Science.gov

Sample records for 2d6-mediated dextromethorphan o-demethylation

  1. Dextromethorphan

    MedlinePlus

    Children's Robitussin Cough Long-Acting® ... Vicks DayQuil Cough® ... Vicks Formula 44 Custom Care Dry Cough® ... Zicam Cough MAX® ... Dextromethorphan is used to temporarily relieve cough caused by the common cold, the flu, or other conditions. Dextromethorphan will relieve a cough but will not treat the cause of ...

  2. Dextromethorphan

    MedlinePlus

    ... for your symptoms. Check nonprescription cough and cold product labels carefully before using 2 or more products at ... adults to children.Before you give a dextromethorphan product to a child, check the package label to find out how much medication the child ...

  3. Dextromethorphan overdose

    MedlinePlus

    DXM overdose; Robo overdose; Orange crush overdose; Red devils overdose; Triple C's overdose ... under the names: Orange crush Triple Cs Red Devils Skittles Dex Other products may also contain dextromethorphan.

  4. Inhibition of dextromethorphan metabolism by moclobemide.

    PubMed

    Härtter, S; Dingemanse, J; Baier, D; Ziegler, G; Hiemke, C

    1998-01-01

    This pilot study was conducted to evaluate the potential of the new antidepressant moclobemide to inhibit the cytochrome enzyme P4502D6 (CYP2D6) using the cough suppressant dextromethorphan as a substrate in four extensive metabolizers (EM) of debrisoquine. The subjects received seven oral doses of 20 mg dextromethorphan at 4-h intervals over 2 days (1 and 2) and subsequently moclobemide (300 mg b.i.d.) for 9 days. On days 10 and 11, they received seven doses of 20 mg dextromethorphan in addition to moclobemide. During monotreatment and combined treatment, blood was collected on days 2 and 11, respectively, for determination of dextromethorphan and its demethylated metabolites using automated high-performance liquid chromatography with column switching. Concurrent administration of moclobemide markedly reduced the O-demethylation of dextromethorphan, whereas the N-demethylation of dextrorphan to hydroxymorphinan was not affected. The findings indicate that moclobemide can affect the pharmacokinetics of drugs that are mainly metabolized by CYP2D6. PMID:9489930

  5. Anaerobic O-demethylation of phenylmethylethers

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1990-01-01

    Anaerobic O-demethylation (AOD) of phenylmethylethers is a process of both basic and applied significance. The aryl-O-methyl ethers are abundant in natural products, particularly as components of lignin. They are present as methoxylated lignin monomers in anaerobic environments and can be completely degraded there by mixed microbial populations. AOD is an essential early step in this process, and it is also a key reaction in the utilization of the O-methyl substituent as a C-one substrate by acetogens. An understanding of the AOD reaction mechanism might suggest new ways in which chemicals could be derived from lignocellulosic materials. The biochemical mechanism for the anaerobic cleavage of the aryl-O-methyl ether bond is an intriguing, but relatively unexplored process. In contrast to aerobic O-demethylating enzymes, AOD appears to involve methyl group transfer. Thus, novel biochemical information on an important biotransformation reaction will be gained from the research proposed. Recently, we have shown that AOD activity is inducible and have developed an assay for detecting AOD activity in cell-free extracts of Acetobacterium woodii. AOD activity is stimulated in vitro by the addition of ATP (1mM) and pyruvate (30 mM), the K{sub M} for vanillate being 0.4 mM. In collaboration with protein purification experts, we proposed to purify the AOD enzyme and characterize the protein(s) and the enzymatic reaction involved. 8 figs., 5 tabs.

  6. Understanding the determinants of selectivity in drug metabolism through modeling of dextromethorphan oxidation by cytochrome P450

    PubMed Central

    Oláh, Julianna; Mulholland, Adrian J.; Harvey, Jeremy N.

    2011-01-01

    Cytochrome P450 enzymes play key roles in the metabolism of the majority of drugs. Improved models for prediction of likely metabolites will contribute to drug development. In this work, two possible metabolic routes (aromatic carbon oxidation and O-demethylation) of dextromethorphan are compared using molecular dynamics (MD) simulations and density functional theory (DFT). The DFT results on a small active site model suggest that both reactions might occur competitively. Docking and MD studies of dextromethorphan in the active site of P450 2D6 show that the dextromethorphan is located close to heme oxygen in a geometry apparently consistent with competitive metabolism. In contrast, calculations of the reaction path in a large protein model [using a hybrid quantum mechanical–molecular mechanics (QM/MM) method] show a very strong preference for O-demethylation, in accordance with experimental results. The aromatic carbon oxidation reaction is predicted to have a high activation energy, due to the active site preventing formation of a favorable transition-state structure. Hence, the QM/MM calculations demonstrate a crucial role of many active site residues in determining reactivity of dextromethorphan in P450 2D6. Beyond substrate binding orientation and reactivity of Compound I, successful metabolite predictions must take into account the detailed mechanism of oxidation in the protein. These results demonstrate the potential of QM/MM methods to investigate specificity in drug metabolism. PMID:21444768

  7. Dextromethorphan Abuse in Adolescence

    PubMed Central

    Bryner, Jodi K.; Wang, Uerica K.; Hui, Jenny W.; Bedodo, Merilin; MacDougall, Conan; Anderson, Ilene B.

    2008-01-01

    Objectives To analyze the trend of dextromethorphan abuse in California and to compare these findings with national trends. Design A 6-year retrospective review. Setting California Poison Control System (CPCS), American Association of Poison Control Centers (AAPCC), and Drug Abuse Warning Network (DAWN) databases from January 1, 1999, to December 31, 2004. Participants All dextromethorphan abuse cases reported to the CPCS, AAPCC, and DAWN. The main exposures of dextromethorphan abuse cases included date of exposure, age, acute vs long-term use, coingestants, product formulation, and clinical outcome. Main Outcome Measure The annual proportion of dextromethorphan abuse cases among all exposures reported to the CPCS, AAPCC, and DAWN databases. Results A total of 1382 CPCS cases were included in the study. A 10-fold increase in CPCS dextromethorphan abuse cases from 1999 (0.23 cases per 1000 calls) to 2004 (2.15 cases per 1000 calls) (odds ratio, 1.48; 95% confidence interval, 1.43–1.54) was identified. Of all CPCS dextromethorphan abuse cases, 74.5% were aged 9 to 17 years; the frequency of cases among this age group increased more than 15-fold during the study (from 0.11 to 1.68 cases per 1000 calls). Similar trends were seen in the AAPCC and DAWN databases. The highest frequency of dextromethorphan abuse occurred among adolescents aged 15 and 16 years. The most commonly abused product was Coricidin HBP Cough & Cold Tablets. Conclusions Our study revealed an increasing trend of dextromethorphan abuse cases reported to the CPCS that is paralleled nationally as reported to the AAPCC and DAWN. This increase was most evident in the adolescent population. PMID:17146018

  8. Biochemistry and Occurrence of O-Demethylation in Plant Metabolism

    PubMed Central

    Hagel, Jillian M.; Facchini, Peter J.

    2010-01-01

    Demethylases play a pivitol role in numerous biological processes from covalent histone modification and DNA repair to specialized metabolism in plants and microorganisms. Enzymes that catalyze O- and N-demethylation include 2-oxoglutarate (2OG)/Fe(II)-dependent dioxygenases, cytochromes P450, Rieske-domain proteins and flavin adenine dinucleotide (FAD)-dependent oxidases. Proposed mechanisms for demethylation by 2OG/Fe(II)-dependent enzymes involve hydroxylation at the O- or N-linked methyl group followed by formaldehyde elimination. Members of this enzyme family catalyze a wide variety of reactions in diverse plant metabolic pathways. Recently, we showed that 2OG/Fe(II)-dependent dioxygenases catalyze the unique O-demethylation steps of morphine biosynthesis in opium poppy, which provides a rational basis for the widespread occurrence of demethylases in benzylisoquinoline alkaloid metabolism. PMID:21423357

  9. Sulfation of o-demethyl apixaban: enzyme identification and species comparison.

    PubMed

    Wang, Lifei; Raghavan, Nirmala; He, Kan; Luettgen, Joseph M; Humphreys, W Griffith; Knabb, Robert M; Pinto, Donald J; Zhang, Donglu

    2009-04-01

    Apixaban, a potent and highly selective factor Xa inhibitor, is currently under development for treatment of arterial and venous thrombotic diseases. The O-demethyl apixaban sulfate is a major circulating metabolite in humans but circulates at lower concentrations relative to parent in animals. The aim of this study was to identify the sulfotransferases (SULTs) responsible for the sulfation reaction. Apixaban undergoes O-demethylation catalyzed by cytochrome P450 enzymes to O-demethyl apixaban, and then is conjugated by SULTs to form O-demethyl apixaban sulfate. Of the five human cDNA-expressed SULTs tested, SULT1A1 and SULT1A2 exhibited significant levels of catalytic activity for formation of O-demethyl apixaban sulfate, and SULT1A3, SULT1E1, and SULT2A1 showed much lower catalytic activities. In human liver S9, quercetin, a highly selective inhibitor of SULT1A1 and SULT1E1, inhibited O-demethyl apixaban sulfate formation by 99%; 2,6-dichloro-4-nitrophenol, another inhibitor of SULT1A1, also inhibited this reaction by >90%; estrone, a competitive inhibitor for SULT1E1, had no effect on this reaction. The comparable K(m) values for formation of O-demethyl apixaban sulfate were 41.4 microM (human liver S9), 36.8 microM (SULT1A1), and 70.8 microM (SULT1A2). Because of the high level of expression of SULT1A1 in liver and its higher level of catalytic activity for formation of O-demethyl apixaban sulfate, SULT1A1 might play a major role in humans for formation of O-demethyl apixaban sulfate. O-Demethyl apixaban was also investigated in liver S9 of mice, rats, rabbits, dogs, monkeys, and humans. The results indicated that liver S9 samples from dogs, monkeys, and humans had higher activities for formation of O-demethyl apixaban sulfate than those of mice, rats, and rabbits. PMID:19131519

  10. Inhalant Abuse and Dextromethorphan.

    PubMed

    Storck, Michael; Black, Laura; Liddell, Morgan

    2016-07-01

    Inhalant abuse is the intentional inhalation of a volatile substance for the purpose of achieving an altered mental state. As an important, yet underrecognized form of substance abuse, inhalant abuse crosses all demographic, ethnic, and socioeconomic boundaries, causing significant morbidity and mortality in school-aged and older children. This review presents current perspectives on epidemiology, detection, and clinical challenges of inhalant abuse and offers advice regarding the medical and mental health providers' roles in the prevention and management of this substance abuse problem. Also discussed is the misuse of a specific "over-the-counter" dissociative, dextromethorphan. PMID:27338970

  11. Anaerobic O-demethylation of phenylmethylethers. [und Acetobacterium woodii :a3

    SciTech Connect

    Frazer, A.C.; Young, L.Y.

    1991-08-01

    Assay of O-demethylation in cell-free extracts of Acetobacterium woodii: we have shown that THF and ATP are necessary for enzyme activity and thus are probably reactants; apparent Km values were 0.65 mM for the methoxylated substrate, 0.27 mM for ATP, and 0.17 mM for DL-THF. The enzyme activity is present in the cytosol, rather than being membrane bound, and is sensitive to oxygen. There is evidence to suggest that the enzyme system involves more than one protein component. Studies using suspensions of whole cells, suggest that there are several inducible AOD systems with distinguishable substrate specificities in A. woodii. A similar phenomenon has previously been suggested for the related acetogen, Eubacterium limosum. We have developed a system for obtaining mutants that are deficient in O-demethylation (AOD{sup {minus}}) in E. limosum, by using transposon mutagenesis with Tn916. In an ancillary study, A. woodii and E. limosum, were compared with respect to their capacity to O-demethylate guaiacol and chloroguaiacols. 8 refs., 1 fig., 1 tab.

  12. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers.

    PubMed

    Berman, M H; Frazer, A C

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 +/- 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent Km values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60 degrees C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells. PMID:1575495

  13. Importance of tetrahydrofolate and ATP in the anaerobic O-demethylation reaction for phenylmethylethers

    SciTech Connect

    Berman, M.H.; Frazer, A.C. )

    1992-03-01

    DL-Tetrahydrofolate (THF) and ATP were necessary for the anaerobic O-demethylation of phenylmethylethers in cell extracts of the type strain (ATCC 29683) of the homoacetogen Acetobacterium woodii. The reactants for this enzymatic activity have not been previously demonstrated in any system, nor has the mediating enzyme been studied. An assay using reaction mixtures containing 1 mM THF, 2 mM ATP, and 2 mM hydroferulate (i.e., 4-hydroxy,3-methoxyphenylpropionate) was developed and was performed under stringent anaerobic conditions. Pyridine nucleotides and several other possible cofactors were tested but had no effect on the activity. After centrifugation of disrupted cells at 27,000 x g, the activity was found primarily in the supernatant, which had a specific activity of 14.2 {plus minus} 0.5 nmol/min/mg of protein. At saturating levels of each of the other two substrates, apparent K{sub m} values for the variable substrate were 0.65 mM hydroferulate, 0.27 mM ATP, and 0.17 mM THF. Activity was significantly decreased when extract was preincubated at 60C and was completely lost after preincubation in air for 30 min. Thus, the soluble anaerobic O-demethylating enzyme system of A. woodii is oxygen sensitive. The THF- and ATP-dependent activity measurable in the soluble fraction of cell extracts constituted about 34% of the activity seen with intact cells.

  14. Human Enteric Microsomal CYP4F Enzymes O-Demethylate the Antiparasitic Prodrug Pafuramidine

    PubMed Central

    Wang, Michael Zhuo; Wu, Judy Qiju; Bridges, Arlene S.; Zeldin, Darryl C.; Kornbluth, Sally; Tidwell, Richard R.; Hall, James Edwin; Paine, Mary F.

    2008-01-01

    CYP4F enzymes, including CYP4F2 and CYP4F3B, were recently shown to be the major enzymes catalyzing the initial oxidative O-demethylation of the antiparasitic prodrug pafuramidine (DB289) by human liver microsomes. As suggested by a low oral bioavailability, DB289 could undergo first-pass biotransformation in the intestine, as well as in the liver. Using human intestinal microsomes (HIM), we characterized the enteric enzymes that catalyze the initial O-demethylation of DB289 to the intermediate metabolite, M1. M1 formation in HIM was catalyzed by cytochrome P450 (P450) enzymes, as evidenced by potent inhibition by 1-aminoben-zotriazole and the requirement for NADPH. Apparent Km and Vmax values ranged from 0.6 to 2.4 μM and from 0.02 to 0.89 nmol/min/mg protein, respectively (n = 9). Of the P450 chemical inhibitors evaluated, ketoconazole was the most potent, inhibiting M1 formation by 66%. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, inhibited M1 formation in a concentration-dependent manner (up to 95%). Immunoinhibition with an antibody raised against CYP4F2 showed concentration-dependent inhibition of M1 formation (up to 92%), whereas antibodies against CYP3A4/5 and CYP2J2 had negligible to modest effects. M1 formation rates correlated strongly with arachidonic acid ω-hydroxylation rates (r2 = 0.94, P < 0.0001, n = 12) in a panel of HIM that lacked detectable CYP4A11 protein expression. Quantitative Western blot analysis revealed appreciable CYP4F expression in these HIM, with a mean (range) of 7 (3–18) pmol/mg protein. We conclude that enteric CYP4F enzymes could play a role in the first-pass biotransformation of DB289 and other xenobiotics. PMID:17709372

  15. O-Demethylation and Successive Oxidative Dechlorination of Methoxychlor by Bradyrhizobium sp. Strain 17-4, Isolated from River Sediment

    PubMed Central

    Masuda, Minoru; Sato, Kiyoshi

    2012-01-01

    O-Demethylation of insecticide methoxychlor is well known as a phase I metabolic reaction in various eukaryotic organisms. Regarding prokaryotic organisms, however, no individual species involved in such reaction have been specified and characterized so far. Here we successfully isolated a bacterium that mediates oxidative transformation of methoxychlor, including O-demethylation and dechlorination, from river sediment. The isolate was found to be closely related to Bradyrhizobium elkanii at the 16S rRNA gene sequence level (100% identical). However, based on some differences in the physiological properties of this bacterium, we determined that it was actually a different species, Bradyrhizobium sp. strain 17-4. The isolate mediated O-demethylation of methoxychlor to yield a monophenolic derivative [Mono-OH; 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane] as the primary degradation product. The chiral high-performance liquid chromatography (HPLC) analysis revealed that the isolate possesses high enantioselectivity favoring the formation of (S)-Mono-OH (nearly 100%). Accompanied by the sequential O-demethylation to form the bis-phenolic derivative Bis-OH [1,1,1-trichloro-2,2-bis(4-hydroxyphenyl)ethane], oxidative dechlorination of the side chain proceeded, and monophenolic carboxylic acid accumulated, followed by the formation of multiple unidentified polar degradation products. The breakdown proceeded more rapidly when reductively dechlorinated (dichloro-form) methoxychlor was applied as the initial substrate. The resultant carboxylic acids and polar degradation products are likely further biodegraded by ubiquitous bacteria. The isolate possibly plays an important role for complete degradation (mineralization) of methoxychlor by providing the readily biodegradable substrates. PMID:22635993

  16. H2-CO2-Dependent Anaerobic O-Demethylation Activity in Subsurface Sediments and by an Isolated Bacterium

    PubMed Central

    Liu, Shi; Suflita, Joseph M.

    1993-01-01

    The ability of microorganisms in sediments from the Atlantic Coastal Plain to biodegrade methoxylated aromatic compounds was examined. O-demethylation activity was detected in deep (121- and 406-m) sediments, as well as in the surface soil. A syringate-demethylating consortium, containing at least three types of bacteria, was enriched from a deep-sediment sample in a medium containing syringate as the sole organic carbon source and with a N2-CO2 atmosphere. An isolate which demethylated syringate was obtained from the enrichment on an agar medium incubated under a H2-CO2 but not a N2-CO2 or N2 atmosphere. O demethylation of syringate of this isolate was dependent on the presence of both H2 and CO2 in the gas phase. The metabolism of syringate occurred in a sequential manner: methylgallate accumulated transiently before it was converted to gallate. Mass balance analysis suggests that the stoichiometry of the reaction in this isolate proceeds in accordance with the following generalized equation: C7H3O3(OCH3)n- + nHCO3- + nH2 → C7H3O3(OH)n- + nCH3COO- + nH2O. Images PMID:16348928

  17. The Roles of a Flavone-6-Hydroxylase and 7-O-Demethylation in the Flavone Biosynthetic Network of Sweet Basil*

    PubMed Central

    Berim, Anna; Gang, David R.

    2013-01-01

    Lipophilic flavonoids found in the Lamiaceae exhibit unusual 6- and 8-hydroxylations whose enzymatic basis is unknown. We show that crude protein extracts from peltate trichomes of sweet basil (Ocimum basilicum L.) cultivars readily hydroxylate position 6 of 7-O-methylated apigenin but not apigenin itself. The responsible protein was identified as a P450 monooxygenase from the CYP82 family, a family not previously reported to be involved in flavonoid metabolism. This enzyme prefers flavones but also accepts flavanones in vitro and requires a 5-hydroxyl in addition to a 7-methoxyl residue on the substrate. A peppermint (Mentha × piperita L.) homolog displayed identical substrate requirements, suggesting that early 7-O-methylation of flavones might be common in the Lamiaceae. This hypothesis is further substantiated by the pioneering discovery of 2-oxoglutarate-dependent flavone demethylase activity in basil, which explains the accumulation of 7-O-demethylated flavone nevadensin. PMID:23184958

  18. Dioxygenases Catalyze O-Demethylation and O,O-Demethylenation with Widespread Roles in Benzylisoquinoline Alkaloid Metabolism in Opium Poppy*

    PubMed Central

    Farrow, Scott C.; Facchini, Peter J.

    2013-01-01

    In opium poppy, the antepenultimate and final steps in morphine biosynthesis are catalyzed by the 2-oxoglutarate/Fe(II)-dependent dioxygenases, thebaine 6-O-demethylase (T6ODM) and codeine O-demethylase (CODM). Further investigation into the biochemical functions of CODM and T6ODM revealed extensive and unexpected roles for such enzymes in the metabolism of protopine, benzo[c]phenanthridine, and rhoeadine alkaloids. When assayed with a wide range of benzylisoquinoline alkaloids, CODM, T6ODM, and the functionally unassigned paralog DIOX2, renamed protopine O-dealkylase, showed novel and efficient dealkylation activities, including regio- and substrate-specific O-demethylation and O,O-demethylenation. Enzymes catalyzing O,O-demethylenation, which cleave a methylenedioxy bridge leaving two hydroxyl groups, have previously not been reported in plants. Similar cleavage of methylenedioxy bridges on substituted amphetamines is catalyzed by heme-dependent cytochromes P450 in mammals. Preferred substrates for O,O-demethylenation by CODM and protopine O-dealkylase were protopine alkaloids that serve as intermediates in the biosynthesis of benzo[c]phenanthridine and rhoeadine derivatives. Virus-induced gene silencing used to suppress the abundance of CODM and/or T6ODM transcripts indicated a direct physiological role for these enzymes in the metabolism of protopine alkaloids, and they revealed their indirect involvement in the formation of the antimicrobial benzo[c]phenanthridine sanguinarine and certain rhoeadine alkaloids in opium poppy. PMID:23928311

  19. Abuse of over-the-counter dextromethorphan by teenagers.

    PubMed

    Murray, S; Brewerton, T

    1993-10-01

    Dextromethorphan, the d-isomer of the opiate agonist levorphanol, has none of the analgesic or sedative effects associated with the opiates and is approved for over-the-counter use as an antitussive. It is available, in various combinations with other medications, in nonprescription cough suppressant and common cold formulations, and its availability in the United States is not controlled. In this paper we have reported two cases of recreational use of dextromethorphan-containing cough syrup by two unrelated teenage boys. Despite the safety of this medication when used at the recommended dosage, there have been cases of "recreational" use of dextromethorphan as well as death by overdose. Although usually thought to be nonaddictive, dextromethorphan produces a substance dependence syndrome, and physicians should be aware of its abuse potential, particularly by youths. PMID:8211334

  20. Objective evaluation of dextromethorphan and glaucine as antitussive agents.

    PubMed Central

    Rühle, K H; Criscuolo, D; Dieterich, H A; Köhler, D; Riedel, G

    1984-01-01

    Twenty-four inpatients affected by chronic cough completed a single-dose double-blind cross-over study of placebo, glaucine 30 mg and dextromethorphan 30 mg. The study was carried out using a balanced incomplete block design, each patient receiving two of the three experimental treatments. Objective evaluation of cough was ensured by means of a writing cough recorder. Coughs after dextromethorphan and glaucine were fewer than coughs after placebo: however only glaucine was significantly different from placebo in reducing coughs. Treatments were well tolerated: clinical results included a reduction in pulse rate after both dextromethorphan and glaucine , and a large number of patients reporting side effects after dextromethorphan administration. PMID:6375709

  1. Objective evaluation of dextromethorphan and glaucine as antitussive agents.

    PubMed

    Rühle, K H; Criscuolo, D; Dieterich, H A; Köhler, D; Riedel, G

    1984-05-01

    Twenty-four inpatients affected by chronic cough completed a single-dose double-blind cross-over study of placebo, glaucine 30 mg and dextromethorphan 30 mg. The study was carried out using a balanced incomplete block design, each patient receiving two of the three experimental treatments. Objective evaluation of cough was ensured by means of a writing cough recorder. Coughs after dextromethorphan and glaucine were fewer than coughs after placebo: however only glaucine was significantly different from placebo in reducing coughs. Treatments were well tolerated: clinical results included a reduction in pulse rate after both dextromethorphan and glaucine , and a large number of patients reporting side effects after dextromethorphan administration. PMID:6375709

  2. Patterns and Perceptions of Dextromethorphan Use in Adult Members of an Online Dextromethorphan Community.

    PubMed

    Pringle, George; McDonald, Michael P; Gabriel, Kara I

    2015-01-01

    Dextromethorphan (DXM) is a widely available antitussive that has, at elevated dose levels, euphoric and dissociative effects. This article presents the reported patterns and preferences of DXM use, and perceptions of DXM use among adult members of an online DXM community. Analyses were conducted of quantitative and qualitative responses from nine female and 43 male individuals, aged 18-63 years old. All respondents reported illegal and DXM drug use, beginning, on average, at 15.7 and 17.1 years of age, respectively. The majority of respondents first heard about DXM online or from a friend, preferred to use DXM alone, ingested substances concurrently with DXM to modify its effects, had not been to an emergency room or arrested because of their DXM use, and used DXM for its dissociative and mind-altering effects. DXM was perceived as safe and in no need of further regulation with only 14% of respondents mentioning DXM's addictive qualities. Findings from this sample of adult DXM users reveal a sophisticated subculture in which users report using DXM specifically to induce changes to their mental state and use a variety of substances to modify or enhance DXM's effects. PMID:26266886

  3. Pharmacology of dextromethorphan: Relevance to dextromethorphan/quinidine (Nuedexta®) clinical use.

    PubMed

    Taylor, Charles P; Traynelis, Stephen F; Siffert, Joao; Pope, Laura E; Matsumoto, Rae R

    2016-08-01

    Dextromethorphan (DM) has been used for more than 50years as an over-the-counter antitussive. Studies have revealed a complex pharmacology of DM with mechanisms beyond blockade of N-methyl-d-aspartate (NMDA) receptors and inhibition of glutamate excitotoxicity, likely contributing to its pharmacological activity and clinical potential. DM is rapidly metabolized to dextrorphan, which has hampered the exploration of DM therapy separate from its metabolites. Coadministration of DM with a low dose of quinidine inhibits DM metabolism, yields greater bioavailability and enables more specific testing of the therapeutic properties of DM apart from its metabolites. The development of the drug combination DM hydrobromide and quinidine sulfate (DM/Q), with subsequent approval by the US Food and Drug Administration for pseudobulbar affect, led to renewed interest in understanding DM pharmacology. This review summarizes the interactions of DM with brain receptors and transporters and also considers its metabolic and pharmacokinetic properties. To assess the potential clinical relevance of these interactions, we provide an analysis comparing DM activity from in vitro functional assays with the estimated free drug DM concentrations in the brain following oral DM/Q administration. The findings suggest that DM/Q likely inhibits serotonin and norepinephrine reuptake and also blocks NMDA receptors with rapid kinetics. Use of DM/Q may also antagonize nicotinic acetylcholine receptors, particularly those composed of α3β4 subunits, and cause agonist activity at sigma-1 receptors. PMID:27139517

  4. Pharmacokinetics of dextromethorphan after single or multiple dosing in combination with quinidine in extensive and poor metabolizers.

    PubMed

    Pope, Laura E; Khalil, M H; Berg, James E; Stiles, Mark; Yakatan, Gerald J; Sellers, Edward M

    2004-10-01

    Dextromethorphan (DM) pharmacological properties predict that the widely used cough suppressant could be used to treat several neuronal disorders, but it is rapidly metabolized after oral dosing. To find out whether quinidine (Q), a CYP2D6 inhibitor, could elevate and prolong DM plasma profiles, 2 multiple-dose studies identified the lowest oral dose of Q that could be used in a fixed combination with 3 doses of DM. A multiple-dose study in healthy subjects with an extensive or a poor enzyme metabolizer phenotype evaluated the safety and pharmacokinetic profile of a selected fixed-dose combination (AVP-923). Study 1 randomized 46 healthy subjects, who were extensive CYP2D6 metabolizers, to receive 0, 2.5, 10, 25, 50, or 75 mg Q twice daily in combination with 30 mg DM for 7 days. Plasma and urine samples were collected after the first and last doses for the assay of DM, dextrorphan (DX), and Q. Study 2 randomized 65 healthy extensive CYP2D6 metabolizers to 8 groups given twice-daily 45- or 60-mg DM doses combined with 0, 30, 45, or 60 mg Q for 7 days. The effects of increasing Q were not different with doses greater than 25 mg, whereas lower doses showed a dose-related increase in plasma DM concentrations. Urinary ratios of DM/DX showed a Q dose- and time-related increase in the number of subjects converted to the poor metabolizer phenotype that reached 100% on day 3 of dosing with 25 mg Q. Results from both studies indicated that 25 to 30 mg Q is adequate to maximally suppress O-demethylation of DM. Study 3 evaluated 7 extensive metabolizers and 2 poor metabolizers given an oral capsule every 12 hours containing 30 mg Q combined with 30 mg DM. DM plasma AUC values increased in both groups of subjects during the 8-day study. The mean urinary metabolic ratio (DM/DX) increased at least 27-fold in extensive metabolizers by day 8. There was no effect of Q on urinary metabolic ratios in poor metabolizers. Safety evaluations, including electrocardiograms, indicated that

  5. [Dextromethorphan enhances analgesic activity of propacetamol--experimental study].

    PubMed

    Dobrogowski, Jan; Wordliczek, Jerzy; Przewłocka, Barbara

    2005-01-01

    While many pre-clinical and clinical studies have suggested that the addition of N-methyl-d--aspartate (NMDA) receptor antagonists, such as dextromethorphan, to opioid analgesics, such as morphine may enhance the analgesic effects. The aim of the study was to assess the effect of non-competitive NMDA antagonists and paracetamol (propacetamol) on pain threshold and analgesic potency of this drugs and their combinations in formalin model for pain in rats. Intraperitoneal administration of paracetamol only in doses of 100 g/kg or higher resulted in increase of pain threshold in tail flick and paw pressure tests. The results of our study suggest that there was no significant difference in pain threshold between separate administration of dextromethorphan and in combination with paracetamol. In a formalin model for pain we have shown that paracetamol in non-analgesic doses (10 mg/kg) administered in combination with dextrometorphan, ketamine and mamantine was more effective than those drugs given separately but the best analgesic effect was obtained when combination of paracetamol and dextromethorphan was applied. The addition of higher doses of these combined drugs, that is paracetamol and all three NMDA antagonists did not result in enhancement of dose-dependant analgesia. In conclusion it should be stated that NMDA antagonists improve analgesic effect of paracetamol in the formalin model for pain. although only to a limited extend. PMID:17037292

  6. Signs & Symptoms of Dextromethorphan Exposure from YouTube

    PubMed Central

    Chary, Michael; Park, Emily H.; McKenzie, Andrew; Sun, Julia; Manini, Alex F.; Genes, Nicholas

    2014-01-01

    Detailed data on the recreational use of drugs are difficult to obtain through traditional means, especially for substances like Dextromethorphan (DXM) which are available over-the-counter for medicinal purposes. In this study, we show that information provided by commenters on YouTube is useful for uncovering the toxicologic effects of DXM. Using methods of computational linguistics, we were able to recreate many of the clinically described signs and symptoms of DXM ingestion at various doses, using information extracted from YouTube comments. Our study shows how social networks can enhance our understanding of recreational drug effects. PMID:24533044

  7. Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats.

    PubMed

    Briggs, Scott A; Hall, Brandon J; Wells, Corinne; Slade, Susan; Jaskowski, Paul; Morrison, Margaret; Rezvani, Amir H; Rose, Jed E; Levin, Edward D

    2016-03-01

    Combining effective treatments with diverse mechanisms of action for smoking cessation may provide better therapy by targeting multiple points of control in the neural circuits underlying addiction. Previous research in a rat model has shown that dextromethorphan, which has α3β4 nicotinic and NMDA glutamatergic antagonist actions, significantly decreases nicotine self-administration. We have found in the rat model that the H1 histamine antagonist pyrilamine and the serotonin 5HT2C agonist lorcaserin also significantly reduce nicotine self-administration. The current studies were conducted to determine the interactive effects of dextromethorphan with pyrilamine and lorcaserin on nicotine self-administration in rats. Young adult female rats were fitted with jugular IV catheters and trained to self-administer a nicotine infusion dose of 0.03-mg/kg/infusion. In an initial dose-effect function study of dextromethorphan, we found a monotonic decrease in nicotine self-administration over a dose range of 1 to 30-mg/kg with the lowest effective dose of 3-mg/kg. Then, with two separate cohorts of rats, dextromethorphan (0, 3.3, and 10-mg/kg) interactions with pyrilamine (0, 4.43, and 13.3-mg/kg) were investigated as well as interactions with lorcaserin (0, 0.3125 and 0.625-mg/kg). In the pyrilamine-dextromethorphan interaction study, an acute dose of pyrilamine (13.3-mg/kg) as well as an acute dose of dextromethorphan caused a significant decrease in nicotine self-administration. There were mutually augmenting effects of these two drugs. The combination of dextromethorphan (10-mg/kg) and pyrilamine (13.3-mg/kg) significantly lowered nicotine self-administration relative to either 10-mg/kg of dextromethorphan alone (p<0.05) or 13.3-mg/kg of pyrilamine alone (p<0.0005). In the lorcaserin-dextromethorphan study, an acute dose of lorcaserin (0.312-mg/kg) as well as an acute dose of dextromethorphan (10-mg/kg) caused a significant decrease in nicotine self

  8. Dextromethorphan, chlorphenamine and serotonin toxicity: case report and systematic literature review

    PubMed Central

    Monte, Andrew A; Chuang, Ryan; Bodmer, Michael

    2010-01-01

    The aim of this review was to describe a patient with serotonin toxicity after an overdose of dextromethorphan and chlorphenamine and to perform a systematic literature review exploring whether dextromethorphan and chlorphenamine may be equally contributory in the development of serotonin toxicity in overdose. A Medline literature review was undertaken to identify cases of serotonin toxicity due to dextromethorphan and/or chlorphenamine. Case reports were included if they included information on the ingested dose or plasma concentrations of dextromethorphan and/or chlorphenamine, information about co-ingestions and detailed clinical information to evaluate for serotonin toxicity. Cases were reviewed by two toxicologists and serotonin toxicity, defined by the Hunter criteria, was diagnosed when appropriate. The literature was then reviewed to evaluate whether chlorphenamine may be a serotonergic agent. One hundred and fifty-five articles of dextromethorphan or chlorphenamine poisoning were identified. There were 23 case reports of dextromethorphan, of which 18 were excluded for lack of serotonin toxicity. No cases were identified in which serotonin toxicity could be solely attributed to chlorphenamine. This left six cases of dextrometorphane and/or chlorphenamine overdose, including our own, in which serotonin toxicity could be diagnosed based on the presented clinical information. In three of the six eligible cases dextromethorphan and chlorphenamine were the only overdosed drugs. There is substantial evidence from the literature that chlorphenamine is a similarly potent serotonin re-uptake inhibitor when compared with dextrometorphan. Chlorphenamine is a serotonergic medication and combinations of chlorphenamine and dextromethorphan may be dangerous in overdose due to an increased risk of serotonin toxicity. PMID:21175434

  9. Dextromethorphan/quinidine: a review of its use in adults with pseudobulbar affect.

    PubMed

    Yang, Lily P H; Deeks, Emma D

    2015-01-01

    Fixed-dose dextromethorphan/quinidine capsules (Nuedexta(®)) utilize quinidine to inhibit the metabolism of dextromethorphan, enabling high plasma dextromethorphan concentrations to be reached without using a larger dose of the drug. The drug combination is the first treatment to be approved for pseudobulbar affect (PBA), a condition of contextually inappropriate/exaggerated emotional expression that often occurs in adults with neurological damage conditions, such as amyotrophic lateral sclerosis (ALS), multiple sclerosis (MS), stroke, traumatic brain injury, Alzheimer's disease or Parkinson's disease. Dextromethorphan/quinidine at the recommended dosages of 20/10 or 30/10 mg twice daily reduced the rate of PBA episodes and improved PBA severity in a 12-week, double-blind, placebo-controlled trial in adults with ALS or MS (STAR), with further improvements in the severity of the condition observed in a 12-week open-label extension phase. Dextromethorphan/quinidine 20/10 mg twice daily also improved PBA secondary to dementia in a cohort of a 12-week noncomparative trial (PRISM II). The drug combination was generally well tolerated in these studies, with no particular safety or tolerability concerns. Although longer-term efficacy and tolerability data for dextromethorphan/quinidine 20/10 or 30/10 mg twice daily would be beneficial, current evidence indicates that it is a useful option in the treatment of adults with PBA. PMID:25420446

  10. Efficacy and tolerability of levodropropizine in adult patients with non-productive cough. Comparison with dextromethorphan.

    PubMed

    Catena, E; Daffonchio, L

    1997-01-01

    The results of a double-blind, randomized clinical trial involving 209 adult patients of either sex with moderate non-productive cough are reported. The therapeutic efficacy and the tolerability of levodropropizine syrup (60 mg t.i.d. for 5 days) was evaluated in comparison with dextromethorphan syrup (15 mg t.i.d. for 5 days). Efficacy was assessed by the number of coughing spells in a 6h period, the cough frequency classes, the cough intensity and the night awakenings due to cough. Tolerability was evaluated by laboratory results, vital signs and any adverse event occurred during the clinical trial, including presence or absence of somnolence. Independently from the underlying pathology and from the degree of baseline cough severity, the number of coughing spells was significantly (P < 0.05) reduced by both levodropropizine and dextromethorphan already after the 2nd day of treatment, the effect and its time of onset being similar for both drugs. Cough intensity was significantly (P < 0.01) reduced by both drugs throughout the treatment, at an earlier time with levodropropizine than with dextromethorphan. Concurrently with the relief of cough, the number of night awakenings was decreased remarkably and significantly (P < 0.05), with levodropropizine displaying an improvement significantly higher (P < 0.05) than dextromethorphan. No change in laboratory tests values was considered clinically relevant and vital signs were not clinically affected by the study drugs. The number of patients reporting adverse events was significantly higher (P < 0.05) in the dextromethorphan (12.1%) than in the levodropropizine (3.6%) group. Overall, somnolence was reported for a low percentage of patients with both drugs, with the percentage of patients experiencing this side effect being one half in the group treated with levodropropizine (4.6%) as compared with dextromethorphan (10.4%). These results confirm the antitussive effectiveness of levodropropizine and point out a more

  11. Analgesic effects of dextromethorphan and morphine in patients with chronic pain.

    PubMed

    Heiskanen, Tarja; Härtel, Brita; Dahl, Marja-Liisa; Seppälä, Timo; Kalso, Eija

    2002-04-01

    N-methyl-aspartate (NMDA) receptor antagonists have been shown to improve opioid analgesia in the animal model. The cough suppressant dextromethorphan is a clinically available NMDA-receptor antagonist. In this randomised, double-blind, placebo-controlled study 20 patients with chronic pain of several years duration were given 100 mg of oral dextromethorphan or matching placebo 4 h prior to an intravenous infusion of morphine 15 mg. Pain intensity and adverse effects were assessed at 0, 4, 5 and 7 h. Dextromethorphan had no effect on morphine analgesia: the mean (+/-SEM) visual analogue scores for pain relief (VAS, 0-100 mm) at the end of the morphine infusion were 38 (+/-6) for dextromethorphan+morphine and 38 (+/-7) for placebo+morphine. VAS scores for pain intensity were comparable both at rest and at movement at all time points. The most common adverse effects reported were dizziness, nausea and sedation. There were no significant differences in either the incidence or severity of adverse effects. In conclusion, oral dextromethorphan 100 mg had no effect on pain relief by intravenous morphine 15 mg in patients with chronic pain. PMID:11972998

  12. Dextromethorphan Mediated Bitter Taste Receptor Activation in the Pulmonary Circuit Causes Vasoconstriction

    PubMed Central

    Upadhyaya, Jasbir D.; Chakraborty, Raja; Pydi, Sai P.; Bhullar, Rajinder P.; Dakshinamurti, Shyamala; Chelikani, Prashen

    2014-01-01

    Activation of bitter taste receptors (T2Rs) in human airway smooth muscle cells leads to muscle relaxation and bronchodilation. This finding led to our hypothesis that T2Rs are expressed in human pulmonary artery smooth muscle cells and might be involved in regulating the vascular tone. RT-PCR was performed to reveal the expression of T2Rs in human pulmonary artery smooth muscle cells. Of the 25 T2Rs, 21 were expressed in these cells. Functional characterization was done by calcium imaging after stimulating the cells with different bitter agonists. Increased calcium responses were observed with most of the agonists, the largest increase seen for dextromethorphan. Previously in site-directed mutational studies, we have characterized the response of T2R1 to dextromethorphan, therefore, T2R1 was selected for further analysis in this study. Knockdown with T2R1 specific shRNA decreased mRNA levels, protein levels and dextromethorphan-induced calcium responses in pulmonary artery smooth muscle cells by up to 50%. To analyze if T2Rs are involved in regulating the pulmonary vascular tone, ex vivo studies using pulmonary arterial and airway rings were pursued. Myographic studies using porcine pulmonary arterial and airway rings showed that stimulation with dextromethorphan led to contraction of the pulmonary arterial and relaxation of the airway rings. This study shows that dextromethorphan, acting through T2R1, causes vasoconstrictor responses in the pulmonary circuit and relaxation in the airways. PMID:25340739

  13. Dextromethorphan inhibits activations and functions in dendritic cells.

    PubMed

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN- γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF- κ B translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  14. [Dextromethorphan abuse in adolescents: what can the pharmacists do?].

