Science.gov

Sample records for 2d thermal analysis

  1. HEAT.PRO - THERMAL IMBALANCE FORCE SIMULATION AND ANALYSIS USING PDE2D

    NASA Technical Reports Server (NTRS)

    Vigue, Y.

    1994-01-01

    HEAT.PRO calculates the thermal imbalance force resulting from satellite surface heating. The heated body of a satellite re-radiates energy at a rate that is proportional to its temperature, losing the energy in the form of photons. By conservation of momentum, this momentum flux out of the body creates a reaction force against the radiation surface, and the net thermal force can be observed as a small perturbation that affects long term orbital behavior of the satellite. HEAT.PRO calculates this thermal imbalance force and then determines its effects on satellite orbits, especially where the Earth's shadowing of an orbiting satellite causes periodic changes in the spacecraft's thermal environment. HEAT.PRO implements a finite element method routine called PDE2D which incorporates material properties to determine the solar panel surface temperatures. The nodal temperatures are computed at specified time steps and are used to determine the magnitude and direction of the thermal force on the spacecraft. These calculations are based on the solar panel orientation and satellite's position with respect to the earth and sun. It is necessary to have accurate, current knowledge of surface emissivity, thermal conductivity, heat capacity, and material density. These parameters, which may change due to degradation of materials in the environment of space, influence the nodal temperatures that are computed and thus the thermal force calculations. HEAT.PRO was written in FORTRAN 77 for Cray series computers running UNICOS. The source code contains directives for and is used as input to the required partial differential equation solver, PDE2D. HEAT.PRO is available on a 9-track 1600 BPI magnetic tape in UNIX tar format (standard distribution medium) or a .25 inch streaming magnetic tape cartridge in UNIX tar format. An electronic copy of the documentation in Macintosh Microsoft Word format is included on the distribution tape. HEAT.PRO was developed in 1991. Cray and UNICOS are

  2. 2-D Time-Dependent Fuel Element, Thermal Analysis Code System.

    Energy Science and Technology Software Center (ESTSC)

    2001-09-24

    Version 00 WREM-TOODEE2 is a two dimensional, time-dependent, fuel-element thermal analysis program. Its primary purpose is to evaluate fuel-element thermal response during post-LOCA refill and reflood in a pressurized water reactor (PWR). TOODEE2 calculations are carried out in a two-dimensional mesh region defined in slab or cylindrical geometry by orthogonal grid lines. Coordinates which form order pairs are labeled x-y in slab geometry, and those in cylindrical geometry are labeled r-z for the axisymmetric casemore » and r-theta for the polar case. Conduction and radiation are the only heat transfer mechanisms assumed within the boundaries of the mesh region. Convective and boiling heat transfer mechanisms are assumed at the boundaries. The program numerically solves the two-dimensional, time-dependent, heat conduction equation within the mesh region. KEYWORDS: FUEL MANAGEMENT; HEAT TRANSFER; LOCA; PWR« less

  3. 2D Thermal Hydraulic Analysis and Benchmark in Support of HFIR LEU Conversion using COMSOL

    SciTech Connect

    Freels, James D; Bodey, Isaac T; Lowe, Kirk T; Arimilli, Rao V

    2010-09-01

    The research documented herein was funded by a research contract between the Research Reactors Division (RRD) of Oak Ridge National Laboratory (ORNL) and the University of Tennessee, Knoxville (UTK) Mechanical, Aerospace and Biomedical Engineering Department (MABE). The research was governed by a statement of work (SOW) which clearly defines nine specific tasks. This report is outlined to follow and document the results of each of these nine specific tasks. The primary goal of this phase of the research is to demonstrate, through verification and validation methods, that COMSOL is a viable simulation tool for thermal-hydraulic modeling of the High Flux Isotope Reactor (HFIR) core. A secondary goal of this two-dimensional phase of the research is to establish methodology and data base libraries that are also needed in the full three-dimensional COMSOL simulation to follow. COMSOL version 3.5a was used for all of the models presented throughout this report.

  4. Quasi 2D Materials: Raman Nanometrology and Thermal Management Applications

    NASA Astrophysics Data System (ADS)

    Shahil, Khan Mohammad Farhan

    Quasi two-dimensional (2D) materials obtained by the "graphene-like" exfoliation attracted tremendous attention. Such materials revealed unique electronic, thermal and optical properties, which can be potentially used in electronics, thermal management and energy conversion. This dissertation research addresses two separate but synergetic problems: (i) preparation and optical characterization of quasi-2D films of the bismuth-telluride (Bi 2Te3) family of materials, which demonstrate both thermoelectric and topological insulator properties; and (ii) investigation of thermal properties of composite materials prepared with graphene and few-layer graphene (FLG). The first part of dissertation reports properties of the exfoliated few-quintuple layers of Bi2Te3, Bi2Se3 and Sb 2Te3. Both non-resonant and resonant Raman scattering spectra have been investigated. It was found that the crystal symmetry breaking in few-quintuple films results in appearance of A1u-symmetry Raman peaks, which are not active in the bulk crystals. The scattering spectra measured under the 633-nm wavelength excitation reveals a number of resonant features, which could be used for analysis of the electronic and phonon processes in these materials. The obtained results help to understand the physical mechanisms of Raman scattering in the few-quintuple-thick films and can be used for nanometrology of topological insulator films on various substrates. The second part of the dissertation is dedicated to investigation of properties of composite materials prepared with graphene and FLG. It was found that the optimized mixture of graphene and multilayer graphene---produced by the high-yield inexpensive liquid-phase-exfoliation technique---can lead to an extremely strong enhancement of the cross-plane thermal conductivity K of the composite. The "laser flash" measurements revealed a record-high enhancement of K by 2300 % in the graphene-based polymer at the filler loading fraction f =10 vol. %. It was

  5. TOPAZ2D heat transfer code users manual and thermal property data base

    NASA Astrophysics Data System (ADS)

    Shapiro, A. B.; Edwards, A. L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available.

  6. Thermal conductivity measurements in a 2D Yukawa system

    NASA Astrophysics Data System (ADS)

    Nosenko, V.; Ivlev, A.; Zhdanov, S.; Morfill, G.; Goree, J.; Piel, A.

    2007-03-01

    Thermal conductivity was measured for a 2D Yukawa system. First, we formed a monolayer suspension of microspheres in a plasma, i.e., a dusty plasma, which is like a colloidal suspension, but with an extremely low volume fraction and a partially-ionized rarefied gas instead of solvent. In the absence of manipulation, the suspension forms a 2D triangular lattice. To melt this lattice and form a liquid, we used a laser-heating method. Two focused laser beams were moved rapidly around in the monolayer. The kinetic temperature of the particles increased with the laser power applied, and above a threshold a melting transition occurred. We used digital video microscopy for direct imaging and particle tracking. The spatial profiles of the particle kinetic temperature were calculated. Using the heat transport equation with an additional term to account for the energy dissipation due to the gas drag, we analyzed the temperature distribution to derive the thermal conductivity.

  7. TOPAZ2D heat transfer code users manual and thermal property data base

    SciTech Connect

    Shapiro, A.B.; Edwards, A.L.

    1990-05-01

    TOPAZ2D is a two dimensional implicit finite element computer code for heat transfer analysis. This user's manual provides information on the structure of a TOPAZ2D input file. Also included is a material thermal property data base. This manual is supplemented with The TOPAZ2D Theoretical Manual and the TOPAZ2D Verification Manual. TOPAZ2D has been implemented on the CRAY, SUN, and VAX computers. TOPAZ2D can be used to solve for the steady state or transient temperature field on two dimensional planar or axisymmetric geometries. Material properties may be temperature dependent and either isotropic or orthotropic. A variety of time and temperature dependent boundary conditions can be specified including temperature, flux, convection, and radiation. Time or temperature dependent internal heat generation can be defined locally be element or globally by material. TOPAZ2D can solve problems of diffuse and specular band radiation in an enclosure coupled with conduction in material surrounding the enclosure. Additional features include thermally controlled reactive chemical mixtures, thermal contact resistance across an interface, bulk fluid flow, phase change, and energy balances. Thermal stresses can be calculated using the solid mechanics code NIKE2D which reads the temperature state data calculated by TOPAZ2D. A three dimensional version of the code, TOPAZ3D is available. The material thermal property data base, Chapter 4, included in this manual was originally published in 1969 by Art Edwards for use with his TRUMP finite difference heat transfer code. The format of the data has been altered to be compatible with TOPAZ2D. Bob Bailey is responsible for adding the high explosive thermal property data.

  8. Parallel map analysis on 2-D grids

    SciTech Connect

    Berry, M.; Comiskey, J.; Minser, K.

    1993-12-31

    In landscape ecology, computer modeling is used to assess habitat fragmentation and its ecological iMPLications. Specifically, maps (2-D grids) of habitat clusters must be analyzed to determine number, sizes and geometry of clusters. Models prior to this study relied upon sequential Fortran-77 programs which limited the sizes of maps and densities of clusters which could be analyzed. In this paper, we present more efficient computer models which can exploit recursion or parallelism. Significant improvements over the original Fortran-77 programs have been achieved using both recursive and nonrecursive C implementations on a variety of workstations such as the Sun Sparc 2, IBM RS/6000-350, and HP 9000-750. Parallel implementations on a 4096-processor MasPar MP-1 and a 32-processor CM-5 are also studied. Preliminary experiments suggest that speed improvements for the parallel model on the MasPar MP-1 (written in MPL) and on the CM-5 (written in C using CMMD) can be as much as 39 and 34 times faster, respectively, than the most efficient sequential C program on a Sun Sparc 2 for a 512 map. An important goal in this research effort is to produce a scalable map analysis algorithm for the identification and characterization of clusters for relatively large maps on massively-parallel computers.

  9. 2D Wavefront Sensor Analysis and Control

    Energy Science and Technology Software Center (ESTSC)

    1996-02-19

    This software is designed for data acquisition and analysis of two dimensional wavefront sensors. The software includes data acquisition and control functions for an EPIX frame grabber to acquire data from a computer and all the appropriate analysis functions necessary to produce and display intensity and phase information. This software is written in Visual Basic for windows.

  10. Electrically insulating thermal nano-oils using 2D fillers.

    PubMed

    Taha-Tijerina, Jaime; Narayanan, Tharangattu N; Gao, Guanhui; Rohde, Matthew; Tsentalovich, Dmitri A; Pasquali, Matteo; Ajayan, Pulickel M

    2012-02-28

    Different nanoscale fillers have been used to create composite fluids for applications such as thermal management. The ever increasing thermal loads in applications now require advanced operational fluids, for example, high thermal conductivity dielectric oils in transformers. These oils require excellent filler dispersion, high thermal conduction, but also electrical insulation. Such thermal oils that conform to this thermal/electrical requirement, and yet remain in highly suspended stable state, have not yet been synthesized. We report here the synthesis and characterization of stable high thermal conductivity Newtonian nanofluids using exfoliated layers of hexagonal boron nitride in oil without compromising its electrically insulating property. Two-dimensional nanosheets of hexagonal boron nitride are liquid exfoliated in isopropyl alcohol and redispersed in mineral oil, used as standard transformer oil, forming stable nanosuspensions with high shelf life. A high electrical resistivity, even higher than that of the base oil, is maintained for the nano-oil containing small weight fraction of the filler (0.01 wt %), whereas the thermal conductivity was enhanced. The low dissipation factor and high pour point for this nano-oil suggests several applications in thermal management. PMID:22268368

  11. A large 2D PSD for thermal neutron detection

    NASA Astrophysics Data System (ADS)

    Knott, R. B.; Smith, G. C.; Watt, G.; Boldeman, J. W.

    1997-02-01

    A 2D PSD based on a MWPC has been constructed for a small angle neutron scattering instrument. The active area of the detector was 640 × 640 mm 2. To meet the specifications for neutron detection efficiency and spatial resolution, and to minimise parallax, the gas mixture was 190 kPa 3He plus 100 kPa CF 4, and the active volume had a thickness of 30 mm. The design maximum neutron count rate of the detector was 10 5 events per secod. The (calculated) neutron detection efficiency was 60% for 2 Å neutrons and the (measured) neutron energy resolution on the anode grid was typically 20% (fwhm). The location of a neutron detection event within the active area was determined using the wire-by-wire method: the spatial resolution (5 × 5 mm 2) was thereby defined by the wire geometry. A 16-channel charge-sensitive preamplifier/amplifier/comparator module has been developed with a channel sensitivity of 0.1 V/fC, noise line width of 0.4 fC (fwhm) and channel-to-channel cross-talk of less than 5%. The Proportional Counter Operating System (PCOS III) (LeCroy Corp, USA) was used for event encoding. The ECL signals produced by the 16 channel modules were latched in PCOS III by a trigger pulse from the anode and the fast encoders produce a position and width for each event. The information was transferred to a UNIX workstation for accumulation and online display.

  12. 2D Mixed Convection Thermal Incompressible Viscous Flows

    NASA Astrophysics Data System (ADS)

    Bermudez, Blanca; Nicolas, Alfredo

    2005-11-01

    Mixed convection thermal incomprressible viscous fluid flows in rectangular cavities are presented. These kind of flows may be governed by the time-dependent Boussinesq approximation in terms of the stream function-vorticity variables formulation. The results are obtained with a simple numerical scheme based mainly on a fixed point iterative process applied to the non-linear system of elliptic equations that is obtained after a second order time discretization. Numerical experiments are reported for the problem of a cavity with fluid boundary motion on the top. Some results correspond to validation examples and others, to the best of our knowledge, correspond to new results. To show that the new results are correct, a mesh size and time independence studies are carried out, and the acceptable errors are measured point-wise. For the optimal mesh size and time step the final times when the steady state is reached, as solution from the unsteady problem, are reported; it should be seen that they are larger than the ones for natural convection which, physically speaking, show the agreement that mixed convection flows are more active than those of natural convection due to the fluid boundary motion on the top of the cavity. The flow parameters are: the Reynolds number, the Grashof number and the aspect ratio.

  13. Noninvasive deep Raman detection with 2D correlation analysis

    NASA Astrophysics Data System (ADS)

    Kim, Hyung Min; Park, Hyo Sun; Cho, Youngho; Jin, Seung Min; Lee, Kang Taek; Jung, Young Mee; Suh, Yung Doug

    2014-07-01

    The detection of poisonous chemicals enclosed in daily necessaries is prerequisite essential for homeland security with the increasing threat of terrorism. For the detection of toxic chemicals, we combined a sensitive deep Raman spectroscopic method with 2D correlation analysis. We obtained the Raman spectra from concealed chemicals employing spatially offset Raman spectroscopy in which incident line-shaped light experiences multiple scatterings before being delivered to inner component and yielding deep Raman signal. Furthermore, we restored the pure Raman spectrum of each component using 2D correlation spectroscopic analysis with chemical inspection. Using this method, we could elucidate subsurface component under thick powder and packed contents in a bottle.

  14. Microscale 2D separation systems for proteomic analysis

    PubMed Central

    Xu, Xin; Liu, Ke; Fan, Z. Hugh

    2012-01-01

    Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues. PMID:22462786

  15. Region-based Statistical Analysis of 2D PAGE Images

    PubMed Central

    Li, Feng; Seillier-Moiseiwitsch, Françoise; Korostyshevskiy, Valeriy R.

    2011-01-01

    A new comprehensive procedure for statistical analysis of two-dimensional polyacrylamide gel electrophoresis (2D PAGE) images is proposed, including protein region quantification, normalization and statistical analysis. Protein regions are defined by the master watershed map that is obtained from the mean gel. By working with these protein regions, the approach bypasses the current bottleneck in the analysis of 2D PAGE images: it does not require spot matching. Background correction is implemented in each protein region by local segmentation. Two-dimensional locally weighted smoothing (LOESS) is proposed to remove any systematic bias after quantification of protein regions. Proteins are separated into mutually independent sets based on detected correlations, and a multivariate analysis is used on each set to detect the group effect. A strategy for multiple hypothesis testing based on this multivariate approach combined with the usual Benjamini-Hochberg FDR procedure is formulated and applied to the differential analysis of 2D PAGE images. Each step in the analytical protocol is shown by using an actual dataset. The effectiveness of the proposed methodology is shown using simulated gels in comparison with the commercial software packages PDQuest and Dymension. We also introduce a new procedure for simulating gel images. PMID:21850152

  16. An F2D analysis of the Flow Instability Test (FIT) experiment

    SciTech Connect

    Suo-Anttila, A.

    1993-10-01

    The F2D code was used to analyze the Flow-Instability-Test (FIT) experiments at Brookhaven National Laboratories. A one-dimensional analysis of the experiment indicated that at the higher temperature levels the element should be unstable. The experimental data corroborated this theory. The two-dimensional simulation behaved in a manner that was very similar to the experimentally measured behavior. In conclusion, the FIT experimental analysis yields partial code validation of F2D, and it also validates the methodology that is used in analyzing thermal flow stability.

  17. Finite Element Analysis of 2-D Elastic Contacts Involving FGMs

    NASA Astrophysics Data System (ADS)

    Abhilash, M. N.; Murthy, H.

    2014-05-01

    The response of elastic indenters in contact with Functionally Graded Material (FGM) coated homogeneous elastic half space has been presented in the current paper. Finite element analysis has been used due to its ability to handle complex geometry, material, and boundary conditions. Indenters of different typical surface profiles have been considered and the problem has been idealized as a two-dimensional (2D) plane strain problem considering only normal loads. Initially, indenters were considered to be rigid and the results were validated with the solutions presented in the literature. The analysis has then been extended to the case of elastic indenters on FGM-coated half spaces and the results are discussed.

  18. 2D axisymmetric analysis of SRM ignition transient

    NASA Astrophysics Data System (ADS)

    Bai, S. D.; Han, Samuel S.; Pardue, B. A.

    1993-06-01

    To analyze ignition transient of Space Shuttle solid rocket motor, a transient two-dimensional numerical model based on turbulent compressible Navier-Stokes equations in a generalized coordinate system was developed. One-dimensional numerical models (Peretz et al., 1973; Han, 1992; Pardue and Han, 1992) with empirical correlations data obtained from steady turbulent boundary layer flows agrees reasonably well with test rocket data by adjusting a few parameters. However, a 1D model can not provide a physical insight into the complex multidimensional thermal fields and flowfields in the chamber and the converging-diverging rocket nozzle. As an interim step, a 2D model was developed and compared with test data. A modified version of SIMPLE algorithm was used for the numerical model, and the standard k-epsilon model with a wall function was used for turbulence closure. Transient flowfields and thermal fields in the combustion chamber and the attached nozzle were obtained for a selected rocket geometry and propellant. Transient behaviors of the flow and thermal fields were analyzed, and were found to be in good agreement with physical expectations.

  19. Turbulent flow over a surface-mounted 2-D block in thermally-stratified boundary layers

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Markfort, C. D.; Porte-Agel, F.

    2013-12-01

    Turbulent boundary-layer flows over complex topography have been of great interest in the atmospheric sciences and wind engineering communities. The geometry of the topography, surface characteristics and atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography, such as 2-D or 3-D blocks and 2-D or 3-D sinusoidal hills, conducted under neutrally stratified boundary-layer conditions have provided insightful information of fluid dynamics. However, atmospheric thermal stability has rarely been incorporated into laboratory simulations, in particular, wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will fill this gap and advance our understanding of the underlying physics of flow over complex topography. Additionally, experimental data are useful for the development of new parameterizations for surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments involving neutral and thermally-stratified boundary-layer flows over a surface-mounted 2-D block, conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel, will be presented. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Thermal stratification of the boundary layer was achieved by independently controlling the temperature of both the airflow, the test section floor and block surfaces. Measurements using high-resolution PIV, x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to identify and quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Emphasis will be put on addressing thermal stability effects on momentum and scalar flux distribution.

  20. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    SciTech Connect

    Nersisyan, Hayk; Lee, Tae-Hyuk; Lee, Kap-Ho; Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang; Lee, Jong-Hyeon

    2015-05-15

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid system, for k=1–4 interval. Temperature–time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer–Emmett–Teller surface area analysis. It was found that B{sub 2}O{sub 3} was converted into BN completely (by XRD) at 1450–1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1–4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m{sup 2} for k=2 and 28.4 m{sup 2}/g for k=4. - Graphical abstract: 2D hexagonal BN nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared by combustion of B{sub 2}O{sub 3}+(3+0.5k)Mg+kNH{sub 4}Cl solid mixture in nitrogen atmosphere. - Highlights: • Thermally induced combustion route was developed for synthesizing BN nanoplates from B{sub 2}O{sub 3}. • Mg was used as reductive agent and NH{sub 4}Cl as an effective nitrogen source. • Temperature–time profiles and the combustion parameters were recorded and discussed. • BN with an average edge length from 50 nm to several micrometer and thickness from 5 to 100 nm were prepared. • Our study clarifies the formation mechanism of BN in the combustion wave.

  1. High accuracy determination of the thermal properties of supported 2D materials

    PubMed Central

    Judek, Jarosław; Gertych, Arkadiusz P.; Świniarski, Michał; Łapińska, Anna; Dużyńska, Anna; Zdrojek, Mariusz

    2015-01-01

    We present a novel approach for the simultaneous determination of the thermal conductivity κ and the total interface conductance g of supported 2D materials by the enhanced opto-thermal method. We harness the property of the Gaussian laser beam that acts as a heat source, whose size can easily and precisely be controlled. The experimental data for multi-layer graphene and MoS2 flakes are supplemented using numerical simulations of the heat distribution in the Si/SiO2/2D material system. The procedure of κ and g extraction is tested in a statistical approach, demonstrating the high accuracy and repeatability of our method. PMID:26179785

  2. Simulation of multi-steps thermal transition in 2D spin-crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Jureschi, Catalin-Maricel; Pottier, Benjamin-Louis; Linares, Jorge; Richard Dahoo, Pierre; Alayli, Yasser; Rotaru, Aurelian

    2016-04-01

    We have used an Ising like model to study the thermal behavior of a 2D spin crossover (SCO) system embedded in a matrix. The interaction parameter between edge SCO molecules and its local environment was included in the standard Ising like model as an additional term. The influence of the system's size and the ratio between the number of edge molecules and the other molecules were also discussed.

  3. Thermally induced formation of 2D hexagonal BN nanoplates with tunable characteristics

    NASA Astrophysics Data System (ADS)

    Nersisyan, Hayk; Lee, Tae-Hyuk; Lee, Kap-Ho; Jeong, Seong-Uk; Kang, Kyung-Soo; Bae, Ki-Kwang; Lee, Jong-Hyeon

    2015-05-01

    We have investigated a thermally induced combustion route for preparing 2D hexagonal BN nanoplates from B2O3+(3+0.5k)Mg+kNH4Cl solid system, for k=1-4 interval. Temperature-time profiles recorded by thermocouples indicated the existence of two sequential exothermic processes in the combustion wave leading to the BN nanoplates formation. The resulting BN nanoplates were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy, PL spectrometry, and Brunauer-Emmett-Teller surface area analysis. It was found that B2O3 was converted into BN completely (by XRD) at 1450-1930 °C within tens of seconds in a single-step synthesis process. The BN prepared at a k=1-4 interval comprised well-shaped nanoplates with an average edge length ranging from 50 nm to several micrometer and thickness from 5 to 100 nm. The specific surface area of BN nanoplates was 13.7 g/m2 for k=2 and 28.4 m2/g for k=4.

  4. A novel improved method for analysis of 2D diffusion relaxation data—2D PARAFAC-Laplace decomposition

    NASA Astrophysics Data System (ADS)

    Tønning, Erik; Polders, Daniel; Callaghan, Paul T.; Engelsen, Søren B.

    2007-09-01

    This paper demonstrates how the multi-linear PARAFAC model can with advantage be used to decompose 2D diffusion-relaxation correlation NMR spectra prior to 2D-Laplace inversion to the T2- D domain. The decomposition is advantageous for better interpretation of the complex correlation maps as well as for the quantification of extracted T2- D components. To demonstrate the new method seventeen mixtures of wheat flour, starch, gluten, oil and water were prepared and measured with a 300 MHz nuclear magnetic resonance (NMR) spectrometer using a pulsed gradient stimulated echo (PGSTE) pulse sequence followed by a Carr-Purcell-Meiboom-Gill (CPMG) pulse echo train. By varying the gradient strength, 2D diffusion-relaxation data were recorded for each sample. From these double exponentially decaying relaxation data the PARAFAC algorithm extracted two unique diffusion-relaxation components, explaining 99.8% of the variation in the data set. These two components were subsequently transformed to the T2- D domain using 2D-inverse Laplace transformation and quantitatively assigned to the oil and water components of the samples. The oil component was one distinct distribution with peak intensity at D = 3 × 10 -12 m 2 s -1 and T2 = 180 ms. The water component consisted of two broad populations of water molecules with diffusion coefficients and relaxation times centered around correlation pairs: D = 10 -9 m 2 s -1, T2 = 10 ms and D = 3 × 10 -13 m 2 s -1, T2 = 13 ms. Small spurious peaks observed in the inverse Laplace transformation of original complex data were effectively filtered by the PARAFAC decomposition and thus considered artefacts from the complex Laplace transformation. The oil-to-water ratio determined by PARAFAC followed by 2D-Laplace inversion was perfectly correlated with known oil-to-water ratio of the samples. The new method of using PARAFAC prior to the 2D-Laplace inversion proved to have superior potential in analysis of diffusion-relaxation spectra, as it

  5. Thermal Analysis

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The University of Georgia used NASTRAN, a COSMIC program that predicts how a design will stand up under stress, to develop a model for monitoring the transient cooling of vegetables. The winter use of passive solar heating for poultry houses is also under investigation by the Agricultural Engineering Dept. Another study involved thermal analysis of black and green nursery containers. The use of NASTRAN has encouraged student appreciation of sophisticated computer analysis.

  6. Multifunctional Nanofluids with 2D Nanosheets for thermal management and tribological applications

    NASA Astrophysics Data System (ADS)

    Taha Tijerina, Jose Jaime

    Conventional heat-transfer fluids such as water, ethylene glycol, standard oils and other lubricants are typically low-efficiency heat-transfer fluids. Thermal management plays a critical factor in many applications where these fluids can be used, such as in motors/engines, solar cells, biopharmaceuticals, fuel cells, high voltage power transmission systems, micro/nanoelectronics mechanical systems (MEMS/NEMS), and nuclear cooling among others. These insulating fluids require superb filler dispersion, high thermal conduction, and for certain applications as in electrical/electronic devices also electrical insulation. The miniaturization and high efficiency of electrical/electronic devices in these fields demand successful heat management and energy-efficient fluid-based heat-transfer systems. Recent advances in layered materials enable large scale synthesis of various two-dimensional (2D) structures. Some of these 2D materials are good choices as nanofillers in heat transfer fluids; mainly due to their inherent high thermal conductivity (TC) and high surface area available for thermal energy transport. Among various 2D-nanostructures, hexagonal boron nitride (h-BN) and graphene (G) exhibit versatile properties such as outstanding TC, excellent mechanical stability, and remarkable chemical inertness. The following research, even though investigate various conventional fluids, will focus on dielectric insulating nanofluids (mineral oil -- MO) with significant thermal performance. It is presented the plan for synthesis and characterization of stable high-thermal conductivity nanofluids using 2D-nanostructures of h-BN, which will be further incorporated at diverse filler concentrations to conventional fluids for cooling applications, without compromising its electrical insulating property. For comparison, properties of h-BN based fluids are compared with conductive fillers such as graphene; where graphene has similar crystal structure of h-BN and also has similar bulk

  7. Thermal stability effects on the separated flow over a steep 2-D hill

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Porte-Agel, F.

    2012-12-01

    Transport of momentum and scalars in turbulent boundary-layer flows over complex topography has been of great interest in the atmospheric sciences and wind engineering communities. Applications include but are not limited to weather forecasting, air pollution dispersion, aviation safety control, and wind energy project planning. Linear models have been well accepted to predict boundary-layer flows over topography with gentle slope. However, once the slope of the topography is sufficientlyo steep that flow separation occurs, linear models are not applicable. Modeling the turbulent transport of momentum and scalars in such flows has to be achieved through non-linear models, such as Reynolds-averaged Navier-Stokes solvers and large-eddy simulations (LES). Dynamics of the separated boundary-layer flows over steep topography is affected by the shape and size of the topography, surface characteristics (e.g., roughness and temperature) and atmospheric thermal stability. Most wind-tunnel experiments of boundary-layer flows over idealized topography (e.g. 2-D or 3-D hills, axisymmetric bumps) do not take thermal stability effects into account due to difficulty of physical simulation. We conducted comprehensive experimental investigation of stably- and unstably- stratified boundary layers over a steep 2-D hill in the thermally-controlled boundary-layer wind tunnel at the Saint Anthony Falls Laboratory. The 2-D model hill has a steepest slope of 0.73 and its shape follows a cosine square function: h=Hcos^2 (πx/L) for -L/2 ≤ x ≤ L/2 , where the maximum height H is 7 cm and the total width L is 15 cm. High-resolution Particle Image Velocimetry (PIV) provides dynamic information of the separated shear layer, the recirculation zone and flow reattachment. Turbulent momentum and scalar (heat) fluxes were characterized up to the top of the thermal boundary layer using a triple-wire (cross-wire and cold-wire) anemometer. Results indicate that promoted and suppressed turbulence

  8. MODELING THE TRANSVERSE THERMAL CONDUCTIVITY OF 2-D SICF/SIC COMPOSITES MADE WITH WOVEN FABRIC

    SciTech Connect

    Youngblood, Gerald E; Senor, David J; Jones, Russell H

    2004-06-01

    The hierarchical two-layer (H2L) model describes the effective transverse thermal conductivity (Keff) of a 2D-SiCf/SiC composite plate made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the effects of fiber-matrix interfacial conductance, high fiber packing fractions within individual tows and the non-uniform nature of 2D fabric/matrix layers that usually include a significant amount of interlayer porosity. Previously, H2L model Keff-predictions were compared to measured values for two versions of 2D Hi-Nicalon/PyC/ICVI-SiC composite, one with a “thin” (0.11m) and the other with a “thick” (1.04m) pyrocarbon (PyC) fiber coating, and for a 2D Tyranno SA/”thin” PyC/FCVI-SIC composite. In this study, H2L model Keff-predictions were compared to measured values for a 2D-SiCf/SiC composite made using the ICVI-process with Hi-Nicalon type S fabric and a “thin” PyC fiber coating. The values of Keff determined for the latter composite were significantly greater than the Keff-values determined for the composites made with either the Hi-Nicalon or the Tyranno SA fabrics. Differences in Keff-values were expected for the different fiber types, but major differences also were due to observed microstructural and architectural variations between the composite systems, and as predicted by the H2L model.

  9. Retrospective analysis of 2D patient-specific IMRT verifications

    SciTech Connect

    Childress, Nathan L.; White, R. Allen; Bloch, Charles; Salehpour, Mohammad; Dong, Lei; Rosen, Isaac I.

    2005-04-01

    We performed 858 two-dimensional (2D) patient-specific intensity modulated radiotherapy verifications over a period of 18 months. Multifield, composite treatment plans were measured in phantom using calibrated Kodak EDR2 film and compared with the calculated dose extracted from two treatment planning systems. This research summarizes our findings using the normalized agreement test (NAT) index and the percent of pixels failing the gamma index as metrics to represent the agreement between measured and computed dose distributions. An in-house dose comparison software package was used to register and compare all verifications. We found it was important to use an automatic positioning algorithm to achieve maximum registration accuracy, and that our automatic algorithm agreed well with anticipated results from known phantom geometries. We also measured absolute dose for each case using an ion chamber. Because the computed distributions agreed with ion chamber measurements better than the EDR2 film doses, we normalized EDR2 data to the computed distributions. The distributions of both the NAT indices and the percentage of pixels failing the gamma index were found to be exponential distributions. We continue to use both the NAT index and percent of pixels failing gamma with 5%/3 mm criteria to evaluate future verifications, as these two metrics were found to be complementary. Our data showed that using 2%/2 mm or 3%/3 mm criteria produces results similar to those using 5%/3 mm criteria. Normalized comparisons that have a NAT index greater than 45 and/or more than 20% of the pixels failing gamma for 5%/3 mm criteria represent outliers from our clinical data set and require further analysis. Because our QA verification results were exponentially distributed, rather than a tight grouping of similar results, we continue to perform patient-specific QA in order to identify and correct outliers in our verifications. The data from this work could be useful as a reference for

  10. Matrix and size effects on the appearance of the thermal hysteresis in 2D spin crossover nanoparticles

    NASA Astrophysics Data System (ADS)

    Linares, Jorge; Jureschi, Catalin-Maricel; Boulmaali, Ayoub; Boukheddaden, Kamel

    2016-04-01

    The Ising-like model is used to simulate the thermal behavior of a 2D spin crossover (SC) nanoparticle embedded in a matrix, which affects the ligand field at its surface. First, we discuss the standard case of the isolated nanoparticle, and in the second part we consider the effect of the interaction between edge molecules and their local environment. We found that in the case of an isolated SC nanoparticle presenting a gradual spin transition, the matrix effect may drive a first-order spin transition accompanied with a hysteresis loop. An in-depth analysis of the physical mechanism underlying this unusual property is performed, leading to build up the system's phase diagram which clarifies the conditions of appearance of the first-order transition in the current 2D SC nanoparticles as function of their size and the strength of their interaction with their immediate environment.

