Science.gov

Sample records for 2df redshift survey

  1. Superclusters of galaxies from the 2df redshift survey. 1. the catalogue

    SciTech Connect

    Einasto, Jaan; Einasto, M.; Tago, E.; Saar, E.; Huetsi, G.; Joeveer, M.; Liivamagi, L.J.; Suhhonenko, I.; Jaaniste, J.; Heinamaki, P.; Mueller, V.; Knebe, A.; Tucker, D. /Tartu Observ. /Estonian U. /Tuorla Observ. /Potsdam, Astrophys. Inst. /Fermilab

    2006-03-01

    We use the 2dF Galaxy Redshift Survey data to compile catalogues of superclusters for the Northern and Southern regions of the 2dFGRS, altogether 543 superclusters at redshifts 0.009 {le} z {le} 0.2. We analyze methods of compiling supercluster catalogues and use results of the Millennium Simulation to investigate possible selection effects and errors. We find that the most effective method is the density field method using smoothing with an Epanechnikov kernel of radius 8 h{sup -1} Mpc. We derive positions of the highest luminosity density peaks and find the most luminous cluster in the vicinity of the peak, this cluster is considered as the main cluster and its brightest galaxy the main galaxy of the supercluster. In catalogues we give equatorial coordinates and distances of superclusters as determined by positions of their main clusters. We also calculate the expected total luminosities of the superclusters.

  2. An ANN Approach to Classification of Galaxy Spectra for the 2DF Galaxy Redshift Survey

    NASA Astrophysics Data System (ADS)

    Folkes, S. R.; Lahav, O.; Maddox, S. J.

    We present a method for automated classification of galaxies with low signal-to-noise (S/N) spectra typical of redshift surveys. We develop spectral simulations based on the parameters for the 2dF Galaxy Redshift Survey, and with these simulations we investigate the technique of Principal Component Analysis when applied specifically to spectra of low S/N. We relate the objective principal components to features in the spectra and use a small number of components to successfully reconstruct the underlying signal from the low quality spectra. Using the principal components as input, we train an Artificial Neural Network (ANN) to classify the noisy simulated spectra into morphological classes, revealing the success of the classification against the observed bJ magnitude of the source, which we compare with alternative methods of classification. We find that more than 90% of our sample of normal galaxies are correctly classified into one of five broad morphological classes for simulations at bJ = 19.7. We also show the application of these methods to spectra from other sources.

  3. Redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, J. P.

    1991-01-01

    Present-day understanding of the large-scale galaxy distribution is reviewed. The statistics of the CfA redshift survey are briefly discussed. The need for deeper surveys to clarify the issues raised by recent studies of large-scale galactic distribution is addressed.

  4. Redshift Survey Strategies

    NASA Astrophysics Data System (ADS)

    Jones, A. W.; Bland-Hawthorn, J.; Kaiser, N.

    1994-12-01

    In the first half of 1995, the Anglo-Australian Observatory is due to commission a wide field (2.1(deg) ), 400-fiber, double spectrograph system (2dF) at the f/3.3 prime focus of the AAT 3.9m bi-national facility. The instrument should be able to measure ~ 4000 galaxy redshifts (assuming a magnitude limit of b_J ~\\ 20) in a single dark night and is therefore ideally suited to studies of large-scale structure. We have carried out simple 3D numerical simulations to judge the relative merits of sparse surveys and contiguous surveys. We generate a survey volume and fill it randomly with particles according to a selection function which mimics a magnitude-limited survey at b_J = 19.7. Each of the particles is perturbed by a gaussian random field according to the dimensionless power spectrum k(3) P(k) / 2pi (2) determined by Feldman, Kaiser & Peacock (1994) from the IRAS QDOT survey. We introduce some redshift-space distortion as described by Kaiser (1987), a `thermal' component measured from pairwise velocities (Davis & Peebles 1983), and `fingers of god' due to rich clusters at random density enhancements. Our particular concern is to understand how the window function W(2(k)) of the survey geometry compromises the accuracy of statistical measures [e.g., P(k), xi (r), xi (r_sigma ,r_pi )] commonly used in the study of large-scale structure. We also examine the reliability of various tools (e.g. genus) for describing the topological structure within a contiguous region of the survey.

  5. Galaxy and cluster redshift surveys

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1988-01-01

    The present evaluation of galaxy and cluster redshift surveys gives attention to the CfA redshift survey and a deep Abell cluster redshift survey. These data support a structure in which galaxies lie on thin sheets which nearly surround vast, low-density voids. Voids such as that in Bootes are a common feature of galaxy distribution, posing a serious challenge for models. The Huchra et al. (1988) deep-cluster survey exhibits a correlation function amplitude that is a factor of about 2 smaller than that of the earlier Bahcall and Soneira (1983) sample; the difference may not be significant, however, because the cluster samples are sufficiently small to be dominated by single systems.

  6. Cosmology with photometric redshift surveys

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Bridle, Sarah

    2005-11-01

    We explore the utility of future photometric redshift imaging surveys for delineating the large-scale structure of the Universe, and assess the resulting constraints on the cosmological model. We perform the following two complementary types of analysis. (i) We quantify the statistical confidence and the accuracy with which such surveys will be able to detect and measure characteristic features in the clustering power spectrum such as the acoustic oscillations and the turnover, in a `model-independent' fashion. We show for example that a 10000-deg2 imaging survey with depth r= 22.5 and photometric redshift accuracy δz/(1 +z) = 0.03 will detect the acoustic oscillations with 99.9 per cent confidence, measuring the associated preferred cosmological scale with 2 per cent precision. Such a survey will also detect the turnover with 95 per cent confidence, determining the corresponding scale with 20 per cent accuracy. (ii) By assuming a Λ cold dark matter (ΛCDM) model power spectrum we calculate the confidence with which a non-zero baryon fraction can be deduced from such future galaxy surveys. We quantify `wiggle detection' by calculating the number of standard deviations by which the baryon fraction is measured, after marginalizing over the shape parameter. This is typically a factor of 4 more significant (in terms of number of standard deviations) than the above `model-independent' result. For both analyses, we quantify the variation of the results with magnitude depth and photometric redshift precision, and discuss the prospects for obtaining the required performance with realistic future surveys. We conclude that the precision with which the clustering pattern may be inferred from future photometric redshift surveys will be competitive with contemporaneous spectroscopic redshift surveys, assuming that systematic effects can be controlled. We find that for equivalent wiggle detection power, a photometric redshift survey requires an area approximately 12[δz/(1 +z

  7. Southern Sky Redshift Survey

    SciTech Connect

    Da Costa, L.N.; Pellegrini, P.S.; Sargent, W.L.W.; Tonry, J.; Davis, M.

    1988-04-01

    The general characteristics of the space distribution of galaxies in the SSRS sample, covering the southern Galactic cap, are examined, and maps of the space distribution are presented. The sample consists of 2028 galaxies in an area of 1.75 sr with declination south of -17.5 deg and galactic latitude below -30 deg. The survey provides useful information on large-scale structure to a depth of 120/h Mpc. The galaxy distribution exhibits prominent filaments, sheets, and voids. Some large-scale structures are highly subclustered; others are much more diffuse. 21 references.

  8. Photometric Redshifts in the IRAC Shallow Survey

    SciTech Connect

    Brodwin, M; Brown, M; Ashby, M; Bian, C; Brand, K; Dey, A; Eisenhardt, P; Eisenstein, D; Gonzalez, A; Huang, J; Kochanek, C; McKenzie, E; Pahre, M; Smith, H; Soifer, B; Stanford, S; Stern, D; Elston, R

    2006-06-13

    Accurate photometric redshifts are calculated for nearly 200,000 galaxies to a 4.5 micron flux limit of {approx} 13 {micro}Jy in the 8.5 deg{sup 2} Spitzer/IRAC Shallow survey. Using a hybrid photometric redshift algorithm incorporating both neural-net and template-fitting techniques, calibrated with over 15,000 spectroscopic redshifts, a redshift accuracy of {sigma} = 0.06 (1+z) is achieved for 95% of galaxies at 0 < z < 1.5. The accuracy is {sigma} = 0.12 (1 + z) for 95% of AGN at 0 < z < 3. Redshift probability functions, central to several ongoing studies of the galaxy population, are computed for the full sample. We demonstrate that these functions accurately represent the true redshift probability density, allowing the calculation of valid confidence intervals for all objects. These probability functions have already been used to successfully identify a population of Spitzer-selected high redshift (z > 1) galaxy clusters. We present one such spectroscopically confirmed cluster at = 1.24, ISCS J1434.2+3426. Finally, we present a measurement of the 4.5 {micro}m-selected galaxy redshift distribution.

  9. Bayesian redshift-space distortions correction from galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Ata, Metin; Angulo, Raul E.; Chuang, Chia-Hsun; Rodríguez-Torres, Sergio; Monteagudo, Carlos Hernández; Prada, Francisco; Yepes, Gustavo

    2016-03-01

    We present a Bayesian reconstruction method which maps a galaxy distribution from redshift- to real-space inferring the distances of the individual galaxies. The method is based on sampling density fields assuming a lognormal prior with a likelihood modelling non-linear stochastic bias. Coherent redshift-space distortions are corrected in a Gibbs-sampling procedure by moving the galaxies from redshift- to real-space according to the peculiar motions derived from the recovered density field using linear theory. The virialized distortions are corrected by sampling candidate real-space positions along the line of sight, which are compatible with the bulk flow corrected redshift-space position adding a random dispersion term in high-density collapsed regions (defined by the eigenvalues of the Hessian). This approach presents an alternative method to estimate the distances to galaxies using the three-dimensional spatial information, and assuming isotropy. Hence the number of applications is very broad. In this work, we show the potential of this method to constrain the growth rate up to k ˜ 0.3 h Mpc-1. Furthermore it could be useful to correct for photometric redshift errors, and to obtain improved baryon acoustic oscillations (BAO) reconstructions.

  10. A redshift survey of IRAS galaxies

    NASA Technical Reports Server (NTRS)

    Smith, Beverly J.; Kleinmann, S. G.; Huchra, J. P.; Low, F. J.

    1987-01-01

    Results are presented from a redshift survey of all 72 galaxies detected by IRAS in Band 3 at flux levels equal to or greater then 2 Jy. The luminosity function at the high luminosity end is proportional to L sup -2, however, a flattening was observed at the low luminosity end indicating that a single power law is not a good description of the entire luminosity function. Only three galaxies in the sample have emission line spectra indicative of AGN's, suggesting that, at least in nearby galaxies, unobscured nuclear activity is not a strong contributor to the far infrared flux. Comparisons between the selected IRAS galaxies and an optically complete sample taken from the CfA redshift survey show that they are more narrowly distributed than those optically selected, in the sence that the IRAS sample includes few galaxies of low absolute blue luminosity. It was also found that the space distributions of the two samples differ: the density enhancement or IRAS galaxies is only approx. 1/3 that of the optically selected galaxies in the core of the Coma cluster.

  11. Measuring the cosmological constant with redshift surveys

    NASA Astrophysics Data System (ADS)

    Ballinger, W. E.; Peacock, J. A.; Heavens, A. F.

    1996-10-01

    It has been proposed that the cosmological constant {LAMBDA} might be measured from geometric effects on large-scale structure. A positive vacuum density leads to correlation function contours which are squashed in the radial direction when calculated assuming a matter-dominated model. We show that this effect will be somewhat harder to detect than previous calculations have suggested: the squashing factor is likely to be < 1.3, given realistic constraints on the matter contribution to {OMEGA}. Moreover, the geometrical distortion risks being confused with the redshift-space distortions caused by the peculiar velocities associated with the growth of galaxy clustering. These depend on the density and bias parameters via the combination β = {OMEGA}^0.6/b, and we show that the main practical effect of a geometrical flattening factor F is to simulate gravitational instability with B_eff_ ~ 0.5(F - 1). Nevertheless, with datasets of sufficient size it is possible to distinguish the two effects, We discuss in detail how this should be done, and give a maximum-likelihood method for extracting {LAMBDA} and βb from anisotropic power-spectrum data. New-generation redshift surveys of galaxies and quasars are potentially capable of detecting a non-zero vacuum density, if it exists at a cosmologically interesting level.

  12. Constraining inflation with future galaxy redshift surveys

    SciTech Connect

    Huang, Zhiqi; Vernizzi, Filippo; Verde, Licia E-mail: liciaverde@icc.ub.edu

    2012-04-01

    With future galaxy surveys, a huge number of Fourier modes of the distribution of the large scale structures in the Universe will become available. These modes are complementary to those of the CMB and can be used to set constraints on models of the early universe, such as inflation. Using a MCMC analysis, we compare the power of the CMB with that of the combination of CMB and galaxy survey data, to constrain the power spectrum of primordial fluctuations generated during inflation. We base our analysis on the Planck satellite and a spectroscopic redshift survey with configuration parameters close to those of the Euclid mission as examples. We first consider models of slow-roll inflation, and show that the inclusion of large scale structure data improves the constraints by nearly halving the error bars on the scalar spectral index and its running. If we attempt to reconstruct the inflationary single-field potential, a similar conclusion can be reached on the parameters characterizing the potential. We then study models with features in the power spectrum. In particular, we consider ringing features produced by a break in the potential and oscillations such as in axion monodromy. Adding large scale structures improves the constraints on features by more than a factor of two. In axion monodromy we show that there are oscillations with small amplitude and frequency in momentum space that are undetected by CMB alone but can be measured by including galaxy surveys in the analysis.

  13. Hierarchical Bayesian inference of galaxy redshift distributions from photometric surveys

    NASA Astrophysics Data System (ADS)

    Leistedt, Boris; Mortlock, Daniel J.; Peiris, Hiranya V.

    2016-08-01

    Accurately characterizing the redshift distributions of galaxies is essential for analysing deep photometric surveys and testing cosmological models. We present a technique to simultaneously infer redshift distributions and individual redshifts from photometric galaxy catalogues. Our model constructs a piecewise constant representation (effectively a histogram) of the distribution of galaxy types and redshifts, the parameters of which are efficiently inferred from noisy photometric flux measurements. This approach can be seen as a generalization of template-fitting photometric redshift methods and relies on a library of spectral templates to relate the photometric fluxes of individual galaxies to their redshifts. We illustrate this technique on simulated galaxy survey data, and demonstrate that it delivers correct posterior distributions on the underlying type and redshift distributions, as well as on the individual types and redshifts of galaxies. We show that even with uninformative priors, large photometric errors and parameter degeneracies, the redshift and type distributions can be recovered robustly thanks to the hierarchical nature of the model, which is not possible with common photometric redshift estimation techniques. As a result, redshift uncertainties can be fully propagated in cosmological analyses for the first time, fulfilling an essential requirement for the current and future generations of surveys.

  14. Mapping the Galaxy Color–Redshift Relation: Optimal Photometric Redshift Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel; Capak, Peter; Stern, Daniel; Ilbert, Olivier; Salvato, Mara; Schmidt, Samuel; Longo, Giuseppe; Rhodes, Jason; Paltani, Stephane; Mobasher, Bahram; Hoekstra, Henk; Hildebrandt, Hendrik; Coupon, Jean; Steinhardt, Charles; Speagle, Josh; Faisst, Andreas; Kalinich, Adam; Brodwin, Mark; Brescia, Massimo; Cavuoti, Stefano

    2015-11-01

    Calibrating the photometric redshifts of ≳109 galaxies for upcoming weak lensing cosmology experiments is a major challenge for the astrophysics community. The path to obtaining the required spectroscopic redshifts for training and calibration is daunting, given the anticipated depths of the surveys and the difficulty in obtaining secure redshifts for some faint galaxy populations. Here we present an analysis of the problem based on the self-organizing map, a method of mapping the distribution of data in a high-dimensional space and projecting it onto a lower-dimensional representation. We apply this method to existing photometric data from the COSMOS survey selected to approximate the anticipated Euclid weak lensing sample, enabling us to robustly map the empirical distribution of galaxies in the multidimensional color space defined by the expected Euclid filters. Mapping this multicolor distribution lets us determine where—in galaxy color space—redshifts from current spectroscopic surveys exist and where they are systematically missing. Crucially, the method lets us determine whether a spectroscopic training sample is representative of the full photometric space occupied by the galaxies in a survey. We explore optimal sampling techniques and estimate the additional spectroscopy needed to map out the color–redshift relation, finding that sampling the galaxy distribution in color space in a systematic way can efficiently meet the calibration requirements. While the analysis presented here focuses on the Euclid survey, similar analysis can be applied to other surveys facing the same calibration challenge, such as DES, LSST, and WFIRST.

  15. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ˜4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  16. SHELS: Complete Redshift Surveys of Two Widely Separated Fields

    NASA Astrophysics Data System (ADS)

    Geller, Margaret J.; Hwang, Ho Seong; Dell’Antonio, Ian P.; Zahid, Harus Jabran; Kurtz, Michael J.; Fabricant, Daniel G.