    PubMed

    Müller, Sandra; Jaffan, Linda; Kloiber, Edith; Läer, Stephanie

    2014-03-01

    In Germany, dextromethorphan (DXM) is used as OTC cough and cold medication. Overdose, however, can cause psychotropic side effects and is therefore abused among adolescents. To better control the drug by the pharmacist, a pilot was undertaken to monitor drug selling of DXM in German retail pharmacies. Over a 6-month period, pharmacies documented the request of DXM preparations. These data were compared to abuse cases of the German regulatory agency, the Bundesinstitut für Arzneimittel und Medizinprodukte (BfArM), an analysis of the 2010 annual sales statistic from the IMS OTC and information about DXM products from drug abuse websites. Especially the young DXM buyers in German retail pharmacies showed characteristics similar to those people from the BfArM abuse data file: They were male and used the DXM product Hustenstiller-ratiopharm. Hustenstiller-ratiopharm has well-directed instructions for DXM abuse in the internet. However, the 2010 annual sales statistic from the IMS OTC report identified Wick MediNait as the product with highest sales numbers whereas Hustenstiller-ratiopharm" was of less importance indicating DXM abuse is limited to a small part of the DXM user population. PMID:24741849

  15. Dextromethorphan Inhibits Activations and Functions in Dendritic Cells

    PubMed Central

    Chen, Der-Yuan; Song, Pei-Shan; Hong, Jau-Shyong; Chu, Ching-Liang; Pan, I-Horng; Chen, Yi-Ming; Lin, Ching-Hsiung; Lin, Sheng-Hao; Lin, Chi-Chen

    2013-01-01

    Dendritic cells (DCs) play an important role in connecting innate and adaptive immunity. Thus, DCs have been regarded as a major target for the development of immunomodulators. In this study, we examined the effect of dextromethorphan (DXM), a common cough suppressant with a high safety profile, on the activation and function of DCs. In the presence of DXM, the LPS-induced expression of the costimulatory molecules in murine bone marrow-derived dendritic cells (BMDCs) was significantly suppressed. In addition, DXM treatment reduced the production of reactive oxygen species (ROS), proinflammatory cytokines, and chemokines in maturing BMDCs that were activated by LPS. Therefore, DXM abrogated the ability of LPS-stimulated DCs to induce Ag-specific T-cell activation, as determined by their decreased proliferation and IFN-γ secretion in mixed leukocyte cultures. Moreover, the inhibition of LPS-induced MAPK activation and NF-κB translocation may contribute to the suppressive effect of DXM on BMDCs. Remarkably, DXM decreased the LPS-induced surface expression of CD80, CD83, and HLA-DR and the secretion of IL-6 and IL-12 in human monocyte-derived dendritic cells (MDDCs). These findings provide a new insight into the impact of DXM treatment on DCs and suggest that DXM has the potential to be used in treating DC-related acute and chronic diseases. PMID:23781253

  16. CYP4F Enzymes Are the Major Enzymes in Human Liver Microsomes That Catalyze the O-Demethylation of the Antiparasitic Prodrug DB289 [2,5-Bis(4-amidinophenyl)furan-bis-O-methylamidoxime

    PubMed Central

    Wang, Michael Zhuo; Saulter, Janelle Y.; Usuki, Etsuko; Cheung, Yen-Ling; Hall, Michael; Bridges, Arlene S.; Loewen, Greg; Parkinson, Oliver T.; Stephens, Chad E.; Allen, James L.; Zeldin, Darryl C.; Boykin, David W.; Tidwell, Richard R.; Parkinson, Andrew; Paine, Mary F.; Hall, James Edwin

    2007-01-01

    DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime] is biotransformed to the potent antiparasitic diamidine DB75 [2,5-bis(4-amidinophenyl) furan] by sequential oxidative O-demethylation and reductive N-dehydroxylation reactions. Previous work demonstrated that the N-dehydroxylation reactions are catalyzed by cytochrome b5/NADH-cytochrome b5 reductase. Enzymes responsible for catalyzing the DB289 O-demethylation pathway have not been identified. We report an in vitro metabolism study to characterize enzymes in human liver microsomes (HLMs) that catalyze the initial O-demethylation of DB289 (M1 formation). Potent inhibition by 1-aminobenzotriazole confirmed that M1 formation is catalyzed by P450 enzymes. M1 formation by HLMs was NADPH-dependent, with a Km and Vmax of 0.5 μM and 3.8 nmol/min/mg protein, respectively. Initial screening showed that recombinant CYP1A1, CYP1A2, and CYP1B1 were efficient catalysts of M1 formation. However, none of these three enzymes was responsible for M1 formation by HLMs. Further screening showed that recombinant CYP2J2, CYP4F2, and CYP4F3B could also catalyze M1 formation. An antibody against CYP4F2, which inhibited both CYP4F2 and CYP4F3B, inhibited 91% of M1 formation by HLMs. Two inhibitors of P450-mediated arachidonic acid metabolism, HET0016 (N-hydroxy-N′-(4-n-butyl-2-methylphenyl)formamidine) and 17-octadecynoic acid, effectively inhibited M1 formation by HLMs. Inhibition studies with ebastine and antibodies against CYP2J2 suggested that CYP2J2 was not involved in M1 formation by HLMs. Additionally, ketoconazole preferentially inhibited CYP4F2, but not CYP4F3B, and partially inhibited M1 formation by HLMs. We conclude that CYP4F enzymes (e.g., CYP4F2, CYP4F3B) are the major enzymes responsible for M1 formation by HLMs. These findings indicate that, in human liver, members of the CYP4F subfamily biotransform not only endogenous compounds but also xenobiotics. PMID:16997912

  17. Protective effect of dextromethorphan against endotoxic shock in mice.

    PubMed

    Li, Guorong; Liu, Yuxin; Tzeng, Nian-ssheng; Cui, Gang; Block, Michelle L; Wilson, Belinda; Qin, Liya; Wang, Tongguang; Liu, Bin; Liu, Jie; Hong, Jau-Shyong

    2005-01-15

    Dextromethorphan (DM) is a dextrorotatory morphinan and an over-the-counter non-opioid cough suppressant. We have previously shown that DM protects against LPS-induced dopaminergic neurodegeneration through inhibition of microglia activation. Here, we investigated protective effects of DM against endotoxin shock induced by lipopolysaccharide/d-galactosamine (LPS/GalN) in mice and the mechanism underlying its protective effect. Mice were given multiple injections of DM (12.5 mg/kg, s.c.) 30 min before and 2, 4 h after an injection of LPS/GalN (20 microg/700 mg/kg). DM administration decreased LPS/GalN-induced mortality and hepatotoxicity, as evidenced by increased survival rate, decreased serum alanine aminotransferase activity and improved pathology. Furthermore, DM was also effective when it was given 30 min after LPS/GalN injection. The protection was likely associated with reduced serum and liver tumor necrosis factor alpha (TNF-alpha) levels. DM also attenuated production of superoxide and intracellular reactive oxygen species in Kupffer cells and neutrophils. Real-time RT-PCR analysis revealed that DM administration suppressed the expression of a variety of inflammation-related genes such as macrophage inflammatory protein-2, CXC chemokine, thrombospondin-1, intercellular adhesion molecular-1 and interleukin-6. DM also decreased the expression of genes related to cell-death pathways, such as the DNA damage protein genes GADD45 and GADD153. In summary, DM is effective in protecting mice against LPS/GalN-induced hepatotoxicity, and the mechanism is likely through a faster TNF-alpha clearance, and decrease of superoxide production and inflammation and cell-death related components. This study not only extends neuroprotective effect of DM, but also suggests that DM may be a novel compound for the therapeutic intervention for sepsis. PMID:15627475

  18. A Mechanism of O-Demethylation of Aristolochic Acid I by Cytochromes P450 and Their Contributions to This Reaction in Human and Rat Livers: Experimental and Theoretical Approaches

    PubMed Central

    Stiborová, Marie; Bárta, František; Levová, Kateřina; Hodek, Petr; Schmeiser, Heinz H.; Arlt, Volker M.; Martínek, Václav

    2015-01-01

    Aristolochic acid I (AAI) is a plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. AAI is detoxified by cytochrome P450 (CYP)-mediated O-demethylation to 8-hydroxyaristolochic acid I (aristolochic acid Ia, AAIa). We previously investigated the efficiencies of human and rat CYPs in the presence of two other components of the mixed-functions-oxidase system, NADPH:CYP oxidoreductase and cytochrome b5, to oxidize AAI. Human and rat CYP1A are the major enzymes oxidizing AAI. Other CYPs such as CYP2C, 3A4, 2D6, 2E1, and 1B1, also form AAIa, but with much lower efficiency than CYP1A. Based on velocities of AAIa formation by examined CYPs and their expression levels in human and rat livers, here we determined the contributions of individual CYPs to AAI oxidation in these organs. Human CYP1A2 followed by CYP2C9, 3A4 and 1A1 were the major enzymes contributing to AAI oxidation in human liver, while CYP2C and 1A were most important in rat liver. We employed flexible in silico docking methods to explain the differences in AAI oxidation in the liver by human CYP1A1, 1A2, 2C9, and 3A4, the enzymes that all O-demethylate AAI, but with different effectiveness. We found that the binding orientations of the methoxy group of AAI in binding centers of the CYP enzymes and the energies of AAI binding to the CYP active sites dictate the efficiency of AAI oxidation. Our results indicate that utilization of experimental and theoretical methods is an appropriate study design to examine the CYP-catalyzed reaction mechanisms of AAI oxidation and contributions of human hepatic CYPs to this metabolism. PMID:26593908

  19. Analysis of Dextromethorphan in Cough Drops and Syrups: A Medicinal Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hamilton, Todd M.; Wiseman, Frank L., Jr.

    2009-01-01

    Fluorescence spectroscopy is used to determine the quantity of dextromethorphan hydrobromide (DM) in over-the-counter (OTC) cough drops and syrups. This experiment is appropriate for an undergraduate medicinal chemistry laboratory course when studying OTC medicines and active ingredients. Students prepare the cough drops and syrups for analysis,…

  20. Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations

    NASA Astrophysics Data System (ADS)

    Amin, Alaa S.; El-Sheikh, Ragaa; Zahran, Faten; Gouda, Ayman Abou El-fetouh

    2007-07-01

    A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 μg mL -1 for pipazethate, 3.7-48.15 μg mL -1 for dextromethorphan and 4.34-60.76 μg mL -1 for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations.

  1. Spectrophotometric determination of pipazethate HCl, dextromethorphan HBr and drotaverine HCl in their pharmaceutical preparations.

    PubMed

    Amin, Alaa S; El-Sheikh, Ragaa; Zahran, Faten; Gouda, Ayman Abou El-fetouh

    2007-07-01

    A simple, accurate and highly sensitive spectrophotometric method is proposed for the rapid determination of pipazethate hydrochloride, dextromethorphan hydrobromide and drotaverine hydrochloride using chromotrope 2B (C2B) and chromotrope 2R (C2R). The method consists of extracting the formed ion-associates into chloroform in the case of pipazethate HCl and dextromethorphan HBr or into methylene chloride in the case of drotaverine HCl. The ion-associates exhibit absorption maxima at 528, 540 and 532 nm with C2B and at 526, 517 and 522 nm with C2R for pipazethate HCl, dextromethorphan HBr and drotaverine HCl, respectively. The calibration curves resulting from the measurements of absorbance-concentration relations (at the optimum reaction conditions) of the extracted ion-pairs are linear over the concentration range 4.36-52.32 microg mL(-1) for pipazethate, 3.7-48.15 microg mL(-1) for dextromethorphan and 4.34-60.76 microg mL(-1) for drotaverine, respectively. The effect of acidity, reagent concentration, time, solvent and stoichiometric ratio of the ion-associates were estimated. The molar absorptivity and Sandell sensitivity of the reaction products were calculated. Statistical treatment of the results reflects that the procedure is precise, accurate and easily applied for the determination of the drugs under investigation in pure form and in their pharmaceutical preparations. PMID:17092767

  2. The Treatment of the Behavioral Sequelae of Autism with Dextromethorphan: A Case Report

    ERIC Educational Resources Information Center

    Woodard, Cooper; Groden, June; Goodwin, Matthew; Shanower, Cori; Bianco, Joanne

    2005-01-01

    Dextromethorphan is the d-isomer of levorphenol, and an ingredient in antitussive preparations. A 10 year-old male diagnosed with Autistic Disorder, Pervasive Developmental Disorder, and Generalized Anxiety Disorder was administered this medication initially to treat a medical condition. This became a quasi-experimental ABAB design (A = baseline,…

  3. The therapeutic effect of adding dextromethorphan to clonidine for reducing symptoms of opioid withdrawal: a randomized clinical trial.

    PubMed

    Malek, Ayyoub; Amiri, Shahrokh; Habibi Asl, Bohlool

    2013-01-01

    Background. Dextromethorphan is a noncompetitive N-methyl D-aspartate receptor antagonist that is clinically feasible for relieving the opioid withdrawal symptoms. This study compares the efficacy of a combination therapy with dextromethorphan and clonidine to treatment with clonidine alone. Methods and Materials. In this double-blind randomized clinical trial, patients were selected from inpatients of detox and rehabilitation ward of Razi Hospital, Tabriz, Iran. They were randomly allocated to two groups receiving either clonidine (0.4-1.2 mg/day) or clonidine and dextromethorphan (300 mg/day). Withdrawal symptoms were evaluated in the first day of admission and again 24, 48, and 72 hours later. Results. Thirty male patients completed the trial in each group. Withdrawal symptoms began to decrease in the second day in patients receiving dextromethorphan and clonidine while patients receiving clonidine experienced the more severe symptoms in 72 hours. Analysis of variance of the symptom severity score revealed a significant group × time interaction (F = 14.25; P < 0.001), so that patients receiving dextromethorphan plus clonidine had milder symptoms during three days in all of the measurements compared to clonidine group. Conclusion. Combination therapy of dextromethorphan and clonidine would result in milder opioid withdrawal symptoms compared to clonidine alone with a reduction beginning at the second day. PMID:23864983

  4. Assessment of antitussive efficacy of dextromethorphan in smoking related cough: objective vs. subjective measures

    PubMed Central

    Ramsay, James; Wright, Caroline; Thompson, Rachel; Hull, David; Morice, Alyn H

    2008-01-01

    AIMS Using an established model of smokers cough we measured the antitussive effects of dextromethorphan compared with placebo. METHODS The study was a randomized, double-blind placebo controlled, crossover comparison of 22 mg 0.8 ml−1 dextromethorphan delivered pregastrically with matched placebo. Objective and subjective measurements of cough were recorded. Subjective measures included a daily diary record of cough symptoms and the Leicester quality of life questionnaire. Cough frequency was recorded using a manual cough counter. The objective measure of cough reflex sensitivity was the citric acid, dose–response cough challenge. RESULTS Dextromethorphan was significantly associated with an increase in the concentration of citric acid eliciting an average of two coughs/inhalation (C2) when compared with placebo, 1 h post dose by 0.49 mM (95% CI 0.05, 0.45, geometric mean 3.09) compared with placebo 0.24 mM (geometric mean 1.74) P < 0.05 and at 2 h 0.57 mM (95% CI 0.01, 0.43, geometric mean 3.75) compared with placebo 0.34 mM (geometric mean 2.19) P < 0.05). There was a highly significant improvement in the subjective data when compared with baseline. However, there was no significant difference between placebo and active treatment. No correlation was seen between cough sensitivity to citric acid and recorded cough counts or symptoms. When both subjective and objective data were compared with screening data there was evidence of a marked ‘placebo’ effect. CONCLUSIONS The objective measure of cough sensitivity demonstrates dextromethorphan effectively diminishes the cough reflex sensitivity. However, subjective measures do not support this. Other studies support these findings, which may represent a profound sensitivity of the cough reflex to higher influences. WHAT IS ALREADY KNOWN ABOUT THIS SUBJECT Dextromethorphan is widely used as a cough suppressant in over the counter medications. Its efficacy in altering cough reflex sensitivity has been shown in

  5. Dextromethorphan Addiction Mediated Through the NMDA System: Common Pathways With Alcohol?

    PubMed

    Roy, A Kenison; Hsieh, Chenen; Crapanzano, Kathleen

    2015-01-01

    Dextromethorphan, an antitussive (cough suppressant) drug of the morphinan class with sedative and dissociative properties found in cough syrup and other over-the-counter products, is also a substance of abuse, seen primarily in young adults all over the world. A case of dextromethorphan use disorder is presented in a 45-year-old women. Her repeated attempts at abstinence were unsuccessful secondary to continued intense cravings. Treatment with topiramate resulted in complete resolution of her cravings. Topiramate was chosen empirically because of a common action with dextromethorphan in the NMDA system. Genetic testing was obtained and the patient was found to be a carrier of the GRIK1 rs2832407(C:C) allele. The (C:C) allele has been associated with an increased risk of alcohol use disorder and a treatment response of patients with heavy drinking to topiramate. This case provides an opportunity to discuss personalized medicine (treatment options aided by the use of genetic testing) and the possible shared genetic susceptibility for dependence in 2 substances of abuse. PMID:26441400

  6. Dextromethorphan and debrisoquine metabolism and polymorphism of the gene for cytochrome P450 isozyme 2D50 in Thoroughbreds.

    PubMed

    Corado, Carley R; McKemie, Daniel S; Knych, Heather K

    2016-09-01

    OBJECTIVE To characterize polymorphisms of the gene for cytochrome P450 isozyme 2D50 (CYP2D50) and the disposition of 2 CYP2D50 probe drugs, dextromethorphan and debrisoquine, in horses. ANIMALS 23 healthy horses (22 Thoroughbreds and 1 Standardbred). PROCEDURES Single-nucleotide polymorphisms (SNPs) in CYP2D50 were identified. Disposition of dextromethorphan (2 mg/kg) and debrisoquine (0.2 mg/kg) were determined after oral (dextromethorphan) or nasogastric (debrisoquine) administration to the horses. Metabolic ratios of plasma dextromethorphan and total dextrorphan (dextrorphan plus dextrorphan-O-β-glucuronide) and 4-hydroxydebrisoquine concentrations were calculated on the basis of the area under the plasma concentration-versus-time curve extrapolated to infinity for the parent drug divided by that for the corresponding metabolite. Pharmacokinetic data were used to categorize horses into the phenotypic drug-metabolism categories poor, extensive, and ultrarapid. Disposition patterns were compared among categories, and relationships between SNPs and metabolism categories were explored. RESULTS Gene sequencing identified 51 SNPs, including 27 nonsynonymous SNPs. Debrisoquine was minimally detected after oral administration. Disposition of dextromethorphan varied markedly among horses. Metabolic ratios for dextromethorphan ranged from 0.03 to 0.46 (mean, 0.12). On the basis of these data, 1 horse was characterized as a poor metabolizer, 18 were characterized as extensive metabolizers, and 3 were characterized as ultrarapid metabolizers. CONCLUSIONS AND CLINICAL RELEVANCE Findings suggested that CYP2D50 is polymorphic and that the disposition of the probe drug varies markedly in horses. The polymorphisms may be related to rates of drug metabolism. Additional research involving more horses of various breeds is needed to fully explore the functional implication of polymorphisms in CYP2D50. PMID:27580115

  7. Mania after misuse of dextromethorphan: a case report and brief review of "robotripping".

    PubMed

    Stanciu, Cornel N; Penders, Thomas M

    2015-01-01

    Dextromethorphan (DXM) in combination with antihistamines and/or pseudoephedrine is widely available as an over-the-counter remedy commonly used for relief of colds and cough. In supratherapeutic amounts, DXM can be extremely activating. These cough preparations have been adopted by many young users of recreational drugs for their psychoactive effects. When used in amounts exceeding those recommended, this practice, known as "robotripping," may result in a manic toxidrome of psychomotor agitation, hostility, grandiose behavior, hallucinations, paranoia, and panic. A case illustration of this phenomenon is described and implications of this phenomenon discussed. There are few reports associating DXM use with bipolar symptomatology. PMID:25622122

  8. Dextromethorphan prevents the diethyldithiocarbamate enhancement of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in mice.

    PubMed

    Vaglini, Francesca; Pardini, Carla; Bonuccelli, Ubaldo; Maggio, Roberto; Corsini, Giovanni U

    2003-05-30

    In this report we show that dextromethorphan, a non-opioid cough suppressant, prevents the neurodegeneration of dopaminergic neurons in the substantia nigra of mice treated with diethyldithiocarbamate (DDC) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This effect is further substantiated by the assessment of dopamine (DA) content in the striatum of these animals. Dextromethorphan does not attenuate the striatal DA fall induced by MPTP alone but completely prevents DDC-induced enhancement after the combined treatment. Moreover, a study of DA metabolites has confirmed this neuroprotective property. The striatal levels of serotonin, which were studied as a control neuronal marker, did not change with any of the treatments administered. Furthermore, we show that dextromethorphan reduces the toxicity of glutamate against dopamine neurons in mesencephalic cell cultures. In line with previous data suggesting that dextromethorphan can prevent neuronal damage, our observations supply new evidence regarding the possibility of this compound being of therapeutic use in neurodegenerative diseases. PMID:12738074

  9. The Abuse of Dextromethorphan-Based Cough Syrup: A Pilot Study of the Community of Waynesboro, Pennsylvania.

    ERIC Educational Resources Information Center

    Momodou, N. Darboe; And Others

    1996-01-01

    Discusses the emergence of a new type of abused drug, dextromethorphan, which is used in cough syrup. Presents the results of the first phase of a comprehensive investigation of this phenomenon in the Waynesboro, Pa. school district. Survey data indicate abuse of cough syrup has increased over the years and is increasingly perceived as a problem…

  10. The antitussive effect of dextromethorphan in relation to CYP2D6 activity

    PubMed Central

    Abdul Manap, R; Wright, C E; Gregory, A; Rostami-Hodjegan, A; Meller, S T; Kelm, G R; Lennard, M S; Tucker, G T; Morice, A H

    1999-01-01

    Aims To test the hypothesis that inhibition of cytochrome P450 2D6 (CYP2D6) by quinidine increases the antitussive effect of dextromethorphan (DEX) in an induced cough model. Methods Twenty-two healthy extensive metaboliser phenotypes for CYP2D6 were studied according to a double-blind, randomised cross-over design after administration of: (1) Placebo antitussive preceded at 1 h by placebo inhibitor; (2) 30 mg oral DEX preceded at 1 h by placebo inhibitor (DEX30); (3) 60 mg oral DEX preceded at 1 h by placebo inhibitor (DEX60); (4) 30 mg oral DEX preceded at 1 h by 50 mg oral quinidine sulphate (QDEX30). Cough frequency following inhalation of 10% citric acid was measured at baseline and at intervals up to 12 h. Plasma concentrations of DEX and its metabolites were measured up to 96 h by h.p.l.c. Results Inhibition of CYP2D6 by quinidine caused a significant increase in the mean ratio of DEX to dextrorphan (DEX:DOR) plasma AUC(96) (0.04 vs 1.81, P < 0.001). The mean (±s.d.) decrements in cough frequency below baseline over 12 h (AUEC) were: 8% (11), 17% (14.5), 25% (16.2) and 25% (16.9) for placebo, DEX30, DEX60 and QDEX30 treatments, respectively. Statistically significant differences in antitussive effect were detected for the contrasts between DEX60/placebo (P < 0.001; 95% CI of difference +80, +327) and QDEX30/placebo (P < 0.001, +88, +336), but not for DEX30/placebo, DEX30/DEX60 or DEX30/QDEX30 (P = 0.071, −7, +241; P = 0.254, −37, +211; P = 0.187, −29, +219, respectively). Conclusions A significant antitussive effect was demonstrated after 60 mg dextromethorphan and 30 mg dextromethorphan preceded by 50 mg quinidine using an induced cough model. However, although the study was powered to detect a 10% difference in cough response, the observed differences for other contrasts were less than 10%, such that it was possible only to imply a dose effect (30 vs 60 mg) in the antitussive activity of DEX and enhancement of this effect by CYP2D6 inhibition. PMID

  11. The Effects of Dextromethorphan on Driving Performance and the Standardized Field Sobriety Test.

    PubMed

    Perry, Paul J; Fredriksen, Kristian; Chew, Stephanie; Ip, Eric J; Lopes, Ingrid; Doroudgar, Shadi; Thomas, Kelan

    2015-09-01

    Dextromethorphan (DXM) is abused most commonly among adolescents as a recreational drug to generate a dissociative experience. The objective of the study was to assess driving with and without DXM ingestion. The effects of one-time maximum daily doses of DXM 120 mg versus a guaifenesin 400 mg dose were compared among 40 healthy subjects using a crossover design. Subjects' ability to drive was assessed by their performance in a driving simulator (STISIM® Drive driving simulator software) and by conducting a standardized field sobriety test (SFST) administered 1-h postdrug administration. The one-time dose of DXM 120 mg did not demonstrate driving impairment on the STISIM® Drive driving simulator or increase SFST failures compared to guaifenesin 400 mg. Doses greater than the currently recommended maximum daily dose of 120 mg are necessary to perturb driving behavior. PMID:26294136

  12. Simultaneous high-pressure liquid chromatographic determination of acetaminophen, guaifenesin, and dextromethorphan hydrobromide in cough syrup.

    PubMed

    McSharry, W O; Savage, I V

    1980-02-01

    Acetaminophen (I), guaifenesin (II), and dextromethorphan hydrobromide (III) were separated and quantitated simultaneously in cough syrup by high-pressure liquid chromatography. A chemically bonded octadecylsilane stationary phase was used with a mobile phase of 48% (v/v) aqueous methanol. The mobile phase pH was stabilized to 4.2 by adding formic acid--ammonium formate buffer (approximately 0.4%). The internal standard was o-dinitrobenzene. Retention volumes were 4 ml for I, 6 ml for II, 11 ml for the internal standard, and 20 ml for III. Inactive syrup components did not interfere, permitting direct diluted sample injection. Results on active ingredients were essentially 100% of the claim, with standard deviations of +/- 1.5, 1.2, and 2.1% for I, II, and III, respectively. PMID:7359328

  13. Dextromethorphan increases tyrosine hydroxylase mRNA in the mesencephalon of adolescent rats.

    PubMed

    Zhang, T Y; Jahng, J W; Kim, D G

    2001-08-24

    Dextromethorphan (DM), an antitussive widely available in over-the-counter, has been abused mostly in teenage groups at high doses. To examine effects of DM on the reward pathway, we injected a high dose of DM (40 mg/kg; intraperitoneally) into the adolescent rat and measured tyrosine hydroxylase (TH) mRNA by in situ hybridization in the ventral tegmental area (VTA) and the substantia nigra (SN). Remarkable increases in the level of TH mRNA were observed in the VTA and SN 2 h after DM injection. Stereotyped behavior and ataxia increased, and rearing decreased by DM administration. These results suggest that DM-induced increase in TH mRNA expression in mesencephalon contribute to the reinforcing property and the behavioral effects of DM. PMID:11502351

  14. Dextromethorphan: An update on its utility for neurological and neuropsychiatric disorders.

    PubMed

    Nguyen, Linda; Thomas, Kelan L; Lucke-Wold, Brandon P; Cavendish, John Z; Crowe, Molly S; Matsumoto, Rae R

    2016-03-01

    Dextromethorphan (DM) is a commonly used antitussive and is currently the only FDA-approved pharmaceutical treatment for pseudobulbar affect. Its safety profile and diverse pharmacologic actions in the central nervous system have stimulated new interest for repurposing it. Numerous preclinical investigations and many open-label or blinded clinical studies have demonstrated its beneficial effects across a variety of neurological and psychiatric disorders. However, the optimal dose and safety of chronic dosing are not fully known. This review summarizes the preclinical and clinical effects of DM and its putative mechanisms of action, focusing on depression, stroke, traumatic brain injury, seizure, pain, methotrexate neurotoxicity, Parkinson's disease and autism. Moreover, we offer suggestions for future research with DM to advance the treatment for these and other neurological and psychiatric disorders. PMID:26826604

  15. The effect of the NMDA receptor blocker, dextromethorphan, on cribbing in horses.

    PubMed

    Rendon, R A; Shuster, L; Dodman, N H

    2001-01-01

    Stereotypic cribbing in horses is thought to involve excess dopaminergic activity within the striatum. Various models of stress-induced stereotypies including cribbing in horses postulate that stress stimulates the release of endorphins, triggering the release of striatal dopamine. Dopamine in turn activates basal ganglia motor programs, reinforcing behavior via a reward mechanism. Furthermore, the release of dopamine by endorphins has been shown to depend on activation of NMDA receptors. In the present study, horses identified as cribbers and volunteered by their owners were treated with the NMDA receptor antagonist dextromethorphan (DM). When DM was administered via jugular injection (1 mg/kg), eight of nine horses responded with reductions in cribbing rate (CR) compared to baseline, and cribbing was suppressed completely for a period of time in almost half of the horses tested. PMID:11274707

  16. High-affinity dextromethorphan binding sites in guinea pig brain. II. Competition experiments.

    PubMed

    Craviso, G L; Musacchio, J M

    1983-05-01

    Binding of dextromethorphan (DM) to guinea pig brain is stereoselective, since levomethorphan is 20 times weaker than DM in competing for DM sites. In general, opiate agonists and antagonists as well as their corresponding dextrorotatory isomers are weak competitors for tritiated dextromethorphan ([3H]DM) binding sites and display IC50 values in the micromolar range. In contrast, several non-narcotic, centrally acting antitussives are inhibitory in the nanomolar range (IC50 values for caramiphen, carbetapentane, dimethoxanate, and pipazethate are 25 nM, 9 nM, 41 nM, and 190 nM, respectively). Other antitussives, such as levopropoxyphene, chlophedianol, and fominoben, have poor affinity for DM sites whereas the antitussive noscapine enhances DM binding by increasing the affinity of DM for its central binding sites. Additional competition studies indicate that there is no correlation of DM binding with any of the known or putative neurotransmitters in the central nervous system. DM binding is also not related to tricyclic antidepressant binding sites or biogenic amine uptake sites. However, certain phenothiazine neuroleptics and typical and atypical antidepressants inhibit binding with IC50 values in the nanomolar range. Moreover, the anticonvulsant drug diphenylhydantoin enhances DM binding in a manner similar to that of noscapine. Preliminary experiments utilizing acid extracts of brain have not demonstrated the presence of an endogenous ligand for DM sites. The binding characteristics of DM sites studied in rat and mouse brain indicate that the relative potencies of several antitussives to inhibit specific DM binding vary according to species. High-affinity, saturable, and stereoselective [3H]DM binding sites are present in liver homogenates, but several differences have been found for these peripheral binding sites and those described for brain. Although the nature of central DM binding sites is not known, the potent interaction of several classes of centrally

  17. Quantization of Dextromethorphan and Levocetirizine in Combined Dosage form Using a Novel Validated RP-HPLC Method.

    PubMed

    Joshi, Shalini; Bhatia, C; Bal, C S; Rawat, M S M

    2012-01-01

    The present study reveals a simple isocratic RP-HPLC method for the simultaneous determination of dextromethorphan hydrobromide and levocetirizine dihydrochloride in a cough syrup. The separation of these compounds was achieved within 10 min on a Phenomenex (USA) C(18) analytical column, 250×4.0 mm i.d., using an isocratic mobile phase consisting of potassium dihydrogen phosphate buffer (pH 2.5) - acetonitrile- tetrahydrofuran (70:25:5, v/v/v). The analysis was performed at a flow rate of 1.2 ml/min and at a detection wavelength of 232 nm. Percentage recovery and RSD were 100.36% and 0.05% for levocetirizine dihydrochloride, 100.35% and 0.27% for dextromethorphan hydrobromide respectively. Quantification of the components in syrup formulation was calculated against the peak areas of freshly prepared standard solutions. The method was validated as per ICH guidelines. PMID:23204629

  18. Quantization of Dextromethorphan and Levocetirizine in Combined Dosage form Using a Novel Validated RP-HPLC Method

    PubMed Central

    Joshi, Shalini; Bhatia, C.; Bal, C. S.; Rawat, M. S. M.

    2012-01-01

    The present study reveals a simple isocratic RP-HPLC method for the simultaneous determination of dextromethorphan hydrobromide and levocetirizine dihydrochloride in a cough syrup. The separation of these compounds was achieved within 10 min on a Phenomenex (USA) C18 analytical column, 250×4.0 mm i.d., using an isocratic mobile phase consisting of potassium dihydrogen phosphate buffer (pH 2.5) - acetonitrile- tetrahydrofuran (70:25:5, v/v/v). The analysis was performed at a flow rate of 1.2 ml/min and at a detection wavelength of 232 nm. Percentage recovery and RSD were 100.36% and 0.05% for levocetirizine dihydrochloride, 100.35% and 0.27% for dextromethorphan hydrobromide respectively. Quantification of the components in syrup formulation was calculated against the peak areas of freshly prepared standard solutions. The method was validated as per ICH guidelines. PMID:23204629

  19. Dextromethorphan overdose

    MedlinePlus

    DXM overdose; Robo overdose; Orange crush overdose; Red devils overdose; Triple C's overdose ... streets under the names: Orange crush Triple Cs Red Devils Skittles Dex Other products may also contain ...

  20. A randomized placebo controlled trial to evaluate the effects of butamirate and dextromethorphan on capsaicin induced cough in healthy volunteers

    PubMed Central

    Faruqi, Shoaib; Wright, Caroline; Thompson, Rachel; Morice, Alyn H

    2014-01-01

    Aims The examination of cough reflex sensitivity through inhalational challenge can be utilized to demonstrate pharmacological end points. Here we compare the effect of butamirate, dextromethorphan and placebo on capsaicin-induced cough in healthy volunteers. Methods In this randomized, placebo-controlled, six way crossover study the effect of dextromethrophan 30 mg, four doses of butamirate and placebo was evaluated on incremental capsaicin challenges performed at baseline and 2, 4, 6, 8, 12 and 24 h following dosing. The primary end point was the area under the curve (AUC(0,12h)) of log10 C5 from pre-dose to 12 h after dosing. Plasma butamirate metabolites were analyzed to evaluate pharmacokinetic and pharmacodynamic relationships. Results Thirty-four subjects (13 males, median age 25 years) completed the study. Cough sensitivity decreased from baseline in all arms of the study. Dextromethorphan was superior to placebo (P = 0.01) but butamirate failed to show significant activity with maximum attenuation at the 45 mg dose. There was no apparent relationship between pharmacokinetic and pharmacodynamic parameters for butamirate. Conclusions We have demonstrated for the first time that dextromethorphan attenuates capsaicin challenge confirming its broad activity on the cough reflex. The lack of efficacy of butamirate could be due to formulation issues at higher doses. PMID:24995954

  1. Clinical assessment of CYP2D6-mediated herb-drug interactions in humans: effects of milk thistle, black cohosh, goldenseal, kava kava, St. John's wort, and Echinacea.