  11. Thermal Conductance at the 2D MoS2-hexagonal Boron Nitride Interface

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Hippalgaonkar, Kedar; Ong, Zhun Yong; Thong, John Tl; Qiu, Chengwei

    In recent years, a number of 2D heterostructure devices have emerged, including graphene/hexagonal boron nitride (h-BN), graphene/MoS2 and MoS2/ h-BN. Among them, MoS2/ h-BN field-effect transistors with MoS2 channels and h-BN dielectric have been reported to have higher carrier mobility and reduced hysteresis compared to MoS2 on SiO2. Despite relatively high in-plane thermal conductivity of MoS2 and h-BN, heat dissipation from these 2D devices is mainly limited by heat transfer in the vertical direction. Consequently, their operating temperatures are strongly influenced by the interface thermal conductance. In this work, we demonstrate the measurement of interface thermal conductance between MoS2 and h-BN. This is realized by electrically heating MoS2 and monitoring their temperatures through Raman spectroscopy. The obtained interface thermal conductance between MoS2 and h-BN is 1.77 MW/m2K, smaller than the reported value for the graphene/ h-BN interface, due to the weak coupling of phonon modes between MoS2 and h-BN based on our NEGF calculation. The low interface thermal conductance value suggests this interface is not favorable for heat dissipation, and should be considered carefully for the design of electronic and optoelectronic devices based on MoS2/ h-BN heterostructures.

  12. Distributed and coupled 2D electro-thermal model of power semiconductor devices

    NASA Astrophysics Data System (ADS)

    Belkacem, Ghania; Lefebvre, Stéphane; Joubert, Pierre-Yves; Bouarroudj-Berkani, Mounira; Labrousse, Denis; Rostaing, Gilles

    2014-05-01

    The development of power electronics in the field of transportations (automotive, aeronautics) requires the use of power semiconductor devices providing protection and diagnostic functions. In the case of series protections power semiconductor devices which provide protection may operate in shortcircuit and act as a current limiting device. This mode of operations is very constraining due to the large dissipation of power. In these particular conditions of operation, electro-thermal models of power semiconductor devices are of key importance in order to optimize their thermal design and increase their reliability. The development of such an electro-thermal model for power MOSFET transistors based on the coupling between two computation softwares (Matlab and Cast3M) is described in this paper. The 2D electro-thermal model is able to predict (i) the temperature distribution on chip surface well as in the volume under short-circuit operations, (ii) the effect of the temperature on the distribution of the current flowing within the die and (iii) the effects of the ageing of the metallization layer on the current density and the temperature. In this paper, the electrical and thermal models are described as well as the implemented coupling scheme.

  13. The 2D large deformation analysis using Daubechies wavelet

    NASA Astrophysics Data System (ADS)

    Liu, Yanan; Qin, Fei; Liu, Yinghua; Cen, Zhangzhi

    2010-01-01

    In this paper, Daubechies (DB) wavelet is used for solution of 2D large deformation problems. Because the DB wavelet scaling functions are directly used as basis function, no meshes are needed in function approximation. Using the DB wavelet, the solution formulations based on total Lagrangian approach for two-dimensional large deformation problems are established. Due to the lack of Kroneker delta properties in wavelet scaling functions, Lagrange multipliers are used for imposition of boundary condition. Numerical examples of 2D large deformation problems illustrate that this method is effective and stable.

  14. Thermal Conductivity and Thermopower near the 2D Metal-Insulator transition, Final Technical Report

    SciTech Connect

    SARACHIK, MYRIAM P

    2015-02-20

    STUDIES OF STRONGLY-INTERACTING 2D ELECTRON SYSTEMS – There is a great deal of current interest in the properties of systems in which the interaction between electrons (their potential energy) is large compared to their kinetic energy. We have investigated an apparent, unexpected metal-insulator transition inferred from the behavior of the temperature-dependence of the resistivity; moreover, detailed analysis of the behavior of the magnetoresistance suggests that the electrons’ effective mass diverges, supporting this scenario. Whether this is a true phase transition or crossover behavior has been strenuously debated over the past 20 years. Our measurements have now shown that the thermoelectric power of these 2D materials diverges at a finite density, providing clear evidence that this is, in fact, a phase transition to a new low-density phase which may be a precursor or a direct transition to the long sought-after electronic crystal predicted by Eugene Wigner in 1934.

  15. Statistical analysis of quiet stance sway in 2-D

    PubMed Central

    DiZio, Paul; Lackner, James R.

    2014-01-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909–912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model’s ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior–posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  16. Statistical analysis of quiet stance sway in 2-D.

    PubMed

    Bakshi, Avijit; DiZio, Paul; Lackner, James R

    2014-04-01

    Subjects exposed to a rotating environment that perturbs their postural sway show adaptive changes in their voluntary spatially directed postural motion to restore accurate movement paths but do not exhibit any obvious learning during passive stance. We have found, however, that a variable known to characterize the degree of stochasticity in quiet stance can also reveal subtle learning phenomena in passive stance. We extended Chow and Collins (Phys Rev E 52(1):909-912, 1995) one-dimensional pinned-polymer model (PPM) to two dimensions (2-D) and then evaluated the model's ability to make analytical predictions for 2-D quiet stance. To test the model, we tracked center of mass and centers of foot pressures, and compared and contrasted stance sway for the anterior-posterior versus medio-lateral directions before, during, and after exposure to rotation at 10 rpm. Sway of the body during rotation generated Coriolis forces that acted perpendicular to the direction of sway. We found significant adaptive changes for three characteristic features of the mean square displacement (MSD) function: the exponent of the power law defined at short time scales, the proportionality constant of the power law, and the saturation plateau value defined at longer time scales. The exponent of the power law of MSD at a short time scale lies within the bounds predicted by the 2-D PPM. The change in MSD during exposure to rotation also had a power-law exponent in the range predicted by the theoretical model. We discuss the Coriolis force paradigm for studying postural and movement control and the applicability of the PPM model in 2-D for studying postural adaptation. PMID:24477760

  17. Development of a self-packaged 2D MEMS thermal wind sensor for low power applications

    NASA Astrophysics Data System (ADS)

    Zhu, Yan-qing; Chen, Bei; Qin, Ming; Huang, Jian-qiu; Huang, Qing-an

    2015-08-01

    This article describes the design, fabrication, and testing of a self-packaged 2D thermal wind sensor. The sensor consists of four heaters and nine thermistors. A central thermistor senses the average heater temperature, whereas the other eight, which are distributed symmetrically around the heaters, measure the temperature differences between the upstream and downstream surface of the sensor. The sensor was realized on one side of a silicon-in-glass (SIG) substrate. Vertical silicon vias in the substrate ensure good thermal contact between the sensor and the airflow and the glass effectively isolates the heaters from the thermistors. The substrate was fabricated by using a glass reflow process, after which the sensor was realized by a lift-off process. The sensor’s geometry was investigated with the help of simulations. These show that narrow heaters, moderate heater spacing, and thin substrates all improve the sensor’s sensitivity. Finally, the sensor was tested and calibrated in a wind tunnel by using a linear interpolation algorithm. At a constant heating power of 24.5 mW, measurement results show that the sensor can detect airflow speeds of up to 25 m s-1, with an accuracy of 0.1 m s-1 at low speeds and 0.5 m s-1 at high speeds. Airflow direction can be determined in a range of 360° with an accuracy of ±6°.

  18. Estimating 2-D vector velocities using multidimensional spectrum analysis.

    PubMed

    Oddershede, Niels; Løvstakken, Lasse; Torp, Hans; Jensen, Jørgen Arendt

    2008-08-01

    Wilson (1991) presented an ultrasonic wideband estimator for axial blood flow velocity estimation through the use of the 2-D Fourier transform. It was shown how a single velocity component was concentrated along a line in the 2-D Fourier space, where the slope was given by the axial velocity. Later, it was shown that this approach could also be used for finding the lateral velocity component by also including a lateral sampling. A single velocity component would then be concentrated along a plane in the 3-D Fourier space, tilted according to the 2 velocity components. This paper presents 2 new velocity estimators for finding both the axial and lateral velocity components. The estimators essentially search for the plane in the 3- D Fourier space, where the integrated power spectrum is largest. The first uses the 3-D Fourier transform to find the power spectrum, while the second uses a minimum variance approach. Based on this plane, the axial and lateral velocity components are estimated. Several phantom measurements, for flow-to-depth angles of 60, 75, and 90 degrees, were performed. Multiple parallel lines were beamformed simultaneously, and 2 different receive apodization schemes were tried. The 2 estimators were then applied to the data. The axial velocity component was estimated with an average standard deviation below 2.8% of the peak velocity, while the average standard deviation of the lateral velocity estimates was between 2.0% and 16.4%. The 2 estimators were also tested on in vivo data from a transverse scan of the common carotid artery, showing the potential of the vector velocity estimation method under in vivo conditions. PMID:18986918

  19. Temperature Effects on the Wind Direction Measurement of 2D Solid Thermal Wind Sensors

    PubMed Central

    Chen, Bei; Zhu, Yan-Qing; Yi, Zhenxiang; Qin, Ming; Huang, Qing-An

    2015-01-01

    For a two-dimensional solid silicon thermal wind sensor with symmetrical structure, the wind speed and direction information can be derived from the output voltages in two orthogonal directions, i.e., the north-south and east-west. However, the output voltages in these two directions will vary linearly with the ambient temperature. Therefore, in this paper, a temperature model to study the temperature effect on the wind direction measurement has been developed. A theoretical analysis has been presented first, and then Finite Element Method (FEM) simulations have been performed. It is found that due to symmetrical structure of the thermal wind sensor, the temperature effects on the output signals in the north-south and east-west directions are highly similar. As a result, the wind direction measurement of the thermal wind sensor is approximately independent of the ambient temperature. The experimental results fit the theoretical analysis and simulation results very well. PMID:26633398

  20. VAM2D: Variably saturated analysis model in two dimensions

    SciTech Connect

    Huyakorn, P.S.; Kool, J.B.; Wu, Y.S. )

    1991-10-01

    This report documents a two-dimensional finite element model, VAM2D, developed to simulate water flow and solute transport in variably saturated porous media. Both flow and transport simulation can be handled concurrently or sequentially. The formulation of the governing equations and the numerical procedures used in the code are presented. The flow equation is approximated using the Galerkin finite element method. Nonlinear soil moisture characteristics and atmospheric boundary conditions (e.g., infiltration, evaporation and seepage face), are treated using Picard and Newton-Raphson iterations. Hysteresis effects and anisotropy in the unsaturated hydraulic conductivity can be taken into account if needed. The contaminant transport simulation can account for advection, hydrodynamic dispersion, linear equilibrium sorption, and first-order degradation. Transport of a single component or a multi-component decay chain can be handled. The transport equation is approximated using an upstream weighted residual method. Several test problems are presented to verify the code and demonstrate its utility. These problems range from simple one-dimensional to complex two-dimensional and axisymmetric problems. This document has been produced as a user's manual. It contains detailed information on the code structure along with instructions for input data preparation and sample input and printed output for selected test problems. Also included are instructions for job set up and restarting procedures. 44 refs., 54 figs., 24 tabs.

  1. Optical fiber poling by induction: analysis by 2D numerical modeling.

    PubMed

    De Lucia, F; Huang, D; Corbari, C; Healy, N; Sazio, P J A

    2016-04-15

    Since their first demonstration some 25 years ago, thermally poled silica fibers have been used to realize device functions such as electro-optic modulation, switching, polarization-entangled photons, and optical frequency conversion with a number of advantages over bulk free-space components. We have recently developed an innovative induction poling technique that could allow for the development of complex microstructured fiber geometries for highly efficient χ(2)-based device applications. To systematically implement these more advanced poled fiber designs, we report here the development of comprehensive numerical models of the induction poling mechanism itself via two-dimensional (2D) simulations of ion migration and space-charge region formation using finite element analysis. PMID:27082323

  2. Measurements of Thermal Conductivity of Superfluid Helium Near its Transition Temperature T(sub lambda) in a 2D Confinement

    NASA Technical Reports Server (NTRS)

    Jerebets, Sergei

    2004-01-01

    We report our recent experiments on thermal conductivity measurements of superfluid He-4 near its phase transition in a two-dimensional (2D) confinement under saturated vapor pressure. A 2D confinement is created by 2-mm- and 1-mm-thick glass capillary plates, consisting of densely populated parallel microchannels with cross-sections of 5 x 50 and 1 x 10 microns, correspondingly. A heat current (2 < Q < 400 nW/sq cm) was applied along the channels long direction. High-resolution measurements were provided by DC SQUID-based high-resolution paramagnetic salt thermometers (HRTs) with a nanokelvin resolution. We might find that thermal conductivity of confined helium is finite at the bulk superfluid transition temperature. Our 2D results will be compared with those in a bulk and 1D confinement.

  3. Multifractal analysis of 2D gray soil images

    NASA Astrophysics Data System (ADS)

    González-Torres, Ivan; Losada, Juan Carlos; Heck, Richard; Tarquis, Ana M.

    2015-04-01

    Soil structure, understood as the spatial arrangement of soil pores, is one of the key factors in soil modelling processes. Geometric properties of individual and interpretation of the morphological parameters of pores can be estimated from thin sections or 3D Computed Tomography images (Tarquis et al., 2003), but there is no satisfactory method to binarized these images and quantify the complexity of their spatial arrangement (Tarquis et al., 2008, Tarquis et al., 2009; Baveye et al., 2010). The objective of this work was to apply a multifractal technique, their singularities (α) and f(α) spectra, to quantify it without applying any threshold (Gónzalez-Torres, 2014). Intact soil samples were collected from four horizons of an Argisol, formed on the Tertiary Barreiras group of formations in Pernambuco state, Brazil (Itapirema Experimental Station). The natural vegetation of the region is tropical, coastal rainforest. From each horizon, showing different porosities and spatial arrangements, three adjacent samples were taken having a set of twelve samples. The intact soil samples were imaged using an EVS (now GE Medical. London, Canada) MS-8 MicroCT scanner with 45 μm pixel-1 resolution (256x256 pixels). Though some samples required paring to fit the 64 mm diameter imaging tubes, field orientation was maintained. References Baveye, P.C., M. Laba, W. Otten, L. Bouckaert, P. Dello, R.R. Goswami, D. Grinev, A. Houston, Yaoping Hu, Jianli Liu, S. Mooney, R. Pajor, S. Sleutel, A. Tarquis, Wei Wang, Qiao Wei, Mehmet Sezgin. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 157, 51-63, 2010. González-Torres, Iván. Theory and application of multifractal analysis methods in images for the study of soil structure. Master thesis, UPM, 2014. Tarquis, A.M., R.J. Heck, J.B. Grau; J. Fabregat, M.E. Sanchez and J.M. Antón. Influence of Thresholding in Mass and Entropy Dimension of 3-D

  4. Lagrangian analysis of vortex shedding behind a 2D airfoil

    NASA Astrophysics Data System (ADS)

    Cardwell, Blake; Mohseni, Kamran

    2007-11-01

    Identifying the coherent structures and their interactions in the mixing zone is a useful means in designing future flow control strategies. To this end, a Lagrangian analysis of two-dimensional vortex shedding over an Eppler 387 airfoil is presented. Stable and unstable material manifolds in the flow are identified. Unstable manifolds such a the shear layer characterize a barrier to fluid mixing and are easily visualized using dye injection in an experiment. On the other hand, stable manifolds are more difficult to visualize in an experiment. Reattachment lines are examples of such manifolds. As such the existence of these structures in the flow, is presented and how these structures are useful in understanding vortex shedding is explored. The manifold structure is also presented in a time averaged view, allowing a comparison with the traditional separation bubble. Furthermore, lobe dynamic calculation are performed and the fluid entrainment into shedded vortices are investigated. Finally, investigation of correlation between the behavior of the material manifolds and more traditional quantities such as skin friction, flow phase portrait, and pressure is presented.

  5. A 2-D Array of Superconducting Magnesium Diboride (MgB2) Far-IR Thermal Detectors for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook

    2009-01-01

    A 2-D array of superconducting Magnesium Diboride(MgB2) far IR thermal detectors has been fabricated. Such an array is intended to be at the focal plane of future generation thermal imaging far-IR instruments that will investigate the outer planets and their icy moons. Fabrication and processing of the pixels of the array as well as noise characterization of architectured MgB2 thin films will be presented. Challenges and solutions for improving the performance of the array will be discussed.

  6. Analysis of activity space by fragment fingerprints, 2D descriptors, and multitarget dependent transformation of 2D descriptors.

    PubMed

    Givehchi, Alireza; Bender, Andreas; Glen, Robert C

    2006-01-01

    The effect of multitarget dependent descriptor transformation on classification performance is explored in this work. To this end decision trees as well as neural net QSAR in combination with PLS were applied to predict the activity class of 5HT3 ligands, angiotensin converting enzyme inhibitors, 3-hydroxyl-3-methyl glutaryl coenzyme A reductase inhibitors, platelet activating factor antagonists, and thromboxane A2 antagonists. Physicochemical descriptors calculated by MOE and fragment-based descriptors (MOLPRINT 2D) were employed to generate descriptor vectors. In a subsequent step the physicochemical descriptor vectors were transformed to a lower dimensional space using multitarget dependent descriptor transformation. Cross-validation of the original physicochemical descriptors in combination with decision trees and neural net QSAR as well as cross-validation of PLS multitarget transformed descriptors with neural net QSAR were performed. For comparison this was repeated using fragment-based descriptors in combination with decision trees. PMID:16711727

  7. High-field and thermal transport in 2D atomic layer devices

    NASA Astrophysics Data System (ADS)

    Serov, Andrey; Dorgan, Vincent E.; Behnam, Ashkan; English, Chris D.; Li, Zuanyi; Islam, Sharnali; Pop, Eric

    2014-06-01

    This paper reviews our recent results of high-field electrical and thermal properties of atomically thin two-dimensional materials. We show how self-heating affects velocity saturation in suspended and supported graphene. We also demonstrate that multi-valley transport must be taken into account to describe high-field transport in MoS2. At the same time we characterized thermal properties of suspended and nanoscale graphene samples over a wide range of temperatures. We uncovered the effects of edge scattering and grain boundaries on thermal transport in graphene, and showed how the thermal conductivity varies between diffusive and ballistic heat flow limits.

  8. CYP2D6 genotype and adjuvant tamoxifen: meta-analysis of heterogeneous study populations.

    PubMed

    Province, M A; Goetz, M P; Brauch, H; Flockhart, D A; Hebert, J M; Whaley, R; Suman, V J; Schroth, W; Winter, S; Zembutsu, H; Mushiroda, T; Newman, W G; Lee, M-T M; Ambrosone, C B; Beckmann, M W; Choi, J-Y; Dieudonné, A-S; Fasching, P A; Ferraldeschi, R; Gong, L; Haschke-Becher, E; Howell, A; Jordan, L B; Hamann, U; Kiyotani, K; Krippl, P; Lambrechts, D; Latif, A; Langsenlehner, U; Lorizio, W; Neven, P; Nguyen, A T; Park, B-W; Purdie, C A; Quinlan, P; Renner, W; Schmidt, M; Schwab, M; Shin, J-G; Stingl, J C; Wegman, P; Wingren, S; Wu, A H B; Ziv, E; Zirpoli, G; Thompson, A M; Jordan, V C; Nakamura, Y; Altman, R B; Ames, M M; Weinshilboum, R M; Eichelbaum, M; Ingle, J N; Klein, T E

    2014-02-01

    The International Tamoxifen Pharmacogenomics Consortium was established to address the controversy regarding cytochrome P450 2D6 (CYP2D6) status and clinical outcomes in tamoxifen therapy. We performed a meta-analysis on data from 4,973 tamoxifen-treated patients (12 globally distributed sites). Using strict eligibility requirements (postmenopausal women with estrogen receptor-positive breast cancer, receiving 20 mg/day tamoxifen for 5 years, criterion 1); CYP2D6 poor metabolizer status was associated with poorer invasive disease-free survival (IDFS: hazard ratio = 1.25; 95% confidence interval = 1.06, 1.47; P = 0.009). However, CYP2D6 status was not statistically significant when tamoxifen duration, menopausal status, and annual follow-up were not specified (criterion 2, n = 2,443; P = 0.25) or when no exclusions were applied (criterion 3, n = 4,935; P = 0.38). Although CYP2D6 is a strong predictor of IDFS using strict inclusion criteria, because the results are not robust to inclusion criteria (these were not defined a priori), prospective studies are necessary to fully establish the value of CYP2D6 genotyping in tamoxifen therapy. PMID:24060820

  9. Wind-tunnel experiments of thermally-stratified turbulent boundary layer flow over a wall-mounted 2-D block

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-05-01

    Turbulent boundary-layer flows over complex topography have been extensively studied in the atmospheric sciences and wind engineering communities. The upwind turbulence level, the atmospheric thermal stability and the shape of the topography as well as surface characteristics play important roles in turbulent transport of momentum and scalar fluxes. However, to the best of our knowledge, atmospheric thermal stability has rarely been taken into account in laboratory simulations, particularly in wind-tunnel experiments. Extension of such studies in thermally-stratified wind tunnels will substantially advance our understanding of thermal stability effects on the physics of flow over complex topography. Additionally, high-resolution experimental data can be used for development of new parameterization of surface fluxes and validation of numerical models such as Large-Eddy Simulation (LES). A series of experiments of neutral and thermally-stratified boundary-layer flows over a wall-mounted 2-D block were conducted at the Saint Anthony Falls Laboratory boundary-layer wind tunnel. The 2-D block, with a width to height ratio of 2:1, occupied the lowest 25% of the turbulent boundary layer. Stable and convective boundary layers were simulated by independently controlling the temperature of air flow, the test section floor, and the wall-mounted block surfaces. Measurements using high-resolution Particle Image Velocimetry (PIV), x-wire/cold-wire anemometry, thermal-couples and surface heat flux sensors were made to quantify the turbulent properties and surface fluxes in distinct macroscopic flow regions, including the separation/recirculation zones, evolving shear layer and the asymptotic far wake. Emphasis will be put on addressing thermal stability effects on the spatial distribution of turbulent kinetic energy (TKE) and turbulent fluxes of momentum and scalar from the near to far wake region. Terms of the TKE budget equation are also inferred from measurements and

  10. PLAN2D - A PROGRAM FOR ELASTO-PLASTIC ANALYSIS OF PLANAR FRAMES

    NASA Technical Reports Server (NTRS)

    Lawrence, C.

    1994-01-01

    PLAN2D is a FORTRAN computer program for the plastic analysis of planar rigid frame structures. Given a structure and loading pattern as input, PLAN2D calculates the ultimate load that the structure can sustain before collapse. Element moments and plastic hinge rotations are calculated for the ultimate load. The location of hinges required for a collapse mechanism to form are also determined. The program proceeds in an iterative series of linear elastic analyses. After each iteration the resulting elastic moments in each member are compared to the reserve plastic moment capacity of that member. The member or members that have moments closest to their reserve capacity will determine the minimum load factor and the site where the next hinge is to be inserted. Next, hinges are inserted and the structural stiffness matrix is reformulated. This cycle is repeated until the structure becomes unstable. At this point the ultimate collapse load is calculated by accumulating the minimum load factor from each previous iteration and multiplying them by the original input loads. PLAN2D is based on the program STAN, originally written by Dr. E.L. Wilson at U.C. Berkeley. PLAN2D has several limitations: 1) Although PLAN2D will detect unloading of hinges it does not contain the capability to remove hinges; 2) PLAN2D does not allow the user to input different positive and negative moment capacities and 3) PLAN2D does not consider the interaction between axial and plastic moment capacity. Axial yielding and buckling is ignored as is the reduction in moment capacity due to axial load. PLAN2D is written in FORTRAN and is machine independent. It has been tested on an IBM PC and a DEC MicroVAX. The program was developed in 1988.

  11. Application of quantitative artificial neural network analysis to 2D NMR spectra of hydrocarbon mixtures.

    PubMed

    Väänänen, Taito; Koskela, Harri; Hiltunen, Yrjö; Ala-Korpela, Mika

    2002-01-01

    Understanding relationships between the structure and composition of molecular mixtures and their chemical properties is a main industrial aim. One central field of research is oil chemistry where the key question is how the molecular characteristics of composite hydrocarbon mixtures can be associated with the macroscopic properties of the oil products. Apparently these relationships are complex and often nonlinear and therefore call for advanced spectroscopic techniques. An informative and an increasingly used approach is two-dimensional nuclear magnetic resonance (2D NMR) spectroscopy. In the case of composite hydrocarbons the application of 2D NMR methodologies in a quantitative manner pose many technical difficulties, and, in any case, the resulting spectra contain many overlapping resonances that challenge the analytical work. Here, we present a general methodology, based on quantitative artificial neural network (ANN) analysis, to resolve overlapping information in 2D NMR spectra and to simultaneously assess the relative importance of multiple spectral variables on the sample properties. The results in a set of 2D NMR spectra of oil samples illustrate, first, that use of ANN analysis for quantitative purposes is feasible also in 2D and, second, that this methodology offers an intrinsic opportunity to assess the complex and nonlinear relationships between the molecular composition and sample properties. The presented ANN methodology is not limited to the analysis of NMR spectra but can also be applied in a manner similar to other (multidimensional) spectroscopic data. PMID:12444730

  12. Thermal conductivity reduction in analogous 2D nanomaterials with isotope substitution: Graphene and silicene

    NASA Astrophysics Data System (ADS)

    Srinivasan, Srilok; Ray, Upamanyu; Balasubramanian, Ganesh

    2016-04-01

    We employ molecular dynamics simulations to understand how the presence of isotopes influences thermal transport across silicene, and compare the findings with that in structurally analogous graphene. The simulated structures are about 140 nm long and around 4 nm wide. The phonon spectra along with the variation of thermal conductivity reveal that out-of-plane modes are delocalized relative to the in-plane counterparts. The absolute thermal conductivity reductions are more pronounced in graphene than in silicene. Our computational findings agree with results of an analytical model based on mean-field approximation with appropriate corrections for the lattice anharmonicity.

  13. Dynamic Analysis of 2D Electromagnetic Resonant Optical Scanner Using 3D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Hirata, Katsuhiro; Hong, Sara; Maeda, Kengo

    The optical scanner is a scanning device in which a laser beam is reflected by a mirror that can be rotated or oscillated. In this paper, we propose a new 2D electromagnetic resonant optical scanner that employs electromagnets and leaf springs. Torque characteristics and resonance characteristics of the scanner are analyzed using the 3D finite element method. The validity of the analysis is shown by comparing the characteristics inferred from the analysis with the characteristics of the prototype. Further, 2D resonance is investigated by introducing a superimposed-frequency current in a single coil.

  14. Ultrasonic tissue characterization via 2-D spectrum analysis: theory and in vitro measurements

    PubMed Central

    Liu, Tian; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Silverman, Ronald H.; Kutcher, Gerald J.

    2010-01-01

    A theoretical model is described for application in ultrasonic tissue characterization using a calibrated 2-D spectrum analysis method. This model relates 2-D spectra computed from ultrasonic backscatter signals to intrinsic physical properties of tissue microstructures, e.g., size, shape, and acoustic impedance. The model is applicable to most clinical diagnostic ultrasound systems. Two experiments employing two types of tissue architectures, spherical and cylindrical scatterers, are conducted using ultrasound with center frequencies of 10 and 40 MHz, respectively. Measurements of a tissue-mimicking phantom with an internal suspension of microscopic glass beads are used to validate the theoretical model. Results from in vitro muscle fibers are presented to further elucidate the utility of 2-D spectrum analysis in ultrasonic tissue characterization. PMID:17441250

  15. Modeling the Transverse Thermal Conductivity of 2-D SiCf/SiC Composites Made with Woven Fabric

    SciTech Connect

    Youngblood, Gerald E.; Senor, David J.; Jones, Russell H.

    2004-06-30

    The hierarchical two-layer (H2L) model was developed to describe the effective transverse thermal conductivity, Keff, of a 2D-SiCf/SiC composite made from stacked and infiltrated woven fabric layers in terms of constituent properties and microstructural and architectural variables. The H2L model includes the expected effects of fiber-matrix interfacial conductance as well as the effects of high fiber packing fractions within individual tows and the non-uniform nature of 2D-fabric layers that usually include a significant amount of interlayer porosity. Previously, H2L model predictions were compared to measured values of Keff for two versions of DuPont 2D-Hi NicalonÔ/PyC/ICVI-SiC composite, one with a “thin” (0.110 μm) and the other with a “thick” (1.040 μm) pyrocarbon (PyC) fiber coating, and for a 2D-TyrannoÔ SA/”thin” PyC/FCVI-SIC composite made by ORNL. In this study, H2L model predictions are compared to measured Keff-values for a 2D-SiCf/SiC composite made by GE Power Systems (formerly DuPont Lanxide) using the ICVI-process with Hi-NicalonÔ type S fabric. The values of Keff determined for the composite made with the Hi-NicalonÔ type S fabric were significantly greater than Keff-values determined for the composites made with either the Hi-NicalonÔor the TyrannoÔ SA fabrics. Differences in Keff-values were expected for using different fiber types, but major differences also were due to observed microstructural variations between the systems, and as predicted by the H2L model.

  16. On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part I. Low-order thermal modelling

    NASA Astrophysics Data System (ADS)

    Richardson, Robert R.; Zhao, Shi; Howey, David A.

    2016-09-01

    Estimating the temperature distribution within Li-ion batteries during operation is critical for safety and control purposes. Although existing control-oriented thermal models - such as thermal equivalent circuits (TEC) - are computationally efficient, they only predict average temperatures, and are unable to predict the spatially resolved temperature distribution throughout the cell. We present a low-order 2D thermal model of a cylindrical battery based on a Chebyshev spectral-Galerkin (SG) method, capable of predicting the full temperature distribution with a similar efficiency to a TEC. The model accounts for transient heat generation, anisotropic heat conduction, and non-homogeneous convection boundary conditions. The accuracy of the model is validated through comparison with finite element simulations, which show that the 2-D temperature field (r, z) of a large format (64 mm diameter) cell can be accurately modelled with as few as 4 states. Furthermore, the performance of the model for a range of Biot numbers is investigated via frequency analysis. For larger cells or highly transient thermal dynamics, the model order can be increased for improved accuracy. The incorporation of this model in a state estimation scheme with experimental validation against thermocouple measurements is presented in the companion contribution (http://www.sciencedirect.com/science/article/pii/S0378775316308163)

  17. Investigating the role of a poorly soluble surfactant in a thermally driven 2D microfoam.

    PubMed

    Miralles, Vincent; Rio, Emmanuelle; Cantat, Isabelle; Jullien, Marie-Caroline

    2016-08-17

    Foam drainage dynamics is known to be strongly affected by the nature of the surfactants stabilising the liquid/gas interface. In the present work, we consider a 2D microfoam stabilized by both soluble (sodium dodecylsulfate) and poorly soluble (dodecanol) surfactants. The drainage dynamics is driven by a thermocapillary Marangoni stress at the liquid/gas interface [V. Miralles et al., Phys. Rev. Lett., 2014, 112, 238302] and the presence of dodecanol at the interface induces interface stress acting against the applied thermocapillary stress, which slows down the drainage dynamics. We define a damping parameter that we measure as a function of the geometrical characteristics of the foam. We compare it with predictions based on the interface rheological properties of the solution. PMID:27493005

  18. A plastic scintillator-based 2D thermal neutron mapping system for use in BNCT studies.

    PubMed

    Ghal-Eh, N; Green, S

    2016-06-01

    In this study, a scintillator-based measurement instrument is proposed which is capable of measuring a two-dimensional map of thermal neutrons within a phantom based on the detection of 2.22MeV gamma rays generated via nth+H→D+γ reaction. The proposed instrument locates around a small rectangular water phantom (14cm×15cm×20cm) used in Birmingham BNCT facility. The whole system has been simulated using MCNPX 2.6. The results confirm that the thermal flux peaks somewhere between 2cm and 4cm distance from the system entrance which is in agreement with previous studies. PMID:26986813

  19. CAS2D- NONROTATING BLADE-TO-BLADE, STEADY, POTENTIAL TRANSONIC CASCADE FLOW ANALYSIS CODE

    NASA Technical Reports Server (NTRS)

    Dulikravich, D. S.

    1994-01-01

    An exact, full-potential-equation model for the steady, irrotational, homoentropic, and homoenergetic flow of a compressible, inviscid fluid through a two-dimensional planar cascade together with its appropriate boundary conditions has been derived. The CAS2D computer program numerically solves an artificially time-dependent form of the actual full-potential-equation, providing a nonrotating blade-to-blade, steady, potential transonic cascade flow analysis code. Comparisons of results with test data and theoretical solutions indicate very good agreement. In CAS2D, the governing equation is discretized by using type-dependent, rotated finite differencing and the finite area technique. The flow field is discretized by providing a boundary-fitted, nonuniform computational mesh. This mesh is generated by using a sequence of conformal mapping, nonorthogonal coordinate stretching, and local, isoparametric, bilinear mapping functions. The discretized form of the full-potential equation is solved iteratively by using successive line over relaxation. Possible isentropic shocks are captured by the explicit addition of an artificial viscosity in a conservative form. In addition, a four-level, consecutive, mesh refinement feature makes CAS2D a reliable and fast algorithm for the analysis of transonic, two-dimensional cascade flows. The results from CAS2D are not directly applicable to three-dimensional, potential, rotating flows through a cascade of blades because CAS2D does not consider the effects of the Coriolis force that would be present in the three-dimensional case. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 200K of 8 bit bytes. The CAS2D program was developed in 1980.

