmic microwave background.
Regge behavior saves string theory from causality violations
NASA Astrophysics Data System (ADS)
D'Appollonio, Giuseppe; Di Vecchia, Paolo; Russo, Rodolfo; Veneziano, Gabriele
2015-05-01
Higher-derivative corrections to the Einstein-Hilbert action are present in bosonic string theory leading to the potential causality violations recently pointed out by Camanho et al. [1]. We analyze in detail this question by considering high-energy string-brane collisions at impact parameters b ≤ l s (the string-length parameter) with l s ≫ R p (the characteristic scale of the D p-brane geometry). If we keep only the contribution of the massless states causality is violated for a set of initial states whose polarization is suitably chosen with respect to the impact parameter vector. Such violations are instead neatly avoided when the full structure of string theory — and in particular its Regge behavior — is taken into account.
Constraining de Sitter Space in String Theory.
Kutasov, David; Maxfield, Travis; Melnikov, Ilarion; Sethi, Savdeep
2015-08-14
We argue that the heterotic string does not have classical vacua corresponding to de Sitter space-times of dimension four or higher. The same conclusion applies to type II vacua in the absence of Ramond-Ramond fluxes. Our argument extends prior supergravity no-go results to regimes of high curvature. We discuss the interpretation of the heterotic result from the perspective of dual type II orientifold constructions. Our result suggests that the genericity arguments used in string landscape discussions should be viewed with caution. PMID:26317710
Steady 2d Detonations and the DSD Theory
NASA Astrophysics Data System (ADS)
Lubyatinsky, Sergey N.
2005-07-01
The simplest Detonation Shock Dynamics (DSD) theory assumes that the detonation normal velocity D is determined by the total front curvature k and that the edge angle, the angle between the normal to the front and the explosive edge, has a unique value for each explosive and confinement material combination. This model has been used to derive the ordinary differential equations describing steady 2D detonation front shapes in slab, cylinder and rib geometries. It was found that one solution (a steady detonation front shape) corresponds to several combinations of the confinement material and the defining charge dimension (slab thickness, cylinder radius, or inner rib radius). Comparing experimental data for these combinations and analyzing the shape difference at the edge provide valuable information on the D(k) relation at low D corresponding to forced detonation regimes. The analysis of the experimental data on IHE ribs detonation indicates that as D decreases k tends to a limit of about 0.05 1/mm, i.e., of the order of reciprocal critical diameter. This revises the present view of the D(k) relation making the DSD theory consistent with the experimentally observed critical diameter.
F-Theory, spinning black holes and multi-string branches
NASA Astrophysics Data System (ADS)
Haghighat, Babak; Murthy, Sameer; Vafa, Cumrun; Vandoren, Stefan
2016-01-01
We study 5d supersymmetric black holes which descend from strings of generic N=(1,0) supergravity in 6d. These strings have an F-theory realization in 6d as D3 branes wrapping smooth genus g curves in the base of elliptic 3-folds. They enjoy (0 , 4) worldsheet supersymmetry with an extra SU(2) L current algebra at level g realized on the left-movers. When the smooth curves degenerate they lead to multi-string branches and we find that the microscopic worldsheet theory flows in the IR to disconnected 2d CFTs having different central charges. The single string sector is the one with maximal central charge, which when wrapped on a circle, leads to a 5d spinning BPS black hole whose horizon volume agrees with the leading entropy prediction from the Cardy formula. However, we find new phenomena where this branch meets other branches of the CFT. These include multi-string configurations which have no bound states in 6 dimensions but are bound through KK momenta when wrapping a circle, as well as loci where the curves degenerate to spheres. These loci lead to black hole configurations which can have total angular momentum relative to a Taub-Nut center satisfying J 2 > M 3 and whose number of states, though exponentially large, grows much slower than those of the large spinning black hole.
String theory, supergravity and four-dimensional field theories
NASA Astrophysics Data System (ADS)
Burrington, Benjamin A.
In this dissertation I present some of the basic computations in string theory and supergravity with an eye for their use in AdS/CFT. I then go on to present several investigations centering around the framework of dualities between gauge theory and gravity systems. In chapters 2, 3, and 4 we consider several 10D solutions. Chapter 2 deals with the inclusion of D7 branes in a D3 brane background, which amounts to adding fundamental matter in the gauge theory dual. We consider including the gravitational backreaction of the D7 branes in these solutions. In chapter 3, we consider modifications to the 6D space transverse to a stack of D3 branes. The 6D spaces that we consider are cones over the so called Y p,q geometries. We consider a geometric deformation for each of these spaces which explicitly breaks a U(1) isometry. In chapter 4, the leading Regge behavior string states are examined. We calculate the effective coupling of such string states to the five form and metric in a flat space background, and obtain an effective Lagrangian. Using this Lagrangian, we examine the energy, spin and angular momentum of these states in the AdS 5 x S5 background which is then compared to the semiclassical analysis of the literature. In chapters 5 and 6, we turn to discussions of the AdS5 factor. The Karch Randall scenario, a brane world scenario based oil AdS4 slices of AdS5 naturally suggests considering transparent boundary conditions for the field theory in AdS4. In chapter 5 we show that with these boundary conditions, a mass is induced for the graviphoton, and that this mass is in the correct proportion to the graviton mass (studied in the literature) to preserve supersymmetry. In chapter 6 we examine black hole solutions in AdS5. The presence of the black hole breaks some of the global supersymmetries (present in pure AdS5) which we use to generate the superpartners to these black holes. Using boundary counter term techniques, we find the mass, angular momentum, and charge
On the cosmological constant in the heterotic string theory
NASA Astrophysics Data System (ADS)
Gava, E.; Iengo, R.
1987-01-01
We examine the possible physical assumptions which can be made in the heterotic string theory in order to derive the vanishing of the cosmological constant within the theory of modular forms on the moduli space. It seems that more mathematical information is needed to reach a definite result.
On the cosmological constant in the heterotic string theory
NASA Astrophysics Data System (ADS)
Gava, E.; Iengo, R.
1987-03-01
We examine the possible physical assumptions that can be made in the heterotic string theory in order to derive the vanishing of the cosmological constant within the theory of modular forms on the moduli space. It seems that more mathematical information is needed to reach a definite result.
Electromagnetic interaction in the theory of straight strings
Nikitin, I.N.; Pron`ko, G.P.
1995-06-01
A scheme is proposed for including electromagnetic interaction into the theories of stretched relativistic objects. In the theory of the straight string, the operator of electromagnetic interaction is constructed, and form factors of electromagnetic transitions are calculated. 6 refs., 1 fig.
Non-simply laced Lie algebras via F theory strings
NASA Astrophysics Data System (ADS)
Bonora, L.; Savelli, R.
2010-11-01
In order to describe the appearance in F theory of the non-simply-laced Lie algebras, we use the representation of symmetry enhancements by means of string junctions. After an introduction to the techniques used to describe symmetry enhancement, that is algebraic geometry, BPS states analysis and string junctions, we concentrate on the latter. We give an explicit description of the folding of D 2n to B n , of the folding of E 6 to F 4 and that of D 4 to G 2 in terms of junctions and Jordan strings. We also discuss the case of C n , but we are unable in this case to provide a string interpretation.
F-theory and the classification of little strings
NASA Astrophysics Data System (ADS)
Bhardwaj, Lakshya; Del Zotto, Michele; Heckman, Jonathan J.; Morrison, David R.; Rudelius, Tom; Vafa, Cumrun
2016-04-01
Little string theories (LSTs) are UV complete nonlocal six-dimensional (6D) theories decoupled from gravity in which there is an intrinsic string scale. In this paper, we present a systematic approach to the construction of supersymmetric LSTs via the geometric phases of F-theory. Our central result is that all LSTs with more than one tensor multiplet are obtained by a mild extension of 6D superconformal field theories in which the theory is supplemented by an additional, nondynamical tensor multiplet, analogous to adding an affine node to an ADE quiver, resulting in a negative semidefinite Dirac pairing. We also show that all 6D superconformal field theories naturally embed in a LST. Motivated by physical considerations, we show that in geometries where we can verify the presence of two elliptic fibrations, exchanging the roles of these fibrations amounts to T-duality in the 6D theory compactified on a circle.
The AdS central charge in string theory
NASA Astrophysics Data System (ADS)
Troost, Jan
2011-11-01
We evaluate the vacuum expectation value of the central charge operator in string theory in an AdS3 vacuum. Our calculation provides a rare non-zero one-point function on a spherical worldsheet. The evaluation involves the regularization both of a worldsheet ultraviolet divergence (associated to the infinite volume of the conformal Killing group), and a space-time infrared divergence (corresponding to the infinite volume of space-time). The two divergences conspire to give a finite result, which is the classical general relativity value for the central charge, corrected in bosonic string theory by an infinite series of tree level higher derivative terms.
N =2⋆ from topological amplitudes in string theory
NASA Astrophysics Data System (ADS)
Florakis, Ioannis; Zein Assi, Ahmad
2016-08-01
In this paper, we explicitly construct string theory backgrounds that realise the so-called N =2⋆ gauge theory. We prove the consistency of our models by calculating their partition function and obtaining the correct gauge theory spectrum. We further provide arguments in favour of the universality of our construction which covers a wide class of models all of which engineer the same gauge theory. We reproduce the corresponding Nekrasov partition function once the Ω-deformation is included and the appropriate field theory limit taken. This is achieved by calculating the topological amplitudes Fg in the string models. In addition to heterotic and type II constructions, we also realise the mass deformation in type I theory, thus leading to a natural way of uplifting the result to the instanton sector.
Entanglement Entropy in Two-Dimensional String Theory.
Hartnoll, Sean A; Mazenc, Edward A
2015-09-18
To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space. PMID:26430982
sigma model approach to the heterotic string theory
Sen, A.
1985-09-01
Relation between the equations of motion for the massless fields in the heterotic string theory, and the conformal invariance of the sigma model describing the propagation of the heterotic string in arbitrary background massless fields is discussed. It is emphasized that this sigma model contains complete information about the string theory. Finally, we discuss the extension of the Hull-Witten proof of local gauge and Lorentz invariance of the sigma-model to higher order in ..cap alpha..', and the modification of the transformation laws of the antisymmetric tensor field under these symmetries. Presence of anomaly in the naive N = 1/2 supersymmetry transformation is also pointed out in this context. 12 refs.
Black strings in Gauss-Bonnet theory are unstable
NASA Astrophysics Data System (ADS)
Giacomini, Alex; Oliva, Julio; Vera, Aldo
2015-05-01
We report the existence of unstable s-wave modes for black strings in Gauss-Bonnet theory (which is quadratic in the curvature) in seven dimensions. This theory admits analytic uniform black strings that are, in the transverse section, black holes of the same Gauss-Bonnet theory in six dimensions. All the components of the perturbation can be written in terms of a single component and its derivatives. For this, we find a master equation that admits bounded solutions provided the characteristic time of the exponential growth of the perturbation is related to the wave number along the extra direction, as in general relativity. It is known that these configurations suffer from a thermal instability; therefore, the results presented here provide evidence for the Gubser-Mitra conjecture in the context of Gauss-Bonnet theory. Because of the nontriviality of the curvature of the background, all of the components of the metric perturbation appear in the linearized equations. Similar to spherical black holes, the black strings should be obtained as the short-distance limit r ≪α1 /2 of the black-string solution of Einstein-Gauss-Bonnet theory (which is not known analytically), where α is the Gauss-Bonnet coupling.
M-theory interpretation of the real topological string
NASA Astrophysics Data System (ADS)
Piazzalunga, Nicolò; Uranga, Angel M.
2014-08-01
We describe the type IIA physical realization of the unoriented topological string introduced by Walcher, describe its M-theory lift, and show that it allows to compute the open and unoriented topological amplitude in terms of one-loop diagram of BPS M2-brane states. This confirms and allows to generalize the conjectured BPS integer expansion of the topological amplitude. The M-theory lift of the orientifold is freely acting on the M-theory circle, so that integer multiplicities are a weighted version of the (equivariant subsector of the) original closed oriented Gopakumar-Vafa invariants. The M-theory lift also provides new perspective on the topological tadpole cancellation conditions. We finally comment on the M-theory version of other unoriented topological strings, and clarify certain misidentifications in earlier discussions in the literature.
From decay to complete breaking: pulling the strings in SU(2) Yang-Mills theory.