    PubMed

    Gurley, Bill J; Swain, Ashley; Hubbard, Martha A; Williams, D Keith; Barone, Gary; Hartsfield, Faith; Tong, Yudong; Carrier, Danielle J; Cheboyina, Shreekar; Battu, Sunil K

    2008-07-01

    Cytochrome P450 2D6 (CYP2D6), an important CYP isoform with regard to drug-drug interactions, accounts for the metabolism of approximately 30% of all medications. To date, few studies have assessed the effects of botanical supplementation on human CYP2D6 activity in vivo. Six botanical extracts were evaluated in three separate studies (two extracts per study), each incorporating 16 healthy volunteers (eight females). Subjects were randomized to receive a standardized botanical extract for 14 days on separate occasions. A 30-day washout period was interposed between each supplementation phase. In study 1, subjects received milk thistle (Silybum marianum) and black cohosh (Cimicifuga racemosa). In study 2, kava kava (Piper methysticum) and goldenseal (Hydrastis canadensis) extracts were administered, and in study 3 subjects received St. John's wort (Hypericum perforatum) and Echinacea (Echinacea purpurea). The CYP2D6 substrate, debrisoquine (5 mg), was administered before and at the end of supplementation. Pre- and post-supplementation phenotypic trait measurements were determined for CYP2D6 using 8-h debrisoquine urinary recovery ratios (DURR). Comparisons of pre- and post-supplementation DURR revealed significant inhibition (approximately 50%) of CYP2D6 activity for goldenseal, but not for the other extracts. Accordingly, adverse herb-drug interactions may result with concomitant ingestion of goldenseal supplements and drugs that are CYP2D6 substrates. PMID:18214849

  2. Therapeutic use of dextromethorphan: key learnings from treatment of pseudobulbar affect.

    PubMed

    Miller, Ariel; Panitch, Hillel

    2007-08-15

    A variety of neurological conditions and disease states are accompanied by pseudobulbar affect (PBA), an emotional disorder characterized by uncontrollable outbursts of laughing and crying. The causes of PBA are unclear but may involve lesions in neural circuits regulating the motor output of emotional expression. Several agents used in treating other psychiatric disorders have been applied in the treatment of PBA with some success but data are limited and these agents are associated with unpleasant side effects due to nonspecific activity in diffuse neural networks. Dextromethorphan (DM), a widely used cough suppressant, acts at receptors in the brainstem and cerebellum, brain regions implicated in the regulation of emotional output. The combination of DM and quinidine (Q), an enzyme inhibitor that blocks DM metabolism, has recently been tested in phase III clinical trials in patients with multiple sclerosis and amyotrophic lateral sclerosis and was both safe and effective in palliating PBA symptoms. In addition, clinical studies pertaining to the safety and efficacy of DM/Q in a variety of neurological disease states are ongoing. PMID:17433820

  3. Effect of dextromethorphan on reference memory assessed in rats by a three-panel runway task.

    PubMed

    Göçmez, Semil Selcen; Erden, Bekir Faruk; Ulak, Güner; Utkan, Tijen; Yildiz, Füruzan; Gacar, Nejat; Mutlu, Oguz

    2006-01-01

    The effects of dextromethorphan (DM, CAS 6700-34-1), a common over-the-counter cough suppressant, on the reference memory have been investigated by a three-panel runway setup in rats. This study was designed by using a repeated acquisition procedure such as a radialarm maze task or a water maze task. DM (20-40 mg/kg i.p.) produced a significant decrease in the number of errors (pushes made on the two incorrect panels of the three panel gates at four choice points) and latency. Systemically administered scopolamine (CAS 114-49-8) (1 mg/kg i.p.) impaired the performance on both parameters. DM (40 mg/kg i.p.) was effective in reversing the reference memory deficit induced by administration of scopolamine. DM acts as a noncompetitive antagonist of the N-methyl-D-aspartate (NMDA) receptors. Our results suggest that inhibition of NMDA receptors by DM supports its potential positive properties. This finding might present an oppurtunity for the evaluation of this old antitussive drug. PMID:16724513

  4. Involvement of AMPA receptors in the antidepressant-like effects of dextromethorphan in mice.

    PubMed

    Nguyen, Linda; Matsumoto, Rae R

    2015-12-15

    Dextromethorphan (DM) is an antitussive with rapid acting antidepressant potential based on pharmacodynamic similarities to ketamine. Building upon our previous finding that DM produces antidepressant-like effects in the mouse forced swim test (FST), the present study aimed to establish the antidepressant-like actions of DM in the tail suspension test (TST), another well-established model predictive of antidepressant efficacy. Additionally, using the TST and FST, we investigated the role of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors in the antidepressant-like properties of DM because accumulating evidence suggests that AMPA receptors play an important role in the pathophysiology of depression and may contribute to the efficacy of antidepressant medications, including that of ketamine. We found that DM displays antidepressant-like effects in the TST similar to the conventional and fast acting antidepressants characterized by imipramine and ketamine, respectively. Moreover, decreasing the first-pass metabolism of DM by concomitant administration of quinidine (CYP2D6 inhibitor) potentiated antidepressant-like actions, implying DM itself has antidepressant efficacy. Finally, in both the TST and FST, pretreatment with the AMPA receptor antagonist NBQX (2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide) significantly attenuated the antidepressant-like behavior elicited by DM. Together, the data show that DM exerts antidepressant-like actions through AMPA receptors, further suggesting DM may act as a safe and effective fast acting antidepressant drug. PMID:25804358

  5. Spectrophotometric Determination of Pipazethate HCl and Dextromethorphan HBr using Potassium Permanganate

    PubMed Central

    Gouda, Ayman Abou El-Fetouh; El-Sheikh, Ragaa; El Shafey, Zeineb.; Hossny, Nagda.; El-Azzazy, Rham

    2008-01-01

    Rapid, simple and sensitive validated spectrophotometric methods have been described for the assay of pipazethate HCl (PiCl) and dextromethorphan HBr (DEX) either in pure form or in pharmaceutical formulations. The proposed methods were based on the oxidation of the studied drugs by a known excess of potassium permanganate in acidic medium and estimating the unreacted permanganate with amaranth dye (method A), acid orange II (method B), indigocarmine (method C) and methylene blue (method D), in the same acid medium at a suitable λmax=521, 485, 610 and 664 nm, respectively. Beer’s law is obeyed in the concentration range of 2.0-16 and 2.0-15 μg mL-1 for PiCl and DEX, respectively with correlation coefficient (n=6) ≥ 0.9993. The apparent molar absorptivity and sandell sensitivity values are in the range 1.062-1.484 × 104, 3.35-4.51 × 104 L mol-1 cm-1 and 29.36-41.03, 8.21-11.06 ng cm-2 for PiCl and DEX, respectively. Different variables affecting the reaction were studied and optimized. The proposed methods were applied successfully to the determination of the examined drugs either in a pure or pharmaceutical dosage forms with good accuracy and precision. No interferences were observed from excipients and the results obtained were in good agreement with those obtained using the official methods. PMID:23675101

  6. Spectrophotometric Determination of Pipazethate HCl and Dextromethorphan HBr using Potassium Permanganate.

    PubMed

    Gouda, Ayman Abou El-Fetouh; El-Sheikh, Ragaa; El Shafey, Zeineb; Hossny, Nagda; El-Azzazy, Rham

    2008-12-01

    Rapid, simple and sensitive validated spectrophotometric methods have been described for the assay of pipazethate HCl (PiCl) and dextromethorphan HBr (DEX) either in pure form or in pharmaceutical formulations. The proposed methods were based on the oxidation of the studied drugs by a known excess of potassium permanganate in acidic medium and estimating the unreacted permanganate with amaranth dye (method A), acid orange II (method B), indigocarmine (method C) and methylene blue (method D), in the same acid medium at a suitable λmax=521, 485, 610 and 664 nm, respectively. Beer's law is obeyed in the concentration range of 2.0-16 and 2.0-15 μg mL(-1) for PiCl and DEX, respectively with correlation coefficient (n=6) ≥ 0.9993. The apparent molar absorptivity and sandell sensitivity values are in the range 1.062-1.484 × 10(4), 3.35-4.51 × 10(4) L mol(-1) cm(-1) and 29.36-41.03, 8.21-11.06 ng cm(-2) for PiCl and DEX, respectively. Different variables affecting the reaction were studied and optimized. The proposed methods were applied successfully to the determination of the examined drugs either in a pure or pharmaceutical dosage forms with good accuracy and precision. No interferences were observed from excipients and the results obtained were in good agreement with those obtained using the official methods. PMID:23675101

  7. Determination of Dextromethorphan in Oral Fluid by LC-MS-MS.

    PubMed

    Amaratunga, Piyadarsha; Clothier, Morgan; Lorenz Lemberg, Bridget; Lemberg, Dave

    2016-06-01

    Dextromethorphan (DXM) is an antitussive drug found in commonly used nonprescription cold and cough medications. At low doses, DXM is a safe drug that does not produce adverse reactions. However, abuse of DXM has been reported among adolescents and young adults using the drug at higher doses. DXM is not a scheduled drug in the USA, and the primary reason for its abuse is the ease of availability. DXM is available to purchase in the form of over-the-counter cough medications, such as Robitussin(®) and Coricidin(®), or it can be purchased over the Internet in the form of a powder. In this research work, we developed an LC-MS-MS method that can quantify DXM and dextrorphan (DXO) in oral fluid in a high-throughput toxicology laboratory setting. The developed method was validated according to the Scientific Working Group for Forensic Toxicology guidelines. The linear dynamic range was 5-100 ng/mL with a lowest limit of quantitation (LLOQ) of 5.0 ng/mL for DXM and DXO. Overall, the results of the accuracy and the precision values were within the acceptance criteria for both drugs. In addition, selectivity, matrix effect and recovery were calculated for the LC-MS-MS method. Authentic samples (n = 59) were tested to evaluate the applicability of the method. Thirty samples were found to be positive for DXM and DXO and two samples were found to be positive for DXM only. PMID:27185818

  8. Ovariectomy ameliorates dextromethorphan--induced memory impairment in young female rats.

    PubMed

    Jahng, Jeong Won; Cho, Hee Jeong; Kim, Jae Goo; Kim, Nam Youl; Lee, Seoul; Lee, Yil Seob

    2006-01-01

    We have previously found that dextromethorphan (DM), over-the-counter cough suppressant, impairs memory retention in water maze task, when it is repeatedly administrated to adolescent female rats at high doses. In this study we examined first if ovariectomy ameliorates the DM-induced memory impairment in female rats, and then whether or not the DM effect is revived by estrogen replacement in ovariectomized female rats. Female rat pups received bilateral ovariectomy or sham operation on postnatal day (PND) 21, and then intraperitoneal DM (40 mg/kg) daily during PND 28-37. Rats were subjected to the Morris water maze task from PND 38, approximately 24 h after the last DM injection. In probe trial, goal quadrant dwell time was significantly reduced by DM in the sham operated group, however, the reduction by DM did not occur in the ovariectomy group. When 17beta-estradiol was supplied to ovariectomized females during DM treatment, the goal quadrant dwell time was significantly decreased, compared to the vehicle control group. Furthermore, a major effect of estrogen replacement was found in the escape latency during the last 3 days of initial learning trials. These results suggest that ovariectomy may ameliorate the adverse effect of DM treatment on memory retention in young female rats, and that estrogen replacement may revive it, i.e. estrogen may take a major role in DM-induced memory impairment in female rats. PMID:16563229

  9. Evaluation of a [13C]-Dextromethorphan Breath Test to Assess CYP2D6 Phenotype

    PubMed Central

    Leeder, J. Steven; Pearce, Robin E.; Gaedigk, Andrea; Modak, Anil; Rosen, David I.

    2016-01-01

    A [13C]-dextromethorphan ([13C]-DM) breath test was evaluated to assess its feasibility as a rapid, phenotyping assay for CYP2D6 activity. [13C]-DM (0.5 mg/kg) was administered orally with water or potassium bicarbonate-sodium bicarbonate to 30 adult Caucasian volunteers (n = 1 each): CYP2D6 poor metabolizers (2 null alleles; PM-0) and extensive metabolizers with 1 (EM-1) or 2 functional alleles (EM-2). CYP2D6 phenotype was determined by 13CO2 enrichment measured by infrared spectrometry (delta-over-baseline [DOB] value) in expired breath samples collected before and up to 240 minutes after [13C]-DM ingestion and by 4-hour urinary metabolite ratio. The PM-0 group was readily distinguishable from either EM group by both the breath test and urinary metabolite ratio. Using a single point determination of phenotype at 40 minutes and defining PMs as subjects with a DOB ≤ 0.5, the sensitivity of the method was 100%; specificity was 95% with 95% accuracy and resulted in the misclassification of 1 EM-1 individual as a PM. Modification of the initial protocol (timing of potassium bicarbonate-sodium bicarbonate administration relative to dose) yielded comparable results, but there was a tendency toward increased DOB values. Although further development is required, these studies suggest that the [13C]-DM breath test offers promise as a rapid, minimally invasive phenotyping assay for CYP2D6 activity. PMID:18728242

  10. Dextromethorphan and its metabolite dextrorphan block alpha3beta4 neuronal nicotinic receptors.

    PubMed

    Hernandez, S C; Bertolino, M; Xiao, Y; Pringle, K E; Caruso, F S; Kellar, K J

    2000-06-01

    Dextromethorphan (DM), a structural analog of morphine and codeine, has been widely used as a cough suppressant for more than 40 years. DM is not itself a potent analgesic, but it has been reported to enhance analgesia produced by morphine and nonsteroidal anti-inflammatory drugs. Although DM is considered to be nonaddictive, it has been reported to reduce morphine tolerance in rats and to be useful in helping addicted subjects to withdraw from heroin. Here we studied the effects of DM on neuronal nicotinic receptors stably expressed in human embryonic kidney cells. Studies were carried out to examine the effects of DM on nicotine-stimulated whole cell currents and nicotine-stimulated (86)Rb(+) efflux. We found that both DM and its metabolite dextrorphan block nicotinic receptor function in a noncompetitive but reversible manner, suggesting that both drugs block the receptor channel. Consistent with blockade of the receptor channel, neither drug competed for the nicotinic agonist binding sites labeled by [(3)H]epibatidine. Although DM is approximately 9-fold less potent than the widely used noncompetitive nicotinic antagonist mecamylamine in blocking nicotinic receptor function, the block by DM appears to reverse more slowly than that by mecamylamine. These data indicate that DM is a useful antagonist for studying nicotinic receptor function and suggest that it might prove to be a clinically useful neuronal nicotinic receptor antagonist, possibly helpful as an aid for helping people addicted to nicotine to refrain from smoking, as well as in other conditions where blockade of neuronal nicotinic receptors would be helpful. PMID:10869398

  11. Lack of effect of chronic dextromethorphan on experimental pain tolerance in methadone-maintained patients.

    PubMed

    Compton, Peggy A; Ling, Walter; Torrington, Matt A

    2008-09-01

    Good evidence exists to suggest that individuals on opioid maintenance for the treatment of addiction (i.e. methadone) are less tolerant of experimental pain than are matched controls or ex-opioid addicts, a phenomenon theorized to reflect opioid-induced hyperalgesia (OIH). Agonist activity at the excitatory ionotropic N-methyl-D-aspartate (NMDA) receptor on dorsal horn neurons has been implicated in the development of both OIH and its putative expression at the clinical level-opioid tolerance. The aim of this study was to evaluate the potential utility of the NMDA-receptor antagonist, dextromethorphan (DEX), to reverse or treat OIH in methadone-maintenance (MM) patients. Utilizing a clinical trial design and double-blind conditions, changes in pain threshold and tolerance [cold pressor (CP) and electrical stimulation (ES)] following a 5-week trial of DEX (titrated to 480 mg/day) in comparison with placebo was evaluated in a well-characterized sample of MM patients. The sample (n = 40) was 53% male and ethnically diverse (53% Latino, 28% African American, 10% White, 9% other), with a mean age of 48.0 years (SD = 6.97). Based on t-test analyses, no difference was found between groups on CP pain threshold, CP pain tolerance, ES pain threshold or ES pain tolerance, both pre- and postmedication. Notably, DEX-related changes significantly differed by gender, with women tending to show diminished tolerance for pain with DEX therapy. These results support that chronic high-dose NMDA antagonism does not improve tolerance for pain in MM patients, although a gender effect on DEX response is suggested. PMID:18507735

  12. Acute cognitive effects of high doses of dextromethorphan relative to triazolam in humans

    PubMed Central

    Carter, Lawrence P.; Reissig, Chad J.; Johnson, Matthew W.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2012-01-01

    BACKGROUND Although concerns surrounding high-dose dextromethorphan (DXM) abuse have recently increased, few studies have examined the acute cognitive effects of high doses of DXM. The aim of this study was to compare the cognitive effects of DXM with those of triazolam and placebo. METHODS Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg /70 kg), and placebo were administered p.o. to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Effects on cognitive performance were examined at baseline and after drug administration for up to 6 hours. RESULTS Both triazolam and DXM produced acute impairments in attention, working memory, episodic memory, and metacognition. Impairments observed following doses of 100-300 mg/70 kg DXM were generally smaller in magnitude than those observed after 0.5 mg/70 kg triazolam. Doses of DXM that impaired performance to the same extent as triazolam were in excess of 10-30 times the therapeutic dose of DXM. CONCLUSION The magnitude of the doses required for these effects and the absence of effects on some tasks within the 100-300 mg/70 kg dose range of DXM, speak to the relatively broad therapeutic window of over-the-counter DXM preparations when used appropriately. However, the administration of supratherapeutic doses of DXM resulted in acute cognitive impairments on all tasks that were examined. These findings are likely relevant to cases of high-dose DXM abuse. PMID:22989498

  13. Prevention of Hippocampal Neuronal Damage and Cognitive Function Deficits in Vascular Dementia by Dextromethorphan.

    PubMed

    Xu, Xiaofeng; Zhang, Bin; Lu, Kaili; Deng, Jiangshan; Zhao, Fei; Zhao, Bing-Qiao; Zhao, Yuwu

    2016-07-01

    Dextromethorphan (DM) is a non-competitive antagonist of NMDA receptors and a widely used component of cough medicine. Recently, its indication has been extended experimentally to a wide range of disorders including inflammation-mediated central nervous system disorders such as Parkinson disease (PD) and multiple sclerosis (MS). In this study, we investigate whether DM treatment has protective effects on the hippocampal neuron damage induced by bilateral occlusion of the common carotid arteries (two-vessel occlusion [2VO]), an animal model of vascular dementia (VaD). Sprague-Dawley (SD) (10 weeks of age) rats were subjected to the 2VO, and DM was injected intraperitoneally once per day for 37 days. Neuron death, glial activation, and cognitive function were assessed at 37 days after 2VO (0.2 mg/kg, i.p., "DM-0.2" and 2 mg/kg, i.p., "DM-2"). DM-2 treatment provided protection against neuronal death and glial activation in the hippocampal CA1 subfield and reduced cognitive impairment induced by 2VO in rats. The study also demonstrates that activation of the Nrf2-HO-1 pathway and upregulation of superoxide dismutase (SOD) play important roles in these effects. These results suggest that DM is effective in treating VaD and protecting against oxidative stress, which is strongly implicated in the pathogenesis of VaD. Therefore, the present study suggests that DM treatment may represent a new and promising protective strategy for treating VaD. PMID:26887382

  14. High doses of dextromethorphan, an NMDA antagonist, produce effects similar to classic hallucinogens

    PubMed Central

    Carter, Lawrence P.; Johnson, Matthew W.; Mintzer, Miriam Z.; Klinedinst, Margaret A.; Griffiths, Roland R.

    2013-01-01

    Rationale Although reports of dextromethorphan (DXM) abuse have increased recently, few studies have examined the effects of high doses of DXM. Objective This study in humans evaluated the effects of supratherapeutic doses of DXM and triazolam. Methods Single, acute, oral doses of DXM (100, 200, 300, 400, 500, 600, 700, 800 mg/70 kg), triazolam (0.25, 0.5 mg/70kg), and placebo were administered to twelve healthy volunteers with histories of hallucinogen use, under double-blind conditions, using an ascending dose run-up design. Subjective, behavioral, and physiological effects were assessed repeatedly after drug administration for 6 hours. Results Triazolam produced dose-related increases in subject-rated sedation, observer-rated sedation, and behavioral impairment. DXM produced a profile of dose-related physiological and subjective effects differing from triazolam. DXM effects included increases in blood pressure, heart rate, and emesis, increases in observer-rated effects typical of classic hallucinogens (e.g. distance from reality, visual effects with eyes open and closed, joy, anxiety), and participant ratings of stimulation (e.g. jittery, nervous), somatic effects (e.g. tingling, headache), perceptual changes, end-of-session drug liking, and mystical-type experience. After 400 mg/70kg DXM, 11 of 12 participants indicated on a pharmacological class questionnaire that they thought they had received a classic hallucinogen (e.g. psilocybin). Drug effects resolved without significant adverse effects by the end of the session. In a 1-month follow up volunteers attributed increased spirituality and positive changes in attitudes, moods, and behavior to the session experiences. Conclusions High doses of DXM produced effects distinct from triazolam and had characteristics that were similar to the classic hallucinogen psilocybin. PMID:22526529

  15. The N-methyl-D-aspartate receptor antagonist dextromethorphan selectively reduces temporal summation of second pain in man.

    PubMed

    Price, D D; Mao, J; Frenk, H; Mayer, D J

    1994-11-01

    Oral doses of dextromethorphan (DM), a common cough suppressant and N-methyl-D-aspartate (NMDA) receptor antagonist, and their vehicle control were given on a double-blind basis to normal volunteer human subjects who rated intensities of first and second pain in response to repeated painful electric shocks and repeated 52 degrees C heat pulses. Doses of 30 and 45 mg, but not 15 mg, were effective in attenuating temporal summation of second pain, a psychophysical correlate of temporal summation of C afferent-mediated responses of dorsal horn nociceptive neurons, termed 'wind-up'. By contrast, neither first nor second pain evoked by the first stimulus in a train of stimuli were affected by any of these doses of DM. These results further confirm temporal summation of second pain as a psychophysical correlate of wind-up by providing evidence that DM selectively reduces temporal summation of second pain, as has been shown for wind-up. PMID:7892014

  16. Combination With Low-dose Dextromethorphan Improves the Effect of Amlodipine Monotherapy in Clinical Hypertension

    PubMed Central

    Yin, Wei-Hsian; Chen, Pei; Yeh, Hung-I; Wang, Kuo-Yang; Hung, Yi-Jen; Tseng, Wei-Kung; Wen, Ming-Shien; Wu, Tao-Cheng; Wu, Chau-Chung; Cheng, Shu-Meng; Chen, Jaw-Wen

    2016-01-01

    Abstract The combination of low rather than high dose of dextromethorphan (DXM) with amlodipine (AM) could improve blood pressure (BP) reduction in hypertensive animals. The study aimed to evaluate the feasibility of different doses of DXM combined with standard AM treatment in clinical hypertension. This was a prospective, 14-week, dose-escalation, multicenter study. After 2-week run-in period with AM 5 mg/day, hypertensive patients who got the BP goal of 140/90 mmHg kept receiving AM monotherapy for another 12 weeks. The nonresponders, while kept on AM 5 mg/day, received additional DXM treatment for 3 sequential dose-titrated periods with initially 2.5 mg/day, followed by 7.5 mg/day, and finally 30 mg/day. Each period was for 4 weeks. The patients at BP goal after each treatment period were defined as the responders and kept on the same combination till the end of the study. The responder rate of each treatment period was recorded. The changes of BP and serum antioxidant/endothelial markers between week 14 and week 2 were evaluated. Of the 103 patients initially enrolled, 89 entered the treatment period. In the 78 patients completing the study, 31 (40%) at BP goal after 2-week AM run-in kept on AM monotherapy (DXM0). The addition of 2.5 (DXM2.5) and 7.5 mg/day (DXM7.5) of DXM enabled BP goal achievement in 22 (47%) nonresponders to AM monotherapy including 16 (29%) with DXM2.5 and 6 (18%) with DXM7.5. Only 4 patients (16%) reached BP goal with the combination of DXM 30 mg/day (DXM30). Overall, 73% of the 78 patients reached BP goal at the end of the 14-week study. Mean systolic BP was reduced by 7.9% ± 7.0% with DXM2.5 (P < 0.001) and by 5.4% ± 2.4% with DXM7.5 (P = 0.003) respectively at week 14 from that at week 2, which was unchanged in either DXM0 or DXM30 group. Besides, the effects of combination treatment were particularly significant in the patients with impaired endothelial function suggested by reduced serum NOx level

  17. Liquid chromatography/quadrupole-time-of-flight mass spectrometry with metabolic profiling of human urine as a tool for environmental analysis of dextromethorphan.

    PubMed

    Thurman, E Michael; Ferrer, Imma

    2012-10-12

    We use the combination of liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF-MS) and urine metabolic profiling to find and identify the metabolites of dextromethorphan, a common over-the-counter (OTC) cough suppressant. Next, we use the combination of ion masses, their MS/MS fragmentation, and retention times to determine dextromethorphan and its metabolites in surface water impacted by wastewater. Prior to this study, neither dextromethorphan nor its metabolites have been reported in surface water; in spite of its common use in over 100 various OTC medications. We found that the concentration of the dextrorphan metabolite in surface water greatly exceeded the parent compound by factors of 5-10 times, which reflects the urine profile, where parent compound is approximately <2% of the total excreted drug based on ion intensities. Urine profiling also indicated that glucuronide metabolites are major phase 2 products (92% of the total) in urine and then are completely hydrolyzed in wastewater to dextrorphan and N-demethyldextrorphan, which are phase 1 metabolites-a "kind of reversal" of human metabolism. PMID:22443892

  18. Repeated, high-dose dextromethorphan treatment decreases neurogenesis and results in depression-like behavior in rats.

    PubMed

    Po, Kai Ting; Siu, Andrew Man-Hong; Lau, Benson Wui-Man; Chan, Jackie Ngai-Man; So, Kwok-Fai; Chan, Chetwyn C H

    2015-07-01

    Abuse of cough mixture is increasingly prevalent worldwide. Clinical studies showed that chronic consumption of cough mixture at high dosages may lead to psychiatric symptoms, especially affective disturbances, with the underlying mechanisms remain elusive. The present study aims at exploring the effect of repeated, high-dose dextromethorphan (DXM, a common active component of cough mixture) treatment on adult hippocampal neurogenesis, which is associated with pathophysiology of mood disturbances. After treatment with a high-dose of DXM (40 mg/kg/day) for 2 weeks, Sprague-Dawley rats showed increased depression-like behavior when compared to the control animals. Neurogenesis in the hippocampus was suppressed by DXM treatment, which was indicated by decreases in number of proliferative cells and doublecortin (an immature neuron marker)-positive new neurons. Furthermore, the dendritic complexity of the immature neurons was suppressed by DXM treatment. These findings suggest that DXM induces depression- and anxiety-like behavior and suppresses neurogenesis in rats. The current experimental paradigm may serve as an animal model for study on affective effect of cough mixture abuse, rehabilitation treatment options for abusers and the related neurological mechanisms. PMID:25939533

  19. Potential transducers based man-tailored biomimetic sensors for selective recognition of dextromethorphan as an antitussive drug.

    PubMed

    El-Naby, Eman H; Kamel, Ayman H

    2015-09-01

    A biomimetic potentiometric sensor for specific recognition of dextromethorphan (DXM), a drug classified according to the Drug Enforcement Administration (DEA) as a "drug of concern", is designed and characterized. A molecularly imprinted polymer (MIP), with special molecular recognition properties of DXM, was prepared by thermal polymerization in which DXM acted as template molecule, methacrylic acid (MAA) and acrylonitrile (AN) acted as functional monomers in the presence of ethylene glycol dimethacrylate (EGDMA) as crosslinker. The sensors showed a high selectivity and a sensitive response to the template in aqueous system. Electrochemical evaluation of these sensors revealed near-Nernstian response with slopes of 49.6±0.5 and 53.4±0.5 mV decade(-1) with a detection limit of 1.9×10(-6), and 1.0×10(-6) mol L(-1) DXM with MIP/MAA and MIP/AN membrane based sensors, respectively. Significantly improved accuracy, precision, response time, stability, selectivity and sensitivity were offered by these simple and cost-effective potentiometric sensors compared with other standard techniques. The method has the requisite accuracy, sensitivity and precision to assay DXM in pharmaceutical products. PMID:26046285

  20. Behavioral and biochemical effects of ketamine and dextromethorphan relative to its antidepressant-like effects in Swiss Webster mice.

    PubMed

    Nguyen, Linda; Lucke-Wold, Brandon P; Logsdon, Aric F; Scandinaro, Anna L; Huber, Jason D; Matsumoto, Rae R

    2016-09-28

    Ketamine has been shown to produce rapid and robust antidepressant effects in depressed individuals; however, its abuse potential and adverse psychotomimetic effects limit its widespread use. Dextromethorphan (DM) may serve as a safer alternative on the basis of pharmacodynamic similarities to ketamine. In this proof-of-concept study, behavioral and biochemical analyses were carried out to evaluate the potential involvement of brain-derived neurotrophic factor (BDNF) in the antidepressant-like effects of DM in mice, with comparisons to ketamine and imipramine. Male Swiss, Webster mice were injected with DM, ketamine, or imipramine and their behaviors were evaluated in the forced-swim test and the open-field test. Western blots were used to measure BDNF and its precursor, pro-BDNF, protein expression in the hippocampus and the frontal cortex of these mice. Our results show that both DM and imipramine reduced immobility time in the forced-swim test without affecting locomotor activity, whereas ketamine reduced immobility time and increased locomotor activity. Ketamine also rapidly (within 40 min) increased pro-BDNF expression in an α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor-dependent manner in the hippocampus, whereas DM and imipramine did not alter pro-BDNF or BDNF levels in either the hippocampus or the frontal cortex within this timeframe. These data show that DM shares some features with both ketamine and imipramine. Additional studies examining DM may aid in the development of more rapid, safe, and efficacious antidepressant treatments. PMID:27580401

  1. Role of hippocampal and prefrontal cortical signaling pathways in dextromethorphan effect on morphine-induced memory impairment in rats.

    PubMed

    Ghasemzadeh, Zahra; Rezayof, Ameneh

    2016-02-01

    Evidence suggests that dextromethorphan (DM), an NMDA receptor antagonist, induces memory impairment. Considering that DM is widely used in cough-treating medications, and the co-abuse of DM with morphine has recently been reported, the aims of the present study was (1) to investigate whether there is a functional interaction between morphine and DM in passive avoidance learning and (2) to assess the possible role of the hippocampal and prefrontal cortical (PFC) signaling pathways in the effects of the drugs on memory formation. Our findings indicated that post-training or pre-test administration of morphine (2 and 6 mg/kg) or DM (10-30 mg/kg) impaired memory consolidation and retrieval which was associated with the attenuation of the levels of phosphorylated Ca(2+)/calmodulin-dependent protein kinase II (p-CAMKII) and cAMP responsive element-binding protein (p-CREB) in the targeted sites. Moreover, the memory impairment induced by post-training administration of morphine was reversed by pre-test administration of the same dose of morphine or DM (30 mg/kg), indicating state-dependent learning (SDL) and a cross-SDL between the drugs. It is important to note that the levels of p-CAMKII/CAMKII and p-CREB/CREB in the hippocampus and the PFC increased in drugs-induced SDL. In addition, DM administration potentiated morphine-induced SDL which was related to the enhanced levels of hippocampal and PFC CAMKII-CREB signaling pathways. It can be concluded that there is a relationship between the hippocampus and the PFC in the effect of DM and/or morphine on memory retrieval. Moreover, a cross SDL can be induced between the co-administration of DM and morphine. Interestingly, CAMKII-CREB signaling pathways also mediate the drugs-induced SDL. PMID:26708494

  2. Further characterization of a ¹³C-dextromethorphan breath test for CYP2D6 phenotyping in breast cancer patients on tamoxifen therapy.

    PubMed

    Opdam, F L; Modak, A S; Gelderblom, H; Guchelaar, H J

    2015-06-01

    In a previous study, we found that the CYP2D6 phenotype determined by (13)C-dextromethorphan breath test (DM-BT) might be used to predict tamoxifen treatment outcome in breast cancer patients in the adjuvant setting. However, large variation in the delta-over-baseline (DOB) values was observed in the extensive metabolizer predicted phenotype group based on single point measures. In the present work we aimed to analyze the variability of phenotype results and determine reproducibility to further characterize the clinical utility of DM-BT by introducing multiple breath sampling instead of single breath sampling and by administration of a fixed dose of (13)C-DM. PMID:25891764

  3. Therapeutic Approach of a High Functioning Individual With Traumatic Brain Injury and Subsequent Emotional Volatility With Features of Pathological Laughter and Crying With Dextromethorphan/Quinidine.

    PubMed

    Garcia-Baran, Dynela; Johnson, Thomas M; Wagner, Joyce; Shen, Joann; Geers, Michelle

    2016-03-01

    Pathological laughing and crying, or pseudobulbar affect (PBA), has been described in patients with neurological disorders such as multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, stroke, and traumatic brain injury (TBI) since the 19th century (Schiffer 2005). The syndrome is characterized by inappropriate episodes of laughing or crying after minor stimuli. It was first coined a disinhibition of cortical control by Kinnier Wilson in 1924. It was observed in brain disease and seen with mild TBI. It can impair social and occupational function and is largely underrecognized in clinical settings. PBA is usually treated with antidepressants and dopaminergic agents. In this case we treated a military recruit with TBI with Nuedexta-a dextromethorphan/Quinidine derivative with a subsequent decrease in his episodes. PMID:27015166

  4. Dextromethorphan and Quinidine

    MedlinePlus

    ... disease; condition in which the nerves that control muscle movement slowly die, causing the muscles to shrink and weaken) or multiple sclerosis (a ... and patients may experience weakness, numbness, loss of muscle coordination and problems with vision, speech, and bladder ...

  5. Dextromethorphan and Quinidine

    MedlinePlus

    ... is in a class of medications called central nervous system agents. The way it works in the brain ... ever had myasthenia gravis (a disorder of the nervous system that causes muscle weakness), a history of street ...

  6. Analysis of dextromethorphan and dextrorphan in decomposed skeletal tissues by microwave assisted extraction, microplate solid-phase extraction and gas chromatography- mass spectrometry (MAE-MPSPE-GCMS).

    PubMed

    Fraser, Candice D; Cornthwaite, Heather M; Watterson, James H

    2015-08-01

    Analysis of decomposed skeletal tissues for dextromethorphan (DXM) and dextrorphan (DXT) using microwave assisted extraction (MAE), microplate solid-phase extraction (MPSPE) and gas chromatography-mass spectrometry (GC-MS) is described. Rats (n = 3) received 100 mg/kg DXM (i.p.) and were euthanized by CO2 asphyxiation roughly 20 min post-dose. Remains decomposed to skeleton outdoors and vertebral bones were recovered, cleaned, and pulverized. Pulverized bone underwent MAE using methanol as an extraction solvent in a closed microwave system, followed by MPSPE and GC-MS. Analyte stability under MAE conditions was assessed and found to be stable for at least 60 min irradiation time. The majority (>90%) of each analyte was recovered after 15 min. The MPSPE-GCMS method was fit to a quadratic response (R(2)  > 0.99), over the concentration range 10-10 000 ng⋅mL(-1) , with coefficients of variation <20% in triplicate analysis. The MPSPE-GCMS method displayed a limit of detection of 10 ng⋅mL(-1) for both analytes. Following MAE for 60 min (80 °C, 1200 W), MPSPE-GCMS analysis of vertebral bone of DXM-exposed rats detected both analytes in all samples (DXM: 0.9-1.5 µg⋅g(-1) ; DXT: 0.5-1.8 µg⋅g(-1) ). PMID:25487525

  7. A new hydrophilic interaction liquid chromatographic (HILIC) procedure for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold formulations.

    PubMed

    Ali, Mohammed Shahid; Ghori, Mohsin; Rafiuddin, Syed; Khatri, Aamer Roshanali

    2007-01-01

    A new HILIC method has been developed for the simultaneous determination of pseudoephedrine hydrochloride (PSH), diphenhydramine hydrochloride (DPH) and dextromethorphan hydrobromide (DXH) in cough-cold syrup. Mobile phase consists of methanol:water (containing 6.0 g of ammonium acetate and 10 mL of triethylamine per liter, pH adjusted to 5.2 with orthophosphoric acid), 95:5 (v/v). Column containing porous silica particles (Supelcosil LC-Si, 25 cm x 4.6 mm, 5 microm) is used as stationary phase. Detection is carried out using a variable wavelength UV-vis detector at 254 nm for PSH and DPH, and at 280 nm for DXH. Solutions are injected into the chromatograph under isocratic condition at constant flow rate of 1.2 mL/min. Linearity range and percent recoveries for PSH, DPH and DXH were 150-600, 62.5-250, 75-300 microg/mL and 100.7%, 100.1% and 100.8%, respectively. Method is stability indicating and excipients like saccharin sodium, sodium citrate, flavour and sodium benzoate did not interfere in the analysis. Compounds elute in order of increasing ionization degree caused by cation-exchange mechanism in a run time of less than 15 min. Mobile phase pH is manipulated to regulate ionization and ion-exchange interaction and thereby retention of compounds. PMID:16887317

  8. An open-label multicenter study to assess the safety of dextromethorphan/quinidine in patients with pseudobulbar affect associated with a range of underlying neurological conditions

    PubMed Central

    Pattee, Gary L.; Wymer, James P.; Lomen-Hoerth, Catherine; Appel, Stanley H.; Formella, Andrea E.; Pope, Laura E.

    2014-01-01

    Abstract Background: Pseudobulbar affect (PBA) is associated with neurological disorders or injury affecting the brain, and characterized by frequent, uncontrollable episodes of crying and/or laughing that are exaggerated or unrelated to the patient’s emotional state. Clinical trials establishing dextromethorphan and quinidine (DM/Q) as PBA treatment were conducted in patients with amyotrophic lateral sclerosis (ALS) or multiple sclerosis (MS). This trial evaluated DM/Q safety in patients with PBA secondary to any neurological condition affecting the brain. Objective: To evaluate the safety and tolerability of DM/Q during long-term administration to patients with PBA associated with multiple neurological conditions. Methods: Fifty-two-week open-label study of DM/Q 30/30 mg twice daily. Safety measures included adverse events (AEs), laboratory tests, electrocardiograms (ECGs), vital signs, and physical examinations. Clinical trial registration: #NCT00056524. Results: A total of 553 PBA patients with >30 different neurological conditions enrolled; 296 (53.5%) completed. The most frequently reported treatment-related AEs (TRAEs) were nausea (11.8%), dizziness (10.5%), headache (9.9%), somnolence (7.2%), fatigue (7.1%), diarrhea (6.5%), and dry mouth (5.1%). TRAEs were mostly mild/moderate, generally transient, and consistent with previous controlled trials. Serious AEs (SAEs) were reported in 126 patients (22.8%), including 47 deaths, mostly due to ALS progression and respiratory failure. No SAEs were deemed related to DM/Q treatment by investigators. ECG results suggested no clinically meaningful effect of DM/Q on myocardial repolarization. Differences in AEs across neurological disease groups appeared consistent with the known morbidity of the primary neurological conditions. Study interpretation is limited by the small size of some disease groups, the lack of a specific efficacy measure and the use of a DM/Q dose higher than the eventually approved dose

  9. Development and validation of a sensitive UHPLC-MS/MS method for the simultaneous analysis of tramadol, dextromethorphan chlorpheniramine and their major metabolites in human plasma in forensic context: application to pharmacokinetics.

    PubMed

    Heneedak, Hala M; Salama, Ismail; Mostafa, Samia; El-Kady, Ehab; El-Sadek, Mohamed

    2015-07-01

    The prerequisites for forensic confirmatory analysis by LC/MS/MS with respect to European Union guidelines are chromatographic separation, a minimum number of two MS/MS transitions to obtain the required identification points and predefined thresholds for the variability of the relative intensities of the MS/MS transitions (MRM transitions) in samples and reference standards. In the present study, a fast, sensitive and robust method to quantify tramadol, chlorpheniramine, dextromethorphan and their major metabolites, O-desmethyltramadol, dsmethyl-chlorpheniramine and dextrophan, respectively, in human plasma using ibuprofen as internal standard (IS) is described. The analytes and the IS were extracted from plasma by a liquid-liquid extraction method using ethyl acetate-diethyl-ether (1:1). Extracted samples were analyzed by ultra-high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS). Chromatographic separation was performed by pumping the mobile phase containing acetonitrile, water and formic acid (89.2:11.7:0.1) for 2.0 min at a flow rate of 0.25 μL/min into a Hypersil-Gold C18 column, 20 × 2.0 mm (1.9 µm) from Thermoscientific, New York, USA. The calibration curve was linear for the six analytes. The intraday precision (RSD) and accuracy (RE) of the method were 3-9.8 and -1.7-4.5%, respectively. The analytical procedure herein described was used to assess the pharmacokinetics of the analytes in 24 healthy volunteers after a single oral dose containing 50 mg of tramadol hydrochloride, 3 mg chlorpheniramine maleate and 15 mg of dextromethorphan hydrobromide. PMID:25417559

  10. Determination of dextromethorphan and its metabolite dextrorphan in human urine using high performance liquid chromatography with atmospheric pressure chemical ionization tandem mass spectrometry: a study of selectivity of a tandem mass spectrometric assay.

    PubMed

    Constanzer, M L; Chavez-Eng, C M; Fu, I; Woolf, E J; Matuszewski, B K

    2005-02-25

    Analytical method for the simultaneous determination of dextromethorphan (1) and dextrorphan (2) in urine, based on solid-phase extraction of drug from acidified hydrolyzed biological matrix, were developed. The analytes (1 and 2) and the internal standard (levallorphan, 3, IS) were detected by high-performance liquid chromatography-mass spectrometry (HPLC-MS/MS) in positive ionization mode using a heated nebulizer (HN) probe and monitoring their precursor-->product ion combinations of m/z 272-->215, 258-->201, and 284-->201 for 1, 2, and 3, respectively, in multiple reaction monitoring mode. The analytes and IS were chromatographed on a Keystone Prism reverse phase (50 mm x 2.0 mm) 5 microm column using a mobile phases consisting of a 35/65 or 27/73 mixtures of methanol/water containing 0.1% TFA adjusted to pH 3 with ammonium hydroxide pumped at 0.4 ml/min for 1 and 2, respectively. The limits of reliable quantification of 1 and 2 were 2 and 250 ng/ml, respectively, when 1 ml of urine was processed. The absence of matrix effect was demonstrated by analysis of neat standards and standards spiked into urine extracts originating from five different sources. The linear ranges of the assay were 2-200 and 250-20,000 ng/ml for 1 and 2, respectively. Assay selectivity was evaluated by monitoring the "cross-talk" effects from other metabolites into the MS/MS channels used for monitoring 1, 2, and 3. In addition, an interfering peak originating from an unknown metabolite of 1 into the quantification of dextromethorphan was detected, requiring an effective chromatographic separation of analytes from other metabolites of 1. The need for careful assessment of selectivity of the HPLC-MS/MS assay in the presence of metabolites, and the assessment of matrix effect, are emphasized. PMID:15664362

  11. Microbial Transformations of Natural Antitumor Agents: O-Demethylation of Vindoline by Sepedonium chrysospermum

    PubMed Central

    Wu, Geng-Shuen; Nabih, Thomas; Youel, Leisa; Peczynska-Czoch, Wanda; Rosazza, John P.

    1978-01-01

    Vindoline (1a) was transformed to O-demethylvindoline (1b) by Sepedonium chrysospermum ATCC 13378 in 33% yield. Thin-layer and high-pressure liquid chromatographic methods distinguished 1b from previously reported microbial metabolites of vindoline. The structural proof of 1b was based on its mass spectral fragmentation pattern and on its chemical and nuclear magnetic resonance spectral properties. PMID:568911

  12. Combination With Low-dose Dextromethorphan Improves the Effect of Amlodipine Monotherapy in Clinical Hypertension: A First-in-human, Concept-proven, Prospective, Dose-escalation, Multicenter Study.

    PubMed

    Yin, Wei-Hsian; Chen, Pei; Yeh, Hung-I; Wang, Kuo-Yang; Hung, Yi-Jen; Tseng, Wei-Kung; Wen, Ming-Shien; Wu, Tao-Cheng; Wu, Chau-Chung; Cheng, Shu-Meng; Chen, Jaw-Wen

    2016-03-01

    The combination of low rather than high dose of dextromethorphan (DXM) with amlodipine (AM) could improve blood pressure (BP) reduction in hypertensive animals. The study aimed to evaluate the feasibility of different doses of DXM combined with standard AM treatment in clinical hypertension.This was a prospective, 14-week, dose-escalation, multicenter study. After 2-week run-in period with AM 5 mg/day, hypertensive patients who got the BP goal of 140/90 mmHg kept receiving AM monotherapy for another 12 weeks. The nonresponders, while kept on AM 5 mg/day, received additional DXM treatment for 3 sequential dose-titrated periods with initially 2.5 mg/day, followed by 7.5 mg/day, and finally 30 mg/day. Each period was for 4 weeks. The patients at BP goal after each treatment period were defined as the responders and kept on the same combination till the end of the study. The responder rate of each treatment period was recorded. The changes of BP and serum antioxidant/endothelial markers between week 14 and week 2 were evaluated.Of the 103 patients initially enrolled, 89 entered the treatment period. In the 78 patients completing the study, 31 (40%) at BP goal after 2-week AM run-in kept on AM monotherapy (DXM0). The addition of 2.5 (DXM2.5) and 7.5 mg/day (DXM7.5) of DXM enabled BP goal achievement in 22 (47%) nonresponders to AM monotherapy including 16 (29%) with DXM2.5 and 6 (18%) with DXM7.5. Only 4 patients (16%) reached BP goal with the combination of DXM 30 mg/day (DXM30). Overall, 73% of the 78 patients reached BP goal at the end of the 14-week study. Mean systolic BP was reduced by 7.9% ± 7.0% with DXM2.5 (P < 0.001) and by 5.4% ± 2.4% with DXM7.5 (P = 0.003) respectively at week 14 from that at week 2, which was unchanged in either DXM0 or DXM30 group. Besides, the effects of combination treatment were particularly significant in the patients with impaired endothelial function suggested by reduced serum NOx level at baseline

  13. Potential Mechanism of Action of 3'-Demethoxy-6-O-demethyl-isoguaiacin on Methicillin Resistant Staphylococcus aureus.