  20. META-ANALYSIS OF CYP2D6 METABOLIZER PHENOTYPE AND METOPROLOL PHARMACOKINETICS

    PubMed Central

    Blake, CM; Kharasch, ED; Schwab, M; Nagele, P

    2013-01-01

    Metoprolol, a commonly prescribed beta-blocker, is primarily metabolized by cytochrome P450 2D6 (CYP2D6), an enzyme with substantial genetic heterogeneity. Several smaller studies have shown that metoprolol pharmacokinetics is influenced by CYP2D6 genotype and metabolizer phenotype. To increase robustness of metoprolol pharmacokinetic estimates, a systematic review and meta-analysis of pharmacokinetic studies that administered a single oral dose of immediate release metoprolol was performed. Pooled analysis (n= 264) demonstrated differences in peak plasma metoprolol concentration, area under the concentration-time curve, elimination half-life, and apparent oral clearance that were 2.3-, 4.9-, 2.3-, and 5.9-fold between extensive and poor metabolizers, respectively, and 5.3-, 13-, 2.6-, and 15-fold between ultra-rapid and poor metabolizers (all p<0.001). Enantiomer-specific analysis revealed genotype-dependent enantio-selective metabolism, with nearly 40% greater R- vs S-metoprolol metabolism in ultra-rapid and extensive metabolizers. This study demonstrates a marked effect of CYP2D6 metabolizer phenotype on metoprolol pharmacokinetics and confirms enantiomer specific metabolism of metoprolol. PMID:23665868

  1. Dispersion relations of externally and thermally excited dust lattice modes in 2D complex plasma crystals

    SciTech Connect

    Yang Xuefeng; Cui Jian; Zhang Yuan; Liu Yue

    2012-07-15

    The dispersion relations of the externally and thermally (naturally) excited dust lattice modes (both longitudinal and transverse) in two-dimensional Debye-Yukawa complex plasma crystals are investigated. The dispersion relations are calculated numerically by taking the neutral gas damping effects into account and the numerical results are in agreement with the experimental data given by Nunomura et al.[Phys. Rev. E 65, 066402 (2002)]. It is found that for the mode excited by an external disturbance with a real frequency, the dispersion properties are changed at a critical frequency near where the group velocity of the mode goes to zero. Therefore, the high frequency branch with negative dispersion cannot be reached. In contrast, for the thermally excited mode, the dispersion curve can extend all the way to the negative dispersion region, while a 'cut-off' wave number exists at the long wavelength end of the dispersion in the transverse mode.

  2. Multiple-perturbation two-dimensional (2D) correlation analysis for spectroscopic imaging data

    NASA Astrophysics Data System (ADS)

    Shinzawa, Hideyuki; Hashimoto, Kosuke; Sato, Hidetoshi; Kanematsu, Wataru; Noda, Isao

    2014-07-01

    A series of data analysis techniques, including multiple-perturbation two-dimensional (2D) correlation spectroscopy and kernel analysis, were used to demonstrate how these techniques can sort out convoluted information content underlying spectroscopic imaging data. A set of Raman spectra of polymer blends consisting of poly(methyl methacrylate) (PMMA) and polyethylene glycol (PEG) were collected under varying spatial coordinates and subjected to multiple-perturbation 2D correlation analysis and kernel analysis by using the coordinates as perturbation variables. Cross-peaks appearing in asynchronous correlation spectra indicated that the change in the spectral intensity of the free Cdbnd O band of the PMMA band occurs before that of the Cdbnd O⋯Hsbnd O band arising from the molecular interaction between PMMA and PEG. Kernel matrices, generated by carrying out 2D correlation analysis on principal component analysis (PCA) score images, revealed subtle but important discrepancy between the patterns of the images, providing additional interpretation to the PCA in an intuitively understandable manner. Consequently, the results provided apparent spectroscopic evidence that PMMA and PEG in the blends are partially miscible at the molecular level, allowing the PMMAs to respond to the perturbations in different manner.

  3. On craton thinning/destruction: Insight from 2D thermal-mechanical numerical modeling

    NASA Astrophysics Data System (ADS)

    Liao, J.

    2014-12-01

    Although most cratons maintain stable, some exceptions are present, such as the North China craton, North Atlantic craton, and Wyoming craton, which have experienced dramatic lithospheric deformation/thinning. Mechanisms triggering cratonic thinning remains enigmatic [Lee et al., 2011]. Using a 2D thermo-mechanical coupled numerical model [Gerya and Yuen, 2007], we investigate two possible mechanisms: (1) stratification of cratonic lithospheric mantle, and (2) rheological weakening due to hydration.Lithospheric mantle stratification is a common feature in cratonic areas which has been demonstrated by geophysical and geochemical studies [Thybo and Perchuc, 1997; Griffin et al., 2004; Romanowicz, 2009; Rychert and Shearer, 2009; Yuan and Romanowicz, 2010]. The influence of lithospheric mantle stratification during craton evolution remains poorly understood. A rheologically weak layer representing hydrated and/or metasomatized composition is implemented in the lithospheric mantle. Our results show that the weak mantle layer changes the dynamics of lithospheric extension by enhancing the deformation of the overlying mantle and crust and inhibiting deformation of the underlying mantle [Liao et al., 2013; Liao and Gerya, 2014]. Modeling results are compared with North China and North Atlantic cratons. Our work indicates that although the presence of a weak layer may not be sufficient to initiate craton deformation, it enhances deformation by lowering the required extensional plate boundary force. Rheological weakening due to hydration is a possible mechanism triggering/enhancing craton deformation, especially for cratons jaxtaposing with a subduction, since water can release from a subducting slab. We investigate the influence of wet mantle flow laws [Hirth and Kohlstedt, 2003], in which a water parameter (i.e. constant water content) is involved. Our results show that wet dislocation alone does not accelerate cratonic deformation significantly. However, if wet diffusion

  4. Analysis results from the Los Alamos 2D/3D program

    SciTech Connect

    Boyack, B.E.; Cappiello, M.W.; Harmony, S.C.; Shire, P.R.; Siebe, D.A.

    1987-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test-facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multi-dimensional, nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During fiscal year 1987, Los Alamos conducted analytical assessment activities using data from the Slab Core Test Facility, The Cylindrical Core Test Facility, and the Upper Plenum Test Facility. Finally, Los Alamos continued work to provide TRAC improvements. In this paper, Los Alamos activities during fiscal year 1987 will be summarized; several significant accomplishments will be described in more detail to illustrate the work activities at Los Alamos.

  5. Simulating HFIR Core Thermal Hydraulics Using 3D-2D Model Coupling

    SciTech Connect

    Travis, Adam R; Freels, James D; Ekici, Kivanc

    2013-01-01

    A model utilizing interdimensional variable coupling is presented for simulating the thermal hydraulic interactions of the High Flux Isotope Reactor (HFIR) core at Oak Ridge National Laboratory (ORNL). The model s domain consists of a single, explicitly represented three-dimensional fuel plate and a simplified two-dimensional coolant channel slice. In simplifying the coolant channel, and thus the number of mesh points in which the Navier-Stokes equations must be solved, the computational cost and solution time are both greatly reduced. In order for the reduced-dimension coolant channel to interact with the explicitly represented fuel plate, however, interdimensional variable coupling must be enacted along all shared boundaries. The primary focus of this paper is in detailing the collection, storage, passage, and application of variables across this interdimensional interface. Comparisons are made showing the general speed-up associated with this simplified coupled model.

  6. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration.

    PubMed

    de Bruin, P W; Kaptein, B L; Stoel, B C; Reiber, J H C; Rozing, P M; Valstar, E R

    2008-01-01

    Image-based Roentgen stereophotogrammetric analysis (IBRSA) integrates 2D-3D image registration and conventional RSA. Instead of radiopaque RSA bone markers, IBRSA uses 3D CT data, from which digitally reconstructed radiographs (DRRs) are generated. Using 2D-3D image registration, the 3D pose of the CT is iteratively adjusted such that the generated DRRs resemble the 2D RSA images as closely as possible, according to an image matching metric. Effectively, by registering all 2D follow-up moments to the same 3D CT, the CT volume functions as common ground. In two experiments, using RSA and using a micromanipulator as gold standard, IBRSA has been validated on cadaveric and sawbone scapula radiographs, and good matching results have been achieved. The accuracy was: |mu |< 0.083 mm for translations and |mu| < 0.023 degrees for rotations. The precision sigma in x-, y-, and z-direction was 0.090, 0.077, and 0.220 mm for translations and 0.155 degrees , 0.243 degrees , and 0.074 degrees for rotations. Our results show that the accuracy and precision of in vitro IBRSA, performed under ideal laboratory conditions, are lower than in vitro standard RSA but higher than in vivo standard RSA. Because IBRSA does not require radiopaque markers, it adds functionality to the RSA method by opening new directions and possibilities for research, such as dynamic analyses using fluoroscopy on subjects without markers and computer navigation applications. PMID:17706656

  7. Initial global 2-D shielding analysis for the Advanced Neutron Source core and reflector

    SciTech Connect

    Bucholz, J.A.

    1995-08-01

    This document describes the initial global 2-D shielding analyses for the Advanced Neutron Source (ANS) reactor, the D{sub 2}O reflector, the reflector vessel, and the first 200 mm of light water beyond the reflector vessel. Flux files generated here will later serve as source terms in subsequent shielding analyses. In addition to reporting fluxes and other data at key points of interest, a major objective of this report was to document how these analyses were performed, the phenomena that were included, and checks that were made to verify that these phenomena were properly modeled. In these shielding analyses, the fixed neutron source distribution in the core was based on the `lifetime-averaged` spatial power distribution. Secondary gamma production cross sections in the fuel were modified so as to account intrinsically for delayed fission gammas in the fuel as well as prompt fission gammas. In and near the fuel, this increased the low-energy gamma fluxes by 50 to 250%, but out near the reflector vessel, these same fluxes changed by only a few percent. Sensitivity studies with respect to mesh size were performed, and a new 2-D mesh distribution developed after some problems were discovered with respect to the use of numerous elongated mesh cells in the reflector. All of the shielding analyses were performed sing the ANSL-V 39n/44g coupled library with 25 thermal neutron groups in order to obtain a rigorous representation of the thermal neutron spectrum throughout the reflector. Because of upscatter in the heavy water, convergence was very slow. Ultimately, the fission cross section in the various materials had to be artificially modified in order to solve this fixed source problem as an eigenvalue problem and invoke the Vondy error-mode extrapolation technique which greatly accelerated convergence in the large 2-D RZ DORT analyses. While this was quite effective, 150 outer iterations (over energy) were still required.

  8. Differential Analysis of 2-D Maps by Pixel-Based Approaches.

    PubMed

    Marengo, Emilio; Robotti, Elisa; Quasso, Fabio

    2016-01-01

    Two approaches to the analysis of 2-D maps are available: the first one involves a step of spot detection on each gel image; the second one is based instead on the direct differential analysis of 2-D map images, following a pixel-based procedure. Both approaches strongly depend on the proper alignment of the gel images, but the pixel-based approach allows to solve important drawbacks of the spot-volume procedure, i.e., the problem of missing data and of overlapping spots. However, this approach is quite computationally intensive and requires the use of algorithms able to separate the information (i.e., spot-related information) from the background. Here, the most recent pixel-based approaches are described. PMID:26611422

  9. Fluorescence2D: Software for Accelerated Acquisition and Analysis of Two-Dimensional Fluorescence Spectra

    PubMed Central

    Kovrigin, Evgenii L.

    2014-01-01

    The Fluorescence2D is free software that allows analysis of two-dimensional fluorescence spectra obtained using the accelerated “triangular” acquisition schemes. The software is a combination of Python and MATLAB-based programs that perform conversion of the triangular data, display of the two-dimensional spectra, extraction of 1D slices at different wavelengths, and output in various graphic formats. PMID:24984078

  10. 2D-DIGE proteomic analysis identifies new potential therapeutic targets for adrenocortical carcinoma

    PubMed Central

    Armignacco, Roberta; Ercolino, Tonino; Canu, Letizia; Baroni, Gianna; Nesi, Gabriella; Galli, Andrea; Mannelli, Massimo; Luconi, Michaela

    2015-01-01

    Adrenocortical carcinoma (ACC) is a rare aggressive tumor with poor prognosis when metastatic at diagnosis. The tumor biology is still mostly unclear, justifying the limited specificity and efficacy of the anti-cancer drugs currently available. This study reports the first proteomic analysis of ACC by using two-dimensional-differential-in-gel-electrophoresis (2D-DIGE) to evaluate a differential protein expression profile between adrenocortical carcinoma and normal adrenal. Mass spectrometry, associated with 2D-DIGE analysis of carcinomas and normal adrenals, identified 22 proteins in 27 differentially expressed 2D spots, mostly overexpressed in ACC. Gene ontology analysis revealed that most of the proteins concurs towards a metabolic shift, called the Warburg effect, in adrenocortical cancer. The differential expression was validated by Western blot for Aldehyde-dehydrogenase-6-A1,Transferrin, Fascin-1,Lamin A/C,Adenylate-cyclase-associated-protein-1 and Ferredoxin-reductase. Moreover, immunohistochemistry performed on paraffin-embedded ACC and normal adrenal specimens confirmed marked positive staining for all 6 proteins diffusely expressed by neoplastic cells, compared with normal adrenal cortex. In conclusion, our preliminary findings reveal a different proteomic profile in adrenocortical carcinoma compared with normal adrenal cortex characterized by overexpression of mainly metabolic enzymes, thus suggesting the Warburg effect also occurs in ACC. These proteins may represent promising novel ACC biomarkers and potential therapeutic targets if validated in larger cohorts of patients. PMID:25691058

  11. Charge transfer coefficients for the O+/2D/ + N2 and O+/2D/ + O2 excited ion reactions at thermal energy. [from ionospheric observations

    NASA Technical Reports Server (NTRS)

    Johnsen, R.; Biondi, M. A.

    1980-01-01

    An investigation of the reactions of metastable O(+) ions and O2 using drift tube-mass spectrometer techniques is presented. It was shown that ordinary charge transfer is the dominant reaction branch in both cases; it occurs with large rate coefficients, k(N2) = (8 + or - 2) x 10 to the -10th cu cm/s and k(O2) = (7 + or - 2) x 10 to the -10th cu cm/s, at an effective ion temperature of about 550 K. The reaction He(+) + O2 is used as a source of metastable O(+) ions, and evidence is presented that the O(+) ions so produced are in the 2D state rather than the 2P state. The results are compared with previous measurements, and inferences drawn from ionospheric observations.

  12. Verification Test Suite (VERTS) For Rail Gun Applications using ALE3D: 2-D Hydrodynamics & Thermal Cases

    SciTech Connect

    Najjar, F M; Solberg, J; White, D

    2008-04-17

    A verification test suite has been assessed with primary focus on low reynolds number flow of liquid metals. This is representative of the interface between the armature and rail in gun applications. The computational multiphysics framework, ALE3D, is used. The main objective of the current study is to provide guidance and gain confidence in the results obtained with ALE3D. A verification test suite based on 2-D cases is proposed and includes the lid-driven cavity and the Couette flow are investigated. The hydro and thermal fields are assumed to be steady and laminar in nature. Results are compared with analytical solutions and previously published data. Mesh resolution studies are performed along with various models for the equation of state.

  13. Proteomic analysis of heat treated bitter gourd (Momordica charantia L. var. Hong Kong Green) using 2D-DIGE.

    PubMed

    Ng, Zhi Xiang; Chua, Kek Heng; Kuppusamy, Umah Rani

    2014-04-01

    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd. PMID:24262540

  14. Multiple triangulation analysis: application to determine the velocity of 2-D structures

    NASA Astrophysics Data System (ADS)

    Zhou, X.-Z.; Zong, Q.-G.; Wang, J.; Pu, Z. Y.; Zhang, X. G.; Shi, Q. Q.; Cao, J. B.

    2006-11-01

    In order to avoid the ambiguity of the application of the Triangulation Method (multi-spacecraft timing method) to two-dimensional structures, another version of this method, the Multiple Triangulation Analysis (MTA) is used, to calculate the velocities of these structures based on 4-point measurements. We describe the principle of MTA and apply this approach to a real event observed by the Cluster constellation on 2 October 2003. The resulting velocity of the 2-D structure agrees with the ones obtained by some other methods fairly well. So we believe that MTA is a reliable version of the Triangulation Method for 2-D structures, and thus provides us a new way to describe their motion.

  15. Human factors flight trial analysis for 2D/3D SVS

    NASA Astrophysics Data System (ADS)

    Schiefele, Jens; Howland, Duncan; Maris, John; Wipplinger, Patrick

    2004-08-01

    The paper describes flight trials performed in Reno, NV. Flight trial were conducted with a Cheyenne 1 from Marinvent. Twelve pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely andomized settings. Three different settings (standard displays, 2D moving map, and 2D/3D moving map) were evaluated. They included seamless evaluation for STAR, approach, and taxi operations. The flight trial goal was to evaluate the objective performance of pilots compared among the different settings. As dependent variables, positional and time accuracy were measured. Analysis was conducted by an ANOVA test. In parallel, all pilots answered subjective Cooper-Harper, situation awareness rating technique (SART), situational awareness probe (SAP), and questionnaires.This article describes the human factor analysis from flight trials performed in Reno, NV. Flight trials were conducted with a Cheyenne 1 from Marinvent. Thirteen pilots flew the Cheyenne in seventy-two approaches to the Reno airfield. All pilots flew completely randomized settings. Three different display configurations: Elec. Flight Information System (EFIS), EFIS and 2D moving map, and 3D SVS Primary Flight Display (PFD) and 2D moving map were evaluated. They included normal/abnormal procedure evaluation for: Steep turns and reversals, Unusual attitude recovery, Radar vector guidance towards terrain, Non-precision approaches, En-route alternate for non-IFR rated pilots encountering IMC, and Taxiing on complex taxi-routes. The flight trial goal was to evaluate the objective performance of pilots for the different display configurations. As dependent variables, positional and time data were measured. Analysis was performed by an ANOVA test. In parallel, all pilots answered subjective NASA Task Load Index, Cooper-Harper, Situation Awareness Rating Technique (SART), and questionnaires. The result shows that pilots flying 2D/3D SVS perform no worse than pilots with conventional

  16. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods.

    PubMed

    Maximov, Ivan I; Vinding, Mads S; Tse, Desmond H Y; Nielsen, Niels Chr; Shah, N Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community. PMID:25863895

  17. 2D optical array probe analysis of precipitating cumulonimbus clouds during EPIC 2001

    NASA Astrophysics Data System (ADS)

    Baumgardner, D.; Raga, G. B.

    2007-05-01

    During the 2001 East Pacific Investigation of Climate (EPIC) experiment, numerous measurements were made of the size distributions of raindrops in convective clouds that were developing over a region of the Mexican inter- tropical convergence zone (ITCZ). These measurements were made with optical array probes (PMS 2D-C and 2D-P) mounted on the National Science Foundation Hercules C-130, operated by the National Center for Atmospheric Research. In addition to capturing shadow images of individual drops between 25 μm and 6400 μm, these instruments also record the distance between each drop via a measurement of arrival times in the spectrometers lasers. The separation distance, along with the drop size, provides detailed information about the microstructure of precipitation. The 2D probe measurements have been analyzed as a function of altitude above cloud base, horizontal distance from cloud edges, cloud droplet size distributions (2-50 μm) and vertical wind velocities. The objective of the analysis is to evaluate the spatial distribution of precipitation events with respect to the microphysical and dynamical processes that are related to the development and evolution of rain in tropical convective clouds. In addition, the reflectivity is calculated from the size distributions and evaluated to assess how inhomogeneities in the precipitation might be observed by meteorological radars.

  18. Real-time 2D spatially selective MRI experiments: Comparative analysis of optimal control design methods

    NASA Astrophysics Data System (ADS)

    Maximov, Ivan I.; Vinding, Mads S.; Tse, Desmond H. Y.; Nielsen, Niels Chr.; Shah, N. Jon

    2015-05-01

    There is an increasing need for development of advanced radio-frequency (RF) pulse techniques in modern magnetic resonance imaging (MRI) systems driven by recent advancements in ultra-high magnetic field systems, new parallel transmit/receive coil designs, and accessible powerful computational facilities. 2D spatially selective RF pulses are an example of advanced pulses that have many applications of clinical relevance, e.g., reduced field of view imaging, and MR spectroscopy. The 2D spatially selective RF pulses are mostly generated and optimised with numerical methods that can handle vast controls and multiple constraints. With this study we aim at demonstrating that numerical, optimal control (OC) algorithms are efficient for the design of 2D spatially selective MRI experiments, when robustness towards e.g. field inhomogeneity is in focus. We have chosen three popular OC algorithms; two which are gradient-based, concurrent methods using first- and second-order derivatives, respectively; and a third that belongs to the sequential, monotonically convergent family. We used two experimental models: a water phantom, and an in vivo human head. Taking into consideration the challenging experimental setup, our analysis suggests the use of the sequential, monotonic approach and the second-order gradient-based approach as computational speed, experimental robustness, and image quality is key. All algorithms used in this work were implemented in the MATLAB environment and are freely available to the MRI community.

  19. Analysis results from the Los Alamos 2D/3D program

    SciTech Connect

    Boyack, B.E.; Cappiello, M.W.; Stumpf, H.; Shire, P.; Gilbert, J.; Hedstrom, J.

    1986-01-01

    Los Alamos National Laboratory is a participant in the 2D/3D program. Activities conducted at Los Alamos National Laboratory in support of 2D/3D program goals include analysis support of facility design, construction, and operation; provision of boundary and initial conditions for test facility operations based on analysis of pressurized water reactors; performance of pretest and posttest predictions and analyses; and use of experimental results to validate and assess the single- and multidimensional nonequilibrium features in the Transient Reactor Analysis Code (TRAC). During Fiscal Year 1986, Los Alamos conducted analytical assessment activities using data from the Cylindrical Core Test Facility and the Slab Core Test Facility. Los Alamos also continued to provide support analysis for the planning of Upper Plenum Test Facility experiments. Finally, Los Alamos either completed or is currently working on three areas of TRAC modeling improvement. In this paper, Los Alamos activities during Fiscal Year 1986 are summarized; several significant accomplishments are described in more detail to illustrate the work activities at Los Alamos.

  20. Parametric analysis of 2D guided-wave photonic band gap structures

    NASA Astrophysics Data System (ADS)

    Ciminelli, C.; Peluso, F.; Armenise, M. N.

    2005-11-01

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices.

  1. Parametric analysis of 2D guided-wave photonic band gap structures.

    PubMed

    Ciminelli, C; Peluso, F; Armenise, M

    2005-11-28

    The parametric analysis of the electromagnetic properties of 2D guided wave photonic band gap structures is reported with the aim of providing a valid tool for the optimal design. The modelling approach is based on the Bloch-Floquet method. Different lattice configurations and geometrical parameters are considered. An optimum value for the ratio between the hole (or rod) radius and the lattice constant does exist and the calculation demonstrated that it is almost independent from the etching depth, only depending on the lattice type. The results are suitable for the design optimisation of photonic crystal reflectors to be used in integrated optical devices. PMID:19503180

  2. A scaling analysis of the superconducting fluctuations in 2D InOx thin films

    NASA Astrophysics Data System (ADS)

    Liu, Wei; Kim, Minsoo; Wu, Tai-Lung; Ganapathy, Sambandamurthy; Armitage, Peter

    2010-03-01

    We apply a broadband microwave Corbino spectrometer covering the range from 10MHz to 20GHz to the study of 2D disordered superconducting InOx thin films. Explicit frequency dependency of the superfluid stiffness and conductivity are obtained down to 300mK. Via vacuum annealing, we investigate a broad range of disorder levels and transition temperatures in a single film. We perform a scaling analysis in which we can extract characteristic relaxation time of superconducting fluctuations. We discuss our results in terms of prevailing scenarios for fluctuation superconductivity and make connection to other experimental results.

  3. Combining 2D synchrosqueezed wave packet transform with optimization for crystal image analysis

    NASA Astrophysics Data System (ADS)

    Lu, Jianfeng; Wirth, Benedikt; Yang, Haizhao

    2016-04-01

    We develop a variational optimization method for crystal analysis in atomic resolution images, which uses information from a 2D synchrosqueezed transform (SST) as input. The synchrosqueezed transform is applied to extract initial information from atomic crystal images: crystal defects, rotations and the gradient of elastic deformation. The deformation gradient estimate is then improved outside the identified defect region via a variational approach, to obtain more robust results agreeing better with the physical constraints. The variational model is optimized by a nonlinear projected conjugate gradient method. Both examples of images from computer simulations and imaging experiments are analyzed, with results demonstrating the effectiveness of the proposed method.

  4. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions

    PubMed Central

    Renosh, P. R.; Schmitt, Francois G.; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  5. Scaling Analysis of Ocean Surface Turbulent Heterogeneities from Satellite Remote Sensing: Use of 2D Structure Functions.

    PubMed

    Renosh, P R; Schmitt, Francois G; Loisel, Hubert

    2015-01-01

    Satellite remote sensing observations allow the ocean surface to be sampled synoptically over large spatio-temporal scales. The images provided from visible and thermal infrared satellite observations are widely used in physical, biological, and ecological oceanography. The present work proposes a method to understand the multi-scaling properties of satellite products such as the Chlorophyll-a (Chl-a), and the Sea Surface Temperature (SST), rarely studied. The specific objectives of this study are to show how the small scale heterogeneities of satellite images can be characterised using tools borrowed from the fields of turbulence. For that purpose, we show how the structure function, which is classically used in the frame of scaling time series analysis, can be used also in 2D. The main advantage of this method is that it can be applied to process images which have missing data. Based on both simulated and real images, we demonstrate that coarse-graining (CG) of a gradient modulus transform of the original image does not provide correct scaling exponents. We show, using a fractional Brownian simulation in 2D, that the structure function (SF) can be used with randomly sampled couple of points, and verify that 1 million of couple of points provides enough statistics. PMID:26017551

  6. HPLC analysis of discrete haptoglobin isoform N-linked oligosaccharides following 2D-PAGE isolation.

    PubMed

    He, Zhicong; Aristoteli, Lina P; Kritharides, Leonard; Garner, Brett

    2006-05-01

    Glycosylation is a common but variable modification that regulates glycoprotein structure and function. We combined small format 2D-PAGE with HPLC to analyse discrete human haptoglobin isoform N-glycans. Seven major and several minor haptoglobin isoforms were detected by 2D-PAGE. N-Glycans released from Coomassie-stained gel spots using PNGase were labeled at their reducing termini with 2-aminobenzamide. HPLC analysis of selected major isoform N-glycans indicated that sialic acid composition determined their separation by isoelectric focussing. N-Glycans from two doublets of quantitatively minor isoforms were also analysed. Although separation of each pair of doublets was influenced by sialylation, individual spots within each doublet contained identical N-glycans. Thus, heterogeneity in minor haptoglobin isoforms was due to modifications distinct from N-glycan structure. These studies describe a simple method for analysing low abundance protein N-glycans and provide details of discrete haptoglobin isoform N-glycan structures which will be useful in proteomic analysis of human plasma samples. PMID:16546121

  7. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.

    PubMed

    Xie, Linyan; Yang, Yan; Sun, Xuming; Qiao, Xu; Liu, Qiao; Song, Kun; Kong, Beihua; Su, Xuantao

    2015-11-01

    Conventional optical cytometric techniques usually measure fluorescence or scattering signals at fixed angles from flowing cells in a liquid stream. Here we develop a novel cytometer that employs a scanning optical fiber to illuminate single static cells on a glass slide, which requires neither microfluidic fabrication nor flow control. This static cytometric technique measures two dimensional (2D) light scattering patterns via a small numerical aperture (0.25) microscope objective for label-free single cell analysis. Good agreement is obtained between the yeast cell experimental and Mie theory simulated patterns. It is demonstrated that the static cytometer with a microscope objective of a low resolution around 1.30 μm has the potential to perform high resolution analysis on yeast cells with distributed sizes. The capability of the static cytometer for size determination with submicron resolution is validated via measurements on standard microspheres with mean diameters of 3.87 and 4.19 μm. Our 2D light scattering static cytometric technique may provide an easy-to-use, label-free, and flow-free method for single cell diagnostics. PMID:26115102

  8. Infinitesimal-area 2D radiative analysis using parametric surface representation, through NURBS

    SciTech Connect

    Daun, K.J.; Hollands, K.G.T.

    1999-07-01

    The use of form factors in the treatment of radiant enclosures requires that the radiosity and surface properties be treated as uniform over finite areas. This restriction can be relaxed by applying an infinitesimal-area analysis, where the radiant exchange is taken to be between infinitesimal areas, rather than finite areas. This paper presents a generic infinitesimal-area formulation that can be applied to two-dimensional enclosure problems. (Previous infinitesimal-area analyses have largely been restricted to specific, one-dimensional problems.) Specifically, the paper shows how the analytical expression for the kernel of the integral equation can be obtained without human intervention, once the enclosure surface has been defined parametrically. This can be accomplished by using a computer algebra package or by using NURBS algorithms, which are the industry standard for the geometrical representations used in CAD-CAM codes. Once the kernel has been obtained by this formalism, the 2D integral equation can be set up and solved numerically. The result is a single general-purpose infinitesimal-area analysis code that can proceed from surface specification to solution. The authors have implemented this 2D code and tested it on 1D problems, whose solutions have been given in the literature, obtaining agreement commensurate with the accuracy of the published solutions.

  9. Fast differential thermal analysis.

    NASA Technical Reports Server (NTRS)

    Wunderlich, B.; Wolpert, S. M.

    1972-01-01

    A study is conducted of the limits of time-dependent differential thermal analysis (DTA). Applications of DTA to the hysteresis phenomena of glasses are also reported. The computation of DTA sample temperatures is discussed, giving attention to feasible heating rates, transient effects to be measured, and the simulation of DTA responses to changes in thermal diffusivity similar to hysteresis phenomena in glasses. The reproducibility of temperature recording is checked with zone-refined organic chemicals.

  10. Lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns

    NASA Astrophysics Data System (ADS)

    Dong, Pinliang

    2009-10-01

    Spatial scale plays an important role in many fields. As a scale-dependent measure for spatial heterogeneity, lacunarity describes the distribution of gaps within a set at multiple scales. In Earth science, environmental science, and ecology, lacunarity has been increasingly used for multiscale modeling of spatial patterns. This paper presents the development and implementation of a geographic information system (GIS) software extension for lacunarity analysis of raster datasets and 1D, 2D, and 3D point patterns. Depending on the application requirement, lacunarity analysis can be performed in two modes: global mode or local mode. The extension works for: (1) binary (1-bit) and grey-scale datasets in any raster format supported by ArcGIS and (2) 1D, 2D, and 3D point datasets as shapefiles or geodatabase feature classes. For more effective measurement of lacunarity for different patterns or processes in raster datasets, the extension allows users to define an area of interest (AOI) in four different ways, including using a polygon in an existing feature layer. Additionally, directionality can be taken into account when grey-scale datasets are used for local lacunarity analysis. The methodology and graphical user interface (GUI) are described. The application of the extension is demonstrated using both simulated and real datasets, including Brodatz texture images, a Spaceborne Imaging Radar (SIR-C) image, simulated 1D points on a drainage network, and 3D random and clustered point patterns. The options of lacunarity analysis and the effects of polyline arrangement on lacunarity of 1D points are also discussed. Results from sample data suggest that the lacunarity analysis extension can be used for efficient modeling of spatial patterns at multiple scales.

  11. Analysis of 2-d ultrasound cardiac strain imaging using joint probability density functions.

    PubMed

    Ma, Chi; Varghese, Tomy

    2014-06-01

    Ultrasound frame rates play a key role for accurate cardiac deformation tracking. Insufficient frame rates lead to an increase in signal de-correlation artifacts resulting in erroneous displacement and strain estimation. Joint probability density distributions generated from estimated axial strain and its associated signal-to-noise ratio provide a useful approach to assess the minimum frame rate requirements. Previous reports have demonstrated that bi-modal distributions in the joint probability density indicate inaccurate strain estimation over a cardiac cycle. In this study, we utilize similar analysis to evaluate a 2-D multi-level displacement tracking and strain estimation algorithm for cardiac strain imaging. The effect of different frame rates, final kernel dimensions and a comparison of radio frequency and envelope based processing are evaluated using echo signals derived from a 3-D finite element cardiac model and five healthy volunteers. Cardiac simulation model analysis demonstrates that the minimum frame rates required to obtain accurate joint probability distributions for the signal-to-noise ratio and strain, for a final kernel dimension of 1 λ by 3 A-lines, was around 42 Hz for radio frequency signals. On the other hand, even a frame rate of 250 Hz with envelope signals did not replicate the ideal joint probability distribution. For the volunteer study, clinical data was acquired only at a 34 Hz frame rate, which appears to be sufficient for radio frequency analysis. We also show that an increase in the final kernel dimensions significantly affect the strain probability distribution and joint probability density function generated, with a smaller effect on the variation in the accumulated mean strain estimated over a cardiac cycle. Our results demonstrate that radio frequency frame rates currently achievable on clinical cardiac ultrasound systems are sufficient for accurate analysis of the strain probability distribution, when a multi-level 2-D

  12. 2D NMR Barcoding and Differential Analysis of Complex Mixtures for Chemical Identification: The Actaea Triterpenes

    PubMed Central

    2015-01-01

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ−δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  13. Experimental Analysis of a 2-D Lightcraft in Static and Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Rego, Israel S.; Toro, Paulo G. P.; Channes, José B.