Pepe, M; Wiese, U-J
2009-05-15
We study {2Q+1} strings connecting two static charges Q in (2+1)D SU(2) Yang-Mills theory. While the fundamental {2} string between two charges Q=1/2 is unbreakable, the adjoint {3} string connecting two charges Q=1 can break. When a {4} string is stretched beyond a critical length, it decays into a {2} string by gluon pair creation. When a {5} string is stretched, it first decays into a {3} string, which eventually breaks completely. The energy of the screened charges at the ends of a string is well described by a phenomenological constituent gluon model. PMID:19518940
What every physicist should know about string theory
Witten, Edward
2015-11-15
Some of nature’s rhymes—the appearance of similar structures in different areas of physics—underlie the way that string theory potentially unifies gravity with the other forces of nature and eliminates the ultraviolet divergences that plague quantum gravity.
Grand Unification as a Bridge Between String Theory and Phenomenology
Pati, Jogesh C.
2006-06-09
In the first part of the talk, I explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity--be it string/M theory or a reincarnation--this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2){sub L} x SU(2){sub R} x SU(4){sup c} or SO(10) symmetry in 4D in explaining (1) observed neutrino oscillations, (2) baryogenesis via leptogenesis, and (3) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in {mu} {yields} e{gamma}, {tau} {yields} {mu}{gamma}, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Grand Unification as a Bridge Between String Theory and Phenomenology
NASA Astrophysics Data System (ADS)
Pati, Jogesh C.
In the first part of this paper, we explain what empirical evidence points to the need for having an effective grand unification-like symmetry possessing the symmetry SU(4)-color in 4D. If one assumes the premises of a future predictive theory including gravity — be it string/M-theory or a reincarnation — this evidence then suggests that such a theory should lead to an effective grand unification-like symmetry as above in 4D, near the string-GUT-scale, rather than the standard model symmetry. Advantages of an effective supersymmetric G(224) = SU(2)L × SU(2)R × SU(4)c or SO(10) symmetry in 4D in explaining (i) observed neutrino oscillations, (ii) baryogenesis via leptogenesis, and (iii) certain fermion mass-relations are noted. And certain distinguishing tests of a SUSY G(224) or SO(10)-framework involving CP and flavor violations (as in μ → eγ, τ → μγ, edm's of the neutron and the electron) as well as proton decay are briefly mentioned. Recalling some of the successes we have had in our understanding of nature so far, and the current difficulties of string/M-theory as regards the large multiplicity of string vacua, some comments are made on the traditional goal of understanding vis a vis the recently evolved view of landscape and anthropism.
Four-Qubit Entanglement Classification from String Theory
Borsten, L.; Dahanayake, D.; Duff, M. J.; Rubens, W.; Marrani, A.
2010-09-03
We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits.
Four-qubit entanglement classification from string theory.
Borsten, L; Dahanayake, D; Duff, M J; Marrani, A; Rubens, W
2010-09-01
We invoke the black-hole-qubit correspondence to derive the classification of four-qubit entanglement. The U-duality orbits resulting from timelike reduction of string theory from D=4 to D=3 yield 31 entanglement families, which reduce to nine up to permutation of the four qubits. PMID:20867503
On a gauge covariant formulation of string field theories
NASA Astrophysics Data System (ADS)
Ju-Fei, Tang; Chuan-Jie, Zhu
1986-11-01
It is shown that the Neveu-Nicolai-West formulation of the gauge covariant string field theories and that of Banks and Peskin can be obtained by different consistent truncation of the BRST multiplets. A proof is given to show the equivalence of light-cone formulation and the gauge covariant formulation without using the property of trivial cohomology of string differential forms. We would like to thank D.D. Wu and X.J. Zhou for discussion and Yi-Bing Ding for careful reading of the manuscript.
Saddle point inflation in string-inspired theory
NASA Astrophysics Data System (ADS)
Hamada, Yuta; Kawai, Hikaru; Kawana, Kiyoharu
2015-09-01
The observed value of the Higgs mass indicates the possibility that there is no supersymmetry below the Planck scale and that the Higgs can play the role of the inflaton. We examine the general structure of saddle point inflation in string-inspired theory without supersymmetry. We point out that the string scale is fixed to be around the GUT scale {˜ }10^{16} GeV in order to realize successful inflation. We find that the inflaton can be naturally identified with the Higgs field.
Ginsparg, P.
1991-01-01
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Ginsparg, P.
1991-12-31
These are introductory lectures for a general audience that give an overview of the subject of matrix models and their application to random surfaces, 2d gravity, and string theory. They are intentionally 1.5 years out of date.
Testing string theory by probing the pre-bangian Universe
Veneziano, Gabriele
1999-07-15
After recalling why superstring theory suggests a new cosmological principle of 'asymptotic past triviality', I will argue that classical (quantum) gravitational instabilities can inflate (warm up) an asymptotic-past-trivial Universe. I will then discuss how near-future observations could provide a window through which we can probe the pre-bangian Universe and thus test string theory both at short and at large distances.
Open parabosonic string theory between two parallel Dp-branes
Hamam, D.; Belaloui, N.
2012-06-27
We investigate an open parabosonic string theory between two parallel Dp-branes. The spectrum is constructed and the partition function is derived. A common chord between the development of this latter and the degeneracy of the states for each mass level is obtained. The theory is consistent and with no tachyon. The Virasoro algebra is derived and compared to the one of the ordinary case.
NASA Astrophysics Data System (ADS)
Wang, Juven C.; Wen, Xiao-Gang
2015-01-01
String and particle braiding statistics are examined in a class of topological orders described by discrete gauge theories with a gauge group G and a 4-cocycle twist ω4 of G 's cohomology group H4(G ,R /Z ) in three-dimensional space and one-dimensional time (3 +1 D ) . We establish the topological spin and the spin-statistics relation for the closed strings and their multistring braiding statistics. The 3 +1 D twisted gauge theory can be characterized by a representation of a modular transformation group, SL (3 ,Z ) . We express the SL (3 ,Z ) generators Sx y z and Tx y in terms of the gauge group G and the 4-cocycle ω4. As we compactify one of the spatial directions z into a compact circle with a gauge flux b inserted, we can use the generators Sx y and Tx y of an SL (2 ,Z ) subgroup to study the dimensional reduction of the 3D topological order C3 D to a direct sum of degenerate states of 2D topological orders Cb2 D in different flux b sectors: C3 D=⊕bCb2 D . The 2D topological orders Cb2 D are described by 2D gauge theories of the group G twisted by the 3-cocycle ω3 (b ), dimensionally reduced from the 4-cocycle ω4. We show that the SL (2 ,Z ) generators, Sx y and Tx y, fully encode a particular type of three-string braiding statistics with a pattern that is the connected sum of two Hopf links. With certain 4-cocycle twists, we discover that, by threading a third string through two-string unlink into a three-string Hopf-link configuration, Abelian two-string braiding statistics is promoted to non-Abelian three-string braiding statistics.
String theory, quantum phase transitions, and the emergent Fermi liquid.
Cubrović, Mihailo; Zaanen, Jan; Schalm, Koenraad
2009-07-24
A central problem in quantum condensed matter physics is the critical theory governing the zero-temperature quantum phase transition between strongly renormalized Fermi liquids as found in heavy fermion intermetallics and possibly in high-critical temperature superconductors. We found that the mathematics of string theory is capable of describing such fermionic quantum critical states. Using the anti-de Sitter/conformal field theory correspondence to relate fermionic quantum critical fields to a gravitational problem, we computed the spectral functions of fermions in the field theory. By increasing the fermion density away from the relativistic quantum critical point, a state emerges with all the features of the Fermi liquid. PMID:19556462
Type-IIB-string-M-theory duality and longitudinal membranes in M(atrix) theory
NASA Astrophysics Data System (ADS)
Ho, Pei-Ming; Wu, Yong-Shi
1998-02-01
In this paper we study duality properties of the M(atrix) theory compactified on a circle. We present evidence for the equivalence of this theory to the strong coupling limit of type-IIB string theory compactified on a circle. In the M(atrix) theory context, our evidence for this duality consists of showing the appearance (upon compactification) of a topological term recently discovered in the D-string action, identifying the BPS states of type-IIB strings in the spectrum and finding the remnant symmetry of SL(2,Z) and the associated τ moduli. By this type-IIB-string-M-theory duality, a number of insights are gained into the physics of longitudinal membranes in the infinite momentum frame.
Towards a gauge theory interpretation of the real topological string
NASA Astrophysics Data System (ADS)
Hayashi, Hirotaka; Piazzalunga, Nicolò; Uranga, Angel M.
2016-03-01
We consider the real topological string on certain noncompact toric Calabi-Yau three-folds X , in its physical realization describing an orientifold of type IIA on X with an O4-plane and a single D4-brane stuck on top. The orientifold can be regarded as a new kind of surface operator on the gauge theory with 8 supercharges arising from the singular geometry. We use the M-theory lift of this system to compute the real Gopakumar-Vafa invariants (describing wrapped M2-brane Bogomol'nyi-Prasad-Sommerfield (BPS) states) for diverse geometries. We show that the real topological string amplitudes pick up certain signs across flop transitions, in a well-defined pattern consistent with continuity of the real BPS invariants. We further give some preliminary proposals of an intrinsically gauge theoretical description of the effect of the surface operator in the gauge theory partition function.
Millicharged dark matter in quantum gravity and string theory.
Shiu, Gary; Soler, Pablo; Ye, Fang
2013-06-14
We examine the millicharged dark matter scenario from a string theory perspective. In this scenario, kinetic and mass mixings of the photon with extra U(1) bosons are claimed to give rise to small electric charges, carried by dark matter particles, whose values are determined by continuous parameters of the theory. This seems to contradict folk theorems of quantum gravity that forbid the existence of irrational charges in theories with a single massless gauge field. By considering the underlying structure of the U(1) mass matrix that appears in type II string compactifications, we show that millicharges arise exclusively through kinetic mixing, and require the existence of at least two exactly massless gauge bosons. PMID:25165910
Thermofield dynamics extension of the open string field theory
NASA Astrophysics Data System (ADS)
Botta Cantcheff, M.; Scherer Santos, R. J.
2016-03-01
We study the application of the rules of thermofield dynamics (TFD) to the covariant formulation of open-string field theory. We extend the states space and fields according to the duplication rules of TFD and construct the corresponding classical action. The result is interpreted as a theory whose fields would encode the statistical information of open strings. The physical spectrum of the free theory is studied through the cohomology of the extended Becchi, Rouet, Stora and Tyutin (BRST) charge, and, as a result, we get new fields in the spectrum emerging by virtue of the quantum entanglement, and, noticeably, it presents degrees of freedom that could be identified as those of closed strings. We also show, however, that their appearing in the action is directly related to the choice of the inner product in the extended algebra, so that different sectors of fields could be eliminated from the theory by choosing that product conveniently. Finally, we study the extension of the three-vertex interaction and provide a simple prescription for it of which the results at tree level agree with those of the conventional theory.
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity onmore » the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.« less
Interpolating the Coulomb phase of little string theory
Lin, Ying -Hsuan; Shao, Shu -Heng; Wang, Yifan; Yin, Xi
2015-12-03
We study up to 8-derivative terms in the Coulomb branch effective action of (1,1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU(k) SYM and DSLST respectively, for k=2,3,4,5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. As a result, we also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2,0) little string theory.
Interpolating the Coulomb phase of little string theory
NASA Astrophysics Data System (ADS)
Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi
2015-12-01
We study up to 8-derivative terms in the Coulomb branch effective action of (1, 1) little string theory, by collecting results of 4-gluon scattering amplitudes from both perturbative 6D super-Yang-Mills theory up to 4-loop order, and tree-level double scaled little string theory (DSLST). In previous work we have matched the 6-derivative term from the 6D gauge theory to DSLST, indicating that this term is protected on the entire Coulomb branch. The 8-derivative term, on the other hand, is unprotected. In this paper we compute the 8-derivative term by interpolating from the two limits, near the origin and near the infinity on the Coulomb branch, numerically from SU( k) SYM and DSLST respectively, for k = 2 , 3 , 4 , 5. We discuss the implication of this result on the UV completion of 6D SYM as well as the strong coupling completion of DSLST. We also comment on analogous interpolating functions in the Coulomb phase of circle-compactified (2 , 0) little string theory.