    PubMed

    Favela-Hernández, Juan Manuel J; Clemente-Soto, Aldo F; Balderas-Rentería, Isaías; Garza-González, Elvira; Camacho-Corona, María del Rayo

    2015-01-01

    Bacterial infections represent one of the main threats to global public health. One of the major causative agents associated with high morbidity and mortality infections in hospitals worldwide is methicillin-resistant Staphylococcus aureus. Therefore, there is a need to develop new antibacterial agents to treat these infections, and natural products are a rich source of them. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin, isolated and characterized from Larrea tridentate, showed the best activity towards methicillin-resistant S. aureus. Thus, the aim of this study was to determine the potential molecular mechanism of the antibacterial activity of 3'-demethoxy-6-O-demethylisoguaiacin against methicillin-resistant S. aureus using microarray technology. Results of microarray genome expression were validated by real-time polymerase chain reaction (RT-PCR). The genetic profile expression results showed that lignan 3'-demethoxy-6-O-demethylisoguaiacin had activity on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This molecular mechanism is not present in any antibacterial commercial drug and could be a new target for the development of novel antibacterial agents. PMID:26184132

  14. Potential mechanism of action of 3'-demethoxy-6-O-demethyl-isoguaiacin on methicillin resistant Staphylococcus aureus.

    PubMed

    Favela-Hernández, Juan Manuel J; Clemente-Soto, Aldo F; Balderas-Rentería, Isaías; Garza-González, Elvira; Camacho-Corona, María Del Rayo

    2015-01-01

    Bacterial infections represent one of the main threats to global public health. One of the major causative agents associated with high morbidity and mortality infections in hospitals worldwide is methicillin-resistant Staphylococcus aureus. Therefore, there is a need to develop new antibacterial agents to treat these infections, and natural products are a rich source of them. In previous studies, we reported that lignan 3'-demethoxy-6-O-demethylisoguaiacin, isolated and characterized from Larrea tridentate, showed the best activity towards methicillin-resistant S. aureus. Thus, the aim of this study was to determine the potential molecular mechanism of the antibacterial activity of 3'-demethoxy-6-O-demethylisoguaiacin against methicillin-resistant S. aureus using microarray technology. Results of microarray genome expression were validated by real-time polymerase chain reaction (RT-PCR). The genetic profile expression results showed that lignan 3'-demethoxy-6-O-demethylisoguaiacin had activity on cell membrane affecting proteins of the ATP-binding cassette (ABC) transport system causing bacteria death. This molecular mechanism is not present in any antibacterial commercial drug and could be a new target for the development of novel antibacterial agents. PMID:26205047

  15. Effect of Garden Cress Seeds Powder and Its Alcoholic Extract on the Metabolic Activity of CYP2D6 and CYP3A4

    PubMed Central

    Al-Jenoobi, Fahad I.; Al-Thukair, Areej A.; Abbas, Fawkeya A.; Al-Mohizea, Abdullah M.; Alkharfy, Khalid M.; Al-Suwayeh, Saleh A.

    2014-01-01

    The powder and alcoholic extract of dried seeds of garden cress were investigated for their effect on metabolic activity of CYP2D6 and CYP3A4 enzymes. In vitro and clinical studies were conducted on human liver microsomes and healthy human subjects, respectively. Dextromethorphan was used as a common marker for measuring metabolic activity of CYP2D6 and CYP3A4 enzymes. In in vitro studies, microsomes were incubated with NADPH in presence and absence of different concentrations of seeds extract. Clinical investigations were performed in two phases. In phase I, six healthy female volunteers were administered a single dose of dextromethorphan and in phase II volunteers were treated with seeds powder for seven days and dextromethorphan was administered with last dose. The O-demethylated and N-demethylated metabolites of dextromethorphan were measured as dextrorphan (DOR) and 3-methoxymorphinan (3-MM), respectively. Observations suggested that garden cress inhibits the formation of DOR and 3-MM metabolites. This inhibition of metabolite level was attributed to the inhibition of CYP2D6 and CYP3A4 activity. Garden cress decreases the level of DOR and 3-MM in urine and significantly increases the urinary metabolic ratio of DEX/DOR and DEX/3-MM. The findings suggested that garden cress seeds powder and ethanolic extract have the potential to interact with CYP2D6 and CYP3A4 substrates. PMID:24711855

  16. Development of a V79 cell line expressing human cytochrome P450 2D6 and its application as a metabolic screening tool.

    PubMed

    Rauschenbach, R; Gieschen, H; Salomon, B; Kraus, C; Kühne, G; Hildebrand, M

    1997-02-15

    Expression of human cytochrome P450 (CYP) in heterologous cells is a means of specifically studying the role of these enzymes in drug metabolism. The complete cDNA encoding CYP2D6-VAL(374) was inserted into an expression vector containing the strong mycloproliferative sarcoma virus promotor in combination with the enhancer of the cytomegalovirus and stably expressed in V79 Chinese hamster cells. The presence of genomically integrated CYP2D6 cDNA was confirmed by polymerase chain reaction analysis. The protein expression was shown by Western blotting. Functional expression could be demonstrated by O-demethylation of dextromethorphan to dextrorphan in live cells. The enzymatic activity of 154 ± 16 pmol min(-1) mg(-1) protein was comparable with dextromethorphan-O-demethylation activities of human liver. The metabolism of two dopaminergic ergoline derivatives was investigated in whole recombinant V19 cells. Both lisuride and terguride were monodeethylated; in case of lisuride a correlation to the in vivo situation was demonstrated comparing poor and extensive metabolizers. PMID:21781755

  17. Effects of gestational and overt diabetes on placental cytochromes P450 and glutathione S-transferase.

    PubMed

    Glover; McRobie; Tracy

    1998-07-01

    Objective: Animal and in vivo human studies have observed that diabetes alters the expression of hepatic metabolizing cytochrome P450 (CYP) and glutathione S-transferase (GST) enzymes. The placenta has the ability to metabolize a number of xenobiotic and endogenous compounds by processes similar to those seen in the liver. Our objective was to compare placental xenobiotic metabolizing activity in diabetics to matched non-diabetic controls to determine if the presence of diabetes alters placental xenobiotic metabolizing activity.Methods: The catalytic activities of 7-ethoxyresorufin-O-deethylation [EROD] (CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2,4-dinitrobenzene (CDNB) conjugation with glutathione (GST) from placentas of diet controlled (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared to matched controls.Results: No differences in EROD activity were observed among overt or gestational diabetics and their respectively matched controls. CYP2E1, 2D6, and 3A4 enzyme activity were not detected in human placentas. In contrast, GST activity was significantly reduced by 30% (P <.05) in overt diabetics as compared to their matched controls and gestational diabetics.Conclusion: Pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in exposure of the fetus to harmful reactive electrophilic metabolites. PMID:10838356

  18. Determination of colchicine and O-demethylated metabolites in decomposed skeletal tissues by microwave assisted extraction, microplate solid phase extraction and ultra-high performance liquid chromatography (MAE-MPSPE-UHPLC).

    PubMed

    Watterson, J H; Imfeld, A B; Cornthwaite, H C

    2014-06-01

    Microwave assisted extraction (MAE) followed by microplate solid phase extraction (MPSPE) coupled with ultra high performance liquid chromatography (UHPLC) for the semi-quantitative determination of colchicine, 3-demethyl colchicine and 2-demethyl colchicine in postmortem rat bone is described. Rats (n=4) received 50mg/kg colchicine (i.p), and euthanized by CO2 asphyxiation. Remains decomposed to skeleton outdoors and vertebral bones were collected cleaned, and ground to a fine powder. Powdered bone underwent MAE using methanol in a closed microwave system, followed by MPSPE and analysis using UHPLC-PDA. MAE analyte stability was assessed and found to be stable for at least 60 min irradiation time. The majority (>95%) of each analyte was recovered after 15 min. The MPSPE-UHPLC method was linear between 10 and 2,000 ng/mL, with coefficients of variation <20% in triplicate analysis, with a limit of detection of 10 ng/mL for each of the three analytes. Following MAE for 30 min (80°C, 1200W), MPSPE-UHPLC analysis of vertebral bone of colchicine-exposed rats detected colchicine (1.8-4.1 μg/g), 3-demethyl colchicine (0.77-1.8 μg/g) and 2-demethyl colchicine (0.43-0.80 μg/g) in all samples assayed. PMID:24799069

  19. Effects of gestational and overt diabetes on human placental cytochromes P450 and glutathione S-transferase.

    PubMed

    McRobie, D J; Glover, D D; Tracy, T S

    1998-04-01

    The placenta possesses the ability to metabolize a number of xenobiotics and endogenous compounds by processes similar to those seen in the liver. Animal and in vivo studies have observed that the presence of diabetes alters the expression of hepatic metabolizing enzymes (cytochrome P450 and glutathione S-transferase); however, it is unknown whether similar alterations occur in the human placenta. To evaluate whether diabetes has any effect of placental xenobiotic metabolizing activity, the catalytic activities of 7-ethoxyresorufin O-deethylation (EROD, CYP1A1), chlorzoxazone 6-hydroxylation (CYP2E1), dextromethorphan N-demethylation (CYP3A4), dextromethorphan O-demethylation (CYP2D6), and 1-chloro-2, 4-dinitrobenzene (CDNB) conjugation with glutathione (glutathione S-transferase, GST) from placentas of diet (class A1) and insulin-dependent (class A2) gestational diabetics and overt diabetics were compared with matched controls. EROD activity (CYP1A1) ranged from 0.29 to 2.67 pmol/min/mg protein. However, no differences were observed among overt or gestational diabetics and their respective matched controls. CDNB conjugation (GST) ranged from 0.275 to 1.65 units/min/mg protein. In contrast to that observed with CYP1A1, a small but statistically significant reduction in GST activity was noted in overt diabetics as compared with their matched controls and gestational diabetics. CYP2E1, 2D6, and 3A4 enzymatic activities were not detected in human placental tissue. GST protein was detectable in all tissues studied, but no CYP protein could be detected in any of the tissues. Thus, it seems that pregnant women with overt diabetes have reduced GST activity in the placenta, which could potentially result in the exposure of the fetus to harmful electrophiles. However, the full clinical significance of this finding remains to be elucidated. PMID:9531526

  20. Metabolism of human cytochrome P450 marker substrates in mouse: a strain and gender comparison.

    PubMed

    Löfgren, S; Hagbjörk, A L; Ekman, S; Fransson-Steen, R; Terelius, Y

    2004-09-01

    The aim was to characterize mouse gender and strain differences in the metabolism of commonly used human cytochrome (CYP) P450 probe substrates. Thirteen human CYP probe substrates (phenacetin, coumarin, 7-ethoxy-4-trifluoromethyl coumarin, amiodarone, paclitaxel, diclofenac, S-mephenytoin, bufuralol, dextromethorphan, chlorzoxazone, p-nitrophenol, testosterone and lauric acid) were used in activity measurements. The metabolism of the probe substrates was compared in liver microsomes from male and female NMRI, CBA, C57bl/6, 129/SvJ and CD1 strains. The expression of proteins identified on Western blots with commonly available antibodies selective for specific human and rat CYP enzymes were compared in the different mouse strains. Males had higher metabolism than corresponding females for phenacetin O-deethylation (human marker for CYP1A2 activity), and a high correlation was found between phenacetin activity and immunoreactivity in Western blots produced with rat CYP1A2 antibodies. Protein detected by antibodies cross-reacting with human CYP2B6 and rat CYP2B1/2 antibodies was female specific except for the 129/SvJ strain, where it was absent in both genders. Females generally had a higher metabolism of bufuralol 1'-hydroxylation and dextromethorphan O-demethylation (human markers for CYP2D activity). Bufuralol 1'-hydroxylation correlated with a female-dominant mouse CYP, which was detected with antibodies against rat CYP2D4. p-Nitrophenol 2-hydroxylation correlated better than chlorzoxazone 6-hydroxylation with the protein detected with antibodies against rat CYP2E1, indicating that p-nitrophenol is a more specific substrate for mouse CYP2E1. PMID:15742976

  1. Mechanism-based inhibition of CYP3A4 and CYP2D6 by Indonesian medicinal plants.

    PubMed

    Subehan; Usia, Tepy; Iwata, Hiroshi; Kadota, Shigetoshi; Tezuka, Yasuhiro

    2006-05-24

    Thirty samples of Indonesian medicinal plants were tested for their mechanism-based inhibition on cytochrome P450 3A4 (CYP3A4) and CYP2D6 via erythromycin N-demethylation and dextromethorphan O-demethylation activities in human liver microsomes. From screening with 0 and 20min preincubation at 0.5mg/ml of methanol extracts, five plants (Cinnamomum burmani bark, Foeniculum vulgare seed, Strychnos ligustrina wood, Tinospora crispa stem, and Zingiber cassumunar rhizome) showed more than 30% increase of CYP3A4 inhibition, while three (Alpinia galanga rhizome, Melaleuca leucadendron leaf, and Piper nigrum fruit) showed more than 30% increase of CYP2D6 inhibition. In these eight plants, Foeniculum vulgare seed, Cinnamomum burmani bark, and Strychnos ligustrina wood showed time-dependent inhibition on CYP3A4 and Piper nigrum fruit and Melaleuca leucadendron leaf on CYP2D6. Among these, four plants other than Melaleuca leucadendron revealed NADPH-dependent inhibition. Thus, Foeniculum vulgare, Cinnamomum burmani, and Strychnos ligustrina should contain mechanism-based inhibitors on CYP3A4 and Piper nigrum contain that on CYP2D6. PMID:16414224

  2. Guanfu base A, an antiarrhythmic alkaloid of Aconitum coreanum, Is a CYP2D6 inhibitor of human, monkey, and dog isoforms.

    PubMed

    Sun, Jianguo; Peng, Ying; Wu, Hui; Zhang, Xueyuan; Zhong, Yunxi; Xiao, Yanan; Zhang, Fengyi; Qi, Huanhuan; Shang, Lili; Zhu, Jianping; Sun, Yue; Liu, Ke; Liu, Jinghan; A, Jiye; Ho, Rodney J Y; Wang, Guangji

    2015-05-01

    Guanfu base A (GFA) is a novel heterocyclic antiarrhythmic drug isolated from Aconitum coreanum (Lèvl.) rapaics and is currently in a phase IV clinical trial in China. However, no study has investigated the influence of GFA on cytochrome P450 (P450) drug metabolism. We characterized the potency and specificity of GFA CYP2D inhibition based on dextromethorphan O-demethylation, a CYP2D6 probe substrate of activity in human, mouse, rat, dog, and monkey liver microsomes. In addition, (+)-bufuralol 1'-hydroxylation was used as a CYP2D6 probe for the recombinant form (rCYP2D6), 2D1 (rCYP2D1), and 2D2 (rCYP2D2) activities. Results show that GFA is a potent noncompetitive inhibitor of CYP2D6, with inhibition constant Ki = 1.20 ± 0.33 μM in human liver microsomes (HLMs) and Ki = 0.37 ± 0.16 μM for the human recombinant form (rCYP2D6). GFA is also a potent competitive inhibitor of CYP2D in monkey (Ki = 0.38 ± 0.12 μM) and dog (Ki = 2.4 ± 1.3 μM) microsomes. However, GFA has no inhibitory activity on mouse or rat CYP2Ds. GFA did not exhibit any inhibition activity on human recombinant CYP1A2, 2A6, 2C8, 2C19, 3A4, or 3A5, but showed slight inhibition of 2B6 and 2E1. Preincubation of HLMs and rCYP2D6 resulted in the inactivation of the enzyme, which was attenuated by GFA or quinidine. Beagle dogs treated intravenously with dextromethorphan (2 mg/ml) after pretreatment with GFA injection showed reduced CYP2D metabolic activity, with the Cmax of dextrorphan being one-third that of the saline-treated group and area under the plasma concentration-time curve half that of the saline-treated group. This study suggests that GFA is a specific CYP2D6 inhibitor that might play a role in CYP2D6 medicated drug-drug interaction. PMID:25681130

  3. Hallucinogens and Dissociative Drugs, Including LSD, PCP, Ketamine, Dextromethorphan. National Institute on Drug Abuse Research Report Series.

    ERIC Educational Resources Information Center

    National Inst. on Drug Abuse (DHHS/PHS), Rockville, MD.

    Research is developing a clearer picture of the dangers of mind-altering drugs. The goal of this report is to present the latest information to providers to help them strengthen their prevention and treatment efforts. A description is presented of dissociative drugs, and consideration is given as to why people take hallucinogens. The physical…

  4. Abuse of Dextromethorphan-Based Cough Syrup as a Substitute for Licit and Illicit Drugs: A Theoretical Framework.

    ERIC Educational Resources Information Center

    Darboe, Momodou N.

    1996-01-01

    Discusses the emergence of new types of abused drugs in the United States. Notes that young persons often search for substitutes for better-known substances. It is unclear, however, what factors determine the choice of drug or substance for experimentation, considering the wide range of choices. This paper attempts to delineate the factors that…

  5. Evaluation of CYP2D6 enzyme activity using a Dextromethorphan Breath Test in Women Receiving Adjuvant Tamoxifen

    PubMed Central

    Safgren, Stephanie L.; Suman, Vera J.; Kosel, Matthew L.; Gilbert, Judith A; Buhrow, Sarah A.; Black, John L.; Northfelt, Donald W.; Modak, Anil S.; Rosen, David; Ingle, James N.; Ames, Matthew M.; Reid, Joel M.; Goetz, Matthew P.

    2015-01-01

    Background In tamoxifen-treated patients, breast cancer recurrence differs according to CYP2D6 genotype and endoxifen steady state concentrations (Endx Css). The 13Cdextromethorphan breath test (DM-BT), labeled with 13C at the O-CH3 moiety, measures CYP2D6 enzyme activity. We sought to examine the ability of the DM-BT to identify known CYP2D6 genotypic poor metabolizers and examine the correlation between DMBT and Endx Css. Methods DM-BT and tamoxifen pharmacokinetics were obtained at baseline (b), 3 month (3m) and 6 months (6m) following tamoxifen initiation. Potent CYP2D6 inhibitors were prohibited. The correlation between bDM-BT with CYP2D6 genotype and Endx Css was determined. The association between bDM-BT (where values ≤0.9 is an indicator of poor in vivo CYP2D6 metabolism) and Endx Css (using values ≤ 11.2 known to be associated with poorer recurrence free survival) was explored. Results 91 patients were enrolled and 77 were eligible. CYP2D6 genotype was positively correlated with b, 3m and 6m DMBT (r ranging from 0.457-0. 60 p < 0.001). Both CYP2D6 genotype (r = 0.47; 0.56, p <.0001), and bDM-BT (r=0.60; 0.54; p<.001) were associated with 3m and 6m Endx Css respectively. Seven of 9 patients (78%) with low (≤11.2 nM) 3m Endx Css also had low DM-BT (≤0.9) including 2/2 CYP2D6 PM/PM and 5/5 IM/PM. In contrast, 1 of 48 pts (2%) with a low DM-BT had Endx Css > 11.2 nM. Conclusions In patients not taking potent CYP2D6 inhibitors, DM-BT was associated with CYP2D6 genotype and 3m and 6 m Endx Css but did not provide better discrimination of Endx Css compared to CYP2D6 genotype alone. Further studies are needed to identify additional factors which alter Endx Css. PMID:25714002

  6. Inhibitory Activities of Thai Medicinal Plants with Promising Activities Against Malaria and Cholangiocarcinoma on Human Cytochrome P450.

    PubMed

    Sumsakul, Wiriyaporn; Mahavorasirikul, Wiratchanee; Na-Bangchang, Kesara

    2015-12-01

    Malaria and cholangiocarcinoma remain important public health problems in tropical countries including Southeast Asian nations. Newly developed chemotherapeutic and plant-derived drugs are urgently required for the control of both diseases. The aim of the present study was to investigate the propensity to inhibit cytochrome P450-mediated hepatic metabolism (CYP1A2, CYP2C19, CYP2D6 and CYP3A4) of the crude ethanolic extract of eight Thai medicinal plants with promising activities against malaria and cholangiocarcinoma, using human liver microsomes in vitro. Piper chaba Linn. (PC) and Atractylodes lancea (thung.) DC. (AL) exhibited the most potent inhibitory activities on CYP1A2-mediated phenacetin O-deethylation with mean IC50 of 0.04 and 0.36 µg/mL, respectively. Plumbago indica Linn. (PI) and Dioscorea membranacea Pierre. (DM) potently inhibited CYP2C19-mediated omeprazole 5-hydroxylation (mean IC50 4.71 and 6.92 µg/mL, respectively). DM, Dracaena loureiri Gagnep. (DL) and PI showed the highest inhibitory activities on dextromethorphan O-demethylation (mean IC50 2.93-9.57 µg/mL). PC, DM, DL and PI exhibited the most potent inhibitory activities on CYP3A4-mediated nifedipine oxidation (mean IC50 1.54-6.43 µg/mL). Clinical relevance of the inhibitory potential of DM, PC and PI is of concern for the further development of these plants for the treatment of malaria and/or cholangiocarcinoma. PMID:26490449

  7. Doxylamine

    MedlinePlus

    Vicks NyQuil® Cold and Flu Relief (as a combination product containing Acetaminophen, Dextromethorphan, Doxylamine) ... Vicks NyQuil® Cold and Flu Symptom Relief Plus Vitamin C (as a combination product containing Acetaminophen, Dextromethorphan, ...

  8. Butorphanol Injection

    MedlinePlus

    ... following: antidepressants; antihistamines; barbiturates such as butabarbital (Butisol), pentobarbital (Nembutal), phenobarbital, or secobarbital (Seconal); cyclobenzaprine (Amrix); dextromethorphan ( ...

  9. Butorphanol Nasal Spray

    MedlinePlus

    ... following: antidepressants; antihistamines; barbiturates such as butabarbital (Butisol), pentobarbital (Nembutal), phenobarbital, or secobarbital (Seconal); cyclobenzaprine (Amrix); dextromethorphan ( ...

  10. Brompheniramine

    MedlinePlus

    Children's Dimetapp® Cold and Cough (as a combination product containing Brompheniramine, Dextromethorphan, Phenylephrine) ... Trexbrom® (as a combination product containing Brompheniramine, Chlophedianol, Phenylephrine)

  11. The identification of the urinary metabolites of 3-(4-methoxybenzoyl)-1-pentylindole (RCS-4), a novel cannabimimetic, by gas chromatography-mass spectrometry.

    PubMed

    Kavanagh, Pierce; Grigoryev, Andrej; Melnik, Aleksandra; Simonov, Anton

    2012-06-01

    3-(4-Methoxybenzoyl)-1-pentylindole (RCS-4), a synthetic indole-derived cannabimimetic, was first reported to the European Monitoring Centre for Drugs and Drug Addiction via the Early Warning System by Hungarian authorities in 2010 and later identified in head shop test purchases in Ireland. Using gas chromatography-mass spectrometry, we have identified a series of RCS-4 metabolites in urine samples from individuals admitted to hospitals with symptoms of drug intoxication. The metabolites were tentatively identified as products of (i) aromatic monohydroxylation; (ii) dihydroxylation; (iii) aromatic hydroxylation/oxidation of the N-pentyl chain to a ketone; (iv) O-demethylation; (v) O-demethylation/monohydroxylation of N-pentyl chain; (vi) O-demethylation/oxidation of the N-pentyl chain to a ketone; (vii) O-demethylation/aromatic hydroxylation/oxidation of the N-pentyl chain to a ketone; (viii) N-depentylation/aromatic monohydroxylation; and (ix) N and O-dealkylation. The parent compound was not detected. The O-demethylated metabolites were found to be the most useful metabolic markers for the identification of RCS-4 ingestion. PMID:22582265

  12. Use of liquid chromatography coupled to low- and high-resolution linear ion trap mass spectrometry for studying the metabolism of paynantheine, an alkaloid of the herbal drug Kratom in rat and human urine.

    PubMed

    Philipp, Anika A; Wissenbach, Dirk K; Weber, Armin A; Zapp, Josef; Zoerntlein, Siegfried W; Kanogsunthornrat, Jidapha; Maurer, Hans H

    2010-04-01

    The Thai medicinal plant Mitragyna speciosa (Kratom in Thai) is misused as a herbal drug of abuse. During studies on the main Kratom alkaloid mitragynine (MG) in rats and humans, several dehydro analogs could be detected in urine of Kratom users, which were not found in rat urine after administration of pure MG. Questions arose as to whether these compounds are formed from MG only by humans or whether they are metabolites formed from the second abundant Kratom alkaloid paynantheine (PAY), the dehydro analog of MG. Therefore, the aim of the presented study was to identify the phase I and II metabolites of PAY in rat urine after administration of the pure alkaloid. This was first isolated from Kratom leaves. Liquid chromatography-linear ion trap mass spectrometry provided detailed structure information of the metabolites in the MS(n) mode particularly with high resolution. Besides PAY, the following phase I metabolites could be identified: 9-O-demethyl PAY, 16-carboxy PAY, 9-O-demethyl-16-carboxy PAY, 17-O-demethyl PAY, 17-O-demethyl-16,17-dihydro PAY, 9,17-O-bisdemethyl PAY, 9,17-O-bisdemethyl-16,17-dihydro PAY, 17-carboxy-16,17-dihydro PAY, and 9-O-demethyl-17-carboxy-16,17-dihydro PAY. These metabolites indicated that PAY was metabolized via the same pathways as MG. Several metabolites were excreted as glucuronides or sulfates. The metabolism studies in rats showed that PAY and its metabolites corresponded to the MG-related dehydro compounds detected in urine of the Kratom users. In conclusion, PAY and its metabolites may be further markers for a Kratom abuse in addition of MG and its metabolites. PMID:19902190

  13. Guaifenesin

    MedlinePlus

    Little Remedies Little Colds Mucus Relief Expectorant Melt Aways® ... Nature Fusion® (as a combination product containing Dextromethorphan, Guaifenesin) ... best for your symptoms. Check nonprescription cough and cold product labels carefully before using two or more ...

  14. Codeine

    MedlinePlus

    ... and carisoprodol; and as an ingredient in many cough and cold medications. This monograph only includes information ... the following: cyclobenzaprine (Amrix); dextromethorphan (found in many cough medications; in Nuedexta); lithium (Lithobid); medications for cough, ...

  15. Cough Medicine: Understanding Your OTC Options

    MedlinePlus

    ... The only expectorant available in OTC products is guaifenesin (2 brand names: Mucinex, Robitussin Chest Congestion). How ... fluids also helps keep mucus thin. Dextromethorphan and guaifenesin are sometimes combined with each other (1 brand ...

  16. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    PubMed Central

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl; Leys, David

    2013-01-01

    This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organo­halide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-­terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense. PMID:23897483

  17. Biotransformations with plant tissue cultures.

    PubMed

    Carew, D P; Bainbridge, T

    1976-01-01

    Suspension cultures of Catharanthus roseus, Apocynum cannabinum and Conium maculatum were examined for their capacity to transform aniline, anisole, acetanilide, benzoic acid and coumarin. None of the cultures transformed acetanilide but each produced acetanilide when fed aniline. All three cultures converted benzoic acid to its para-hydroxy derivative. Coumarin was selectively hydroxylated at the 7-position by Catharanthus and Conium and anisole was O-demethylated only by older Catharanthus tissue. PMID:1084950

  18. Apixaban metabolism and pharmacokinetics after oral administration to humans.

    PubMed

    Raghavan, Nirmala; Frost, Charles E; Yu, Zhigang; He, Kan; Zhang, Haiying; Humphreys, W Griffith; Pinto, Donald; Chen, Shiangyuan; Bonacorsi, Samuel; Wong, Pancras C; Zhang, Donglu

    2009-01-01

    The metabolism and disposition of [(14)C]apixaban, an orally bioavailable, highly selective, and direct acting/reversible factor Xa inhibitor, was investigated in 10 healthy male subjects without (group 1, n=6) and with bile collection (group 2, n=4) after a single 20-mg oral dose. Urine, blood, and feces samples were collected from all subjects. Bile samples were also collected for 3 to 8 h after dosing from group 2 subjects. There were no serious adverse events or discontinuations due to adverse effects. In plasma, apixaban was the major circulating component and O-demethyl apixaban sulfate, a stable and water-soluble metabolite, was the significant metabolite. The exposure of apixaban (C(max) and area under the plasma concentration versus time curve) in subjects with bile collection was generally similar to that in subjects without bile collection. The administered dose was recovered in feces (group 1, 56.0%; group 2, 46.7%) and urine (group 1, 24.5%; group 2, 28.8%), with the parent drug representing approximately half of the recovered dose. Biliary excretion represented a minor elimination pathway (2.44% of the administered dose) from group 2 subjects within the limited collection period. Metabolic pathways identified for apixaban included O-demethylation, hydroxylation, and sulfation of hydroxylated O-demethyl apixaban. Thus, apixaban is an orally bioavailable inhibitor of factor Xa with elimination pathways that include metabolism and renal excretion. PMID:18832478

  19. Application of A. C.-polarography in a study of p-nitroanisole metabolism and its kinetic properties.

    PubMed

    Burgschat, H; Netter, K J

    1977-05-01

    Phase sensitive alternating current polarography was introduced for the simultaneous determination of p-nitroanisole and its metabolites p-nitrophenol and p-nitrocatechol in kinetic studies with rat liver microsomes. The substrate p-nitroanisole disappears rather rapidly while p-nitrophenol is formed. First traces of a second oxidation product, p-nitrocatechol, can be detected only after a few minutes after the initiation of the reaction. This suggest that O-demethylation of p-nitroanisole is the primary reaction which is followed by aromatic ortho hydroxylation of p-nitrophenol. After incubation times longer than 15 minutes, appreciable amounts of p-nitrocatechol are found which shows optical absorption characteristics similar to those of p-nitrophenol (absorption maximum at 440 nm). It is concluded from these kinetic experiments that optical determination of the primary metabolite during the initial reaction phase constitutes a reliable measure of microsomal O-demethylation activity. Phenobarbital induction differentially increases O-demethylation and ring-ortho-hydroxylation activities. From this and respective inhibition studies it is concluded that possibly multiple forms of cytochrome P-450 are involved in the metabolism of either p-nitroanisole or p-nitrophenol. PMID:859107

  20. Structure of the cobalamin-binding protein of a putative O-demethylase from Desulfitobacterium hafniense DCB-2

    SciTech Connect

    Sjuts, Hanno; Dunstan, Mark S.; Fisher, Karl; Leys, David

    2013-08-01

    The first crystal structure of the vitamin B12-binding protein from a three-component O-demethylase enzyme system is reported. During O-demethylation methyl groups are transferred from phenyl methyl ethers to tetrahydrofolate via methyl-B12 intermediates. This study describes the identification and the structural and spectroscopic analysis of a cobalamin-binding protein (termed CobDH) implicated in O-demethylation by the organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2. The 1.5 Å resolution crystal structure of CobDH is presented in the cobalamin-bound state and reveals that the protein is composed of an N-terminal helix-bundle domain and a C-terminal Rossmann-fold domain, with the cobalamin coordinated in the base-off/His-on conformation similar to other cobalamin-binding domains that catalyse methyl-transfer reactions. EPR spectroscopy of CobDH confirms cobalamin binding and reveals the presence of a cob(III)alamin superoxide, indicating binding of oxygen to the fully oxidized cofactor. These data provide the first structural insights into the methyltransferase reactions that occur during O-demethylation by D. hafniense.

  1. Primaquine pharmacology in the context of CYP 2D6 pharmacogenomics: Current state of the art.

    PubMed

    Marcsisin, Sean R; Reichard, Gregory; Pybus, Brandon S

    2016-05-01

    Primaquine is the only antimalarial drug available to clinicians for the treatment of relapsing forms of malaria. Primaquine development and usage dates back to the 1940s and has been administered to millions of individuals to treat and eliminate malaria infections. Primaquine therapy is not without disadvantages, however, as it can cause life threatening hemolysis in humans with glucose-6-phosphate dehydrogenase (G6PD) deficiency. In addition, the efficacy of primaquine against relapsing malaria was recently linked to CYP 2D6 mediated activation to an active metabolite, the structure of which has escaped definitive identification for over 75years. CYP 2D6 is highly polymorphic among various human populations adding further complexity to a comprehensive understanding of primaquine pharmacology. This review aims to discuss primaquine pharmacology in the context of state of the art understanding of CYP 2D6 mediated 8-aminoquinoline metabolic activation, and shed light on the current knowledge gaps of 8-aminoquinoline mechanistic understanding against relapsing malaria. PMID:27016470

  2. Pre-emptive oral dexmethorphan reduces fentanyl-induced cough as well as immediate postoperative adrenocortico-tropic hormone and growth hormone level

    PubMed Central

    Mukherjee, Avik; Kundu, Asim Kumar; Ghosh, Sudipta; Choudhuri, Rajat; Bandopadhyay, Bijoy Kumar; Dasgupta, Sugata

    2011-01-01

    Background: Fentanyl-induced cough is not always benign and brief and can be remarkably troublesome, spasmodic, and explosive. Dextromethorphan, an opioid derivative with an antitussive action, may be effective in reducing the fentanyl-induced cough. Dextromethorphan, a N-methyl D aspartate receptor antagonist, may have some effect on diminishing the stress response to surgery. This study was undertaken to determine whether preoperative dextromethorphan could effectively attenuate its incidence, severity, and effect on postoperative stress hormone levels. Materials and Methods: Three hundred and twenty patients of American society of anesthesiologists I-II, aged 18–60 years, undergoing elective laparoscopic cholecystectomy or appendicectomy were randomly allocated into two groups (Group C, control; Group D, dextromethorphan) consisting of 160 patients each. Patients in Group D received dextromethorphan 40 mg orally and in Group C received placebo tablets 60 minutes before induction of anesthesia. The incidence of cough was recorded for 1 minute after fentanyl injection and graded as none (0), mild (1–2), moderate (3–5), and severe (>5 cough). Blood samples were collected for estimation of stress hormone levels before surgery and again at 1 hour and 24 hours postoperatively and compared. The appearance of adverse reactions was recorded. Results: The incidence of reflex fentanyl cough was lower in dextromethorphan group (3.9%) in comparison to placebo (59.8%). Five patients developed mild and one moderate cough in the dextromethorphan group. In the control group, 31 patients developed mild, 29 moderate, and 32 severe cough. The stress hormones were significantly higher at 1 hour and 24 hours postoperatively in both groups in comparison to its preoperative values. However, at 1 hour postoperatively, adrenocorticotropic hormone, epinephrine, and growth hormone values were significantly low in the dextromethorphan group (61.5 ± 21.1 pg/ ml, 142.1 ± 11.2 pg

  3. Efficacy of cough suppressants in children.

    PubMed

    Taylor, J A; Novack, A H; Almquist, J R; Rogers, J E

    1993-05-01

    To test the hypothesis that codeine and dextromethorphan are effective in alleviating the symptoms of acute cough, we conducted a randomized, controlled trial. Eligible patients were children 18 months to 12 years of age, seen in private pediatric practices, with significant night cough of less than 14 days' duration. Study patients were randomly selected to receive codeine, dextromethorphan, or placebo at bedtime for 3 consecutive nights. Outcomes were assessed by the use of a parent questionnaire rating the severity of symptoms at the initiation of therapy, and after each night of the study. Every patient had a cough score (range 0 to 4) and composite symptom score (range 0 to 9) computed for each day of the study. One hundred forty-one doses of study medication were evaluated in 49 patients, including 13 children receiving placebo, 19 dextromethorphan, and 17 codeine. Mean cough and composite symptom scores decreased in each of the three treatment groups on each day of the study; there were no significant differences. Regression analysis, with reduction in cough score as the outcome of interest, showed that neither dextromethorphan nor codeine was significantly more effective than placebo (p = 0.41 and 0.70, respectively). Reduction in cough score was positively correlated with the severity of cough at the start of treatment (p = 0.007). Our data suggest that, in the doses used, neither codeine nor dextromethorphan is superior to placebo in treating night cough in children. PMID:8496765

  4. Effects of opiates on sodium excretion in the isolated perfused rat kidney.

    PubMed

    Ellis, A G; Adam, W R

    1991-12-01

    1. A rat isolated perfused kidney preparation was utilized to define clearly a renal site of action. The variables measured were perfusate pressure and flow, glomerular filtration rate, urine volume, sodium excretion and potassium excretion. 2. Dextromethorphan (3 nmol/L) and dextrorphan (10 nmol/L) reduced sodium excretion in kidneys from rats on either control or high K+ diet, in the absence of any other measured renal effects. Dextromethorphan (10 nmol/L) produced a decrease in glomerular filtration rate as well as a decrease in sodium excretion. Naloxone (1 mumol/L) inhibited the effect of dextromethorphan on sodium excretion but had no effect when administered alone. 3. The levorotatory opiates levorphanol and levomethorphan, the kappa agonist ketocyclazocine and a range of other opiates had no effect on sodium excretion. 4. The results suggest a renal action specific for dextrorotatory opiates. This renal action is consistent with earlier binding studies suggesting preferential recognition of dextrorotatory opiates. PMID:1797448

  5. Prediction of CYP2D6 drug interactions from in vitro data: evidence for substrate-dependent inhibition.

    PubMed

    VandenBrink, Brooke M; Foti, Robert S; Rock, Dan A; Wienkers, Larry C; Wahlstrom, Jan L

    2012-01-01

    Predicting the magnitude of potential drug-drug interactions is important for underwriting patient safety in the clinical setting. Substrate-dependent inhibition of cytochrome P450 enzymes may confound extrapolation of in vitro results to the in vivo situation. However, the potential for substrate-dependent inhibition with CYP2D6 has not been well characterized. The inhibition profiles of 20 known inhibitors of CYP2D6 were characterized in vitro against four clinically relevant CYP2D6 substrates (desipramine, dextromethorphan, metoprolol, and thioridazine) and bufuralol. Dextromethorphan exhibited the highest sensitivity to in vitro inhibition, whereas metoprolol was the least sensitive. In addition, when metoprolol was the substrate, inhibitors with structurally constrained amino moieties (clozapine, debrisoquine, harmine, quinidine, and yohimbine) exhibited at least a 5-fold decrease in inhibition potency when results were compared with those for dextromethorphan. Atypical inhibition kinetics were observed for these and other inhibitor-substrate pairings. In silico docking studies suggested that interactions with Glu216 and an adjacent hydrophobic binding pocket may influence substrate sensitivity and inhibition potency for CYP2D6. The in vivo sensitivities of the clinically relevant CYP2D6 substrates desipramine, dextromethorphan, and metoprolol were determined on the basis of literature drug-drug interaction (DDI) outcomes. Similar to the in vitro results, dextromethorphan exhibited the highest sensitivity to CYP2D6 inhibition in vivo. Finally, the magnitude of in vivo CYP2D6 DDIs caused by quinidine was predicted using desipramine, dextromethorphan, and metoprolol. Comparisons of the predictions with literature results indicated that the marked decrease in inhibition potency observed for the metoprolol-quinidine interaction in vitro translated to the in vivo situation. PMID:21976621

  6. Comparative metabolism of 14C-labeled apixaban in mice, rats, rabbits, dogs, and humans.

    PubMed

    Zhang, Donglu; He, Kan; Raghavan, Nirmala; Wang, Lifei; Mitroka, James; Maxwell, Brad D; Knabb, Robert M; Frost, Charles; Schuster, Alan; Hao, Feng; Gu, Zheming; Humphreys, W Griffith; Grossman, Scott J

    2009-08-01

    The metabolism and disposition of [(14)C]apixaban, a potent, reversible, and direct inhibitor of coagulation factor Xa, were investigated in mice, rats, rabbits, dogs, and humans after a single oral administration and in incubations with hepatocytes. In plasma, the parent compound was the major circulating component in mice, rats, dogs, and humans. O-Demethyl apixaban sulfate (M1) represented approximately 25% of the parent area under the time curve in human plasma. This sulfate metabolite was present, but in lower amounts relative to the parent, in plasma from mice, rats, and dogs. Rabbits showed a plasma metabolite profile distinct from that of other species with apixaban as a minor component and M2 (O-demethyl apixaban) and M14 (O-demethyl apixaban glucuronide) as prominent components. The fecal route was a major elimination pathway, accounting for >54% of the dose in animals and >46% in humans. The urinary route accounted for <15% of the dose in animals and 25 to 28% in humans. Apixaban was the major component in feces of every species and in urine of all species except rabbit. M1 and M2 were common prominent metabolites in urine and feces of all species as well as in bile of rats and humans. In vivo metabolite profiles showed quantitative differences between species and from in vitro metabolite profiles, but all human metabolites were found in animal species. After intravenous administration of [(14)C]apixaban to bile duct-cannulated rats, the significant portion (approximately 22%) of the dose was recovered as parent drug in the feces, suggesting direct excretion of the drug from gastrointestinal tracts of rats. Overall, apixaban was effectively eliminated via multiple elimination pathways in animals and humans, including oxidative metabolism, and direct renal and intestinal excretion. PMID:19420130

  7. 77 FR 16842 - Draft and Revised Draft Guidances for Industry Describing Product-Specific Bioequivalence...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... INFORMATION: I. Background In the Federal Register of June 11, 2010 (75 FR 33311), FDA announced the... FR 3777). This notice announces draft product-specific recommendations, either new or revised, that... Clindamycin Phosphate (multiple RLDs), D Dalfampridine, Dexmethylphenidate HCl, Dextromethorphan...