    2010-05-01

    Aiming at the hypersonic phase of the Earth-to-Orbit trajectory for a laser propelled vehicle, a 2-D Lightcraft model was designed to be tested at the T3 Hypersonic Shock Tunnel at the Henry T. Nagamatsu Laboratory for Aerodynamics and Hypersonics. A high energy laser pulse was supplied by a Lumonics TEA 620 laser system operating in unstable resonator cavity mode. The experiments were performed at quiescent (no flow) conditions and at a nominal Mach number of 9.2. A Schlieren visualization apparatus was used in order to access both the cold hypersonic flowfield structure (without laser deposition) and the time dependent flowfield structure, taking place after the laser induced breakdown inside the absorption chamber. The model was fitted with piezoelectric pressure transducers and surface junction thermocouples in an attempt to measure pressure and heat transfer time dependent distributions at the internal surfaces of the model's absorption chamber. The 2-D model followed a modular design for flexibility on the analysis of geometrical features contribution on the expansion of the laser induced blast wave. Finally, future evolution of the experiments being currently pursued is addressed.

  14. 2D NMR barcoding and differential analysis of complex mixtures for chemical identification: the Actaea triterpenes.

    PubMed

    Qiu, Feng; McAlpine, James B; Lankin, David C; Burton, Ian; Karakach, Tobias; Chen, Shao-Nong; Pauli, Guido F

    2014-04-15

    The interpretation of NMR spectroscopic information for structure elucidation involves decoding of complex resonance patterns that contain valuable molecular information (δ and J), which is not readily accessible otherwise. We introduce a new concept of 2D-NMR barcoding that uses clusters of fingerprint signals and their spatial relationships in the δ-δ coordinate space to facilitate the chemical identification of complex mixtures. Similar to widely used general barcoding technology, the structural information of individual compounds is encoded as a specifics pattern of their C,H correlation signals. Software-based recognition of these patterns enables the structural identification of the compounds and their discrimination in mixtures. Using the triterpenes from various Actaea (syn. Cimicifuga) species as a test case, heteronuclear multiple-bond correlation (HMBC) barcodes were generated on the basis of their structural subtypes from a statistical investigation of their δH and δC data in the literature. These reference barcodes allowed in silico identification of known triterpenes in enriched fractions obtained from an extract of A. racemosa (black cohosh). After dereplication, a differential analysis of heteronuclear single-quantum correlation (HSQC) spectra even allowed for the discovery of a new triterpene. The 2D barcoding concept has potential application in a natural product discovery project, allowing for the rapid dereplication of known compounds and as a tool in the search for structural novelty within compound classes with established barcodes. PMID:24673652

  15. Numerical method of crack analysis in 2D finite magnetoelectroelastic media

    NASA Astrophysics Data System (ADS)

    Zhao, Minghao; Xu, Guangtao; Fan, Cuiying

    2010-04-01

    The present paper extends the hybrid extended displacement discontinuity fundamental solution method (HEDD-FSM) (Eng Anal Bound Elem 33:592-600, 2009) to analysis of cracks in 2D finite magnetoelectroelastic media. The solution of the crack is expressed approximately by a linear combination of fundamental solutions of the governing equations, which includes the extended point force fundamental solutions with sources placed at chosen points outside the domain of the problem under consideration, and the extended Crouch fundamental solutions with extended displacement discontinuities placed on the crack. The coefficients of the fundamental solutions are determined by letting the approximated solution satisfy the prescribed boundary conditions on the boundary of the domain and on the crack face. The Crouch fundamental solution for a parabolic element at the crack tip is derived to model the square root variations of near tip fields. The extended stress intensity factors are calculated under different electric and magnetic boundary conditions.

  16. [Analysis of streamer properties and emission spectroscopy of 2-D OH distribution of pulsed corona discharge].

    PubMed

    Zhao, Lei; Gao, Xiang; Luo, Zhong-Yang; Xuan, Jian-Yong; Jiang, Jian-Ping; Cen, Ke-Fa

    2011-11-01

    Streamer plays a key role in the process of OH radical generation. The propagation of primary and secondary streamers of positive wire-plate pulsed corona discharge was observed using a short gate ICCD in air environment. The influence of the applied voltage on the properties was investigated. It was shown that the primary streamer propagation velocity, electric coverage and length of secondary streamer increased significantly with increasing the applied voltage. Then 2-D OH distribution was investigated by the emission spectrum. With the analysis of the OH emission spectra, the distribution of OH radicals showed a trend of decreasing from the wire electrode to its circumambience. Compared with the streamer propagation trace, the authors found that OH radical distribution and streamer are in the same area. Both OH radical concentration and the intensity of streamer decreased when far away from the wire electrode. PMID:22242481

  17. Interfractional trend analysis of dose differences based on 2D transit portal dosimetry

    NASA Astrophysics Data System (ADS)

    Persoon, L. C. G. G.; Nijsten, S. M. J. J. G.; Wilbrink, F. J.; Podesta, M.; Snaith, J. A. D.; Lustberg, T.; van Elmpt, W. J. C.; van Gils, F.; Verhaegen, F.

    2012-10-01

    Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic—appearing repeatedly, (2) random—appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of

  18. Thermal Analysis of Plastics

    ERIC Educational Resources Information Center

    D'Amico, Teresa; Donahue, Craig J.; Rais, Elizabeth A.

    2008-01-01

    This lab experiment illustrates the use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) in the measurement of polymer properties. A total of seven exercises are described. These are dry exercises: students interpret previously recorded scans. They do not perform the experiments. DSC was used to determine the…

  19. von Neumann Stability Analysis of Numerical Solution Schemes for 1D and 2D Euler Equations

    NASA Astrophysics Data System (ADS)

    Konangi, Santosh; Palakurthi, Nikhil Kumar; Ghia, Urmila

    2014-11-01

    A von Neumann stability analysis is conducted for numerical schemes for the full system of coupled, density-based 1D and 2D Euler equations, closed by an isentropic equation of state. The governing equations are discretized on a staggered grid, which permits equivalence to finite-volume discretization. Presently, first-order accurate spatial and temporal finite-difference techniques are analyzed. The momentum convection term is treated as explicit, semi-implicit or implicit. Density upwind bias is included in the spatial operator of the continuity equation. By combining the discretization techniques, ten solution schemes are formulated. For each scheme, unstable and stable regimes are identified through the stability analysis, and the maximum allowable CFL number is predicted. The predictions are verified for selected schemes, using the Riemann problem at incompressible and compressible Mach numbers. Very good agreement is obtained between the analytically predicted and ``experimentally'' observed CFL values for all cases, thereby validating the analysis. The demonstrated analysis provides an accurate indication of stability conditions for the Euler equations, in contrast to the simplistic conditions arising from model equations, such as the wave equation.

  20. Update on the Fabrication and Performance of 2-D Arrays of Superconducting Magnesium Diboride (MgB2) Thermal Detectors for Outer-Planets Exploration

    NASA Technical Reports Server (NTRS)

    Lakew, Brook; Aslam, S.

    2011-01-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  1. Update on the fabrication and performance of 2-D arrays of superconducting Magnesium Diboride (MgB2) thermal detectors for outer-planets exploration.

    NASA Astrophysics Data System (ADS)

    Lakew, B.; Aslam, S.

    2011-10-01

    Detectors with better performance than the current thermopile detectors that operate at room temperature will be needed at the focal plane of far-infrared instruments on future planetary exploration missions. We will present an update on recent results from the 2-D array of MgB2 thermal detectors being currently developed at NASA Goddard. Noise and sensitivity results will be presented and compared to thermal detectors currently in use on planetary missions.

  2. Analysis of the antiferromagnetic phase transitions of the 2D Kondo lattice

    NASA Astrophysics Data System (ADS)

    Jones, Barbara

    2010-03-01

    The Kondo lattice continues to present an interesting and relevant challenge, with its interactions between Kondo, RKKY, and coherent order. We present our study[1] of the antiferromagnetic quantum phase transitions of a 2D Kondo-Heisenberg square lattice. Starting from the nonlinear sigma model as a model of antiferromagnetism, we carry out a renormalization group analysis of the competing Kondo-RKKY interaction to one-loop order in an ɛ-expansion. We find a new quantum critical point (QCP) strongly affected by Kondo fluctuations. Near this QCP, there is a breakdown of hydrodynamic behavior, and the spin waves are logarithmically frozen out. The renormalization group results allow us to propose a new phase diagram near the antiferromagnetic fixed point of this 2D Kondo lattice model. The T=0 phase diagram contains four phases separated by a tetracritical point, the new QCP. For small spin fluctuations, we find a stable local magnetic moment antiferromagnet. For stronger coupling, region II is a metallic quantum disordered paramagnet. We find in region III a paramagnetic phase driven by Kondo interactions, with possible ground states of a heavy fermion liquid or a Kondo driven spin-liquid. The fourth phase is a spiral phase, or a large-Fermi-surface antiferromagnetic phase. We will describe these phases in more detail, including possible experimental confirmation of the spiral phase. The existence of the tetracritical point found here would be expected to affect the phase diagram at finite temperatures as well. In addition, It is hoped that these results, and particularly the Kondo interaction paramagnetic phase, will serve to bridge to solutions starting from the opposite limit, of a Kondo effect leading to a heavy fermion ground state. Work in collaboration with T. Tzen Ong. [4pt] [1] T. Ong and B. A. Jones, Phys. Rev. Lett. 103, 066405 (2009).

  3. 2D proteome analysis initiates new Insights on the Salmonella Typhimurium LuxS protein

    PubMed Central

    2009-01-01

    Background Quorum sensing is a term describing a bacterial communication system mediated by the production and recognition of small signaling molecules. The LuxS enzyme, catalyzing the synthesis of AI-2, is conserved in a wide diversity of bacteria. AI-2 has therefore been suggested as an interspecies quorum sensing signal. To investigate the role of endogenous AI-2 in protein expression of the Gram-negative pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium), we performed a 2D-DIGE proteomics experiment comparing total protein extract of wildtype S. Typhimurium with that of a luxS mutant, unable to produce AI-2. Results Differential proteome analysis of wildtype S. Typhimurium versus a luxS mutant revealed relatively few changes beyond the known effect on phase 2 flagellin. However, two highly differentially expressed protein spots with similar molecular weight but differing isoelectric point, were identified as LuxS whereas the S. Typhimurium genome contains only one luxS gene. This observation was further explored and we show that the S. Typhimurium LuxS protein can undergo posttranslational modification at a catalytic cysteine residue. Additionally, by constructing LuxS-βla and LuxS-PhoA fusion proteins, we demonstrate that S. Typhimurium LuxS can substitute the cognate signal peptide sequences of β-lactamase and alkaline phosphatase for translocation across the cytoplasmic membrane in S. Typhimurium. This was further confirmed by fractionation of S. Typhimurium protein extracts, followed by Western blot analysis. Conclusion 2D-DIGE analysis of a luxS mutant vs. wildtype Salmonella Typhimurium did not reveal new insights into the role of AI-2/LuxS in Salmonella as only a small amount of proteins were differentially expressed. However, subsequent in depth analysis of the LuxS protein itself revealed two interesting features: posttranslational modification and potential translocation across the cytoplasmic membrane. As the S. Typhimurium Lux

  4. Stereological analysis of thermally sprayed deposits

    SciTech Connect

    Montavon, G.; Coddet, C.; Leigh, S.H.; Sampath, S.; Herman, H.; Berndt, C.C.

    1995-12-31

    Thermal spray deposits can be described by several characteristics including the porosity, the fraction of unmolten particles and the microhardness. These physical and structural characteristics are general and little quantitative information is available to fully describe the microstructure of such deposits. Stereological analysis is one of the microscopic methods which provides quantitative relationships. Hence, it allows a better understanding of correlations between spray parameters and deposit microstructure. Stereology, in the most strict sense, is able to describe a 3-D space from 2-D sections through solid bodies. The aim of this paper is to review the numerical formulations of methods that can be applied on 2-D cross-sections of thermal spray deposits. A historical perspective of several approaches is given, and two methods (i.e., DeHoff`s and Cruz-Orive`s protocols) are detailed.

  5. 2D map projections for visualization and quantitative analysis of 3D fluorescence micrographs

    PubMed Central

    Sendra, G. Hernán; Hoerth, Christian H.; Wunder, Christian; Lorenz, Holger

    2015-01-01

    We introduce Map3-2D, a freely available software to accurately project up to five-dimensional (5D) fluorescence microscopy image data onto full-content 2D maps. Similar to the Earth’s projection onto cartographic maps, Map3-2D unfolds surface information from a stack of images onto a single, structurally connected map. We demonstrate its applicability for visualization and quantitative analyses of spherical and uneven surfaces in fixed and dynamic live samples by using mammalian and yeast cells, and giant unilamellar vesicles. Map3-2D software is available at http://www.zmbh.uni-heidelberg.de//Central_Services/Imaging_Facility/Map3-2D.html. PMID:26208256

  6. A 2D optomechanical focused laser spot scanner: analysis and experimental results for microstereolithography

    NASA Astrophysics Data System (ADS)

    Gandhi, P. S.; Deshmukh, S.

    2010-01-01

    This paper proposes and analyzes a 2D optomechanical-focused laser spot scanning system (patent pending) which allows uniform intensity focused spot scanning with high speed and high resolution over a large range of scan. Such scanning is useful where variation of focused spot characteristics affects the performance of applications such as micro-/nano-stereolithography, laser micro-machining, scanning optical tweezers, optical scanning microscopy, and so on. Proposed scanning is achieved by using linear movement of mirrors and lens maintaining the alignment of motion and optical axis of laser. Higher speed and high resolution at the same time are achieved by use of two serial double parallelogram flexural mechanisms with mechatronics developed around them. Optical analysis is carried out to demonstrate effectiveness of the proposed system numerically and is further supported by the experimental results. Additional analysis is carried out to demonstrate robustness of the scanner in the case of small misalignment errors incurred in actual practice. Although the proposed scanner is useful in general in several applications mentioned above, discussion in this paper is focused on microstereolithography.

  7. A comparative analysis of 2D and 3D CAD for calcifications in digital breast tomosynthesis

    NASA Astrophysics Data System (ADS)

    Acciavatti, Raymond J.; Ray, Shonket; Keller, Brad M.; Maidment, Andrew D. A.; Conant, Emily F.

    2015-03-01

    Many medical centers offer digital breast tomosynthesis (DBT) and 2D digital mammography acquired under the same compression (i.e., "Combo" examination) for screening. This paper compares a conventional 2D CAD algorithm (Hologic® ImageChecker® CAD v9.4) for calcification detection against a prototype 3D algorithm (Hologic® ImageChecker® 3D Calc CAD v1.0). Due to the newness of DBT, the development of this 3D CAD algorithm is ongoing, and it is currently not FDA-approved in the United States. For this study, DBT screening cases with suspicious calcifications were identified retrospectively at the University of Pennsylvania. An expert radiologist (E.F.C.) reviewed images with both 2D and DBT CAD marks, and compared the marks to biopsy results. Control cases with one-year negative follow-up were also studied; these cases either possess clearly benign calcifications or lacked calcifications. To allow the user to alter the sensitivity for cancer detection, an operating point is assigned to each CAD mark. As expected from conventional 2D CAD, increasing the operating point in 3D CAD increases sensitivity and reduces specificity. Additionally, we showed that some cancers are occult to 2D CAD at all operating points. By contrast, 3D CAD allows for detection of some cancers that are missed on 2D CAD. We also demonstrated that some non-cancerous CAD marks in 3D are not present at analogous locations in the 2D image. Hence, there are additional marks when using both 2D and 3D CAD in combination, leading to lower specificity than with conventional 2D CAD alone.

  8. Image inpainting on the basis of spectral structure from 2-D nonharmonic analysis.

    PubMed

    Hasegawa, Masaya; Kako, Takahiro; Hirobayashi, Shigeki; Misawa, Tadanobu; Yoshizawa, Toshio; Inazumi, Yasuhiro

    2013-08-01

    The restoration of images by digital inpainting is an active field of research and such algorithms are, in fact, now widely used. Conventional methods generally apply textures that are most similar to the areas around the missing region or use a large image database. However, this produces discontinuous textures and thus unsatisfactory results. Here, we propose a new technique to overcome this limitation by using signal prediction based on the nonharmonic analysis (NHA) technique proposed by the authors. NHA can be used to extract accurate spectra, irrespective of the window function, and its frequency resolution is less than that of the discrete Fourier transform. The proposed method sequentially generates new textures on the basis of the spectrum obtained by NHA. Missing regions from the spectrum are repaired using an improved cost function for 2D NHA. The proposed method is evaluated using the standard images Lena, Barbara, Airplane, Pepper, and Mandrill. The results show an improvement in MSE of about 10-20 compared with the examplar-based method and good subjective quality. PMID:23549889

  9. Performance Analysis of the Microsoft Kinect Sensor for 2D Simultaneous Localization and Mapping (SLAM) Techniques

    PubMed Central

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  10. Performance analysis of the Microsoft Kinect sensor for 2D Simultaneous Localization and Mapping (SLAM) techniques.

    PubMed

    Kamarudin, Kamarulzaman; Mamduh, Syed Muhammad; Shakaff, Ali Yeon Md; Zakaria, Ammar

    2014-01-01

    This paper presents a performance analysis of two open-source, laser scanner-based Simultaneous Localization and Mapping (SLAM) techniques (i.e., Gmapping and Hector SLAM) using a Microsoft Kinect to replace the laser sensor. Furthermore, the paper proposes a new system integration approach whereby a Linux virtual machine is used to run the open source SLAM algorithms. The experiments were conducted in two different environments; a small room with no features and a typical office corridor with desks and chairs. Using the data logged from real-time experiments, each SLAM technique was simulated and tested with different parameter settings. The results show that the system is able to achieve real time SLAM operation. The system implementation offers a simple and reliable way to compare the performance of Windows-based SLAM algorithm with the algorithms typically implemented in a Robot Operating System (ROS). The results also indicate that certain modifications to the default laser scanner-based parameters are able to improve the map accuracy. However, the limited field of view and range of Kinect's depth sensor often causes the map to be inaccurate, especially in featureless areas, therefore the Kinect sensor is not a direct replacement for a laser scanner, but rather offers a feasible alternative for 2D SLAM tasks. PMID:25490595

  11. Analysis of unsectioned specimens: 2D and tomographic PIXE with STIM

    NASA Astrophysics Data System (ADS)

    Schofield, Robert M. S.; Lefevre, Harlan W.

    1993-05-01

    Two techniques for quantitative analysis of heterogeneous thick specimens are reviewed. First, a measurement of the total zinc content in the abdomen of a fly is reported. The calculation used to determine the uncertainty in this measurement is detailed. STIM measurements at two different angles were used to determine the possible range of the X-ray production cross section and the X-ray attenuation factors. The abdomen content of zinc was determined to be 0.022( + 0.009, -0.006) (μg. Second, a PIXE-STIM mutomographic determination of metal concentrations in the sting of a scorpion is reviewed. STIM tomography was used to determine the X-ray production cross sections and the X-ray attenuation factors for points inside of the specimen. Details of how this information was then used for reconstructions of PIXE tomographic data are given. Finally, 2D PIXE measurements on a thick section of this sting are reported. On this section the measured concentration of zinc reached 22(± 3)% of dry mass, in satisfactory agreement with the results from tomography, 25(± 3)%.

  12. Analysis of capacitive sensing for 2D-MEMS scanner laser projection

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Mallas, Christian; Hofmann, Ulrich; Janes, Joachim; Wagner, Bernhard; Benecke, Wolfgang

    2014-03-01

    Typical applications for resonantly driven vacuum packaged MEMS scanners including laser projection displays require a feedback signal for closed-loop operation as well as high accuracy angle synchronization for data processing. A well known and widely used method is based on determining the angular velocity of the oscillating micromirror by measuring the time derivative of a capacitance. In this work we analyze a capacitive sensing approach that uses integrated vertical comb structures to synchronize the angular motion of a torsional micromirror oscillating in resonance. The investigated measurement method is implemented in a laser display that generates a video projection by scanning a RBG laser beam. As the 2D-micromirror performs sinusoidal oscillations on both perpendicular axes a continuously moving Lissajous pattern is projected. By measuring the displacement current due to an angular deflection of the movable comb structures an appropriate feedback signal for actuation and data synchronization is computed. In order to estimate the angular deflection and velocity a mathematical model of the capacitive sensing system is presented. In particular, the nonlinear characteristic of the capacitance as a function of the angle that is calculated using FEM analysis is approximated using cubic splines. Combining this nonlinear function with a dynamic model of the micromirror oscillation and the analog electronics a mathematical model of the capacitive measurement system is derived. To evaluate the proposed model numerical simulations are realized using MATLAB/Simulink and are compared to experimental measurements.

  13. 2D-HPLC and MALDI-TOF/TOF analysis of barley proteins glycated during brewing.

    PubMed

    Petry-Podgórska, Inga; Zídková, Jitka; Flodrová, Dana; Bobálová, Janette

    2010-11-15

    The barley proteins have been the subject of interests of many research groups dealing with barley grains, malt and beer. The proteins which remain intact after harsh malting conditions influence the quality and flavor of beer. The characteristic feature of the proteins present in malt and beer is their extensive modification with carbohydrates, mainly glucose that comes from the starch degradation during technological processes. The degree of the protein glycation has an effect on the quality of malt and beer and on the properties of the beer foam. A combination of two-dimensional high performance liquid chromatography (2D-HPLC) and matrix assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/TOF MS) was used for the analysis of the protein extracts that were reduced, alkylated, and degraded enzymatically without prior protein separation. This so-called "shot-gun" approach enabled us to determine glycation sites in one third of the proteins identified in the study and to propose potential glycation markers for fast and efficient monitoring during malting. PMID:20956095

  14. Volcanic SO2 and SiF4 visualization and their ratio monitored using 2-D thermal emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2011-09-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a save distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume, animation and determination of its propagation speed. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 which was confirmed from the strong ash emission registered around 01:00 a.m. LST (Local Standard Time) and a pronounced SO2 cloud was registered. Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential imagees is used to calculate the emission rates at different distances from the crater.

  15. Fracture mode analysis and related surface deformation during dyke intrusion: Results from 2D experimental modelling

    NASA Astrophysics Data System (ADS)

    Abdelmalak, M.; Mourgues, R.; Bureau, D.

    2012-04-01

    The analysis of surface deformation in response to approaching intrusion is important for assessing volcanic hazards. In this paper, we present results from 2D scaled models of magma intrusion, in which we discuss the propagation mode and related surface deformation during dyke growth. Our experiments consist in the injection of analogue magma (Golden syrup) into cohesive fine-grained silica powder, simulating the brittle upper crust. Using an optical image correlation technique (Particle Imaging Velocimetry), we were able to follow the surface deformation, the displacements within the country rock and to calculate strains induced by the magma emplacement. We identified two kinds of intrusion morphologies resulting from different interactions between the dyke and plastic deformations occurring in the country rock near the surface. In both morphologies, the dyke is vertical at depth. Our analysis demonstrates that both hydraulic tensile opening and shear-related propagation operate during this first stage of vertical growth. At the same time, the surface lifted up and formed a smooth symmetrical dome. Both types of morphologies differ in the upper part. During a second stage of evolution, the first type of intrusion inclined at a dip between 45 to 65°. This inclination is not caused by shear deformations and is attributed to stress rotation near the tip. Closer to the surface, the growth of the inclined sheet creates shear bands which conduct the fluid toward the surface. The surface uplift becomes asymmetric. The second type of intrusion does not rotate at depth and continues its vertical propagation by catching vertical tensile cracks. The intrusion of magma in these cracks creates horizontal stresses which are responsible for the closure of fractures and the formation of reverse faults. At the surface the dome remains symmetrical. For both intrusions, the surface uplift accelerates during the second stage and it is strongly influenced by the presence or the

  16. Population pharmacokinetic analysis of risperidone and 9-hydroxyrisperidone with genetic polymorphisms of CYP2D6 and ABCB1.

    PubMed

    Yoo, Hee-Doo; Cho, Hea-Young; Lee, Sang-No; Yoon, Hwa; Lee, Yong-Bok

    2012-08-01

    This study estimated the population pharmacokinetics of risperidone and its active metabolite, 9-hydroxyrisperidone, according to genetic polymorphisms in the metabolizing enzyme (CYP2D6) and transporter (ABCB1) genes in healthy subjects. Eighty healthy subjects who received a single oral dose of 2 mg risperidone participated in this study. However, eight subjects with rare genotype variants in CYP2D6 alleles were excluded from the final model built in this study. We conducted the population pharmacokinetic analysis of risperidone and 9-hydroxyrisperidone using a nonlinear mixed effects modeling (NONMEM) method and explored the possible influence of genetic polymorphisms in CYP2D6 alleles and ABCB1 (2677G>T/A and 3435C>T) on the population pharmacokinetics of risperidone and 9-hydroxyrisperidone. A two-compartment model with a first-order absorption and lag time fitted well to serum concentration-time curve for risperidone. 9-hydroxyrisperidone was well described by a one-compartment model as an extension of the parent drug (risperidone) model with first-order elimination and absorption partially from the depot. Significant covariates for risperidone clearance were genetic polymorphisms of CYP2D6*10, including CYP2D6*1/*10 (27.5 % decrease) and CYP2D6*10/*10 (63.8 % decrease). There was significant difference in the absorption rate constant (k ( a )) of risperidone among the CYP2D6*10 genotype groups. In addition, combined ABCB1 3435C>T and CYP2D6*10 genotypes had a significant (P < 0.01) effect on the fraction of metabolite absorbed from the depot. The population pharmacokinetic model of risperidone and 9-hydroxyrisperidone including the genetic polymorphisms of CYP2D6*10 and ABCB1 3435C>T as covariates was successfully constructed. The estimated contribution of genetic polymorphisms in CYP2D6*10 and ABCB1 3435C>T to population pharmacokinetics of risperidone and 9-hydroxyrisperidone suggests the interplay of CYP2D6 and ABCB1 on the pharmacokinetics of

  17. PFC2D Analysis of Frank Slide rockfall deposit (Turtle Mountain, Canada)

    NASA Astrophysics Data System (ADS)

    Pons, Maria Güell I.; Charrière, Marie; Pedrazzini, Andrea; Froese, Corey; Jaboyedoff, Michel

    2010-05-01

    The eastern slope of Turtle Mountain collapse (Frank Slide, Alberta, Canada) involved a total of 30 M m3 of material and caused 70 fatalities in 1903. At the moment Turtle Mountain is one of the most monitored rock-slope sites in the world and several studies and simulations have been published. Detailed field work on the structural characteristics of the deposit has been performed (block size and lithology distribution, geomorphologic map of the deposit…). As an alternative to traditional numerical analysis, such as finite element methods or discontinuum methods, we analyze Frank Slide by means of the distinct element numerical model PFC2D, which considers the rock mass as an assembly of circular particles which can be bonded together and interact with each other and with the boundaries by contact laws. Assuming an initial configuration (given failure surface) several tests are made; firstly the movement is simulated as a granular flow (with no bonding between particles), secondly rock clusters are defined to match detached blocks identified in the field and thirdly the bonds between particles are enabled in order to account for first failure processes and block fragmentation. In order to simulate fracture, heterogeneity is implemented on bond resistance properties by a statistical function. Mechanic properties such as stresses, velocities and energy are monitored during the propagation process. Color markers for each lithology enable to identify internal deformation in the rockslide during emplacement. Results permit to compare the run-out distance and deposit configuration with spatial patterns observed in field work and might give insight to the nature of Frank Slide propagation.

  18. Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling

    NASA Astrophysics Data System (ADS)

    Vaianella, Fabio; Maes, Bjorn

    2016-04-01

    Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.

  19. 2-D nonlinear IIR-filters for image processing - An exploratory analysis

    NASA Technical Reports Server (NTRS)

    Bauer, P. H.; Sartori, M.

    1991-01-01

    A new nonlinear IIR filter structure is introduced and its deterministic properties are analyzed. It is shown to be better suited for image processing applications than its linear shift-invariant counterpart. The new structure is obtained from causality inversion of a 2D quarterplane causal linear filter with respect to the two directions of propagation. It is demonstrated, that by using this design, a nonlinear 2D lowpass filter can be constructed, which is capable of effectively suppressing Gaussian or impulse noise without destroying important image information.

  20. Thermal Analysis of the MCI Engine Turbopump

    NASA Technical Reports Server (NTRS)

    Roman, Jose

    2002-01-01

    The MCI Engine turbopump supplied the propellants to the main injector. The turbopump consisted of four parts; lox pump, interpropellant seal package (IPS), RP pump and turbine. The thermal analysis was divided into two 2D finite element models; Housing or stationary parts and rotor or rotating parts. Both models were analyzed at the same boundary conditions using SINDA. The housing model consisted of; lox pump housing, ips housing, RP housing, turbine inlet housing, turbine housing, exit guide vane, heat shield and both bearing outer races. The rotor model consisted of the lox impeller; lox end bearing and id race, RP impeller, and RP bearing and id race, shaft and turbine disk. The objectives of the analysis were to (1) verified the original design and recommend modifications to it, (2) submitted a thermal environment to support the structural analysis, (3) support the component and engine test program and (4) to support the X34 vehicle program.

  1. Analysis of Korean Students' International Mobility by 2-D Model: Driving Force Factor and Directional Factor

    ERIC Educational Resources Information Center

    Park, Elisa L.

    2009-01-01

    The purpose of this study is to understand the dynamics of Korean students' international mobility to study abroad by using the 2-D Model. The first D, "the driving force factor," explains how and what components of the dissatisfaction with domestic higher education perceived by Korean students drives students' outward mobility to seek foreign…

  2. The Accuracy of Webcams in 2D Motion Analysis: Sources of Error and Their Control

    ERIC Educational Resources Information Center

    Page, A.; Moreno, R.; Candelas, P.; Belmar, F.

    2008-01-01

    In this paper, we show the potential of webcams as precision measuring instruments in a physics laboratory. Various sources of error appearing in 2D coordinate measurements using low-cost commercial webcams are discussed, quantifying their impact on accuracy and precision, and simple procedures to control these sources of error are presented.…

  3. Analysis of vegetation effect on waves using a vertical 2-D RANS model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A vertical two-dimensional (2-D) model has been applied in the simulation of wave propagation through vegetated water bodies. The model is based on an existing model SOLA-VOF which solves the Reynolds-Averaged Navier-Stokes (RANS) equations with the finite difference method on a staggered rectangula...

  4. FTOM-2D: a two-dimensional approach to model the detailed thermal behavior of nonplanar surfaces

    NASA Astrophysics Data System (ADS)

    Bartos, B.; Stein, K.

    2015-10-01

    The Fraunhofer thermal object model (FTOM) predicts the temperature of an object as a function of the environmental conditions. The model has an outer layer exchanging radiation and heat with the environment and a stack of layers beyond modifying the thermal behavior. The innermost layer is at a constant or variable temperature called core temperature. The properties of the model (6 parameters) are fitted to minimize the difference between the prediction and a time series of measured temperatures. The model can be used for very different objects like backgrounds (e.g. meadow, forest, stone, or sand) or objects like vehicles. The two dimensional enhancement was developed to model more complex objects with non-planar surfaces and heat conduction between adjacent regions. In this model we call the small thermal homogenous interacting regions thermal pixels. For each thermal pixel the orientation and the identities of the adjacent pixels are stored in an array. In this version 7 parameters have to be fitted. The model is limited to a convex geometry to reduce the complexity of the heat exchange and allow for a higher number of thermal pixels. For the test of the model time series of thermal images of a test object (CUBI) were analyzed. The square sides of the cubes were modeled as 25 thermal pixels (5 × 5). In the time series of thermal images small areas in the size of the thermal pixels were analyzed to generate data files that can easily be read by the model. The program was developed with MATLAB and the final version in C++ using the OpenMP multiprocessor library. The differential equation for the heat transfer is the time consuming part in the computation and was programmed in C. The comparison show a good agreement of the fitted and not fitted thermal pixels with the measured temperatures. This indicates the ability of the model to predict the temperatures of the whole object.

  5. Differential Analysis of 2D NMR Spectra: New Natural Products from a Pilot-Scale Fungal Extract Library

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using a newly developed protocol for the differential analysis of arrays of 2D NMR spectra, we were able to rapidly identify two previously unreported indole alkaloids from a library of unfractionated fungal extracts. Differential analyses of NMR spectra thus constitute an effective tool for the non...

  6. ASRM nozzle thermal analysis

    NASA Technical Reports Server (NTRS)

    Strobel, Forrest; King, Belinda

    1993-01-01

    This report describes results from the nozzle thermal analysis contract which has been performed to support NASA/Marshall Space Flight Center in the development of the Advanced Solid Rocket Motor (ASRM). The emphasis of this study has been directed to four potential problem areas of the nozzle. These areas are the submerged nozzle region containing the flex seal, the nozzle entrance region, the material interface region in the nozzle exit cone, and the aft region of the exit cone. This study was limited throughout by inadequate material response models, especially for the polyisoprene flex seal and the low density carbon phenolic used in the exit cone. Thermal response and particle erosion calculations were performed for each of the potential problem areas. Results from these studies showed excessive erosion (large negative safety margins) to occur in the flex seal and nozzle entrance regions. The exit cone was found to be marginally adequate (near zero safety margins) and the material interface region was found not to be a problem.

  7. ASRM nozzle thermal analysis

    NASA Astrophysics Data System (ADS)

    Strobel, Forrest; King, Belinda

    1993-11-01

    This report describes results from the nozzle thermal analysis contract which has been performed to support NASA/Marshall Space Flight Center in the development of the Advanced Solid Rocket Motor (ASRM). The emphasis of this study has been directed to four potential problem areas of the nozzle. These areas are the submerged nozzle region containing the flex seal, the nozzle entrance region, the material interface region in the nozzle exit cone, and the aft region of the exit cone. This study was limited throughout by inadequate material response models, especially for the polyisoprene flex seal and the low density carbon phenolic used in the exit cone. Thermal response and particle erosion calculations were performed for each of the potential problem areas. Results from these studies showed excessive erosion (large negative safety margins) to occur in the flex seal and nozzle entrance regions. The exit cone was found to be marginally adequate (near zero safety margins) and the material interface region was found not to be a problem.