On natural inflation and moduli stabilisation in string theory
NASA Astrophysics Data System (ADS)
Palti, Eran
2015-10-01
Natural inflation relies on the existence of an axion decay constant which is super-Planckian. In string theory only sub-Planckian axion decay constants have been found in any controlled regime. However in field theory it is possible to generate an enhanced super-Planckian decay constant by an appropriate aligned mixing between axions with individual sub-Planckian decay constants. We study the possibility of such a mechanism in string theory. In particular we construct a new realisation of an alignment scenario in type IIA string theory compactifications on a Calabi-Yau where the alignment is induced through fluxes. Within field theory the original decay constants are taken to be independent of the parameters which induce the alignment. In string theory however they are moduli dependent quantities and so interact gravitationally with the physics responsible for the mixing. We show that this gravitational effect of the fluxes on the moduli can precisely cancel any enhancement of the effective decay constant. This censorship of an effective super-Planckian decay constant depends on detailed properties of Calabi-Yau moduli spaces and occurs for all the examples and classes that we study. We expand these results to a general superpotential assuming only that the axion superpartners are fixed supersymmetrically and are able to show for a large class of Calabi-Yau manifolds, but not all, that the cancellation effect occurs and is independent of the superpotential. We also study simple models where the moduli are fixed non-supersymmetrically and find that similar cancellation behaviour can emerge. Finally we make some comments on a possible generalisation to axion monodromy inflation models.
On the quantum geometry of string theory
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
The IKKT or IIB matrix model has been proposed as a non-perturbative definition of type IIB superstring theories. It has the attractive feature that space-time appears dynamically. It is possible that lower dimensional universes dominate the theory, therefore providing a dynamical solution to the reduction of space-time dimensionality. We summarize recent works that show the central role of the phase of the fermion determinant in the possible realization of such a scenario.
On the quantum geometry of string theory
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Anagnostopoulos, K. N.; Bietenholz, W.; Hofheinz, F.; Nishimura, J.
2002-03-01
The IKKT or IIB matrix model has been proposed as a non-perturbative definition of type IIB superstring theories. It has the attractive feature that space-time appears dynamically. It is possible that lower dimensional universes dominate the theory, therefore providing a dynamical solution to the reduction of space-time dimensionality. We summarize recent works that show the central role of the phase of the fermion determinant in the possible realization of such a scenario.
Density functional theory for polymeric systems in 2D
NASA Astrophysics Data System (ADS)
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-01
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim’s first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT.
Density functional theory for polymeric systems in 2D.
Słyk, Edyta; Roth, Roland; Bryk, Paweł
2016-06-22
We propose density functional theory for polymeric fluids in two dimensions. The approach is based on Wertheim's first order thermodynamic perturbation theory (TPT) and closely follows density functional theory for polymers proposed by Yu and Wu (2002 J. Chem. Phys. 117 2368). As a simple application we evaluate the density profiles of tangent hard-disk polymers at hard walls. The theoretical predictions are compared against the results of the Monte Carlo simulations. We find that for short chain lengths the theoretical density profiles are in an excellent agreement with the Monte Carlo data. The agreement is less satisfactory for longer chains. The performance of the theory can be improved by recasting the approach using the self-consistent field theory formalism. When the self-avoiding chain statistics is used, the theory yields a marked improvement in the low density limit. Further improvements for long chains could be reached by going beyond the first order of TPT. PMID:27115343
A Quantifier-Free String Theory for ALOGTIME Reasoning
NASA Astrophysics Data System (ADS)
Pitt, François
2007-02-01
The main contribution of this work is the definition of a quantifier-free string theory T_1 suitable for formalizing ALOGTIME reasoning. After describing L_1 -- a new, simple, algebraic characterization of the complexity class ALOGTIME based on strings instead of numbers -- the theory T_1 is defined (based on L_1), and a detailed formal development of T_1 is given. Then, theorems of T_1 are shown to translate into families of propositional tautologies that have uniform polysize Frege proofs, T_1 is shown to prove the soundness of a particular Frege system F, and F is shown to provably p-simulate any proof system whose soundness can be proved in T_1. Finally, T_1 is compared with other theories for ALOGTIME reasoning in the literature. To our knowledge, this is the first formal theory for ALOGTIME reasoning whose basic objects are strings instead of numbers, and the first quantifier-free theory formalizing ALOGTIME reasoning in which a direct proof of the soundness of some Frege system has been given (in the case of first-order theories, such a proof was first given by Arai for his theory AID). Also, the polysize Frege proofs we give for the propositional translations of theorems of T_1 are considerably simpler than those for other theories, and so is our proof of the soundness of a particular F-system in T_1. Together with the simplicity of T_1's recursion schemes, axioms, and rules these facts suggest that T_1 is one of the most natural theories available for ALOGTIME reasoning.
CERN Winter School on Supergravity, Strings, and Gauge Theory 2010
None
2011-10-06
The CERN Winter School on Supergravity, Strings, and Gauge Theory is the analytic continuation of the yearly training school of the former EC-RTN string network "Constituents, Fundamental Forces and Symmetries of the Universe". The 2010 edition of the school is supported and organized by the CERN Theory Divison, and will take place from Monday January 25 to Friday January 29, at CERN. As its predecessors, this school is meant primarily for training of doctoral students and young postdoctoral researchers in recent developments in theoretical high-energy physics and string theory. The programme of the school will consist of five series of pedagogical lectures, complemented by tutorial discussion sessions in the afternoons. Previous schools in this series were organized in 2005 at SISSA in Trieste, and in 2006, 2007, 2008, and 2009 at CERN, Geneva. Other similar schools have been organized in the past by the former related RTN network "The Quantum Structure of Spacetime and the Geometric Nature of Fundamental Interactions". This edition of the school is not funded by the European Union. The school is funded by the CERN Theory Division, and the Arnold Sommerfeld Center at Ludwig-Maximilians University of Munich. Scientific committee: M. Gaberdiel, D. Luest, A. Sevrin, J. Simon, K. Stelle, S. Theisen, A. Uranga, A. Van Proeyen, E. Verlinde Local organizers: A. Uranga, J. Walcher
Yukawa unification in heterotic string theory
NASA Astrophysics Data System (ADS)
Buchbinder, Evgeny I.; Constantin, Andrei; Gray, James; Lukas, Andre
2016-08-01
We analyze Yukawa unification in the context of E8×E8 heterotic Calabi-Yau models which rely on breaking to a grand unified theory (GUT) via a nonflat gauge bundle and subsequent Wilson line breaking to the standard model. Our focus is on underlying GUT theories with gauge group S U (5 ) or S O (10 ). We provide a detailed analysis of the fact that, in contrast to traditional field theory GUTs, the underlying GUT symmetry of these models does not enforce Yukawa unification. Using this formalism, we present various scenarios where Yukawa unification can occur as a consequence of additional symmetries. These additional symmetries arise naturally in some heterotic constructions, and we present an explicit heterotic line bundle model which realizes one of these scenarios.
[Mathematics and string theory]. [Annual progress report
Not Available
1992-09-01
Over the past year our research activities concentrated around: (1) non-commutative differential geometry and its connections with quantum physics and (2) 2-dimensional(super) conformal quantum field theories and related non-linear {sigma}-models. This paper discusses these topics.
Status of Some Exact Results on Conformally Invariant Effective String Theories
Dass, N. D. Hari
2011-05-23
Numerical studies of Flux Tubes in d = 3,4 QCD and the strong evidence thereby for them being described by free Bosonic String theory to order R{sup -}3, where R is the string length, will be briefly reviewed. The Polchinski-Strominger Effective String Theory approach and our recent work in constructing them to all orders will then be described. A proof will be presented that to all orders these theories have the same spectrum as free Bosonic String Theory. I will conclude my attempts to compliment these results on the basis of canonical QFT and the implications for QCD-Strings.
Worldsheet theory of light-cone gauge noncritical strings on higher genus Riemann surfaces
NASA Astrophysics Data System (ADS)
Ishibashi, Nobuyuki; Murakami, Koichi
2016-06-01
It is possible to formulate light-cone gauge string field theory in noncritical dimensions. Such a theory corresponds to conformal gauge worldsheet theory with nonstandard longitudinal part. We study the longitudinal part of the worldsheet theory on higher genus Riemann surfaces. The results in this paper shall be used to study the dimensional regularization of light-cone gauge string field theory.
Instanton effects and the landscape of string theory
NASA Astrophysics Data System (ADS)
Halverson, James Heaton
In this dissertation we study non-perturbative effects in four-dimensional N = 1 compactifications of superstring theory and F-theory, primarily focusing on the importance of instanton corrections to the superpotential. We utilize dualities and limits of F-theory to elucidate the physics of M5-instantons. We study the Pfaffian prefactor via heterotic duality and demonstrate its dependence on seven-brane structure and points of enhanced symmetry. Utilizing anomaly inflow and string junctions, we shed light on the localization and representation theoretic structure of instanton zero modes upon movement in moduli space. We perform a geometric uplift of an instanton in a type IIb GUT to an instanton in F-theory and identify a class of geometries which allow for the determinantion of all uncharged instanton corrections. Utilizing Seiberg-Witten theory, we explain the quantum splitting of certain seven-brane stacks. Motivated by the systematic study of instantons, we study the computability structure of the string theory landscape. We cast the study of fairly generic physical properties into the language of computability theory and show that this amounts to solving systems of diophantine equations. Utilizing the negative solution to Hilbert's 10th problem, we argue that in such systematic studies there may be no algorithm by which one can determine all physical effects. This argument holds for any suitably large class of physical theories, including the landscape. We study a large class of semi-realistic N = 1 quiver gauge theories which can arise in string compactifications. We present many MSSM quivers where the presence of anomalous U (1) symmetries and instanton corrections can account for observed phenomenological hierarchies, including the Yukawa couplings of the MSSM. We propose a new mechanism for obtaining small neutrino masses via an instanton-induced Weinberg operator and systematically study singlet-extended standard models. We discuss constraints on chiral
Supersymmetry and String Theory: Beyond the Standard Model
NASA Astrophysics Data System (ADS)
Dine, Michael
2007-01-01
The past decade has witnessed dramatic developments in the field of theoretical physics. This book is a comprehensive introduction to these recent developments. It contains a review of the Standard Model, covering non-perturbative topics, and a discussion of grand unified theories and magnetic monopoles. It introduces the basics of supersymmetry and its phenomenology, and includes dynamics, dynamical supersymmetry breaking, and electric-magnetic duality. The book then covers general relativity and the big bang theory, and the basic issues in inflationary cosmologies before discussing the spectra of known string theories and the features of their interactions. The book also includes brief introductions to technicolor, large extra dimensions, and the Randall-Sundrum theory of warped spaces. This will be of great interest to graduates and researchers in the fields of particle theory, string theory, astrophysics and cosmology. The book contains several problems, and password protected solutions will be available to lecturers at www.cambridge.org/9780521858410. Provides reader with tools to confront limitations of the Standard Model Includes several exercises and problems Solutions are available to lecturers at www.cambridge.org/9780521858410
The emperor's last clothes? Overlooking the string theory landscape
NASA Astrophysics Data System (ADS)
Schellekens, A. N.
2008-07-01
We are in the middle of a remarkable paradigm shift in particle physics, a shift of opinion that occurred so slowly that some even try to deny that they changed their minds at all. It concerns a very basic question: can we expect to derive the laws of particle physics from a fundamental theory? The Standard Model of particle physics as well as the 1984 string theory revolution provided ample food for thought about this. The reason this was ignored for so long can be traced back to an old fallacy: a misguided idea about our own importance.
Gauge theory, topological strings, and S-duality
NASA Astrophysics Data System (ADS)
Kapustin, Anton
2004-09-01
We offer a derivation of the duality between the topological U(1) gauge theory on a Calabi-Yau 3-fold and the topological A-model on the same manifold. This duality was conjectured recently by Iqbal, Nekrasov, Okounkov, and Vafa. We deduce it from the S-duality of the IIB superstring. We also argue that the mirror version of this duality relates the topological B-model on a Calabi-Yau 3-fold and a topological sector of the Type IIA Little String Theory on the same manifold.
Supersymmetry Constraints and String Theory on K3
NASA Astrophysics Data System (ADS)
Lin, Ying-Hsuan; Shao, Shu-Heng; Wang, Yifan; Yin, Xi
2015-12-01
We study supervertices in six dimensional (2, 0) supergravity theories, and derive supersymmetry non-renormalization conditions on the 4- and 6-derivative four-point couplings of tensor multiplets. As an application, we obtain exact non-perturbative results of such effective couplings in type IIB string theory compactified on K3 surface, extending previous work on type II/heterotic duality. The weak coupling limit thereof, in particular, gives certain integrated four-point functions of half-BPS operators in the nonlinear sigma model on K3 surface, that depend nontrivially on the moduli, and capture worldsheet instanton contributions.
String theory and pre-big bang cosmology
NASA Astrophysics Data System (ADS)
Gasperini, M.; Veneziano, G.