    2016-05-01

    The Smithsonian Hectospec Lensing Survey (SHELS) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey (DLS). Both fields are more than 94% complete to a Galactic extinction corrected R 0 = 20.2. Here, we describe the redshift survey of the F1 field centered at R.A.2000 = 00h53m25.ˢ3 and decl.2000 = 12°33‧55″ like F2, the F1 field covers ∼4 deg2. The redshift survey of the F1 field includes 9426 new galaxy redshifts measured with Hectospec on the MMT (published here). As a guide to future uses of the combined survey, we compare the mass metallicity relation and the distributions of D n 4000 as a function of stellar mass and redshift for the two fields. The mass–metallicity relations differ by an insignificant 1.6σ. For galaxies in the stellar mass range 1010–1011 M ⊙, the increase in the star-forming fraction with redshift is remarkably similar in the two fields. The seemingly surprising 31%–38% difference in the overall galaxy counts in F1 and F2 is probably consistent with the expected cosmic variance given the subtleties of the relative systematics in the two surveys. We also review the DLS cluster detections in the two fields: poorer photometric data for F1 precluded secure detection of the single massive cluster at z = 0.35 that we find in SHELS. Taken together, the two fields include 16,055 redshifts for galaxies with {R}0≤slant 20.2 and 20,754 redshifts for galaxies with R ≤ 20.6. These dense surveys in two well-separated fields provide a basis for future investigations of galaxy properties and large-scale structure.

  17. On the derivation of selection functions from redshift survey data

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc

    1991-01-01

    A previously unrecognized effect is described in the derivation of luminosity functions and selection functions from existing redshift survey data, due to binning of quoted magnitudes and diameters. Corrections are made for this effect in the Center for Astrophysics (CfA) and Southern Sky (SSRS) Redshift Surveys. The correction makes subtle but systematic changes in the derived density fields of the CfA survey, especially within 2000 km/s of the Local Group. The effect on the density field of the SSRS survey is negligible.

  18. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    DOE PAGESBeta

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using onlymore » the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.« less

  19. Galaxy clustering with photometric surveys using PDF redshift information

    DOE PAGESBeta

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-03-28

    Here, photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colors, that are obtained through multi-band imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths aremore » $$\\Delta z=0.1$$, the use of the entire PDF reduces the typical measurement bias from 5%, when using single point estimates, to 3%.« less

  20. Galaxy clustering with photometric surveys using PDF redshift information

    NASA Astrophysics Data System (ADS)

    Asorey, J.; Carrasco Kind, M.; Sevilla-Noarbe, I.; Brunner, R. J.; Thaler, J.

    2016-06-01

    Photometric surveys produce large-area maps of the galaxy distribution, but with less accurate redshift information than is obtained from spectroscopic methods. Modern photometric redshift (photo-z) algorithms use galaxy magnitudes, or colours, that are obtained through multiband imaging to produce a probability density function (PDF) for each galaxy in the map. We used simulated data to study the effect of using different photo-z estimators to assign galaxies to redshift bins in order to compare their effects on angular clustering and galaxy bias measurements. We found that if we use the entire PDF, rather than a single-point (mean or mode) estimate, the deviations are less biased, especially when using narrow redshift bins. When the redshift bin widths are Δz = 0.1, the use of the entire PDF reduces the typical measurement bias from 5 per cent, when using single point estimates, to 3 per cent.

  1. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A.; Coil, Alison L.; Cooper, Michael C.; Gwyn, Stephen D. J. E-mail: janewman@pitt.edu E-mail: m.cooper@uci.edu

    2013-02-15

    This paper describes a new catalog that supplements the existing DEEP2 Galaxy Redshift Survey photometric and spectroscopic catalogs with ugriz photometry from two other surveys: the Canada-France-Hawaii Legacy Survey (CFHTLS) and the Sloan Digital Sky Survey (SDSS). Each catalog is cross-matched by position on the sky in order to assign ugriz photometry to objects in the DEEP2 catalogs. We have recalibrated the CFHTLS photometry where it overlaps DEEP2 in order to provide a more uniform data set. We have also used this improved photometry to predict DEEP2 BRI photometry in regions where only poorer measurements were available previously. In addition, we have included improved astrometry tied to SDSS rather than USNO-A2.0 for all DEEP2 objects. In total this catalog contains {approx}27, 000 objects with full ugriz photometry as well as robust spectroscopic redshift measurements, 64% of which have r > 23. By combining the secure and accurate redshifts of the DEEP2 Galaxy Redshift Survey with ugriz photometry, we have created a catalog that can be used as an excellent testbed for future photo-z studies, including tests of algorithms for surveys such as LSST and DES.

  2. Statistical Analysis of Galaxy Redshift Surveys

    NASA Astrophysics Data System (ADS)

    Percival, Will J.

    2008-12-01

    The statistical distribution of galaxies encodes significant cosmological information. For Gaussian random fields, 2-point functions, the correlation function in real space and the power spectrum in Fourier space are complete, and offer the most direct route to this information. In this proceedings, I consider three mechanisms for extracting information from the power spectrum. The relative amplitude of small-scale and large-scale power can constrain the matter-radiation equality scale, but this is hard to disentangle from galaxy bias. Baryon Acoustic Oscillations are more robust to galaxy bias effects, and lead to constraints the evolution of the Universe by providing a standard ruler whose distance can be compared at different redshifts. Redshift-Space distortions, resulting from galaxy peculiar velocities can be used to measure the cosmological growth of structure, and are immune to density bias as the velocities are independent of galaxy properties.

  3. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS

    SciTech Connect

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Harker, Justin J.; Lai, Kamson; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan Renbin; Kassin, Susan A.; Konidaris, N. P. E-mail: djm70@pitt.edu E-mail: mdavis@berkeley.edu E-mail: koo@ucolick.org E-mail: phillips@ucolick.org; and others

    2013-09-15

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z {approx} 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude M{sub B} = -20 at z {approx} 1 via {approx}90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg{sup 2} divided into four separate fields observed to a limiting apparent magnitude of R{sub AB} = 24.1. Objects with z {approx}< 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted {approx}2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z {approx} 1.45, where the [O II] 3727 A doublet lies in the infrared. The DEIMOS 1200 line mm{sup -1} grating used for the survey delivers high spectral resolution (R {approx} 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or

  4. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Technical Reports Server (NTRS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L; Guhathakurta, Puraga; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Wilmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Kirby, Evan N.; Lotz, Jennifer M.

    2013-01-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z approx. 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z approx. 1 via approx.90 nights of observation on the Keck telescope. The survey covers an area of 2.8 Sq. deg divided into four separate fields observed to a limiting apparent magnitude of R(sub AB) = 24.1. Objects with z approx. < 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted approx. 2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z approx. 1.45, where the [O ii] 3727 Ang. doublet lies in the infrared. The DEIMOS 1200 line mm(exp -1) grating used for the survey delivers high spectral resolution (R approx. 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other

  5. The DEEP2 Galaxy Redshift Survey: Design, Observations, Data Reduction, and Redshifts

    NASA Astrophysics Data System (ADS)

    Newman, Jeffrey A.; Cooper, Michael C.; Davis, Marc; Faber, S. M.; Coil, Alison L.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Conroy, Charlie; Dutton, Aaron A.; Finkbeiner, Douglas P.; Gerke, Brian F.; Rosario, David J.; Weiner, Benjamin J.; Willmer, C. N. A.; Yan, Renbin; Harker, Justin J.; Kassin, Susan A.; Konidaris, N. P.; Lai, Kamson; Madgwick, Darren S.; Noeske, K. G.; Wirth, Gregory D.; Connolly, A. J.; Kaiser, N.; Kirby, Evan N.; Lemaux, Brian C.; Lin, Lihwai; Lotz, Jennifer M.; Luppino, G. A.; Marinoni, C.; Matthews, Daniel J.; Metevier, Anne; Schiavon, Ricardo P.

    2013-09-01

    We describe the design and data analysis of the DEEP2 Galaxy Redshift Survey, the densest and largest high-precision redshift survey of galaxies at z ~ 1 completed to date. The survey was designed to conduct a comprehensive census of massive galaxies, their properties, environments, and large-scale structure down to absolute magnitude MB = -20 at z ~ 1 via ~90 nights of observation on the Keck telescope. The survey covers an area of 2.8 deg2 divided into four separate fields observed to a limiting apparent magnitude of R AB = 24.1. Objects with z <~ 0.7 are readily identifiable using BRI photometry and rejected in three of the four DEEP2 fields, allowing galaxies with z > 0.7 to be targeted ~2.5 times more efficiently than in a purely magnitude-limited sample. Approximately 60% of eligible targets are chosen for spectroscopy, yielding nearly 53,000 spectra and more than 38,000 reliable redshift measurements. Most of the targets that fail to yield secure redshifts are blue objects that lie beyond z ~ 1.45, where the [O II] 3727 Å doublet lies in the infrared. The DEIMOS 1200 line mm-1 grating used for the survey delivers high spectral resolution (R ~ 6000), accurate and secure redshifts, and unique internal kinematic information. Extensive ancillary data are available in the DEEP2 fields, particularly in the Extended Groth Strip, which has evolved into one of the richest multiwavelength regions on the sky. This paper is intended as a handbook for users of the DEEP2 Data Release 4, which includes all DEEP2 spectra and redshifts, as well as for the DEEP2 DEIMOS data reduction pipelines. Extensive details are provided on object selection, mask design, biases in target selection and redshift measurements, the spec2d two-dimensional data-reduction pipeline, the spec1d automated redshift pipeline, and the zspec visual redshift verification process, along with examples of instrumental signatures or other artifacts that in some cases remain after data reduction. Redshift

  6. Spectrophotometric Redshifts in the Faint Infrared Grism Survey

    NASA Astrophysics Data System (ADS)

    Pharo, John; Malhotra, Sangeeta; Rhoads, James E.

    2016-06-01

    We have combined HST grism spectroscopy and deep broadband imaging to measure spectro-photometric redshifts (SPZs) of faint galaxies. Using a technique pioneered by Ryan et al. 2007, one can combine spectra and photometry to yield an SPZ that is more accurate than pure photometric redshifts, and can probe more deeply than ground-based spectroscopic redshifts. By taking mid-resolution spectra from the HST Faint Infrared Grism Survey (FIGS), SPZs can be found for measurements potentially down to 27th magnitude (the typical brightness of a dwarf galaxy at redshift ∼1.5). A galaxy’s redshift is vital for understanding its place in the growth and evolution of the universe. The measurement of high-accuracy SPZs for FIGS sources will improve the faint-end and high-redshift portions of the luminosity function, and make possible a robust analysis of the FIGS fields for signs of Large Scale Structure (LSS). The improved redshift and distance measurements allowed for the identification of a structure at z=0.83 in one of the FIGS fields.

  7. The La Silla-QUEST Low Redshift Supernova Survey

    NASA Astrophysics Data System (ADS)

    Baltay, Charles; Rabinowitz, David; Hadjiyska, Elena; Walker, Emma S.; Nugent, Peter; Coppi, Paolo; Ellman, Nancy; Feindt, Ulrich; McKinnon, Ryan; Horowitz, Benjamin; Effron, Aaron

    2013-06-01

    The La Silla-QUEST Low Redshift Supernova Survey is a part of the La Silla-QUEST Southern Hemisphere Variability Survey. The survey uses the 10 deg2 QUEST camera installed at the prime focus of the 1.0-m Schmidt Telescope of the European Southern Observatory at La Silla, Chile, and utilizes essentially all of the observing time of the telescope. The QUEST camera was installed on the ESO Schmidt telescope in 2009 after completing a 5 year variability survey in the northern hemisphere using the 1.2-m Oschin Schmidt telescope at Palomar. La Silla-QUEST started science operations in 2009 September. The low redshift supernova survey commenced in 2011 December and is planned to continue for the next 4 years. In this article we describe the instrumentation, software, operation, and performance characteristics of the survey.

  8. SHELS: TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS

    SciTech Connect

    Geller, Margaret J.; Kurtz, Michael J.; Fabricant, Daniel G.; Dell'Antonio, Ian P.; Ramella, Massimo E-mail: mkurtz@cfa.harvard.ed E-mail: ian@het.brown.ed

    2010-02-01

    Weak-lensing surveys are emerging as an important tool for the construction of 'mass-selected' clusters of galaxies. We evaluate both the efficiency and completeness of a weak-lensing selection by combining a dense, complete redshift survey, the Smithsonian Hectospec Lensing Survey (SHELS), with a weak-lensing map from the Deep Lens Survey (DLS). SHELS includes 11,692 redshifts for galaxies with R <= 20.6 in the 4 deg{sup 2} DLS field; the survey is a solid basis for identifying massive clusters of galaxies with redshift z approx< 0.55. The range of sensitivity of the redshift survey is similar to the range for the DLS convergence map. Only four of the 12 convergence peaks with signal to noise >=3.5 correspond to clusters of galaxies with M approx> 1.7 x 10{sup 14} M{sub sun}. Four of the eight massive clusters in SHELS are detected in the weak-lensing map yielding a completeness of approx50%. We examine the seven known extended cluster X-ray sources in the DLS field: three can be detected in the weak-lensing map, three should not be detected without boosting from superposed large-scale structure, and one is mysteriously undetected even though its optical properties suggest that it should produce a detectable lensing signal. Taken together, these results underscore the need for more extensive comparisons among different methods of massive cluster identification.

  9. Spectral Confusion for Cosmological Surveys of Redshifted C II Emission

    NASA Astrophysics Data System (ADS)

    Kogut, A.; Dwek, E.; Moseley, S. H.

    2015-06-01

    Far-infrared cooling lines are ubiquitous features in the spectra of star-forming galaxies. Surveys of redshifted fine-structure lines provide a promising new tool to study structure formation and galactic evolution at redshifts including the epoch of reionization as well as the peak of star formation. Unlike neutral hydrogen surveys, where the 21 cm line is the only bright line, surveys of redshifted fine-structure lines suffer from confusion generated by line broadening, spectral overlap of different lines, and the crowding of sources with redshift. We use simulations to investigate the resulting spectral confusion and derive observing parameters to minimize these effects in pencil-beam surveys of redshifted far-IR line emission. We generate simulated spectra of the 17 brightest far-IR lines in galaxies, covering the 150–1300 μm wavelength region corresponding to redshifts 0 < z < 7, and develop a simple iterative algorithm that successfully identifies the 158 μm [C ii] line and other lines. Although the [C ii] line is a principal coolant for the interstellar medium, the assumption that the brightest observed lines in a given line of sight are always [C ii] lines is a poor approximation to the simulated spectra once other lines are included. Blind line identification requires detection of fainter companion lines from the same host galaxies, driving survey sensitivity requirements. The observations require moderate spectral resolution 700 < R < 4000 with angular resolution between 20″ and 10‧, sufficiently narrow to minimize confusion yet sufficiently large to include a statistically meaningful number of sources.

  10. Catastrophic photometric redshift errors: Weak-lensing survey requirements

    SciTech Connect

    Bernstein, Gary; Huterer, Dragan

    2010-01-11

    We study the sensitivity of weak lensing surveys to the effects of catastrophic redshift errors - cases where the true redshift is misestimated by a significant amount. To compute the biases in cosmological parameters, we adopt an efficient linearized analysis where the redshift errors are directly related to shifts in the weak lensing convergence power spectra. We estimate the number Nspec of unbiased spectroscopic redshifts needed to determine the catastrophic error rate well enough that biases in cosmological parameters are below statistical errors of weak lensing tomography. While the straightforward estimate of Nspec is ~106 we find that using only the photometric redshifts with z ≤ 2.5 leads to a drastic reduction in Nspec to ~ 30,000 while negligibly increasing statistical errors in dark energy parameters. Therefore, the size of spectroscopic survey needed to control catastrophic errors is similar to that previously deemed necessary to constrain the core of the zs – zp distribution. We also study the efficacy of the recent proposal to measure redshift errors by cross-correlation between the photo-z and spectroscopic samples. We find that this method requires ~ 10% a priori knowledge of the bias and stochasticity of the outlier population, and is also easily confounded by lensing magnification bias. In conclusion, the cross-correlation method is therefore unlikely to supplant the need for a complete spectroscopic redshift survey of the source population.

  11. Galaxy redshift surveys with sparse sampling

    SciTech Connect

    Chiang, Chi-Ting; Wullstein, Philipp; Komatsu, Eiichiro; Jee, Inh; Jeong, Donghui; Blanc, Guillermo A.; Ciardullo, Robin; Gronwall, Caryl; Hagen, Alex; Schneider, Donald P.; Drory, Niv; Fabricius, Maximilian; Landriau, Martin; Finkelstein, Steven; Jogee, Shardha; Cooper, Erin Mentuch; Tuttle, Sarah; Gebhardt, Karl; Hill, Gary J.

    2013-12-01

    Survey observations of the three-dimensional locations of galaxies are a powerful approach to measure the distribution of matter in the universe, which can be used to learn about the nature of dark energy, physics of inflation, neutrino masses, etc. A competitive survey, however, requires a large volume (e.g., V{sub survey} ∼ 10Gpc{sup 3}) to be covered, and thus tends to be expensive. A ''sparse sampling'' method offers a more affordable solution to this problem: within a survey footprint covering a given survey volume, V{sub survey}, we observe only a fraction of the volume. The distribution of observed regions should be chosen such that their separation is smaller than the length scale corresponding to the wavenumber of interest. Then one can recover the power spectrum of galaxies with precision expected for a survey covering a volume of V{sub survey} (rather than the volume of the sum of observed regions) with the number density of galaxies given by the total number of observed galaxies divided by V{sub survey} (rather than the number density of galaxies within an observed region). We find that regularly-spaced sampling yields an unbiased power spectrum with no window function effect, and deviations from regularly-spaced sampling, which are unavoidable in realistic surveys, introduce calculable window function effects and increase the uncertainties of the recovered power spectrum. On the other hand, we show that the two-point correlation function (pair counting) is not affected by sparse sampling. While we discuss the sparse sampling method within the context of the forthcoming Hobby-Eberly Telescope Dark Energy Experiment, the method is general and can be applied to other galaxy surveys.