  8. Structural and Functional Analysis of JMJD2D Reveals Molecular Basis for Site-Specific Demethylation among JMJD2 Demethylases

    SciTech Connect

    Krishnan, Swathi; Trievel, Raymond C.

    2013-01-08

    We found that JMJD2 lysine demethylases (KDMs) participate in diverse genomic processes. Most JMJD2 homologs display dual selectivity toward H3K9me3 and H3K36me3, with the exception of JMJD2D, which is specific for H3K9me3. Here, we report the crystal structures of the JMJD2D•2-oxoglutarate•H3K9me3 ternary complex and JMJD2D apoenzyme. Utilizing structural alignments with JMJD2A, molecular docking, and kinetic analysis with an array of histone peptide substrates, we elucidate the specific signatures that permit efficient recognition of H3K9me3 by JMJD2A and JMJD2D, and the residues in JMJD2D that occlude H3K36me3 demethylation. Surprisingly, these results reveal that JMJD2A and JMJD2D exhibit subtle yet important differences in H3K9me3 recognition, despite the overall similarity in the substrate-binding conformation. Further, we show that H3T11 phosphorylation abrogates demethylation by JMJD2 KDMs. These studies reveal the molecular basis for JMJD2 site specificity and provide a framework for structure-based design of selective inhibitors of JMJD2 KDMs implicated in disease.

  9. Human 2-D PAGE databases for proteome analysis in health and disease: http://biobase.dk/cgi-bin/celis.

    PubMed

    Celis, J E; Gromov, P; Ostergaard, M; Madsen, P; Honoré, B; Dejgaard, K; Olsen, E; Vorum, H; Kristensen, D B; Gromova, I; Haunsø, A; Van Damme, J; Puype, M; Vandekerckhove, J; Rasmussen, H H

    1996-12-01

    Human 2-D PAGE Databases established at the Danish Centre for Human Genome Research are now available on the World Wide Web (http://biobase.dk/cgi-bin/celis). The databanks, which offer a comprehensive approach to the analysis of the human proteome both in health and disease, contain data on known and unknown proteins recorded in various IEF and NEPHGE 2-D PAGE reference maps (non-cultured keratinocytes, non-cultured transitional cell carcinomas, MRC-5 fibroblasts and urine). One can display names and information on specific protein spots by clicking on the image of the gel representing the 2-D gel map in which one is interested. In addition, the database can be searched by protein name, keywords or organelle or cellular component. The entry files contain links to other databases such as Medline, Swiss-Prot, PIR, PDB, CySPID, OMIM, Methabolic pathways, etc. The on-line information is updated regularly. PMID:8977092

  10. First experiences with 2D-mXRF analysis of gunshot residue on garment, tissue, and cartridge cases

    NASA Astrophysics Data System (ADS)

    Knijnenberg, Alwin; Stamouli, Amalia; Janssen, Martin

    2014-09-01

    The investigation of garment and human tissue originating from a victim of a shooting incident can provide crucial information for the reconstruction of such an incident. The use of 2D-mXRF for such investigations has several advantages over current methods as this new technique can be used to scan large areas, provides simultaneous information on multiple elements, can be applied under ambient conditions and is non-destructive. In this paper we report our experiences and challenges with the implementation of 2D-mXRF in GSR analysis. Currently we mainly focus on the use of 2D-mXRF as a tool for visualizing elemental distributions on various samples.

  11. Numerical thermal analysis

    SciTech Connect

    Ketkar, S.P.

    1999-07-01

    This new volume is written for both practicing engineers who want to refresh their knowledge in the fundamentals of numerical thermal analysis as well as for students of numerical heat transfer. it is a handy desktop reference that covers all the basics of finite difference, finite element, and control volume methods. In this volume, the author presents a unique hybrid method that combines the best features of finite element modeling and the computational efficiency of finite difference network solution techniques. It is a robust technique that is used in commercially available software. The contents include: heat conduction: fundamentals and governing equations; finite difference method; control volume method; finite element method; the hybrid method; and software selection.

  12. Multifractal and Singularity Maps of soil surface moisture distribution derived from 2D image analysis.

    NASA Astrophysics Data System (ADS)

    Cumbrera, Ramiro; Millán, Humberto; Martín-Sotoca, Juan Jose; Pérez Soto, Luis; Sanchez, Maria Elena; Tarquis, Ana Maria

    2016-04-01

    methods for mapping geochemical anomalies caused by buried sources and for predicting undiscovered mineral deposits in covered areas. Journal of Geochemical Exploration, 122, 55-70. Cumbrera, R., Ana M. Tarquis, Gabriel Gascó, Humberto Millán (2012) Fractal scaling of apparent soil moisture estimated from vertical planes of Vertisol pit images. Journal of Hydrology (452-453), 205-212. Martin Sotoca; J.J. Antonio Saa-Requejo, Juan Grau and Ana M. Tarquis (2016). Segmentation of singularity maps in the context of soil porosity. Geophysical Research Abstracts, 18, EGU2016-11402. Millán, H., Cumbrera, R. and Ana M. Tarquis (2016) Multifractal and Levy-stable statistics of soil surface moisture distribution derived from 2D image analysis. Applied Mathematical Modelling, 40(3), 2384-2395.

  13. Advances in fast 2D camera data handling and analysis on NSTX

    SciTech Connect

    Davis, W. M.; Patel, R. I.; Boeglin, W. U.; Roquemore, A. L.; Maqueda, R. J.; Zweben, S. J.

    2010-07-01

    The use of fast 2D cameras on NSTX continues to grow. There are 6 cameras with the capability of taking up to 1–2 gigabytes (GBs) of data apiece during each plasma shot on the National Spherical Torus Experiment (NSTX). Efficient storage and retrieval of this data remains a challenge. Performance comparisons are presented for reading data stored in MDSplus, using both compressed data and segmented records, and direct access I/O with different read sizes. Encouragingly, fast 2D camera data provides considerable insight into plasma complexities, such as small-scale turbulence and particle transport. The last part of this paper is an example of more recent uses: dual cameras looking at the same region of the plasma from different angles, which can provide trajectories of incandescent particles in 3D. A laboratory simulation of the 3D trajectories is presented, as well as corresponding data from NSTX plasma where glowing dust particles can be followed.

  14. Resonant loop antenna design with a 2-D steady state analysis

    SciTech Connect

    Chen, G.I.; Ryan, P.M.; Hoffman, D.J.; Baity, F.W.; Swain, D.W.; Whealton, J.H.

    1987-01-01

    Evaluation of resonant loop antenna designs for ICRF heating of plasmas requires information concerning the electrical characteristics of the structure. Our 2-D steady state model described herein provides us with current strap inductance and capacitance, surface current distributions, and flux linkage to the plasma. These are used to determine the current and voltage requirements, ohmic dissipation, frequency limits and matching requirements, maximum electric fields, and plasma loading in order to compare antenna designs.

  15. NMR Analysis of Unknowns: An Introduction to 2D NMR Spectroscopy

    ERIC Educational Resources Information Center

    Alonso, David E.; Warren, Steven E.

    2005-01-01

    A study combined 1D (one-dimensional) and 2D (two-dimensional) NMR spectroscopy to solve structural organic problems of three unknowns, which include 2-, 3-, and 4-heptanone. Results showed [to the first power]H NMR and [to the thirteenth power]C NMR signal assignments for 2- and 3-heptanone were more challenging than for 4-heptanone owing to the…

  16. Thermal Solitons in 1d and 2d Anharmonic Lattices - Solectrons and the Organization of Non-Linear Fluctuations in Long-Living Dynamical Structures

    NASA Astrophysics Data System (ADS)

    Velarde, M. G.; Ebeling, W.; Chetverikov, A. P.

    2013-01-01

    We study the thermal excitation of intrinsic localized modes in the form of solitons in 1d and 2d anharmonic lattices at moderately high temperatures. Such finite-amplitude fluctuations form long-living dynamical structures with life-time in the pico-second range thus surviving a relatively long time in comparison to other thermal fluctuations. Further we discuss the influence of such long-living fluctuations on the dynamics of added excess free electrons. The atomic lattice units are treated as quasi-classical objects interacting by Morse forces and stochastically moving according to Langevin equations. In 2d the atoms are initially organized in a triangular lattice. The electron distributions are in a first estimate represented by equilibrium adiabatic distributions in the actual polarization fields. Computer simulations show that in 2d systems such excitations are moving with supersonic velocities along lattice rows oriented with the cristallographic axes. By following the electron distributions we have also been able to study the excitations of solectron type (electron-soliton dynamic bound states) and estimate their life times.

  17. Burial and thermal history of the central Appalachian basin, based on three 2-D models of Ohio, Pennsylvania, and West Virginia

    USGS Publications Warehouse

    Rowan, Elisabeth L.

    2006-01-01

    Introduction: Three regional-scale, cross sectional (2-D) burial and thermal history models are presented for the central Appalachian basin based on the detailed geologic cross sections of Ryder and others (2004), Crangle and others (2005), and Ryder, R.T., written communication. The models integrate the available thermal and geologic information to constrain the burial, uplift, and erosion history of the region. The models are restricted to the relatively undeformed part of the basin and extend from the Rome trough in West Virginia and Pennsylvania northwestward to the Findlay arch in Ohio. This study expands the scope of previous work by Rowan and others (2004) which presented a preliminary burial/thermal history model for a cross section (E-E') through West Virginia and Ohio. In the current study, the burial/thermal history model for E-E' is revised, and integrated with results of two additional cross sectional models (D-D' and C-C'). The burial/thermal history models provide calculated thermal maturity (Ro%) values for the entire stratigraphic sequence, including hydrocarbon source rocks, along each of the three cross sections. In contrast, the Ro and conodont CAI data available in the literature are sparse and limited to specific stratigraphic intervals. The burial/thermal history models also provide the regional temperature and pressure framework that is needed to model hydrocarbon migration.

  18. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1994-01-01

    Thermal decomposition activation energies have been determined using two methods of Thermogravimetric Analysis (TGA), with good correlation being obtained between the two techniques. Initial heating curves indicated a two-component system for Coflon (i.e. polymer plus placticizer) but a single component system for Tefzel. Two widely differing activation energies were for Coflon supported this view, 15 kcl/mol being associated with plasticizer, and 40 kcal/mol with polymer degradation. With Tefzel, values were 40-45 kcal/mol, the former perhaps being associated with a low molecular weight fraction. Appropriate acceleration factors have been determined. Thermomechanical Analysis (TMA) has shown considerable dimensional change during temperature cycles. For unaged pipe sections heating to 100 C and then holding the temperature resulted in a stable thickness increase of 2%, whereas the Coflon thickness decreased continuously, reaching -4% in 2.7 weeks. Previously strained tensile bars of Tefzel expanded on cooling during TMA. SEM performed on H2S-aged Coflon samples showed significant changes in both physical and chemical nature. The first may have resulted from explosive decompression after part of the aging process. Chemically extensive dehydrofluorination was indicated, and sulfur was present as a result of the aging. These observations indicate that chemical attack of PVDF can occur in some circumstances.

  19. Cesium capsule thermal analysis

    SciTech Connect

    Eyler, L.L.; Dodge, R.E.

    1989-12-01

    Double-walled stainless steel capsules, produced by the Hanford Waste Encapsulation and Storage Facility (WESF), were designed to facilitate storage of radioactive cesium chloride (CsCl). The capsules were later determined to be a useful resource for irradiation facilities (IFs), and are currently being used at several commercial IFs. A capsule at one of these facilities recently failed, resulting in a release of the CsCl. A thermal analysis of a WESF capsule was performed by Pacific Northwest Laboratory (PNL) at the request of Westinghouse Hanford Company. In this analysis, parametric calculations demonstrates the impact that various parameters have on the temperature distribution within a capsule in a commercial irradiation facility. Specifically, the effect of varying the gas gap conductivity, the exterior heat sink temperatures, the exterior heat transfer distribution, the stainless steel emissivity, and the gamma heating rate were addressed. In addition, a calculation was performed to estimate the highest temperatures likely to have been encountered in one of these capsules. 8 refs., 17 figs., 4 tabs.

  20. Parametrics on 2D Navier-Stokes analysis of a Mach 2.68 bifurcated rectangular mixed-compression inlet

    NASA Technical Reports Server (NTRS)

    Mizukami, M.; Saunders, J. D.

    1995-01-01

    The supersonic diffuser of a Mach 2.68 bifurcated, rectangular, mixed-compression inlet was analyzed using a two-dimensional (2D) Navier-Stokes flow solver. Parametric studies were performed on turbulence models, computational grids and bleed models. The computer flowfield was substantially different from the original inviscid design, due to interactions of shocks, boundary layers, and bleed. Good agreement with experimental data was obtained in many aspects. Many of the discrepancies were thought to originate primarily from 3D effects. Therefore, a balance should be struck between expending resources on a high fidelity 2D simulation, and the inherent limitations of 2D analysis. The solutions were fairly insensitive to turbulence models, grids and bleed models. Overall, the k-e turbulence model, and the bleed models based on unchoked bleed hole discharge coefficients or uniform velocity are recommended. The 2D Navier-Stokes methods appear to be a useful tool for the design and analysis of supersonic inlets, by providing a higher fidelity simulation of the inlet flowfield than inviscid methods, in a reasonable turnaround time.

  1. Characterization of novel isobenzofuranones by DFT calculations and 2D NMR analysis.

    PubMed

    Teixeira, Milena G; Alvarenga, Elson S

    2016-08-01

    Phthalides are frequently found in naturally occurring substances and exhibit a broad spectrum of biological activities. In the search for compounds with insecticidal activity, phthalides have been used as versatile building blocks for the syntheses of novel potential agrochemicals. In our work, the Diels-Alder reaction between furan-2(5H)-one and cyclopentadiene was used successfully to obtain (3aR,4S,7R,7aS)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aS,4R,7S,7aR)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one (2) and (3aS,4S,7R,7aR)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aR,4R,7S,7aS)-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1(3H)-one (3). The endo adduct (2) was brominated to afford (3aR,4R,5R,7R,7aS,8R)-5,8-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aS,4S,5S,7S,7aR,8S)-5,8-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (4) and (3aS,4R,5R,6S,7S,7aR)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one and (3aR,4S,5S,6R,7R,7aS)-5,6-dibromohexahydro-4,7-methanoisobenzofuran-1(3H)-one (5). Following the initial analysis of the NMR spectra and the proposed two novel unforeseen products, we have decided to fully analyze the classical and non-classical assay structures with the aid of computational calculations. Computation to predict the (13) C and (1) H chemical shifts for mean absolute error analyses have been carried out by gauge-including atomic orbital method at M06-2X/6-31+G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for all viable conformers. Characterization of the novel unforeseen compounds (4) and (5) were not possible by employing only the experimental NMR data; however, a more conclusive structural identification was performed by comparing the experimental and theoretical (1) H and (13) C chemical shifts by mean absolute error and DP4 probability analyses. Copyright © 2016 John Wiley & Sons, Ltd. PMID:26811211

  2. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-01-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  3. Microphysical Analysis using Airborne 2-D Cloud and Precipitation Imaging Probe Data

    NASA Astrophysics Data System (ADS)

    Guy, N.; Jorgensen, D.; Witte, M.; Chuang, P. Y.; Black, R. A.

    2013-12-01

    The NOAA P-3 instrumented aircraft provided in-situ cloud and precipitation microphysical observations during the DYNAMO (Dynamics of the Madden-Julian Oscillation) field experiment. The Particle Measuring System 2D cloud (2D-C) and precipitation (2D-P) probes collected data for particles between 12.5 μm - 1.55 mm (25 μm resolution) and 100 μm - 6.2 mm (100 μm resolution), respectively. Spectra from each instrument were combined to provide a broad distribution of precipitation particle sizes. The 'method of moments' technique was used to analyze drop size distribution (DSD) spectra, which were modeled by fitting a three-parameter (slope, shape, and intercept) gamma distribution to the spectra. The characteristic shape of the mean spectrum compares to previous maritime measurements. DSD variability will be presented with respect to the temporal evolution of cloud populations during a Madden-Julian Oscillation (MJO) event, as well as in-situ aircraft vertical wind velocity measurements. Using the third and sixth moments, rainfall rate (R) and equivalent radar reflectivity factor (Z), respectively, were computed for each DSD. Linear regression was applied to establish a Z-R relationship for the data for the estimation of precipitation. The study indicated unique characteristics of microphysical processes for this region. These results are important to continue to define the cloud population characteristics in the climatological MJO region. Improved representation of the cloud characteristics on the microphysical scale will serve as a check to model parameterizations, helping to improve numerical simulations.

  4. 2D dynamic studies combined with the surface curvature analysis to predict Arias Intensity amplification

    NASA Astrophysics Data System (ADS)

    Torgoev, Almaz; Havenith, Hans-Balder

    2016-07-01

    A 2D elasto-dynamic modelling of the pure topographic seismic response is performed for six models with a total length of around 23.0 km. These models are reconstructed from the real topographic settings of the landslide-prone slopes situated in the Mailuu-Suu River Valley, Southern Kyrgyzstan. The main studied parameter is the Arias Intensity (Ia, m/sec), which is applied in the GIS-based Newmark method to regionally map the seismically-induced landslide susceptibility. This method maps the Ia values via empirical attenuation laws and our studies investigate a potential to include topographic input into them. Numerical studies analyse several signals with varying shape and changing central frequency values. All tests demonstrate that the spectral amplification patterns directly affect the amplification of the Ia values. These results let to link the 2D distribution of the topographically amplified Ia values with the parameter called as smoothed curvature. The amplification values for the low-frequency signals are better correlated with the curvature smoothed over larger spatial extent, while those values for the high-frequency signals are more linked to the curvature with smaller smoothing extent. The best predictions are provided by the curvature smoothed over the extent calculated according to Geli's law. The sample equations predicting the Ia amplification based on the smoothed curvature are presented for the sinusoid-shape input signals. These laws cannot be directly implemented in the regional Newmark method, as 3D amplification of the Ia values addresses more problem complexities which are not studied here. Nevertheless, our 2D results prepare the theoretical framework which can potentially be applied to the 3D domain and, therefore, represent a robust basis for these future research targets.

  5. Analysis of 2D Phase Contrast MRI in Renal Arteries by Self Organizing Maps

    NASA Astrophysics Data System (ADS)

    Zöllner, Frank G.; Schad, Lothar R.

    We present an approach based on self organizing maps to segment renal arteries from 2D PC Cine MR, images to measure blood velocity and flow. Such information are important in grading renal artery stenosis and support the decision on surgical interventions like percu-tan transluminal angioplasty. Results show that the renal arteries could be extracted automatically. The corresponding velocity profiles show high correlation (r=0.99) compared those from manual delineated vessels. Furthermore, the method could detect possible blood flow patterns within the vessel.

  6. 2D-CELL: image processing software for extraction and analysis of 2-dimensional cellular structures

    NASA Astrophysics Data System (ADS)

    Righetti, F.; Telley, H.; Leibling, Th. M.; Mocellin, A.

    1992-01-01

    2D-CELL is a software package for the processing and analyzing of photographic images of cellular structures in a largely interactive way. Starting from a binary digitized image, the programs extract the line network (skeleton) of the structure and determine the graph representation that best models it. Provision is made for manually correcting defects such as incorrect node positions or dangling bonds. Then a suitable algorithm retrieves polygonal contours which define individual cells — local boundary curvatures are neglected for simplicity. Using elementary analytical geometry relations, a range of metric and topological parameters describing the population are then computed, organized into statistical distributions and graphically displayed.

  7. Controls on the Flow Regime and Thermal Structure of the Subduction Zone Mantle Wedge: A Systematic 2-D and 3-D Investigation

    NASA Astrophysics Data System (ADS)

    Le Voci, Giuseppe; Davies, Rhodri; Goes, Saskia; Kramer, Stephan; Wilson, Cian

    2014-05-01

    Arc volcanism at subduction zones is likely regulated by the mantle wedge's flow regime and thermal structure and, hence, numerous studies have attempted to quantify the principal controls on mantle wedge conditions. Here, we build on these previous studies by undertaking the first systematic 2-D and 3-D numerical investigation, across a wide parameter-space, into how hydration and thermal buoyancy influence the wedge's flow regime and associated thermal structure, above a kinematically driven subducting plate. We find that small-scale convection (SSC), resulting from Rayleigh-Taylor instabilities, or drips, off the base of the overriding lithosphere, is a typical occurrence, if: (i) viscosities are < 5×1018 Pa s; and (ii) hydrous weakening of wedge rheology extends at least 100-150 km from the trench. In 2-D models, instabilities generally take the form of 'drips'. Although along-strike averages of wedge velocities and temperature in 3-D structure are consistent with those in 2-D, fluctuations are larger in 3-D. Furthermore, in 3-D, two separate, but interacting, longitudinal Richter roll systems form (with their axes aligned perpendicular to the trench), the first below the arc region and the second below the back-arc region. These instabilities result in transient and spatial temperature fluctuations of 100-150K, which are sufficient to influence melting, the stability of hydrous minerals and the dehydration of crustal material. Furthermore, they are efficient at eroding the overriding lithosphere, particularly in 3-D and, thus, provide a means to explain observations of high heat flow and thin back-arc lithosphere at many subduction zones, if back-arc mantle is hydrated.

  8. Study on molecular structure and hydration mechanism of Domyoji-ko starch by IR and NIR hetero 2D analysis

    NASA Astrophysics Data System (ADS)

    Katayama, Norihisa; Kondo, Miyuki; Miyazawa, Mitsuhiro

    2010-06-01

    The hydration structure of starch molecule in Domyoji-ko, which is made from gluey rice, was investigated by hetero 2D correlation analysis of IR and NIR spectroscopy. The feature near 1020 cm -1 in the IR spectra of Domyoji-ko is changed by rehydration process, indicating that the molecular structure of amylopectin in the starch has been varied by the hydration without heating. The intensity of a band at 4770 cm -1 in NIR spectra is decreasing with the increasing of either the heating time with water or rehydration time without heating. These results suggest that the hydration of Domyoji-ko has proceeded in similar mechanisms on these processes. The generalized hetero 2D IR-NIR correlation analysis for rehydration of Domyoji-ko has supported the assignments for NIR bands concerning the gelatinization of starch.

  9. Development of a Cryogenic Thermal Distortion Measurement Facility for Testing the James Webb Space Telescope Instrument Support Integration Module 2-D Test Assemblies

    NASA Technical Reports Server (NTRS)

    Miller, Franklin; Bagdanove, paul; Blake, Peter; Canavan, Ed; Cofie, Emmanuel; Crane, J. Allen; Dominquez, Kareny; Hagopian, John; Johnston, John; Madison, Tim; Miller, Dave; Oaks, Darrell; Williams, Pat; Young, Dan; Zukowski, Barbara; Zukowski, Tim

    2007-01-01

    The James Webb Space Telescope Instrument Support Integration Module (ISIM) is being designed and developed at the Goddard Space Flight Center. The ISM Thermal Distortion Testing (ITDT) program was started with the primary objective to validate the ISM mechanical design process. The ITDT effort seeks to establish confidence and demonstrate the ability to predict thermal distortion in composite structures at cryogenic temperatures using solid element models. This-program's goal is to better ensure that ISIM meets all the mechanical and structural requirements by using test results to verify or improve structural modeling techniques. The first step to accomplish the ITDT objectives was to design, and then construct solid element models of a series 2-D test assemblies that represent critical building blocks of the ISIM structure. Second, the actual test assemblies consisting of composite tubes and invar end fittings were fabricated and tested for thermal distortion. This paper presents the development of the GSFC Cryo Distortion Measurement Facility (CDMF) to meet the requirements of the ISIM 2-D test. assemblies, and other future ISIM testing needs. The CDMF provides efficient cooling with both a single, and two-stage cryo-cooler. Temperature uniformity of the test assemblies during thermal transients and at steady state is accomplished by using sapphire windows for all of the optical ports on the radiation shields and by using .thermal straps to cool the test assemblies. Numerical thermal models of the test assemblies were used to predict the temperature uniformity of the parts during cooldown and at steady state. Results of these models are compared to actual temperature data from the tests. Temperature sensors with a 0.25K precision were used to insure that test assembly gradients did not exceed 2K lateral, and 4K axially. The thermal distortions of two assemblies were measured during six thermal cycles from 320K to 35K using laser interferometers. The standard

  10. Computational Study and Analysis of Structural Imperfections in 1D and 2D Photonic Crystals

    SciTech Connect

    K.R. Maskaly

    2005-06-01

    Dielectric reflectors that are periodic in one or two dimensions, also known as 1D and 2D photonic crystals, have been widely studied for many potential applications due to the presence of wavelength-tunable photonic bandgaps. However, the unique optical behavior of photonic crystals is based on theoretical models of perfect analogues. Little is known about the practical effects of dielectric imperfections on their technologically useful optical properties. In order to address this issue, a finite-difference time-domain (FDTD) code is employed to study the effect of three specific dielectric imperfections in 1D and 2D photonic crystals. The first imperfection investigated is dielectric interfacial roughness in quarter-wave tuned 1D photonic crystals at normal incidence. This study reveals that the reflectivity of some roughened photonic crystal configurations can change up to 50% at the center of the bandgap for RMS roughness values around 20% of the characteristic periodicity of the crystal. However, this reflectivity change can be mitigated by increasing the index contrast and/or the number of bilayers in the crystal. In order to explain these results, the homogenization approximation, which is usually applied to single rough surfaces, is applied to the quarter-wave stacks. The results of the homogenization approximation match the FDTD results extremely well, suggesting that the main role of the roughness features is to grade the refractive index profile of the interfaces in the photonic crystal rather than diffusely scatter the incoming light. This result also implies that the amount of incoherent reflection from the roughened quarterwave stacks is extremely small. This is confirmed through direct extraction of the amount of incoherent power from the FDTD calculations. Further FDTD studies are done on the entire normal incidence bandgap of roughened 1D photonic crystals. These results reveal a narrowing and red-shifting of the normal incidence bandgap with

  11. 2D correlation analysis of the magnetic excitations in Raman spectra of HoMnO3

    NASA Astrophysics Data System (ADS)

    Nguyen, Thi Huyen; Nguyen, Thi Minh Hien; Chen, Xiang-Bai; Yang, In-Sang; Park, Yeonju; Jung, Young Mee

    2014-07-01

    2D correlation analysis is performed on the temperature-dependent Raman spectra of HoMnO3 thin films. As the temperature of the HoMnO3 thin films decrease, the depletion of the spectral weight at 336, 656, and 1304 cm-1 occurs at higher temperatures than the increase of the intensity at 508, 766, and 945 cm-1 below ∼70 K, the Néel temperature. The power spectrum asserts that all the changes in the spectral weight are strongly correlated. Most of the temperature-induced spectral changes of HoMnO3 occur at lower temperature than 70 K, while there is slight depletion of the spectral weight at 336, 656, and 1304 cm-1 even at higher temperature than 70 K. PCA scores and loading vectors plots also support these 2D correlation results. Our 2D correlation analysis supports the existence of the short range spin correlations between Mn sites in HoMnO3 even above the Néel temperature.

  12. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery.

    PubMed

    Stock, Kristin; Estrada, Marta F; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  13. Capturing tumor complexity in vitro: Comparative analysis of 2D and 3D tumor models for drug discovery

    PubMed Central

    Stock, Kristin; Estrada, Marta F.; Vidic, Suzana; Gjerde, Kjersti; Rudisch, Albin; Santo, Vítor E.; Barbier, Michaël; Blom, Sami; Arundkar, Sharath C.; Selvam, Irwin; Osswald, Annika; Stein, Yan; Gruenewald, Sylvia; Brito, Catarina; van Weerden, Wytske; Rotter, Varda; Boghaert, Erwin; Oren, Moshe; Sommergruber, Wolfgang; Chong, Yolanda; de Hoogt, Ronald; Graeser, Ralph

    2016-01-01

    Two-dimensional (2D) cell cultures growing on plastic do not recapitulate the three dimensional (3D) architecture and complexity of human tumors. More representative models are required for drug discovery and validation. Here, 2D culture and 3D mono- and stromal co-culture models of increasing complexity have been established and cross-comparisons made using three standard cell carcinoma lines: MCF7, LNCaP, NCI-H1437. Fluorescence-based growth curves, 3D image analysis, immunohistochemistry and treatment responses showed that end points differed according to cell type, stromal co-culture and culture format. The adaptable methodologies described here should guide the choice of appropriate simple and complex in vitro models. PMID:27364600

  14. Rifaximin-mediated changes to the epithelial cell proteome: 2-D gel analysis.

    PubMed

    Schrodt, Caroline; McHugh, Erin E; Gawinowicz, Mary Ann; Dupont, Herbert L; Brown, Eric L

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656

  15. Rifaximin-Mediated Changes to the Epithelial Cell Proteome: 2-D Gel Analysis

    PubMed Central

    Schrodt, Caroline; McHugh, Erin E.; Gawinowicz, Mary Ann; DuPont, Herbert L.; Brown, Eric L.

    2013-01-01

    Rifaximin is a semi-synthetic rifamycin derivative that is used to treat different conditions including bacterial diarrhea and hepatic encephalopathy. Rifaximin is of particular interest because it is poorly adsorbed in the intestines and has minimal effect on colonic microflora. We previously demonstrated that rifaximin affected epithelial cell physiology by altering infectivity by enteric pathogens and baseline inflammation suggesting that rifaximin conferred cytoprotection against colonization and infection. Effects of rifaximin on epithelial cells were further examined by comparing the protein expression profile of cells pretreated with rifaximin, rifampin (control antibiotic), or media (untreated). Two-dimensional (2-D) gel electrophoresis identified 36 protein spots that were up- or down-regulated by over 1.7-fold in rifaximin treated cells compared to controls. 15 of these spots were down-regulated, including annexin A5, intestinal-type alkaline phosphatase, histone H4, and histone-binding protein RbbP4. 21 spots were up-regulated, including heat shock protein (HSP) 90α and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. These data suggested that in addition to its antimicrobial properties, rifaximin may alter host cell physiology that provides cytoprotective effects against bacterial pathogens. PMID:23922656

  16. 2D CFD Analysis of an Airfoil with Active Continuous Trailing Edge Flap

    NASA Astrophysics Data System (ADS)

    Jaksich, Dylan; Shen, Jinwei

    2014-11-01

    Efficient and quieter helicopter rotors can be achieved through on-blade control devices, such as active Continuous Trailing-Edge Flaps driven by embedded piezoelectric material. This project aims to develop a CFD simulation tool to predict the aerodynamic characteristics of an airfoil with CTEF using open source code: OpenFOAM. Airfoil meshes used by OpenFOAM are obtained with MATLAB scripts. Once created it is possible to rotate the airfoil to various angles of attack. When the airfoil is properly set up various OpenFOAM properties, such as kinematic viscosity and flow velocity, are altered to achieve the desired testing conditions. Upon completion of a simulation, the program gives the lift, drag, and moment coefficients as well as the pressure and velocity around the airfoil. The simulation is then repeated across multiple angles of attack to give full lift and drag curves. The results are then compared to previous test data and other CFD predictions. This research will lead to further work involving quasi-steady 2D simulations incorporating NASTRAN to model aeroelastic deformation and eventually to 3D aeroelastic simulations. NSF ECE Grant #1358991 supported the first author as an REU student.

  17. Visual Analysis of time-dependent 2D Uncertainties in Decadal Climate Predictions

    NASA Astrophysics Data System (ADS)

    Böttinger, Michael; Röber, Niklas; Meier-Fleischer, Karin; Pohlmann, Holger

    2016-04-01

    Climate prediction systems used today for investigating the climate predictability on a decadal time scale are based on coupled global climate models. First, ensembles of hindcast experiments are carried out in order to derive the predictive skill of the prediction system. Then, in a second step, the prediction system is initialized with observations and actual future predictions are computed. The ensemble simulation techniques applied enable issuing of probabilistic information along with the quantities predicted. Different aspects of the uncertainty can be derived: The ensemble standard deviation (or ensemble spread) is a measure for the internal variability of the simulation, while the predictive skill is an inverse measure for the uncertainty in the prediction. In this work, we focus on the concurrent visualization of three related time-dependent 2D fields: the forecast variable itself, here the 2m temperature anomaly, along with the corresponding predictive skill and the ensemble spread which is given through the ensemble standard deviation. On the basis of temporally filtered data, animations are used to visualize the mean spatio-temporal development of the three quantities. Furthermore, seasonal analyses are similarly visualized in order to identify seasonal patterns. We show exemplary solutions produced with three different visualization systems: NCL, Avizo Green and ParaView. As example data set, we have used a decadal climate prediction carried out within the German research project "MiKlip - Decadal Predictions" using the MPI-M Earth System Model (MPI-ESM) from the Max Planck Institute for Meteorology in Hamburg.