2016-09-01
In string theory, the traditional picture of a Universe that emerges from the inflation of a very small and highly curved space-time patch is a possibility, not a necessity: quite different initial conditions are possible, and not necessarily unlikely. In particular, the duality symmetries of string theory suggest scenarios in which the Universe starts inflating from an initial state characterized by very small curvature and interactions. Such a state, being gravitationally unstable, will evolve towards higher curvature and coupling, until string-size effects and loop corrections make the Universe "bounce" into a standard, decreasing-curvature regime. In such a context, the hot big bang of conventional cosmology is replaced by a "hot big bounce" in which the bouncing and heating mechanisms originate from the quantum production of particles in the high-curvature, large-coupling pre-bounce phase. Here we briefly summarize the main features of this inflationary scenario, proposed a quarter century ago. In its simplest version (where it represents an alternative and not a complement to standard slow-roll inflation) it can produce a viable spectrum of density perturbations, together with a tensor component characterized by a "blue" spectral index with a peak in the GHz frequency range. That means, phenomenologically, a very small contribution to a primordial B-mode in the CMB polarization, and the possibility of a large enough stochastic background of gravitational waves to be measurable by present or future gravitational wave detectors.
Arrow of time in string theory
NASA Astrophysics Data System (ADS)
McInnes, Brett
2007-10-01
Inflation allows the problem of the arrow of time to be understood as a question about the structure of spacetime: why was the intrinsic curvature of the earliest spatial sections so much better behaved than it might have been? This is really just the complement of a more familiar problem: what mechanism prevents the extrinsic curvature of the earliest spatial sections from diverging, as classical general relativity suggests? We argue that the stringy version of “creation from nothing”, sketched by Ooguri, Vafa, and Verlinde, solves both of these problems at once. The argument, while very simple, hinges on some of the deepest theorems in global differential geometry. These results imply that when a spatially toral spacetime is created from nothing, the earliest spatial sections are forced to be [quasi-classically] exactly locally isotropic. This local isotropy, in turn, forces the inflaton into its minimal-entropy state. The theory explains why the arrow does not reverse in black holes or in a cosmic contraction, if any.
Dualities between semiclassical strings and quantum gauge field theories
NASA Astrophysics Data System (ADS)
Ouyang, Peter
In this thesis we study several examples of the correspondence between gauge field theories and string theories. A recurrent theme of these studies is that distinctively quantum mechanical behavior on the gauge theory side of the correspondence can have a classical or semiclassical description in terms of string calculations, as one might expect from general considerations of open/closed duality. We begin in Chapter 1 by reviewing the simplest duality, which relates Type IIB supergravity in AdS5 x S5 to N = 4 SU(N) gauge theory at large N. Working with this background spacetirne, we turn to a study of D-brane probes with large quantum numbers in Chapter 2. We employ semiclassical methods to compute the excitation spectrum of these D-branes, including corrections of order 1/N, which are related to loop effects in the dual field theory. In Chapter 3 we discuss the gauge/gravity duals with N = 1 supersymmetry which arise from placing D-branes at a conifold singularity. The inclusion of fractional D3-branes breaks conformal invariance, leading to a rich variety of phenomena in the gauge theory, among them chiral anomalies, a cascade of Seiberg dualities and confinement in the infrared. We pay particular attention to the chiral anomalies of the gauge theory and show that they can be described in terms of classical spontaneous symmetry breaking in the dual string theory. In accord with low-energy confinement in the field theory, almost all of the moduli of the supergravity solution are fixed; we conclude Chapter 3 with some observations on the possibility of stabilizing the volume of the compact space in which the conifold is embedded. Finally, in Chapter 4 we study versions of the conifold theory with D7-branes, which introduce fundamental matter into the gauge theory. By solving the classical supergravity equations of motion we identify a variant of the Klebanov-Strassler duality cascade where the rate of the cascade decreases as the theory flows to low energies.
Effective string theory for vortex lines in fluids and superfluids
NASA Astrophysics Data System (ADS)
Horn, Bart; Nicolis, Alberto; Penco, Riccardo
2015-10-01
We discuss the effective string theory of vortex lines in ordinary fluids and low-temperature superfluids, by describing the bulk fluid flow in terms of a two-form field to which vortex lines can couple. We derive the most general low-energy effective Lagrangian that is compatible with (spontaneously broken) Poincaré invariance and worldsheet reparameterization invariance. This generalizes the effective action developed in [1, 2]. By applying standard field-theoretical techniques, we show that certain low-energy coupling constants — most notably the string tension — exhibit RG running already at the classical level. We discuss applications of our techniques to the study of Kelvin waves, vortex rings, and the coupling to bulk sound modes.
2D Potential theory using complex functions and conformal mapping
NASA Astrophysics Data System (ADS)
Le Maire, Pauline; Munschy, Marc
2016-04-01
For infinitely horizontally extended bodies, functions that describe potential and field equations (gravity and magnetics) outside bodies are 2D and harmonic. The consequence of this property is that potential and field equations can be written as complex analytic functions. We define these complex functions whose real part is the commonly used real function and imaginary part is its Hilbert transform. Using data or synthetic cases the transformation is easily performed in the Fourier domain by setting to zero all values for negative frequencies. Written as complex functions of the complex variable, equations of potential and field in gravity and magnetics for different kinds of geometries are simple and correspond to powers of the inverse of the distance. For example, it is easily shown that for a tilted dyke, the dip and the apparent inclination have the same effect on the function and consequently that it is not possible, with data, to compute one of both values without knowing the other. Conformal mapping is an original way to display potential field functions. Considering that the complex variable corresponds to the real axis, complex potential field functions resume to a limaçon, a curve formed by the path of the point fixed to a circle when that circle rolls around the outside of another circle. For example, the point corresponding to the maximum distance to the origin of the complex magnetic field due to a cylinder, corresponds to the maximum of the analytic signal as defined by Nabighan in 1972 and its phase corresponds to the apparent inclination. Several applications are shown in different geological contexts using aeromagnetic data.
Applications of the holographic principle in string theory
NASA Astrophysics Data System (ADS)
Button, Bradly Kevin
The holographic principle has become an extraordinary tool in theoretical physics, most notably in the form of the Anti-deSitter Conformal Field Theory (AdS/CFT) correspondence, in which classical gravitational degrees of freedom in N-dimensions are related quantum field theory degrees of freedom in N -- 1 dimensions in the limit of a large number of fields. Here we present an account of the AdS/CFT correspondence, also known as the gauge/gravity duality, from its origins in the large N 'tHooft expansion, up to Maldacena's proposal that type IIB string theory in the presence of D-branes at low energy is dual to an N = 4, d = 4, U(N) super Yang-Mills on AdS5 . S5 . We begin with an extensive review of (super)string theory including D-branes. We then present the general formulation of the AdS/CFT in the supergravity background of AdS5 x S5 , along with several examples of how it is used in terms of the identification of bulk fields with operators on the boundary of a CFT. We move on to discuss two applications of the gauge/gravity duality. The first is the application of the holographic gauge/gravity correspondence to the QCD k-string. The second applies the AdS/CFT formalism to a Kerr black hole solution embedded in 10-dimensional heterotic sting theory. These two applications of the holographic gauge/gravity duality comprise the original work presented here. We follow with summaries and discussions of the background material, the original work, and future investigations.
Anomalies in non-polynomial closed string field theory
NASA Astrophysics Data System (ADS)
Kaku, Michio
1990-11-01
The complete classical action for the non-polynomial closed string field theory was written down last year by the author and the Kyoto group. It successfully reproduces all closed string tree diagrams, but fails to reproduce modular invariant loop amplitudes. In this paper we show that the classical action is also riddled with gauge anomalies. Thus, the classical action is not really gauge invariant and fails as a quantum theory. The presence of gauge anomalies and the violation of modular invariance appear to be a disaster for the theory. Actually, this is a blessing in disguise. We show that by adding new non-polynomial terms to the action, we can simultaneously eliminate both the gauge anomalies and the modular-violating loop diagrams. We show this explicitly at the one loop level and also for an infinite class of p-puncture, genus- g amplitudes, making use of a series of non-trivial identities. The theory is thus an acceptable quantum theory. We comment on the origin of this strange link between local gauge anomalies and global modular invariance.
Geometric features of string theory at low-energy
NASA Astrophysics Data System (ADS)
Lukic, Sergio
In this thesis we study several differential-geometric aspects of the low energy limit of string theory. We focus on anomaly cancellation issues in M-theory on a manifold with boundary and background fluxes, and the computation of non-holomorphic quantities in Calabi-Yau compactifications. In the first chapter we introduce the motivation and the problems that we will study. In the second chapter we show how the coupling of gravitinos and gauginos to fluxes modifies anomaly cancellation in M-theory on a manifold with boundary. Anomaly cancellation continues to hold, after a shift of the definition of the gauge currents by a local gauge invariant expression in the curvatures and E8 fieldstrengths. We compute the first nontrivial correction of this kind. In the last chapter, we introduce methods to determine the form of the effective four-dimensional field theory corresponding to compactifications of string theory. More precisely, we develop iterative methods for finding solutions to the Ricci flat equations on a Calabi-Yau variety, and to the hermitian Yang-Mills equation on stable holomorphic vector bundles, following ideas developed by Donaldson. Finally, we show how these techniques can be understood using the language of geometric quantization of Kaehler manifolds, and suggest how one can use these ideas to explicitly construct additional geometric objects.
Stable Non-Supersymmetric Throats in String Theory
Kachru, Shamit; Simic, Dusan; Trivedi, Sandip P.; /Tata Inst. /Stanford U., ITP /SLAC
2011-06-28
We construct a large class of non-supersymmetric AdS-like throat geometries in string theory by taking non-supersymmetric orbifolds of supersymmetric backgrounds. The scale of SUSY breaking is the AdS radius, and the dual field theory has explicitly broken supersymmetry. The large hierarchy of energy scales in these geometries is stable. We establish this by showing that the dual gauge theories do not have any relevant operators which are singlets under the global symmetries. When the geometries are embedded in a compact internal space, a large enough discrete subgroup of the global symmetries can still survive to prevent any singlet relevant operators from arising. We illustrate this by embedding one case in a non-supersymmetric orbifold of a Calabi-Yau manifold. These examples can serve as a starting point for obtaining Randall-Sundrum models in string theory, and more generally for constructing composite Higgs or technicolor-like models where strongly coupled dynamics leads to the breaking of electro-weak symmetry. Towards the end of the paper, we briefly discuss how bulk gauge fields can be incorporated by introducing D7-branes in the bulk, and also show how the strongly coupled dynamics can lead to an emergent weakly coupled gauge theory in the IR with matter fields including scalars.
Geometry and dynamics of a coupled 4 D-2 D quantum field theory
NASA Astrophysics Data System (ADS)
Bolognesi, Stefano; Chatterjee, Chandrasekhar; Evslin, Jarah; Konishi, Kenichi; Ohashi, Keisuke; Seveso, Luigi
2016-01-01
Geometric and dynamical aspects of a coupled 4 D-2 D interacting quantum field theory — the gauged nonAbelian vortex — are investigated. The fluctuations of the internal 2 D nonAbelian vortex zeromodes excite the massless 4 D Yang-Mills modes and in general give rise to divergent energies. This means that the well-known 2 D C{P}^{N-1} zeromodes associated with a nonAbelian vortex become nonnormalizable.
D-branes, gauge/string duality and noncommutative theories
NASA Astrophysics Data System (ADS)
Mateos, Toni
2004-09-01
In this thesis we elaborate on the three subjects of the title. We first show that supertubes exist and still preserve some supersymmetry in a large variety of curved backgrounds. Within the AdS/CFT correspondence we study the supersymmetry of rotating strings with 3 angular momenta, and we consider the possibility of adding matter in a stable but non-supersymmetric way. We contribute to the extension of the duality to more realistic YM theories by constructing the sugra dual of an N=2 pure SYM in 3d, given in terms of a Calabi-Yau four-fold in M-theory. We study the unitarity of noncommutative nonrelativistic field theories, we construct the sugra dual of noncommutative pure SYM theories with N=1 in 4d and N=2 in 3d, and we study holographically properties like UV/IR mixing, confinement, chiral symmetry breaking and moduli spaces.
Gepner approach to space-time supersymmetry in ten-dimensional string theory
NASA Astrophysics Data System (ADS)
Belavin, A. A.; Spodyneiko, L. A.