  12. Probing neutrinos from Planck and forthcoming galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yoshitaka; Kadota, Kenji

    2014-01-01

    We investigate how much the constraints on the neutrino properties can be improved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the constraint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measurements. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the projected error of Script O(0.02) eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cosmological measurement of the total neutrino mass can distinguish between the normal and inverted mass hierarchy scenarios if the minimal neutrino mass lesssim0.005 eV with the predicted 1-σ uncertainties taken into account.

  13. Probing neutrinos from Planck and forthcoming galaxy redshift surveys

    SciTech Connect

    Takeuchi, Yoshitaka; Kadota, Kenji E-mail: kadota.kenji@f.nagoya-u.jp

    2014-01-01

    We investigate how much the constraints on the neutrino properties can be improved by combining the CMB, the photometric and spectroscopic galaxy redshift surveys which include the CMB lensing, galaxy lensing tomography, galaxy clustering and redshift space distortion observables. We pay a particular attention to the constraint on the neutrino mass in view of the forthcoming redshift surveys such as the Euclid satellite and the LSST survey along with the Planck CMB lensing measurements. Combining the transverse mode information from the angular power spectrum and the longitudinal mode information from the spectroscopic survey with the redshift space distortion measurements can determine the total neutrino mass with the projected error of O(0.02) eV. Our analysis fixes the mass splittings among the neutrino species to be consistent with the neutrino oscillation data, and we accordingly study the sensitivity of our parameter estimations on the minimal neutrino mass. The cosmological measurement of the total neutrino mass can distinguish between the normal and inverted mass hierarchy scenarios if the minimal neutrino mass ∼<0.005 eV with the predicted 1–σ uncertainties taken into account.

  14. Nonlinear clustering in the CfA redshift survey

    SciTech Connect

    Alimi, J.; Blanchard, A.; Schaeffer, R. Ecole Polytechnique, Palaiseau Paris VII Universite CEA, Service de Physique Theorique de Saclay, Gif-sur-Yvette )

    1990-01-01

    The probability of finding a hole in a randomly placed sphere of volume V has been considered in the Cfa survey by numerous authors. The main emphasis of these studies has been on a scaling law derived from the assumption of hierarchical clustering. Here, the counts in cell statistics P(N) in the CfA redshift survey are analyzed. The results show that the general behavior of the P(N) can be predicted on the sole assumption of the hierarchical hypothesis. Scaling forms can then be predicted which appear to be verified to a fairly good extent in the Cfa redshift survey. This implies that the hypothesis of scale-invariant many-body correlations function provides for a satisfactory description of the count-in-cell statistics. 23 refs.

  15. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2005-08-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  16. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Aracil, Bastien; Davé, Romeel; Mulchaey, John; Chen, Hsiao-Wen

    2006-02-01

    A comparison of the baryonic mass density inferred from BBN and the CMB with a census of visible baryonic components at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations predict that the majority of 'missing' baryons lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers directly impacts our understanding of the distribution of baryons in the universe. The principal goal of our program is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web', or a different region of the universe altogether. We are pursuing an observational program to search for galaxies associated with O VI absorbers at low redshift. To accomplish this project, we require deep UBVRI images in fields surrounding quasars surveyed for O VI absorption. This dataset will provide precise photometric redshifts of z< 0.3 galaxies with L > L^*/10 and measures of color and morphology. Ultimately, we will use the photometric redshifts to efficiently pre-select galaxies for spectroscopy on multi-slit spectrometers. By correlating the galaxy redshifts against the O VI absorption lines and comparing directly with cosmological simulations, we will establish the origin of the O VI gas.

  17. Caltech Faint Galaxy Redshift Survey. XI. The Merger Rate to Redshift 1 from Kinematic Pairs.

    PubMed

    Carlberg; Cohen; Patton; Blandford; Hogg; Yee; Morris; Lin; Hall; Sawicki; Wirth; Cowie; Hu; Songaila

    2000-03-20

    The rate of mass accumulation due to galaxy merging depends on the mass, density, and velocity distribution of galaxies in the near neighborhood of a host galaxy. The fractional luminosity in kinematic pairs combines all of these effects in a single estimator that is relatively insensitive to population evolution. Here we use a k-corrected and evolution-compensated volume-limited sample having an R-band absolute magnitude of Mk,eRredshifts from the Caltech Faint Galaxy Redshift Survey and 3000 from the Canadian Network for Observational Cosmology field galaxy survey to measure the rate and redshift evolution of merging. The combined sample has an approximately constant comoving number and luminosity density from redshift 0.1 to 1.1 (OmegaM=0.2, OmegaLambda=0.8); hence, any merger evolution will be dominated by correlation and velocity evolution, not density evolution. We identify kinematic pairs with projected separations less than either 50 or 100 h-1 kpc and rest-frame velocity differences of less than 1000 km s-1. The fractional luminosity in pairs is modeled as fL&parl0;Deltav,rp,Mk,er&parr0;&parl0;1+z&parr0;mL, where &sqbl0;fL,mL&sqbr0; are &sqbl0;0.14+/-0.07,0+/-1.4&sqbr0; and &sqbl0;0.37+/-0.7,0.1+/-0.5&sqbr0; for rpredshift-space statistics to a merger rate, we use the data to derive a conversion factor to a physical space pair density, a merger probability, and a mean in-spiral time. The resulting mass accretion rate per galaxy (M1,M2>/=0.2M*) is 0.02+/-0.01&parl0;1+z&parr0;0.1+/-0.5M* Gyr-1. Present-day high-luminosity galaxies therefore have accreted approximately 0.15M* of their mass over the approximately 7 Gyr to redshift 1. Since merging is likely only weakly dependent on the host mass, the fractional effect, deltaM&solm0;M approximately 0.15M*&solm0;M, is dramatic for lower mass

  18. Can a galaxy redshift survey measure dark energy clustering?

    SciTech Connect

    Takada, Masahiro

    2006-08-15

    A wide-field galaxy redshift survey allows one to probe galaxy clustering at largest spatial scales, which carries invaluable information on horizon-scale physics complementarily to the cosmic microwave background (CMB). Assuming the planned survey consisting of z{approx}1 and z{approx}3 surveys with areas of 2000 and 300 deg.{sup 2}, respectively, we study the prospects for probing dark energy clustering from the measured galaxy power spectrum, assuming the dynamical properties of dark energy are specified in terms of the equation of state and the effective sound speed c{sub e} in the context of an adiabatic cold dark dominated matter model. The dark energy clustering adds a power to the galaxy power spectrum amplitude at spatial scales greater than the sound horizon, and the enhancement is sensitive to redshift evolution of the net dark energy density, i.e. the equation of state. We find that the galaxy survey, when combined with CMB expected from the Planck satellite mission, can distinguish dark energy clustering from a smooth dark energy model such as the quintessence model (c{sub e}=1), when c{sub e} < or approx. 0.04 (0.02) in the case of the constant equation of state w{sub 0}=-0.9 (-0.95). An ultimate full-sky survey of z{approx}1 galaxies allows the detection when c{sub e}(less-or-similar sign)0.08 (0.04) for w{sub 0}=0.9 (-0.95). These forecasts show a compatible power with an all-sky CMB and galaxy cross correlation that probes the integrated Sachs-Wolfe effect. We also investigate a degeneracy between the dark energy clustering and the nonrelativistic neutrinos implied from the neutrino oscillation experiments, because the two effects both induce a scale-dependent modification in the galaxy power spectrum shape at largest spatial scales accessible from the galaxy survey. It is shown that a wider redshift coverage can efficiently separate the two effects by utilizing the different redshift dependences, where dark energy clustering is apparent only at

  19. The non-linear redshift-space power spectrum: Omega from redshift surveys

    NASA Astrophysics Data System (ADS)

    Fisher, Karl B.; Nusser, Adi

    1996-03-01

    We examine the anisotropies in the power spectrum by the mapping of real space to redshift space. Using the Zel'dovich approximation, we obtain an analytic expression for the non-linear redshift-space power spectrum in the distant observer limit. For a given unbiased galaxy distribution in redshift space, the anisotropies in the power spectrum depend on the parameter f(Omega)~=Omega^0.6, where Omega is the density parameter. We quantify these anisotropies by the ratio, R, of the quadrupole and monopole angular moments of the power spectrum. In contrast to linear theory, the Zel'dovich approximation predicts a decline in R with decreasing scale. This departure from linear theory is due to non-linear dynamics and is not a result of incoherent random velocities. The rate of decline depends strongly on Omega and the initial power spectrum. However, we find a scaling relation between the quantity R/R_lin (where R_lin is the linear theory value of R) and the dimensionless variable k/k_nl, where k_nl is a wavenumber determined by the scale of non-linear structures. The scaling is weakly dependent on the initial power spectrum and is in good agreement with a large N-body simulation. This universal scaling relation greatly extends the scales over which redshift distortions can be used as a probe of Omega. The scaling relation is in agreement with the observed quadrupole-to-monopole ratio from the 1.2-Jy IRAS survey, with a best estimate of Omega^0.6/b_lin=0.6+/-0.2 where b_lin is the linear bias parameter.

  20. The Center for Astrophysics Redshift Survey - Recent results

    NASA Technical Reports Server (NTRS)

    Geller, Margaret J.; Huchra, John P.

    1989-01-01

    Six strips of the CfA redshift survey extension are now complete. The data continue to support a picture in which galaxies are on thin sheets which nearly surround vast low-density voids. The largest structures are comparable with the extent of the survey. Voids like the one in Bootes are a common feature of the large-scale distribution of galaxies. The issue of fair samples of the galaxy distribution is discussed, examining statistical measures of the galaxy distribution including the two-point correlation functions.

  1. The PC Redshift Survey and Other Adventures in Introductory Astronomy

    NASA Astrophysics Data System (ADS)

    Marschall, L. A.; Stine, P.; Snyder, G. A.; Hayden, M. B.; Luehrmann, M. K.; Good, R. F.; Cooper, P. R.

    1995-05-01

    Project CLEA's latest laboratory exercise in introductory astronomy, "The Large Scale Structure of the Universe" is a simulated red-shift survey, allowing students to investigate the large-scale structure of the universe in a restricted slice of space. Using a simulated telescope with a realistic photon-counting spectrometer, students measure the redshifts of galaxies and construct a wedge diagram showing the 3-d distribution of galaxies. A sample of just over 200 galaxies has been selected from the CfA redshift survey, chosen to outline the major features of the Coma cluster and the Great Wall. Stars down to 12th magnitude from the HST Guide Star Catalog are also included in the telescope field of view, covering a strip 5 degrees wide between 12H and 16H RA at declination +29 degrees. Students can choose from three telescopes of differing aperture to optimize their data-taking efficiency; on-line data recording and spreadsheet access are provided. The exercise can be performed collaboratively at multiple set-ups in a large laboratory, or can be performed by individuals as a long-term project. In addition to the Large Scale Structure exercise, several new and improved versions of the CLEA exercises will be shown. Project CLEA is supported by grants from the National Science Foundation and from Gettysburg College.

  2. Requirements on the Redshift Accuracy for future Supernova andNumber Count Surveys

    SciTech Connect

    Huterer, Dragan; Kim, Alex; Broderick, Tamara

    2004-08-09

    We investigate the required redshift accuracy of type Ia supernova and cluster number-count surveys in order for the redshift uncertainties not to contribute appreciably to the dark energy parameter error budget. For the SNAP supernova experiment, we find that, without the assistance of ground-based measurements, individual supernova redshifts would need to be determined to about 0.002 or better, which is a challenging but feasible requirement for a low-resolution spectrograph. However, we find that accurate redshifts for z < 0.1 supernovae, obtained with ground-based experiments, are sufficient to immunize the results against even relatively large redshift errors at high z. For the future cluster number-count surveys such as the South Pole Telescope, Planck or DUET, we find that the purely statistical error in photometric redshift is less important, and that the irreducible, systematic bias in redshift drives the requirements. The redshift bias will have to be kept below 0.001-0.005 per redshift bin (which is determined by the filter set), depending on the sky coverage and details of the definition of the minimal mass of the survey. Furthermore, we find that X-ray surveys have a more stringent required redshift accuracy than Sunyaev-Zeldovich (SZ) effect surveys since they use a shorter lever arm in redshift; conversely, SZ surveys benefit from their high redshift reach only so long as some redshift information is available for distant (zgtrsim1) clusters.

  3. Surveying the Origin of O VI Gas at Low Redshift

    NASA Astrophysics Data System (ADS)

    Prochaska, Jason X.; Tripp, Todd; Chen, Hsiao-Wen; Mulchaey, John

    2002-08-01

    A comparison of the baryonic mass density inferred from BBN with a census of visible baryonic components (i.e. galaxies, HI gas) at the present epoch indicates a significant fraction of the universe's baryons are hidden in a dark component. Theoretical investigations into these missing bayons suggest the majority lie in a hot (T ~ 10^5-7 K), low density medium which can be efficiently detected through O VI absorption. More importantly, recent STIS+FUSE surveys for O VI are consistent with this gas comprising a significant fraction of the missing baryons. Establishing the physical nature of these O VI absorbers, therefore, may have great impact on our understanding of the distribution of baryons in the universe. The principal goal of this proposal is to determine if this O VI gas arises in galactic halos, the intragroup or intracluster medium, the low density 'cosmic web' which connects collapsed objects, or a different region of the universe altogether. We are currently pursuing a program to search for galaxies associated with O VI absorbers at low redshift (z < 0.5). To accomplish this project, we will obtain deep UBVRI images of the galaxies in four fields surrounding quasars surveyed for O VI absorption. This dataset will provide accurate photometric redshifts of the z< 0.5 galaxies with L > L^*/10 and will reveal their physical characteristics. Ultimately, we will utilize the photometric redshifts to efficiently pre-select galaxies for follow-up spectroscopy on multi- slit spectrographs. By correlating the photometric and spectroscopy galaxy redshifts against the O VI absorption lines and comparing directly with detailed cosmological simulations, we will establish the origin of the O VI gas.

  4. Photometric Redshifts for Quasars in Multi-band Surveys

    NASA Astrophysics Data System (ADS)

    Brescia, M.; Cavuoti, S.; D'Abrusco, R.; Longo, G.; Mercurio, A.

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of Δz norm (i.e., (z spec - z phot)/(1 + z spec)), to an average of Δz norm = 0.004, a standard deviation of σ = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z spec <= 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2σ from the spectroscopic value, is <3%, leading to σ = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  5. PHOTOMETRIC REDSHIFTS FOR QUASARS IN MULTI-BAND SURVEYS

    SciTech Connect

    Brescia, M.; Mercurio, A.; Cavuoti, S.; Longo, G.; D'Abrusco, R.

    2013-08-01

    The Multi Layer Perceptron with Quasi Newton Algorithm (MLPQNA) is a machine learning method that can be used to cope with regression and classification problems on complex and massive data sets. In this paper, we give a formal description of the method and present the results of its application to the evaluation of photometric redshifts for quasars. The data set used for the experiment was obtained by merging four different surveys (Sloan Digital Sky Survey, GALEX, UKIDSS, and WISE), thus covering a wide range of wavelengths from the UV to the mid-infrared. The method is able (1) to achieve a very high accuracy, (2) to drastically reduce the number of outliers and catastrophic objects, and (3) to discriminate among parameters (or features) on the basis of their significance, so that the number of features used for training and analysis can be optimized in order to reduce both the computational demands and the effects of degeneracy. The best experiment, which makes use of a selected combination of parameters drawn from the four surveys, leads, in terms of {Delta}z{sub norm} (i.e., (z{sub spec} - z{sub phot})/(1 + z{sub spec})), to an average of {Delta}z{sub norm} = 0.004, a standard deviation of {sigma} = 0.069, and a median absolute deviation, MAD = 0.02, over the whole redshift range (i.e., z{sub spec} {<=} 3.6), defined by the four-survey cross-matched spectroscopic sample. The fraction of catastrophic outliers, i.e., of objects with photo-z deviating more than 2{sigma} from the spectroscopic value, is <3%, leading to {sigma} = 0.035 after their removal, over the same redshift range. The method is made available to the community through the DAMEWARE Web application.

  6. Combining weak-lensing tomography and spectroscopic redshift surveys

    DOE PAGESBeta

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the samemore » sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M⊙ have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M⊙. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M⊙, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is uncertain by > 0.5%.« less

  7. Combining weak-lensing tomography and spectroscopic redshift surveys

    SciTech Connect

    Cai, Yan -Chuan; Bernstein, Gary

    2012-05-11

    Redshift space distortion (RSD) is a powerful way of measuring the growth of structure and testing General Relativity, but it is limited by cosmic variance and the degeneracy between galaxy bias b and the growth rate factor f. The cross-correlation of lensing shear with the galaxy density field can in principle measure b in a manner free from cosmic variance limits, breaking the f-b degeneracy and allowing inference of the matter power spectrum from the galaxy survey. We analyze the growth constraints from a realistic tomographic weak lensing photo-z survey combined with a spectroscopic galaxy redshift survey over the same sky area. For sky coverage fsky = 0.5, analysis of the transverse modes measures b to 2-3% accuracy per Δz = 0.1 bin at z < 1 when ~10 galaxies arcmin–2 are measured in the lensing survey and all halos with M > Mmin = 1013h–1M have spectra. For the gravitational growth parameter parameter γ (f = Ωγm), combining the lensing information with RSD analysis of non-transverse modes yields accuracy σ(γ) ≈ 0.01. Adding lensing information to the RSD survey improves \\sigma(\\gamma) by an amount equivalent to a 3x (10x) increase in RSD survey area when the spectroscopic survey extends down to halo mass 1013.5 (1014) h–1 M. We also find that the σ(γ) of overlapping surveys is equivalent to that of surveys 1.5-2 times larger if they are separated on the sky. This gain is greatest when the spectroscopic mass threshold is 1013 -1014 h–1 M, similar to LRG surveys. The gain of overlapping surveys is reduced for very deep or very shallow spectroscopic surveys, but any practical surveys are more powerful when overlapped than when separated. As a result, the gain of overlapped surveys is larger in the case when the primordial power spectrum normalization is

  8. A Catalog of Photometry for Las Campanas Redshift Survey Galaxies on the Sloan Digital Sky Survey System

    SciTech Connect

    Sowards-Emmerd, David; Smith, J. Allyn; McKay, Timothy A.; Sheldon, Erin; Tucker, Douglas L.; Castander, Francisco J.