  18. Wind-tunnel experiments of turbulent flow over a surface-mounted 2-D block in a thermally-stratified boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Markfort, Corey; Porté-Agel, Fernando

    2014-11-01

    Turbulent flows over complex surface topography have been of great interest in the atmospheric science and wind engineering communities. The geometry of the topography, surface roughness and temperature characteristics as well as the atmospheric thermal stability play important roles in determining momentum and scalar flux distribution. Studies of turbulent flow over simplified topography models, under neutrally stratified boundary-layer conditions, have provided insights into fluid dynamics. However, atmospheric thermal stability has rarely been considered in laboratory experiments, e.g., wind-tunnel experiments. Series of wind-tunnel experiments of thermally-stratified boundary-layer flow over a surface-mounted 2-D block, in a well-controlled boundary-layer wind tunnel, will be presented. Measurements using high-resolution PIV, x-wire/cold-wire anemometry and surface heat flux sensors were conducted to quantify the turbulent flow properties, including the size of the recirculation zone, coherent vortex structures and the subsequent boundary layer recovery. Results will be shown to address thermal stability effects on momentum and scalar flux distribution in the wake, as well as dominant mechanism of turbulent kinetic energy generation and consumption. The authors gratefully acknowledge funding from the Swiss National Foundation (Grant 200021-132122), the National Science Foundation (Grant ATM-0854766) and NASA (Grant NNG06GE256).

  19. Simulation and analysis of solute transport in 2D fracture/pipe networks: The SOLFRAC program

    NASA Astrophysics Data System (ADS)

    Bodin, Jacques; Porel, Gilles; Delay, Fred; Ubertosi, Fabrice; Bernard, Stéphane; de Dreuzy, Jean-Raynald

    2007-01-01

    The Time Domain Random Walk (TDRW) method has been recently developed by Delay and Bodin [Delay, F. and Bodin, J., 2001. Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28(21): 4051-4054.] and Bodin et al. [Bodin, J., Porel, G. and Delay, F., 2003c. Simulation of solute transport in discrete fracture networks using the time domain random walk method. Earth Planet. Sci. Lett., 6566: 1-8.] for simulating solute transport in discrete fracture networks. It is assumed that the fracture network can reasonably be represented by a network of interconnected one-dimensional pipes (i.e. flow channels). Processes accounted for are: (1) advection and hydrodynamic dispersion in the channels, (2) matrix diffusion, (3) diffusion into stagnant zones within the fracture planes, (4) sorption reactions onto the fracture walls and in the matrix, (5) linear decay, and (6) mass sharing at fracture intersections. The TDRW method is handy and very efficient in terms of computation costs since it allows for the one-step calculation of the particle residence time in each bond of the network. This method has been programmed in C++, and efforts have been made to develop an efficient and user-friendly software, called SOLFRAC. This program is freely downloadable at the URL http://labo.univ-poitiers.fr/hydrasa/intranet/telechargement.htm. It calculates solute transport into 2D pipe networks, while considering different types of injections and different concepts of local dispersion within each flow channel. Post-simulation analyses are also available, such as the mean velocity or the macroscopic dispersion at the scale of the entire network. The program may be used to evaluate how a given transport mechanism influences the macroscopic transport behaviour of fracture networks. It may also be used, as is the case, e.g., with analytical solutions, to interpret laboratory or field tracer test experiments

  20. Analysis of the dose calculation accuracy for IMRT in lung: a 2D approach.

    PubMed

    Dvorak, Pavel; Stock, Markus; Kroupa, Bernhard; Bogner, Joachim; Georg, Dietmar

    2007-01-01

    The purpose of this study was to compare the dosimetric accuracy of IMRT plans for targets in lung with the accuracy of standard uniform-intensity conformal radiotherapy for different dose calculation algorithms. Tests were performed utilizing a special phantom manufactured from cork and polystyrene in order to quantify the uncertainty of two commercial TPS for IMRT in the lung. Ionization and film measurements were performed at various measuring points/planes. Additionally, single-beam and uniform-intensity multiple-beam tests were performed, in order to investigate deviations due to other characteristics of IMRT. Helax-TMS V6.1(A) was tested for 6, 10 and 25 MV and BrainSCAN 5.2 for 6 MV photon beams, respectively. Pencil beam (PB) with simple inhomogeneity correction and 'collapsed cone' (CC) algorithms were applied for dose calculations. However, the latter was not incorporated during optimization hence only post-optimization recalculation was tested. Two-dimensional dose distributions were evaluated applying the gamma index concept. Conformal plans showed the same accuracy as IMRT plans. Ionization chamber measurements detected deviations of up to 5% when a PB algorithm was used for IMRT dose calculations. Significant improvement (deviations approximately 2%) was observed when IMRT plans were recalculated with the CC algorithm, especially for the highest nominal energy. All gamma evaluations confirmed substantial improvement with the CC algorithm in 2D. While PB dose distributions showed most discrepancies in lower (<50%) and high (>90%) dose regions, the CC dose distributions deviated mainly in the high dose gradient (20-80%) region. The advantages of IMRT (conformity, intra-target dose control) should be counterbalanced with possible calculation inaccuracies for targets in the lung. Until no superior dose calculation algorithms are involved in the iterative optimization process it should be used with great care. When only PB algorithm with simple

  1. Thermal Analysis System

    NASA Technical Reports Server (NTRS)

    DiStefano, III, Frank James (Inventor); Wobick, Craig A. (Inventor); Chapman, Kirt Auldwin (Inventor); McCloud, Peter L. (Inventor)

    2014-01-01

    A thermal fluid system modeler including a plurality of individual components. A solution vector is configured and ordered as a function of one or more inlet dependencies of the plurality of individual components. A fluid flow simulator simulates thermal energy being communicated with the flowing fluid and between first and second components of the plurality of individual components. The simulation extends from an initial time to a later time step and bounds heat transfer to be substantially between the flowing fluid, walls of tubes formed in each of the individual components of the plurality, and between adjacent tubes. Component parameters of the solution vector are updated with simulation results for each of the plurality of individual components of the simulation.

  2. Combined analysis of C-18 unsaturated fatty acids using natural abundance deuterium 2D NMR spectroscopy in chiral oriented solvents.

    PubMed

    Lesot, Philippe; Baillif, Vincent; Billault, Isabelle

    2008-04-15

    The quantitative determination of isotopic (2H/1H)i ratios at natural abundance using the SNIF-NMR protocol is a well-known method for understanding the enzymatic biosynthesis of metabolites. However, this approach is not always successful for analyzing large solutes and, specifically, is inadequate for prochiral molecules such as complete essential unsaturated fatty acids. To overcome these analytical limitations, we use the natural abundance deuterium 2D NMR (NAD 2D NMR) spectroscopy on solutes embedded in polypeptide chiral liquid crystals. This approach, recently explored for measuring (2H/1H)i ratios of small analytes (Lesot, P.; Aroulanda, C.; Billault, I. Anal. Chem. 2004, 76, 2827-2835), is a powerful way to separate the 2H signals of all nonequivalent enantioisotopomers on the basis both of the 2H quadrupolar interactions and of the 2H chemical shift. Two significant advances over our previous work are presented here and allow the complete isotopic analysis of four mono- and polyunsaturated fatty acid methyl esters: methyl oleate (1), methyl linoleate (2), methyl linolenate (3), and methyl vernoleate (4). The first consists of using NMR spectrometers operating at higher magnetic field strength (14.1 T) and equipped with a selective cryoprobe optimized for deuterium nuclei. The second is the development of Q-COSY Fz 2D NMR experiments able to produce phased 2H 2D maps after a double Fourier transformation. This combination of modern hardware and efficient NMR sequences provides a unique tool to analyze the (2H/1H)i ratios of large prochiral molecules (C-18) dissolved in organic solutions of poly(gamma-benzyl-L-glutamate) and requires smaller amounts of solute than previous study on fatty acids. For each compound (1-4), all 2H quadrupolar doublets visible in the 2D spectra have been assigned on the basis of 2H chemical shifts, isotopic data obtained from isotropic quantitative NAD NMR, and by an interspectral comparison of the anisotropic NAD spectra of four

  3. Application of 2D-HPLC/taste dilution analysis on taste compounds in aniseed (Pimpinella anisum L.).

    PubMed

    Pickrahn, Stephen; Sebald, Karin; Hofmann, Thomas

    2014-09-24

    This is the first application of fully automated, preparative, two-dimensional HPLC combined with sensory analysis for taste compound discovery using a sweet and licorice-like bitter-tasting aniseed extract as an example. Compared to the traditional iterative fractionation of food extracts by sensory-guided sequential application of separation techniques, the fully automated 2D-HPLC allowed the comprehensive separation of the aniseed extract into 256 subfractions and reduced the fractionation time from about 1 week to <1day. Using a smart sensory strategy to locate high-impact fractions, e.g., by evaluating first-dimension fractions by reconstituting them from second-dimension subfractions, followed by straightforward application of the taste dilution analysis on the individual second-dimension subfractions revealed the sweet-tasting trans-anethole and the bitter-tasting trans-pseudoisoeugenol 2-methylbutyrate, showing recognition thresholds of 70 and 68 μmol/L, respectively, as the primary orosensory active compounds in aniseed. 2D-HPLC combined with smart sensory analysis seems to be a promising strategy to speed the discovery of the key players imparting the attractive taste of foods. PMID:25186288

  4. Multichannel response analysis on 2D projection views for detection of clustered microcalcifications in digital breast tomosynthesis

    SciTech Connect

    Wei, Jun Chan, Heang-Ping; Hadjiiski, Lubomir M.; Helvie, Mark A.; Lu, Yao; Zhou, Chuan; Samala, Ravi

    2014-04-15

    Purpose: To investigate the feasibility of a new two-dimensional (2D) multichannel response (MCR) analysis approach for the detection of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT). Methods: With IRB approval and informed consent, a data set of two-view DBTs from 42 breasts containing biopsy-proven MC clusters was collected in this study. The authors developed a 2D approach for MC detection using projection view (PV) images rather than the reconstructed three-dimensional (3D) DBT volume. Signal-to-noise ratio (SNR) enhancement processing was first applied to each PV to enhance the potential MCs. The locations of MC candidates were then identified with iterative thresholding. The individual MCs were decomposed with Hermite–Gaussian (HG) and Laguerre–Gaussian (LG) basis functions and the channelized Hotelling model was trained to produce the MCRs for each MC on the 2D images. The MCRs from the PVs were fused in 3D by a coincidence counting method that backprojects the MC candidates on the PVs and traces the coincidence of their ray paths in 3D. The 3D MCR was used to differentiate the true MCs from false positives (FPs). Finally a dynamic clustering method was used to identify the potential MC clusters in the DBT volume based on the fact that true MCs of clinical significance appear in clusters. Using two-fold cross validation, the performance of the 3D MCR for classification of true and false MCs was estimated by the area under the receiver operating characteristic (ROC) curve and the overall performance of the MCR approach for detection of clustered MCs was assessed by free response receiver operating characteristic (FROC) analysis. Results: When the HG basis function was used for MCR analysis, the detection of MC cluster achieved case-based test sensitivities of 80% and 90% at the average FP rates of 0.65 and 1.55 FPs per DBT volume, respectively. With LG basis function, the average FP rates were 0.62 and 1.57 per DBT volume at

  5. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two-dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  6. A 2-D oscillating flow analysis in Stirling engine heat exchangers

    NASA Technical Reports Server (NTRS)

    Ahn, Kyung H.; Ibrahim, Mounir B.

    1991-01-01

    A two dimensional oscillating flow analysis was conducted, simulating the gas flow inside Stirling heat exchangers. Both laminar and turbulent oscillating pipe flow were investigated numerically for Re(max) = 1920 (Va = 80), 10800 (Va = 272), 19300 (Va = 272), and 60800 (Va = 126). The results are compared with experimental results of previous investigators. Also, predictions of the flow regime on present oscillating flow conditions were checked by comparing velocity amplitudes and phase differences with those from laminar theory and quasi-steady profile. A high Reynolds number k-epsilon turbulence model was used for turbulent oscillating pipe flow. Finally, performance evaluation of the K-epsilon model was made to explore the applicability of quasi-steady turbulent models to unsteady oscillating flow analysis.

  7. Feasibility of radial and circumferential strain analysis using 2D speckle tracking echocardiography in cats.

    PubMed

    Takano, Hiroshi; Isogai, Tomomi; Aoki, Takuma; Wakao, Yoshito; Fujii, Yoko

    2015-02-01

    The purpose of the present study is to investigate the feasibility of strain analysis using speckle tracking echocardiography (STE) in cats and to evaluate STE variables in cats with hypertrophic cardiomyopathy (HCM). Sixteen clinically healthy cats and 17 cats with HCM were used. Radial and circumferential strain and strain rate variables in healthy cats were measured using STE to assess the feasibility. Comparisons of global strain and strain variables between healthy cats and cats with HCM were performed. Segmental assessments of left ventricle (LV) wall for strain and strain rate variables in cats with HCM were also performed. As a result, technically adequate images were obtained in 97.6% of the segments for STE analysis. Sedation using buprenorphine and acepromazine did not affect any global strain nor strain rate variable. In LV segments of cats with HCM, reduced segmental radial strain and strain rate variables had significantly related with segmental LV hypertrophy. It is concluded that STE analysis using short axis images of LV appeared to be clinically feasible in cats, having the possibility to be useful for detecting myocardial dysfunctions in cats with diseased heart. PMID:25373881

  8. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  9. A wideband FMBEM for 2D acoustic design sensitivity analysis based on direct differentiation method

    NASA Astrophysics Data System (ADS)

    Chen, Leilei; Zheng, Changjun; Chen, Haibo

    2013-09-01

    This paper presents a wideband fast multipole boundary element method (FMBEM) for two dimensional acoustic design sensitivity analysis based on the direct differentiation method. The wideband fast multipole method (FMM) formed by combining the original FMM and the diagonal form FMM is used to accelerate the matrix-vector products in the boundary element analysis. The Burton-Miller formulation is used to overcome the fictitious frequency problem when using a single Helmholtz boundary integral equation for exterior boundary-value problems. The strongly singular and hypersingular integrals in the sensitivity equations can be evaluated explicitly and directly by using the piecewise constant discretization. The iterative solver GMRES is applied to accelerate the solution of the linear system of equations. A set of optimal parameters for the wideband FMBEM design sensitivity analysis are obtained by observing the performances of the wideband FMM algorithm in terms of computing time and memory usage. Numerical examples are presented to demonstrate the efficiency and validity of the proposed algorithm.

  10. Feasibility of radial and circumferential strain analysis using 2D speckle tracking echocardiography in cats

    PubMed Central

    TAKANO, Hiroshi; ISOGAI, Tomomi; AOKI, Takuma; WAKAO, Yoshito; FUJII, Yoko

    2014-01-01

    The purpose of the present study is to investigate the feasibility of strain analysis using speckle tracking echocardiography (STE) in cats and to evaluate STE variables in cats with hypertrophic cardiomyopathy (HCM). Sixteen clinically healthy cats and 17 cats with HCM were used. Radial and circumferential strain and strain rate variables in healthy cats were measured using STE to assess the feasibility. Comparisons of global strain and strain variables between healthy cats and cats with HCM were performed. Segmental assessments of left ventricle (LV) wall for strain and strain rate variables in cats with HCM were also performed. As a result, technically adequate images were obtained in 97.6% of the segments for STE analysis. Sedation using buprenorphine and acepromazine did not affect any global strain nor strain rate variable. In LV segments of cats with HCM, reduced segmental radial strain and strain rate variables had significantly related with segmental LV hypertrophy. It is concluded that STE analysis using short axis images of LV appeared to be clinically feasible in cats, having the possibility to be useful for detecting myocardial dysfunctions in cats with diseased heart. PMID:25373881

  11. Coupled 2D-3D finite element method for analysis of a skin panel with a discontinuous stiffener

    NASA Technical Reports Server (NTRS)

    Wang, J. T.; Lotts, C. G.; Davis, D. D., Jr.; Krishnamurthy, T.

    1992-01-01

    This paper describes a computationally efficient analysis method which was used to predict detailed stress states in a typical composite compression panel with a discontinuous hat stiffener. A global-local approach was used. The global model incorporated both 2D shell and 3D brick elements connected by newly developed transition elements. Most of the panel was modeled with 2D elements, while 3D elements were employed to model the stiffener flange and the adjacent skin. Both linear and geometrically nonlinear analyses were performed on the global model. The effect of geometric nonlinearity induced by the eccentric load path due to the discontinuous hat stiffener was significant. The local model used a fine mesh of 3D brick elements to model the region at the end of the stiffener. Boundary conditions of the local 3D model were obtained by spline interpolation of the nodal displacements from the global analysis. Detailed in-plane and through-the-thickness stresses were calculated in the flange-skin interface near the end of the stiffener.

  12. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-08-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  13. An Asymptotic Analysis of a 2-D Model of Dynamically Active Compartments Coupled by Bulk Diffusion

    NASA Astrophysics Data System (ADS)

    Gou, J.; Ward, M. J.

    2016-04-01

    A class of coupled cell-bulk ODE-PDE models is formulated and analyzed in a two-dimensional domain, which is relevant to studying quorum-sensing behavior on thin substrates. In this model, spatially segregated dynamically active signaling cells of a common small radius ɛ ≪ 1 are coupled through a passive bulk diffusion field. For this coupled system, the method of matched asymptotic expansions is used to construct steady-state solutions and to formulate a spectral problem that characterizes the linear stability properties of the steady-state solutions, with the aim of predicting whether temporal oscillations can be triggered by the cell-bulk coupling. Phase diagrams in parameter space where such collective oscillations can occur, as obtained from our linear stability analysis, are illustrated for two specific choices of the intracellular kinetics. In the limit of very large bulk diffusion, it is shown that solutions to the ODE-PDE cell-bulk system can be approximated by a finite-dimensional dynamical system. This limiting system is studied both analytically, using a linear stability analysis and, globally, using numerical bifurcation software. For one illustrative example of the theory, it is shown that when the number of cells exceeds some critical number, i.e., when a quorum is attained, the passive bulk diffusion field can trigger oscillations through a Hopf bifurcation that would otherwise not occur without the coupling. Moreover, for two specific models for the intracellular dynamics, we show that there are rather wide regions in parameter space where these triggered oscillations are synchronous in nature. Unless the bulk diffusivity is asymptotically large, it is shown that a diffusion-sensing behavior is possible whereby more clustered spatial configurations of cells inside the domain lead to larger regions in parameter space where synchronous collective oscillations between the small cells can occur. Finally, the linear stability analysis for these cell

  14. Multi-level model for 2D human motion analysis and description

    NASA Astrophysics Data System (ADS)

    Foures, Thomas; Joly, Philippe

    2003-01-01

    This paper deals with the proposition of a model for human motion analysis in a video. Its main caracteristic is to adapt itself automatically to the current resolution, the actual quality of the picture, or the level of precision required by a given application, due to its possible decomposition into several hierarchical levels. The model is region-based to address some analysis processing needs. The top level of the model is only defined with 5 ribbons, which can be cut into sub-ribbons regarding to a given (or an expected) level of details. Matching process between model and current picture consists in the comparison of extracted subject shape with a graphical rendering of the model built on the base of some computed parameters. The comparison is processed by using a chamfer matching algorithm. In our developments, we intend to realize a platform of interaction between a dancer and tools synthetizing abstract motion pictures and music in the conditions of a real-time dialogue between a human and a computer. In consequence, we use this model in a perspective of motion description instead of motion recognition: no a priori gestures are supposed to be recognized as far as no a priori application is specially targeted. The resulting description will be made following a Description Scheme compliant with the movement notation called "Labanotation".

  15. Multiscale quantification of morphodynamics: MorphoLeaf software for 2D shape analysis.

    PubMed

    Biot, Eric; Cortizo, Millán; Burguet, Jasmine; Kiss, Annamaria; Oughou, Mohamed; Maugarny-Calès, Aude; Gonçalves, Beatriz; Adroher, Bernard; Andrey, Philippe; Boudaoud, Arezki; Laufs, Patrick

    2016-09-15

    A major challenge in morphometrics is to analyse complex biological shapes formed by structures at different scales. Leaves exemplify this challenge as they combine differences in their overall shape with smaller shape variations at their margin, leading to lobes or teeth. Current methods based on contour or on landmark analysis are successful in quantifying either overall leaf shape or leaf margin dissection, but fail in combining the two. Here, we present a comprehensive strategy and its associated freely available platform for the quantitative, multiscale analysis of the morphology of leaves with different architectures. For this, biologically relevant landmarks are automatically extracted and hierarchised, and used to guide the reconstruction of accurate average contours that properly represent both global and local features. Using this method, we establish a quantitative framework of the developmental trajectory of Arabidopsis leaves of different ranks and retrace the origin of leaf heteroblasty. When applied to different mutant forms, our method can contribute to a better understanding of gene function, as we show here for the role of CUC2 during Arabidopsis leaf serration. Finally, we illustrate the wider applicability of our tool by analysing hand morphometrics. PMID:27387872

  16. UCF WASTE PACKAGE SHIELDING ANALYSIS/2-D DORT (SCPB: N/A)

    SciTech Connect

    D.J. Skulina

    1996-01-18

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the dose rates from the UCF waste packages to be used by the EBS and other repository systems to incorporate ALARA practices in the overall repository design in compliance with the goals of the Waste Package Implementation Plan for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objectives of this evaluation are (1) to show the dose rate as a function of distance from the waste package surface and (2) to provide the shielding thicknesses required for the waste package transporter to meet a 10 mr/hr target dose rate at 2 meters from the transporter surface.

  17. Quantitative analysis of molecular-level DNA crystal growth on a 2D surface

    PubMed Central

    Lee, Junwye; Hamada, Shogo; Hwang, Si Un; Amin, Rashid; Son, Junyoung; Dugasani, Sreekantha Reddy; Murata, Satoshi; Park, Sung Ha

    2013-01-01

    Crystallization is an essential process for understanding a molecule's aggregation behavior. It provides basic information on crystals, including their nucleation and growth processes. Deoxyribonucleic acid (DNA) has become an interesting building material because of its remarkable properties for constructing various shapes of submicron-scale DNA crystals by self-assembly. The recently developed substrate-assisted growth (SAG) method produces fully covered DNA crystals on various substrates using electrostatic interactions and provides an opportunity to observe the overall crystallization process. In this study, we investigated quantitative analysis of molecular-level DNA crystallization using the SAG method. Coverage and crystal size distribution were studied by controlling the external parameters such as monomer concentration, annealing temperature, and annealing time. Rearrangement during crystallization was also discussed. We expect that our study will provide overall picture of the fabrication process of DNA crystals on the charged substrate and promote practical applications of DNA crystals in science and technology. PMID:23817625

  18. High pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis

    SciTech Connect

    Yang, Feng; Shen, Yufeng; Camp, David G.; Smith, Richard D.

    2012-04-01

    Orthogonal high-resolution separations are critical for attaining improved analytical dynamic ranges of proteome measurements. Concatenated high pH reversed phase liquid chromatography affords better separations than the strong cation exchange conventionally applied for two-dimensional shotgun proteomic analysis. For example, concatenated high pH reversed phase liquid chromatography increased identification coverage for peptides (e.g., by 1.8-fold) and proteins (e.g., by 1.6-fold) in shotgun proteomics analyses of a digested human protein sample. Additional advantages of concatenated high pH RPLC include improved protein sequence coverage, simplified sample processing, and reduced sample losses, making this an attractive first dimension separation strategy for two-dimensional proteomics analyses.

  19. A 2-D Interface Element for Coupled Analysis of Independently Modeled 3-D Finite Element Subdomains

    NASA Technical Reports Server (NTRS)

    Kandil, Osama A.

    1998-01-01

    Over the past few years, the development of the interface technology has provided an analysis framework for embedding detailed finite element models within finite element models which are less refined. This development has enabled the use of cascading substructure domains without the constraint of coincident nodes along substructure boundaries. The approach used for the interface element is based on an alternate variational principle often used in deriving hybrid finite elements. The resulting system of equations exhibits a high degree of sparsity but gives rise to a non-positive definite system which causes difficulties with many of the equation solvers in general-purpose finite element codes. Hence the global system of equations is generally solved using, a decomposition procedure with pivoting. The research reported to-date for the interface element includes the one-dimensional line interface element and two-dimensional surface interface element. Several large-scale simulations, including geometrically nonlinear problems, have been reported using the one-dimensional interface element technology; however, only limited applications are available for the surface interface element. In the applications reported to-date, the geometry of the interfaced domains exactly match each other even though the spatial discretization within each domain may be different. As such, the spatial modeling of each domain, the interface elements and the assembled system is still laborious. The present research is focused on developing a rapid modeling procedure based on a parametric interface representation of independently defined subdomains which are also independently discretized.

  20. Morphometric structural diversity of a natural armor assembly investigated by 2D continuum strain analysis.

    PubMed

    Varshney, Swati; Song, Juha; Li, Yaning; Boyce, Mary C; Ortiz, Christine

    2015-12-01

    Many armored fish scale assemblies use geometric heterogeneity of subunits as a design parameter to provide tailored biomechanical flexibility while maintaining protection from external penetrative threats. This study analyzes the spatially varying shape of individual ganoid scales as a structural element in a biological system, the exoskeleton of the armored fish Polypterus senegalus (bichir). X-ray microcomputed tomography is used to generate digital 3D reconstructions of the mineralized scales. Landmark-based geometric morphometrics is used to measure the geometric variation among scales and to define a set of geometric parameters to describe shape variation. A formalism using continuum mechanical strain analysis is developed to quantify the spatial geometry change of the scales and illustrate the mechanisms of shape morphing between scales. Five scale geometry variants are defined (average, anterior, tail, ventral, and pectoral fin) and their functional implications are discussed in terms of the interscale mobility mechanisms that enable flexibility within the exoskeleton. The results suggest that shape variation in materials design, inspired by structural biological materials, can allow for tunable behavior in flexible composites made of segmented scale assemblies to achieve enhanced user mobility, custom fit, and flexibility around joints for a variety of protective applications. PMID:26481418

  1. 2D-PAGE protein analysis of dinoflagellate Alexandrium minutum based on three different temperatures

    NASA Astrophysics Data System (ADS)

    Latib, Norhidayu Abdul; Norshaha, Safida Anira; Usup, Gires; Yusof, Nurul Yuziana Mohd

    2015-09-01

    Harmful algae bloom or red tide seems to be considered as threat to ecosystem, especially to human consumption because of the production of neurotoxin by dinoflagellates species such as Alexandrium minutum which can lead to paralytic shellfish poisoning. The aim of this study is to determine the most suitable method for protein extraction of A. minutum followed by determination of differential protein expression of A. minutum on three different temperatures (15°C, 26°C and 31.5°C). After the optimization, the protein extract was subjected to two-dimensional polyacrylamide gel electrophoresis (2-DE) to compare the intensity and distribution of the protein spots. Based on quantitative and qualitative protein assessment, use of Trizol reagent is the most suitable method to extract protein from A. minutum. 2-DE analysis of the samples results in different distribution and intensity of the protein spots were compared between 15°C, 26°C and 31.5°C.

  2. Using 2D correlation analysis to enhance spectral information available from highly spatially resolved AFM-IR spectra

    NASA Astrophysics Data System (ADS)

    Marcott, Curtis; Lo, Michael; Hu, Qichi; Kjoller, Kevin; Boskey, Adele; Noda, Isao

    2014-07-01

    The recent combination of atomic force microscopy and infrared spectroscopy (AFM-IR) has led to the ability to obtain IR spectra with nanoscale spatial resolution, nearly two orders-of-magnitude better than conventional Fourier transform infrared (FT-IR) microspectroscopy. This advanced methodology can lead to significantly sharper spectral features than are typically seen in conventional IR spectra of inhomogeneous materials, where a wider range of molecular environments are coaveraged by the larger sample cross section being probed. In this work, two-dimensional (2D) correlation analysis is used to examine position sensitive spectral variations in datasets of closely spaced AFM-IR spectra. This analysis can reveal new key insights, providing a better understanding of the new spectral information that was previously hidden under broader overlapped spectral features. Two examples of the utility of this new approach are presented. Two-dimensional correlation analysis of a set of AFM-IR spectra were collected at 200-nm increments along a line through a nucleation site generated by remelting a small spot on a thin film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). There are two different crystalline carbonyl band components near 1720 cm-1 that sequentially disappear before a band at 1740 cm-1 due to more disordered material appears. In the second example, 2D correlation analysis of a series of AFM-IR spectra spaced every 1 μm of a thin cross section of a bone sample measured outward from an osteon center of bone growth. There are many changes in the amide I and phosphate band contours, suggesting changes in the bone structure are occurring as the bone matures.

  3. Combined analysis of 2-D electrical resistivity, seismic refraction and geotechnical investigations for Bukit Bunuh complex crater

    NASA Astrophysics Data System (ADS)

    Azwin, I. N.; Saad, Rosli; Saidin, Mokhtar; Nordiana, M. M.; Anderson Bery, Andy; Hidayah, I. N. E.

    2015-01-01

    Interest in studying impact crater on earth has increased tremendously due to its importance in geologic events, earth inhabitant history as well as economic value. The existences of few shock metamorphism and crater morphology evidences are discovered in Bukit Bunuh, Malaysia thus detailed studies are performed using geophysical and geotechnical methods to verify the type of the crater and characteristics accordingly. This paper presents the combined analysis of 2-D electrical resistivity, seismic refraction, geotechnical SPT N value, moisture content and RQD within the study area. Three stages of data acquisition are made starting with regional study followed by detailed study on West side and East side. Bulk resistivity and p-wave seismic velocity were digitized from 2-D resistivity and seismic sections at specific distance and depth for corresponding boreholes and samples taken. Generally, Bukit Bunuh shows the complex crater characteristics. Standard table of bulk resistivity and p-wave seismic velocity against SPT N value, moisture content and RQD are produce according to geological classifications of impact crater; inside crater, rim/slumped terrace and outside crater.

  4. MIA-QSAR: a simple 2D image-based approach for quantitative structure activity relationship analysis

    NASA Astrophysics Data System (ADS)

    Freitas, Matheus P.; Brown, Steven D.; Martins, José A.

    2005-03-01

    An accessible and quite simple QSAR method, based on 2D image analysis, is reported. A case study is carried out in order to compare this model with a previously reported sophisticated methodology. A well known set of ( S)- N-[(1-ethyl-2-pyrrolidinyl)methyl]-6-methoxybenzamides, compounds with affinity to the dopamine D 2 receptor subtype, was divided in 40 calibration compounds and 18 test compounds and the descriptors were generated from pixels of 2D structures of each compound, which can be drawn with aid of any appropriate program. Bilinear (conventional) PLS was utilized as the regression method and leave-one-out cross-validation was performed using the NIPALS algorithm. The good predicted Q2 value obtained for the series of test compounds (0.58), together with the similar prediction quality obtained to other data sets (nAChR ligands, HIV protease inhibitors, COX-2 inhibitors and anxiolytic agents), suggests that the model is robust and seems to be as applicable as more complex methods.

  5. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.; Thornton, C. P.

    1996-01-01

    Work has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution of the Coflon material using a dual detector Gel Permeation Analysis. Again these changes may result in variation in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-Ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, Thermogravimetric Analysis, and Differential Scanning Calorimetry. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed in a modified Fluid G, which we will call G2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures, 70 C, 110 C, and 130 C. The primary purpose of the pressure tests in Fluid G2 was to further elucidate the aging mechanism of PVDF degradation.

  6. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission rates

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2013-01-01

    A technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012a). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission rate from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a projected wind field and the average velocity at which the volcanic plume is propagating. This information is valuable since the largest uncertainties when calculating emission rates of the gases using remote sensing techniques arise from propagation velocities which are often inadequately assumed. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularisation. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2, which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated in an analogous manner and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind field and column distribution of the gas plume can provide the emission rate of the volcano both during day and night.

  7. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 2: Wind propagation and emission fluxes

    NASA Astrophysics Data System (ADS)

    Krueger, A.; Stremme, W.; Harig, R.; Grutter, M.

    2012-07-01

    The technique for measuring two-dimensional (2-D) plumes of volcanic gases with thermal emission spectroscopy was described in Part 1 by Stremme et al. (2012). In that paper the instrumental aspects as well as retrieval strategies for obtaining the slant column images of SO2 and SiF4, as well as animations of particular events observed at the Popocatépetl volcano, were presented. This work focuses on the procedures for determining the propagation speed of the gases and estimating an emission flux from the given image sequences. A 2-D column density distribution of a volcanic gas, available as time-consecutive frames, provides information of a wind-field and the average velocity at which the volcanic plume is propagating. The presented reconstruction method solves the equation of continuity as an ill-posed problem using mainly a Tikhonov-like regularization. It is observed from the available data sets that if the main direction of propagation is perpendicular to the line-of-sight, the algorithm works well for SO2 which has the strongest signals, and also for SiF4 in some favourable cases. Due to the similarity of the algorithm used here with the reconstruction methods used for profile retrievals based on optimal estimation theory, diagnostic tools like the averaging kernels can be calculated analogously and the information can be quantified as degrees of freedom. Thus, it is shown that the combination of wind-field and column distribution of the gas plume can provide the emission flux of the volcano both during day and night.

  8. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1997-01-01

    Work during the past three years has included significant research in several areas aimed at further clarification of the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. Among the areas investigated were the crystallinity changes associated with both the Coflon and Tefzel after various simulated environmental exposures using X-Ray diffraction analysis. We have found that significant changes in polymer crystallinity levels occur as a function of the exposures. These crystallinity changes may have important consequences on the fracture, fatigue, tensile, and chemical resistance of the materials. We have also noted changes in the molecular weight distribution and the increased crosslinking of the Coflon material using Gel Permeation Chromatographic Analysis. Again these changes may result in variations in the mechanical and chemical properties in the material. We conducted numerous analytical studies with methods including X-ray Diffraction, Gel Permeation Chromatography, Fourier Transform Infrared Spectroscopy, and Differential Scanning Calorimetry. We investigated a plethora of aged samples of both Tefzel and Coflon that were forwarded from MERL. Pressurized tests were performed on powdered PVDF in a modified Fluid A, which we will call A-2. In this case the ethylene diamine concentration was increased to 3 percent in methanol. Coflon pipe sections and powdered Coflon were exposed in pressure cells at 1700 psi at three separate test temperatures.