2015-11-01
The fermionic Neveu-Schwartz-Ramond string has a hidden N=2 superconformal symmetry on the worldsheet. Using an isomorphism of the N=2 superconformal algebra, we show how to obtain a subspace of physical string states on which the super-Poincaré group acts. The proposed construction is an alternative to the GSO projection in string theory.
Monochromatic Wannier Functions in the Theory of 2D Photonic Crystals and Photonic Crystal Fibers
Mazhirina, Yu. A.; Melnikov, L. A.
2011-10-03
The use of the monochromatic Wannier functions which have the temporal dependence as (exp(-i{omega}t)) in the theory of 2D photonic crystals and photonic crystal fibers is proposed. Corresponding equations and formulae are derived and discussed.
Towards universal axion inflation and reheating in string theory
NASA Astrophysics Data System (ADS)
Blumenhagen, Ralph; Plauschinn, Erik
2014-09-01
The recent BICEP2 measurements of B-modes indicate a large tensor-to-scalar ratio in inflationary cosmology, which points towards trans-Planckian evolution of the inflaton. We propose possible string-theory realizations thereof. Schemes for natural and axion monodromy inflation are presented in the framework of the type IIB large volume scenario. The inflaton in both cases is given by the universal axion and its potential is generated by F-terms. Our models are shown to feature a natural mechanism for inflaton decay into predominantly Standard Model particles. We assume that the (flux) landscape admits points where the masses of the saxions (including the dilaton) are hierarchically different from the mass of C0. In particular, apart from the nearly massless axion of the big four-cycle in a LVS, C0 can be the lightest closed-string modulus, making it a good candidate for the inflaton. For natural inflation, the potential of the axion is generated by non-perturbative effects from fluxed E3-instantons, whereas for axion monodromy inflation the axion C0 can appear quadratically in the flux induced scalar potential. There exists a mechanism guaranteeing that inflaton decay at the end of inflation predominantly goes into standard model (SM) degrees of freedom. This last point is one of the very interesting aspects of the models considered in this Letter. Note furthermore that the relevant axion potentials are F-terms in an effective spontaneously-broken supergravity theory, which is in the same spirit as [18].Finally, note that an axion decay constant f>Mpl corresponds to the non-perturbative (F-theory) regime gs>1 of the type IIB superstring. We collect some indications that the LVS scenario might be trustable even for string coupling constants slightly larger than one, but of course conclusive evidence requires the parametric control over infinitely many perturbative corrections to the Kähler potential.
NASA Astrophysics Data System (ADS)
Rauhala, U. A.
2013-12-01
Array algebra of photogrammetry and geodesy unified multi-linear matrix and tensor operators in an expansion of Gaussian adjustment calculus to general matrix inverses and solutions of inverse problems to find all, or some optimal, parametric solutions that satisfy the available observables. By-products in expanding array and tensor calculus to handle redundant observables resulted in general theories of estimation in mathematical statistics and fast transform technology of signal processing. Their applications in gravity modeling and system automation of multi-ray digital image and terrain matching evolved into fast multi-nonlinear differential and integral array calculus. Work since 1980's also uncovered closed-form inverse Taylor and least squares Newton-Raphson-Gauss perturbation solutions of nonlinear systems of equations. Fast nonlinear integral matching of array wavelets enabled an expansion of the bundle adjustment to 4-D stereo imaging and range sensing where real-time stereo sequence and waveform phase matching enabled data-to-info conversion and compression on-board advanced sensors. The resulting unified array calculus of spacetime sensing is applicable in virtually any math and engineering science, including recent work in spacetime physics. The paper focuses on geometric spacetime reconstruction from its image projections inspired by unified relativity and string theories. The collinear imaging equations of active object space shutter of special relativity are expanded to 4-D Lorentz transform. However, regular passive imaging and shutter inside the sensor expands the law of special relativity by a quantum geometric explanation of 4-D photogrammetry. The collinear imaging equations provide common sense explanations to the 10 (and 26) dimensional hyperspace concepts of a purely geometric string theory. The 11-D geometric M-theory is interpreted as a bundle adjustment of spacetime images using 2-D or 5-D membrane observables of image, string and
Is it really naked? On cosmic censorship in string theory
Frolov, Andrei V.
2004-11-15
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counterexample to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the 'no black hole' argument breaks.
Is it Really Naked? On Cosmic Censorship in String Theory
Frolov, A
2004-09-30
We investigate the possibility of cosmic censorship violation in string theory using a characteristic double-null code, which penetrates horizons and is capable of resolving the spacetime all the way to the singularity. We perform high-resolution numerical simulations of the evolution of negative mass initial scalar field profiles, which were argued to provide a counter example to cosmic censorship conjecture for AdS-asymptotic spacetimes in five-dimensional supergravity. In no instances formation of naked singularity is seen. Instead, numerical evidence indicates that black holes form in the collapse. Our results are consistent with earlier numerical studies, and explicitly show where the ''no black hole'' argument breaks.
Gauge transformation of double field theory for open string
NASA Astrophysics Data System (ADS)
Ma, Chen-Te
2015-09-01
We combine symmetry structures of ordinary (parallel directions) and dual (transversal directions) coordinates to construct the Dirac-Born-Infeld theory. The ordinary coordinates are associated with the Neumann boundary conditions and the dual coordinates are associated with the Dirichlet boundary conditions. Gauge fields become scalar fields by exchanging the ordinary and dual coordinates. A gauge transformation of a generalized metric is governed by the generalized Lie derivative. The gauge transformation of the massless closed string theory gives the C -bracket, but the gauge transformation of the open string theory gives the F -bracket. The F -bracket with the strong constraints is different from the Courant bracket by an exact one-form. This exact one-form should come from the one-form gauge field. Based on a symmetry point of view, we deduce a suitable action with a nonzero H -flux at the low-energy level. From an equation of motion of the scalar dilaton, it defines a generalized scalar curvature. Finally, we construct a double sigma model with a boundary term and show that this model with constraints is classically equivalent to the ordinary sigma model.
The Cosmological Constant in Four-Dimensional String Theory
NASA Astrophysics Data System (ADS)
Dienes, Keith Roger
1991-02-01
, we surprisingly discover many pairs of models whose partition functions algebraically differ precisely by our expressions. These models thus represent new and unexpectedly degenerate points in the space of string field theory vacua.
Dynamics of perturbations in Double Field Theory & non-relativistic string theory
NASA Astrophysics Data System (ADS)
Ko, Sung Moon; Melby-Thompson, Charles M.; Meyer, René; Park, Jeong-Hyuck
2015-12-01
Double Field Theory provides a geometric framework capable of describing string theory backgrounds that cannot be understood purely in terms of Riemannian geometry — not only globally (`non-geometry'), but even locally (`non-Riemannian'). In this work, we show that the non-relativistic closed string theory of Gomis and Ooguri [1] arises precisely as such a non-Riemannian string background, and that the Gomis-Ooguri sigma model is equivalent to the Double Field Theory sigma model of [2] on this background. We further show that the target-space formulation of Double Field Theory on this non-Riemannian background correctly reproduces the appropriate sector of the Gomis-Ooguri string spectrum. To do this, we develop a general semi-covariant formalism describing perturbations in Double Field Theory. We derive compact expressions for the linearized equations of motion around a generic on-shell background, and construct the corresponding fluctuation Lagrangian in terms of novel completely covariant second order differential operators. We also present a new non-Riemannian solution featuring Schrödinger conformal symmetry.
Lorenz-Mie theory for 2D scattering and resonance calculations
NASA Astrophysics Data System (ADS)
Gagnon, Denis; Dubé, Louis J.
2015-10-01
This PhD tutorial is concerned with a description of the two-dimensional generalized Lorenz-Mie theory (2D-GLMT), a well-established numerical method used to compute the interaction of light with arrays of cylindrical scatterers. This theory is based on the method of separation of variables and the application of an addition theorem for cylindrical functions. The purpose of this tutorial is to assemble the practical tools necessary to implement the 2D-GLMT method for the computation of scattering by passive scatterers or of resonances in optically active media. The first part contains a derivation of the vector and scalar Helmholtz equations for 2D geometries, starting from Maxwell’s equations. Optically active media are included in 2D-GLMT using a recent stationary formulation of the Maxwell-Bloch equations called steady-state ab initio laser theory (SALT), which introduces new classes of solutions useful for resonance computations. Following these preliminaries, a detailed description of 2D-GLMT is presented. The emphasis is placed on the derivation of beam-shape coefficients for scattering computations, as well as the computation of resonant modes using a combination of 2D-GLMT and SALT. The final section contains several numerical examples illustrating the full potential of 2D-GLMT for scattering and resonance computations. These examples, drawn from the literature, include the design of integrated polarization filters and the computation of optical modes of photonic crystal cavities and random lasers.
D-brane Instantons in Type II String Theory
Blumenhagen, Ralph; Cvetic, Mirjam; Kachru, Shamit; Weigand, Timo; /SLAC
2009-06-19
We review recent progress in determining the effects of D-brane instantons in N=1 supersymmetric compactifications of Type II string theory to four dimensions. We describe the abstract D-brane instanton calculus for holomorphic couplings such as the superpotential, the gauge kinetic function and higher fermionic F-terms. This includes a discussion of multi-instanton effects and the implications of background fluxes for the instanton sector. Our presentation also highlights, but is not restricted to the computation of D-brane instanton effects in quiver gauge theories on D-branes at singularities. We then summarize the concrete consequences of stringy D-brane instantons for the construction of semi-realistic models of particle physics or SUSY-breaking in compact and non-compact geometries.
Life at the interface of particle physics and string theory
NASA Astrophysics Data System (ADS)
Schellekens, A. N.
2013-10-01
If the results of the first LHC run are not betraying us, many decades of particle physics are culminating in a complete and consistent theory for all nongravitational physics: the standard model. But despite this monumental achievement there is a clear sense of disappointment: many questions remain unanswered. Remarkably, most unanswered questions could just be environmental, and disturbingly to some the existence of life may depend on that environment. Meanwhile there has been increasing evidence that the seemingly ideal candidate for answering these questions, string theory, gives an answer few people initially expected: a large “landscape” of possibilities that can be realized in a multiverse and populated by eternal inflation. At the interface of “bottom-up” and “top-down” physics, a discussion of anthropic arguments becomes unavoidable. Developments in this area are reviewed, focusing especially on the last decade.
Phenomenology of TeV little string theory from holography.
Antoniadis, Ignatios; Arvanitaki, Asimina; Dimopoulos, Savas; Giveon, Amit
2012-02-24
We study the graviton phenomenology of TeV little string theory by exploiting its holographic gravity dual five-dimensional theory. This dual corresponds to a linear dilaton background with a large bulk that constrains the standard model fields on the boundary of space. The linear dilaton geometry produces a unique Kaluza-Klein graviton spectrum that exhibits a ~TeV mass gap followed by a near continuum of narrow resonances that are separated from each other by only ~30 GeV. Resonant production of these particles at the LHC is the signature of this framework that distinguishes it from large extra dimensions, where the Kaluza-Klein states are almost a continuum with no mass gap, and warped models, where the states are separated by a TeV. PMID:22463515
A New Lorentz Violating Nonlocal Field Theory From String-Theory
Ganor, Ori J.
2007-10-04
A four-dimensional field theory with a qualitatively new type of nonlocality is constructed from a setting where Kaluza-Klein particles probe toroidally compactified string theory with twisted boundary conditions. In this theory fundamental particles are not pointlike and occupy a volume proportional to their R-charge. The theory breaks Lorentz invariance but appears to preserve spatial rotations. At low energies, it is approximately N=4 Super Yang-Mills theory, deformed by an operator of dimension seven. The dispersion relation of massless modes in vacuum is unchanged, but under certain conditions in this theory, particles can travel at superluminal velocities.
Composite strings in (2+1)-dimensional anisotropic weakly coupled Yang-Mills theory
Orland, Peter
2008-01-15
The small-scale structure of a string connecting a pair of static sources is explored for the weakly coupled anisotropic SU(2) Yang-Mills theory in (2+1) dimensions. A crucial ingredient in the formulation of the string Hamiltonian is the phenomenon of color smearing of the string constituents. The quark-antiquark potential is determined. We close with some discussion of the standard, fully Lorentz-invariant Yang-Mills theory.
Finite temperature solitons in nonlocal field theories from p-adic strings
Biswas, Tirthabir; Cembranos, Jose A. R.; Kapusta, Joseph I.
2010-10-15
Nonlocal field theories which arise from p-adic string theories have vacuum soliton solutions. We find the soliton solutions at finite temperature. These solutions become important for the partition function when the temperature exceeds m{sub s}/g{sub o}{sup 2}, where m{sub s} is the string mass scale and g{sub o} is the open string coupling.