    2000-06-01

    We present high-quality photometry in the five Sloan Digital Sky Survey filters, u', g', r', i', and z', for 2195 galaxies with spectroscopic redshifts measured by the Las Campanas Redshift Survey. In addition, a polynomial photometric redshift estimator is derived, with an uncertainty of 0.035 out to z = 0.25. (c) 2000 The American Astronomical Society.

  9. A Catalog of Photometry for Las Campanas Redshift Survey Galaxies on the Sloan Digital Sky Survey System

    NASA Astrophysics Data System (ADS)

    Sowards-Emmerd, David; Smith, J. Allyn; McKay, Timothy A.; Sheldon, Erin; Tucker, Douglas L.; Castander, Francisco J.

    2000-06-01

    We present high-quality photometry in the five Sloan Digital Sky Survey filters, u', g', r', i', and z', for 2195 galaxies with spectroscopic redshifts measured by the Las Campanas Redshift Survey. In addition, a polynomial photometric redshift estimator is derived, with an uncertainty of 0.035 out to z=0.25.

  10. ALMA REDSHIFTS OF MILLIMETER-SELECTED GALAXIES FROM THE SPT SURVEY: THE REDSHIFT DISTRIBUTION OF DUSTY STAR-FORMING GALAXIES

    SciTech Connect

    Weiss, A.; De Breuck, C.; Aravena, M.; Biggs, A. D.; Marrone, D. P.; Bothwell, M.; Vieira, J. D.; Bock, J. J.; Aguirre, J. E.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Bethermin, M.; Brodwin, M.; Chapman, S. C.; and others

    2013-04-10

    Using the Atacama Large Millimeter/submillimeter Array, we have conducted a blind redshift survey in the 3 mm atmospheric transmission window for 26 strongly lensed dusty star-forming galaxies (DSFGs) selected with the South Pole Telescope. The sources were selected to have S{sub 1.4{sub mm}} > 20 mJy and a dust-like spectrum and, to remove low-z sources, not have bright radio (S{sub 843{sub MHz}} < 6 mJy) or far-infrared counterparts (S{sub 100{sub {mu}m}} < 1 Jy, S{sub 60{sub {mu}m}} < 200 mJy). We robustly detect 44 line features in our survey, which we identify as redshifted emission lines of {sup 12}CO, {sup 13}CO, C I, H{sub 2}O, and H{sub 2}O{sup +}. We find one or more spectral features in 23 sources yielding a {approx}90% detection rate for this survey; in 12 of these sources we detect multiple lines, while in 11 sources we detect only a single line. For the sources with only one detected line, we break the redshift degeneracy with additional spectroscopic observations if available, or infer the most likely line identification based on photometric data. This yields secure redshifts for {approx}70% of the sample. The three sources with no lines detected are tentatively placed in the redshift desert between 1.7 < z < 2.0. The resulting mean redshift of our sample is z-bar = 3.5. This finding is in contrast to the redshift distribution of radio-identified DSFGs, which have a significantly lower mean redshift of z-bar = 2.3 and for which only 10%-15% of the population is expected to be at z > 3. We discuss the effect of gravitational lensing on the redshift distribution and compare our measured redshift distribution to that of models in the literature.

  11. Peculiar velocity decomposition, redshift space distortion, and velocity reconstruction in redshift surveys: The methodology

    NASA Astrophysics Data System (ADS)

    Zhang, Pengjie; Pan, Jun; Zheng, Yi

    2013-03-01

    Massive spectroscopic surveys will measure the redshift space distortion (RSD) induced by galaxy peculiar velocity to unprecedented accuracy and open a new era of precision RSD cosmology. We develop a new method to improve the RSD modeling and to carry out robust reconstruction of the 3D large scale peculiar velocity through galaxy redshift surveys, in light of RSD. (1) We propose a mathematically unique and physically motivated decomposition of peculiar velocity into three eigencomponents: an irrotational component completely correlated with the underlying density field (vδ), an irrotational component uncorrelated with the density field (vS), and a rotational (curl) component (vB). The three components have different origins, different scale dependences, and different impacts on RSD. (2) This decomposition has the potential to simplify and improve the RSD modeling. (i) vB damps the redshift space clustering. (ii) vS causes both damping and enhancement to the redshift space power spectrum Ps(k,u). Nevertheless, the leading order contribution to the enhancement has a u4 directional dependence, distinctively different from the Kaiser formula. Here, u≡kz/k, k is the amplitude of the wave vector, and kz is the component along the line of sight. (iii) vδ is of the greatest importance for the RSD cosmology. We find that the induced redshift clustering shows a number of important deviations from the usual Kaiser formula. Even in the limit of vS→0 and vB→0, the leading order contribution ∝(1+fW˜(k)u2)2. It differs from the Kaiser formula by a window function W˜(k). Nonlinear evolution generically drives W˜(k)≤1. We hence identify a significant systematical error causing underestimation of the structure growth parameter f by as much as O(10%) even at a relatively large scale k=0.1h/Mpc. (iv) The velocity decomposition reveals the three origins of the “finger-of-God” (FOG) effect and suggests how to simplify and improve the modeling of FOG by treating the

  12. Measuring redshift-space distortion with future SKA surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, A.; Bull, P.; Camera, S.; Blake, C.; Ferreira, P.; Maartens, R.; Santos, M.; Bull, P.; Bacon, D.; Doré, O.; Ferreira, P.; Santos, M. G.; Viel, M.; Zhao, G. B.

    2015-04-01

    The peculiar motion of galaxies can be a particularly sensitive probe of gravitational collapse. As such, it can be used to measure the dynamics of dark matter and dark energy as well the nature of the gravitational laws at play on cosmological scales. Peculiar motions manifest themselves as an overall anisotropy in the measured clustering signal as a function of the angle to the line-of-sight, known as redshift-space distortion (RSD). Limiting factors in this measurement include our ability to model non-linear galaxy motions on small scales and the complexities of galaxy bias. The anisotropy in the measured clustering pattern in redshift-space is also driven by the unknown distance factors at the redshift in question, the Alcock-Paczynski distortion. This weakens growth rate measurements, but permits an extra geometric probe of the Hubble expansion rate. In this chapter we will briefly describe the scientific background to the RSD technique, and forecast the potential of the SKA phase 1 and the SKA2 to measure the growth rate using both galaxy catalogues and intensity mapping, assessing their competitiveness with current and future optical galaxy surveys.

  13. Redshifts for 2410 Galaxies in the Century Survey Region

    NASA Astrophysics Data System (ADS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Brown, Warren R.; Fabricant, Daniel G.; Geller, Margaret J.; Huchra, John P.; Marzke, Ronald O.; Sakai, Shoko

    2001-12-01

    The Century Survey strip covers 102 deg2 within the limits 8h5<=α<=16h5, 29.0d<=δ<=30.0d, equinox B1950.0. The strip passes through the Corona Borealis supercluster and the outer region of the Coma cluster. Within the Century Survey region, we have measured 2410 redshifts that constitute four overlapping complete redshift surveys: (1) 1728 galaxies with Kron-Cousins Rph<=16.13 covering the entire strip, (2) 507 galaxies with Rph<=16.4 in right ascension range 8h32m<=α<=10 h45m, equinox B1950.0, (3) 1251 galaxies with absorption- and K-corrected RCCDc<=16.2 (where ``c'' indicates ``corrected'') covering the right ascension range 8h5<=α<=13h5, equinox B1950.0, and (4) 1255 galaxies with absorption- and K-corrected VCCDc<=16.7 also covering the right ascension range 8h5<=α<=13h5, equinox B1950.0. All these redshift samples are more than 98% complete to the specified magnitude limit. We derived samples 1 and 2 from scans of the POSS1 red (E) plates calibrated with CCD photometry. We derived samples 3 and 4 from deep V and R CCD images covering the entire region. We include coarse morphological types for all the galaxies in sample 1. The distribution of (V-R)CCD for each type corresponds appropriately with the classification. Work reported here is based partly on observations obtained at the Michigan-Dartmouth-MIT Observatory.

  14. A COS Survey of the Low-Redshift Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Danforth, Charles; Pieri, M.; Shull, J. M.; Keeney, B. A.; Stevans, M. L.; Stocke, J. T.; Savage, B. D.; Green, J. C.

    2013-01-01

    In three years of science operations onboard HST, the Cosmic OriginsSpectrograph has generated an archive of far-ultraviolet AGN spectra of unprecedented breadth, depth, and quality. COS was designed to be sensitive to many important diagnostic lines in the far-UV (1135-1800A) in the low-redshift, "local" universe: Lya (z<0.47), Lyb (0.1survey of extragalactic absorption systems toward ~200 low- to moderate-redshift (z<1.5), UV-bright AGN. When complete mid-2013), the COS IGM absorber catalog will provide an unbiased, statistical sampling of local intergalactic absorption along ~200 extragalactic sight lines. This significant cornerstone of the scientific legacy of COS is at least an order-of-magnitude improvement over previous low-z IGM surveys in total observed pathlength and number of absorbers as well as substantial improvements in sensitivity and uniformity. Of particular interest is the sensitivity of COS to weak and broad absorption. We discuss the scope of and methodology behind the catalog, several initial discoveries, and the overall statistical findings of the survey. Finally, we discuss the new areas of cosmology enabled by this expanded study.

  15. Spatial density fluctuations and selection effects in galaxy redshift surveys

    SciTech Connect

    Labini, Francesco Sylos; Tekhanovich, Daniil; Baryshev, Yurij V. E-mail: d.tekhanovich@spbu.ru

    2014-07-01

    One of the main problems of observational cosmology is to determine the range in which a reliable measurement of galaxy correlations is possible. This corresponds to determining the shape of the correlation function, its possible evolution with redshift and the size and amplitude of large scale structures. Different selection effects, inevitably entering in any observation, introduce important constraints in the measurement of correlations. In the context of galaxy redshift surveys selection effects can be caused by observational techniques and strategies and by implicit assumptions used in the data analysis. Generally all these effects are taken into account by using pair-counting algorithms to measure two-point correlations. We review these methods stressing that they are based on the a-priori assumption that galaxy distribution is spatially homogeneous inside a given sample. We show that, when this assumption is not satisfied by the data, results of the correlation analysis are affected by finite size effects. In order to quantify these effects, we introduce a new method based on the computation of the gradient of galaxy counts along tiny cylinders. We show, by using artificial homogeneous and inhomogeneous point distributions, that this method identifies redshift dependent selection effects and disentangles them from the presence of large scale density fluctuations. We then apply this new method to several redshift catalogs and we find evidence that galaxy distribution, in those samples where selection effects are small enough, is characterized by power-law correlations with exponent γ=0.9 up to 20 Mpc/h followed by a change of slope that, in the range 20–100 Mpc/h, corresponds to a power-law exponent γ=0.25. Whether a crossover to spatial uniformity occurs at ∼ 100 Mpc/h or larger scales cannot be clarified by the present data.

  16. A faint galaxy redshift survey behind massive clusters

    SciTech Connect

    Frye, Brenda

    1999-12-01

    This thesis is concerned with the gravitational lensing effect by massive galaxy clusters. We have explored a new technique for measuring galaxy masses and for detecting high-z galaxies by their optical colors. A redshift survey has been obtained at the Keck for a magnitude limited sample of objects (I<23) behind three clusters, A1689, A2390, and A2218 within a radius of 0.5M pc. For each cluster we see both a clear trend of increasing flux and redshift towards the center. This behavior is the result of image magnifications, such that at fixed redshift one sees further down the luminosity function. The gradient of this magnification is, unlike measurements of image distortion, sensitive to the mass profile, and found to depart strongly from a pure isothermal halo. We have found that V RI color selection can be used effectively as a discriminant for finding high-z galaxies behind clusters and present five 4.1 < z < 5.1 spectra which are of very high quality due to their high mean magnification of {approximately}20, showing strong, visibly-saturated interstellar metal lines in some cases. We have also investigated the radio ring lens PKS 1830-211, locating the source and multiple images and detected molecular absorption at mm wavelengths. Broad molecular absorption of width 1/40kms is found toward the southwest component only, where surprisingly it does not reach the base of the continuum, which implies incomplete coverage of the SW component by molecular gas, despite the small projected size of the source, less than 1/8h pc at the absorption redshift.

  17. Simulation of deep one- and two-dimensional redshift surveys

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. Richard, III

    1991-01-01

    It is shown that slice or pencil-beam redshift surveys of galaxies can be simulated in a box with nonequal sides. This method saves a lot of computer time and memory while providing essentially the same results as from whole-cube simulations. A 2457.6/h Mpc-long rod (out to a redshift z = 0.58 in two opposite directions) is simulated using the standard biased cold dark matter model as an example to mimic the recent deep pencil-beam surveys by Broadhurst et al. (1990). The structures (spikes) seen in these simulated samples occur when the narrow pencil-beam pierces walls, filaments, and clusters appearing randomly along the line-of-sight. A statistical test for goodness of fit to a periodic lattice has been applied to the observations and the simulations. It is found that the statistical significance level (P = 15.4 percent) is not strong enough to reject the null hypothesis that the observations and the simulations were drawn at random from the same set.

  18. The KMOS AGN Survey at High Redshift (KASHz)

    NASA Astrophysics Data System (ADS)

    Harrison, C.; Alexander, D.; Mullaney, J.; Stott, J.; Swinbank, M.; Arumugam, V.; Bauer, F.; Bower, R.; Bunker, A.; Sharples, R.

    2016-03-01

    The KMOS AGN Survey at High Redshift (KASHz) is an extensive observational programme to obtain spatially resolved spectroscopy of distant galaxies that host rapidly growing supermassive black holes (i.e., active galactic nuclei [AGN]). By exploiting the unique capabilities of KMOS we will spatially resolve the ionised gas kinematics in around 200 such galaxies. A fundamental prediction of galaxy formation models is that AGN inject considerable energy into their host galaxies and ultimately destroy or remove star-forming material via outflows. However, until now, observational constraints of this prediction have been limited to only a small number of distant galaxies. KASHz will provide the strongest constraints to date on the prevalence, properties and impact of ionised outflows in the host galaxies of distant AGN. The survey is described and our first results presented.

  19. THE 2MASS REDSHIFT SURVEY-DESCRIPTION AND DATA RELEASE

    SciTech Connect

    Huchra, John P.; Berlind, Perry; Calkins, Michael; Falco, Emilio; Mink, Jessica D.; Tokarz, Susan; Macri, Lucas M.; Masters, Karen L.; Jarrett, Thomas H.; Crook, Aidan C.; Cutri, Roc; Erdogdu, Pirin; Lahav, Ofer; George, Teddy; Hutcheson, Conrad M.; Mader, Jeff; Martimbeau, Nathalie; Schneider, Stephen; Skrutskie, Michael; Westover, Michael E-mail: karen.masters@port.ac.uk

    2012-04-01

    We present the results of the 2MASS Redshift Survey (2MRS), a ten-year project to map the full three-dimensional distribution of galaxies in the nearby universe. The Two Micron All Sky Survey (2MASS) was completed in 2003 and its final data products, including an extended source catalog (XSC), are available online. The 2MASS XSC contains nearly a million galaxies with K{sub s} {<=} 13.5 mag and is essentially complete and mostly unaffected by interstellar extinction and stellar confusion down to a galactic latitude of |b| = 5 Degree-Sign for bright galaxies. Near-infrared wavelengths are sensitive to the old stellar populations that dominate galaxy masses, making 2MASS an excellent starting point to study the distribution of matter in the nearby universe. We selected a sample of 44,599 2MASS galaxies with K{sub s} {<=} 11.75 mag and |b| {>=} 5 Degree-Sign ({>=}8 Degree-Sign toward the Galactic bulge) as the input catalog for our survey. We obtained spectroscopic observations for 11,000 galaxies and used previously obtained velocities for the remainder of the sample to generate a redshift catalog that is 97.6% complete to well-defined limits and covers 91% of the sky. This provides an unprecedented census of galaxy (baryonic mass) concentrations within 300 Mpc. Earlier versions of our survey have been used in a number of publications that have studied the bulk motion of the Local Group, mapped the density and peculiar velocity fields out to 50 h{sup -1} Mpc, detected galaxy groups, and estimated the values of several cosmological parameters. Additionally, we present morphological types for a nearly complete sub-sample of 20,860 galaxies with K{sub s} {<=} 11.25 mag and |b| {>=} 10 Degree-Sign .