  9. Chemical and Thermal Analysis

    NASA Technical Reports Server (NTRS)

    Bulluck, J. W.; Rushing, R. A.

    1995-01-01

    During the past six months we have conducted significant research in several domains in order to clarify and understanding the aging and chemical failure mechanism of thermoplastics (PVDF or Tefzel) for pipes. We organized numerous analytical studies with methods including Fourier Transform Infrared Spectroscopy, Dynamic Mechanical Analysis, Differential Scanning Calorimetry, and Stress Relaxation experiments. In addition we have reanalyzed previous thermogravimetric data concerning the rate of deplasticization of Coflon pipe. We investigated a number of aged samples of both Tefzel and Coflon that were forwarded from MERL. We conducted stress relaxation experiments of Coflon pipe at several temperatures and determined an activation energy. We also examined the dynamic mechanical response PVDF during deplasticization and during methanol plasticization. We performed numerous DSC analyses to research the changing crystalline morphology. We have noted significant changes in crystallinity upon aging for both PVDF and Tefzel. Little variation in elemental composition was noted for many of the aged Coflon and Tefzel samples tested.

  10. Stress analysis of a rectangular implant in laminated composites using 2-D and 3-D finite elements

    NASA Technical Reports Server (NTRS)

    Chow, Wai T.; Graves, Michael J.

    1992-01-01

    An analysis method using the FEM based on the Hellinger-Reissner variation principle has been developed to determine the 3-D stresses and displacements near a rectangular implant inside a laminated composite material. Three-dimensional elements are employed in regions where the interlaminar stress is considered to be significant; 2-D elements are used in other areas. Uniaxially loaded graphite-epoxy laminates have been analyzed; the implant was modeled as four plies of 3501/6 epoxy located in the middle of the laminate. It is shown that the interlaminar stresses are an order of magnitude lower than the stress representing the applied far-field load. The stress concentration factors of both the interlaminar and in-plane stresses depend on the stacking sequence of the laminate.

  11. Relevance of 2D radiographic texture analysis for the assessment of 3D bone micro-architecture

    SciTech Connect

    Apostol, Lian; Boudousq, Vincent; Basset, Oliver; Odet, Christophe; Yot, Sophie; Tabary, Joachim; Dinten, Jean-Marc; Boller, Elodie; Kotzki, Pierre-Olivier; Peyrin, Francoise

    2006-09-15

    Although the diagnosis of osteoporosis is mainly based on dual x-ray absorptiometry, it has been shown that trabecular bone micro-architecture is also an important factor in regard to fracture risk. In vivo, techniques based on high-resolution x-ray radiography associated to texture analysis have been proposed to investigate bone micro-architecture, but their relevance for giving pertinent 3D information is unclear. Thirty-three calcaneus and femoral neck bone samples including the cortical shells (diameter: 14 mm, height: 30-40 mm) were imaged using 3D-synchrotron x-ray micro-CT at the ESRF. The 3D reconstructed images with a cubic voxel size of 15 {mu}m were further used for two purposes: (1) quantification of three-dimensional trabecular bone micro-architecture (2) simulation of realistic x-ray radiographs under different acquisition conditions. The simulated x-ray radiographs were then analyzed using a large variety of texture analysis methods (co-occurrence, spectral density, fractal, morphology, etc.). The range of micro-architecture parameters was in agreement with previous studies and rather large, suggesting that the population was representative. More than 350 texture parameters were tested. A small number of them were selected based on their correlation to micro-architectural morphometric parameters. Using this subset of texture parameters, multiple regression allowed one to predict up to 93% of the variance of micro-architecture parameters using three texture features. 2D texture features predicting 3D micro-architecture parameters other than BV/TV were identified. The methodology proposed for evaluating the relationships between 3D micro-architecture and 2D texture parameters may also be used for optimizing the conditions for radiographic imaging. Further work will include the application of the method to physical radiographs. In the future, this approach could be used in combination with DXA to refine osteoporosis diagnosis.

  12. Advantages of 3D FEM numerical modeling over 2D, analyzed in a case study of transient thermal-hydraulic groundwater utilization

    NASA Astrophysics Data System (ADS)

    Fuchsluger, Martin; Götzl, Gregor

    2014-05-01

    In general most aquifers have a much larger lateral extent than vertical. This fact leads to the application of the Dupuit-Forchheimer assumptions to many groundwater problems, whereas a two dimensional simulation is considered sufficient. By coupling transient fluid flow modeling with heat transport the 2D aquifer approximation is in many cases insufficient as it does not consider effects of the subjacent and overlying aquitards on heat propagation as well as the impact of surface climatic effects on shallow aquifers. A shallow Holocene aquifer in Vienna served as a case study to compare different modeling approaches in two and three dimensions in order to predict the performance and impact of a thermal aquifer utilization for heating (1.3 GWh) and cooling (1.4 GWh) of a communal building. With the assumption of a 6 doublets well field, the comparison was realized in three steps: At first a two dimensional model for unconfined flow was set up, assuming a varying hydraulic conductivity as well as a varying top and bottom elevation of the aquifer (gross - thickness). The model area was chosen along constant hydraulic head at steady state conditions. A second model was made by mapping solely the aquifer in three dimensions using the same subdomain and boundary conditions as defined in step one. The third model consists of a complete three dimensional geological build-up including the aquifer as well as the overlying and subjacent layers and additionally an annually variable climatic boundary condition at the surface. The latter was calibrated with measured water temperature at a nearby water gauge. For all three models the same annual operating mode of the 6 hydraulic doublets was assumed. Furthermore a limited maximal groundwater temperature at a range between 8 and 18 °C as well as a constrained well flow rate has been given. Finally a descriptive comparison of the three models concerning the extracted thermal power, drawdown, temperature distribution and Darcy

  13. Statistical Analysis of Thermal Analysis Margin

    NASA Technical Reports Server (NTRS)

    Garrison, Matthew B.

    2011-01-01

    NASA Goddard Space Flight Center requires that each project demonstrate a minimum of 5 C margin between temperature predictions and hot and cold flight operational limits. The bounding temperature predictions include worst-case environment and thermal optical properties. The purpose of this work is to: assess how current missions are performing against their pre-launch bounding temperature predictions and suggest any possible changes to the thermal analysis margin rules

  14. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  15. Performance of a Micro-Strip Gas Chamber for event wise, high rate thermal neutron detection with accurate 2D position determination

    NASA Astrophysics Data System (ADS)

    Mindur, B.; Alimov, S.; Fiutowski, T.; Schulz, C.; Wilpert, T.

    2014-12-01

    A two-dimensional (2D) position sensitive detector for neutron scattering applications based on low-pressure gas amplification and micro-strip technology was built and tested with an innovative readout electronics and data acquisition system. This detector contains a thin solid neutron converter and was developed for time- and thus wavelength-resolved neutron detection in single-event counting mode, which improves the image contrast in comparison with integrating detectors. The prototype detector of a Micro-Strip Gas Chamber (MSGC) was built with a solid natGd/CsI thermal neutron converter for spatial resolutions of about 100 μm and counting rates up to 107 neutrons/s. For attaining very high spatial resolutions and counting rates via micro-strip readout with centre-of-gravity evaluation of the signal amplitude distributions, a fast, channel-wise, self-triggering ASIC was developed. The front-end chips (MSGCROCs), which are very first signal processing components, are read out into powerful ADC-FPGA boards for on-line data processing and thereafter via Gigabit Ethernet link into the data receiving PC. The workstation PC is controlled by a modular, high performance dedicated software suite. Such a fast and accurate system is crucial for efficient radiography/tomography, diffraction or imaging applications based on high flux thermal neutron beam. In this paper a brief description of the detector concept with its operation principles, readout electronics requirements and design together with the signals processing stages performed in hardware and software are presented. In more detail the neutron test beam conditions and measurement results are reported. The focus of this paper is on the system integration, two dimensional spatial resolution, the time resolution of the readout system and the imaging capabilities of the overall setup. The detection efficiency of the detector prototype is estimated as well.

  16. 2D THD and 3D TEHD analysis of large spindle supported thrust bearings with pins and double layer system used in the three gorges hydroelectric generators

    NASA Astrophysics Data System (ADS)

    Huang, B.; Wu, Z. D.; Wu, J. L.; Wang, L. Q.

    2012-11-01

    A 2D THD model and a 3DTEHD model for large spindle supported thrust bearings were set up and used to analyze the lubrication performance of the Three Gorges test thrust beating withpins and double layer system developed by Alstom Power. The finite difference method was employed to solve the THD model, and the thermal-elasticdeformations in the pad and runner were obtained by the finite element software ANSYS11.0. The data transfer between the THD model and ANSYS11.0 was carried out automatically by an interface program.A detailed comparison between the experimental results and numerical predictions by the two different modelsset up in this paper was carried out. Poor agreement has been found between the theoretical results obtained by 2D THD model and experimental data, while 3D TEHD provides fairly good agreement, confirming the importance of thermal effects and thermal-elastic deformations in both pad and runner.

  17. Thermal Analysis of Closed Systems

    Energy Science and Technology Software Center (ESTSC)

    1987-10-01

    TAP-LOOP is a finite-difference program designed for steady-state and transient thermal analysis of recirculating fluid loops and associated heat transfer equipment; however, it is not limited to loop analysis. TAP-LOOP was developed to perform scoping and conceptual design analyses for closed test loops in the Fast Flux Test Facility (FFTF), but it can handle a variety of problems which can be described in terms of potentials, sources, sinks, and storage including, in addition to heatmore » transfer problems, studies of potential fluid flow, electrical networks, and stress analysis.« less

  18. A hybrid wave-mode formulation for the vibro-acoustic analysis of 2D periodic structures

    NASA Astrophysics Data System (ADS)

    Droz, C.; Zhou, C.; Ichchou, M. N.; Lainé, J.-P.

    2016-02-01

    In the framework of vibrational analysis of 2D periodic waveguides, Floquet-Bloch theorem is widely applied for the determination of wave dispersion characteristics. In this context, the Wave Finite Element Method (WFEM) combines Periodic Structure Theory (PST) with standard FE packages, enabling wave dispersion analysis of waveguides involving structurally realistic unit-cells. For such applications, the computational efficiency of the WFEM depends on the choice of the formulation and can lead to numerical issues, worsen by extensive computational cost. This paper presents a coupled wave-mode approach for the determination of wave dispersion characteristics in structurally advanced periodic structures. It combines two scales of model order reduction. At the unit-cell's scale, Component Mode Synthesis (CMS) provides the displacement field associated with local resonances of the periodic structure, while the free wave propagation is considered using a spectral problem projection on a reduced set of shape functions associated with propagating waves, thus providing considerable reduction of the computational cost. An application is provided for a bi-directionally stiffened panel and the influence of reduction parameters is discussed, as well as the robustness of the numerical results.

  19. New aQTL SNPs for the CYP2D6 Identified by a Novel Mediation Analysis of Genome-Wide SNP Arrays, Gene Expression Arrays, and CYP2D6 Activity

    PubMed Central

    Wang, Zhiping; Boustani, Malaz; Liu, Yunlong; Skaar, Todd; Li, Lang

    2013-01-01

    Background. The genome-wide association studies (GWAS) have been successful during the last few years. A key challenge is that the interpretation of the results is not straightforward, especially for transacting SNPs. Integration of transcriptome data into GWAS may provide clues elucidating the mechanisms by which a genetic variant leads to a disease. Methods. Here, we developed a novel mediation analysis approach to identify new expression quantitative trait loci (eQTL) driving CYP2D6 activity by combining genotype, gene expression, and enzyme activity data. Results. 389,573 and 1,214,416 SNP-transcript-CYP2D6 activity trios are found strongly associated (P < 10−5, FDR = 16.6% and 11.7%) for two different genotype platforms, namely, Affymetrix and Illumina, respectively. The majority of eQTLs are trans-SNPs. A single polymorphism leads to widespread downstream changes in the expression of distant genes by affecting major regulators or transcription factors (TFs), which would be visible as an eQTL hotspot and can lead to large and consistent biological effects. Overlapped eQTL hotspots with the mediators lead to the discovery of 64 TFs. Conclusions. Our mediation analysis is a powerful approach in identifying the trans-QTL-phenotype associations. It improves our understanding of the functional genetic variations for the liver metabolism mechanisms. PMID:24232670

  20. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    SciTech Connect

    Davis, A.B.; Clothiaux, E.

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  1. 2D wavelet-analysis-based calibration technique for flat-panel imaging detectors: application in cone beam volume CT

    NASA Astrophysics Data System (ADS)

    Tang, Xiangyang; Ning, Ruola; Yu, Rongfeng; Conover, David L.

    1999-05-01

    The application of the newly developed flat panel x-ray imaging detector in cone beam volume CT has attracted increasing interest recently. Due to an imperfect solid state array manufacturing process, however, defective elements, gain non-uniformity and offset image unavoidably exist in all kinds of flat panel x-ray imaging detectors, which will cause severe streak and ring artifacts in a cone beam reconstruction image and severely degrade image quality. A calibration technique, in which the artifacts resulting from the defective elements, gain non-uniformity and offset image can be reduced significantly, is presented in this paper. The detection of defective elements is distinctively based upon two-dimensional (2D) wavelet analysis. Because of its inherent localizability in recognizing singularities or discontinuities, wavelet analysis possesses the capability of detecting defective elements over a rather large x-ray exposure range, e.g., 20% to approximately 60% of the dynamic range of the detector used. Three-dimensional (3D) images of a low-contrast CT phantom have been reconstructed from projection images acquired by a flat panel x-ray imaging detector with and without calibration process applied. The artifacts caused individually by defective elements, gain non-uniformity and offset image have been separated and investigated in detail, and the correlation with each other have also been exposed explicitly. The investigation is enforced by quantitative analysis of the signal to noise ratio (SNR) and the image uniformity of the cone beam reconstruction image. It has been demonstrated that the ring and streak artifacts resulting from the imperfect performance of a flat panel x-ray imaging detector can be reduced dramatically, and then the image qualities of a cone beam reconstruction image, such as contrast resolution and image uniformity are improved significantly. Furthermore, with little modification, the calibration technique presented here is also applicable

  2. Thermal stability of Ag, Al, Sn, Pb, and Hg films reinforced by 2D (C, Si) crystals and the formation of interfacial fluid states in them upon heating. MD experiment

    NASA Astrophysics Data System (ADS)

    Polukhin, V. A.; Kurbanova, E. D.

    2016-02-01

    Molecular dynamics simulation is used to study the thermal stability of the interfacial states of metallic Al, Ag, Sn, Pb, and Hg films (i.e., the structural elements of superconductor composites and conducting electrodes) reinforced by 2D graphene and silicene crystals upon heating up to disordering and to analyze the formation of nonautonomous fluid pseudophases in interfaces. The effect of perforation defects in reinforcing 2D-C and 2D-Si planes with passivated edge covalent bonds on the atomic dynamics is investigated. As compared to Al and Ag, the diffusion coefficients in Pd and Hg films increase monotonically with temperature during thermally activated disordering processes, the interatomic distances decrease, the sizes decrease, drops form, and their density profile grows along the normal. The coagulation of Pb and Hg drops is accompanied by a decrease in the contact angle, the reduction of the interface contact with graphene, and the enhancement of its corrugation (waviness).

  3. Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection.

    PubMed

    Zhang, Kelly; Li, Yi; Tsang, Midco; Chetwyn, Nik P

    2013-09-01

    To overcome challenges in HPLC impurity analysis of pharmaceuticals, we developed an automated online multi-heartcutting 2D HPLC system with hyphenated UV-charged aerosol MS detection. The first dimension has a primary column and the second dimension has six orthogonal columns to enhance flexibility and selectivity. The two dimensions were interfaced by a pair of switching valves equipped with six trapping loops that allow multi-heartcutting of peaks of interest in the first dimension and also allow "peak parking." The hyphenated UV-charged aerosol MS detection provides comprehensive detection for compounds with and without UV chromophores, organics, and inorganics. It also provides structural information for impurity identification. A hidden degradation product that co-eluted with the drug main peak was revealed by RP × RP separation and thus enabled the stability-indicating method development. A poorly retained polar component with no UV chromophores was analyzed by RP × hydrophilic interaction liquid chromatography separation with charged aerosol detection. Furthermore, using this system, the structures of low-level impurities separated by a method using nonvolatile phosphate buffer were identified and tracked by MS in the second dimension. PMID:23821312

  4. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  5. Integral equation analysis and optimization of 2D layered nanolithography masks by complex images Green's function technique in TM polarization.

    PubMed

    Haghtalab, Mohammad; Faraji-Dana, Reza

    2012-05-01

    Analysis and optimization of diffraction effects in nanolithography through multilayered media with a fast and accurate field-theoretical approach is presented. The scattered field through an arbitrary two-dimensional (2D) mask pattern in multilayered media illuminated by a TM-polarized incident wave is determined by using an electric field integral equation formulation. In this formulation the electric field is represented in terms of complex images Green's functions. The method of moments is then employed to solve the resulting integral equation. In this way an accurate and computationally efficient approximate method is achieved. The accuracy of the proposed method is vindicated through comparison with direct numerical integration results. Moreover, the comparison is made between the results obtained by the proposed method and those obtained by the full-wave finite-element method. The ray tracing method is combined with the proposed method to describe the imaging process in the lithography. The simulated annealing algorithm is then employed to solve the inverse problem, i.e., to design an optimized mask pattern to improve the resolution. Two binary mask patterns under normal incident coherent illumination are designed by this method, where it is shown that the subresolution features improve the critical dimension significantly. PMID:22561933

  6. Analysis on oscillating actuator frequency influence of the fluid flow characterization for 2D contractile water jet thruster

    NASA Astrophysics Data System (ADS)

    Shaari, M. F.; Abu Bakar, H.; Nordin, N.; Saw, S. K.; Samad, Z.

    2013-12-01

    Contractile body is an alternative mechanism instead of rotating blade propeller to generate water jet for locomotion. The oscillating motion of the actuator at different frequencies varies the pressure and volume of the pressure chamber in time to draw in and jet out the water at a certain mass flow rate. The aim of this research was to analyze the influence of the actuating frequency of the fluid flow in the pressure chamber of the thruster during this inflation-deflation process. A 70mm × 70mm × 18mm (L × W × T) 2D water jet thruster was fabricated for this purpose. The contractile function was driven using two lateral pneumatic actuators where the fluid flow analysis was focused on the X-Y plane vector. Observation was carried out using a video camera and Matlab image measurement technique to determine the volume of the flowing mass. The result demonstrated that the greater actuating frequency decreases the fluid flow rate and the Reynolds number. This observation shows that the higher frequency would give a higher mass flow rate during water jet generation.

  7. 2D Cross Sectional Analysis and Associated Electrochemistry of Composite Electrodes Containing Dispersed Agglomerates of Nanocrystalline Magnetite, Fe₃O₄.

    PubMed

    Bock, David C; Kirshenbaum, Kevin C; Wang, Jiajun; Zhang, Wei; Wang, Feng; Wang, Jun; Marschilok, Amy C; Takeuchi, Kenneth J; Takeuchi, Esther S

    2015-06-24

    When electroactive nanomaterials are fully incorporated into an electrode structure, characterization of the crystallite sizes, agglomerate sizes, and dispersion of the electroactive materials can lend insight into the complex electrochemistry associated with composite electrodes. In this study, composite magnetite electrodes were sectioned using ultramicrotome techniques, which facilitated the direct observation of crystallites and agglomerates of magnetite (Fe3O4) as well as their dispersal patterns in large representative sections of electrode, via 2D cross sectional analysis by Transmission Electron Microscopy (TEM). Further, the electrochemistry of these electrodes were recorded, and Transmission X-ray Microscopy (TXM) was used to determine the distribution of oxidation states of the reduced magnetite. Unexpectedly, while two crystallite sizes of magnetite were employed in the production of the composite electrodes, the magnetite agglomerate sizes and degrees of dispersion in the two composite electrodes were similar to each other. This observation illustrates the necessity for careful characterization of composite electrodes, in order to understand the effects of crystallite size, agglomerate size, and level of dispersion on electrochemistry. PMID:26024206

  8. 2D-DIGE proteomic analysis of mesenchymal stem cell cultured on the elasticity-tunable hydrogels.

    PubMed

    Kuboki, Thasaneeya; Kantawong, Fahsai; Burchmore, Richard; Dalby, Matthew J; Kidoaki, Satoru

    2012-01-01

    The present study focuses on mechanotransduction in mesenchymal stem cells (MSCs) in response to matrix elasticity. By using photocurable gelatinous gels with tunable stiffness, proteomic profiles of MSCs cultured on tissue culture plastic, soft (3 kPa) and stiff (52 kPa) matrices were deciphered using 2-dimensional differential in-gel analysis (2D-DIGE). The DIGE data, tied to immunofluorescence, indicated abundance and organization changes in the cytoskeletonal proteins as well as differential regulation of important signaling-related proteins, stress-responsing proteins and also proteins involved in collagen synthesis. The major CSK proteins including actin, tubulin and vimentin of the cells cultured on the gels were remarkably changed their expressions. Significant down-regulation of α-tubulin and β-actin can be observed on gel samples in comparison to the rigid tissue culture plates. The expression abundance of vimentin appeared to be highest in the MSCs cultured on hard gels. These results suggested that the substrate stiffness significantly affects expression balances in cytoskeletal proteins of MSCs with some implications to cellular tensegrity. PMID:22971925

  9. Phylogenetic and 2D/3D Analysis of HCV 1a NS4A Gene/Protein in Pakistani Isolates

    PubMed Central

    Hussain, Abrar; Idrees, Muhammad; Asif, Muhammad; Ali, Liaqat; Rasool, Mahmood

    2015-01-01

    Background: The nonstructural protein NS4A of hepatitis C virus is composed of 54 amino acids. This small size protein has vital role in many cellular functions. The most important reported function is being a cofactor of viral enzymes serine protease and helicase. Objectives: The objective of this study was to analyze the phylogenetic variation, its impact in terms of translation and any functional change in protein structure at primary 2D/3D structure using computational tools from Pakistani patients isolates. Materials and Methods: Patient sera infected with Hepatitis C virus, genotype 1A, were obtained from Molecular Diagnostics lab, CEMB, University of the Punjab Lahore by using BD Vacutainer collection tubes (Becton Dickenson). Results: Phylogenetic analysis of the gene revealed that Pakistani 1a HCV strains are in the start of third cluster and there is a difference between inter Pakistani isolates at primary, secondary and tertiary levels. Conclusions: Mutations were present in the central domain of NS4A (amino acids 21 - 34). PMID:26288631

  10. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  11. Systems analysis of thermal storage

    NASA Astrophysics Data System (ADS)

    Copeland, R. J.

    1981-08-01

    Analyses were conducted on thermal storage concepts for solar thermal applications. These studies include estimates of both the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, an in-depth study evaluated thermal storage concepts for water/steam, organic fluid, and gas/Brayton solar thermal receivers. Promising and nonpromising concepts were identified. Thermal storage concepts were evaluated for a liquid metal receiver. The value of thermal storage in a solar thermal industrial process heat application was analyzed. Several advanced concepts studied, include ground-mounted thermal storage for parabolic dishes with Stirling engines.

  12. Thermal Analysis Methods For Earth Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth M.; Dec, John A.; Lindell, Michael C.

    2000-01-01

    Thermal analysis of a vehicle designed to return samples from another planet, such as the Earth Entry vehicle for the Mars Sample Return mission, presents several unique challenges. The Earth Entry Vehicle (EEV) must contain Martian material samples after they have been collected and protect them from the high heating rates of entry into the Earth's atmosphere. This requirement necessitates inclusion of detailed thermal analysis early in the design of the vehicle. This paper will describe the challenges and solutions for a preliminary thermal analysis of an Earth Entry Vehicle. The aeroheating on the vehicle during entry would be the main driver for the thermal behavior, and is a complex function of time, spatial position on the vehicle, vehicle temperature, and trajectory parameters. Thus, the thermal analysis must be closely tied to the aeroheating analysis in order to make accurate predictions. Also, the thermal analysis must account for the material response of the ablative thermal protection system (TPS). For the exo-atmospheric portion of the mission, the thermal analysis must include the orbital radiation fluxes on the surfaces. The thermal behavior must also be used to predict the structural response of the vehicle (the thermal stress and strains) and whether they remain within the capability of the materials. Thus, the thermal analysis requires ties to the three-dimensional geometry, the aeroheating analysis, the material response analysis, the orbital analysis, and the structural analysis. The goal of this paper is to describe to what degree that has been achieved.

  13. THERMAL CONDUCTIVITY ANALYSIS OF GASES

    DOEpatents

    Clark, W.J.

    1949-06-01

    This patent describes apparatus for the quantitative analysis of a gaseous mixture at subatmospheric pressure by measurement of its thermal conductivity. A heated wire forms one leg of a bridge circuit, while the gas under test is passed about the wire at a constant rate. The bridge unbalance will be a measure of the change in composition of the gas, if compensation is made for the effect due to gas pressure change. The apparatus provides a voltage varying with fluctuations of pressure in series with the indicating device placed across the bridge, to counterbalance the voltage change caused by fluctuations in the pressure of the gaseous mixture.

  14. Comparison and Characterization of Proteomes in the ThreeDomains of Life Using 2D Correlation Analysis

    NASA Astrophysics Data System (ADS)

    Fujishima, K.; Komasa, M.; Kitamura, S.; Tomita, M.; Kanai, A.

    Proteins are a major regulatory component in complex biological systems.Among them, DNA/RNA-binding proteins, the key components of the central dogma of molecular biology, and membrane proteins, which are necessary for both signal transduction and metabolite transport, are suggested to be the most important protein families that arose in the early stage of life. In this study, we computationally analyzed the whole proteome data of six model species to overview the protein diversity in the three domains of life (Bacteria, Archaea and Eukaryota), especially focusing on the above two protein families. To compare the protein distribution among the six model species, we calculated various protein profiles: hydropathy, molecular weight, amino acid composition and periodicity for each protein. We found a domain-specific distribution of the proteome based on 2D correlation analysis of hydropathy and molecular weight. Further, the merged protein distribution of Archaea and other do mains revealed many membrane proteins localized in Bacteria-specific regions with a high ratio of hydropathy and many DNA/RNA-binding proteins localized in Eukaryota-specific regions with a low ratio of hydropathy. Since about half of the proteins encoded in the genome are still functionally unknown, we further conducted Support Vector Machine (SVM)-based functional prediction using amino acid composition (CO score) and periodicity (PD score) as feature vectors to predict the overall number of DNA/RNA-binding proteins and membrane proteins in the proteome. Our estimation indicated that two functional categories occupy approximately 60% to 80% of the proteome, and further, the proportion of the two categories varied among the three domains of life, suggesting that the proteome has gone through different selective pressure during evolution.

  15. Rainfall/runoff simulation with 2D full shallow water equations: Sensitivity analysis and calibration of infiltration parameters

    NASA Astrophysics Data System (ADS)

    Fernández-Pato, Javier; Caviedes-Voullième, Daniel; García-Navarro, Pilar

    2016-05-01

    One of the most difficult issues in the development of hydrologic models is to find a rigorous source of data and specific parameters to a given problem, on a given location that enable reliable calibration. In this paper, a distributed and physically based model (2D Shallow Water Equations) is used for surface flow and runoff calculations in combination with two infiltration laws (Horton and Green-Ampt) for estimating infiltration in a watershed. This technique offers the capability of assigning a local and time-dependent infiltration rate to each computational cell depending on the available surface water, soil type or vegetation. We investigate how the calibration of parameters is affected by transient distributed Shallow Water model and the complexity of the problem. In the first part of this work, we calibrate the infiltration parameters for both Horton and Green-Ampt models under flat ponded soil conditions. Then, by means of synthetic test cases, we perform a space-distributed sensitivity analysis in order to show that this calibration can be significantly affected by the introduction of topography or rainfall. In the second part, parameter calibration for a real catchment is addressed by comparing the numerical simulations with two different sets of experimental data, corresponding to very different events in terms of the rainfall volume. We show that the initial conditions of the catchment and the rainfall pattern have a special relevance in the quality of the adjustment. Hence, it is shown that the topography of the catchment and the storm characteristics affect the calibration of infiltration parameters.

  16. Static & Dynamic Response of 2D Solids

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    NIKE2D is an implicit finite-element code for analyzing the finite deformation, static and dynamic response of two-dimensional, axisymmetric, plane strain, and plane stress solids. The code is fully vectorized and available on several computing platforms. A number of material models are incorporated to simulate a wide range of material behavior including elasto-placicity, anisotropy, creep, thermal effects, and rate dependence. Slideline algorithms model gaps and sliding along material interfaces, including interface friction, penetration and single surfacemore » contact. Interactive-graphics and rezoning is included for analyses with large mesh distortions. In addition to quasi-Newton and arc-length procedures, adaptive algorithms can be defined to solve the implicit equations using the solution language ISLAND. Each of these capabilities and more make NIKE2D a robust analysis tool.« less

  17. MAGNUM-2D computer code: user's guide

    SciTech Connect

    England, R.L.; Kline, N.W.; Ekblad, K.J.; Baca, R.G.

    1985-01-01

    Information relevant to the general use of the MAGNUM-2D computer code is presented. This computer code was developed for the purpose of modeling (i.e., simulating) the thermal and hydraulic conditions in the vicinity of a waste package emplaced in a deep geologic repository. The MAGNUM-2D computer computes (1) the temperature field surrounding the waste package as a function of the heat generation rate of the nuclear waste and thermal properties of the basalt and (2) the hydraulic head distribution and associated groundwater flow fields as a function of the temperature gradients and hydraulic properties of the basalt. MAGNUM-2D is a two-dimensional numerical model for transient or steady-state analysis of coupled heat transfer and groundwater flow in a fractured porous medium. The governing equations consist of a set of coupled, quasi-linear partial differential equations that are solved using a Galerkin finite-element technique. A Newton-Raphson algorithm is embedded in the Galerkin functional to formulate the problem in terms of the incremental changes in the dependent variables. Both triangular and quadrilateral finite elements are used to represent the continuum portions of the spatial domain. Line elements may be used to represent discrete conduits. 18 refs., 4 figs., 1 tab.

  18. Combining random forest and 2D correlation analysis to identify serum spectral signatures for neuro-oncology.

    PubMed

    Smith, Benjamin R; Ashton, Katherine M; Brodbelt, Andrew; Dawson, Timothy; Jenkinson, Michael D; Hunt, Neil T; Palmer, David S; Baker, Matthew J

    2016-06-01

    Fourier transform infrared (FTIR) spectroscopy has long been established as an analytical technique for the measurement of vibrational modes of molecular systems. More recently, FTIR has been used for the analysis of biofluids with the aim of becoming a tool to aid diagnosis. For the clinician, this represents a convenient, fast, non-subjective option for the study of biofluids and the diagnosis of disease states. The patient also benefits from this method, as the procedure for the collection of serum is much less invasive and stressful than traditional biopsy. This is especially true of patients in whom brain cancer is suspected. A brain biopsy is very unpleasant for the patient, potentially dangerous and can occasionally be inconclusive. We therefore present a method for the diagnosis of brain cancer from serum samples using FTIR and machine learning techniques. The scope of the study involved 433 patients from whom were collected 9 spectra each in the range 600-4000 cm(-1). To begin the development of the novel method, various pre-processing steps were investigated and ranked in terms of final accuracy of the diagnosis. Random forest machine learning was utilised as a classifier to separate patients into cancer or non-cancer categories based upon the intensities of wavenumbers present in their spectra. Generalised 2D correlational analysis was then employed to further augment the machine learning, and also to establish spectral features important for the distinction between cancer and non-cancer serum samples. Using these methods, sensitivities of up to 92.8% and specificities of up to 91.5% were possible. Furthermore, ratiometrics were also investigated in order to establish any correlations present in the dataset. We show a rapid, computationally light, accurate, statistically robust methodology for the identification of spectral features present in differing disease states. With current advances in IR technology, such as the development of rapid discrete

  19. Preliminary analysis of the Baranof Fan system, Gulf of Alaska, based on 2D seismic reflection and multibeam bathymetry data

    NASA Astrophysics Data System (ADS)

    LeVoir, M. A.; Gulick, S. P.; Reece, R.; Barth, G. A.; Childs, J. R.; Everson, E. D.; Hart, P. E.; Johnson, K. M.; Lester, W. R.; Sliter, R. W.

    2011-12-01

    The Baranof Fan is a large marine sedimentary system in the eastern Gulf of Alaska, straddling the border between the U.S. and Canada. The volume of the Fan is estimated to be > 200,000 km3. Little is known about the depositional timing, the tectonic and morphologic processes influencing its development, or the role of channel aggradation and avulsion in its progression. Both tectonic and climatic transitions likely influenced the formation and evolution of the Fan, with events including the onset of northern hemisphere glaciation, the Mid-Pleistocene transition, the transport of the Yakutat Terrane along the southeast Alaskan margin, and the uplift of the Coast Mountains. 2D seismic reflection and multibeam bathymetry data were collected in the Gulf of Alaska in June 2011 aboard the R/V Marcus G. Langseth as a part of the U.S. Extended Continental Shelf (ECS) program assessing potential opportunities under the United Nations Law of the Sea Convention. The purpose of the 2011 survey was to determine sediment thickness, velocity structure, stratigraphic architecture, and crustal structure on of the Gulf of Alaska seafloor in support of U.S. continental shelf maritime zone definition. The surveyed geologic features include the Surveyor and Baranof sedimentary systems, which control active sediment distribution in the Gulf of Alaska. Preliminary analysis of these data show four distinct buried channels throughout the mid to distal Baranof Fan, ranging in width from 5 - 9 km, which may have evolved into modern surface channels (ranging in width from 2 - 7 km) visible in both the seismic data and multibeam bathymetry. The location and trajectory of these buried channels, however, appears distinct from the modern Horizon and Mukluk Channels; the buried channels may have avulsed into the modern channel systems, or could possibly be older and now abandoned branches instrumental in building the westward part of the Fan. All of the imaged channels appear to be depositional

  20. Volcanic SO2 and SiF4 visualization using 2-D thermal emission spectroscopy - Part 1: Slant-columns and their ratios

    NASA Astrophysics Data System (ADS)

    Stremme, W.; Krueger, A.; Harig, R.; Grutter, M.