  8. Antitussives and substance abuse.

    PubMed

    Burns, Jarrett M; Boyer, Edward W

    2013-01-01

    Abuse of antitussive preparations is a continuing problem in the United States and throughout the world. Illicit, exploratory, or recreational use of dextromethorphan and codeine/promethazine cough syrups is widely described. This review describes the pharmacology, clinical effects, and management of toxicity from commonly abused antitussive formulations. PMID:24648790

  9. Antitussives and substance abuse

    PubMed Central

    Burns, Jarrett M; Boyer, Edward W

    2013-01-01

    Abuse of antitussive preparations is a continuing problem in the United States and throughout the world. Illicit, exploratory, or recreational use of dextromethorphan and codeine/promethazine cough syrups is widely described. This review describes the pharmacology, clinical effects, and management of toxicity from commonly abused antitussive formulations. PMID:24648790

  10. Mu receptor binding of some commonly used opioids and their metabolites

    SciTech Connect

    Chen, Zhaorong; Irvine, R.J. ); Somogyi, A.A.; Bochner, F. Royal Adelaide Hospital )

    1991-01-01

    The binding affinity to the {mu} receptor of some opioids chemically related to morphine and some of their metabolites was examined in rat brain homogenates with {sup 3}H-DAMGO. The chemical group at position 6 of the molecule had little effect on binding. Decreasing the length of the alkyl group at position 3 decreased the K{sub i} values (morphine < codeine < ethylmorphine < pholcodine). Analgesics with high clinical potency containing a methoxyl group at position 3 had relatively weak receptor binding, while their O-demethylated metabolites had much stronger binding. Many opioids may exert their pharmacological actions predominantly through metabolites.

  11. The pharmacokinetic profile of naproxen suppository in man.

    PubMed

    Guelen, P J; Janssen, T J; Brueren, M M; Vree, T B; Lipperts, G J

    1988-04-01

    After a rectal dose of 500 mg in a suppository, naproxen is 6-O-demethylated (20%) and glucuronidated (40%), the metabolites are subsequently excreted renally. The elimination half-life is 15.2 +/- 2.6 h. Ten out of 22 subjects show biphasic elimination kinetics with half-lives of 7 and 15 h, respectively. There is a wide range in the percentage of the dose that is glucuronidated and demethylated (20-70%). This variation does not deviate from a normal distribution. PMID:3403096

  12. (-)-Arctigenin as a lead compound for anticancer agent.

    PubMed

    Chen, Gui-Rong; Li, Hong-Fu; Dou, De-Qiang; Xu, Yu-Bin; Jiang, Hong-Shuai; Li, Fu-Rui; Kang, Ting-Guo

    2013-01-01

    (-)-Arctigenin, an important active constituent of the traditional Chinese herb Fructus Arctii, was found to exhibit various bioactivities, so it can be used as a good lead compound for further structure modification in order to find a safer and more potent medicine. (-)-Arctigenin derivatives 1-5 of (-)-arctingen were obtained by modifying with ammonolysis at the lactone ring and sulphonylation at C (6') and C (6″) and O-demethylation at CH3O-C (3'), CH3O-C (3″) and CH3O-C (4″), and their anticancer bioactivities were examined. PMID:23962054

  13. In vivo metabolism of 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine in the rat.

    PubMed

    Sitaram, B R; Lockett, L; Talomsin, R; Blackman, G L; McLeod, W R

    1987-05-01

    Following intraperitoneal administration, 5-methoxy-N,N-dimethyltryptamine and N,N-dimethyltryptamine are subject to both a very rapid uptake into, and clearance from, all tissues examined. The current studies in vivo confirm previous in vitro observations that the routes involved in the metabolism of these compounds include oxidative deamination, N-demethylation, O-demethylation, and N-oxidation. The analysis of metabolic profiles in various tissues led to the identification of the N-oxides as major metabolites. The successful inhibition and redirection of metabolism away from the indole acids towards the parent compounds and their structurally unique metabolites were demonstrated in animals pretreated with iproniazid. PMID:3472526

  14. Antimicrobial hasubanalactam alkaloid from Stephania glabra.

    PubMed

    Semwal, Deepak Kumar; Rawat, Usha

    2009-03-01

    A novel hasubanalactam alkaloid, named glabradine, has been isolated from the tubers of Stephania glabra, together with three known quaternary protoberberine alkaloids, palmatine, dehydrocorydalmine and stepharanine. The structure of glabradine was assigned as 7-O-demethyl-N,O-dimethyloxostephinine, by means of rigorous spectroscopic analysis including 2 D NMR measurements. It was evaluated for antimicrobial activity against Staphylococcus aureus, S. mutans, Microsporum gypseum, M. canis and Trichophyton rubrum and displayed potent antimicrobial activity superior to those of novobiocin and erythromycin used as positive controls. PMID:19148860

  15. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin.

    PubMed

    Frandsen, Rasmus J N; Rasmussen, Silas A; Knudsen, Peter B; Uhlig, Silvio; Petersen, Dirk; Lysøe, Erik; Gotfredsen, Charlotte H; Giese, Henriette; Larsen, Thomas O

    2016-01-01

    Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/- 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies. PMID:27193384

  16. Degradation of topoisomerase I induced by topoisomerase I inhibitors is dependent on inhibitor structure but independent of cell death.

    PubMed

    Fu, Q; Kim, S W; Chen, H X; Grill, S; Cheng, Y C

    1999-04-01

    DNA topoisomerase I (top I) is the target of the antitumor drug camptothecin (CPT) and its analogs. CPT induces dose- and time-dependent degradation of top I. Degradation of top I also occurs in a CPT-resistant cell line and, therefore, is not a consequence of cell death. Top I degradation is preceded by the appearance of a high molecular weight ladder of top I immunoreactivity and can be blocked by specific inhibitors of the proteasome. We compared the effects of five top I poisons [CPT, topotecan, 6-N-formylamino-12,13-dihydro-1, 11-dihydroxy-13-(beta-D-glucopyranosyl)-5H-indolo[2,3-a]pyrrolo[3, 4-c]carbazole-5,7(6H)-dione (NB506), camptothecin-(para)-4beta-amino-4'-O-demethyl Epipodophyllotoxin (W1), and camptothecin-(ortho)-4beta-amino-4'-O-demethyl Epipodophyllotoxin (W2)] on cleavable complex formation and top I degradation. Although all five drugs induced cleavable complex formation, two of the drugs, NB506 and W1 did not induce top I degradation. PMID:10101025

  17. Black perithecial pigmentation in Fusarium species is due to the accumulation of 5-deoxybostrycoidin-based melanin

    PubMed Central

    Frandsen, Rasmus J. N.; Rasmussen, Silas A.; Knudsen, Peter B.; Uhlig, Silvio; Petersen, Dirk; Lysøe, Erik; Gotfredsen, Charlotte H.; Giese, Henriette; Larsen, Thomas O.

    2016-01-01

    Biosynthesis of the black perithecial pigment in the filamentous fungus Fusarium graminearum is dependent on the polyketide synthase PGL1 (oPKS3). A seven-membered PGL1 gene cluster was identified by over-expression of the cluster specific transcription factor pglR. Targeted gene replacement showed that PGL1, pglJ, pglM and pglV were essential for the production of the perithecial pigment. Over-expression of PGL1 resulted in the production of 6-O-demethyl-5-deoxybostrycoidin (1), 5-deoxybostrycoidin (2), and three novel compounds 5-deoxybostrycoidin anthrone (3), 6-O-demethyl-5-deoxybostrycoidin anthrone (4) and purpurfusarin (5). The novel dimeric bostrycoidin purpurfusarin (5) was found to inhibit the growth of Candida albicans with an IC50 of 8.0 +/− 1.9 μM. The results show that Fusarium species with black perithecia have a previously undescribed form of 5-deoxybostrycoidin based melanin in their fruiting bodies. PMID:27193384

  18. Reactive intermediates produced from the metabolism of the vanilloid ring of capsaicinoids by p450 enzymes.

    PubMed

    Reilly, Christopher A; Henion, Fred; Bugni, Tim S; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C; Srivastava, Sanjay K; Yost, Garold S

    2013-01-18

    This study characterized electrophilic and radical products derived from the metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from the trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5'-Dicapsaicin, presumably arising from the bimolecular coupling of free radical intermediates was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated quinone methide and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  19. Reactive Intermediates Produced from Metabolism of the Vanilloid Ring of Capsaicinoids by P450 Enzymes

    PubMed Central

    Reilly, Christopher A.; Henion, Fred; Bugni, Tim S.; Ethirajan, Manivannan; Stockmann, Chris; Pramanik, Kartick C.; Srivastava, Sanjay K.; Yost, Garold S.

    2012-01-01

    This study characterized electrophilic and radical products derived from metabolism of capsaicin by cytochrome P450 and peroxidase enzymes. Multiple glutathione and β-mercaptoethanol conjugates (a.k.a., adducts), derived from trapping of quinone methide and quinone intermediates of capsaicin, its analogue nonivamide, and O-demethylated and aromatic hydroxylated metabolites thereof, were produced by human liver microsomes and individual recombinant human P450 enzymes. Conjugates derived from concomitant dehydrogenation of the alkyl terminus of capsaicin, were also characterized. Modifications to the 4-OH substituent of the vanilloid ring of capsaicinoids largely prevented the formation of electrophilic intermediates, consistent with the proposed structures and mechanisms of formation for the various conjugates. 5,5’-Dicapsaicin, presumably arising from bi-molecular coupling of free radical intermediates, was also characterized. Finally, the analysis of hepatic glutathione conjugates and urinary N-acetylcysteine conjugates from mice dosed with capsaicin confirmed the formation of glutathione conjugates of O-demethylated, quinone methide, and 5-OH-capsaicin in vivo. These data demonstrated that capsaicin and structurally similar analogues are converted to reactive intermediates by certain P450 enzymes, which may partially explain conflicting reports related to the cytotoxic, pro-carcinogenic, and chemoprotective effects of capsaicinoids in different cells and/or organ systems. PMID:23088752

  20. Metabolism of One-Carbon Compounds by the Ruminal Acetogen Syntrophococcus sucromutans

    PubMed Central

    Doré, J.; Bryant, M. P.

    1990-01-01

    Syntrophococcus sucromutans is the predominant species capable of O demethylation of methoxylated lignin monoaromatic derivatives in the rumen. The enzymatic characterization of this acetogen indicated that it uses the acetyl coenzyme A (Wood) pathway. Cell extracts possess all the enzymes of the tetrahydrofolate pathway, as well as carbon monoxide dehydrogenase, at levels similar to those of other acetogens using this pathway. However, formate dehydrogenase could not be detected in cell extracts, whether formate or a methoxyaromatic was used as electron acceptor for growth of the cells on cellobiose. Labeled bicarbonate, formate, [1-14C] pyruvate, and chemically synthesized O-[methyl-14C]vanillate were used to further investigate the catabolism of one-carbon (C1) compounds by using washed-cell preparations. The results were consistent with little or no contribution of formate dehydrogenase and pointed out some unique features. Conversion of formate to CO2 was detected, but labeled formate predominantly labeled the methyl group of acetate. Labeled CO2 readily exchanged with the carboxyl group of pyruvate but not with formate, and both labeled CO2 and pyruvate predominantly labeled the carboxyl group of acetate. No CO2 was formed from O demethylation of vanillate, and the acetate produced was position labeled in the methyl group. The fermentation pattern and specific activities of products indicated a complete synthesis of acetate from pyruvate and the methoxyl group of vanillate. PMID:16348178

  1. Metabolism of the endocrine disruptor pesticide-methoxychlor by human P450s: pathways involving a novel catechol metabolite.

    PubMed

    Hu, Yiding; Kupfer, David

    2002-09-01

    The metabolism of methoxychlor, a proestrogenic pesticide (endocrine disruptor), was investigated with cDNA expressed human cytochrome P450s and liver microsomes (HLM). In addition to 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(4-methoxyphenyl)ethane (mono-OH-M), 1,1,1-trichloro-2, 2-bis(4-hydroxyphenyl)ethane (bis-OH-M), and 1,1,1-trichloro-2-(4-hydroxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (tris-OH-M), a new metabolite was identified as 1,1,1-trichloro-2-(4-methoxyphenyl)-2-(3, 4-dihydroxyphenyl)ethane (catechol-M; previously assumed to be ring-OH-M) and as a key metabolic intermediate. A novel metabolic route was proposed involving methoxychlor O-demethylation to mono-OH-M, followed by bifurcation of the pathway, both leading to the same final product tris-OH-M: pathway a, mono-OH-M is demethylated to bis-OH-M, followed by ortho-hydroxylation forming tris-OH-M and pathway b, mono-OH-M is ortho-hydroxylated forming catechol-M that is O-demethylated forming tris-OH-M. Among the human cDNA-expressed P450s examined, CYP1A2, 2A6, 2C8, 2C9, 2C19, and 2D6 exhibited mainly O-demethylation, with CYP2C19 being the most catalytically competent. CYP3A4, 3A5, and rat 2B1 catalyzed primarily ortho-hydroxylation of mono-OH-M (CYP3A4 being catalytically the most active) but were weak in O-demethylation. CYP1A1, 1B1, 2E1, and 4A11 demonstrated little or no catalytic activity. CYP2B6 appeared unique, catalyzing effectively both O-demethylation and ortho-hydroxylation. Thus, CYP2B6 demethylated methoxychlor to mono-OH-M and ortho-hydroxylated the mono-OH-M forming catechol-M; however, 2B6 did not appreciably demethylate mono-OH-M or ortho-hydroxylate bis-OH-M, suggesting a narrow substrate specificity. CYP2C19-catalyzed demethylation of methoxychlor, mono-OH-M and catechol-M, demonstrating relatively good substrate affinity (K(m) = 0.23 - 0.41 microM). However, the 3A4 ortho-hydroxylation of mono-OH-M and bis-OH-M exhibited lower affinity, K(m) = 12 and 25 microM, respectively. Thus, a

  2. Bullous mastocytosis in an infant associated with the use of a nonprescription cough suppressant.

    PubMed

    Cook, J; Stith, M; Sahn, E E

    1996-01-01

    Bullous mastocytosis is an unusual expression of mastocytosis typically seen in young children, and many causes of the acute mast cell degranulation with bulla formation have been identified. We report a 6-month-old boy with urticaria pigmentosa and an extensive bullous eruption associated with the ingestion of a nonprescription cough suppressant containing dextromethorphan. The pathogenesis of mastocytosis and the care of patients with this disease are discussed. PMID:8893244

  3. Dystonia as acute adverse reaction to cough suppressant in a 3-year-old girl.

    PubMed

    Polizzi, A; Incorpora, G; Ruggieri, M

    2001-01-01

    Cough suppressant preparations containing mixtures of dextromethorphan or codeine with antihistamines, decongestants (sympathomimetic), expectorants and antipyretics with either sedative or anticholinergic activity have been associated with dystonic reactions in children. We report on a 3-year-old girl who presented with episodic stiffness and abnormal posturing with rigidity after arbitrary maternal administration of a mixture of methylcodeine and extract from Hedera plant. PMID:11587381

  4. Non-opioid antitussives and methadone differentially influence hippocampal long-term potentiation in freely moving rats.

    PubMed

    Krug, M; Matthies, R; Wagner, M; Brödemann, R

    1993-02-16

    Long-term potentiation (LTP) of monosynaptically evoked field potentials (MEFP) in the dentate gyrus of freely moving rats following tetanization of the perforant pathway was investigated after peripheral application of substances which have been shown to influence NMDA receptor-mediated effects (dextromethorphan, methadone) as well as structurally related substances with similar antitussive effects (codeine, normethadone). The noncompetitive NMDA receptor antagonist MK 801 was also tested for comparison. Whereas under control conditions the field e.p.s.p. (excitatory postsynaptic potential) and the population spike of the MEFP were largely uninfluenced by these substances, different effects were seen after the induction of LTP. MK 801 (0.2 mg/kg i.p.) suppressed the induction of LTP of both the field e.p.s.p. and the population spike. Dextromethorphan (40 mg/kg i.p.) also prevented the potentiation of the field e.p.s.p. and the population spike, thus resembling MK 801 in its effect. Codeine (20 mg/kg i.p.), the levorotatory structural analogue of dextromethorphan had no effect. Methadone and normethadone did not influence the potentiation of the field e.p.s.p. or interfere with the induction of potentiation of the population spike but depressed its maintenance. The results obtained with MK 801 confirm those reported by others. Comparison of the effects of dextromethorphan with those of MK 801, suggests that there is a direct interaction with the NMDA receptor-ionophore complex. The effects of methadone and normethadone appear not to be linked to an interaction with opioid receptors, since naloxone did not influence the suppression of LTP caused by methadone. The possibility of interference with the NMDA receptor-ionophore complex is discussed. PMID:8449228

  5. Do OTC remedies relieve cough in acute URIs?

    PubMed

    Dealleaume, Lauren; Tweed, Beth; Neher, Jon O

    2009-10-01

    Dextromethorphan (DM) for adults and honey for children provide some relief. DM may modestly decrease cough in adults compared with placebo. The data supporting zinc for the common cold are mixed. Antihistamines, antihistamine-decongestant combinations, and guaifenesin do not provide greater relief than placebo in adults. In children, antihistamines, decongestants, DM, or combinations of them do not relieve cough better than placebo. Honey may modestly decrease frequency and severity of cough compared with DM or no treatment. PMID:19874728

  6. Population pharmacokinetic modelling to assess the impact of CYP2D6 and CYP3A metabolic phenotypes on the pharmacokinetics of tamoxifen and endoxifen

    PubMed Central

    ter Heine, Rob; Binkhorst, Lisette; de Graan, Anne Joy M; de Bruijn, Peter; Beijnen, Jos H; Mathijssen, Ron H J; Huitema, Alwin D R

    2014-01-01

    Aims Tamoxifen is considered a pro-drug of its active metabolite endoxifen. The major metabolic enzymes involved in endoxifen formation are CYP2D6 and CYP3A. There is considerable evidence that variability in activity of these enzymes influences endoxifen exposure and thereby may influence the clinical outcome of tamoxifen treatment. We aimed to quantify the impact of metabolic phenotype on the pharmacokinetics of tamoxifen and endoxifen. Methods We assessed the CYP2D6 and CYP3A metabolic phenotypes in 40 breast cancer patients on tamoxifen treatment with a single dose of dextromethorphan as a dual phenotypic probe for CYP2D6 and CYP3A. The pharmacokinetics of dextromethorphan, tamoxifen and their relevant metabolites were analyzed using non-linear mixed effects modelling. Results Population pharmacokinetic models were developed for dextromethorphan, tamoxifen and their metabolites. In the final model for tamoxifen, the dextromethorphan derived metabolic phenotypes for CYP2D6 as well as CYP3A significantly (P < 0.0001) explained 54% of the observed variability in endoxifen formation (inter-individual variability reduced from 55% to 25%). Conclusions We have shown that not only CYP2D6, but also CYP3A enzyme activity influences the tamoxifen to endoxifen conversion in breast cancer patients. Our developed model may be used to assess separately the impact of CYP2D6 and CYP3A mediated drug–drug interactions with tamoxifen without the necessity of administering this anti-oestrogenic drug and to support Bayesian guided therapeutic drug monitoring of tamoxifen in routine clinical practice. PMID:24697814

  7. Laser electrospray mass spectrometry of adsorbed molecules at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Brady, John J.; Judge, Elizabeth J.; Simon, Kuriakose; Levis, Robert J.

    2010-02-01

    Atmospheric pressure mass analysis of solid phase biomolecules is performed using laser electrospray mass spectrometry (LEMS). A non-resonant femtosecond duration laser pulse vaporizes native samples at atmospheric pressure for subsequent electrospray ionization and transfer into a mass spectrometer. LEMS was used to detect a complex molecule (irinotecan HCl), a complex mixture (cold medicine formulation with active ingredients: acetaminophen, dextromethorphan HBr and doxylamine succinate), and a biological building block (deoxyguanosine) deposited on steel surfaces without a matrix molecule.

  8. Clinical inhibition of CYP2D6-catalysed metabolism by the antianginal agent perhexiline

    PubMed Central

    Davies, Benjamin J L; Coller, Janet K; James, Heather M; Gillis, David; Somogyi, Andrew A; Horowitz, John D; Morris, Raymond G; Sallustio, Benedetta C

    2004-01-01

    Aims Perhexiline is an antianginal agent that displays both saturable and polymorphic metabolism via CYP2D6. The aim of this study was to determine whether perhexiline produces clinically significant inhibition of CYP2D6-catalysed metabolism in angina patients. Methods The effects of perhexiline on CYP2D6-catalysed metabolism were investigated by comparing urinary total dextrorphan/dextromethorphan metabolic ratios following a single dose of dextromethorphan (16.4 mg) in eight matched control patients not taking perhexiline and 24 patients taking perhexiline. All of the patients taking perhexiline had blood drawn for CYP2D6 genotyping as well as to measure plasma perhexiline and cis-OH-perhexiline concentrations. Results Median (range) dextrorphan/dextromethorphan metabolic ratios were significantly higher (P < 0.0001) in control patients, 271.1 (40.3–686.1), compared with perhexiline-treated patients, 5.0 (0.3–107.9). In the perhexiline-treated group 10/24 patients had metabolic ratios consistent with poor metabolizer phenotypes; however, none was a genotypic poor metabolizer. Interestingly, 89% of patients who had phenocopied to poor metabolizers had only one functional CYP2D6 gene. There was a significant negative linear correlation between the log of the dextrorphan/dextromethorphan metabolic ratio and plasma perhexiline concentrations (r2 = 0.69, P < 0.0001). Compared with patients with at least two functional CYP2D6 genes, those with one functional gene were on similar perhexiline dosage regimens but had significantly higher plasma perhexiline concentrations, 0.73 (0.21–1.00) vs. 0.36 (0.04–0.69) mg l−1 (P = 0.04), lower cis-OH-perhexiline/perhexiline ratios, 2.85 (0.35–6.10) vs. 6.51 (1.84–11.67) (P = 0.03), and lower dextrorphan/dextromethorphan metabolic ratios, 2.51 (0.33–39.56) vs. 11.80 (2.90–36.93) (P = 0.005). Conclusions Perhexiline significantly inhibits CYP2D6-catalysed metabolism in angina patients. The plasma cis

  9. The anticonvulsant actions of σ receptor ligands in the Mg2+-free model of epileptiform activity in rat hippocampal slices

    PubMed Central

    Thurgur, Claire; Church, John

    1998-01-01

    The anticonvulsant potency of a series of structurally-dissimilar compounds which possess nanomolar affinities for high-affinity σ binding sites was examined in the Mg2+-free model of epileptiform activity in rat hippocampal slices. Extracellular field potential recordings in the CA1 region were employed to examine the effects of test compounds on spontaneous epileptiform activity and multiple population spikes evoked by stimulation of the Schaffer collateral-commissural pathway.Applied at σ site-selective (i.e. nanomolar) concentrations, dextromethorphan, ditolylguanidine, caramiphen and opipramol failed to modify Mg2+-free epileptiform activity; neither pro- nor anticonvulsant effects were observed. However, applied at micromolar concentrations, these and additional test compounds reversibly inhibited orthodromically-evoked epileptiform field potentials with a rank order potency (IC50 values in μM): dextrorphan (1.5)>ifenprodil (6.3)>dextromethorphan (10)>ditolylguanidine (15)>loperamide (28)>carbetapentane (38)>caramiphen (46)>opipramol (52). Micromolar concentrations of the same compounds also inhibited spontaneous epileptiform bursts recorded during perfusion with Mg2+-free medium.Co-application of ropizine (10 μM), an allosteric modulator of dextromethorphan binding to high-affinity σ receptors, failed to endow dextromethorphan 10 nM with anticonvulsant properties and did not modify the anticonvulsant potency of 10 μM dextromethorphan.The effects of dextrorphan (10 μM), ifenprodil (20 μM), loperamide (50 μM) and caramiphen (100 μM) were examined in the presence of external Mg2+ on field potential input/output (I/O) relationships and paired-pulse facilitation (PPF) of field excitatory postsynaptic potentials. Only caramiphen elicited effects on these parameters, affecting synaptic transmission at the point of synaptic transfer and depressing PPF ratios to below baseline values. The effects of caramiphen on I/O relationships mimicked

  10. Antifungal dibenzofuran bis(bibenzyl)s from the liverwort Asterella angusta.

    PubMed

    Qu, Jianbo; Xie, Chunfeng; Guo, Huaifang; Yu, Wentao; Lou, Hongxiang

    2007-07-01

    Bioactivity-guided separation of an antifungal extract from the liverwort Asterella angusta afforded four bis(bibenzyl)s, asterelin A (1), asterelin B (2), 11-O-demethyl marchantin I (3), and dihydroptychantol A (4), together with six known ones. Their structures were established by extensive spectroscopic analysis (1D and 2D-NMR, MS), and that of 2 was confirmed by X-ray crystallographic diffraction analysis. Compounds 1 and 2 are the first examples of dibenzofuran bis(bibenzyl)s. The antifungal activity of the isolated bis(bibenzyl)s against the common clinical pathogenic fungus Candida albicans was evaluated using both the thin-layer chromatography bioautographic assay and the broth microdilution method. They showed moderate antifungal activities with minimal inhibitory concentration (MIC) values ranging from 16 microg/ml to 512 microg/ml. PMID:17570447

  11. A small-scale, inexpensive method for detecting formaldehyde or methanol in biochemical reactions containing interfering substances.

    PubMed

    Jiang, Wen Zhi; Adamec, Jiri; Weeks, Donald P

    2013-11-15

    A simple, inexpensive microdistillation device is described for capturing methanol or formaldehyde as end products of biochemical reactions or in environmental samples. We demonstrate that the microdistillation protocol, coupled with the use of alcohol oxidase and the formaldehyde-sensitive reagent Purpald (4-amino-3-hydrazino-5-mercapto-1,2,4-triazole), serves as a quick and inexpensive alternative to chromatographic and mass spectrometer analyses for determining if formaldehyde or methanol is a product of reactions that contain substances that interfere with the Purpald reaction. These techniques were used to affirm formaldehyde as the end product of the dicamba monooxygenase-catalyzed O-demethylation of the herbicide dicamba (2-methoxy-3,6-dichlorobenzoic acid). PMID:23938775

  12. Metabolism of the cinnamon constituent o-methoxycinnamaldehyde in the rat.

    PubMed

    Samuelsen, O B; Brenna, J; Solheim, E; Scheline, R R

    1986-09-01

    The metabolism of o-methoxycinnamaldehyde (1.3 mmol/kg, intragastrically) was studied in rats. Identification of the urinary metabolites by g.l.c.-mass spectrometry and quantification by h.p.l.c. showed that the major metabolic pathway (approx. two-thirds of the dose) was oxidation to the corresponding cinnamic and phenylpropionic acids (C6-C3 acids) which were largely excreted as glycine conjugates. Intermediate amounts (approx. 10% of the dose) of the O-demethylated C6-C3 acids were excreted. Relatively large amounts of the beta-hydroxylated phenylpropionic acid derivative were found, however only traces of the further products of beta-oxidation (2-methoxylated derivatives of benzoic and hippuric acid) were excreted. No evidence was obtained for conjugation of o-methoxycinnamaldehyde with glutathione. Urinary excretion of metabolites was rapid (91% in 24 h and 98% in 48 h). PMID:3765663

  13. Maduramicin. alpha. : Characterization of sup 14 C-derived residues in turkey excreta

    SciTech Connect

    Stout, S.J.; daCunha, A.R.; Lee, A. ); Jinn Wu; King, K.G. )

    1991-02-01

    Maduramicin {alpha}, a highly potent polyether ionophore antibiotic for preventing coccidiosis in poultry, is passed predominantly in turkey excreta following oral feeding. Following isolation and purification, the turkey excreta metabolites were characterized primarily by liquid chromatography/mass spectrometry and liquid chromatography/tandem mass spectrometry. Maduramicin {alpha} and its metabolites generate a characteristic pair of ions corresponding to (M + NH{sub 4}){sup +} and (M + Na){sup +} which assist in differentiating the metabolites from matrix coextractives. These two ions also fragment differently in tandem mass spectrometry, thus providing structural information for characterizing the nature of unknown metabolites. The primary metabolic pathway of maduramicin {alpha} in the turkey is O-demethylation at one or more of the methoxy groups. Hydroxylation and glucuronide conjugation are minor secondary metabolic processes.

  14. Chromogenic nitrophenolate-based substrates for light-driven hybrid P450 BM3 enzyme assay.

    PubMed

    Lam, Quan; Cortez, Alejandro; Nguyen, Thanh Truc; Kato, Mallory; Cheruzel, Lionel

    2016-05-01

    The incorporation of a p-nitrophenoxy moiety in substrates has enabled the development of colorimetric assays to rapidly screen for O-demethylation activity of P450 enzymes. For the light-driven hybrid P450 BM3 enzymes, where a Ru(II) photosensitizer powers the enzyme upon visible light irradiation, we have investigated a family of p-nitrophenoxy derivatives as useful chromogenic substrates compatible with the light-driven approach. The validation of this assay and its adaptability to a 96-well plate format will enable the screening of the next generation of hybrid P450 BM3 enzymes towards C-H bond functionalization of non-natural substrates. PMID:26712653

  15. Biobased Epoxy Nanocomposites Derived from Lignin-Based Monomers.

    PubMed

    Zhao, Shou; Abu-Omar, Mahdi M

    2015-07-13

    Biobased epoxy nanocomposites were synthesized based on 2-methoxy-4-propylphenol (dihydroeugenol, DHE), a molecule that has been obtained from the lignin component of biomass. To increase the content of hydroxyl groups, DHE was o-demethylated using aqueous HBr to yield propylcatechol (DHEO), which was subsequently glycidylated to epoxy monomer. Optimal conditions in terms of yield and epoxy equivalent weight were found to be 60 °C with equal NaOH/phenolic hydroxyl molar ratio. The structural evolution from DHE to cured epoxy was followed by (1)H NMR and Fourier transform infrared spectroscopy. The nano-montmorillonite modified DHEO epoxy exhibited improved storage modulus and thermal stability as determined from dynamic mechanical analysis and thermogravimetric analysis. This study widens the synthesis routes of biobased epoxy thermosets from lignin-based molecules. PMID:26135389

  16. Metabolic pathways of the psychotropic-carboline alkaloids, harmaline and harmine, by liquid chromatography/mass spectrometry and NMR spectroscopy.

    PubMed

    Zhao, Ting; Zheng, Shan-Song; Zhang, Bin-Feng; Li, Yuan-Yuan; Bligh, S W Annie; Wang, Chang-Hong; Wang, Zheng-Tao

    2012-09-15

    The β-carboline alkaloids, harmaline and harmine, are present in hallucinogenic plants Ayahuasca and Peganum harmala, and in a variety of foods. In order to establish the metabolic pathway and bioactivities of endogenous and xenobiotic bioactive β-carbolines, high-performance liquid chromatography, coupled with mass spectrometry, was used to identify these metabolites in human liver microsomes (HLMs) in vitro and in rat urine and bile samples after oral administration of the alkaloids. Three metabolites of harmaline and two of harmine were found in the HLMs. Nine metabolites for harmaline and seven metabolites for harmine, from the rat urine and bile samples, were identified. Among them, four in vivo metabolites were isolated and fully characterised by NMR analysis. For the first time, harmaline is shown transforming to harmine by oxidative dehydrogenation in rat. Five metabolic pathways were therefore proposed, namely, oxidative dehydrogenation, 7-O-demethylation, hydroxylation, O-glucuronide conjugation and O-sulphate conjugation. PMID:23107733

  17. Use of 13C NMR and ftir for elucidation of degradation pathways during natural litter decomposition and composting I. early stage leaf degradation

    USGS Publications Warehouse

    Wershaw, R. L.; Leenheer, J.A.; Kennedy, K.R.; Noyes, T.I.

    1996-01-01

    Oxidative degradation of plant tissue leads to the formation of natural dissolved organic carbon (DOC) and humus. Infrared (IR) and 13C nuclear magnetic resonance (NMR) spectrometry have been used to elucidate the chemical reactions of the early stages of degradation that give rise to DOC derived from litter and compost. The results of this study indicate that oxidation of the lignin components of plant tissue follows the sequence of O-demethylation, and hydroxylation followed by ring-fission, chain-shortening, and oxidative removal of substituents. Oxidative ring-fission leads to the formation of carboxylic acid groups on the cleaved ends of the rings and, in the process, transforms phenolic groups into aliphatic alcoholic groups. The carbohydrate components are broken down into aliphatic hydroxy acids and aliphatic alcohols.

  18. Papaverine 7-O-demethylase, a novel 2-oxoglutarate/Fe(2+)-dependent dioxygenase from opium poppy.

    PubMed

    Farrow, Scott C; Facchini, Peter J

    2015-09-14

    Opium poppy (Papaver somniferum) produces several pharmacologically important benzylisoquinoline alkaloids including the vasodilator papaverine. Pacodine and palaudine are tri-O-methylated analogs of papaverine, which contains four O-linked methyl groups. However, the biosynthetic origin of pacodine and palaudine has not been established. Three members of the 2-oxoglutarate/Fe(2+)-dependent dioxygenases (2ODDs) family in opium poppy display widespread O-dealkylation activity on several benzylisoquinoline alkaloids with diverse structural scaffolds, and two are responsible for the antepenultimate and ultimate steps in morphine biosynthesis. We report a novel 2ODD from opium poppy catalyzing the efficient substrate- and regio-specific 7-O-demethylation of papaverine yielding pacodine. The occurrence of papaverine 7-O-demethylase (P7ODM) expands the enzymatic scope of the 2ODD family in opium poppy and suggests an unexpected biosynthetic route to pacodine. PMID:26264169

  19. Total synthesis of Elisabethin A: intramolecular Diels-Alder reaction under biomimetic conditions.

    PubMed

    Heckrodt, Thilo J; Mulzer, Johann

    2003-04-23

    We describe the first total synthesis of the marine diterpenoid elisabethin A. The synthesis uses (S)-hydroxy-2-methyl-propionate as the chiral starting material, which is elaborated into a dienyl-iodide and added to an aryl acetic acid ester via enolate alkylation. The hydroquinoid system is oxidized to the quinone which serves as the dienophile in a highly stereocontrolled intramolecular Diels-Alder addition. This IMDA reaction, which to our knowledge is the first one to employ a terminal (Z)-diene, proceeds under biomimetic conditions (water, ferrichloride as the oxidant, room temperature) with high yield and stereoselectivity. The Diels-Alder adduct is transformed into the natural product via a three-step sequence including selective hydrogenation, base-catalyzed epimerization of the cis- into the trans-decalin system and O-demethylation. PMID:12696865

  20. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon1[W

    PubMed Central

    Iwakami, Satoshi; Endo, Masaki; Saika, Hiroaki; Okuno, Junichi; Nakamura, Naoki; Yokoyama, Masao; Watanabe, Hiroaki; Toki, Seiichi; Uchino, Akira; Inamura, Tatsuya

    2014-01-01

    Previous studies have demonstrated multiple herbicide resistance in California populations of Echinochloa phyllopogon, a noxious weed in rice (Oryza sativa) fields. It was suggested that the resistance to two classes of acetolactate synthase-inhibiting herbicides, bensulfuron-methyl (BSM) and penoxsulam (PX), may be caused by enhanced activities of herbicide-metabolizing cytochrome P450. We investigated BSM metabolism in the resistant (R) and susceptible (S) lines of E. phyllopogon, which were originally collected from different areas in California. R plants metabolized BSM through O-demethylation more rapidly than S plants. Based on available information about BSM tolerance in rice, we isolated and analyzed P450 genes of the CYP81A subfamily in E. phyllopogon. Two genes, CYP81A12 and CYP81A21, were more actively transcribed in R plants compared with S plants. Transgenic Arabidopsis (Arabidopsis thaliana) expressing either of the two genes survived in media containing BSM or PX at levels at which the wild type stopped growing. Segregation of resistances in the F2 generation from crosses of R and S plants suggested that the resistance to BSM and PX were each under the control of a single regulatory element. In F6 recombinant inbred lines, BSM and PX resistances cosegregated with increased transcript levels of CYP81A12 and CYP81A21. Heterologously produced CYP81A12 and CYP81A21 proteins in yeast (Saccharomyces cerevisiae) metabolized BSM through O-demethylation. Our results suggest that overexpression of the two P450 genes confers resistance to two classes of acetolactate synthase inhibitors to E. phyllopogon. The overexpression of the two genes could be regulated simultaneously by a single trans-acting element in the R line of E. phyllopogon. PMID:24760819

  1. Identification of a unique 2-oxoglutarate-dependent flavone 7-O-demethylase completes the elucidation of the lipophilic flavone network in basil.

    PubMed

    Berim, Anna; Kim, Min-Jeong; Gang, David R

    2015-01-01

    Small molecule demethylation is considered unusual in plants. Of the studied instances, the N-demethylation of nicotine is catalyzed by a Cyt P450 monooxygenase, while the O-dealkylation of alkaloids in Papaver somniferum is mediated by 2-oxoglutarate-dependent dioxygenases (2-ODDs). This report describes a 2-ODD regiospecifically catalyzing the 7-O-demethylation of methoxylated flavones in peltate trichomes of sweet basil (Ocimum basilicum L.). Three candidate 2-ODDs were identified in the basil trichome transcriptome database. Only the candidate designated ObF7ODM1 was found to be active with and highly specific for the proposed natural substrates, gardenin B and 8-hydroxysalvigenin. Of the characterized 2-ODDs, ObF7ODM1 is most closely related to O-demethylases from Papaver. The demethylase activity in trichomes from four basil chemotypes matches well with the abundance of ObF7ODM1 peptides and transcripts in the same trichome preparations. Treatment of basil plants with a 2-ODD inhibitor prohexadione-calcium significantly reduced the accumulation of 7-O-demethylated flavone nevadensin, confirming the involvement of a 2-ODD in its formation. Notably, the full-length open reading frame of ObF7ODM1 contains a second in-frame AUG codon 57 nucleotides downstream of the first translation initiation codon. Both AUG codons are recognized by bacterial translation machinery during heterologous gene expression. The N-truncated ObF7ODM1 is nearly inactive. The N-terminus essential for activity is unique to ObF7ODM1 and does not align with the sequences of other 2-ODDs. Further studies will reveal whether alternative translation initiation plays a role in regulating the O-demethylase activity in planta. Molecular identification of the flavone 7-O-demethylase completes the biochemical elucidation of the lipophilic flavone network in basil. PMID:25378691

  2. Studies on the in vivo contribution of human cytochrome P450s to the hepatic metabolism of glaucine, a new drug of abuse.