  20. Void statistics of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Clustering properties of two samples from the CfA redshift survey, each containing about 2500 galaxies, are studied. A comparison of the velocity distributions via a K-S test reveals structure on scales comparable with the extent of the survey. The void probability function (VPF) is employed for these samples to examine the structure and to test for scaling relations in the galaxy distribution. The galaxy correlation function is calculated via moments of galaxy counts. The shape and amplitude of the correlation function roughly agree with previous determinations. The VPFs for distance-limited samples of the CfA survey do not match the scaling relation predicted by the hierarchical clustering models. On scales not greater than 10/h Mpc, the VPFs for these samples roughly follow the hierarchical pattern. A variant of the VPF which uses nearly all the data in magnitude-limited samples is introduced; it accounts for the variation of the sampling density with velocity in a magnitude-limited survey.

  1. Galaxy clustering in the Two Micron All Sky Redshift Survey

    NASA Astrophysics Data System (ADS)

    Westover, Michael

    To make cosmological measurements using the galaxy distribution we must first understand galaxy biasing the way in which the galaxy distribution differs from the underlying matter distribution. Here I present studies of galaxy biasing using the Two Micron All Sky Redshift Survey, a near-infrared selected survey not subject to many of the selection effects that limit other samples. The relationship between galaxy bias and luminosity is steeper for our near- infrared selected sample than it is for optical samples, with b/b [low *] 0.73 + 0.24 L/L [low *] . I found no dependence upon luminosity in the relative bias between early and late morphologically typed galaxies once the mean dependence of bias upon luminosity was removed. I tested the relative biasing between early- and late-type galaxies using joint counts in cells. I found that a power law biasing model with b PL = 0.86-0.91 was a better fit than linear models. I did not see a significant increase in the quality of the fit when stochasticity was added to the model, in contrast with results from color- and spectral type-selected samples. I tested the hierarchical scaling hypothesis and confirmed that the scale factors S 3 , S 4 , and S 5 are independent of scale, as expected for a matter distribution evolved from Gaussian initial perturbations. There was no increase in the scale factors at large cell sizes as seen in some earlier surveys. I also measured the generalized dimensions D q using a multifractal analysis and found smaller values than have been seen in optically-selected surveys and simulations, indicating that galaxies in the near-infrared selected sample may be more likely to reside in filamentary rather than sheet-like structures.

  2. The Low Redshift survey at Calar Alto (LoRCA)

    NASA Astrophysics Data System (ADS)

    Comparat, J.; Chuang, C.-H.; Rodríguez-Torres, S.; Pellejero-Ibanez, M.; Prada, F.; Yepes, G.; Courtois, H. M.; Zhao, G.-B.; Wang, Y.; Sanchez, J.; Maraston, C.; Metcalf, R. Benton; Peiro-Perez, J.; Kitaura, F. S.; Pérez, E.; González Delgado, R. M.

    2016-05-01

    The Baryon Acoustic Oscillation (BAO) feature in the power spectrum of galaxies provides a standard ruler to measure the accelerated expansion of the Universe. To extract all available information about dark energy, it is necessary to measure a standard ruler in the local, z < 0.2, universe where dark energy dominates most the energy density of the Universe. Though the volume available in the local universe is limited, it is just big enough to measure accurately the long 100 h-1 Mpc wave-mode of the BAO. Using cosmological N-body simulations and approximate methods based on Lagrangian perturbation theory, we construct a suite of a thousand light-cones to evaluate the precision at which one can measure the BAO standard ruler in the local universe. We find that using the most massive galaxies on the full sky (34 000 deg2), i.e. a K2MASS < 14 magnitude-limited sample, one can measure the BAO scale up to a precision of 4 per cent (˜1.2 per cent using reconstruction). We also find that such a survey would help to detect the dynamics of dark energy. Therefore, we propose a 3-year long observational project, named the Low Redshift survey at Calar Alto, to observe spectroscopically about 200 000 galaxies in the northern sky to contribute to the construction of aforementioned galaxy sample. The suite of light-cones is made available to the public.

  3. A Photometric redshift galaxy catalog from the Red-Sequence Cluster Survey

    SciTech Connect

    Hsieh, Bau-Ching; Yee, H.K.C.; Lin, H.; Gladders, M.D.; /Carnegie Inst. Observ.

    2005-02-01

    The Red-Sequence Cluster Survey (RCS) provides a large and deep photometric catalog of galaxies in the z' and R{sub c} bands for 90 square degrees of sky, and supplemental V and B data have been obtained for 33.6 deg{sup 2}. They compile a photometric redshift catalog from these 4-band data by utilizing the empirical quadratic polynomial photometric redshift fitting technique in combination with CNOC2 and GOODS/HDF-N redshift data. The training set includes 4924 spectral redshifts. The resulting catalog contains more than one million galaxies with photometric redshifts < 1.5 and R{sub c} < 24, giving an rms scatter {delta}({Delta}z) < 0.06 within the redshift range 0.2 < z < 0.5 and {sigma}({Delta}z) < 0.11 for galaxies at 0.0 < z < 1.5. They describe the empirical quadratic polynomial photometric redshift fitting technique which they use to determine the relation between red-shift and photometry. A kd-tree algorithm is used to divide up the sample to improve the accuracy of the catalog. They also present a method for estimating the photometric redshift error for individual galaxies. They show that the redshift distribution of the sample is in excellent agreement with smaller and much deeper photometric and spectroscopic redshift surveys.

  4. A redshift survey of IRAS galaxies. VII - The infrared and redshift data for the 1.936 Jansky sample

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Huchra, John P.; Davis, Marc; Yahil, Amos; Fisher, Karl B.; Tonry, John

    1992-01-01

    We present the data for a redshift survey of galaxies selected from the database of the Infrared Astronomical Satellite (IRAS). The sample is flux limited to 1.936 Jy at 60 microns and covers 11.01 sr of the sky. It consists of 5014 objects, of which 2658 are galaxies. The remaining 2356 sources are listed in a separate table with identifications. Redshift data are also given for 212 IRAS galaxies which are not part of the complete sample, but were measured in conjunction with this project.

  5. The effects of spatial resolution on integral field spectrograph surveys at different redshifts - The CALIFA perspective

    NASA Astrophysics Data System (ADS)

    Mast, D.; Rosales-Ortega, F. F.; Sánchez, S. F.; Vílchez, J. M.; Iglesias-Paramo, J.; Walcher, C. J.; Husemann, B.; Márquez, I.; Marino, R. A.; Kennicutt, R. C.; Monreal-Ibero, A.; Galbany, L.; de Lorenzo-Cáceres, A.; Mendez-Abreu, J.; Kehrig, C.; del Olmo, A.; Relaño, M.; Wisotzki, L.; Mármol-Queraltó, E.; Bekeraitè, S.; Papaderos, P.; Wild, V.; Aguerri, J. A. L.; Falcón-Barroso, J.; Bomans, D. J.; Ziegler, B.; García-Lorenzo, B.; Bland-Hawthorn, J.; López-Sánchez, Á. R.; van de Ven, G.

    2014-01-01

    Context. Over the past decade, 3D optical spectroscopy has become the preferred tool for understanding the properties of galaxies and is now increasingly used to carry out galaxy surveys. Low redshift surveys include SAURON, DiskMass, ATLAS3D, PINGS, and VENGA. At redshifts above 0.7, surveys such as MASSIV, SINS, GLACE, and IMAGES have targeted the most luminous galaxies to study mainly their kinematic properties. The on-going CALIFA survey (z ~ 0.02) is the first of a series of upcoming integral field spectroscopy (IFS) surveys with large samples representative of the entire population of galaxies. Others include SAMI and MaNGA at lower redshift and the upcoming KMOS surveys at higher redshift. Given the importance of spatial scales in IFS surveys, the study of the effects of spatial resolution on the recovered parameters becomes important. Aims: We explore the capability of the CALIFA survey and a hypothetical higher redshift survey to reproduce the properties of a sample of objects observed with better spatial resolution at lower redshift. Methods: Using a sample of PINGS galaxies, we simulated observations at different redshifts. We then studied the behaviour of different parameters as the spatial resolution degrades with increasing redshift. Results: We show that at the CALIFA resolution, we are able to measure and map common observables in a galaxy study: the number and distribution of H ii regions (Hα flux structure), the gas metallicity (using the O3N2 method), the gas ionization properties (through the [N ii]/Hα and [O iii]/Hβ line ratios), and the age of the underlying stellar population (using the D4000 index). This supports the aim of the survey to characterise the observable properties of galaxies in the Local Universe. Our analysis of simulated IFS data cubes at higher redshifts highlights the importance of the projected spatial scale per spaxel as the most important figure of merit in the design of an integral field survey.

  6. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    NASA Astrophysics Data System (ADS)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  7. Optimizing baryon acoustic oscillation surveys - II. Curvature, redshifts and external data sets

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Kunz, Martin; Liddle, Andrew R.; Bassett, Bruce A.; Nichol, Robert C.; Vardanyan, Mihran

    2010-02-01

    We extend our study of the optimization of large baryon acoustic oscillation (BAO) surveys to return the best constraints on the dark energy, building on Paper I of this series by Parkinson et al. The survey galaxies are assumed to be pre-selected active, star-forming galaxies observed by their line emission with a constant number density across the redshift bin. Star-forming galaxies have a redshift desert in the region 1.6 < z < 2, and so this redshift range was excluded from the analysis. We use the Seo & Eisenstein fitting formula for the accuracies of the BAO measurements, using only the information for the oscillatory part of the power spectrum as distance and expansion rate rulers. We go beyond our earlier analysis by examining the effect of including curvature on the optimal survey configuration and updating the expected `prior' constraints from Planck and the Sloan Digital Sky Survey. We once again find that the optimal survey strategy involves minimizing the exposure time and maximizing the survey area (within the instrumental constraints), and that all time should be spent observing in the low-redshift range (z < 1.6) rather than beyond the redshift desert, z > 2. We find that, when assuming a flat universe, the optimal survey makes measurements in the redshift range 0.1 < z < 0.7, but that including curvature as a nuisance parameter requires us to push the maximum redshift to 1.35, to remove the degeneracy between curvature and evolving dark energy. The inclusion of expected other data sets (such as WiggleZ, the Baryon Oscillation Spectroscopic Survey and a stage III Type Ia supernova survey) removes the necessity of measurements below redshift 0.9, and pushes the maximum redshift up to 1.5. We discuss considerations in determining the best survey strategy in light of uncertainty in the true underlying cosmological model.

  8. Effective theory of dark energy at redshift survey scales

    NASA Astrophysics Data System (ADS)

    Gleyzes, Jérôme; Langlois, David; Mancarella, Michele; Vernizzi, Filippo

    2016-02-01

    We explore the phenomenological consequences of general late-time modifications of gravity in the quasi-static approximation, in the case where cold dark matter is non-minimally coupled to the gravitational sector. Assuming spectroscopic and photometric surveys with configuration parameters similar to those of the Euclid mission, we derive constraints on our effective description from three observables: the galaxy power spectrum in redshift space, tomographic weak-lensing shear power spectrum and the correlation spectrum between the integrated Sachs-Wolfe effect and the galaxy distribution. In particular, with ΛCDM as fiducial model and a specific choice for the time dependence of our effective functions, we perform a Fisher matrix analysis and find that the unmarginalized 68% CL errors on the parameters describing the modifications of gravity are of order σ~10-2-10-3. We also consider two other fiducial models. A nonminimal coupling of CDM enhances the effects of modified gravity and reduces the above statistical errors accordingly. In all cases, we find that the parameters are highly degenerate, which prevents the inversion of the Fisher matrices. Some of these degeneracies can be broken by combining all three observational probes.

  9. Large-scale structure in the Southern Sky Redshift Survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Gott, J. R., III; Da Costa, L. N.

    1992-01-01

    The power spectrum from the Southern Sky Redshift Survey and the CfA samples are measured in order to explore the amplitude of fluctuation in the galaxy density. At lambda of less than or equal to 30/h Mpc the observed power spectrum is quite consistent with the standard CDM model. At larger scales the data indicate an excess of power over the standard CDM model. The observed power spectrum from these optical galaxy samples is in good agreement with that drawn from the sparsely sampled IRAS galaxies. The shape of the power spectrum is also studied by examining the relation between the genus per unit volume and the smoothing length. It is found that, over Gaussian smoothing scales from 6 to 14/h Mpc, the power spectrum has a slope of about -1. The topology of the galaxy density field is studied by measuring the shift of the genus curve from the Gaussian case. Over all smoothing scales studied, the observed genus curves are consistent with a random phase distribution of the galaxy density field, as predicted by the inflationary scenarios.

  10. THE 2dF REDSHIFT SURVEY. I. PHYSICAL ASSOCIATION AND PERIODICITY IN QUASAR FAMILIES

    SciTech Connect

    Fulton, C. C.; Arp, H. C. E-mail: arp@mpa-garching.mpg.de

    2012-08-01

    We have tested for physical association of candidate companion quasars with putative parent galaxies by virtue of Karlsson periodicity in quasar redshifts. We examined galaxies from the 2dF Galaxy Redshift Survey (2dFGRS) and quasars from the 2dF Quasar Redshift Survey (2QZ) in the two declination strips (at declinations 0 Degree-Sign and -30 Degree-Sign ) covered by the 2QZ, first filtering out galaxies and quasars using the respective survey masks and observation qualities as described, and using only quasars with z {>=} 0.5 to avoid the redshift region of mixed galaxies and quasars. Around each galaxy, quasars are detected as physically associated with a putative parent galaxy if their respective redshifts conform to empirically derived constraints based on an ejection hypothesis. We ran Monte Carlo control trials against the pure physical associations by replacing the actual redshifts of the candidate companion quasars with quasar redshifts drawn randomly from each respective right ascension hour. The constraints are grouping of quasar redshifts and Karlsson periodicity of quasar redshifts.

  11. The luminosity function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1989-01-01

    The luminosity function for two complete slices of the extension of the CfA redshift survey is calculated. The nonparametric technique of Lynden-Bell (1971) and Turner (1979) is used to determine the shape for the luminosity function of the 12 deg slice of the redshift survey. The amplitude of the luminosity function is determined, taking large-scale inhomogeneities into account. The effects of the Malmquist bias on a magnitude-limited redshift survey are examined, showing that the random errors in the magnitudes for the 12 deg slice affect both the determination of the luminosity function and the spatial density constrast of large scale structures.

  12. An Open-Source Galaxy Redshift Survey Simulator for next-generation Large Scale Structure Surveys

    NASA Astrophysics Data System (ADS)

    Seijak, Uros

    Galaxy redshift surveys produce three-dimensional maps of the galaxy distribution. On large scales these maps trace the underlying matter fluctuations in a relatively simple manner, so that the properties of the primordial fluctuations along with the overall expansion history and growth of perturbations can be extracted. The BAO standard ruler method to measure the expansion history of the universe using galaxy redshift surveys is thought to be robust to observational artifacts and understood theoretically with high precision. These same surveys can offer a host of additional information, including a measurement of the growth rate of large scale structure through redshift space distortions, the possibility of measuring the sum of neutrino masses, tighter constraints on the expansion history through the Alcock-Paczynski effect, and constraints on the scale-dependence and non-Gaussianity of the primordial fluctuations. Extracting this broadband clustering information hinges on both our ability to minimize and subtract observational systematics to the observed galaxy power spectrum, and our ability to model the broadband behavior of the observed galaxy power spectrum with exquisite precision. Rapid development on both fronts is required to capitalize on WFIRST's data set. We propose to develop an open-source computational toolbox that will propel development in both areas by connecting large scale structure modeling and instrument and survey modeling with the statistical inference process. We will use the proposed simulator to both tailor perturbation theory and fully non-linear models of the broadband clustering of WFIRST galaxies and discover novel observables in the non-linear regime that are robust to observational systematics and able to distinguish between a wide range of spatial and dynamic biasing models for the WFIRST galaxy redshift survey sources. We have demonstrated the utility of this approach in a pilot study of the SDSS-III BOSS galaxies, in which we

  13. Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar Transit Grism Survey catalog

    NASA Technical Reports Server (NTRS)

    Schneider, Donald P.; Schmidt, Maarten; Gunn, James E.

    1994-01-01

    This paper reports the initial results of the Palomar Transit Grism Survey (PTGS). The PTGS was designed to produce a sample of z greater than 2.7 quasars that were identified by well-defined selection criteria. The survey consists of six narrow (approximately equal to 8.5 min wide) strips of sky; the total effective area is 61.47 sq deg. Low-resolution slitless spectra, covering the wavelength range from 4400 to 7500 A, were obtained for approximately 600 000 objects. The wavelength- and flux-calibrated spectra were searched for emission lines with an automatic software algorithm. A total to 1655 emission features in the grism data satisfied our signal-to-noise ratio and equivalent width selection criteria; subsequent slit spectroscopy of the candidates confirmed the existence of 1052 lines (928 different objects). Six groups of emission lines were detected in the survey: Lyman alpha + N V, C IV, C III1, Mg II, H Beta + (O III), and H alpha + (S II). More than two-thirds of the candidates are low-redshift (z less than 0.45) emission-line galaxies; ninety objects are high-redshift quasars (z greater than 2.7) detected via their Lyman alpha + N V emission lines. The survey contains three previously unknown quasars brighter than 17th magnitude; all three have redshifts of approximately equal to 1.3. In this paper we present the observational properties of the survey, the algorithms used to select the emission-line candidates, and the catalog of emission-line objects.