    2012-02-01

    The composition and emission rates of volcanic gas plumes provide insight of the geologic internal activity, atmospheric chemistry, aerosol formation and radiative processes around it. Observations are necessary for public security and the aviation industry. Ground-based thermal emission infrared spectroscopy, which uses the radiation of the volcanic gas itself, allows for continuously monitoring during day and night from a safe distance. We present measurements on Popocatépetl volcano based on thermal emission spectroscopy during different campaigns between 2006-2009 using a Scanning Infrared Gas Imaging System (SIGIS). The experimental set-up, measurement geometries and analytical algorithms are described. The equipment was operated from a safe distance of 12 km from the volcano at two different spectral resolutions: 0.5 and 4 cm-1. The 2-dimensional scanning capability of the instrument allows for an on-line visualization of the volcanic SO2 plume and its animation. SiF4 was also identified in the infrared spectra recorded at both resolutions. The SiF4/SO2 molecular ratio can be calculated from each image and used as a highly useful parameter to follow changes in volcanic activity. A small Vulcanian eruption was monitored during the night of 16 to 17 November 2008 and strong ash emission together with a pronounced SO2 cloud was registered around 01:00 a.m. LST (Local Standard Time). Enhanced SiF4/SO2 ratios were observed before and after the eruption. A validation of the results from thermal emission measurements with those from absorption spectra of the moon taken at the same time, as well as an error analysis, are presented. The inferred propagation speed from sequential images is used in a subsequent paper (Part 2) to calculate the emission rates at different distances from the crater.

  1. 2D Hydrodynamic Based Logic Modeling Tool for River Restoration Decision Analysis: A Quantitative Approach to Project Prioritization

    NASA Astrophysics Data System (ADS)

    Bandrowski, D.; Lai, Y.; Bradley, N.; Gaeuman, D. A.; Murauskas, J.; Som, N. A.; Martin, A.; Goodman, D.; Alvarez, J.

    2014-12-01

    In the field of river restoration sciences there is a growing need for analytical modeling tools and quantitative processes to help identify and prioritize project sites. 2D hydraulic models have become more common in recent years and with the availability of robust data sets and computing technology, it is now possible to evaluate large river systems at the reach scale. The Trinity River Restoration Program is now analyzing a 40 mile segment of the Trinity River to determine priority and implementation sequencing for its Phase II rehabilitation projects. A comprehensive approach and quantitative tool has recently been developed to analyze this complex river system referred to as: 2D-Hydrodynamic Based Logic Modeling (2D-HBLM). This tool utilizes various hydraulic output parameters combined with biological, ecological, and physical metrics at user-defined spatial scales. These metrics and their associated algorithms are the underpinnings of the 2D-HBLM habitat module used to evaluate geomorphic characteristics, riverine processes, and habitat complexity. The habitat metrics are further integrated into a comprehensive Logic Model framework to perform statistical analyses to assess project prioritization. The Logic Model will analyze various potential project sites by evaluating connectivity using principal component methods. The 2D-HBLM tool will help inform management and decision makers by using a quantitative process to optimize desired response variables with balancing important limiting factors in determining the highest priority locations within the river corridor to implement restoration projects. Effective river restoration prioritization starts with well-crafted goals that identify the biological objectives, address underlying causes of habitat change, and recognizes that social, economic, and land use limiting factors may constrain restoration options (Bechie et. al. 2008). Applying natural resources management actions, like restoration prioritization, is

  2. A BENCHMARKING ANALYSIS FOR FIVE RADIONUCLIDE VADOSE ZONE MODELS (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, AND CHAIN 2D) IN SOIL SCREENING LEVEL CALCULATIONS

    EPA Science Inventory

    Five radionuclide vadose zone models with different degrees of complexity (CHAIN, MULTIMED_DP, FECTUZ, HYDRUS, and CHAIN 2D) were selected for use in soil screening level (SSL) calculations. A benchmarking analysis between the models was conducted for a radionuclide (99Tc) rele...

  3. Analysis of the terrestrial ion foreshock: 2D Full-Particle simulation of a curved supercritical shock

    NASA Astrophysics Data System (ADS)

    Lembege, B.; Savoini, P.; Stienlet, J.

    2013-05-01

    Two distinct ion populations backstreaming into the solar wind have been clearly evidenced by various space missions within the quasi-perpendicular region of the ion foreshock located upstream of the Earth's Bow shock (i.e. for 45° ≤ Theta_Bn ≤ 90°, where Theta_Bn is the angle between the shock normal and the upstream magnetostatic field): (i) field-aligned ion beams (« FAB ») characterized by a gyrotropic distribution, and (ii) gyro-phase bunched ions («GPB »), characterized by a NON gyrotropic distribution. The origin of these backstreaming ions has not been clearly identified and is presently analyzed with the help of 2D PIC simulation of a curved shock, where full curvature effects, time of flight effects and both electrons and ions dynamics are fully described within a self consistent approach. Present simulations evidence that these two populations can be effectively created directly by the shock front without invoking microinstabilities. The analysis of both individual and statistical ion trajectories evidences that: (i) two new parameters, namely the interaction time DT_inter and distance of penetration L_depth into the shock wave, play a key role and allow to discriminate these two populations. "GPB" population is characterized by a very short interaction time (DT_inter = 1 to 2 Tci) in comparison to the "FAB" population (DT_inter = 2 Tci to 10 Tci) which moves back and forth between the upstream edge of the shock front and the overshoot, where tci is the upstream ion gyroperiod. (ii) the importance of the injection angle (i.e. the angle between the normal of the shock front and the gyration velocity when ions reach the shock) to understand how the reflection process takes place. (iii) "FAB" population drifts along the curved shock front scanning a large Theta_Bn range from 90°. (iv) "GPB" population is embedded within the "FAB" population near the shock front which explains the difficulty to identify such a population in the experimental

  4. Analysis of EEG signals regularity in adults during video game play in 2D and 3D.

    PubMed

    Khairuddin, Hamizah R; Malik, Aamir S; Mumtaz, Wajid; Kamel, Nidal; Xia, Likun

    2013-01-01

    Video games have long been part of the entertainment industry. Nonetheless, it is not well known how video games can affect us with the advancement of 3D technology. The purpose of this study is to investigate the EEG signals regularity when playing video games in 2D and 3D modes. A total of 29 healthy subjects (24 male, 5 female) with mean age of 21.79 (1.63) years participated. Subjects were asked to play a car racing video game in three different modes (2D, 3D passive and 3D active). In 3D passive mode, subjects needed to wear a passive polarized glasses (cinema type) while for 3D active, an active shutter glasses was used. Scalp EEG data was recorded during game play using 19-channel EEG machine and linked ear was used as reference. After data were pre-processed, the signal irregularity for all conditions was computed. Two parameters were used to measure signal complexity for time series data: i) Hjorth-Complexity and ii) Composite Permutation Entropy Index (CPEI). Based on these two parameters, our results showed that the complexity level increased from eyes closed to eyes open condition; and further increased in the case of 3D as compared to 2D game play. PMID:24110125

  5. SU-E-T-77: Comparison of 2D and 3D Gamma Analysis in Patient-Specific QA for Prostate VMAT Plans

    SciTech Connect

    Clemente, F; Perez, C

    2014-06-01

    Purpose: Patient-specific QA procedures for IMRT and VMAT are traditionally performed by comparing TPS calculations with measured single point values and plane dose distributions by means of gamma analysis. New QA devices permit us to calculate 3D dose distributions on patient anatomy as redundant secondary check and reconstruct it from measurements taken with 2D and 3D detector arrays. 3D dose calculations allow us to perform DVH-based comparisons with clinical relevance, as well as 3D gamma analysis. One of these systems (Compass, IBA Dosimetry) combines traditional 2D with new anatomical-based 3D gamma analysis. This work shows the ability of this system by comparing 2D and 3D gamma analysis in pre-treatment QA for several VMAT prostate plans. Methods: Compass is capable of calculating dose as secondary check from DICOM TPS data and reconstructing it from measurements taken by a 2D ion chamber array (MatriXX Evolution, IBA Dosimetry). Both 2D and 3D gamma tests are available to compare calculated and reconstructed dose in Compass with TPS RT Dose. Results: 15 VMAT prostate plans have been measured with Compass. Dose is reconstructed with Compass for these plans. 2D gamma comparisons can be done for any plane from dose matrix. Mean gamma passing rates for isocenter planes (axial, coronal, sagittal) are (99.7±0.2)%, (99.9±0.1)%, (99.9±0.1)% for reconstructed dose planes. 3D mean gamma passing rates are (98.5±1.7)% for PTVs, (99.1±1.5)% for rectum, (100.0±0.0)% for bladder, (99.6±0.7)% for femoral heads and (98.1±4.1)% for penile bulb. Conclusion: Compass is a powerful tool to perform a complete pre-treatment QA analysis, from 2D techniques to 3D DVH-based techniques with clinical relevance. All reported values for VMAT prostate plans are in good agreement with TPS values. This system permits us to ensure the accuracy in the delivery of VMAT treatments completing a full patient-specific QA program.

  6. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  7. Determination of phosphine and other fumigants in air samples by thermal desorption and 2D heart-cutting gas chromatography with synchronous SIM/Scan mass spectrometry and flame photometric detection.

    PubMed

    Fahrenholtz, Svea; Hühnerfuss, Heinrich; Baur, Xaver; Budnik, Lygia Therese

    2010-12-24

    Fumigants and volatile industrial chemicals are particularly hazardous to health when a freight container is fumigated or the contaminated material is introduced into its enclosed environment. Phosphine is now increasingly used as a fumigant, after bromomethane--the former fumigant of choice--has been banned by the Montreal Protocol. We have enhanced our previously established thermal desorption-gas chromatography-mass spectrometry (TD-GC-MS) method by integrating a second gas chromatographic dimension and a flame photometric detector to allow the simultaneous detection of phosphine and volatile organic compounds (VOCs), providing a novel application. A thermal desorption system is coupled to a two dimensional gas chromatograph using both mass spectrometric and flame photometric detection (TD-2D-GC-MS/FPD). Additionally, the collection of mass spectrometric SIM and Scan data has been synchronised, so only a single analysis is now sufficient for qualitative scanning of the whole sample and for sensitive quantification. Though detection limits for the herewith described method are slightly higher than in the previous method, they are in the low μL m(-3) range, which is not only below the respective occupational exposure and intervention limits but also allows the detection of residual contamination after ventilation. The method was developed for the separation and identification of 44 volatile substances. For 12 of these compounds (bromomethane, iodomethane, dichloromethane, 1,2-dichlorethane, benzene, tetrachloromethane, 1,2-dichloropropane, toluene, trichloronitromethane, ethyl benzene, phosphine, carbon disulfide) the method was validated as we chose the target compounds due to their relevance in freight container handling. PMID:21084090

  8. User's Guide for MSAP2D: A Program for Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Multistage Compressors and Turbines. 1.0

    NASA Technical Reports Server (NTRS)

    Reddy, T. S. R.; Srivastava, R.

    1996-01-01

    This guide describes the input data required for using MSAP2D (Multi Stage Aeroelastic analysis Program - Two Dimensional) computer code. MSAP2D can be used for steady, unsteady aerodynamic, and aeroelastic (flutter and forced response) analysis of bladed disks arranged in multiple blade rows such as those found in compressors, turbines, counter rotating propellers or propfans. The code can also be run for single blade row. MSAP2D code is an extension of the original NPHASE code for multiblade row aerodynamic and aeroelastic analysis. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The aeroelastic equations are solved in time domain. For single blade row analysis, frequency domain analysis is also provided to obtain unsteady aerodynamic coefficients required in an eigen analysis for flutter. In this manual, sample input and output are provided for a single blade row example, two blade row example with equal and unequal number of blades in the blade rows.

  9. A model for calculating the errors of 2D bulk analysis relative to the true 3D bulk composition of an object, with application to chondrules

    NASA Astrophysics Data System (ADS)

    Hezel, Dominik C.

    2007-09-01

    Certain problems in Geosciences require knowledge of the chemical bulk composition of objects, such as, for example, minerals or lithic clasts. This 3D bulk chemical composition (bcc) is often difficult to obtain, but if the object is prepared as a thin or thick polished section a 2D bcc can be easily determined using, for example, an electron microprobe. The 2D bcc contains an error relative to the true 3D bcc that is unknown. Here I present a computer program that calculates this error, which is represented as the standard deviation of the 2D bcc relative to the real 3D bcc. A requirement for such calculations is an approximate structure of the 3D object. In petrological applications, the known fabrics of rocks facilitate modeling. The size of the standard deviation depends on (1) the modal abundance of the phases, (2) the element concentration differences between phases and (3) the distribution of the phases, i.e. the homogeneity/heterogeneity of the object considered. A newly introduced parameter " τ" is used as a measure of this homogeneity/heterogeneity. Accessory phases, which do not necessarily appear in 2D thin sections, are a second source of error, in particular if they contain high concentrations of specific elements. An abundance of only 1 vol% of an accessory phase may raise the 3D bcc of an element by up to a factor of ˜8. The code can be queried as to whether broad beam, point, line or area analysis technique is best for obtaining 2D bcc. No general conclusion can be deduced, as the error rates of these techniques depend on the specific structure of the object considered. As an example chondrules—rapidly solidified melt droplets of chondritic meteorites—are used. It is demonstrated that 2D bcc may be used to reveal trends in the chemistry of 3D objects.

  10. Sensitivity and specificity of 3-D texture analysis of lung parenchyma is better than 2-D for discrimination of lung pathology in stage 0 COPD

    NASA Astrophysics Data System (ADS)

    Xu, Ye; Sonka, Milan; McLennan, Geoffrey; Guo, Junfeng; Hoffman, Eric

    2005-04-01

    Lung parenchyma evaluation via multidetector-row CT (MDCT), has significantly altered clinical practice in the early detection of lung disease. Our goal is to enhance our texture-based tissue classification ability to differentiate early pathologic processes by extending our 2-D Adaptive Multiple Feature Method (AMFM) to 3-D AMFM. We performed MDCT on 34 human volunteers in five categories: emphysema in severe Chronic Obstructive Pulmonary Disease (COPD) as EC, emphysema in mild COPD (MC), normal appearing lung in COPD (NC), non-smokers with normal lung function (NN), smokers with normal function (NS). We volumetrically excluded the airway and vessel regions, calculated 24 volumetric texture features for each Volume of Interest (VOI); and used Bayesian rules for discrimination. Leave-one-out and half-half methods were used for testing. Sensitivity, specificity and accuracy were calculated. The accuracy of the leave-one-out method for the four-class classification in the form of 3-D/2-D is: EC: 84.9%/70.7%, MC: 89.8%/82.7%; NC: 87.5.0%/49.6%; NN: 100.0%/60.0%. The accuracy of the leave-one-out method for the two-class classification in the form of 3-D/2-D is: NN: 99.3%/71.6%; NS: 99.7%/74.5%. We conclude that 3-D AMFM analysis of the lung parenchyma improves discrimination compared to 2-D analysis of the same images.

  11. Importance of the Correlation between Width and Length in the Shape Analysis of Nanorods: Use of a 2D Size Plot To Probe Such a Correlation.

    PubMed

    Zhao, Zhihua; Zheng, Zhiqin; Roux, Clément; Delmas, Céline; Marty, Jean-Daniel; Kahn, Myrtil L; Mingotaud, Christophe

    2016-08-22

    Analysis of nanoparticle size through a simple 2D plot is proposed in order to extract the correlation between length and width in a collection or a mixture of anisotropic particles. Compared to the usual statistics on the length associated with a second and independent statistical analysis of the width, this simple plot easily points out the various types of nanoparticles and their (an)isotropy. For each class of nano-objects, the relationship between width and length (i.e., the strong or weak correlations between these two parameters) may suggest information concerning the nucleation/growth processes. It allows one to follow the effect on the shape and size distribution of physical or chemical processes such as simple ripening. Various electron microscopy pictures from the literature or from the authors' own syntheses are used as examples to demonstrate the efficiency and simplicity of the proposed 2D plot combined with a multivariate analysis. PMID:27460632

  12. Systems analysis of thermal storage

    SciTech Connect

    Copeland, R. J.

    1980-08-01

    During FY80 analyses were conducted on thermal storage concepts for solar thermal applications. These studies include both estimates of the obtainable costs of thermal storage concepts and their worth to a user (i.e., value). Based on obtainable costs and performance, promising thermal storage concepts are being identified. A preliminary screening was completed in FY80 and a more in-depth study was initiated. Value studies are being conducted to establish cost goals. A ranking of storage concepts based on value in solar thermal electric plants was conducted for both diurnal and long duration applications. Ground mounted thermal storage concepts for a parabolic dish/Stirling systtem are also being evaluated.

  13. Thermal boundaries analysis program document

    NASA Technical Reports Server (NTRS)

    Evans, M. E.

    1975-01-01

    The digital program TBAP has been developed to provide thermal boundaries in the DD/M-relative velocity (D-V), dynamic pressure-relative velocity (q-V), and altitude-relative velocity (h-V) planes. These thermal boundaries are used to design and/or analyze shuttle orbiter entry trajectories. The TBAP has been used extensively in supporting the Flight Performance Branch of NASA in evaluating candidate trajectories for the thermal protection system design trajectory.

  14. Modeling and analysis of surface potential of single gate fully depleted SOI MOSFET using 2D-Poisson's equation

    NASA Astrophysics Data System (ADS)

    Mani, Prashant; Tyagi, Chandra Shekhar; Srivastav, Nishant

    2016-03-01

    In this paper the analytical solution of the 2D Poisson's equation for single gate Fully Depleted SOI (FDSOI) MOSFET's is derived by using a Green's function solution technique. The surface potential is calculated and the threshold voltage of the device is minimized for the low power consumption. Due to minimization of threshold voltage the short channel effect of device is suppressed and after observation we obtain the device is kink free. The structure and characteristics of SingleGate FDSOI MOSFET were matched by using MathCAD and silvaco respectively.

  15. A Comparative Analysis for Verification of IMRT and VMAT Treatment Plans using a 2-D and 3-D Diode Array

    NASA Astrophysics Data System (ADS)

    Dance, Michael J.

    With the added complexity of current radiation treatment dose delivery modalities such as IMRT (Intensity Modulated Radiation Therapy) and VMAT (Volumetric Modulated Arc Therapy), quality assurance (QA) of these plans become multifaceted and labor intensive. To simplify the patient specific quality assurance process, 2D or 3D diode arrays are used to measure the radiation fluence for IMRT and VMAT treatments which can then be quickly and easily compared against the planned dose distribution. Because the arrays that can be used for IMRT and VMAT patient-specific quality assurance are of different geometry (planar vs. cylindrical), the same IMRT or VMAT treatment plan measured by two different arrays could lead to different measured radiation fluences, regardless of the output and performance of linear accelerator. Thus, the purpose of this study is to compare patient specific QA results as measured by the MapCHECK 2 and ArcCHECK diode arrays for the same IMRT and VMAT treatment plans to see if one diode array consistently provides a closer comparison to reference data. Six prostate and three thoracic spine IMRT treatment plans as well as three prostate and three thoracic spine VMAT treatment plans were produced. Radiotherapy plans for this study were generated using the Pinnacle TPS v9.6 (Philips Radiation Oncology Systems, Fitchburg, WI) using 6 MV, 6 MV FFF, and 10 MV x-ray beams from a Varian TrueBeam linear accelerator (Varian Medical Systems, Palo Alto, CA) with a 120-millenium multi-leaf collimator (MLC). Each IMRT and VMAT therapy plan was measured on Sun Nuclear's MapCHECK 2 and ArcCHECK diode arrays. IMRT measured data was compared with planned dose distribution using Sun Nuclear's 3DVH quality assurance software program using gamma analysis and dose-volume histograms for target volumes and critical structures comparison. VMAT arc plans measured on the MapCHECK 2 and ArcCHECK were compared using beam-by-beam analysis with the gamma evaluation method with

  16. Structural-Thermal-Optical-Performance (STOP) Analysis

    NASA Technical Reports Server (NTRS)

    Bolognese, Jeffrey; Irish, Sandra

    2015-01-01

    The presentation will be given at the 26th Annual Thermal Fluids Analysis Workshop (TFAWS 2015) hosted by the Goddard Spaceflight Center (GSFC) Thermal Engineering Branch (Code 545). A STOP analysis is a multidiscipline analysis, consisting of Structural, Thermal and Optical Performance Analyses, that is performed for all space flight instruments and satellites. This course will explain the different parts of performing this analysis. The student will learn how to effectively interact with each discipline in order to accurately obtain the system analysis results.

  17. A meshfree local RBF collocation method for anti-plane transverse elastic wave propagation analysis in 2D phononic crystals

    NASA Astrophysics Data System (ADS)

    Zheng, Hui; Zhang, Chuanzeng; Wang, Yuesheng; Sladek, Jan; Sladek, Vladimir

    2016-01-01

    In this paper, a meshfree or meshless local radial basis function (RBF) collocation method is proposed to calculate the band structures of two-dimensional (2D) anti-plane transverse elastic waves in phononic crystals. Three new techniques are developed for calculating the normal derivative of the field quantity required by the treatment of the boundary conditions, which improve the stability of the local RBF collocation method significantly. The general form of the local RBF collocation method for a unit-cell with periodic boundary conditions is proposed, where the continuity conditions on the interface between the matrix and the scatterer are taken into account. The band structures or dispersion relations can be obtained by solving the eigenvalue problem and sweeping the boundary of the irreducible first Brillouin zone. The proposed local RBF collocation method is verified by using the corresponding results obtained with the finite element method. For different acoustic impedance ratios, various scatterer shapes, scatterer arrangements (lattice forms) and material properties, numerical examples are presented and discussed to show the performance and the efficiency of the developed local RBF collocation method compared to the FEM for computing the band structures of 2D phononic crystals.

  18. Large-scale systematic analysis of 2D fingerprint methods and parameters to improve virtual screening enrichments.

    PubMed

    Sastry, Madhavi; Lowrie, Jeffrey F; Dixon, Steven L; Sherman, Woody

    2010-05-24

    A systematic virtual screening study on 11 pharmaceutically relevant targets has been conducted to investigate the interrelation between 8 two-dimensional (2D) fingerprinting methods, 13 atom-typing schemes, 13 bit scaling rules, and 12 similarity metrics using the new cheminformatics package Canvas. In total, 157 872 virtual screens were performed to assess the ability of each combination of parameters to identify actives in a database screen. In general, fingerprint methods, such as MOLPRINT2D, Radial, and Dendritic that encode information about local environment beyond simple linear paths outperformed other fingerprint methods. Atom-typing schemes with more specific information, such as Daylight, Mol2, and Carhart were generally superior to more generic atom-typing schemes. Enrichment factors across all targets were improved considerably with the best settings, although no single set of parameters performed optimally on all targets. The size of the addressable bit space for the fingerprints was also explored, and it was found to have a substantial impact on enrichments. Small bit spaces, such as 1024, resulted in many collisions and in a significant degradation in enrichments compared to larger bit spaces that avoid collisions. PMID:20450209

  19. Thermal-Hydraulic-Analysis Program

    NASA Technical Reports Server (NTRS)

    Walton, J. T.

    1993-01-01

    ELM computer program is simple computational tool for modeling steady-state thermal hydraulics of flows of propellants through fuel-element-coolant channels in nuclear thermal rockets. Evaluates various heat-transfer-coefficient and friction-factor correlations available for turbulent pipe flow with addition of heat. Comparisons possible within one program. Machine-independent program written in FORTRAN 77.

  20. Parasitic extraction and magnetic analysis for transformers, inductors and igbt bridge busbar with maxwell 2d and maxwell 3d simulation

    NASA Astrophysics Data System (ADS)

    Zhang, Ning

    This thesis presents the parasitic extraction and magnetic analysis for transformers, inductors, and IGBT bridge busbars with Maxwell 2D and Maxwell 3D simulation. In the first chapter, the magnetic field of a transformer in Maxwell 2D is analyzed. The parasitic capacitance between each winding of the transformer are extracted by Maxwell 2D. According to the actual dimensions, the parasitic capacitances are calculated. The results are verified by comparing with the measurement results from 4395A impedance analyzer. In the second chapter, two CM inductors are simulated in Maxwell 3D. One is the conventional winding inductor, the other one is the proposed one. The magnetic field distributions of different winding directions are analyzed. The analysis is verified by the simulation result. The last chapter introduces a technique to analyze, extract, and measure the parasitic inductance of planar busbars. With this technique, the relationship between self-inductance and mutual-inductance is analyzed. Secondly, a total inductance is calculated based on the developed technique. Thirdly, the current paths and the inductance on a planar busbar are investigated with DC-link capacitors. Furthermore, the analysis of the inductance is addressed. Ansys Q3D simulation and analysis are presented. Finally, the experimental verification is shown by the S-parameter measurement.

  1. Users manual for AUTOMESH-2D: A program of automatic mesh generation for two-dimensional scattering analysis by the finite element method

    NASA Technical Reports Server (NTRS)

    Hua, Chongyu; Volakis, John L.

    1990-01-01

    AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.

  2. Numerical analysis of InSb parameters and InSb 2D infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaolei; Zhang, Hongfei; Sun, Weiguo; Zhang, Lei; Meng, Chao; Lu, Zhengxiong

    2012-10-01

    Accurate and reliable numerical simulation tools are necessary for the development of advanced semiconductor devices. InSb is using the MATLAB and TCAD simulation tool to calculatet the InSb body bandstructure, blackbody's radiant emittance and simultaneously solve the Poisson, Continuity and transport equations for 2D detector structures. In this work the material complexities of InSb, such as non-parabolicity, degenergcy, mobility and Auger recombination/generation are explained, and physics based models are developed. The Empirical Tight Binding Method (ETBM) was been using to calculate the bandstructure for InSb at 77 K by Matlab. We describe a set of systematic experiments performed in order to calibrate the simulation to semiconductor devices backside illuminated InSb focal plane arrays realized with planar technology. The spectral photoresponse and crosstalk characteristic for mid-wavelength InSb infrared focal plane arrays have been numerically studied.

  3. Analysis of Highly-Resolved Simulations of 2-D Humps Toward Improvement of Second-Moment Closures

    NASA Technical Reports Server (NTRS)

    Jeyapaul, Elbert; Rumsey Christopher

    2013-01-01

    Fully resolved simulation data of flow separation over 2-D humps has been used to analyze the modeling terms in second-moment closures of the Reynolds-averaged Navier- Stokes equations. Existing models for the pressure-strain and dissipation terms have been analyzed using a priori calculations. All pressure-strain models are incorrect in the high-strain region near separation, although a better match is observed downstream, well into the separated-flow region. Near-wall inhomogeneity causes pressure-strain models to predict incorrect signs for the normal components close to the wall. In a posteriori computations, full Reynolds stress and explicit algebraic Reynolds stress models predict the separation point with varying degrees of success. However, as with one- and two-equation models, the separation bubble size is invariably over-predicted.

  4. Performance analysis of 2D asynchronous hard-limiting optical code-division multiple access system through atmospheric scattering channel

    NASA Astrophysics Data System (ADS)

    Zhao, Yaqin; Zhong, Xin; Wu, Di; Zhang, Ye; Ren, Guanghui; Wu, Zhilu

    2013-09-01

    Optical code-division multiple access (OCDMA) systems usually allocate orthogonal or quasi-orthogonal codes to the active users. When transmitting through atmospheric scattering channel, the coding pulses are broadened and the orthogonality of the codes is worsened. In truly asynchronous case, namely both the chips and the bits are asynchronous among each active user, the pulse broadening affects the system performance a lot. In this paper, we evaluate the performance of a 2D asynchronous hard-limiting wireless OCDMA system through atmospheric scattering channel. The probability density function of multiple access interference in truly asynchronous case is given. The bit error rate decreases as the ratio of the chip period to the root mean square delay spread increases and the channel limits the bit rate to different levels when the chip period varies.

  5. Simulation of decay heat removal by natural convection in a pool type fast reactor model-ramona-with coupled 1D/2D thermal hydraulic code system

    SciTech Connect

    Kasinathan, N.; Rajakumar, A.; Vaidyanathan, G.; Chetal, S.C.

    1995-09-01

    Post shutdown decay heat removal is an important safety requirement in any nuclear system. In order to improve the reliability of this function, Liquid metal (sodium) cooled fast breeder reactors (LMFBR) are equipped with redundant hot pool dipped immersion coolers connected to natural draught air cooled heat exchangers through intermediate sodium circuits. During decay heat removal, flow through the core, immersion cooler primary side and in the intermediate sodium circuits are also through natural convection. In order to establish the viability and validate computer codes used in making predictions, a 1:20 scale experimental model called RAMONA with water as coolant has been built and experimental simulation of decay heat removal situation has been performed at KfK Karlsruhe. Results of two such experiments have been compiled and published as benchmarks. This paper brings out the results of the numerical simulation of one of the benchmark case through a 1D/2D coupled code system, DHDYN-1D/THYC-2D and the salient features of the comparisons. Brief description of the formulations of the codes are also included.

  6. Development of an integrated approach for evaluation of 2-D gel image analysis: Impact of multiple proteins in single spots on comparative proteomics in conventional 2-D gel/MALDI workflow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    With 2-D gel mapping, it is often observed that essentially identical proteins migrate to different positions in the gel, while some seemingly well-resolved protein spots consist of multiple proteins. These observations can undermine the validity of gel-based comparative proteomic studies. Through...

  7. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    PubMed

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. PMID:27287846

  8. Single-Step Syngas-to-Distillates (S2D) Process Based on Biomass-Derived Syngas - A Techno-Economic Analysis

    SciTech Connect

    Zhu, Y.; Jones, S. B.; Biddy, M. J.; Dagle, R. A.; Palo, D. R.

    2012-08-01

    This study compared biomass gasification based syngas-to-distillate (S2D) systems using techno-economic analysis (TEA). Three cases, state of technology (SOT), goal, and conventional, were compared in terms of performance and cost. The SOT case represented the best available experimental results for a process starting with syngas using a single-step dual-catalyst reactor for distillate generation. The conventional case mirrored a conventional two-step S2D process consisting of separate syngas-to-methanol and methanol-to-gasoline (MTG) processes. The goal case assumed the same performance as the conventional, but with a single-step S2D technology. TEA results revealed that the SOT was more expensive than the conventional and goal cases. The SOT case suffers from low one-pass yield and high selectivity to light hydrocarbons, both of which drive up production cost. Sensitivity analysis indicated that light hydrocarbon yield and single pass conversion efficiency were the key factors driving the high cost for the SOT case.

  9. 2D Raman correlation analysis of formation mechanism of passivating film on overcharged LiCoO2 electrode with additive system

    NASA Astrophysics Data System (ADS)

    Park, Yeonju; Shin, Su Hyun; Lee, Sung Man; Kim, Sung Phil; Choi, Hyun Chul; Jung, Young Mee

    2014-07-01

    The effect of vinylene carbonate (VC) as solid electrolyte interface (SEI)-forming additive on the electrochemical performance of the LiCoO2 cathode was investigated by galvanostatic charge-discharge testing as well as Raman and 2D correlation spectroscopy. It was found that VC-containing electrolyte has a positive effect on capacity fading. An analysis of the 2D Raman correlation spectra suggested that even though the same SEI components (i.e., Co3O4 and Li2O) are produced on the cathode surface, the electrochemical reaction kinetics in the cathode/electrolyte interface differ according to the non-use or use of VC: in the latter case, formation of the SEI components is delayed.

  10. Proteomic expression of microfungal ripening starter Geotrichum candidum submitted to cold stress is strain-dependent: studies using 2d-dige technology and samespots software analysis.

    PubMed

    Missous, Ghalia; Thammavongs, Bouachanh; Dieuleveux, Virginie; Houssin, Maryline; Henry, Joël; Panoff, Jean-Michel

    2012-01-01

    Geotrichum candidum is a micro-fungus widely used as a ripening starter in cheese making. In anthropogenic environments such as dairy industries, this microorganism is subjected to many environmental and technological stresses including low temperature exposure. Our aim was to study the proteomic response of G. candidum to cold stress using a comparative proteomic approach by two-dimensional Differential In Gel Electrophoresis (2D DIGE). This technique consists on the labeling of proteins by specific fluorescent dyes (CyDyes). The results, obtained with G. candidum cells subjected to cold temperature, show significant proteomic patterns differences compared with the standard conditions. Furthermore, this biochemical response seems strain specific. 2D DIGE technology combined with SameSpots™ software analysis support these results through an important statistical validity. The comparative studies in a single gel, using two different fluorescent CyDyes (Cy3 and Cy5), lead to proteins differentiation. Selected spots were treated and analyzed by mass spectrometry. PMID:22987240