Daniel Heineman Prize: QCD, strings and black holes: A duality between gravity and field theory
NASA Astrophysics Data System (ADS)
Maldacena, Juan
2007-04-01
We discuss Yang Mills theory with a large number of colors. In this limit it becomes a theory of strings. We describe the string theory associated to the most supersymmetric version of Yang Mills theory. These strings live in a ten dimensional curved space. Thus supersymmetric Yang Mills theory is related to the ordinary ten dimensional superstring theory which describes quantum gravity. We will review some results in this area and discuss some recent developments. We will also discuss the implications for black hole entropy and the black hole information puzzle.
Introduction to string field theory. A pedestrian approach to the covariant formulation
West, G.B.
1986-01-01
A relatively elementary account is given of what a string field represents and what is involved in the construction of its covariant action. Emphasis is on drawing a correspondence with similar problems in ordinary field theory and, particularly, using the language and mathematics used in ordinary field theory. Only the free string is discussed. 17 refs., 3 figs. (LEW)
PP-wave string interactions from perturbative Yang-Mills theory
NASA Astrophysics Data System (ADS)
Constable, Neil R.; Freedman, Daniel Z.; Headrick, Matthew; Minwalla, Shiraz; Motl, Lubos; Postnikov, Alexander; Skiba, Witold
2002-07-01
Recently, Berenstein et al. have proposed a duality between a sector of Script N = 4 super-Yang-Mills theory with large R-charge J, and string theory in a pp-wave background. In the limit considered, the effective 't Hooft coupling has been argued to be λ' = gYM2N/J2 = 1/(μp+α')2. We study Yang-Mills theory at small λ' (large μ) with a view to reproducing string interactions. We demonstrate that the effective genus counting parameter of the Yang-Mills theory is g22 = J4/N2 = (4πgs)2(μp+α')4, the effective two-dimensional Newton constant for strings propagating on the pp-wave background. We identify g2(λ')1/2 as the effective coupling between a wide class of excited string states on the pp-wave background. We compute the anomalous dimensions of BMN operators at first order in g22 and λ' and interpret our result as the genus one mass renormalization of the corresponding string state. We postulate a relation between the three-string vertex function and the gauge theory three-point function and compare our proposal to string field theory. We utilize this proposal, together with quantum mechanical perturbation theory, to recompute the genus one energy shift of string states, and find precise agreement with our gauge theory computation.
Knots and Gamma Classes in Open Topological String Theory
NASA Astrophysics Data System (ADS)
Mahowald, Matthew
This thesis explores some mathematical applications of string dualities in open topological string theory and presents some new techniques for studying and computing open Gromov-Witten invariants. First, we prove a mild generalization of the gamma class formula of [BCR13], and show that it applies in two novel examples: the quintic threefold Q with Lagrangian given by the real quintic QR Q, and for Lagrangians LK ? X = O P1 (--1, --1) obtained from the conormal bundles of (r, s) torus knots K ? S3 via the conifold transition. Disk enumeration on (Q, Q R ) was first considered in [PSW08], and disk enumeration for (X, LK) was studied in winding-1 in [DSV13]. The gamma class formula agrees with the results of [DSV13] and [PSW08], and we generalize the formula of [DSV13] to arbitrary winding. Next we study a relationship between mirror symmetry and knot contact homology described in [AENV14, AV12]. For knots K ? S 3 , large-N duality relates open Gromov-Witten theory on (X, L_K ) to SU (N) Chern-Simons theory on (S3, K). We use the conjecture of [AV12] to compute open Gromov-Witten invariants of (X, L K) through mirror symmetry in many examples, including several non-toric knots. We also find further evidence for this conjecture: for ( r, s) torus knots, we find a formula for the genus-0, 1-boundary-component, degree-d, winding-w open Gromov-Witten invariants of (X, LK ) using localization. This formula agrees with the results of the mirror symmetry calculation. Moreover, using this formula, we describe a method for obtaining the augmentation polynomial of a knot K from the open Gromov-Witten invariants of ( X, LK ). This method is shown to correctly recover the augmentation polynomial for the unknot and (3, 2) torus knot.
Nonabelian 2D gauge theories for determinantal Calabi-Yau varieties
NASA Astrophysics Data System (ADS)
Jockers, Hans; Kumar, Vijay; Lapan, Joshua M.; Morrison, David R.; Romo, Mauricio
2012-11-01
The two-dimensional supersymmetric gauged linear sigma model (GLSM) with abelian gauge groups and matter fields has provided many insights into string theory on Calabi-Yau manifolds of a certain type: complete intersections in toric varieties. In this paper, we consider two GLSM constructions with nonabelian gauge groups and charged matter whose infrared CFTs correspond to string propagation on determinantal Calabi-Yau varieties, furnishing another broad class of Calabi-Yau geometries in addition to complete intersections. We show that these two models — which we refer to as the PAX and the PAXY model — are dual descriptions of the same low-energy physics. Using GLSM techniques, we determine the quantum Kähler moduli space of these varieties and find no disagreement with existing results in the literature.
Towards a UV completion of chameleons in string theory
NASA Astrophysics Data System (ADS)
Hinterbichler, Kurt; Khoury, Justin; Nastase, Horatiu
2011-03-01
Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.
Grand unified string theories with SU(3) gauge family symmetry
NASA Astrophysics Data System (ADS)
Maslikov, A. A.; Sergeev, S. M.; Volkov, G. G.
1994-06-01
In the framework of four dimensional heterotic superstring with free fermions we investigate the rank eight Grand Unified String Theories (GUST) which contain the SU(3) H-gauge family symmetry. We explicitly construct GUSTs with gauge symmetry G = SU(5) × U(1) × ( SU(3) × U(1)) H ⊂ SO(16) ⊂ E(8) in free complex fermion formulation. We solve the problem of the GUST symmetry breaking taking for the observable gauge symmetry the diagonal subgroup Gsym of rank 16 group G × G ⊂ SO(16) × SO(16) ⊂ E(8) × E(8). In this approach the observed electromagnetic charge Qem can be viewed as a sum of two Q1- and Q2-charges of each G-group. In this case the model spectrum does not contain particles with exotic fractional charges.
Towards natural inflation from weakly coupled heterotic string theory
NASA Astrophysics Data System (ADS)
Abe, Hiroyuki; Kobayashi, Tatsuo; Otsuka, Hajime
2015-06-01
We propose natural inflation from the heterotic string theory on the "Swiss-Cheese" Calabi-Yau manifold with multiple U(1) magnetic fluxes. Such multiple U(1) magnetic fluxes stabilize the same number of the linear combination of the universal axion and Kähler axions, and one of the Kähler axions is identified as the inflaton. This axion decay constant can be determined by the size of one-loop corrections to the gauge kinetic function of the hidden gauge groups, which leads effectively to the trans-Planckian axion decay constant consistent with the Planck data. During the inflation, the real parts of the moduli are also stabilized by employing the nature of the "Swiss-Cheese" Calabi-Yau manifold.
Application of Kawaguchi Lagrangian formulation to string theory
NASA Astrophysics Data System (ADS)
Yahagi, Ryoko; Sugamoto, Akio
2015-11-01
String-scalar duality proposed by Y. Hosotani and membrane-scalar duality by A. Sugamoto are reexamined in the context of Kawaguchi Lagrangian formulation. The characteristic feature of this formulation is the indifferent nature of fields and parameters. Therefore even the exchange of roles between fields and parameters is possible. In this manner, dualities above can be proved easily. Between Kawaguchi metrics of the dually related theories, a simple relation is found. As an example of the exchange between fermionic fields and parameters, a replacement of the role of Grassmann parameters of the 2-dimensional superspace by the 9th component of Neveu-Schwarz-Ramond (NSR) fermions is studied in superstring model. Compactification is also discussed in this model.
Quantization of non-local field theory and string field theory
NASA Astrophysics Data System (ADS)
Hata, Hiroyuki
1989-02-01
The interaction vertex in covariant string field theory (SFT) is non-local in the time coordinate and the conventional canonical quantization is inapplicable to it. As an approach to quantizing this system we apply Hayashi's theory of the Hamilton formalism for field theories with non-local interactions. We find that the resulting one-loop amplitudes in covariant closed SFT coincide with those in the light-cone gauge SFT. I would like to thank T. Kugo, H. Kunitomo, M.M. Nojiri, K. Ogawa and K. Suehiro for valuable discussions, and especially Professor S. Tanaka for directing my attention to Hayashi's theory.
Cylindrically symmetric, static strings with a cosmological constant in Brans-Dicke theory
Delice, Oezguer
2006-12-15
The static cylindrically symmetric vacuum solutions with a cosmological constant in the framework of the Brans-Dicke theory are investigated. Some of these solutions admitting Lorentz boost invariance along the symmetry axis correspond to local, straight cosmic strings with a cosmological constant. Some physical properties of such solutions are studied. These strings apply attractive or repulsive forces on the test particles. A smooth matching is also performed with a recently introduced interior thick string solution with a cosmological constant.
String Theory - The Physics of String-Bending and Other Electric Guitar Techniques
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
String theory--the physics of string-bending and other electric guitar techniques.
Grimes, David Robert
2014-01-01
Electric guitar playing is ubiquitous in practically all modern music genres. In the hands of an experienced player, electric guitars can sound as expressive and distinct as a human voice. Unlike other more quantised instruments where pitch is a discrete function, guitarists can incorporate micro-tonality and, as a result, vibrato and sting-bending are idiosyncratic hallmarks of a player. Similarly, a wide variety of techniques unique to the electric guitar have emerged. While the mechano-acoustics of stringed instruments and vibrating strings are well studied, there has been comparatively little work dedicated to the underlying physics of unique electric guitar techniques and strings, nor the mechanical factors influencing vibrato, string-bending, fretting force and whammy-bar dynamics. In this work, models for these processes are derived and the implications for guitar and string design discussed. The string-bending model is experimentally validated using a variety of strings and vibrato dynamics are simulated. The implications of these findings on the configuration and design of guitars is also discussed. PMID:25054880
Towards a quantum field theory of primitive string fields
Ruehl, W.
2012-10-15
We denote generating functions of massless even higher-spin fields 'primitive string fields' (PSF's). In an introduction we present the necessary definitions and derive propagators and currents of these PDF's on flat space. Their off-shell cubic interaction can be derived after all off-shell cubic interactions of triplets of higher-spin fields have become known. Then we discuss four-point functions of any quartet of PSF's. In subsequent sections we exploit the fact that higher-spin field theories in AdS{sub d+1} are determined by AdS/CFT correspondence from universality classes of critical systems in d-dimensional flat spaces. The O(N) invariant sectors of the O(N) vector models for 1 {<=} N {<=}{infinity} play for us the role of 'standard models', for varying N, they contain, e.g., the Ising model for N = 1 and the spherical model for N = {infinity}. A formula for the masses squared that break gauge symmetry for these O(N) classes is presented for d = 3. For the PSF on AdS space it is shown that it can be derived by lifting the PSF on flat space by a simple kernel which contains the sum over all spins. Finally we use an algorithm to derive all symmetric tensor higher-spin fields. They arise from monomials of scalar fields by derivation and selection of conformal (quasiprimary) fields. Typically one monomial produces a multiplet of spin s conformal higher-spin fields for all s {>=} 4, they are distinguished by their anomalous dimensions (in CFT{sub 3}) or by theirmass (in AdS{sub 4}). We sum over these multiplets and the spins to obtain 'string type fields', one for each such monomial.
SUSY breaking in local string/F-theory models
NASA Astrophysics Data System (ADS)
Blumenhagen, R.; Conlon, J. P.; Krippendorf, S.; Moster, S.; Quevedo, F.
2009-09-01
We investigate bulk moduli stabilisation and supersymmetry breaking in local string/F-theory models where the Standard Model is supported on a del Pezzo surface or singularity. Computing the gravity mediated soft terms on the Standard Model brane induced by bulk supersymmetry breaking in the LARGE volume scenario, we explicitly find suppressions by Ms/MP ~ Script V-1/2 compared to M3/2. This gives rise to several phenomenological scenarios, depending on the strength of perturbative corrections to the effective action and the source of de Sitter lifting, in which the soft terms are suppressed by at least MP/Script V3/2 and may be as small as MP/Script V2. Since the gravitino mass is of order M3/2 ~ MP/Script V, for TeV soft terms all these scenarios give a very heavy gravitino (M3/2 >= 108 GeV) and generically the lightest moduli field is also heavy enough (m >= 10 TeV) to avoid the cosmological moduli problem. For TeV soft terms, these scenarios predict a minimal value of the volume to be Script V ~ 106-7 in string units, which would give a unification scale of order MGUT ~ MsScript V1/6 ~ 1016 GeV. The strong suppression of gravity mediated soft terms could also possibly allow a scenario of dominant gauge mediation in the visible sector but with a very heavy gravitino M3/2 > 1 TeV.