  14. Spectroscopic CCD surveys for quasars at large redshift. II - A Pfuei transit survey

    NASA Technical Reports Server (NTRS)

    Schmidt, Maarten; Schneider, Donald P.; Gunn, James E.

    1986-01-01

    A CCD transit survey has been carried out with the 200 in. telescope of a strip of sky 5 arcmin wide and 9 hr long. Direct images and slitless spectra of over 43,000 objects were obtained on two successive nights. An automatic search for emission lines of given minimum equivalent width and signal-to-noise ratio yielded 52 candidate sources. Slit spectra revealed that 24 were emission-line galaxies with z less than 0.4 and eight were quasars with 2 between 1.00 and 2.76. The number of quasars detect agrees with that predicted from luminosity function models for z less than 2.9. The models also indicate that between 30 and 62 quasars with z less than 2.9 should have been found in this survey, but none were detected. This result reconfirms that there is a redshift cutoff near or below redshift three. The apparent conflict of this measurement with the known existence of dozens of quasars with redshifts larger than three is discussed.

  15. The Redshift Distribution of Dusty Star-forming Galaxies from the SPT Survey

    NASA Astrophysics Data System (ADS)

    Strandet, M. L.; Weiss, A.; Vieira, J. D.; de Breuck, C.; Aguirre, J. E.; Aravena, M.; Ashby, M. L. N.; Béthermin, M.; Bradford, C. M.; Carlstrom, J. E.; Chapman, S. C.; Crawford, T. M.; Everett, W.; Fassnacht, C. D.; Furstenau, R. M.; Gonzalez, A. H.; Greve, T. R.; Gullberg, B.; Hezaveh, Y.; Kamenetzky, J. R.; Litke, K.; Ma, J.; Malkan, M.; Marrone, D. P.; Menten, K. M.; Murphy, E. J.; Nadolski, A.; Rotermund, K. M.; Spilker, J. S.; Stark, A. A.; Welikala, N.

    2016-05-01

    We use the Atacama Large Millimeter/submillimeter Array (ALMA) in Cycle 1 to determine spectroscopic redshifts of high-redshift dusty star-forming galaxies (DSFGs) selected by their 1.4 mm continuum emission in the South Pole Telescope (SPT) survey. We present ALMA 3 mm spectral scans between 84 and 114 GHz for 15 galaxies and targeted ALMA 1 mm observations for an additional eight sources. Our observations yield 30 new line detections from CO, [C i], [N ii], H2O and NH3. We further present Atacama Pathfinder Experiment [C ii] and CO mid-J observations for seven sources for which only a single line was detected in spectral-scan data from ALMA Cycle 0 or Cycle 1. We combine the new observations with previously published and new millimeter/submillimeter line and photometric data of the SPT-selected DSFGs to study their redshift distribution. The combined data yield 39 spectroscopic redshifts from molecular lines, a success rate of >85%. Our sample represents the largest data set of its kind today and has the highest spectroscopic completeness among all redshift surveys of high-z DSFGs. The median of the redshift distribution is z = 3.9 ± 0.4, and the highest-redshift source in our sample is at z = 5.8. We discuss how the selection of our sources affects the redshift distribution, focusing on source brightness, selection wavelength, and strong gravitational lensing. We correct for the effect of gravitational lensing and find the redshift distribution for 1.4 mm selected sources with a median redshift of z = 3.1 ± 0.3. Comparing to redshift distributions selected at shorter wavelengths from the literature, we show that selection wavelength affects the shape of the redshift distribution.

  16. Topological analysis of the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.; Gott, J. Richard, III

    1994-01-01

    We study the topology of large-scale structure in the Center for Astrophysics Redshift Survey, which now includes approximately 12,000 galaxies with limiting magnitude m(sub B) is less than or equal to 15.5. The dense sampling and large volume of this survey allow us to compute the topology on smoothing scales from 6 to 20/h Mpc; we thus examine the topology of structure in both 'nonlinear' and 'linear' regimes. On smoothing scales less than or equal to 10/h Mpc this sample has 3 times the number of resolution elements of samples examined in previous studies. Isodensity surface of the smoothed galaxy density field demonstrate that coherent high-density structures and large voids dominate the galaxy distribution. We compute the genus-threshold density relation for isodensity surfaces of the CfA survey. To quantify phase correlation in these data, we compare the CfA genus with the genus of realizations of Gaussian random fields with the power spectrum measured for the CfA survey. On scales less than or equal to 10/h Mpc the observed genus amplitude is smaller than random phase (96% confidence level). This decrement reflects the degree of phase coherence in the observed galaxy distribution. In other words the genus amplitude on these scales is not good measure of the power spectrum slope. On scales greater than 10/h Mpc, where the galaxy distribution is rougly in the 'linear' regime, the genus ampitude is consistent with the random phase amplitude. The shape of the genus curve reflects the strong coherence in the observed structure; the observed genus curve appears broader than random phase (94% confidence level for smoothing scales less than or equal to 10/h Mpc) because the topolgoy is spongelike over a very large range of density threshold. This departre from random phase consistent with a distribution like a filamentary net of 'walls with holes.' On smoothing scales approaching approximately 20/h Mpc the shape of the CfA genus curve is consistent with random phase

  17. The High-Redshift Clusters Occupied by Bent Radio AGN (COBRA) Survey

    NASA Astrophysics Data System (ADS)

    Paterno-Mahler, Rachel; Blanton, Elizabeth L.; Wing, Joshua; Ashby, M. L. N.; Brodwin, Mark; Golden-Marx, Emmet

    2015-08-01

    The number of confirmed, high-redshift galaxy clusters is very low compared to the number of well-studied clusters nearby. Bent, double-lobed radio sources are frequently found in galaxy clusters, and thus can be used as tracers for efficiently locating high-redshift clusters. Using our Spitzer Snapshot Survey, we have identified approximately 300 potential new clusters with redshifts 0.7redshift portion of the Cluster Occupied by Bent Radio AGN (COBRA) survey. We have created color-magnitude diagrams using infrared and optical data. Using the colors of the radio source host and the red sequence we can estimate redshifts for our clusters, as well as examine the evolution of the cluster galaxies over a large range of cosmic time.

  18. Narrow-band surveys for very high redshift Lyman-α emitters

    NASA Astrophysics Data System (ADS)

    Nilsson, K. K.; Orsi, A.; Lacey, C. G.; Baugh, C. M.; Thommes, E.

    2007-11-01

    Context: Many current and future surveys aim to detect the highest redshift (z ⪆ 7) sources through their Lyman-α (Lyα) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper limits as no survey has reached the necessary combination of depth and area to detect these very young star forming galaxies. Aims: We aim to calculate model luminosity functions and mock surveys of Lyα emitters at z ⪆ 7 based on a variety of approaches calibrated and tested on observational data at lower redshifts. Methods: We calculate model luminosity functions at different redshifts based on three different approaches: a semi-analytical model based on CDM, a simple phenomenological model, and an extrapolation of observed Schechter functions at lower redshifts. The results of the first two models are compared with observations made at redshifts z ˜ 5.7 and z ˜ 6.5, and they are then extrapolated to higher redshift. Results: We present model luminosity functions for redshifts between z = 7{-}12.5 and give specific number predictions for future planned or possible narrow-band surveys for Lyα emitters. We also investigate what constraints future observations will be able to place on the Lyα luminosity function at very high redshift. Conclusions: It should be possible to observe z = 7{-}10 Lyα emitters with present or near-future instruments if enough observing time is allocated. In particular, large area surveys such as ELVIS (Emission Line galaxies with VISTA Survey) will be useful in collecting a large sample. However, to get a large enough sample to constrain well the z ≥ 10 Lyα luminosity function, instruments further in the future, such as an ELT, will be necessary.

  19. SHELS: A complete galaxy redshift survey with R ≤ 20.6

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Fabricant, Daniel G.; Kurtz, Michael J.; Dell'Antonio, Ian P.; Zahid, Harus Jabran E-mail: hhwang@cfa.harvard.edu E-mail: mkurtz@cfa.harvard.edu E-mail: jabran@ifa.hawaii.edu

    2014-08-01

    The SHELS (Smithsonian Hectospec Lensing Survey) is a complete redshift survey covering two well-separated fields (F1 and F2) of the Deep Lens Survey to a limiting R = 20.6. Here we describe the redshift survey of the F2 field (R.A.{sub 2000} = 09{sup h}19{sup m}32.4 and decl.{sub 2000} = +30°00'00''). The survey includes 16,294 new redshifts measured with the Hectospec on the MMT. The resulting survey of the 4 deg{sup 2} F2 field is 95% complete to R = 20.6, currently the densest survey to this magnitude limit. The median survey redshift is z = 0.3; the survey provides a view of structure in the range 0.1 ≲ z ≲ 0.6. An animation displays the large-scale structure in the survey region. We provide a redshift, spectral index D {sub n}4000, and stellar mass for each galaxy in the survey. We also provide a metallicity for each galaxy in the range 0.2 survey, we examine the behavior of the index D {sub n}4000 as a function of galaxy luminosity, stellar mass, and redshift. The known evolutionary and stellar mass dependent properties of the galaxy population are cleanly evident in the data. We also show that the mass-metallicity relation previously determined from these data is robust to the analysis approach.

  20. THE PRISM MULTI-OBJECT SURVEY (PRIMUS). II. DATA REDUCTION AND REDSHIFT FITTING

    SciTech Connect

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.; Hogg, David W.; Burles, Scott M.; Coil, Alison L.; Aird, James; Mendez, Alexander J.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun; Bernstein, Rebecca A.

    2013-04-20

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z {approx} 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of {approx}2500 objects over 0.18 deg{sup 2}. The final PRIMUS catalog includes {approx}130,000 robust redshifts over 9.1 deg{sup 2}. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of {sigma}{sub z}/(1 + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.

  1. The PRIsm MUlti-object Survey (PRIMUS). II. Data Reduction and Redshift Fitting

    NASA Astrophysics Data System (ADS)

    Cool, Richard J.; Moustakas, John; Blanton, Michael R.; Burles, Scott M.; Coil, Alison L.; Eisenstein, Daniel J.; Wong, Kenneth C.; Zhu, Guangtun; Aird, James; Bernstein, Rebecca A.; Bolton, Adam S.; Hogg, David W.; Mendez, Alexander J.

    2013-04-01

    The PRIsm MUlti-object Survey (PRIMUS) is a spectroscopic galaxy redshift survey to z ~ 1 completed with a low-dispersion prism and slitmasks allowing for simultaneous observations of ~2500 objects over 0.18 deg2. The final PRIMUS catalog includes ~130,000 robust redshifts over 9.1 deg2. In this paper, we summarize the PRIMUS observational strategy and present the data reduction details used to measure redshifts, redshift precision, and survey completeness. The survey motivation, observational techniques, fields, target selection, slitmask design, and observations are presented in Coil et al. Comparisons to existing higher-resolution spectroscopic measurements show a typical precision of σ z /(1 + z) = 0.005. PRIMUS, both in area and number of redshifts, is the largest faint galaxy redshift survey completed to date and is allowing for precise measurements of the relationship between active galactic nuclei and their hosts, the effects of environment on galaxy evolution, and the build up of galactic systems over the latter half of cosmic history.

  2. The TexOx-1000 redshift survey of radio sources I: the TOOT00 region

    NASA Astrophysics Data System (ADS)

    Vardoulaki, Eleni; Rawlings, Steve; Hill, Gary J.; Mauch, Tom; Inskip, Katherine J.; Riley, Julia; Brand, Kate; Croft, Steve; Willott, Chris J.

    2010-01-01

    We present optical spectroscopy, near-infrared (mostly K-band) and radio (151-MHz and 1.4-GHz) imaging of the first complete region (TOOT00) of the TexOx-1000 (TOOT) redshift survey of radio sources. The 0.0015-sr (~5 deg2) TOOT00 region is selected from pointed observations of the Cambridge Low-Frequency Survey Telescope at 151 MHz at a flux density limit of ~=100 mJy, approximately five times fainter than the 7C Redshift Survey (7CRS), and contains 47 radio sources. We have obtained 40 spectroscopic redshifts (~85 per cent completeness). Adding redshifts estimated for the seven other cases yields a median redshift zmed ~ 1.25. We find a significant population of objects with Fanaroff-Riley type I (FRI) like radio structures at radio luminosities above both the low-redshift FRI/II break and the break in the radio luminosity function. The redshift distribution and subpopulations of TOOT00 are broadly consistent with extrapolations from the 7CRS/6CE/3CRR data sets underlying the SKADS Simulated Skies Semi-Empirical Extragalactic Data base, S3-SEX.

  3. Comparing the 2MTF and 6dFGS Peculiar Velocity Surveys to models from redshift surveys

    NASA Astrophysics Data System (ADS)

    Springob, Christopher M.; Hong, Tao; Magoulas, Christina; Colless, Matthew; Staveley-Smith, Lister; Erdogdu, Pirin; Jones, D. Heath; Lucey, John R.; Masters, Karen; Mould, Jeremy R.; Jarrett, Tom; Koribalski, Baerbel; Macri, Lucas M.; Scrimgeour, Morag

    2015-01-01

    The 6dF Galaxy Survey (6dFGS) and 2MASS Tully-Fisher Survey (2MTF) are large galaxy peculiar velocity surveys of the local universe, providing distances and peculiar velocities for thousands of galaxies, derived via the Fundamental Plane and Tully-Fisher relations respectively. We compare these observed velocity fields to reconstructed peculiar velocity field models derived from redshift surveys such as the 2MASS Redshift Survey (2MRS) and the IRAS Point Source Redshift Survey (PSCz), addressing the question of whether the galaxy distribution traces the matter distribution, and whether the observed velocity fields include a "residual bulk flow" not predicted by the models. This research was conducted by the Australian Research Council Centre of Excellence for All-sky Astrophysics (CAASTRO), through project number CE110001020.

  4. THE NEXT GENERATION VIRGO CLUSTER SURVEY. XV. THE PHOTOMETRIC REDSHIFT ESTIMATION FOR BACKGROUND SOURCES

    SciTech Connect

    Raichoor, A.; Mei, S.; Huertas-Company, M.; Licitra, R.; Erben, T.; Hildebrandt, H.; Ilbert, O.; Boissier, S.; Boselli, A.; Ball, N. M.; Côté, P.; Ferrarese, L.; Gwyn, S. D. J.; Kavelaars, J. J.; Chen, Y.-T.; Cuillandre, J.-C.; Duc, P. A.; Guhathakurta, P.; and others

    2014-12-20

    The Next Generation Virgo Cluster Survey (NGVS) is an optical imaging survey covering 104 deg{sup 2} centered on the Virgo cluster. Currently, the complete survey area has been observed in the u*giz bands and one third in the r band. We present the photometric redshift estimation for the NGVS background sources. After a dedicated data reduction, we perform accurate photometry, with special attention to precise color measurements through point-spread function homogenization. We then estimate the photometric redshifts with the Le Phare and BPZ codes. We add a new prior that extends to i {sub AB} = 12.5 mag. When using the u* griz bands, our photometric redshifts for 15.5 mag ≤ i ≲ 23 mag or z {sub phot} ≲ 1 galaxies have a bias |Δz| < 0.02, less than 5% outliers, a scatter σ{sub outl.rej.}, and an individual error on z {sub phot} that increases with magnitude (from 0.02 to 0.05 and from 0.03 to 0.10, respectively). When using the u*giz bands over the same magnitude and redshift range, the lack of the r band increases the uncertainties in the 0.3 ≲ z {sub phot} ≲ 0.8 range (–0.05 < Δz < –0.02, σ{sub outl.rej} ∼ 0.06, 10%-15% outliers, and z {sub phot.err.} ∼ 0.15). We also present a joint analysis of the photometric redshift accuracy as a function of redshift and magnitude. We assess the quality of our photometric redshifts by comparison to spectroscopic samples and by verifying that the angular auto- and cross-correlation function w(θ) of the entire NGVS photometric redshift sample across redshift bins is in agreement with the expectations.

  5. A Blind Green Bank Telescope Millimeter-wave Survey for Redshifted Molecular Absorption

    NASA Astrophysics Data System (ADS)

    Kanekar, N.; Gupta, A.; Carilli, C. L.; Stocke, J. T.; Willett, K. W.

    2014-02-01

    We present the methodology for "blind" millimeter-wave surveys for redshifted molecular absorption in the CO/HCO+ rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z >~ 0.85. It is critical that the survey is "blind," i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H2 column densities >~ 3 × 1021 cm-2 in absorption at 5σ significance (using CO-to-H2 and HCO+-to-H2 conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H2) >~ 3 × 1021 cm-2.

  6. A blind green bank telescope millimeter-wave survey for redshifted molecular absorption

    SciTech Connect

    Kanekar, N.; Gupta, A.; Carilli, C. L.; Stocke, J. T.; Willett, K. W.

    2014-02-10

    We present the methodology for 'blind' millimeter-wave surveys for redshifted molecular absorption in the CO/HCO{sup +} rotational lines. The frequency range 30-50 GHz appears optimal for such surveys, providing sensitivity to absorbers at z ≳ 0.85. It is critical that the survey is 'blind', i.e., based on a radio-selected sample, including sources without known redshifts. We also report results from the first large survey of this kind, using the Q-band receiver on the Green Bank Telescope (GBT) to search for molecular absorption toward 36 sources, 3 without known redshifts, over the frequency range 39.6-49.5 GHz. The GBT survey has a total redshift path of Δz ≈ 24, mostly at 0.81 < z < 1.91, and a sensitivity sufficient to detect equivalent H{sub 2} column densities ≳ 3 × 10{sup 21} cm{sup –2} in absorption at 5σ significance (using CO-to-H{sub 2} and HCO{sup +}-to-H{sub 2} conversion factors of the Milky Way). The survey yielded no confirmed detections of molecular absorption, yielding the 2σ upper limit n(z = 1.2) < 0.15 on the redshift number density of molecular gas at column densities N(H{sub 2}) ≳ 3 × 10{sup 21} cm{sup –2}.