    PubMed

    Meyer, Golo M J; Meyer, Markus R; Wink, Carina S D; Zapp, Josef; Maurer, Hans H

    2013-11-15

    Glaucine ((S)-5,6,6a,7-tetrahydro-1,2,9,10-tetramethoxy-6-methyl-4H-dibenzo [de,g]quinoline), main isoquinoline alkaloid of Glaucium flavum (Papaveraceae), is used as antitussive, but also as recreational drug of abuse. Glaucine was mainly metabolized by O- and N-demethylation to four isomers in rats. So far, only scarce pharmacokinetic data were available. Therefore, the aim of the presented study was to assess the involvement of the ten most important cytochrome P450 (P450) isoforms in the main metabolic steps and determination of their kinetic parameters using the metabolite formation approach. Reference standards of investigated metabolites were synthesized for quantification. In addition, the impact of isomeric standards was tested for calibration and the use of simple peak area ratios on the kinetic constants and resulting contribution of P450 isoforms on estimated hepatic clearance. Kinetic profiles of all metabolite formations followed classic Michaelis-Menten behavior. Km values were between 25 and 140μM, Vmax between 0.10 and 1.92pmol/min/pmol. Using the relative activity factor approach, the hepatic clearance was calculated to be 27 and 73% for 2-O-demethylation by CYP1A2 and CYP3A4, 82, 3, and 15% for 9-O-demethylation by CYP1A2, CYP2C19, and CYP2D6, and finally <1 and 99% for N-demethylation by CYP2D6 and CYP3A4. These data were confirmed by inhibition tests. The calibration mode for determination of the metabolite concentrations had no relevant impact on the estimation of in vivo hepatic clearance of glaucine. As glaucine was metabolized via three initial steps and different P450 isoforms were involved in the hepatic clearance of glaucine, a clinically relevant interaction with single inhibitors should not be expected. PMID:23988488

  3. Metabolism and disposition of N,N-dimethyltryptamine and harmala alkaloids after oral administration of ayahuasca.

    PubMed

    Riba, Jordi; McIlhenny, Ethan H; Valle, Marta; Bouso, José Carlos; Barker, Steven A

    2012-01-01

    Ayahuasca is an Amazonian psychotropic plant tea obtained from Banisteriopsis caapi, which contains β-carboline alkaloids, chiefly harmine, harmaline and tetrahydroharmine. The tea usually incorporates the leaves of Psychotria viridis or Diplopterys cabrerana, which are rich in N,N-dimethyltryptamine (DMT), a psychedelic 5-HT(2A/1A/2C) agonist. The β-carbolines reversibly inhibit monoamine-oxidase (MAO), effectively preventing oxidative deamination of the orally labile DMT and allowing its absorption and access to the central nervous system. Despite increased use of the tea worldwide, the metabolism and excretion of DMT and the β-carbolines has not been studied systematically in humans following ingestion of ayahuasca. In the present work, we used an analytical method involving high performance liquid chromatography (HPLC)/electrospray ionization (ESI)/selected reaction monitoring (SRM)/tandem mass spectrometry(MS/MS) to characterize the metabolism and disposition of ayahuasca alkaloids in humans. Twenty-four-hour urine samples were obtained from 10 healthy male volunteers following administration of an oral dose of encapsulated freeze-dried ayahuasca (1.0 mg DMT/kg body weight). Results showed that less than 1% of the administered DMT dose was excreted unchanged. Around 50% was recovered as indole-3-acetic acid but also as DMT-N-oxide (10%) and other MAO-independent compounds. Recovery of DMT plus metabolites reached 68%. Harmol, harmalol, and tetrahydroharmol conjugates were abundant in urine. However, recoveries of each harmala alkaloid plus its O-demethylated metabolite varied greatly between 9 and 65%. The present results show the existence in humans of alternative metabolic routes for DMT other than biotransformation by MAO. Also that O-demethylation plus conjugation is an important but probably not the only metabolic route for the harmala alkaloids in humans. PMID:22514127

  4. Microbial and dietary factors associated with the 8-prenylnaringenin producer phenotype: a dietary intervention trial with fifty healthy post-menopausal Caucasian women.

    PubMed

    Bolca, Selin; Possemiers, Sam; Maervoet, Veerle; Huybrechts, Inge; Heyerick, Arne; Vervarcke, Stefaan; Depypere, Herman; De Keukeleire, Denis; Bracke, Marc; De Henauw, Stefaan; Verstraete, Willy; Van de Wiele, Tom

    2007-11-01

    Hop-derived food supplements and beers contain the prenylflavonoids xanthohumol (X), isoxanthohumol (IX) and the very potent phyto-oestrogen (plant-derived oestrogen mimic) 8-prenylnaringenin (8-PN). The weakly oestrogenic IX can be bioactivated via O-demethylation to 8-PN. Since IX usually predominates over 8-PN, human subjects may be exposed to increased doses of 8-PN. A dietary intervention trial with fifty healthy post-menopausal Caucasian women was undertaken. After a 4 d washout period, participants delivered faeces, blank urine and breath samples. Next, they started a 5 d treatment with hop-based supplements that were administered three times per d and on the last day, a 24 h urine sample was collected. A semi-quantitative FFQ was used to estimate fat, fibre, alcohol, caffeine and theobromine intakes. The recoveries of IX, 8-PN and X in the urine were low and considerable inter-individual variations were observed. A five-fold increase in the dosage of IX without change in 8-PN concentration resulted in a significant lower IX recovery and a higher 8-PN recovery. Classification of the subjects into poor (60%), moderate (25%) and strong (15%) 8-PN producers based on either urinary excretion or microbial bioactivation capacity gave comparable results. Recent antibiotic therapy seemed to affect the 8-PN production negatively. A positive trend between methane excretion and 8-PN production was observed. Strong 8-PN producers consumed less alcohol and had a higher theobromine intake. From this study we conclude that in vivo O-demethylation of IX increases the oestrogenic potency of hop-derived products. PMID:17521469

  5. Interindividual and interethnic differences in the demethylation and glucuronidation of codeine.

    PubMed Central

    Yue, Q Y; Svensson, J O; Alm, C; Sjöqvist, F; Säwe, J

    1989-01-01

    1. The 8 h urinary excretion of codeine and seven of its metabolites was compared in 149 healthy Swedish Caucasians and 133 healthy Chinese following a single oral dose of 25 mg codeine phosphate. 2. The total 8 h urinary recovery of drug-related material was 74 +/- 24% in the Caucasians and 60 +/- 14% in the Chinese (P less than 0.001). The excretion of unchanged codeine was significantly higher in the Chinese (7.2%) compared with the Caucasians (4.3%, P less than 0.001). 3. The Caucasians excreted significantly greater proportions of codeine-6-glucuronide (C6G) (62%) than the Chinese (44%) (P less than 0.001). The frequency distribution of the log metabolic ratio (MR) for glucuronidation (codeine/C6G) was shifted towards higher values in the Chinese population. Males in both groups and Chinese smokers had significantly lower glucuronidation MRs than females and non-smokers in the respective populations (P less than 0.001). 4. The frequency distribution of the MR for O-demethylation (codeine/morphine (M) + M-3 and M-6-glucuronide (M3G and M6G) + normorphine (NM) was highly skewed in the Caucasians, suggestive of a bimodal distribution. There was a 160-fold interindividual variation in this MR. A unimodal distribution of the log O-demethylation MR was observed in Chinese. The Caucasians excreted less M and more M6G than did the Chinese (P less than 0.001). 5. Significantly more norcodeine (NC) and less NC-glucuronide (NCG) were excreted in the Chinese compared with the Caucasians (P less than 0.001).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2611085

  6. Studies on the metabolism and toxicological detection of the new psychoactive designer drug 2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine (25I-NBOMe) in human and rat urine using GC-MS, LC-MS(n), and LC-HR-MS/MS.

    PubMed

    Caspar, Achim T; Helfer, Andreas G; Michely, Julian A; Auwärter, Volker; Brandt, Simon D; Meyer, Markus R; Maurer, Hans H

    2015-09-01

    25I-NBOMe, a new psychoactive substance, is a potent 5-HT2A receptor agonist with strong hallucinogenic potential. Recently, it was involved in several fatal and non-fatal intoxication cases. The aim of the present work was to study its phase I and II metabolism and its detectability in urine screening approaches. After application of 25I-NBOMe to male Wistar rats, urine was collected over 24 h. The phase I and II metabolites were identified by LC-HR-MS/MS in urine after suitable workup. For the detectability studies, standard urine screening approaches (SUSA) by GC-MS, LC-MS(n), and LC-HR-MS/MS were applied to rat and also to authentic human urine samples submitted for toxicological analysis. Finally, an initial CYP activity screening was performed to identify CYP isoenzymes involved in the major metabolic steps. 25I-NBOMe was mainly metabolized by O-demethylation, O,O-bis-demethylation, hydroxylation, and combinations of these reactions as well as by glucuronidation and sulfation of the main phase I metabolites. All in all, 68 metabolites could be identified. Intake of 25I-NBOMe was detectable mainly via its metabolites by both LC-MS approaches, but not by the GC-MS SUSA. Initial CYP activity screening revealed the involvement of CYP1A2 and CYP3A4 in hydroxylation and CYP2C9 and CYP2C19 in O-demethylation. The presented study demonstrated that 25I-NBOMe was extensively metabolized and could be detected only by the LC-MS screening approaches. Since CYP2C9 and CYP3A4 are involved in initial metabolic steps, drug-drug interactions might occur in certain constellations. PMID:26108532

  7. Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology.

    PubMed

    Philipp, Anika A; Meyer, Markus R; Wissenbach, Dirk K; Weber, Armin A; Zoerntlein, Siegfried W; Zweipfenning, Peter G M; Maurer, Hans H

    2011-04-01

    The Thai medicinal plant Mitragyna speciosa (kratom) is misused as a herbal drug. Besides this, a new herbal blend has appeared on the drugs of abuse market, named Krypton, a mixture of O-demethyltramadol (ODT) and kratom. Therefore, urine drug screenings should include ODT and focus on the metabolites of the kratom alkaloids mitragynine (MG), paynantheine (PAY), speciogynine (SG), and speciociliatine (SC). The aim of this study was to develop a full-scan gas chromatography-mass spectrometry procedure for monitoring kratom or Krypton intake in urine after enzymatic cleavage of conjugates, solid-phase extraction, and trimethylsilylation. With use of reconstructed mass chromatography with the ions m/z 271, 286, 329, 344, 470, 526, 528, and 586, the presence of MG, 16-carboxy-MG, 9-O-demethyl-MG, and/or 9-O-demethyl-16-carboxy-MG could be indicated, and in case of Krypton, with m/z 58, 84, 116, 142, 303, 361, 393, and 451, the additional presence of ODT and its nor metabolite could be indicated. Compounds were identified by comparison with their respective reference spectra. Depending on the plant type, dose, administration route, and/or sampling time, further metabolites of MG, PAY, SG, and SC could be detected. The limits of detection (signal-to-noise ratio of 3) were 100 ng/ml for the parent alkaloids and 50 ng/ml for ODT. As mainly metabolites of the kratom alkaloids were detected in urine, the detectability of kratom was tested successfully using rat urine after administration of a common user's dose of MG. As the metabolism in humans was similar, this procedure should be suitable to prove an intake of kratom or Krypton. PMID:21153588

  8. Systematic and quantitative assessment of the effect of chronic kidney disease on CYP2D6 and CYP3A4/5.

    PubMed

    Yoshida, K; Sun, B; Zhang, L; Zhao, P; Abernethy, D R; Nolin, T D; Rostami-Hodjegan, A; Zineh, I; Huang, S-M

    2016-07-01

    Recent reviews suggest that chronic kidney disease (CKD) can affect the pharmacokinetics of nonrenally eliminated drugs, but the impact of CKD on individual elimination pathways has not been systematically evaluated. In this study we developed a comprehensive dataset of the effect of CKD on the pharmacokinetics of CYP2D6- and CYP3A4/5-metabolized drugs. Drugs for evaluation were selected based on clinical drug-drug interaction (CYP3A4/5 and CYP2D6) and pharmacogenetic (CYP2D6) studies. Information from dedicated CKD studies was available for 13 and 18 of the CYP2D6 and CYP3A4/5 model drugs, respectively. Analysis of these data suggested that CYP2D6-mediated clearance is generally decreased in parallel with the severity of CKD. There was no apparent relationship between the severity of CKD and CYP3A4/5-mediated clearance. The observed elimination-route dependency in CKD effects between CYP2D6 and CYP3A4/5 may inform the need to conduct clinical CKD studies with nonrenally eliminated drugs for optimal use of drugs in patients with CKD. PMID:26800425

  9. Antitussive effects of GABAB agonists in the cat and guinea-pig.

    PubMed Central

    Bolser, D. C.; Aziz, S. M.; DeGennaro, F. C.; Kreutner, W.; Egan, R. W.; Siegel, M. I.; Chapman, R. W.

    1993-01-01

    1. GABAB agonists inhibit neuronal processes which are important in the pathogenesis of airway disease, such as bronchospasm. Cough is a prominent symptom of pulmonary disease, but the effects of GABAB agonists on this airway reflex are unknown. Experiments were conducted to determine the antitussive effect of GABAB receptor agonists in comparison to the known antitussive agents, codeine and dextromethorphan. 2. Unanaesthetized guinea-pigs were exposed to aerosols of 0.3 mM capsaicin to elicit coughing, which was detected with a microphone and counted. Cough also was produced in anaesthetized cats by mechanical stimulation of the intrathoracic trachea and was recorded from electromyograms of respiratory muscle activity. 3. In guinea-pigs, the GABAB agonists baclofen and 3-aminopropyl-phosphinic acid (3-APPi) produced dose-dependent inhibition of capsaicin-induced cough when administered by subcutaneous or inhaled routes. The potencies of baclofen and 3-APPi compared favourably with codeine and dextromethorphan. 4. The GABAB antagonist, CGP 35348 (0.3- 30 mg kg-1, s.c.) inhibited the antitussive effect of baclofen (3.0 mg kg-1, s.c.). However, CGP 35348 (10 mg kg-1, s.c.) had no effect on the antitussive activity of codeine (30 mg kg-1, s.c.). The antitussive effect of baclofen was not influenced by the GABAA antagonist, bicuculline (3 mg kg-1, s.c.) or naloxone (0.3 mg kg-1, s.c.). 5. In the cat, baclofen (0.3-3.0 mg kg-1, i.v.) decreased mechanically-induced cough in a dose-dependent manner. In this model, baclofen (ED50 = 0.63 mg kg-1) was less potent than either codeine or dextromethorphan.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8220912

  10. Comparison of the effects of two opioid antitussives, vadocaine hydrochloride, clobutinol and lidocaine on lung mechanics in guinea-pigs.

    PubMed

    Salonen, R O

    1988-04-01

    Intravenous administration of opioids, e.g. morphine and codeine, causes bronchoconstriction in animals and susceptible patients such as asthmatics. Therefore, the effects of two opioid antitussives (codeine and dextromethorphan), two non-opioid antitussives (vadocaine hydrochloride (2',4'-dimethyl-6'-methoxy-3-(2-methylpiperidyl) propionanilide hydrochloride, OR K-242-HCl; INN: vadocaine) and clobutinol), and lidocaine on basal lung mechanics and methacholine (MeCh, 6 micrograms/kg i.v.)-induced airway obstruction were investigated in anaesthetized guinea-pigs. Intravenous administration of codeine (10-20 mg/kg) produced a dual response in the airways; initial bronchoconstriction was followed by attenuation of the MeCh-response. Dextromethorphan (10 and 15 mg/kg) caused bronchoconstriction only. Both the opioids affected dynamic lung compliance (CDyn) more than lung resistance (RL). At doses between 1 and 20 mg/kg i.v., vadocaine, clobutinol, and lidocaine had no obvious effect on the airways. Dextromethorphan and vadocaine, both at doses of 10 and 15 mg/kg, and clobutinol (15 and 20 mg/kg) caused irreversible bradycardia and hypotension, whereas codeine (5-20 mg/kg) increased blood pressure, and to a lesser extent heart rate. These results suggest that intravenous administration of an opioid antitussive influences the small peripheral airways more than the large airways, whether the opioid has euphoric analgesic properties or not. In contrast to this, non-opioid antitussives such as vadocaine and clobutinol are without effect. At large doses, all antitussives influence the cardiovascular system considerably. PMID:3395396

  11. Cough syrup psychosis.

    PubMed

    Amaladoss, Alfred; O'Brien, Simon

    2011-01-01

    Over-the-counter medications are widely accessible and used. Cough suppressant syrups contain dextromethorphan (DM), which has the potential to be abused, with resultant psychiatric symptoms. This case report describes a young woman presenting with psychotic mania secondary to DM abuse. We also describe the treatment of this toxidrome and include the results of a literature search on this topic. The recognition of cough syrup as an agent of abuse and its toxidrome is important. This will facilitate early diagnostic clarification and promote efficient treatment strategies. PMID:21324299

  12. LC for analysis of two sustained-release mixtures containing cough cold suppressant drugs.

    PubMed

    El-Gindy, Alaa; Sallam, Shehab; Abdel-Salam, Randa A

    2010-07-01

    A liquid chromatographic method was applied for the analysis of two sustained-release mixtures containing dextromethorphane hydrobromide, carbinoxamine maleate with either phenylephrine hydrochloride in pharmaceutical capsules (Mix 1) or phenyl-propanolamine, methylparaben, and propylparaben, which bonds as a drug base to ion exchange resin in pharmaceutical syrup (Mix 2). The method was used for their simultaneous determination using a CN column with a mobile phase consisting of acetonitrile-12 mM ammonium acetate in the ratio of 60:40 (v/v, pH 6.0) for Mix 1 and 45:55 (v/v, pH 6.0) for Mix 2. PMID:20822669

  13. "How high do they look?": identification and treatment of common ingestions in adolescents.

    PubMed

    Woo, Teri Moser; Hanley, James R

    2013-01-01

    Adolescents have access to a variety of legal or illicit substances that they use to alter their mood or "get high." The purpose of this review is to provide an overview of common substances adolescents use to get high, including the illicit substances synthetic marijuana or "Spice," salvia, MDMA, synthetic cathinones, and 2C-E. Dextromethorphan and energy drinks are easily accessible substances that teenagers abuse. The toxic effects of common ingestions and treatment of overdose is discussed to inform pediatric providers who provide care for adolescents. PMID:23414979

  14. Pharmacological and neurophysiological aspects of space/motion sickness

    NASA Technical Reports Server (NTRS)

    Lucot, James B.; Crampton, George H.

    1991-01-01

    A motorized motion testing device modeled after a Ferris wheel was constructed to perform motion sickness tests on cats. Details of the testing are presented, and some of the topics covered include the following: xylazine-induced emesis; analysis of the constituents of the cerebrospinal fluid (CSF) during motion sickness; evaluation of serotonin-1A (5-HT sub 1A) agonists; other 5HT receptors; antimuscarinic mechanisms; and antihistaminergic mechanisms. The ability of the following drugs to reduce motion sickness in the cats was examined: amphetamines, adenosinergic drugs, opioid antagonists, peptides, cannabinoids, cognitive enhancers (nootropics), dextromethorphan/sigma ligands, scopolamine, and diphenhydramine.

  15. Rheological characterization and drug release studies of gum exudates of Terminalia catappa Linn.

    PubMed

    Kumar, Sadhis V; Sasmal, Dinakar; Pal, Subodh C

    2008-01-01

    The present study was undertaken to evaluate the gum exudates of Terminalia catappa Linn. (TC gum) as a release retarding excipient in oral controlled drug delivery system. The rheological properties of TC gum were studied and different formulation techniques were used to evaluate the comparative drug release characteristics. The viscosity was found to be dependent on concentration and pH. Temperature up to 60 degrees C did not show significant effect on viscosity. The rheological kinetics evaluated by power law, revealed the shear thinning behavior of the TC gum dispersion in water. Matrix tablets of TC gum were prepared with the model drug dextromethorphan hydrobromide (DH) by direct compression, wet granulation and solid dispersion techniques. The dissolution profiles of the matrix tablets were compared with the pure drug containing capsules using the USP Basket apparatus with 500 ml phosphate buffer of pH 6.8 as a dissolution medium. The drug release from the compressed tablets containing TC gum was comparatively sustained than pure drug containing capsules. Even though all the formulation techniques showed reduction of dissolution rate, aqueous wet granulation showed the maximum sustained release of more than 8 h. The release kinetics estimated by the power law revealed that the drug release mechanism involved in the dextromethorphan matrix is anomalous transport as indicated by the release exponent n values. Thus the study confirmed that the TC gum might be used in the controlled drug delivery system as a release-retarding polymer. PMID:18661243

  16. Is opiate action in cough due to sedation?

    PubMed Central

    Dickinson, Rebecca S.; Morjaria, Jaymin B.; Wright, Caroline E.

    2014-01-01

    Objectives: Opiates have been used for cough suppression for centuries. It is unclear whether this antitussive action is due to their known sedative effects. We aimed to assess correlation between cough suppression and opiate usage. Methods: We performed a post hoc analysis of two published trials with three opioids. In study one, patients with chronic cough were treated with 4 weeks of modified release morphine sulphate (5 mg twice daily) or placebo in a double-blinded placebo-controlled fashion. Cough suppression was assessed subjectively by the Leicester Cough Questionnaire and objectively by citric acid aerosol (CAA) induced cough challenge. In study 2, normal volunteers were given single doses of placebo, codeine 30 mg or dextromethorphan 50 mg and cough suppression assessed using the CAA-induced cough challenge. Sedation was contemporaneously assessed by direct questioning. Results: There were 14 episodes of patient-reported sedation; 2 with modified release morphine sulphate, 9 with codeine and 3 with dextromethorphan. There was no correlation between change in the Leicester Cough Questionnaire or the CAA-induced cough challenge and reported sedation. Conclusion: This observational study suggests that sedation is unlikely to underlie the antitussive properties of these opioids. Eliciting the mechanism of these medications in cough may be a target for future tailored drug development. PMID:25177477

  17. Pseudobulbar affect in multiple sclerosis: toward the development of innovative therapeutic strategies.

    PubMed

    Miller, Ariel

    2006-06-15

    Pseudobulbar affect (PBA), a condition involving involuntary and uncontrollable episodes of crying and/or laughing, occurs frequently in patients with a variety of neurological disorders, including amyotrophic lateral sclerosis (ALS), stroke, traumatic brain injury, dementia including Alzheimer's disease, and multiple sclerosis (MS). Although PBA results in considerable distress for patients and caretakers, it is underrecognized and undertreated. Agents used to treat psychiatric disorders--particularly tricyclic antidepressants and selective serotonin reuptake inhibitors--are useful in alleviating PBA, but act on diffuse neural networks rather than targeting those involved in emotional motor expression. As a result of their nonspecific activity, these agents are associated with a range of unwanted effects that preclude many patients from using them. Dextromethorphan, a common cough suppressant, specifically targets sigma(1) receptors concentrated in the brainstem and cerebellum, thus providing the possibility of targeting regions implicated in emotional expression. When administered in a fixed combination with quinidine, dextromethorphan is effective in treating PBA in patients with ALS, and preliminary results suggest that this therapy also is effective in treating MS-related PBA. PMID:16674978

  18. Exploring Enantiospecific Ligand-Protein Interactions Using Cellular Membrane Affinity Chromatography: Chiral Recognition as a Dynamic Process

    PubMed Central

    Jozwiak, Krzysztof; Moaddel, Ruin; Ravichandran, Sarangan; Plazinska, Anita; Kozak, Joanna; Patel, Sharvil; Yamaguchi, Rika; Wainer, Irving

    2008-01-01

    The chiral recognition mechanisms responsible for the enantioselective binding on the α3β4 nicotinic acetyl choline receptor (α3β4 nAChR) and human organic cation transporter 1 (hOCT1) have been reviewed. The results indicate that chiral recognition on the α3β4 nAChR is a process involving initial tethering of dextromethorphan and levomethorphan at hydrophobic pockets within the central lumen followed by hydrogen bonding interactions favoring dextromethorphan. The second step is the defining enantioselective step. Studies with the hOCT1 indentified four binding sites within the transporter that participated in chiral recognition. Each of the enantiomers of the compounds used in the study interacted with three of these sites, while (R)-verapamil interacted with all four. Chiral recognition arose from the conformational adjustments required to produce optimum interactions. With respect to the prevailing interaction-based models, the data suggest that chiral recognition is a dynamic process and that the static point-based models should be amended to reflect this. PMID:18723411

  19. A simplified procedure for the analysis of formoterol in human urine by liquid chromatography-electrospray tandem mass spectrometry: application to the characterization of the metabolic profile and stability of formoterol in urine.

    PubMed

    Mazzarino, Monica; de la Torre, Xavier; Fiacco, Ilaria; Pompei, Chiara; Calabrese, Fabiana; Botrè, Francesco

    2013-07-15

    Since 1992, formoterol is included in the prohibited list of doping substances and methods, presently reviewed and updated by the World Anti-Doping Agency. Recently a threshold value of 40ng/mL has been established to differentiate between the prohibited (oral) and the permitted (inhalatory) administration of formoterol to athletes. This paper considers the urinary excretion profile of formoterol and its main metabolites after inhalation of different doses of two of the most used medicaments, available in Italy, containing formoterol fumarate bihydrate (12 and 36μg twice a day of Foradil(®) or 9 and 27μg twice a day of Symbicort(®)), focusing also on the effects, on the measured levels of formoterol, of potential alteration processes (thermal and/or microbiological) that may take place after the collection of the urine samples. Urine sample preparation included an enzymatic hydrolysis and a dilution step. Detection of analytes was performed by a newly developed and validated direct LC-ESI-MS/MS procedure, using a triple quadrupole mass spectrometer under positive ion electro-spray ionization conditions and selected reaction monitoring acquisition mode. The results showed the capability and suitability of the direct LC-ESI-MS/MS analysis for the quantitative confirmation analysis of formoterol in urine samples. The data from the analysis of the urine samples obtained in the excretion studies showed that formoterol is excreted mainly as unmodified drug and to a lesser degree as O-demethylated metabolite. The urinary levels of formoterol (40-60%) and its metabolites (O-demethylated metabolite 5-25%; glucuronide metabolites 25-40%) vary significantly depending both on the administered drug formulation and the subject tested. The maximum urinary concentration reached in this study was 15ng/mL (free+glucuronide), that is significantly lower than the threshold value fixed to report an adverse analytical finding. Finally, our results also showed that formoterol is

  20. Bioavailability of Chlorocatechols in Naturally Contaminated Sediment Samples and of Chloroguaiacols Covalently Bound to C2-Guaiacyl Residues

    PubMed Central

    Allard, Ann-Sofie; Hynning, Per-Åke; Remberger, Mikael; Neilson, Alasdair H.

    1994-01-01

    Bacteria in anaerobic enrichment cultures that dechlorinated a range of chlorocatechols were used to examine the stability of endogenous chlorocatechols in a contaminated sediment sample and in interstitial water prepared from it. During incubation of the sediment sample for 450 days with or without added cells, there was a decrease in the concentration of solvent-extractable chlorocatechols but not in that of the total chlorocatechols, including sediment-associated components. In the presence of azide, the decrease in the concentrations of the former was eliminated or substantially decreased. Control experiments in which 3,4,5-trichlorocatechol was added to the sediment suspensions after 130 days showed that its dechlorination was accomplished not only by the added cells but also by the endemic microbial flora. It was concluded that the endogenous chlorocatechols in the sediment were not accessible to microorganisms with dechlorinating activity. On the other hand, microorganisms were apparently responsible for decreasing the solvent extractability of the chlorocatechols, and this effect decreased with increasing length of exposure time. Similar experiments carried out for 70 days with the sediment interstitial water showed that the chlorocatechols that were known to be associated with organic matter were also inaccessible to microbial dechlorination. Experiments with model compounds in which 4,5,6-trichloroguaiacol and tetrachloroguaiacol were covalently linked to C2-guaiacyl residues showed that these compounds were resistant to O demethylation or dechlorination during incubation with a culture having these activities. The only effect of microbial action was the quantitative reduction in 12 days of the C′1 keto group to an alcohol which was stable against further transformation for up to 65 days. The results of these experiments are consistent with the existence of chlorocatechols and chloroguaiacols in contaminated sediments and illustrate the cardinal

  1. Corrinoid-Dependent Methyl Transfer Reactions Are Involved in Methanol and 3,4-Dimethoxybenzoate Metabolism by Sporomusa ovata

    PubMed Central

    Stupperich, Erhard; Konle, Ralph

    1993-01-01

    Washed and air-oxidized proteins from Sporomusa ovata cleaved the C-O bond of methanol or methoxyaromatics and transferred the methyl to dl-tetrahydrofolate. The reactions strictly required a reductive activation by titanium citrate, catalytic amounts of ATP, and the addition of dl-tetrahydrofolate. Methylcorrinoid-containing proteins carried the methanol methyl, which was transferred to dl-tetrahydrofolate at a specific rate of 120 nmol h-1 mg of protein-1. Tetrahydrofolate methylation diminished after the addition of 1-iodopropane or when the methyl donor methanol was replaced by 3,4-dimethoxybenzoate. However, whole Sporomusa cells utilize the methoxyl groups of 3,4-dimethoxybenzoate as a carbon source by a sequential O demethylation to 4-hydroxy-3-methoxybenzoate and 3,4-dihydroxybenzoate. The in vitro O demethylation of 3,4-[4-methoxyl-14C]dimethoxybenzoate proceeded via two distinct corrinoid-containing proteins to form 5-[14C]methyltetrahydrofolate at a specific rate of 200 nmol h-1 mg of protein-1. Proteins from 3,4-dimethoxybenzoate-grown cells efficiently used methoxybenzoates with vicinal substituents only, but they were unable to activate methanol. These results emphasized that specific enzymes are involved in methanol activation as well as in the activation of various methoxybenzoates and that similar corrinoid-dependent methyl transfer pathways are employed in 5-methyl-tetrahydrofolate formation from these substrates. Methyl-tetrahydrofolate could be demethylated by a distinct methyl transferase. That enzyme activity was present in washed and air-oxidized cell extracts from methanol-grown cells and from 3,4-dimethoxybenzoate-grown cells. It used cob(I)alamin as the methyl acceptor in vitro, which was methylated at a rate of 48 nmol min-1 mg of protein-1 even when ATP was omitted from the assay mixture. This methyl-cob(III)alamin formation made possible a spectrophotometric quantification of the preceding methyl transfers from methanol or

  2. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-Methoxy-N,N-dimethyltryptamine Metabolism and Pharmacokinetics

    PubMed Central

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (Vmax/Km), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1’-hydroxylase activities (R² = 0.98; p < 0.0001) and CYP2D6 contents (R² = 0.77; p = 0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20 mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pre-treatment of harmaline (5 mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2 mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. PMID:20206139

  3. Effects of monoamine oxidase inhibitor and cytochrome P450 2D6 status on 5-methoxy-N,N-dimethyltryptamine metabolism and pharmacokinetics.

    PubMed

    Shen, Hong-Wu; Wu, Chao; Jiang, Xi-Ling; Yu, Ai-Ming

    2010-07-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) is a natural psychoactive indolealkylamine drug that has been used for recreational purpose. Our previous study revealed that polymorphic cytochrome P450 2D6 (CYP2D6) catalyzed 5-MeO-DMT O-demethylation to produce active metabolite bufotenine, while 5-MeO-DMT is mainly inactivated through deamination pathway mediated by monoamine oxidase (MAO). This study, therefore, aimed to investigate the impact of CYP2D6 genotype/phenotype status and MAO inhibitor (MAOI) on 5-MeO-DMT metabolism and pharmacokinetics. Enzyme kinetic studies using recombinant CYP2D6 allelic isozymes showed that CYP2D6.2 and CYP2D6.10 exhibited 2.6- and 40-fold lower catalytic efficiency (V(max)/K(m)), respectively, in producing bufotenine from 5-MeO-DMT, compared with wild-type CYP2D6.1. When co-incubated with MAOI pargyline, 5-MeO-DMT O-demethylation in 10 human liver microsomes showed significantly strong correlation with bufuralol 1'-hydroxylase activities (R(2)=0.98; P<0.0001) and CYP2D6 contents (R(2)=0.77; P=0.0007), whereas no appreciable correlations with enzymatic activities of other P450 enzymes. Furthermore, concurrent MAOI harmaline sharply reduced 5-MeO-DMT depletion and increased bufotenine formation in human CYP2D6 extensive metabolizer hepatocytes. In vivo studies in wild-type and CYP2D6-humanized (Tg-CYP2D6) mouse models showed that Tg-CYP2D6 mice receiving the same dose of 5-MeO-DMT (20mg/kg, i.p.) had 60% higher systemic exposure to metabolite bufotenine. In addition, pretreatment of harmaline (5mg/kg, i.p.) led to 3.6- and 4.4-fold higher systemic exposure to 5-MeO-DMT (2mg/kg, i.p.), and 9.9- and 6.1-fold higher systemic exposure to bufotenine in Tg-CYP2D6 and wild-type mice, respectively. These findings indicate that MAOI largely affects 5-MeO-DMT metabolism and pharmacokinetics, as well as bufotenine formation that is mediated by CYP2D6. PMID:20206139

  4. Farnesoid X Receptor Agonist Represses Cytochrome P450 2D6 Expression by Upregulating Small Heterodimer Partner.

    PubMed

    Pan, Xian; Lee, Yoon-Kwang; Jeong, Hyunyoung

    2015-07-01

    Cytochrome P450 2D6 (CYP2D6) is a major drug-metabolizing enzyme responsible for eliminating approximately 20% of marketed drugs. Studies have shown that differential transcriptional regulation of CYP2D6 may contribute to large interindividual variability in CYP2D6-mediated drug metabolism. However, the factors governing CYP2D6 transcription are largely unknown. We previously demonstrated small heterodimer partner (SHP) as a novel transcriptional repressor of CYP2D6 expression. SHP is a representative target gene of the farnesoid X receptor (FXR). The objective of this study is to investigate whether an agonist of FXR, 3-(2,6-dichlorophenyl)-4-(3'-carboxy-2-chlorostilben-4-yl)oxymethyl-5-isopropylisoxazole (GW4064), alters CYP2D6 expression and activity. In CYP2D6-humanized transgenic mice, GW4064 decreased hepatic CYP2D6 expression and activity (by 2-fold) while increasing SHP expression (by 2-fold) and SHP recruitment to the CYP2D6 promoter. CYP2D6 repression by GW4064 was abrogated in Shp(-/-);CYP2D6 mice, indicating a critical role of SHP in CYP2D6 regulation by GW4064. Also, GW4064 decreased CYP2D6 expression (by 2-fold) in primary human hepatocytes, suggesting that the results obtained in CYP2D6-humanized transgenic mice can be translated to humans. This proof of concept study provides evidence for CYP2D6 regulation by an inducer of SHP expression, namely, the FXR agonist GW4064. PMID:25926433

  5. Inhibitory Effects of Aschantin on Cytochrome P450 and Uridine 5'-diphospho-glucuronosyltransferase Enzyme Activities in Human Liver Microsomes.

    PubMed

    Kwon, Soon-Sang; Kim, Ju-Hyun; Jeong, Hyeon-Uk; Cho, Yong Yeon; Oh, Sei-Ryang; Lee, Hye Suk

    2016-01-01

    Aschantin is a bioactive neolignan found in Magnolia flos with antiplasmodial, Ca(2+)-antagonistic, platelet activating factor-antagonistic, and chemopreventive activities. We investigated its inhibitory effects on the activities of eight major human cytochrome P450 (CYP) and uridine 5'-diphospho-glucuronosyltransferase (UGT) enzymes of human liver microsomes to determine if mechanistic aschantin-enzyme interactions were evident. Aschantin potently inhibited CYP2C8-mediated amodiaquine N-de-ethylation, CYP2C9-mediated diclofenac 4'-hydroxylation, CYP2C19-mediated [S]-mephenytoin 4'-hydroxylation, and CYP3A4-mediated midazolam 1'-hydroxylation, with Ki values of 10.2, 3.7, 5.8, and 12.6 µM, respectively. Aschantin at 100 µM negligibly inhibited CYP1A2-mediated phenacetin O-de-ethylation, CYP2A6-mediated coumarin 7-hydroxylation, CYP2B6-mediated bupropion hydroxylation, and CYP2D6-mediated bufuralol 1'-hydroxylation. At 200 µM, it weakly inhibited UGT1A1-catalyzed SN-38 glucuronidation, UGT1A6-catalyzed N-acetylserotonin glucuronidation, and UGT1A9-catalyzed mycophenolic acid glucuronidation, with IC50 values of 131.7, 144.1, and 71.0 µM, respectively, but did not show inhibition against UGT1A3, UGT1A4, or UGT2B7 up to 200 µM. These in vitro results indicate that aschantin should be examined in terms of potential interactions with pharmacokinetic drugs in vivo. It exhibited potent mechanism-based inhibition of CYP2C8, CYP2C9, CYP2C19, and CYP3A4. PMID:27128896

  6. Biotransformation and detectability of the designer drug 2,5-dimethoxy-4-propylphenethylamine (2C-P) studied in urine by GC-MS, LC-MS(n), and LC-high-resolution-MS(n).

    PubMed

    Wink, Carina S D; Meyer, Markus R; Braun, Tina; Turcant, Alain; Maurer, Hans H

    2015-01-01

    2,5-Dimethoxy-4-propylphenethylamine (2C-P) is a hallucinogenic designer drug of the phenethylamine class, the so-called 2Cs, named according to the ethyl spacer between the nitrogen and the aromatic ring. The aims of the present work were to identify the phases I and II metabolites of 2C-P. In addition, the detectability of 2C-P and its metabolites in urine as proof of an intake in clinical or forensic cases was tested. According to the identified metabolites, the following pathways were proposed: N-acetylation; deamination followed by reduction to the corresponding alcohol and oxidation to carbonic acid; mono- and bis-hydroxylation at different positions; mono- and bis-O-demethylation, followed by glucuronidation, sulfation, or both; and combination of these steps. Proof of an intake of a common user's dose of 2C-P was possible by both standard urine screening approaches, the GC-MS as well as the LC-MS(n) approach. PMID:25120185

  7. Metabolism of the /sup 18/O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria. [Eubacterium limosum; Acetobacterium woodil; Syntrophococcus; Clostridium; Desulfotomaculum; Enterobacter

    SciTech Connect

    DeWeerd, J.A.; Saxena, A.; Nagle, D.P. Jr.; Sulflita, J.M.

    1988-05-01

    The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. We found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium, limosum, and a strain of Acetobacterium woodii metabolized 3-(methoxy-/sup 18/O)methoxybenzoic acid (3-anisic acid) to 3-(hydroxy-/sup 18/O)hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments.

  8. Inhibition of mixed function oxidases in rat liver by trans- and cis-1,2-dichloroethylene.

    PubMed

    Freundt, K J; Macholz, J

    1978-06-01

    A single 8-h exposure to trans-1,2-dichloroethylene (t-DCE) or cis-1,2-dichloroethylene (c-DCE) at 200 ppm (hygienic standard in workplaces) resulted in a significant increase in the hexobarbital sleeping time, the zoxazolamine paralysis time, and the metabolic formation of 4-aminoantipyrine from aminopyrine in adult female Wistar rats. Higher DCE concentrations caused a dose-dependent and substantial enhancement of these effects, the effects of c-DCE being stronger than that of t-DCE. In the course of enzyme-kinetic measurements in isolated rat liver microsomes, t-DCE proved to be a competitive inhibitor of the oxidative N-demethylation of aminopyrine and of the O-demethylation of p-nitroanisole. It is concluded from the results that the inhibition of hepatic drug metabolism is caused by a competitive and reversible interaction of the 2 DCE isomers with the mixed-function oxidase system, the interaction possibly operating at the type I binding site. PMID:684758

  9. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

    PubMed Central

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  10. Mechanisms underlying the inhibition of the cytochrome P450 system by copper ions.