Sehgal, Akansha Ashvani; Pelupessy, Philippe; Rolando, Christian; Bodenhausen, Geoffrey
2016-04-01
Two-dimensional (2D) Fourier transform ion cyclotron resonance (FT-ICR) offers an approach to mass spectrometry (MS) that pursuits similar objectives as MS/MS experiments. While the latter must focus on one ion species at a time, 2D FT ICR can examine all possible correlations due to ion fragmentation in a single experiment: correlations between precursors, charged and neutral fragments. We revisited the original 2D FT-ICR experiment that has hitherto fallen short of stimulating significant analytical applications, probably because it is technically demanding. These shortcomings can now be overcome by improved FT-ICR instrumentation and computer hard- and software. We seek to achieve a better understanding of the intricacies of the behavior of ions during a basic two-dimensional ICR sequence comprising three simple monochromatic pulses. Through simulations based on Lorentzian equations, we have mapped the ion trajectories for different pulse durations and phases. PMID:26974979
Anthropic reasoning and typicality in multiverse cosmology and string theory
NASA Astrophysics Data System (ADS)
Weinstein, Steven
2006-06-01
Anthropic arguments in multiverse cosmology and string theory rely on the weak anthropic principle (WAP). We show that the principle is fundamentally ambiguous. It can be formulated in one of two ways, which we refer to as WAP1 and WAP2. We show that WAP2, the version most commonly used in anthropic reasoning, makes no physical predictions unless supplemented by a further assumption of 'typicality', and we argue that this assumption is both misguided and unjustified. WAP1, however, requires no such supplementation; it directly implies that any theory that assigns a non-zero probability to our universe predicts that we will observe our universe with probability one. We argue, therefore, that WAP1 is preferable, and note that it has the benefit of avoiding the inductive overreach characteristic of much anthropic reasoning. Thanks to Yuri Balashov, Gordon Belot, Rob Caldwell, Marcelo Gleiser, Brad Monton, Ken Olum, Jim Peebles, Lee Smolin and Alex Vilenkin for helpful discussions and comments on an earlier draft.
Interactions of massless higher spin fields from string theory
Polyakov, Dimitri
2010-09-15
We construct vertex operators for massless higher spin fields in Ramond-Neveu-Schwarz superstring theory and compute some of their three-point correlators, describing gauge-invariant cubic interactions of the massless higher spins. The Fierz-Pauli on-shell conditions for the higher spins (including tracelessness and vanishing divergence) follow from the Becchi-Rouet-Stora-Tyutin-invariance conditions for the vertex operators constructed in this paper. The gauge symmetries of the massless higher spins emerge as a result of the Becchi-Rouet-Stora-Tyutin-nontriviality conditions for these operators, being equivalent to transformations with the traceless gauge parameter in the Fronsdal's approach. The gauge invariance of the interaction terms of the higher spins is therefore ensured automatically by that of the vertex operators in string theory. We develop a general algorithm to compute the cubic interactions of the massless higher spins and use it to explicitly describe the gauge-invariant interaction of two s=3 and one s=4 massless particles.
The Kerr/CFT correspondence and string theory
Azeyanagi, Tatsuo; Ogawa, Noriaki; Terashima, Seiji
2009-05-15
The Kerr/CFT correspondence is a holographic duality between a two dimensional chiral conformal field theory (CFT) and the very near horizon limit of an extremal black hole, which includes an AdS{sub 2} structure. To understand the dual chiral CFT{sub 2}, we apply the Kerr/CFT correspondence to a certain class of black holes embedded in string theory, which include the D1-D5-P and the Breckenridge-Myers-Peet-Vafa black holes, and obtain the correct entropies for the black holes microscopically. These have an AdS{sub 3} structure in the near horizon geometry and an AdS{sub 2} structure in the very near horizon geometry. We identified one of the two Virasoro symmetries in the nonchiral CFT{sub 2} dual to the AdS{sub 3}, i.e., in the AdS{sub 3}/CFT{sub 2}, with the Virasoro symmetry in the chiral CFT{sub 2} dual to the AdS{sub 2}, i.e., in the Kerr/CFT correspondence. We also discuss a way to understand the chiral CFT{sub 2} dual to generic extremal black holes. A kind of universality for the very near horizon geometries of extremal black holes will be important for the validity of the Kerr/CFT correspondence. Based on this analysis, we propose that the Kerr/CFT correspondence can be understood as a decoupling limit in which only the ground states remain.
On the Minimal Length Uncertainty Relation and the Foundations of String Theory
Chang, Lay Nam; Lewis, Zachary; Minic, Djordje; Takeuchi, Tatsu
2011-01-01
We review our work on the minimal length uncertainty relation as suggested by perturbative string theory. We discuss simple phenomenological implications of the minimal length uncertainty relation and then argue that the combination of the principles of quantum theory and general relativity allow for a dynamical energy-momentum space. We discuss the implication of this for the problem of vacuum energy and the foundations of nonperturbative string theory.
Composite diholes and intersecting brane-antibrane configurations in string/M-theory
NASA Astrophysics Data System (ADS)
Chattaraputi, Auttakit; Emparan, Roberto; Taormina, Anne
2000-05-01
We construct new configurations of oppositely charged, static black hole pairs (diholes) in four dimensions which are solutions of low energy string/M-theory. The black holes are extremal and have four different charges. We also consider diholes in other theories with an arbitrary number of abelian gauge fields and scalars, where the black holes can be regarded as composite objects. We uplift the four-charge solutions to higher dimensions in order to describe intersecting brane-antibrane systems in string and M-theory. The properties of the strings and membranes stretched in between these branes and antibranes are studied. Several other generic features of these solutions are discussed.
Searching for inflation in simple string theory models: An astrophysical perspective
NASA Astrophysics Data System (ADS)
Hertzberg, Mark P.; Tegmark, Max; Kachru, Shamit; Shelton, Jessie; Özcan, Onur
2007-11-01
Attempts to connect string theory with astrophysical observation are hampered by a jargon barrier, where an intimidating profusion of orientifolds, Kähler potentials, etc. dissuades cosmologists from attempting to work out the astrophysical observables of specific string theory solutions from the recent literature. We attempt to help bridge this gap by giving a pedagogical exposition with detailed examples, aimed at astrophysicists and high energy theorists alike, of how to compute predictions for familiar cosmological parameters when starting with a 10-dimensional string theory action. This is done by investigating inflation in string theory, since inflation is the dominant paradigm for how early universe physics determines cosmological parameters. We analyze three explicit string models from the recent literature, each containing an infinite number of vacuum solutions. Our numerical investigation of some natural candidate inflatons, the so-called “moduli fields,” fails to find inflation. We also find in the simplest models that, after suitable field redefinitions, vast numbers of these vacua differ only in an overall constant multiplying the effective inflaton potential, a difference which affects neither the potential’s shape nor its ability to support slow-roll inflation. This illustrates that even having an infinite number of vacua does not guarantee having inflating ones. This may be an artifact of the simplicity of the models that we study. Instead, more complicated string theory models appear to be required, suggesting that identifying the inflating subset of the string landscape will be challenging.
The Moduli Space and M(Atrix) Theory of 9d N=1 Backgrounds of M/String Theory
Aharony, Ofer; Komargodski, Zohar; Patir, Assaf; /Weizmann Inst.
2007-03-21
We discuss the moduli space of nine dimensional N = 1 supersymmetric compactifications of M theory/string theory with reduced rank (rank 10 or rank 2), exhibiting how all the different theories (including M theory compactified on a Klein bottle and on a Moebius strip, the Dabholkar-Park background, CHL strings and asymmetric orbifolds of type II strings on a circle) fit together, and what are the weakly coupled descriptions in different regions of the moduli space. We argue that there are two disconnected components in the moduli space of theories with rank 2. We analyze in detail the limits of the M theory compactifications on a Klein bottle and on a Moebius strip which naively give type IIA string theory with an uncharged orientifold 8-plane carrying discrete RR flux. In order to consistently describe these limits we conjecture that this orientifold non-perturbatively splits into a D8-brane and an orientifold plane of charge (-1) which sits at infinite coupling. We construct the M(atrix) theory for M theory on a Klein bottle (and the theories related to it), which is given by a 2 + 1 dimensional gauge theory with a varying gauge coupling compactified on a cylinder with specific boundary conditions. We also clarify the construction of the M(atrix) theory for backgrounds of rank 18, including the heterotic string on a circle.
Reheating-volume measure in the string theory landscape
Winitzki, Sergei
2008-12-15
I recently proposed the ''reheating-volume'' (RV) prescription as a possible solution to the measure problem in ''multiverse'' cosmology. The goal of this work is to extend the RV measure to scenarios involving bubble nucleation, such as the string theory landscape. In the spirit of the RV prescription, I propose to calculate the distribution of observable quantities in a landscape that is conditioned in probability to nucleate a finite total number of bubbles to the future of an initial bubble. A general formula for the relative number of bubbles of different types can be derived. I show that the RV measure is well defined and independent of the choice of the initial bubble type, as long as that type supports further bubble nucleation. Applying the RV measure to a generic landscape, I find that the abundance of Boltzmann brains is always negligibly small compared with the abundance of ordinary observers in the bubbles of the same type. As an illustration, I present explicit results for a toy landscape containing four vacuum states, and for landscapes with a single high-energy vacuum and a large number of low-energy vacua.
Local cosmic strings in Brans-Dicke theory with a cosmological constant
Delice, Oezguer
2006-09-15
It is known that Vilenkin's phenomenological equation of state for static straight cosmic strings is inconsistent with Brans-Dicke theory. We will prove that, in the presence of a cosmological constant, this equation of state is consistent with Brans-Dicke theory. The general solution of the full nonlinear field equations, representing the interior of a cosmic string with a cosmological constant, is also presented.
Tachyons, Boundary Interactions, and the Genus Expansion in String Theory
NASA Astrophysics Data System (ADS)
Laidlaw, M.
2003-09-01
This thesis examines the interaction of both bosonic and superstrings with various backgrounds with a view to understanding the interplay between tachyon condensation and world-sheet conformal invariance, and to understanding the overlap of d-branes and closed string modes. We develop the boundary state and show that in a background of interest to tachyon condensation the conformal invariance of the string world-sheet is broken, which suggests a generalized boundary state obtained by integrating over the conformal group of the disk. We find that this prescription reproduces particle emission amplitudes calculated from the string sigma model for both on- and off-shell boundary interactions. The boundary state appears as a coherent superposition of closed string states, and using this observation a proposal for calculating amplitudes beyond tree level is developed. The application of this technique to more general, time dependent backgrounds is also discussed.
Dynamical cosmic strings from a gauge theory of gravity
Furlong, R.C.
1988-09-15
A new dynamical realization of O(5) gauge Euclidean gravity is proposed and shown to possess topologically nontrivial features, cosmic-string flux tubes and dark-matter solitons, of a purely gravitational origin (no Higgs particle needed).
Julius Edgar Lilienfeld Prize Lecture: The Higgs Boson, String Theory, and the Real World
NASA Astrophysics Data System (ADS)
Kane, Gordon
2012-03-01
In this talk I'll describe how string theory is exciting because it can address most, perhaps all, of the questions we hope to understand about our world: why quarks and leptons make up our world, what forces form our world, cosmology, parity violation, and much more. I'll explain why string theory is testable in basically the same ways as the rest of physics, and why much of what is written about that is misleading. String theory is already or soon being tested in several ways, including correctly predicting the recently observed Higgs boson properties and mass, and predictions for dark matter, LHC physics, cosmological history, and more, from work in the increasingly active subfield ``string phenomenology.''
Hawking radiation as tunneling from charged black holes in 0A string theory
NASA Astrophysics Data System (ADS)
Kim, Hongbin
2011-09-01
There has been much work on explaining Hawking radiation as a quantum tunneling process through horizons. Basically, this intuitive picture requires the calculation of the imaginary part of the action for outgoing particle. And two ways are known for achieving this goal: the null-geodesic method and the Hamilton-Jacobi method. We apply these methods to the charged black holes in 2D dilaton gravity which is originated from the low energy effective theory of type 0A string theory. We derive the correct Hawking temperature of the black holes including the effect of the back reaction of the radiation, and obtain the entropy by using the 1st law of black hole thermodynamics. For fixed-charge ensemble, the 0A black holes are free of phase transition and thermodynamically stable regardless of mass-charge ratio. We show this by interpreting the back reaction term as the inverse of the heat capacity of the black holes. Finally, the possibility of the phase transition in the fixed-potential ensemble is discussed.