  7. The CfA redshift survey - Data for the NGP + 30 zone

    NASA Technical Reports Server (NTRS)

    Huchra, John P.; Geller, Margaret J.; De Lapparent, Valerie; Corwin, Harold G., Jr.

    1990-01-01

    Redshifts and morphological types are presented for a complete sample of 1093 galaxies with m(pg) less than or equal to 15.5 mag in a 6-deg-wide strip crossing the north Galactic pole. Also presented are redshifts for an additional 92 fainter galaxies in the same strip. Outside of the core of the Coma Cluster, both early- and late-type galaxies trace essentially the same structures in redshift space. Thinner slices illustrate the small velocity dispersion perpendicular to the surfaces in the survey.

  8. The Swift Gamma-Ray Burst Host Galaxy Legacy Survey. I. Sample Selection and Redshift Distribution

    NASA Astrophysics Data System (ADS)

    Perley, D. A.; Krühler, T.; Schulze, S.; de Ugarte Postigo, A.; Hjorth, J.; Berger, E.; Cenko, S. B.; Chary, R.; Cucchiara, A.; Ellis, R.; Fong, W.; Fynbo, J. P. U.; Gorosabel, J.; Greiner, J.; Jakobsson, P.; Kim, S.; Laskar, T.; Levan, A. J.; Michałowski, M. J.; Milvang-Jensen, B.; Tanvir, N. R.; Thöne, C. C.; Wiersema, K.

    2016-01-01

    We introduce the Swift Gamma-Ray Burst Host Galaxy Legacy Survey (“SHOALS”), a multi-observatory high-redshift galaxy survey targeting the largest unbiased sample of long-duration gamma-ray burst (GRB) hosts yet assembled (119 in total). We describe the motivations of the survey and the development of our selection criteria, including an assessment of the impact of various observability metrics on the success rate of afterglow-based redshift measurement. We briefly outline our host galaxy observational program, consisting of deep Spitzer/IRAC imaging of every field supplemented by similarly deep, multicolor optical/near-IR photometry, plus spectroscopy of events without preexisting redshifts. Our optimized selection cuts combined with host galaxy follow-up have so far enabled redshift measurements for 110 targets (92%) and placed upper limits on all but one of the remainder. About 20% of GRBs in the sample are heavily dust obscured, and at most 2% originate from z\\gt 5.5. Using this sample, we estimate the redshift-dependent GRB rate density, showing it to peak at z∼ 2.5 and fall by at least an order of magnitude toward low (z = 0) redshift, while declining more gradually toward high (z∼ 7) redshift. This behavior is consistent with a progenitor whose formation efficiency varies modestly over cosmic history. Our survey will permit the most detailed examination to date of the connection between the GRB host population and general star-forming galaxies, directly measure evolution in the host population over cosmic time and discern its causes, and provide new constraints on the fraction of cosmic star formation occurring in undetectable galaxies at all redshifts.

  9. THE REDSHIFT DISTRIBUTION OF GIANT ARCS IN THE SLOAN GIANT ARCS SURVEY

    SciTech Connect

    Bayliss, Matthew B.; Gladders, Michael D.; Koester, Benjamin P.; Oguri, Masamune; Hennawi, Joseph F.; Sharon, Keren; Dahle, Haakon

    2011-01-20

    We measure the redshift distribution of a sample of 28 giant arcs discovered as a part of the Sloan Giant Arcs Survey. Gemini/GMOS-North spectroscopy provides precise redshifts for 24 arcs, and 'redshift desert' constrains for the remaining 4 arcs. This is a direct measurement of the redshift distribution of a uniformly selected sample of bright giant arcs, which is an observable that can be used to inform efforts to predict giant arc statistics. Our primary giant arc sample has a median redshift z = 1.821 and nearly two-thirds of the arcs, 64%, are sources at z {approx}> 1.4, indicating that the population of background sources that are strongly lensed into bright giant arcs resides primarily at high redshift. We also analyze the distribution of redshifts for 19 secondary strongly lensed background sources that are not visually apparent in Sloan Digital Sky Survey imaging, but were identified in deeper follow-up imaging of the lensing cluster fields. Our redshift sample for the secondary sources is not spectroscopically complete, but combining it with our primary giant arc sample suggests that a large fraction of all background galaxies that are strongly lensed by foreground clusters reside at z {approx}> 1.4. Kolmogorov-Smirnov tests indicate that our well-selected, spectroscopically complete primary giant arc redshift sample can be reproduced with a model distribution that is constructed from a combination of results from studies of strong-lensing clusters in numerical simulations and observational constraints on the galaxy luminosity function.

  10. On the recovery of the local group motion from galaxy redshift surveys

    SciTech Connect

    Nusser, Adi; Davis, Marc; Branchini, Enzo E-mail: mdavis@berkeley.edu

    2014-06-20

    There is an ∼150 km s{sup –1} discrepancy between the measured motion of the Local Group (LG) of galaxies with respect to the cosmic microwave background and the linear theory prediction based on the gravitational force field of the large-scale structure in full-sky redshift surveys. We perform a variety of tests which show that the LG motion cannot be recovered to better than 150-200 km s{sup –1} in amplitude and within ≈10° in direction. The tests rely on catalogs of mock galaxies identified in the Millennium simulation using semi-analytic galaxy formation models. We compare these results to the K{sub s} = 11.75 Two-Mass Galaxy Redshift Survey, which provides the deepest and most complete all-sky spatial distribution of galaxies with spectroscopic redshifts available thus far. In our analysis, we use a new concise relation for deriving the LG motion and bulk flow from the true distribution of galaxies in redshift space. Our results show that the main source of uncertainty is the small effective depth of surveys like the Two-Mass Redshift Survey (2MRS), which prevents a proper sampling of the large-scale structure beyond ∼100 h {sup –1} Mpc. Deeper redshift surveys are needed to reach the 'convergence scale' of ≈250 h {sup –1} Mpc in a ΛCDM universe. Deeper surveys would also mitigate the impact of the 'Kaiser rocket' which, in a survey like 2MRS, remains a significant source of uncertainty. Thanks to the quiet and moderate density environment of the LG, purely dynamical uncertainties of the linear predictions are subdominant at the level of ∼90 km s{sup –1}. Finally, we show that deviations from linear galaxy biasing and shot noise errors provide a minor contribution to the total error budget.

  11. Using Gamma Regression for Photometric Redshifts of Survey Galaxies

    NASA Astrophysics Data System (ADS)

    Elliott, J.; de Souza, R. S.; Krone-Martins, A.; Cameron, E.; Ishida, E. E. O.; Hilbe, J.

    Machine learning techniques offer a plethora of opportunities in tackling big data within the astronomical community. We present the set of Generalized Linear Models as a fast alternative for determining photometric redshifts of galaxies, a set of tools not commonly applied within astronomy, despite being widely used in other professions. With this technique, we achieve catastrophic outlier rates of the order of ˜ 1%, that can be achieved in a matter of seconds on large datasets of size ˜ 1,000,000. To make these techniques easily accessible to the astronomical community, we developed a set of libraries and tools that are publicly available.

  12. TESTING WEAK-LENSING MAPS WITH REDSHIFT SURVEYS: A SUBARU FIELD

    SciTech Connect

    Kurtz, Michael J.; Geller, Margaret J.; Fabricant, Daniel G.; Utsumi, Yousuke; Miyazaki, Satoshi; Dell'Antonio, Ian P. E-mail: mgeller@cfa.harvard.edu E-mail: yousuke.utsumi@nao.ac.jp E-mail: ian@het.brown.edu

    2012-05-10

    We use a dense redshift survey in the foreground of the Subaru GTO2deg{sup 2} weak-lensing field (centered at {alpha}{sub 2000} = 16{sup h}04{sup m}44{sup s}; {delta}{sub 2000} = 43 Degree-Sign 11'24'') to assess the completeness and comment on the purity of massive halo identification in the weak-lensing map. The redshift survey (published here) includes 4541 galaxies; 4405 are new redshifts measured with the Hectospec on the MMT. Among the weak-lensing peaks with a signal-to-noise greater than 4.25, 2/3 correspond to individual massive systems; this result is essentially identical to the Geller et al. test of the Deep Lens Survey (DLS) field F2. The Subaru map, based on images in substantially better seeing than the DLS, enables detection of less massive halos at fixed redshift as expected. We demonstrate that the procedure adopted by Miyazaki et al. for removing some contaminated peaks from the weak-lensing map improves agreement between the lensing map and the redshift survey in the identification of candidate massive systems.

  13. THE MICRO-ARCSECOND SCINTILLATION-INDUCED VARIABILITY (MASIV) SURVEY. III. OPTICAL IDENTIFICATIONS AND NEW REDSHIFTS

    SciTech Connect

    Pursimo, Tapio; Ojha, Roopesh; Rickett, Barney J.; Dutka, Michael S.; Koay, Jun Yi; Bignall, Hayley E.; Macquart, Jean-Pierre; Lovell, James E. J.; Kedziora-Chudczer, Lucyna

    2013-04-10

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Micro-Arcsecond Scintillation-Induced Variability) survey of 443 flat spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  14. The Micro-Arcsecond Scintillation-Induced Variability (MASIV) Survey III. Optical Identifications and New Redshifts

    NASA Technical Reports Server (NTRS)

    Pursimo, Tapio; Ojha, Roopesh; Jauncey, David L.; Rickett, Barney J.; Dutka, Michael S.; Koay, Jun Yi; Lovell, James E. J.; Bignall, Hayley E.; Kedziora-Chudczer, Lucyna; Macquart, Jean-Pierre

    2013-01-01

    Intraday variability (IDV) of the radio emission from active galactic nuclei is now known to be predominantly due to interstellar scintillation (ISS). The MASIV (The Microarcsecond Scintillation Induced Variability) survey of 443 at spectrum sources revealed that the IDV is related to the radio flux density and redshift. A study of the physical properties of these sources has been severely handicapped by the absence of reliable redshift measurements for many of these objects. This paper presents 79 new redshifts and a critical evaluation of 233 redshifts obtained from the literature. We classify spectroscopic identifications based on emission line properties, finding that 78% of the sources have broad emission lines and are mainly FSRQs. About 16% are weak lined objects, chiefly BL Lacs, and the remaining 6% are narrow line objects. The gross properties (redshift, spectroscopic class) of the MASIV sample are similar to those of other blazar surveys. However, the extreme compactness implied by ISS favors FSRQs and BL Lacs in the MASIV sample as these are the most compact object classes. We confirm that the level of IDV depends on the 5 GHz flux density for all optical spectral types. We find that BL Lac objects tend to be more variable than broad line quasars. The level of ISS decreases substantially above a redshift of about two. The decrease is found to be generally consistent with ISS expected for beamed emission from a jet that is limited to a fixed maximum brightness temperature in the source rest frame.

  15. A Systematic Meta-Survey of High Redshift Quasars Probing their Environments and Evolution

    NASA Astrophysics Data System (ADS)

    Gobeille, Doug B. P.

    We have constructed a meta-survey of 298 quasars in the window from 7 to 17.5 hours in right ascension and 0 to 65 degrees in declination. These quasars span three decades of total power and redshifts from 0.158 to 5.284. All sources had a flux density of greater than 70 mJy at 1.4 GHz. At redshifts z > 2.5 our sample is complete. It is also complete for z < 1 and P Tot1:4 > 1027.55 W/Hz. Our quasar sample is built from archival Very Large Array (VLA) observations, as well as three observations in 2007 and 2008. This sample represents one of the most complete meta-surveys to date of the high redshift universe. In the 1980's, two competing groups (Ne, Gower and Hutchings, and Barthel, Miley, and Lonsdale) investigated the high redshift universe, seeking to investigate the dependence of largest linear size (LLS) and bending angles on redshift, core power, and extended power. Using our sample we test the differing results of these groups and build our own model of source evolution with redshift and power. We also seek a relationship between bending angles and core dominance, modeling this dependence on the thoughts of Orr & Browne showing that projected bending angles grow as the angle to the line of sight approaches the intrinsic bending angle of the quasar. We will also present an additional component of our high redshift quasar observations seeking arcsecond scale jets to be observed with the space based Chandra x-ray telescope. These observations will be used to investigate the nature of x-ray emission from the knots of kiloparsec jets in the high redshift universe.

  16. Data augmentation for machine learning redshifts applied to Sloan Digital Sky Survey galaxies

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Rau, Markus Michael; Bonnett, Christopher; Seitz, Stella; Weller, Jochen

    2015-06-01

    We present analyses of data augmentation for machine learning redshift estimation. Data augmentation makes a training sample more closely resemble a test sample, if the two base samples differ, in order to improve measured statistics of the test sample. We perform two sets of analyses by selecting 800 000 (1.7 million) Sloan Digital Sky Survey Data Release 8 (Data Release 10) galaxies with spectroscopic redshifts. We construct a base training set by imposing an artificial r-band apparent magnitude cut to select only bright galaxies and then augment this base training set by using simulations and by applying the K-CORRECT package to artificially place training set galaxies at a higher redshift. We obtain redshift estimates for the remaining faint galaxy sample, which are not used during training. We find that data augmentation reduces the error on the recovered redshifts by 40 per cent in both sets of analyses, when compared to the difference in error between the ideal case and the non-augmented case. The outlier fraction is also reduced by at least 10 per cent and up to 80 per cent using data augmentation. We finally quantify how the recovered redshifts degrade as one probes to deeper magnitudes past the artificial magnitude limit of the bright training sample. We find that at all apparent magnitudes explored, the use of data augmentation with tree-based methods provide an estimate of the galaxy redshift with a low value of bias, although the error on the recovered redshifts increases as we probe to deeper magnitudes. These results have applications for surveys which have a spectroscopic training set which forms a biased sample of all photometric galaxies, for example if the spectroscopic detection magnitude limit is shallower than the photometric limit.

  17. Photometric Redshifts for the Dark Energy Survey and VISTA and Implications for Large Scale Structure

    SciTech Connect

    Banerji, Manda; Abdalla, Filipe B.; Lahav, Ofer; Lin, Huan; /Fermilab

    2007-11-01

    We conduct a detailed analysis of the photometric redshift requirements for the proposed Dark Energy Survey (DES) using two sets of mock galaxy simulations and an artificial neural network code-ANNz. In particular, we examine how optical photometry in the DES grizY bands can be complemented with near infra-red photometry from the planned VISTA Hemisphere Survey (VHS) in the JHK{sub s} bands in order to improve the photometric redshift estimate by a factor of two at z > 1. We draw attention to the effects of galaxy formation scenarios such as reddening on the photo-z estimate and using our neural network code, calculate A{sub v} for these reddened galaxies. We also look at the impact of using different training sets when calculating photometric redshifts. In particular, we find that using the ongoing DEEP2 and VVDS-Deep spectroscopic surveys to calibrate photometric redshifts for DES, will prove effective. However we need to be aware of uncertainties in the photometric redshift bias that arise when using different training sets as these will translate into errors in the dark energy equation of state parameter, w. Furthermore, we show that the neural network error estimate on the photometric redshift may be used to remove outliers from our samples before any kind of cosmological analysis, in particular for large-scale structure experiments. By removing all galaxies with a 1{sigma} photo-z scatter greater than 0.1 from our DES+VHS sample, we can constrain the galaxy power spectrum out to a redshift of 2 and reduce the fractional error on this power spectrum by {approx}15-20% compared to using the entire catalogue.

  18. A sparse-sampling strategy for the estimation of large-scale clustering from redshift surveys

    NASA Astrophysics Data System (ADS)

    Kaiser, N.

    1986-04-01

    It is shown that a fractional faint-magnitude limited redshift survey can significantly reduce the uncertainty in the two-point function for a given telescope time investment, in the estimation of large scale clustering. The signal-to-noise ratio for a 1-in-20 bright galaxy sample is roughly twice that provided by a same-cost complete survey, and this performance is the same as for a larger complete survey of about seven times the cost. A similar performance increase is achieved with a wide-field telescope multiple redshift collection from a close to full sky coverage survey. Little performance improvement is seen for smaller multiply collected surveys ideally sampled at a 1-in-10 bright galaxy rate. The optimum sampling fraction for Abell's rich clusters is found to be close to unity, with little sparse sampling performance improvement.