    PubMed

    Letelier, M E; Faúndez, M; Jara-Sandoval, J; Molina-Berríos, A; Cortés-Troncoso, J; Aracena-Parks, P; Marín-Catalán, R

    2009-11-01

    Copper toxicity has been associated to the capacity of free copper ions to catalyze the production of superoxide anion and hydroxyl radical, reactive species that modify the structure and/or function of biomolecules. In addition, nonspecific Cu2+-binding to thiol enzymes, which modifies their catalytic activities, has been reported. Cytochrome P450 (CYP450) monooxygenase is a thiol protein that binds substrates in the first and limiting step of CYP450 system catalytic cycle, necessary for the metabolism of lipophilic xenobiotics. Therefore, copper ions have the potential to oxidize and bind to cysteinyl residues of this monooxygenase, altering the CYP450 system activity. To test this postulate, we studied the effect of Cu2+ alone and Cu2+/ascorbate in rat liver microsomes, to independently evaluate its nonspecific binding and its pro-oxidant effects, respectively. We assessed these effects on the absorbance spectrum of the monooxygenase, as a measure of structural damage, and p-nitroanisole O-demethylating activity of CYP450 system, as a marker of functional impairment. Data obtained indicate that Cu2+ could both oxidize and bind to some amino acid residues of the CYP450 monooxygenase but not to its heme group. The differences observed between the effects of Cu2+ and Cu2+/ascorbate show that both mechanisms are involved in the catalytic activity inhibition of CYP450 system by copper ions. The significance of these findings on the pharmacokinetics and pharmacodynamics of drugs is discussed. PMID:19629952

  11. In vitro Phase I and Phase II metabolism of α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV) and methedrone by human liver microsomes and human liver cytosol.

    PubMed

    Negreira, Noelia; Erratico, Claudio; Kosjek, Tina; van Nuijs, Alexander L N; Heath, Ester; Neels, Hugo; Covaci, Adrian

    2015-07-01

    The aim of the present study was to identify the in vitro Phase I and Phase II metabolites of three new psychoactive substances: α-pyrrolidinovalerophenone (α-PVP), methylenedioxypyrovalerone (MDPV), and methedrone, using human liver microsomes and human liver cytosol. Accurate-mass spectra of metabolites were obtained using liquid chromatography-quadrupole time-of-flight mass spectrometry. Six Phase I metabolites of α-PVP were identified, which were formed involving reduction, hydroxylation, and pyrrolidine ring opening reactions. The lactam compound was the major metabolite observed for α-PVP. Two glucuronidated metabolites of α-PVP, not reported in previous in vitro studies, were further identified. MDPV was transformed into 10 Phase I metabolites involving reduction, hydroxylation, and loss of the pyrrolidine ring. Also, six glucuronidated and two sulphated metabolites were detected. The major metabolite of MDPV was the catechol metabolite. Methedrone was transformed into five Phase I metabolites, involving N- and O-demethylation, hydroxylation, and reduction of the ketone group. Three metabolites of methedrone are reported for the first time. In addition, the contribution of individual human CYP enzymes in the formation of the detected metabolites was investigated. PMID:26014283

  12. Identification of a Ruminococcaceae Species as the Methyl tert-Butyl Ether (MTBE) Degrading Bacterium in a Methanogenic Consortium.

    PubMed

    Liu, Tong; Ahn, Hyeri; Sun, Weimin; McGuinness, Lora R; Kerkhof, Lee J; Häggblom, Max M

    2016-02-01

    The widespread use of methyl tert-butyl ether (MTBE) has caused major contamination of groundwater sources and is a concern due to its taste and odor problems, as well as its toxicity. MTBE can be degraded anaerobically which makes bioremediation of contaminated aquifers a potential solution. Nevertheless, the organisms and mechanisms that are responsible for anaerobic MTBE degradation are still unknown. The aim of our research was to identify the organisms actively degrading MTBE. For this purpose we characterized an anaerobic methanogenic culture enriched with MTBE as the sole carbon source from the New Jersey Arthur Kill intertidal strait sediment. The cultures were analyzed using stable isotope probing (SIP) combined with terminal restriction fragment length polymorphism (T-RFLP), high-throughput sequencing and clone library analysis of bacterial 16S rRNA genes. The sequence data indicated that phylotypes belonging to the Ruminococcaceae in the Firmicutes were predominant in the methanogenic cultures. SIP experiments also showed sequential incorporation of the (13)C labeled MTBE by the bacterial community with a bacterium most closely related to Saccharofermentans acetigenes identified as the bacterium active in O-demethylation of MTBE. Identification of the microorganisms responsible for the activity will help us better understand anaerobic MTBE degradation processes in the field and determine biomarkers for monitoring natural attenuation. PMID:26727046

  13. (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils.

    PubMed

    Olivares, Christopher I; Abrell, Leif; Khatiwada, Raju; Chorover, Jon; Sierra-Alvarez, Reyes; Field, Jim A

    2016-03-01

    Recent studies have begun to assess the environmental fate and toxicity of 2,4-dinitroanisole (DNAN), an insensitive munition compound of interest to defense agencies. Aerobic and anaerobic DNAN biotransformation in soils was evaluated in this study. Under aerobic conditions, there was little evidence of transformation; most observed removal was attributed to adsorption and subsequent slow chemical reactions. Under anaerobic conditions, DNAN was reductively (bio)transformed and the rate of the transformation was positively correlated with soil organic carbon (OC) up to a threshold of 2.07% OC. H2 addition enhanced the nitroreduction rate compared to endogenous treatments lacking H2. Heat-killed treatments provided rates similar to the endogenous treatment, suggesting that abiotic factors play a role in DNAN reduction. Ten (bio)transformation products were detected by high-resolution mass spectrometry. The proposed transformation pathway involves reduction of DNAN to aromatic amines, with putative reactive nitroso-intermediates coupling with the amines to form azo dimers. Secondary reactions include N-alkyl substitution, O-demethylation (sometimes followed by dehydroxylation), and removal of an N-containing group. Globally, our results suggest that the main reaction DNAN undergoes in anaerobic soils is nitroreduction to 2-methoxy-5-nitroaniline (MENA) and 2,4-diaminoanisole (DAAN), followed by anaerobic coupling reactions yielding azo-dimers. The dimers were subsequently subject to further (bio)transformations. PMID:26551225

  14. Comparative study of the affinity and metabolism of type I and type II binding quinoline carboxamide analogs by cytochrome P450 3A4

    PubMed Central

    Dahal, Upendra P.; Joswig-Jones, Carolyn; Jones, Jeffrey P.

    2011-01-01

    Compounds that coordinate to the heme-iron of cytochrome P450 (CYP) enzymes are assumed to increase metabolic stability. However, recently we observed that the type II binding quinoline carboxamide (QCA) compounds were metabolically less stable. To test if the higher intrinsic clearance of type II binding compounds relative to type I binding compounds is general for other metabolic transformations, we synthesized a library of QCA compounds that could undergo N-dealkylation, O-dealkylation, benzylic hydroxylation and aromatic hydroxylation. The results demonstrated that type II binding QCA analogs were metabolically less stable (2 to 12 fold) at sub-saturating concentration compared to type I binding counterparts for all the transformations. When the rates of different metabolic transformations between type I and type II binding compounds were compared, they were found to be in the order of N-demethylation>benzylic hydroxylation> O-demethylation> aromatic hydroxylation. Finally, for the QCA analogs with aza-heteroaromatic rings, we did not detect metabolism in aza-aromatic rings (pyridine, pyrazine, pyrimidine) indicating electronegativity of the nitrogen can change regioselectivity in CYP metabolism. PMID:22087535

  15. Fipronil induces CYP isoforms in rats.

    PubMed

    Caballero, M V; Ares, I; Martínez, M; Martínez-Larrañaga, M R; Anadón, A; Martínez, M A

    2015-09-01

    The goal of the present study was to evaluate fipronil effects on the activities of drug metabolizing enzymes in rat liver microsomes. Rats were orally treated with fipronil at doses of 1, 5, 10 and 15 mg/kg bw/day for 6 days. Determinations of cytochrome P450 (CYP) enzyme activities were carried out in hepatic microsomes isolated from treated rats. The activities of some members of CYP2E, CYP1A, CYP2A, CYP2B and CYP3A subfamilies significantly increased after fipronil treatment in a dose-dependent manner as compared to control. The major effects were observed in the O-deethylation of ethoxyresorufin and O-demethylation of methoxyresorufin (reflecting CYP1A1/2 activities), in the O-depenthylation of pentoxyresorufin and 16β-hydroxylation of testosterone (reflecting CYP2B1/2 activities), and in the N-demethylation of erythromycin and 6β-hydroxylation of testosterone (reflecting CYP3A1/2 activities). Immunoblot studies revealed that fipronil increased the apoprotein levels of CYP1A1. Our results suggest that fipronil is an inducer of hepatic phase I CYP enzymes, causing an increased potential to interact with a wide range of xenobiotics or endogenous chemicals that are substrates of the CYP1A, CYP2B and CYP3A subfamilies. Further investigations are required to in vivo evaluate the potential of the metabolite fipronil sulfone as an inducer of phase I CYP enzymes. PMID:26142839

  16. Carbon-carbon bond cleavage in activation of the prodrug nabumetone.

    PubMed

    Varfaj, Fatbardha; Zulkifli, Siti N A; Park, Hyoung-Goo; Challinor, Victoria L; De Voss, James J; Ortiz de Montellano, Paul R

    2014-05-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  17. Pharmacokinetic and metabolism studies of the antiarrhythmic drug meobentine (N-(4-methoxybenzyl)-N prime , N double prime -dimethylguanidine) and its N-(4-trifluoromethyoxybenzyl)-N prime , N double prime - dimethylguanidine analogue, fluorobentine in the rat, dog and man

    SciTech Connect

    Warren, J.T.

    1988-01-01

    A radioimmunoassay (RIA) was developed that was able to detect 40 pg meobentine (M) in 0.1 ml plasma. Cross-reactivity of suspected M metabolites was very low. This RIA was later also used to assay for fluorobentine (F), a fluorine analogue of M. M exhibits three-compartment open model iv kinetics in the rat, dog, and man. Terminal drug half-life in the rat, dog, and man; total-body clearance in the rat, dog, and man; and terminal-phase volume of distribution in the rat, dog, and man were determined. (14C)-M absorption is essentially complete in the rat and dog, but this parameter could not be directly ascertained in man. Relative oral drug bioavailability is linear in the rat and dog but falls off between 5-10 mg/kg in man. F was synthesized in an attempt to counteract suspected problems with M's poor absorption or extensive metabolism that might be affecting its efficacy in humans. F would likely be unavailable for O-demethylation, might well be more lipophilic than M, and yet still be active.

  18. In vitro cytotoxic activity of isolated acridones alkaloids from Zanthoxylum leprieurii Guill. et Perr.

    PubMed

    Ngoumfo, Rostand M; Jouda, Jean-Bosco; Mouafo, Ferdinand T; Komguem, Justin; Mbazoa, Céline D; Shiao, Tze Chieh; Choudhary, Mohammed I; Laatsch, Hartmut; Legault, Jean; Pichette, André; Roy, René

    2010-05-15

    Chemical investigation of the roots and fruits of Zanthoxylumleprieurii Guill. et Perr. led to the isolation of three new alkaloids including two acridone derivatives, 3-hydroxy-1,4-dimethoxy-10-methyl-9-acridone (2) and 3-hydroxy-1,2-dimethoxy-10-methyl-9-acridone (3) named helebelicine A and B, respectively, and one secobenzo[c]phenantridine, 10-O-demethyl-12-O-methylarnottianamide (10), together with thirteen other compounds. The structures of compounds 2, 3 and 10 as well as those of the known compounds were elucidated by using spectroscopic methods and by comparison with reported data. The brine-shrimp (artemia salina) lethality bioassay of the chloroform extract of the fruits showed modest cytotoxicity with LD(50) at 13.1microg/mL. Isolated compounds 1, 4-6 were found to be moderately active against lung carcinoma cells (A549), colorectal adenocarcinoma cells (DLD-1) and normal cells (WS1) with IC(50) values ranging from 27 to 77microM. In contrast to the positive control etoposide used, the cytotoxicity of the most active compound 4 was found to be selective against cancer cells in comparison to normal cells WS1 with IC(50) of 51+/-8microM and 4.3+/-0.4microM, respectively. PMID:20413315

  19. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay

    PubMed Central

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1–M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  20. Studies on the metabolism of mitragynine, the main alkaloid of the herbal drug Kratom, in rat and human urine using liquid chromatography-linear ion trap mass spectrometry.

    PubMed

    Philipp, Anika A; Wissenbach, Dirk K; Zoerntlein, Siegfried W; Klein, Oliver N; Kanogsunthornrat, Jidapha; Maurer, Hans H

    2009-08-01

    Mitragynine (MG) is an indole alkaloid of the Thai medicinal plant Mitragyna speciosa (Kratom in Thai) and reported to have opioid agonistic properties. Because of its stimulant and euphoric effects, Kratom is used as a herbal drug of abuse. The aim of the presented study is to identify the phase I and II metabolites of MG in rat and human urine after solid-phase extraction (SPE) using liquid chromatography-linear ion trap mass spectrometry providing detailed structure information in the MSn mode particularly with high resolution. The seven identified phase I metabolites indicated that MG was metabolized by hydrolysis of the methylester in position 16, O-demethylation of the 9-methoxy group and of the 17-methoxy group, followed, via the intermediate aldehydes, by oxidation to carboxylic acids or reduction to alcohols and combinations of some steps. In rats, four metabolites were additionally conjugated to glucuronides and one to sulfate, but in humans, three metabolites to glucuronides and three to sulfates. PMID:19536806

  1. Isolation and Identification of Twelve Metabolites of Isocorynoxeine in Rat Urine and their Neuroprotective Activities in HT22 Cell Assay

    PubMed Central

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W.; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18,19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  2. Jacobsen Catalyst as a Cytochrome P450 Biomimetic Model for the Metabolism of Monensin A

    PubMed Central

    Rocha, Bruno Alves; de Oliveira, Anderson Rodrigo Moraes; Pazin, Murilo; Dorta, Daniel Junqueira; Rodrigues, Andresa Piacezzi Nascimento; Berretta, Andresa Aparecida; Peti, Ana Paula Ferranti; de Moraes, Luiz Alberto Beraldo; Lopes, Norberto Peporine; Pospíšil, Stanislav; Gates, Paul Jonathan; Assis, Marilda das Dores

    2014-01-01

    Monensin A is a commercially important natural product isolated from Streptomyces cinnamonensins that is primarily employed to treat coccidiosis. Monensin A selectively complexes and transports sodium cations across lipid membranes and displays a variety of biological properties. In this study, we evaluated the Jacobsen catalyst as a cytochrome P450 biomimetic model to investigate the oxidation of monensin A. Mass spectrometry analysis of the products from these model systems revealed the formation of two products: 3-O-demethyl monensin A and 12-hydroxy monensin A, which are the same ones found in in vivo models. Monensin A and products obtained in biomimetic model were tested in a mitochondrial toxicity model assessment and an antimicrobial bioassay against Staphylococcus aureus, S. aureus methicillin-resistant, Staphylococcus epidermidis, Pseudomonas aeruginosa, and Escherichia coli. Our results demonstrated the toxicological effects of monensin A in isolated rat liver mitochondria but not its products, showing that the metabolism of monensin A is a detoxification metabolism. In addition, the antimicrobial bioassay showed that monensin A and its products possessed activity against Gram-positive microorganisms but not for Gram-negative microorganisms. The results revealed the potential of application of this biomimetic chemical model in the synthesis of drug metabolites, providing metabolites for biological tests and other purposes. PMID:24987668

  3. Conversion of spinosyn A and spinosyn D to their respective 9- and 17-pseudoaglycones and their aglycones.

    PubMed

    Creemer, L C; Kirst, H A; Paschal, J W

    1998-08-01

    Forosamine at the 17-position of spinosyns A and D was hydrolyzed under mild acidic conditions to give the corresponding 17-pseudoaglycones. The tri-O-methylrhamnose at the 9-position of the 17-pseudoaglycone of spinosyn A was hydrolyzed under more vigorous acidic conditions to give the aglycone of spinosyn A. However, these conditions led to decomposition of the 17-pseudoaglycone of spinosyn D, presumably due to more facile protonation of the 5,6-double bond to produce a tertiary carbonium ion which undergoes further rearrangements. Spinosyns J and L (3'-O-demethyl spinosyn A and D, respectively) obtained from fermentation of biosynthetically-blocked mutant strains of Saccharopolyspora spinosa, were oxidized to give the corresponding 3'-keto-derivatives and the resultant keto-sugars were then beta-eliminated under basic conditions to give the 9-pseudoaglycones of spinosyns A and D respectively. Forosamine at the 17-position of the 9-pseudoaglycone of spinosyn D was then readily hydrolyzed to yield the aglycone of spinosyn D. PMID:9766471

  4. Acetylcholinesterase and carbonic anhydrase inhibitory properties of novel urea and sulfamide derivatives incorporating dopaminergic 2-aminotetralin scaffolds.

    PubMed

    Özgeriş, Bünyamin; Göksu, Süleyman; Polat Köse, Leyla; Gülçin, İlhami; Salmas, Ramin Ekhteiari; Durdagi, Serdar; Tümer, Ferhan; Supuran, Claudiu T

    2016-05-15

    In the present study a series of urea and sulfamide compounds incorporating the tetralin scaffolds were synthesized and evaluated for their acetylcholinesterase (AChE), human carbonic anhydrase (CA, EC 4.2.1.1) isoenzyme I, and II (hCA I and hCA II) inhibitory properties. The urea and their sulfamide analogs were synthesized from the reactions of 2-aminotetralins with N,N-dimethylcarbamoyl chloride and N,N-dimethylsulfamoyl chloride, followed by conversion to the corresponding phenols via O-demethylation with BBr3. The novel urea and sulfamide derivatives were tested for inhibition of hCA I, II and AChE enzymes. These derivatives exhibited excellent inhibitory effects, in the low nanomolar range, with Ki values of 2.61-3.69nM against hCA I, 1.64-2.80nM against hCA II, and in the range of 0.45-1.74nM against AChE. In silico techniques such as, atomistic molecular dynamics (MD) and molecular docking simulations, were used to understand the scenario of the inhibition mechanism upon approaching of the ligands into the active site of the target enzymes. In light of the experimental and computational results, crucial amino acids playing a role in the stabilization of the enzyme-inhibitor adducts were identified. PMID:27068142

  5. New TFO conjugates containing a carminomycinone-derived chromophore.

    PubMed

    Capobianco, M L; De Champdoré, M; Francini, L; Lena, S; Garbesi, A; Arcamone, F

    2001-01-01

    Conjugates obtained by linking the anthracycline intercalating chromophore to triple helix forming oligonucleotides (TFOs) have been used in a physicochemical study of the stability of triple helices with DNA sequences of pharmacological relevance. The intercalating moiety is represented by carminomycinone derivatives obtained upon O-demethylation and hydrolysis of the glycosidic linkage of daunomycin followed by the introduction of an alkylating residue at two different positions. Results of experiments with a polypurinic region present in the multidrug resistance (MDR) gene indicate that the stability of the triple helix is significantly enhanced by replacement of C's with (5-Me)C's in the TFO sequences tested. The stability is not changed when a 3'-TpT is present in place of a 3'-CpG at the presumed intercalation site of the anthraquinone chromophore. The same carminomycinone derivatives were used for the preparation of conjugates able to form triple helices with the polypurine tract (PPT) present in the human integrated genome of HIV-1 infected cells. Three different TFOs (T(4)(Me)CT(4)(Me)CC, C2; T(4)(Me)CT(4)(Me)CC(Me)CC(Me)CCT, C6; and T(4)(Me)CT(4)G(6), G6) were designed and linked to the anthraquinone moiety. These conjugates showed a significantly enhanced ability to bind the PPT region of HIV with respect to the nonconjugated TFOs. PMID:11459456

  6. Codeine increases pain thresholds to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine.

    PubMed

    Sindrup, S H; Brøsen, K; Bjerring, P; Arendt-Nielsen, L; Larsen, U; Angelo, H R; Gram, L F

    1990-12-01

    The analgesic efficacy and kinetics of a single oral dose of 75 mg codeine was investigated in 12 extensive metabolizers and 12 poor metabolizers of sparteine in a double-blind, placebo-controlled crossover study. The cosegregation of the O-demethylation of codeine to morphine with the sparteine oxidation polymorphism was confirmed. Hence morphine could not be detected in the plasma of any of the poor metabolizers, whereas detectable morphine plasma levels were found in 10 of 12 extensive metabolizers. Pain thresholds to laser stimuli were determined before drug intake and 90, 150, and 210 minutes after drug intake. Codeine significantly increased the pricking pain thresholds in the extensive metabolizers (p less than 0.05), whereas there were no significant changes in the poor metabolizers. No change in pain thresholds occurred with placebo in any of the two phenotypes. In the extensive metabolizers there was a significant positive correlation between the increase in pain threshold and plasma concentration of codeine. The study supports the hypothesis that morphine formation is essential for achievement of analgesia during codeine treatment. PMID:2249379

  7. Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil.

    PubMed

    Kato, Souichiro; Chino, Kanako; Kamimura, Naofumi; Masai, Eiji; Yumoto, Isao; Kamagata, Yoichi

    2015-01-01

    Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from rice paddy field soil with lignin-derived methoxylated monoaromatics (vanillate and syringate) and their degradation intermediates (protocatechuate, catechol, and gallate) as the sole carbon and energy sources. Archaeal community analysis disclosed that both aceticlastic (Methanosarcina sp.) and hydrogenotrophic (Methanoculleus sp. and Methanocella sp.) methanogens dominated in all of the enrichments. Bacterial community analysis revealed the dominance of acetogenic bacteria (Sporomusa spp.) only in the enrichments on the methoxylated aromatics, suggesting that Sporomusa spp. initially convert vanillate and syringate into protocatechuate and gallate, respectively, with acetogenesis via O-demethylation. As the putative ring-cleavage microbes, bacteria within the phylum Firmicutes were dominantly detected from all of the enrichments, while the dominant phylotypes were not identical between enrichments on vanillate/protocatechuate/catechol (family Peptococcaceae bacteria) and on syringate/gallate (family Ruminococcaceae bacteria). This study demonstrates the importance of cooperation among acetogens, ring-cleaving fermenters/syntrophs and aceticlastic/hydrogenotrophic methanogens for degradation of lignin-derived aromatics under methanogenic conditions. PMID:26399549

  8. Psychedelic 5-Methoxy-N,N-dimethyltryptamine: Metabolism, Pharmacokinetics, Drug Interactions, and Pharmacological Actions

    PubMed Central

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C.; Yu, Ai-Ming

    2011-01-01

    5-Methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780

  9. Psychedelic 5-methoxy-N,N-dimethyltryptamine: metabolism, pharmacokinetics, drug interactions, and pharmacological actions.

    PubMed

    Shen, Hong-Wu; Jiang, Xi-Ling; Winter, Jerrold C; Yu, Ai-Ming

    2010-10-01

    5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) belongs to a group of naturally-occurring psychoactive indolealkylamine drugs. It acts as a nonselective serotonin (5-HT) agonist and causes many physiological and behavioral changes. 5-MeO-DMT is O-demethylated by polymorphic cytochrome P450 2D6 (CYP2D6) to an active metabolite, bufotenine, while it is mainly inactivated through the deamination pathway mediated by monoamine oxidase A (MAO-A). 5-MeO-DMT is often used with MAO-A inhibitors such as harmaline. Concurrent use of harmaline reduces 5-MeO-DMT deamination metabolism and leads to a prolonged and increased exposure to the parent drug 5-MeO-DMT, as well as the active metabolite bufotenine. Harmaline, 5-MeO-DMT and bufotenine act agonistically on serotonergic systems and may result in hyperserotonergic effects or serotonin toxicity. Interestingly, CYP2D6 also has important contribution to harmaline metabolism, and CYP2D6 genetic polymorphism may cause considerable variability in the metabolism, pharmacokinetics and dynamics of harmaline and its interaction with 5-MeO-DMT. Therefore, this review summarizes recent findings on biotransformation, pharmacokinetics, and pharmacological actions of 5-MeO-DMT. In addition, the pharmacokinetic and pharmacodynamic drug-drug interactions between harmaline and 5-MeO-DMT, potential involvement of CYP2D6 pharmacogenetics, and risks of 5-MeO-DMT intoxication are discussed. PMID:20942780

  10. Induction of cytochromes P450 1A1 and 1A2 suppresses formation of DNA adducts by carcinogenic aristolochic acid I in rats in vivo

    PubMed Central

    Dračínská, Helena; Bárta, František; Levová, Kateřina; Hudecová, Alena; Moserová, Michaela; Schmeiser, Heinz H.; Kopka, Klaus; Frei, Eva; Arlt, Volker M.; Stiborová, Marie

    2016-01-01

    Aristolochic acid I (AAI) is a natural plant alkaloid causing aristolochic acid nephropathy, Balkan endemic nephropathy and their associated urothelial malignancies. One of the most efficient enzymes reductively activating AAI to species forming AAI-DNA adducts is cytosolic NAD(P)H:quinone oxidoreductase 1. AAI is also either reductively activated or oxidatively detoxified to 8-hydroxyaristolochic acid (AAIa) by microsomal cytochrome P450 (CYP) 1A1 and 1A2. Here, we investigated which of these two opposing CYP1A1/2-catalyzed reactions prevails in AAI metabolism in vivo. The formation of AAI-DNA adducts was analyzed in liver, kidney and lung of rats treated with AAI, Sudan I, a potent inducer of CYP1A1/2, or AAI after pretreatment with Sudan I. Compared to rats treated with AAI alone, levels of AAI-DNA adducts determined by the 32P-postlabeling method were lower in liver, kidney and lung of rats treated with AAI after Sudan I. The induction of CYP1A1/2 by Sudan I increased AAI detoxification to its O-demethylated metabolite AAIa, thereby reducing the actual amount of AAI available for reductive activation. This subsequently resulted in lower AAI-DNA adduct levels in the rat in vivo. Our results demonstrate that CYP1A1/2-mediated oxidative detoxification of AAI is the predominant role of these enzymes in rats in vivo, thereby suppressing levels of AAI-DNA adducts. PMID:26845733

  11. Polyamines and drug oxidations.

    PubMed

    Chapman, S K

    1976-01-01

    The addition of spermine or of spermidine to rat liver assay systems produced marked changes in a number of microsomal drug oxidations. The hydroxylation of aniline and the N-demethylation of ethylmorphine were both enhanced with concentrations of 1-10 mM spermine or of spermidine. The results with putrescine on ethylmorphine metabolism were less dramatic, and no effect could be observed with putrescine in studies with other drug substrates. In contrast to the enhancing effects, inhibition was observed when spermine or spermidine was added to p-nitroanisole O-demethylation assay mixtures, and no effect was observed in assays for acetanilide hydroxylation. The inhibiting and enhancing effects of the polyamines can be observed in assays containing liver preparations from both male and female rats, and those from rats pretreated with phenobarbital or 3-methylcholanthrene. In all studies, the alterations were kinetically noncompetitive. The effects were shown to be independent of the NADPH-generating system and the cation requirements, and were not mediated through an interaction with NADPH-cytochrome c reductase. The possibility is considered that the enhancing and inhibiting effects may be related to the ability of these polycations to bind to microsomal membranes and cause alterations at different sites of substrate interaction. PMID:10139

  12. In Vitro Metabolism of 20(R)-25-Methoxyl-Dammarane-3, 12, 20-Triol from Panax notoginseng in Human, Monkey, Dog, Rat, and Mouse Liver Microsomes

    PubMed Central

    Li, Wei; Liu, Li; Sun, Baoshan; Guo, Zhenghong; Shi, Caihong; Zhao, Yuqing

    2014-01-01

    The present study characterized in vitro metabolites of 20(R)-25-methoxyl-dammarane-3β, 12β, 20-triol (20(R)-25-OCH3-PPD) in mouse, rat, dog, monkey and human liver microsomes. 20(R)-25-OCH3-PPD was incubated with liver microsomes in the presence of NADPH. The reaction mixtures and the metabolites were identified on the basis of their mass profiles using LC-Q/TOF and were quantified using triple quadrupole instrument by multiple reaction monitoring. A total of 7 metabolites (M1–M7) of the phase I metabolites were detected in all species. 25(R)-OCH3-PPD was metabolized by hydroxylation, dehydrogenation, and O-demethylation. Enzyme kinetic of 20(R)-25-OCH3-PPD metabolism was evaluated in rat and human hepatic microsomes. Incubations studies with selective chemical inhibitors demonstrated that the metabolism of 20(R)-25-OCH3-PPD was primarily mediated by CYP3A4. We conclude that 20(R)-25-OCH3-PPD was metabolized extensively in mammalian species of mouse, rat, dog, monkey, and human. CYP3A4-catalyzed oxygenation metabolism played an important role in the disposition of 25(R)-OCH3-PPD, especially at the C-20 hydroxyl group. PMID:24736630

  13. Isolation and identification of twelve metabolites of isocorynoxeine in rat urine and their neuroprotective activities in HT22 cell assay.

    PubMed

    Qi, Wen; Chen, Fangfang; Sun, Jiahong; Simpkins, James W; Yuan, Dan

    2015-01-01

    Isocorynoxeine, one of the major alkaloids from Uncaria Hook, shows the effects of lowering blood pressure, vasodilatation, and protection against ischemia-induced neuronal damage. In this paper, the metabolism of isocorynoxeine was investigated in rats. Twelve metabolites and the parent drug were isolated by using solvent extraction and repeated chromatographic methods, and determined by spectroscopic methods including UV, MS, NMR, and CD experiments. Seven new compounds were identified as 11-hydroxyisocorynoxeine, 5-oxoisocorynoxeinic acid-22-O-β-D-glucuronide, 10-hydroxyisocorynoxeine, 17-O-demethyl-16,17-dihydro-5-oxoisocorynoxeine, 5-oxoisocorynoxeinic acid, 21-hydroxy-5-oxoisocorynoxeine, and oxireno[18, 19]-5-oxoisocorynoxeine, together with six known compounds identified as isocorynoxeine, 18,19-dehydrocorynoxinic acid, 18,19-dehydrocorynoxinic acid B, corynoxeine, isocorynoxeine-N-oxide, and corynoxeine-N-oxide. Possible metabolic pathways of isocorynoxeine are proposed. Furthermore, the activity assay for the parent drug and some of its metabolites showed that isocorynoxeine exhibited a significant neuroprotective effect against glutamate-induced HT22 cell death at the maximum concentration. However, little or weak neuroprotective activities were observed for M-3, M-6, M-7, and M-10. Our present study is important to further understand their metabolic fate and disposition in humans. PMID:25519834

  14. Urinary metabolites of isorhynchophylline in rats and their neuroprotective activities in the HT22 cell assay.

    PubMed

    Chen, Fangfang; Qi, Wen; Sun, Jiahong; Simpkins, James W; Yuan, Dan

    2014-09-01

    Isorhynchophylline is one of the major alkaloids from the Uncaria hook possessing the effects of lowered blood pressure, vasodilatation and protection against ischemia-induced neuronal damage. However, the metabolic pathway of isorhynchophylline has not been fully reported yet. In this paper, the metabolism of isorhynchophylline was investigated in rats. Five metabolites were isolated by using solvent extraction and repeated chromatographic methods, and identified by spectroscopic methods including UV, MS, NMR and CD experiments. Three new compounds were identified as 5-oxoisorhynchophyllic acid-22-O-β-D-glucuronide (M1), 17-O-demethyl-16,17-dihydro isorhynchophylline (M2) and 5-oxoisorhynchophyllic acid (M4) together with two known compounds isorhynchophylline (M0) and rhynchophylline (M3). Possible metabolic pathways of isorhynchophylline are proposed. Furthermore, the activity assay for all the metabolites showed that isorhynchophylline (M0) exhibited potent neuroprotective effects against glutamate-induced HT22 cell death. However, little or weak neuroprotective activities were observed for M1-M4. Our present study is important to further understand its metabolic fate and disposition in humans. PMID:24910000

  15. Cytochrome P450 peroxidase/peroxygenase mediated xenobiotic metabolic activation and cytotoxicity in isolated hepatocytes.

    PubMed

    Anari, M R; Khan, S; Liu, Z C; O'Brien, P J

    1995-12-01

    Cytochrome P450 (P450) can utilize organic hydroperoxides and peracids to support hydroxylation and dealkylation of various P450 substrates. However, the biological significance of this P450 peroxygenase/peroxidase activity in the bioactivation of xenobiotics in intact cells has not been demonstrated. We have shown that tert-butyl hydroperoxide (tBHP) markedly enhances 3-20-fold the cytotoxicity of various aromatic hydrocarbons and their phenolic metabolites. The tBHP-enhanced hepatocyte cytotoxicity of 4-nitroanisole (4-NA) and 4-hydroxyanisole (4-HA) was also accompanied by an increase in the hepatocyte O-demethylation of 4-NA and 4-HA up to 7.5- and 21-fold, respectively. Hepatocyte GSH conjugation by 4-HA was also markedly increased by tBHP. An LC/MS analysis of the GSH conjugates identified hydroquinone-GSH and 4-methoxy-catechol:GSH conjugates as the predominant adducts. Pretreatment of hepatocytes with P450 inhibitors, e.g., phenylimidazole, prevented tBHP-enhanced 4-HA metabolism, GSH depletion, and cytotoxicity. In conclusion, hydroperoxides can therefore be used by intact cells to support the bioactivation of xenobiotics through the P450 peroxidase/peroxygenase system. PMID:8605292

  16. Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline.

    PubMed

    Dowers, Tamara S; Jones, Jeffrey P

    2006-08-01

    One major point of controversy in the area of cytochrome P450 (P450)-mediated oxidation reactions is the nature of the active-oxygen species. A number of hypotheses have been advanced which implicate a second oxidant besides the iron-oxo species designated as compound I (Cpd 1). This oxygen is thought to be either an iron-hydroperoxy species (Cpd 0) or a second spin-state of Cpd 1. Very little information is available on what fraction of P450 oxidations is mediated by the two different oxidants. Herein, we report results on three cytochrome P450-mediated reactions: O-dealkylation, N-oxygenation, and aromatic hydroxylation, which occur by three distinct chemical mechanisms. We have used kinetic isotope effects to test for branching from O-demethylation to N-oxygenation and aromatic hydroxylation, using 6-methoxyquinoline and 2H3-6-methoxyquinoline as substrates for P4501A2. Identical large inverse isotope effects on Vmax/Km are obtained for the formation of both the N-oxide and the phenol. This indicates that all three reactions occur through the same enzyme-substrate complex and, thus, through a single iron-oxygen species. The nature of the iron-oxygen species is less certain but is more likely to be iron-oxo Cpd 1, given the energetics of these reactions. PMID:16714370

  17. Carbon-Carbon Bond Cleavage in Activation of the Prodrug Nabumetone

    PubMed Central

    Varfaj, Fatbardha; Zulkifli, Siti N. A.; Park, Hyoung-Goo; Challinor, Victoria L.; De Voss, James J.

    2014-01-01

    Carbon-carbon bond cleavage reactions are catalyzed by, among others, lanosterol 14-demethylase (CYP51), cholesterol side-chain cleavage enzyme (CYP11), sterol 17β-lyase (CYP17), and aromatase (CYP19). Because of the high substrate specificities of these enzymes and the complex nature of their substrates, these reactions have been difficult to characterize. A CYP1A2-catalyzed carbon-carbon bond cleavage reaction is required for conversion of the prodrug nabumetone to its active form, 6-methoxy-2-naphthylacetic acid (6-MNA). Despite worldwide use of nabumetone as an anti-inflammatory agent, the mechanism of its carbon-carbon bond cleavage reaction remains obscure. With the help of authentic synthetic standards, we report here that the reaction involves 3-hydroxylation, carbon-carbon cleavage to the aldehyde, and oxidation of the aldehyde to the acid, all catalyzed by CYP1A2 or, less effectively, by other P450 enzymes. The data indicate that the carbon-carbon bond cleavage is mediated by the ferric peroxo anion rather than the ferryl species in the P450 catalytic cycle. CYP1A2 also catalyzes O-demethylation and alcohol to ketone transformations of nabumetone and its analogs. PMID:24584631

  18. Metabolite profiling of RCS-4, a novel synthetic cannabinoid designer drug, using human hepatocyte metabolism and TOF-MS

    PubMed Central

    Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A

    2014-01-01

    Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048

  19. NPRL-Z-1, as a New Topoisomerase II Poison, Induces Cell Apoptosis and ROS Generation in Human Renal Carcinoma Cells

    PubMed Central

    Wu, Szu-Ying; Pan, Shiow-Lin; Xiao, Zhi-Yan; Hsu, Jui-Ling; Chen, Mei-Chuan; Lee, Kuo-Hsiung; Teng, Che-Ming

    2014-01-01

    NPRL-Z-1 is a 4β-[(4″-benzamido)-amino]-4′-O-demethyl-epipodophyllotoxin derivative. Previous reports have shown that NPRL-Z-1 possesses anticancer activity. Here NPRL-Z-1 displayed cytotoxic effects against four human cancer cell lines (HCT 116, A549, ACHN, and A498) and exhibited potent activity in A498 human renal carcinoma cells, with an IC50 value of 2.38 µM via the MTT assay. We also found that NPRL-Z-1 induced cell cycle arrest in G1-phase and detected DNA double-strand breaks in A498 cells. NPRL-Z-1 induced ataxia telangiectasia-mutated (ATM) protein kinase phosphorylation at serine 1981, leading to the activation of DNA damage signaling pathways, including Chk2, histone H2AX, and p53/p21. By ICE assay, the data suggested that NPRL-Z-1 acted on and stabilized the topoisomerase II (TOP2)–DNA complex, leading to TOP2cc formation. NPRL-Z-1-induced DNA damage signaling and apoptotic death was also reversed by TOP2α or TOP2β knockdown. In addition, NPRL-Z-1 inhibited the Akt signaling pathway and induced reactive oxygen species (ROS) generation. These results demonstrated that NPRL-Z-1 appeared to be a novel TOP2 poison and ROS generator. Thus, NPRL-Z-1 may present a significant potential anticancer candidate against renal carcinoma. PMID:25372714

  20. Biotransformation of colchicinoids into their corresponding 3-O-glucosyl derivatives by selected strains of Bacillus megaterium.

    PubMed

    Ponzone, Cesare; Berlanda, Davide; Donzelli, Fabio; Acquati, Valter; Ciulla, Rosalba; Negrini, Alberto; Rovati, Marco; Evangelista, Douglas; Fata, Emilio; Ciceri, Daniele; Perterlongo, Federico; Cabri, Walter

    2014-07-01

    Natural colchicinoids and their semisynthetic derivatives are important active ingredients for pharmaceutical applications. Thiocolchicoside (3-demethoxy-3-glucosyloxythiocolchicine) is used in several countries as standard therapy for the treatment of diseases of the muscle-skeletal system, due to its potent antiinflammatory and myorelaxant properties. Manufacturing of thiocolchicoside requires a key step, the regioselective demethylation and glucosylation of chemically derivative thiocolchicine. High selectivity and efficiency of this transformation cannot be achieved in a satisfactory way with a chemical approach. In particular, the chemical demethylation, a part from requiring toxic and aggressive reagents, generates a complex mixture of products with no industrial usefulness. We report herein an efficient, direct and green biotransformation of thiocolchicine into thiocolchicoside, performed by a specific strain of Bacillus megaterium. The same process, with minor modifications, can be used to convert the by-product 3-O-demethyl-thiocolchicine into thiocolchicoside. In addition, we describe the B. megaterium strain selection process and the best conditions for this effective double biotransformation. The final product has a pharmaceutical quality, and the process has been industrialised. PMID:24553816

  1. Urinary metabolites to assess in vivo ontogeny of hepatic drug metabolism in early neonatal life.

    PubMed

    Allegaert, K; Verbesselt, R; Rayyan, M; Debeer, A; de Hoon, J

    2007-05-01

    In addition to size-dependent allometric metabolic activity, most isoenzymes display age-dependent isoenzyme-specific ontogeny. We therefore need probe drugs to describe isoenzyme-specific ontogeny to develop more sophisticated, physiologically based models. We illustrate the feasibility and the relevance of in vivo assessment of hepatic metabolism, based on observations on urinary elimination of paracetamol and tramadol metabolites in neonates. On the basis of the observations on tramadol disposition, we were able to document that O-demethylation phenotypic activity developed sooner when compared with N-demethylation. During repeated administration of intravenous paracetamol, it was documented that, in addition to postmenstrual and postnatal age (PNA), repeated administration also contributed to the urinary excretion of glucuronidated paracetamol. In both probe drugs evaluated, age only in part explained the interindividual variability observed. Urine metabolites to assess in vivo metabolism of drugs routinely administered in neonates likely increase both the feasibility and clinical relevance of studies on in vivo isoenzyme-specific ontogeny in neonates. PMID:17609736

  2. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine.