Quantum equivalence of noncommutative and Yang-Mills gauge theories in 2D and matrix theory
Ydri, Badis
2007-05-15
We construct noncommutative U(1) gauge theory on the fuzzy sphere S{sub N}{sup 2} as a unitary 2Nx2N matrix model. In the quantum theory the model is equivalent to a non-Abelian U(N) Yang-Mills theory on a two-dimensional lattice with two plaquettes. This equivalence holds in the 'fuzzy sphere' phase where we observe a 3rd order phase transition between weak-coupling and strong-coupling phases of the gauge theory. In the matrix phase we have a U(N) gauge theory on a single point.
Friedan, D.H.; Martinec, E.J.; Shenker, S.H.
1988-12-01
The present contract supported work by Daniel H. Frieden, Emil J, Martinec and Stephen H. Shenker (principal investigators), Research Associates, and graduate students in theoretical physics at the University of Chicago. Research has been conducted in areas of string theory and two dimensional conformal and superconformal field theory. The ultimate objectives have been: to expose the fundamental structure of string theory so as to eventually make possible effective nonperturbative calculations and thus a comparison of sting theory with experiment, the complete classification of all two dimensional conformal and superconformal field theories thus giving a complete description of all classical ground states of string and of all possible two (and 1 + 1) dimensional critical phenomena, and the development of methods to describe, construct and solve two dimensional field theories. Work has also been done on skyrmion and strong interaction physics.
Investigations in gauge theories, topological solitons and string theories. Final report
Not Available
1993-06-01
This is the Final Report on a supported research project on theoretical particle physics entitled ``Investigations in Gauge Theories, Topological Solitons and String Theories.`` The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies.
Kerr-NUT-AdS metrics and string theory
NASA Astrophysics Data System (ADS)
Chen, Wei
-NUT-AdS metrics. After Euclideanisation, we obtain new families of Einstein-Sassaki metrics in odd dimensions and Ricci-flat metrics in even dimensions. We also discuss their applications in String theory.
The crystal nucleation theory revisited: The case of 2D colloidal crystals
NASA Astrophysics Data System (ADS)
González, A. E.; Ixtlilco-Cortés, L.
2011-03-01
Most of the theories and studies of crystallization and crystal nucleation consider the boundaries between the crystallites and the fluid as smooth. The crystallites are the small clusters of atoms, molecules and/or particles with the symmetry of the crystal lattice that, with a slight chance of success, would grow to form the crystal grains. In fact, in the classical nucleation theory, the crystallites are assumed to have a spherical shape (circular in 2D). As far are we are aware, there is only one experimental work [1] on colloidal crystals that founds rough surfaces for the crystallites and for the crystal grains. Motivated by this work, we performed large Kinetic Monte Carlo simulations in 2D, that would follow the eventual growing of a few crystallites to form the crystal grains. The used potential has, besides the impenetrable hard core, a soft core followed by a potential well. We found that indeed the crystallites have a fractal boundary, whose value we were able to obtain. See the figure below of a typical isolated crystallite. We were also able to obtain the critical crystallite size, measured by its number of particles, Nc, and not by any critical radius. The boundaries of the crystals above Nc also have a fractal structure but of a lower value, closer to one. Finally, we also obtained the line tension between the crystallites and the surrounding fluid, as function of temperature and particle diameter, as well as the chemical potential difference between these two phases. In the URL: www.fis.unam.mx˜˜agus˜ there are posted two movies that can be downloaded: (1) 2D_crystal_nucleation.mp4, and (2) 2D_crystal_growth.mp4, that illustrate the crystal nucleation and its further growth.
N=3 supersymmetric effective action of D2-branes in massive IIA string theory
NASA Astrophysics Data System (ADS)
Go, Gyungchoon; Kwon, O.-Kab; Tolla, D. D.
2012-01-01
We obtain a new type of N=3 Yang-Mills Chern-Simons theory from the Mukhi-Papageorgakis Higgs mechanism of the N=3 Gaiotto-Tomasiello theory. This theory has N=1 BPS fuzzy funnel solution, which is expressed in terms of the seven generators of SU(3), excluding T8. We propose that this is an effective theory of multiple D2-branes with D6- and D8-branes background in massive IIA string theory.
Exact renormalization group and loop variables: A background independent approach to string theory
NASA Astrophysics Data System (ADS)
Sathiapalan, B.
2015-11-01
This paper is a self-contained review of the loop variable approach to string theory. The Exact Renormalization Group is applied to a world sheet theory describing string propagation in a general background involving both massless and massive modes. This gives interacting equations of motion for the modes of the string. Loop variable techniques are used to obtain gauge invariant equations. Since this method is not tied to flat space-time or any particular background metric, it is manifestly background independent. The technique can be applied to both open and closed strings. Thus gauge invariant and generally covariant interacting equations of motion can be written for massive higher spin fields in arbitrary backgrounds. Some explicit examples are given.
Three-charge black holes and quarter BPS states in Little String Theory
NASA Astrophysics Data System (ADS)
Giveon, Amit; Harvey, Jeffrey; Kutasov, David; Lee, Sungjay
2015-12-01
We show that the system of k NS5-branes wrapping {T}^4× {S}^1 has non-trivial vacuum structure. Different vacua have different spectra of 1 /4 BPS states that carry momentum and winding around the S 1. In one vacuum, such states are described by black holes; in another, they can be thought of as perturbative BPS states in Double Scaled Little String Theory. In general, both kinds of states are present. We compute the degeneracy of perturbative BPS states exactly, and show that it differs from that of the corresponding black holes. We comment on the implication of our results to the black hole microstate program, UV/IR mixing in Little String Theory, string thermodynamics, the string/black hole transition, and other issues.
String Theory, Chern-Simons Theory and the Fractional Quantum Hall Effect
NASA Astrophysics Data System (ADS)
Moore, Nathan Paul
In this thesis we explore two interesting relationships between string theory and quantum field theory. Firstly, we develop an equivalence between two Hilbert spaces: (i) the space of states of U(1)n Chern-Simons theory with a certain class of tridiagonal matrices of coupling constants (with corners) on T2; and (ii) the space of ground states of strings on an associated mapping torus with T2 fiber. The equivalence is deduced by studying the space of ground states of SL(2,Z)-twisted circle compactifications of U(1) gauge theory, connected with a Janus configuration, and further compactified on T2. The equality of dimensions of the two Hilbert spaces (i) and (ii) is equivalent to a known identity on determinants of tridiagonal matrices with corners. The equivalence of operator algebras acting on the two Hilbert spaces follows from a relation between the Smith normal form of the Chern-Simons coupling constant matrix and the isometry group of the mapping torus, as well as the torsion part of its first homology group. Secondly, the Fractional Quantum Hall Effect appears as part of the low-energy description of the Coulomb branch of the A1 (2,0)-theory formulated on (S1 x R 2)/Zk, where the generator of Zk acts as a combination of translation on S1 and rotation by 2pi/k on R2. At low-energy the configuration is described in terms of a 4+1D Super-Yang-Mills theory on a cone (R 2/Zk) with additional 2+1D degrees of freedom at the tip of the cone. Fractionally charged quasi-particles have a natural description in terms of BPS strings of the (2,0)-theory. We analyze the large k limit, where a smooth cigar-geometry provides an alternative description. In this framework a W-boson can be modeled as a bound state of k quasi-particles. The W-boson becomes a Q-ball, and it can be described by a soliton solution of BPS monopole equations on a certain auxiliary curved space. We show that axisymmetric solutions of these equations correspond to singular maps from AdS 3 to AdS2, and we
On p-Adic Sector of Open Scalar Strings and Zeta Field Theory
Dragovich, Branko
2010-06-17
We consider construction of Lagrangians which may be suitable for description of p-adic sector of an open scalar string. Such Lagrangians have their origin in Lagrangian for a single p-adic string and they contain the Riemann zeta function with the d'Alembertian in its argument. However, investigation of the field theory with Riemann zeta function is interesting in itself as well. We present a brief review and some new results.
Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice
Barr, Rachel
2010-01-01
The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302
Basic Brackets of a 2D Model for the Hodge Theory Without its Canonical Conjugate Momenta
NASA Astrophysics Data System (ADS)
Kumar, R.; Gupta, S.; Malik, R. P.
2016-06-01
We deduce the canonical brackets for a two (1+1)-dimensional (2D) free Abelian 1-form gauge theory by exploiting the beauty and strength of the continuous symmetries of a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density that respects, in totality, six continuous symmetries. These symmetries entail upon this model to become a field theoretic example of Hodge theory. Taken together, these symmetries enforce the existence of exactly the same canonical brackets amongst the creation and annihilation operators that are found to exist within the standard canonical quantization scheme. These creation and annihilation operators appear in the normal mode expansion of the basic fields of this theory. In other words, we provide an alternative to the canonical method of quantization for our present model of Hodge theory where the continuous internal symmetries play a decisive role. We conjecture that our method of quantization is valid for a class of field theories that are tractable physical examples for the Hodge theory. This statement is true in any arbitrary dimension of spacetime.
2d Affine XY-Spin Model/4d Gauge Theory Duality and Deconfinement
Anber, Mohamed M.; Poppitz, Erich; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept. /San Francisco State U.
2012-08-16
We introduce a duality between two-dimensional XY-spin models with symmetry-breaking perturbations and certain four-dimensional SU(2) and SU(2) = Z{sub 2} gauge theories, compactified on a small spatial circle R{sup 1,2} x S{sup 1}, and considered at temperatures near the deconfinement transition. In a Euclidean set up, the theory is defined on R{sup 2} x T{sup 2}. Similarly, thermal gauge theories of higher rank are dual to new families of 'affine' XY-spin models with perturbations. For rank two, these are related to models used to describe the melting of a 2d crystal with a triangular lattice. The connection is made through a multi-component electric-magnetic Coulomb gas representation for both systems. Perturbations in the spin system map to topological defects in the gauge theory, such as monopole-instantons or magnetic bions, and the vortices in the spin system map to the electrically charged W-bosons in field theory (or vice versa, depending on the duality frame). The duality permits one to use the two-dimensional technology of spin systems to study the thermal deconfinement and discrete chiral transitions in four-dimensional SU(N{sub c}) gauge theories with n{sub f} {ge} 1 adjoint Weyl fermions.
Cosmological and wormhole solutions in low-energy effective string theory
Cadoni, M. INFN, Sezione di Cagliari, Via Ada Negri 18, I---09127 Cagliari ); Cavaglia, M. INFN, Sezione di Cagliari, Via Ada Negri 18, I-09127 Cagliari )
1994-11-15
We derive and study a class of cosmological and wormhole solutions of low-energy effective string field theory. We consider a general four-dimensional string effective action where moduli of the compactified manifold and the electromagnetic field are present. The cosmological solutions of the two-dimensional effective theory obtained by dimensional reduction of the former are discussed. In particular we demonstrate that the two-dimensional theory possesses a scale-factor duality invariance. Eucidean four-dimensional instantons describing the nucleation of the baby universes are found and the probability amplitude for the nucleation process given.
Static axisymmetric solutions with electric fields in low-energy string theory
NASA Astrophysics Data System (ADS)
Wei, Yi-Huan; Zhang, Yuan-Zhong; He, Feng
2002-12-01
In this paper, we prove that all five-dimensional axisymmetric Kaluza-Klein spacetime solutions with electrostatic fields may also be those of low-energy string theory. From the class of TS-like solutions in Kaluza-Klein theory we obtain the corresponding class of solutions with electric dipoles in low-energy string theory, which are enlarged to solutions with electric charges under the SO(1, 1) transformation. We obtain the complete metric for the TS-like solution with δ = 1. Lastly, we give a discussion.
Supersymmetric structure of the bosonic string theory in the Beltrami parametrization
NASA Astrophysics Data System (ADS)
de Oliveira, M. Werneck; Schweda, M.; Sorella, S. P.
1993-09-01
We show that the bosonic string theory quantized in the Beltrami parametrization possesses a supersymmetric structure like the vector-supersymmetry already observed in topological field theories. Supported in part by the ``Fonds zur Förderung der Wissenschaftlichen Forschung'', M008-Lise Meitner Fellowship.