    PubMed

    Uehara, Shotaro; Uno, Yasuhiro; Inoue, Takashi; Okamoto, Eriko; Sasaki, Erika; Yamazaki, Hiroshi

    2016-11-01

    1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans. PMID:26899760

  3. Enzymatic aryl-O-methyl-/sup 14/C labeling of model lignin monomers

    SciTech Connect

    Frazer, A.C.; Bossert, I.; Young, L.Y.

    1986-01-01

    Aryl-O-methyl ethers are abundant in aerobic and anaerobic environments. In particular, lignin is composed of units of this type. Lignin monomers specifically radiolabeled in methoxy, side chain, and ring carbons have been synthesized by chemical procedures and are important in studies of lignin synthesis and degradation, humus formation, and microbial O-demethylation. In this paper attention is drawn to an enzymatic procedure for preparing O-methyl-/sup 14/C-labeled aromatic lignin monomers which has not previously been exploited in microbial ecology and physiology studies and which has several advantages compared with chemical synthesis procedures. O-(methyl-/sup 14/C)vanillic and O-(methyl-/sup 14/C)ferulic acids were prepared with S-(methyl-/sup 14/C)adenosyl-L-methionine as the methyl donor, using commercially obtained porcine liver catechol-O-methyltransferase (EC 2.1.1.6). The specific activity of the methylated products was the same as that of the methyl donor, a maximum of about 58 ..mu..Ci/..mu..mol, and the yields were 42% (vanillate) and 35% (ferulate). Thus lignin monomers are readily prepared as O-methylated products of the catechol-O-methyltransferase reaction and, with this enzyme method of preparation, would be more widely available than labeled compounds which require chemical synthesis.

  4. Metabolism of the carcinogen alpha-asarone in liver microsomes.

    PubMed

    Cartus, Alexander T; Schrenk, Dieter

    2016-01-01

    Alpha-asarone (1) is a naturally occurring phenylpropene found in several plants, e.g. Acorus calamus. 1-containing plant materials and essential oils thereof are used for flavoring foods and in many phytopharmaceuticals. 1 has been claimed to have positive pharmacological effects, however, it is carcinogenic in male mice (liver) and probably genotoxic. Since the metabolic pathways of 1 have not been investigated and its carcinogenic mode of action is unknown, we investigated the metabolism of 1 in liver microsomes of rat, bovine, porcine, and human origin using HPLC-DAD and LC-ESI-MS/MS and derived kinetic data on the metabolite formation. The main metabolic pathway was the side-chain hydroxylation leading to (E)-3'-hydroxyasarone (2). Epoxidation of 1 presumably led to (E)-asarone-1',2'-epoxide (4) which instantly hydrolyzed to form erythro- and threo-configured diols (5b+5a). As a minor reaction O-demethylation of 1 was observed. The metabolite formation showed little species-specific differences with the exception of porcine liver microsomes for which the formation of diols 5b+5a exceeded the formation of alcohol 2. The kinetic parameters imply a dependence of the pattern of metabolite formation from substrate concentration. On the basis of our results and earlier findings we hypothesize the genotoxic epoxide 4 being the ultimate carcinogen metabolically formed from 1. PMID:26678343

  5. Identification of the metabolites of a new oxazolidinone MAO-A inhibitor in rat.

    PubMed

    Naitoh, T; Kakiki, M; Kozaki, T; Mishima, M; Yuzuriha, T; Horie, T

    1997-10-01

    1. Six metabolites present in rat urine after the oral administration of E2011 ((5R)-3-[2-((1S)-3-cyano-1-hydroxypropyl)benzothiazol-6-yl]-5-meth oxymethyl-2- oxazolidinone) were isolated with an Amberlite XAD-4 column and hplc, and termed HPM-1, HPM-2, HPM-31, HPM-32, HPM-33 and HPM-4. 2. To determine the correspondence of the findings of the metabolites between tlc (which was used in our previous study) and hplc, the six metabolites were isolated from rat urine after the administration of 14C-labelled E2011 with an Amberlite XAD-4 column and hplc, and then analysed by tlc. HPM-1, HPM-2, HPM-31, HPM-32, HPM-33 and HPM-4 were identified as IM7, IM3, IM4, IM2, IM1 and E2011, respectively. 3. The structures of the metabolites were identified with nmr and mass spectrometry. One of the compounds identified, HPM-4, was the unchanged drug, E2011, and HPM-2 was O-desmethyl-E2011. Another metabolite (HPM-33), the main metabolite in the urine, was identified as (4S)-hydroxy-E2011, and the others were (4S)-hydroxy-O-desmethyl-E2011 (HPM-1), 2"-hydroxy-E2011 (HPM-31) and (4R)-hydroxy-E2011 (HPM-32). 4. In conclusion, the main metabolic pathway of E2011 in the rat consisted of O-demethylation and hydroxylation. PMID:9364743

  6. Antiviral anthraquinones and azaphilones produced by an endophytic fungus Nigrospora sp. from Aconitum carmichaeli.

    PubMed

    Zhang, Shou-Peng; Huang, Rong; Li, Fang-Fang; Wei, Hong-Xia; Fang, Xiao-Wei; Xie, Xiao-Song; Lin, Dong-Guo; Wu, Shao-Hua; He, Jian

    2016-07-01

    A new hydroanthraquinone derivative, 6-O-demethyl-4-dehydroxyaltersolanol A (1), and two new azaphilones, 8,11-didehydrochermesinone B (6) and (7S)-7-hydroxy-3,7-dimethyl-isochromene-6,8-dione (8), along with five known analogues (2-5 and 7), were isolated from the culture broth of Nigrospora sp. YE3033, an endophytic fungus obtained from Aconitum carmichaeli. Their structures were elucidated on the basis of spectroscopic analyses. Biological activity test indicated that compounds 1-3, and 7 exhibited the inhibitory effects on influenza viral strain of A/Puerto Rico/8/34 (H1N1) with the IC50 values of 2.59, 8.35, 7.82, and 0.80μg/mL, respectively, while the low cytotoxicity of 7 with the CC50 value of 184.75μg/mL, displaying a promising potential of 7 in the development of anti-influenza A virus drugs. PMID:27233986

  7. Synthesis of stable isotope labelled internal standards for drug-drug interaction (DDI) studies.

    PubMed

    Atzrodt, J; Blankenstein, J; Brasseur, D; Calvo-Vicente, S; Denoux, M; Derdau, V; Lavisse, M; Perard, S; Roy, S; Sandvoss, M; Schofield, J; Zimmermann, J

    2012-09-15

    The syntheses of stable isotope labelled internal standards of important CYP-isoform selective probes, like testosterone 1, diclofenac 3, midazolam 5, and dextromethorphan 7, as well as their corresponding hydroxylated metabolites 6β-hydroxytestosterone 2, 4'-hydroxydiclofenac 4, 1'-hydroxymidazolam 6 and dextrorphan 8 are reported. Microwave-enhanced H/D-exchange reactions applying either acid, base, or homogeneous and heterogeneous transition metal catalysis, or combinations thereof proved to be highly efficient for direct deuterium labelling of the above mentioned probes. Compared to conventional stepwise synthetic approaches, the combination of H/D exchange and biotransformation provides the potential for considerable time- and cost savings, in particular for the synthesis of the stable isotope labelled internal standards of 4'-hydroxydiclofenac 4 and 1'-hydroxymidazolam 6. PMID:22890009

  8. Targeting N-methyl-D-aspartate receptors for treatment of neuropathic pain

    PubMed Central

    Zhou, Hong-Yi; Chen, Shao-Rui; Pan, Hui-Lin

    2011-01-01

    Neuropathic pain remains a major clinical problem and a therapeutic challenge because existing analgesics are often ineffective and can cause serious side effects. Increased N-methyl-D-aspartate receptor (NMDAR) activity contributes to central sensitization in certain types of neuropathic pain. NMDAR antagonists can reduce hyperalgesia and allodynia in animal models of neuropathic pain induced by nerve injury and diabetic neuropathy. Clinically used NMDAR antagonists, such as ketamine and dextromethorphan, are generally effective in patients with neuropathic pain, such as complex regional pain syndrome and painful diabetic neuropathy. However, patients with postherpetic neuralgia respond poorly to NMDAR antagonists. Recent studies on identifying NMDAR-interacting proteins and molecular mechanisms of increased NMDAR activity in neuropathic pain could facilitate the development of new drugs to attenuate abnormal NMDAR activity with minimal impairment of the physiological function of NMDARs. Combining NMDAR antagonists with other analgesics could also lead to better management of neuropathic pain without causing serious side effects. PMID:21686074

  9. Cyanide Suicide After Deep Web Shopping: A Case Report.

    PubMed

    Le Garff, Erwan; Delannoy, Yann; Mesli, Vadim; Allorge, Delphine; Hédouin, Valéry; Tournel, Gilles

    2016-09-01

    Cyanide is a product that is known for its use in industrial or laboratory processes, as well as for intentional intoxication. The toxicity of cyanide is well described in humans with rapid inhibition of cellular aerobic metabolism after ingestion or inhalation, leading to severe clinical effects that are frequently lethal. We report the case of a young white man found dead in a hotel room after self-poisoning with cyanide ordered in the deep Web. This case shows a probable complex suicide kit use including cyanide, as a lethal tool, and dextromethorphan, as a sedative and anxiolytic substance. This case is an original example of the emerging deep Web shopping in illegal drug procurement. PMID:27367575

  10. Breath tests to phenotype drug disposition in oncology.

    PubMed

    Opdam, Frans L; Modak, Anil S; Gelderblom, Hans; Guchelaar, Henk-Jan

    2013-11-01

    Breath tests (BTs) have been investigated as diagnostic tools to phenotype drug disposition in cancer patients in the pursuit to individualize drug treatment. The choice of the right phenotype probe is crucial and depends on the metabolic pathway of the anticancer agent of interest. BTs using orally or intravenously administered selective non-radioactive (13)C-labeled probes to non-invasively evaluate dihydropyrimidine dehydrogenase, cytochrome P450 (CYP) 3A4, and CYP2D6 enzyme activity have been published. Clinically, a (13)C-dextromethorphan BT to predict endoxifen levels in breast cancer patients and a (13)C-uracil BT to predict fluoropyrimidine toxicity in colorectal cancer patients are most promising. However, the clinical benefit and cost effectiveness of these phenotype BTs need to be determined in order to make the transition from an experimental setting to clinical practice as companion diagnostic tests. PMID:23868281

  11. Detection of an endogenous urinary biomarker associated with CYP2D6 activity using global metabolomics

    PubMed Central

    Tay-Sontheimer, Jessica; Shireman, Laura M; Beyer, Richard P; Senn, Taurence; Witten, Daniela; Pearce, Robin E; Gaedigk, Andrea; Fomban, Cletus L Gana; Lutz, Justin D; Isoherranen, Nina; Thummel, Kenneth E; Fiehn, Oliver; Leeder, J Steven; Lin, Yvonne S

    2015-01-01

    Aim We sought to discover endogenous urinary biomarkers of human CYP2D6 activity. Patients & methods Healthy pediatric subjects (n = 189) were phenotyped using dextromethorphan and randomized for candidate biomarker selection and validation. Global urinary metabolomics was performed using liquid chromatography quadrupole time-of-flight mass spectrometry. Candidate biomarkers were tested in adults receiving fluoxetine, a CYP2D6 inhibitor. Results A biomarker, M1 (m/z 444.3102) was correlated with CYP2D6 activity in both the pediatric training and validation sets. Poor metabolizers had undetectable levels of M1, whereas it was present in subjects with other phenotypes. In adult subjects, a 9.56-fold decrease in M1 abundance was observed during CYP2D6 inhibition. Conclusion Identification and validation of M1 may provide a noninvasive means of CYP2D6 phenotyping. PMID:25521354

  12. Efficacy of levodropropizine in pediatric cough.

    PubMed

    De Blasio, Francesco; Dicpinigaitis, Peter V; De Danieli, Gianluca; Lanata, Luigi; Zanasi, Alessando

    2012-10-01

    Cough in children is among the most common problems managed by pediatricians, and occurs more frequently in preschool than in older children. Most acute episodes of cough are due to viral upper respiratory tract infections. The morbidity associated with acute cough in a child extends also to parents, teachers, and other family members and caregivers. Unfortunately, therapeutic options for acute cough in children are severely limited due to the absence of drugs shown to be effective antitussives with an acceptable safety profile. Agents used in the management of adult cough, such as narcotics (codeine, hydrocodone), the non-narcotic opioid dextromethorphan, first-generation, potentially sedating antihistamines, and decongestants such as pseudoephedrine, have all been deemed inadequate for treatment of acute pediatric cough on a risk/benefit basis. A growing body of evidence suggests that the peripherally acting antitussive, levodropropizine, may be an attractive alternative for the treatment of bothersome acute cough in children. PMID:22771902

  13. Therapeutic options for acute cough due to upper respiratory infections in children.

    PubMed

    Paul, Ian M

    2012-02-01

    Cough due to upper respiratory tract infections (URIs) is one of the most frequent complaints encountered by pediatric health-care providers, and one of the most disruptive symptoms for children and families. Despite the frequency of URIs, there is limited evidence to support the few therapeutic agents currently available in the United States (US) to treat acute cough due to URI. Published, well-designed, contemporary research supporting the efficacy of narcotics (codeine, hydrocodone) and US Food and Drug Administration (FDA)-approved over-the-counter (OTC) oral antitussives and expectorants (dextromethorphan, diphenhydramine, chlophedianol, and guaifenesin) is absent for URI-associated pediatric cough. Alternatively, honey and topically applied vapor rubs may be effective antitussives. PMID:21892785

  14. Chronic Enhancement of Serotonin Facilitates Excitatory Transcranial Direct Current Stimulation-Induced Neuroplasticity.

    PubMed

    Kuo, Hsiao-I; Paulus, Walter; Batsikadze, Giorgi; Jamil, Asif; Kuo, Min-Fang; Nitsche, Michael A

    2016-04-01

    Serotonin affects memory formation via modulating long-term potentiation (LTP) and depression (LTD). Accordingly, acute selective serotonin reuptake inhibitor (SSRI) administration enhanced LTP-like plasticity induced by transcranial direct current stimulation (tDCS) in humans. However, it usually takes some time for SSRI to reduce clinical symptoms such as anxiety, negative mood, and related symptoms of depression and anxiety disorders. This might be related to an at least partially different effect of chronic serotonergic enhancement on plasticity, as compared with single-dose medication. Here we explored the impact of chronic application of the SSRI citalopram (CIT) on plasticity induced by tDCS in healthy humans in a partially double-blinded, placebo (PLC)-controlled, randomized crossover study. Furthermore, we explored the dependency of plasticity induction from the glutamatergic system via N-methyl-D-aspartate receptor antagonism. Twelve healthy subjects received PLC medication, combined with anodal or cathodal tDCS of the primary motor cortex. Afterwards, the same subjects took CIT (20 mg/day) consecutively for 35 days. During this period, four additional interventions were performed (CIT and PLC medication with anodal/cathodal tDCS, CIT and dextromethorphan (150 mg) with anodal/cathodal tDCS). Plasticity was monitored by motor-evoked potential amplitudes elicited by transcranial magnetic stimulation. Chronic application of CIT increased and prolonged the LTP-like plasticity induced by anodal tDCS for over 24 h, and converted cathodal tDCS-induced LTD-like plasticity into facilitation. These effects were abolished by dextromethorphan. Chronic serotonergic enhancement results in a strengthening of LTP-like glutamatergic plasticity, which might partially explain the therapeutic impact of SSRIs in depression and other neuropsychiatric diseases. PMID:26329381

  15. [Effect of Fuzheng Huayu recipe on CYP450 isozymes in normal and liver fibrosis rats].

    PubMed

    Zheng, Tian-hui; Liu, Wei; Li, Shu-ping; Yang, Tao; Wang, Chang-hong; Liu, Cheng-hai

    2015-03-01

    To study the effect of Fuzheng Huayu recipe (FZHY) on five types of isozymes of cytochrome P450 (CYP450) of normal and liver fibrosis rats by using the cocktail probe method. Dimethylnitrosamine ( DMN) was injected to induce the liver fibrosis model. After the tail vein injection with Cocktail probe solutions prepared with five CYP450s probe substrates (phenacetin-CYP1A2, omeprazole-CYP2C9, tolbutamide-CYP2C19, dextromethorphan-CYP2D6, midazolam-CYP3A4), the plasma concentrations of the five probe substrates were determined by LC-MS/MS, and the pharmacokinetic parameters were calculated by PK solutions 2. After the oral administration with FZHY, normal rats given phenacetin, omeprazole, tolbutamide and dextromethorphan showed increase in AUC(0-t) and decrease in CL to varying degrees, indicating that FZHY obviously inhibited the activities of CYP1A2, CYP2C9, CYP2C19 and CYP2D6 in normal rats, but with no obvious effect on the activity of CYP3A4. After the oral administration with FZHY, liver fibrosis rats treated with CYP2C9 showed the significant increase in AUC(0-t) and significant decrease in Vd, hut with no obvious changes in the pharmacokinetic parameters of other four types of prove substances, suggesting that FZHY could significantly inhibit the activity of CYP2C9 in rats but had no effect on the activities of CYP1A2, CYP2C19, CYP2D6 and CYP3A4. The changes in the activity of CYP450 isozymes in liver fibrosis rats may be the reason for FZHY's different effects on CYP450 isozymes in normal and liver fibrosis rats. PMID:26226765

  16. Effect of memantine on cough reflex sensitivity: translational studies in guinea pigs and humans.

    PubMed

    Dicpinigaitis, Peter V; Canning, Brendan J; Garner, Rachel; Paterson, Blake

    2015-03-01

    Cough is the most common complaint for which outpatients in the United States seek medical attention, and yet available therapeutic options for cough lack proven efficacy and are further limited by safety and abuse liabilities. Thus, safe and effective cough suppressants are needed. Recent preclinical studies described the antitussive effects of memantine, an N-methyl-d-aspartate receptor channel blocker used in the treatment of Alzheimer's disease. The goals of the present study were to compare the antitussive effects of memantine, dextromethorphan, and codeine in guinea pigs; to relate the dose-dependent actions of memantine in these studies to peak plasma concentrations achieved following oral administration; and to provide the first ever evaluation of the antitussive effect of memantine in humans. In guinea pigs, memantine and codeine were comparable in efficacy and potency but both were superior to dextromethorphan in the citric acid cough challenge model. The pharmacokinetic analyses suggest that memantine was active in guinea pigs at micromolar plasma concentrations. Subsequently, 14 healthy volunteers as well as 14 otherwise healthy adults with acute viral upper respiratory tract infection (URI) underwent capsaicin cough challenges 6 hours after ingestion of 20 mg memantine and matched placebo in a randomized, double-blind, crossover fashion. In healthy volunteers, memantine significantly inhibited cough reflex sensitivity (P = 0.034). In subjects with URI, responsiveness to capsaicin was markedly increased, and in these patients, the inhibition of cough reflex sensitivity by memantine relative to placebo did not reach statistical significance (P = 0.088). These data support further research to investigate the potential of memantine as a clinically useful antitussive. PMID:25525191

  17. CYP3A4 drug interactions: correlation of 10 in vitro probe substrates

    PubMed Central

    Kenworthy, K E; Bloomer, J C; Clarke, S E; Houston, J B

    1999-01-01

    Aims Many substrates of cytochrome P450 (CYP) 3A4 are used for in vitro investigations of drug metabolism and potential drug–drug interactions. The aim of the present study was to determine the relationship between 10 commonly used CYP3A4 probes using modifiers with a range of inhibitory potency. Methods The effects of 34 compounds on CYP3A4-mediated metabolism were investigated in a recombinant CYP3A4 expression system. Inhibition of erythromycin, dextromethorphan and diazepam N-demethylation, testosterone 6β-hydroxylation, midazolam 1-hydroxylation, triazolam 4-hydroxylation, nifedipine oxidation, cyclosporin oxidation, terfenadine C-hydroxylation and N-dealkylation and benzyloxyresorufin O-dealkylation was evaluated at the apparent Km or S50 (for substrates showing sigmoidicity) value for each substrate and at an inhibitor concentration of 30 μm. Results While all CYP3A4 probe substrates demonstrate some degree of similarity, examination of the coefficients of determination, together with difference and cluster analysis highlighted that seven substrates can be categorized into two distinct substrate groups. Erythromycin, cyclosporin and testosterone form the most closely related group and dextromethorphan, diazepam, midazolam and triazolam form a second group. Terfenadine can be equally well placed in either group, while nifedipine shows a distinctly different relationship. Benzyloxyresorufin shows the weakest correlation with all the other CYP3A4 probes. Modifiers that caused negligible inhibition or potent inhibition are generally comparable in all assays, however, the greatest variability is apparent with compounds causing, on average, intermediate inhibition. Modifiers of this type may cause substantial inhibition, no effect or even activation depending on the substrate employed. Conclusions It is recommended that multiple CYP3A4 probes, representing each substrate group, are used for the in vitro assessment of CYP3A4-mediated drug interactions. PMID

  18. Practice Parameter update: The care of the patient with amyotrophic lateral sclerosis: Multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review)

    PubMed Central

    Miller, R G.; Jackson, C E.; Kasarskis, E J.; England, J D.; Forshew, D; Johnston, W; Kalra, S; Katz, J S.; Mitsumoto, H; Rosenfeld, J; Shoesmith, C; Strong, M J.; Woolley, S C.

    2009-01-01

    Objective: To systematically review evidence bearing on the management of patients with amyotrophic lateral sclerosis (ALS). Methods: The authors analyzed studies from 1998 to 2007 to update the 1999 practice parameter. Topics covered in this section include breaking the news, multidisciplinary clinics, symptom management, cognitive and behavioral impairment, communication, and palliative care for patients with ALS. Results: The authors identified 2 Class I studies, 8 Class II studies, and 30 Class III studies in ALS, but many important areas have been little studied. More high-quality, controlled studies of symptomatic therapies and palliative care are needed to guide management and assess outcomes in patients with ALS. Recommendations: Multidisciplinary clinic referral should be considered for managing patients with ALS to optimize health care delivery and prolong survival (Level B) and may be considered to enhance quality of life (Level C). For the treatment of refractory sialorrhea, botulinum toxin B should be considered (Level B) and low-dose radiation therapy to the salivary glands may be considered (Level C). For treatment of pseudobulbar affect, dextromethorphan and quinidine should be considered if approved by the US Food and Drug Administration (Level B). For patients who develop fatigue while taking riluzole, withholding the drug may be considered (Level C). Because many patients with ALS demonstrate cognitive impairment, which in some cases meets criteria for dementia, screening for cognitive and behavioral impairment should be considered in patients with ALS (Level B). Other management strategies all lack strong evidence. GLOSSARY ALS = amyotrophic lateral sclerosis; ALS-FTD = amyotrophic lateral sclerosis with a dementia meeting the Neary criteria for frontotemporal dementia; ALSbi = amyotrophic lateral sclerosis with behavioral impairment; ALSci = amyotrophic lateral sclerosis with cognitive impairment; BTxA = botulinum toxin type A; BTxB = botulinum

  19. Antitussive Effects of Memantine in Guinea Pigs

    PubMed Central

    Smith, Jaclyn A.; Hilton, Emma C. Y.; Saulsberry, Loren

    2012-01-01

    Background: The treatment of cough is a significant clinical unmet need because there is little evidence that current therapies are effective. Based on evidence supporting a role for N-methyl d-aspartate receptors (NMDARs) in cough, we hypothesized that memantine, a low-affinity, uncompetitive NMDAR channel blocker in routine use for the treatment of Alzheimer disease, could be an effective, well-tolerated, antitussive therapy. The aim of this study was to establish preclinical evidence that memantine has antitussive effects. Methods: We studied the influence of memantine on experimentally induced coughing in response to citric acid and bradykinin inhalation in guinea pigs. We also compared the potency and efficacy of memantine as an antitussive to other NMDAR antagonists, dextromethorphan and ketamine, and to the γ-aminobutyric acid class B receptor agonist baclofen. Results: Compared with control subjects, 10 mg/kg memantine significantly reduced the cumulative number of coughs evoked by both citric acid (median, 24.0 [interquartile range (IQR), 13.0-25.5] vs 1.5 [IQR, 0.3-10.3] coughs; P = .012) and bradykinin aerosols (median, 16.0 [IQR, 9.5-18.5] vs 0.0 [IQR, 0-0.75] coughs; P = .002). Memantine 10 mg/kg produced a similar reduction in the cumulative number of coughs to baclofen 3 mg/kg and demonstrated comparatively greater cough suppression than 30 mg/kg dextromethorphan or 30 mg/kg ketamine. This dose of memantine produced no sedative or respiratory depressive effects. Conclusions: This study illustrates that memantine has marked antitussive effects in guinea pigs, most likely mediated through NMDAR channel blockade. Memantine, therefore, has the potential to be a safe, effective, and well-tolerated antitussive agent. PMID:22016492

  20. Current and future centrally acting antitussives☆

    PubMed Central

    Bolser, Donald C.

    2011-01-01

    The purpose of this review is to highlight some important issues regarding current centrally acting antitussive drugs as well as discuss the implications of these matters on the development of future cough suppressants. Drugs that act in the central nervous system to inhibit cough are termed centrally acting and this designation is based exclusively on evidence obtained from animal models. This classification can include drugs that act both at peripheral and central sites following systemic administration. These drugs are intended to reduce the frequency and/or intensity of coughing resulting from disorders of any etiology. There are a number of central cough suppressants identified by their efficacy in animal models and the most prominent of these are codeine and dextromethorphan. Although the exact neural elements on which these drugs act are currently unknown, they are thought to inhibit a functionally identified component of the central system for cough known as the gating mechanism. The efficacy of codeine and dextromethorphan in humans has recently been questioned. These drugs are less effective on cough induced by upper airway disorders than in pathological conditions involving the lower airways in humans. The reasons for this difference in antitussive sensitivity are not clear. We propose that sensory afferents from different regions of the airways actuate coughing in humans by antitussive sensitive and insensitive control elements in the central nervous system. This hypothesis is consistent with results from an animal model in which laryngeal and tracheobronchial cough had different sensitivities to codeine. Other factors that may be very important in the action of central antitussive drugs in humans include the role of sensations produced by a tussigenic stimulus as well as plasticity of central pathways in response to airway inflammation. Resolution of these issues in the human will be a challenging process, but one which will lay the foundation for the

  1. Characterization of pulmonary sigma receptors by radioligand binding

    PubMed Central

    Lever, John R.; Litton, Tyler P.; Fergason-Cantrell, Emily A.

    2015-01-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [3H](+)-pentazocine reached steady state within 6 h at 37 °C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36 ± 0.04 nM; Bmax 967 ± 11 fmol / mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (−)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [3H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2 min at 25 °C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8 ± 8.3 nM; Bmax 921 ± 228 fmol / mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2 µmol / kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  2. Characterization of pulmonary sigma receptors by radioligand binding.

    PubMed

    Lever, John R; Litton, Tyler P; Fergason-Cantrell, Emily A

    2015-09-01

    This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo. PMID:26004528

  3. The Effect of Yokukansan, a Traditional Herbal Preparation Used for the Behavioral and Psychological Symptoms of Dementia, on the Drug-Metabolizing Enzyme Activities in Healthy Male Volunteers.

    PubMed

    Soraoka, Hiromi; Oniki, Kentaro; Matsuda, Kazuki; Ono, Tatsumasa; Taharazako, Kosuke; Uchiyashiki, Yoshihiro; Kamihashi, Ryoko; Kita, Ayana; Takashima, Ayaka; Nakagawa, Kazuko; Yasui-Furukori, Norio; Kadowaki, Daisuke; Miyata, Keishi; Saruwatari, Junji

    2016-01-01

    The concomitant use of herb and prescription medications is increasing globally. Herb-drug interactions are therefore a clinically important problem. Yokukansan (YKS), a Japanese traditional herbal medicine, is one of the most frequently used herbal medicines. It is effective for treating the behavioral and psychological symptoms of dementia. We investigated the potential effects of YKS on drug-metabolizing enzyme activities in humans. An open-label repeat-dose study was conducted in 26 healthy Japanese male volunteers (age: 22.7±2.3 years) with no history of smoking. An 8-h urine sample was collected after a 150-mg dose of caffeine and a 30-mg dose of dextromethorphan before and after the administration of YKS (2.5 g, twice a day for 1 week). The activities of cytochrome P450 (CYP) 1A2, CYP2D6, CYP3A, xanthine oxidase (XO) and N-acetyltransferase 2 (NAT2) were assessed based on the urinary metabolic indices of caffeine and dextromethorphan, and the urinary excretion ratio of 6β-hydroxycortisol to cortisol. There were no statistically significant differences in the activities of the examined enzymes before or after the 7-d administration of YKS. Although further studies assessing the influence of YKS on the pharmacokinetics and pharmacodynamics of the substrates of the drug-metabolizing enzymes are needed to verify the present results, YKS is unlikely that a pharmacokinetic interaction will occur with concomitantly administered medications that are predominantly metabolized by the CYP1A2, CYP2D6, CYP3A, XO and NAT2. PMID:27582327

  4. CYP2D6*2 Polymorphism as a Predictor of Failed Outpatient Tramadol Therapy in Postherpetic Neuralgia Patients.

    PubMed

    Nasare, Namita Vilas; Banerjee, Basu Dev; Suryakantrao Deshmukh, Pravin; Mediratta, Pramod Kumari; Saxena, Ashok Kumar; Ahmed, Rafat Sultana; Bhattacharya, Sambit Nath

    2016-01-01

    Human cytochrome P4502D6 (CYP2D6) gene is highly polymorphic, leading to wide interindividual ethnic differences in CYP2D6-mediated drug metabolism. Its activity ranges from complete deficiency to excessive activity, potentially causing toxicity of the medication or therapeutic failure with recommended drug dosages. The aim of the study was to find the association of CYP2D6*2 polymorphisms with demographic characters (age, sex, and weight), pain intensity scales [numerical rating scale (NRS) sleep, global perceived effect (GPE)], and adverse drug effects in postherpetic neuralgia (PHN) patients receiving tramadol. The study comprised 246 patients [including 123 nonresponders (NRs) and 123 responders (Rs)] with PHN undergoing analgesic treatment at the pain clinic, Out Patient Department, University College of Medical Sciences, Guru Teg Bahadur Hospital, Delhi, India. Patients with any history of diabetes mellitus, human immunodeficiency virus, malignancy, hematological or liver disease, psychiatric illness, alcohol abuse, and tramadol sensitivity were excluded from the study. The NRSs of (resting and movement), NRS-sleep, and GPE were evaluated by the treating physician. Adverse drug effects during the time of the study were recorded. All samples were analyzed for CYP2D6*2 polymorphism using the polymerase chain reaction-restriction fragment length polymorphism method. The genotype distribution did not vary significantly among genders [NR (P = 0.723); R (P = 0.947)] and different age groups in NRs (P = 0.763) and Rs (P = 0.268). Clinically, statistically significant (P < 0.001) results were obtained in both the groups when compared with baseline in the NRS-sleep and GPE scores, whereas no association was found between NRS-sleep and GPE scores when compared with CYP2D6*2 genotype (P > 0.05). In addition, CYP2D6*2 genotype was not related to the adverse effects of analgesic therapy. The overall results suggested that CYP2D6*2 polymorphism plays no role in the PHN

  5. Characterization of Atomoxetine Biotransformation and Implications for Development of PBPK Models for Dose Individualization in Children.

    PubMed

    Dinh, Jean C; Pearce, Robin E; Van Haandel, Leon; Gaedigk, Andrea; Leeder, J Steven

    2016-07-01

    Atomoxetine (ATX) is a second-line nonstimulant medication used to control symptoms of attention deficit hyperactivity disorder (ADHD). Inconsistent therapeutic efficacy has been reported with ATX, which may be related to variable CYP2D6-mediated drug clearance. We characterized ATX metabolism in a panel of human liver samples as a basis for a bottom-up PBPK model to aid in ATX exposure prediction and control. Km, Vmax, and Clint values in pooled human liver microsomes (HLMs) were 2.4 µM, 479 pmol/min/mg protein, and 202 µl/min/mg protein, respectively. Mean population values of kinetic parameters are not adequate to describe variability in a population, given that Km, Vmax, and Clint values from single-donor HLMs ranged from 0.93 to 79.2 µM, 20.0 to 1600 pmol/min/mg protein, and 0.3 to 936 µl/min/mg protein. All kinetic parameters were calculated from 4-hydroxyatomoxetine (4-OH-ATX) formation. CYP2E1 and CYP3A contributed to 4-OH-ATX formation in livers with CYP2D6 intermediate and poor metabolizer status. In HLMs with lower CYP2D6 activity levels, 2-hydroxymethylatomoxetine (2-CH2OH-ATX) formation became a more predominant pathway of metabolism, which appeared to be catalyzed by CYP2B6. ATX biotransformation at clinically relevant plasma concentrations was characterized in a panel of pediatric HLM (n = 116) samples by evaluating primary metabolites. Competing pathways of ATX metabolism [N-desmethylatomoxetine (NDM-ATX) and 2-CH2OH-ATX formation] had increasing importance in livers with lesser CYP2D6 activity, but, overall ATX clearance was still compromised. Modeling ATX exposure to individualize therapy would require comprehensive knowledge of factors that affect CYP2D6 activity as well as an understanding of competing pathways, particularly for individuals with lower CYP2D6 activity. PMID:27052878

  6. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-05-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  7. Metabolism of the 18O-methoxy substituent of 3-methoxybenzoic acid and other unlabeled methoxybenzoic acids by anaerobic bacteria.

    PubMed Central

    DeWeerd, K A; Saxena, A; Nagle, D P; Suflita, J M

    1988-01-01

    O-methyl substituents of aromatic compounds can provide C1 growth substrates for facultative and strict anaerobic bacteria isolated from diverse environments. The mechanism of the bioconversion of methoxylated benzoic acids to the hydroxylated derivatives was investigated with a model substrate and cultures of one anaerobic consortium, eight strict anaerobic bacteria, and one facultative anaerobic microorganism. Using high-pressure liquid chromatography and gas chromatography-mass spectral analysis, we found that a haloaromatic dehalogenating consortium, a dehalogenating isolate from that consortium, Eubacterium limosum, and a strain of Acetobacterium woodii metabolized 3-[methoxy-18O]methoxybenzoic acid (3-anisic acid) to 3-[hydroxy-18O]hydroxybenzoic acid stoichiometrically at rates of 1.5, 3.2, 52.4, and 36.7 nmol/min per mg of protein, respectively. A different strain of Acetobacterium and strains of Syntrophococcus, Clostridium, Desulfotomaculum, Enterobacter, and an anaerobic bacterium, strain TH-001, were unable to transform this compound. The O-demethylating ability of E. limosum was induced only with appropriate methoxylated benzoates but not with D-glucose, lactate, isoleucine, or methanol. Cross-acclimation and growth experiments with E. limosum showed a rate of metabolism that was an order of magnitude slower and showed no growth with either 4-methoxysalicylic acid (2-hydroxy-4-methoxybenzoic acid) or 4-anisic acid (4-methoxybenzoic acid) when adapted to 3-anisic acid. However, A. woodii NZva-16 showed slower rates and no growth with 3- or 4-methoxysalicylic acid when adapted to 3-anisic acid in similar experiments. The results clearly indicate a methyl rather than methoxy group removal mechanism for such reactions. PMID:3389815

  8. Studies on the metabolism and toxicological detection of glaucine, an isoquinoline alkaloid from Glaucium flavum (Papaveraceae), in rat urine using GC-MS, LC-MS(n) and LC-high-resolution MS(n).

    PubMed

    Meyer, Golo M J; Meyer, Markus R; Wissenbach, Dirk K; Maurer, Hans H

    2013-01-01

    Glaucine ((S)-5,6,6a,7-tetrahydro-1,2,9,10-tetramethoxy-6-methyl-4H-dibenzo [de,g]quinoline) is an isoquinoline alkaloid and main component of Glaucium flavum (Papaveraceae). It was described to be consumed as recreational drug alone or in combination with other drugs. Besides this, glaucine is used as therapeutic drug in Bulgaria and other countries as cough suppressant. Currently, there are no data available concerning metabolism and toxicological analysis of glaucine. To study both, glaucine was orally administered to Wistar rats and urine was collected. For metabolism studies, work-up of urine samples consisted of protein precipitation or enzymatic cleavage followed by solid-phase extraction. Samples were afterwards measured by liquid chromatography (LC) coupled to low or high-resolution mass spectrometry (HR-MS). The phase I and II metabolites were identified by detailed interpretation of the corresponding fragmentations, which were further confirmed by determination of their elemental composition using HR-MS. From these data, the following metabolic pathways could be proposed: O-demethylation at position 2, 9 and 10, N-demethylation, hydroxylation, N-oxidation and combinations of them as well as glucuronidation and/or sulfation of the phenolic metabolites. For monitoring a glaucine intake in case of abuse or poisoning, the O- and N-demethylated metabolites were the main targets for the gas chromatography-MS and LC-MS(n) screening approaches described by the authors. Both allowed confirming an intake of glaucine in rat urine after a dose of 2 mg/kg body mass corresponding to a common abuser's dose. PMID:23303745

  9. Effects of CYP2D6 Status on Harmaline Metabolism, Pharmacokinetics and Pharmacodynamics, and a Pharmacogenetics-Based Pharmacokinetic Model

    PubMed Central

    Wu, Chao; Jiang, Xi-Ling; Shen, Hong-Wu; Yu, Ai-Ming

    2009-01-01

    Harmaline is a β-carboline alkaloid showing neuroprotective and neurotoxic properties. Our recent studies have revealed an important role for cytochrome P450 2D6 (CYP2D6) in harmaline O-demethylation. This study, therefore, aimed to delineate the effects of CYP2D6 phenotype/genotype on harmaline metabolism, pharmacokinetics (PK) and pharmacodynamics (PD), and to develop a pharmacogenetics mechanism-based compartmental PK model. In vitro kinetic studies on metabolite formation in human CYP2D6 extensive metabolizer (EM) and poor metabolizer (PM) hepatocytes indicated that harmaline O-demethylase activity (Vmax/Km) was about 9-fold higher in EM hepatocytes. Substrate depletion showed mono-exponential decay trait, and estimated in vitro harmaline clearance (CLint, μL/min/106 cells) was significantly lower in PM hepatocytes (28.5) than EM hepatocytes (71.1). In vivo studies in CYP2D6-humanized and wild-type mouse models showed that wild-type mice were subjected to higher and longer exposure to harmaline (5 and 15 mg/kg; i.v. and i.p.), and more severe hypothermic responses. The PK/PD data were nicely described by our pharmacogenetics-based PK model involving the clearance of drug by CYP2D6 (CLCYP2D6) and other mechanisms (CLother), and an indirect response PD model, respectively. Wild-type mice were also more sensitive to harmaline in marble-burying tests, as manifested by significantly lower ED50 and steeper Hill slope. These findings suggest that distinct CYP2D6 status may cause considerable variations in harmaline metabolism, PK and PD. In addition, the pharmacogenetics-based PK model may be extended to define PK difference caused by other polymorphic drug-metabolizing enzyme in different populations. PMID:19445902

  10. Degradation of Triazine-2-(14)C Metsulfuron-Methyl in Soil from an Oil Palm Plantation.

    PubMed

    Ismail, B S; Eng, O K; Tayeb, M A

    2015-01-01

    Triazine-2-(14)C metsulfuron-methyl is a selective, systemic sulfonylurea herbicide. Degradation studies in soils are essential for the evaluation of the persistence of pesticides and their breakdown products. The purpose of the present study was to investigate the degradation of triazine-2-(14)C metsulfuron-methyl in soil under laboratory conditions. A High Performance Liquid Chromatograph (HPLC) equipped with an UV detector and an on-line radio-chemical detector, plus a Supelco Discovery column (250 x 4.6 mm, 5 μm), and PRP-1 column (305 x 7.0 mm, 10 μm) was used for the HPLC analysis. The radioactivity was determined by a Liquid Scintillation Counter (LSC) in scintillation fluid. The soil used was both sterilized and non-sterilized in order to observe the involvement of soil microbes. The estimated DT50 and DT90 values of metsulfuron-methyl in a non-sterile system were observed to be 13 and 44 days, whereas in sterilized soil, the DT50 and DT90 were 31 and 70 days, respectively. The principal degradation product after 60 days was CO2. The higher cumulative amount of (14)CO2 in (14)C-triazine in the non-sterilized soil compared to that in the sterile system suggests that biological degradation by soil micro-organisms significantly contributes to the dissipation of the compound. The major routes of degradation were O-demethylation, sulfonylurea bridge cleavage and the triazine "ring-opened." PMID:26437264