  19. CLUSTER LENSING PROFILES DERIVED FROM A REDSHIFT ENHANCEMENT OF MAGNIFIED BOSS-SURVEY GALAXIES

    SciTech Connect

    Coupon, Jean; Umetsu, Keiichi; Broadhurst, Tom

    2013-07-20

    We report the first detection of a redshift-depth enhancement of background galaxies magnified by foreground clusters. Using 300,000 BOSS survey galaxies with accurate spectroscopic redshifts, we measure their mean redshift depth behind four large samples of optically selected clusters from the Sloan Digital Sky Survey (SDSS) surveys, totaling 5000-15,000 clusters. A clear trend of increasing mean redshift toward the cluster centers is found, averaged over each of the four cluster samples. In addition, we find similar but noisier behavior for an independent X-ray sample of 158 clusters lying in the foreground of the current BOSS sky area. By adopting the mass-richness relationships appropriate for each survey, we compare our results with theoretical predictions for each of the four SDSS cluster catalogs. The radial form of this redshift enhancement is well fitted by a richness-to-mass weighted composite Navarro-Frenk-White profile with an effective mass ranging between M{sub 200} {approx} 1.4-1.8 Multiplication-Sign 10{sup 14} M{sub Sun} for the optically detected cluster samples, and M{sub 200} {approx} 5.0 Multiplication-Sign 10{sup 14} M{sub Sun} for the X-ray sample. This lensing detection helps to establish the credibility of these SDSS cluster surveys, and provides a normalization for their respective mass-richness relations. In the context of the upcoming bigBOSS, Subaru Prime Focus Spectrograph, and EUCLID-NISP spectroscopic surveys, this method represents an independent means of deriving the masses of cluster samples for examining the cosmological evolution, and provides a relatively clean consistency check of weak-lensing measurements, free from the systematic limitations of shear calibration.

  20. Redshifts for a sample of fainter galaxies in the first CfA survey slice

    SciTech Connect

    Thorstensen, J.R.; Wegner, G.A.; Hamwey, R.; Boley, F.; Geller, M.J. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1989-10-01

    Redshifts were measured for 93 of the 94 galaxies in the Zwicky-Nilson merged catalog with the value of m(B/01) between 15.5 and 15.7 and with right ascension alpha between 8(h) and 17(h) and declination delta between 29 and 30 deg. This region is within the one covered by the first slice of the CfA (Center for Astrophysics) survey. The galaxies reinforce features already visible in the earlier survey. 19 refs.

  1. Redshifts for a sample of fainter galaxies in the first CfA survey slice

    NASA Technical Reports Server (NTRS)

    Thorstensen, J. R.; Wegner, G. A.; Hamwey, R.; Boley, F.; Geller, M. J.

    1989-01-01

    Redshifts were measured for 93 of the 94 galaxies in the Zwicky-Nilson merged catalog with the value of m(B/01) between 15.5 and 15.7 and with right ascension alpha between 8(h) and 17(h) and declination delta between 29 and 30 deg. This region is within the one covered by the first slice of the CfA (Center for Astrophysics) survey. The galaxies reinforce features already visible in the earlier survey.

  2. Spectroscopic CCD surveys for quasars at large redshift. I - A deep PFUEI survey. [Prime Focus Universal Extragalactic Instrument

    NASA Technical Reports Server (NTRS)

    Schmidt, M.; Schneider, D. P.; Gunn, J. E.

    1986-01-01

    A survey for faint quasars has been conducted using slitless spectroscopy with the PFUEI at the 200 inch (5 m) telescope. The survey covers a total of 0.91 sq deg in 113 fields at galactic latitudes above 30 deg. Calibrated spectra in the range 4500-7200 A were obtained for more than 9000 objects. Emission-line candidates were selected on the basis of two criteria: the equivalent width must exceed 50 A, and the signal-to-noise ratio of the detection of the line versus the sky background should be larger than 7. Among 45 candidates so selected, subsequent slit spectroscopy confirmed 27 emission-line objects. Among these, 17 are emission-line galaxies with redshifts in the range 0.04-0.31, and 10 are quasars with redshifts between 0.91 and 2.66. The well-defined selection criteria for these objects, together with the distribution of rest frame equivalent widths of the emission lines, allow derivation of the area of sky covered as a function of the continuum limiting magnitude. The observed number of quasars in the redshift range 0.7-2.7 agrees well with that predicted by the luminosity function models published by Schmidt and Green in 1983. It is concluded that quasars with an absolute magnitude of M(B) = -25 suffer a redshift cutoff near or below a redshift of 3.

  3. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Block, J.; Boselli, A.; Brisbin, D.; Buat, V.; Burgarella, D.; Castro-Rodriquez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.; Clements, D. L.; Conley, A.; Conversi, L.; Dowell, C. D.; Dunlop, J. S.; Dwek, E.

    2012-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric redshifts using a sample of mm-selected sources as seen at 250, 350 and 500 micron by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm sources with reliable radio identifications in the Great Observatories Origins Deep Survey North and Lockman Hole North fields, 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm color evolution with redshift, finding that the colors of mm sources are adequately described by a modified blackbody with constant optical depth Tau = (Nu/nu(sub 0))(exp Beta), where Beta = +1.8 and nu(sub 0) = c/100 micron. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation, we derive photometric redshift estimates for the 46 SPIRE-detected mm sources. Testing against the 22 sources with known spectroscopic or good quality optical/near-IR photometric redshifts, we find submm/mm photometric redshifts offer a redshift accuracy of (absolute value of Delta sub (z))/(1 + z) = 0.16 (absolute value of Delta sub (z)) = 0.51). Including constraints from the radio-far-IR correlation, the accuracy is improved to (absolute value of Delta sub (z))/(1 + z) = 0.14 (((absolute value of Delta sub (z))) = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at Z > 3 when compared to approx 8S0 micron selected samples.

  4. Tests of smoothing methods for topological study of galaxy redshift surveys

    NASA Technical Reports Server (NTRS)

    Melott, Adrian L.; Dominik, Kurt G.

    1993-01-01

    Studying the topology of large-scale structure as a way to better understand initial conditions has become more widespread in recent years. Studying topology of simulations (which have periodic boundary conditions) in redshift space produces results compatible with the real topological characteristics of the simulation. Thus we expect we can extract useful information from redshift surveys. However, with nonperiodic boundary conditions, the use of smoothing must result in the loss of information at survey boundaries. In this paper, we test different methods of smoothing samples with nonperiodic boundary conditions to see which most efficiently preserves the topological features of the real distribution. We find that a smoothing method which (unlike most previous published analysis) sums only over cells inside the survey volume produces the best results among the schemes tested.

  5. The luminosity function for different morphological types in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, Ronald O.; Geller, Margaret J.; Huchra, John P.; Corwin, Harold G., Jr.

    1994-01-01

    We derive the luminosity function for different morphological types in the original CfA Redshift Survey (CfA1) and in the first two slices of the CfA Redshift Survey Extension (CfA2). CfA1 is a complete sample containing 2397 galaxies distributed over 2.7 steradians with m(sub z) less than or equal 14.5. The first two complete slices of CfA2 contain 1862 galaxies distributed over 0.42 steradians with m(sub z)=15.5. The shapes of the E-S0 and spiral luminosity functions (LF) are indistinguishable. We do not confirm the steeply decreasing faint end in the E-S0 luminosity function found by Loveday et al. for an independent sample in the southern hemisphere. We demonstrate that incomplete classification in deep redshift surveys can lead to underestimates of the faint end of the elliptical luminosity function and could be partially responsible for the difference between the CfA survey and other local field surveys. The faint end of the LF for the Magellanic spirals and irregulars is very steep. The Sm-Im luminosity function is well fit by a Schechter function with M*=-18.79, alpha=-1.87, and phi*=0.6x10(exp -3) for M(sub z) less than or equal to -13. These galaxies are largely responsible for the excess at the faint end of the general CfA luminosity function. The abundance of intrinsically faint, blue galaxies nearby affects the interpretation of deep number counts. The dwarf population increases the expected counts at B=25 in a no-evolution, q(sub 0)=0.05 model by a factor of two over standard no-evolution estimates. These dwarfs change the expected median redshift in deep redshift surveys by less than 10 percent . Thus the steep Sm-Im LF may contribute to the reconciliation of deep number counts with deep redshift surveys.

  6. Five New High-Redshift Quasar Lenses from the Sloan Digital Sky Survey

    SciTech Connect

    Inada, Naohisa; Oguri, Masamune; Shin, Min-Su; Kayo, Issha; Strauss, Michael A.; Morokuma, Tomoki; Schneider, Donald P.; Becker, Robert H.; Bahcall, Neta A.; York, Donald G.

    2008-09-08

    We report the discovery of five gravitationally lensed quasars from the Sloan Digital Sky Survey (SDSS). All five systems are selected as two-image lensed quasar candidates from a sample of high-redshift (z > 2.2) SDSS quasars. We confirmed their lensing nature with additional imaging and spectroscopic observations. The new systems are SDSS J0819+5356 (source redshift z{sub s} = 2.237, lens redshift z{sub l} = 0.294, and image separation {theta} = 4.04 inch), SDSS J1254+2235 (z{sub s} = 3.626, {theta} = 1.56 inch), SDSS J1258+1657 (z{sub s} = 2.702, {theta} = 1.28 inch), SDSS J1339+1310 (z{sub s} = 2.243, {theta} = 1.69 cin), and SDSS J1400+3134 (z{sub s} = 3.317, {theta} = 1.74 inch). We estimate the lens redshifts of the latter four systems to be z{sub l} = 0.4-0.6 from the colors and magnitudes of the lensing galaxies. We find that the image configurations of all systems are well reproduced by standard mass models. Although these lenses will not be included in our statistical sample of z{sub s} < 2.2 lenses, they expand the number of lensed quasars which can be used for high-redshift galaxy and quasar studies.

  7. Deep 2mm Surveys with GISMO : Searching for submillimeter galaxies at the highest redshifts

    NASA Astrophysics Data System (ADS)

    Staguhn, Johannes Gunter; Kovacs, Attila; Karim, Alexander; Arendt, Richard; Benford, Dominic J.; Decarli, Roberto; Dwek, Eli; Fixsen, Dale; Gene, Hilton; Irwin, Kent; Moseley, S. Harvey; Sharp, Elmer; Walter, Fabian; Edward, Wollack

    2015-08-01

    The GISMO 2 mm camera at the IRAM 30m telescope has been available to the astronomical community for years through the semi-annual IRAM call for proposals. The 2 mm band is in particular well suited to trace the first dusty galaxies in the universe, since their redshifted SEDs peak close to GISMO's observing frequency, whereas the medium redshift galaxy foreground is almost invisible in this band. This effect makes GISMO's deep field observations a valuable complement, rather than a redundancy, to the HERSCHEL far-infrared and sub-mm surveys. Two survey projects aiming at obtaining 2mm galaxy number counts are at the core of GISMO’s science. Simple models predict an appreciable number of galaxies detected in these surveys to be be at very high redshifts (z~5-6 and above) with intrinsic luminosities of a few 10^12 L_sol.The first of these projects is the GISMO Deep Field (GDF) survey, which is centered on the Hubble Deep Field North. This survey by now has reached the confusion limit (we measure a confusion noise of 60 microJy). Our detailed statistical analysis of the GDF data provides a solid estimate of the expected rate of false detections among those source identifications. Furthermore, numerical simulations were used, to estimate the "completeness" of our set of extracted sources. A comparison of our observations with model predictions shows that our results are in good agreement with galaxy count models.The second survey covers a ~ 1/4 square degree region in the COSMOS field, in which by now we have obtained sufficient sensitivity to extract statistically relevant galaxy number counts, and by using auxiliary data, redshift distributions. We will present first results that complement those obtained in the deeper GDF.

  8. CFHTLenS and RCSLenS: Testing Photometric Redshift Distributions Using Angular Cross-Correlations with Spectroscopic Galaxy Surveys

    NASA Astrophysics Data System (ADS)

    Choi, A.; Heymans, C.; Blake, C.; Hildebrandt, H.; Duncan, C. A. J.; Erben, T.; Nakajima, R.; Van Waerbeke, L.; Viola, M.

    2016-09-01

    We determine the accuracy of galaxy redshift distributions as estimated from photometric redshift probability distributions p(z). Our method utilises measurements of the angular cross-correlation between photometric galaxies and an overlapping sample of galaxies with spectroscopic redshifts. We describe the redshift leakage from a galaxy photometric redshift bin j into a spectroscopic redshift bin i using the sum of the p(z) for the galaxies residing in bin j. We can then predict the angular cross-correlation between photometric and spectroscopic galaxies due to intrinsic galaxy clustering when i ≠ j as a function of the measured angular cross-correlation when i = j. We also account for enhanced clustering arising from lensing magnification using a halo model. The comparison of this prediction with the measured signal provides a consistency check on the validity of using the summed p(z) to determine galaxy redshift distributions in cosmological analyses, as advocated by the Canada-France-Hawaii Telescope Lensing Survey (CFHTLenS). We present an analysis of the photometric redshifts measured by CFHTLenS, which overlaps the Baryon Oscillation Spectroscopic Survey (BOSS). We also analyse the Red-sequence Cluster Lensing Survey (RCSLenS), which overlaps both BOSS and the WiggleZ Dark Energy Survey. We find that the summed p(z) from both surveys are generally biased with respect to the true underlying distributions. If unaccounted for, this bias would lead to errors in cosmological parameter estimation from CFHTLenS by less than ˜4%. For photometric redshift bins which spatially overlap in 3-D with our spectroscopic sample, we determine redshift bias corrections which can be used in future cosmological analyses that rely on accurate galaxy redshift distributions.

  9. The luminosity function of the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Marzke, R. O.; Huchra, J. P.; Geller, M. J.

    1994-01-01

    We use the CfA Reshift Survey of galaxies with m(sub z) less than or equal to 15.5 to calculate the galaxy luminosity function over the range -13 less than or equal to M(sub z) less than or equal to -22. The sample includes 9063 galaxies distributed over 2.1 sr. For galaxies with velocities cz greater or equal to 2500 km per sec, where the effects of peculiar velocities are small, the luminosity function is well represented by a Schechter function with parameters phi(sub star) = 0.04 +/- 0.01 per cu Mpc, M(sub star) = -18.8 +/- 0.3, and alpha = -1.0 +/- 0.2. When we include all galaxies with cz greater or equal to 500 km per sec, the number of galaxies in the range -16 less than or equal to M(sub z) less than or equal to -13 exceeds the extrapolation of the Schechter function by a factor of 3.1 +/- 0.5. This faint-end excess is not caused by the local peculiar velocity field but may be partially explained by small scale errors in the Zwicky magnitudes. Even with a scale error as large as 0.2 mag per mag, which is unlikely, the excess is still a factor of 1.8 +/- 0.3. If real, this excess affects the interpretation of deep counts of field galaxies.

  10. Spectral Classification and Redshift Measurement for the SDSS-III Baryon Oscillation Spectroscopic Survey

    NASA Astrophysics Data System (ADS)

    Bolton, Adam S.; Schlegel, David J.; Aubourg, Éric; Bailey, Stephen; Bhardwaj, Vaishali; Brownstein, Joel R.; Burles, Scott; Chen, Yan-Mei; Dawson, Kyle; Eisenstein, Daniel J.; Gunn, James E.; Knapp, G. R.; Loomis, Craig P.; Lupton, Robert H.; Maraston, Claudia; Muna, Demitri; Myers, Adam D.; Olmstead, Matthew D.; Padmanabhan, Nikhil; Pâris, Isabelle; Percival, Will J.; Petitjean, Patrick; Rockosi, Constance M.; Ross, Nicholas P.; Schneider, Donald P.; Shu, Yiping; Strauss, Michael A.; Thomas, Daniel; Tremonti, Christy A.; Wake, David A.; Weaver, Benjamin A.; Wood-Vasey, W. Michael

    2012-11-01

    We describe the automated spectral classification, redshift determination, and parameter measurement pipeline in use for the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III (SDSS-III) as of the survey's ninth data release (DR9), encompassing 831,000 moderate-resolution optical spectra. We give a review of the algorithms employed, and describe the changes to the pipeline that have been implemented for BOSS relative to previous SDSS-I/II versions, including new sets of stellar, galaxy, and quasar redshift templates. For the color-selected "CMASS" sample of massive galaxies at redshift 0.4 <~ z <~ 0.8 targeted by BOSS for the purposes of large-scale cosmological measurements, the pipeline achieves an automated classification success rate of 98.7% and confirms 95.4% of unique CMASS targets as galaxies (with the balance being mostly M stars). Based on visual inspections of a subset of BOSS galaxies, we find that approximately 0.2% of confidently reported CMASS sample classifications and redshifts are incorrect, and about 0.4% of all CMASS spectra are objects unclassified by the current algorithm which are potentially recoverable. The BOSS pipeline confirms that ~51.5% of the quasar targets have quasar spectra, with the balance mainly consisting of stars and low signal-to-noise spectra. Statistical (as opposed to systematic) redshift errors propagated from photon noise are typically a few tens of km s-1 for both galaxies and quasars, with a significant tail to a few hundreds of km s-1 for quasars. We test the accuracy of these statistical redshift error estimates using repeat observations, finding them underestimated by a factor of 1.19-1.34 for galaxies and by a factor of two for quasars. We assess the impact of sky-subtraction quality, signal-to-noise ratio, and other factors on galaxy redshift success. Finally, we document known issues with the BOSS DR9 spectroscopic data set and describe directions of ongoing development.

  11. High-Redshift Clusters form NVSS: The TexOx Cluster (TOC) Survey

    SciTech Connect

    Croft, S; Rawlings, S; Hill, G J

    2003-02-11

    The TexOx Cluster (TOC) Survey uses overdensities of radiosources in the NVSS to trace clusters of galaxies. The links between radiosources and rich environments make this a powerful way to find clusters which may potentially be overlooked by other selection techniques. By including constraints from optical surveys, TOC is an extremely efficient way to find clusters at high redshift. One such field, TOC J0233.3+3021, contains at least one galaxy cluster (at z {approx} 1.4) and has been detected using the Sunyaev-Zel'dovich (SZ) effect. Even in targeted deep optical observations, however, distinguishing the cluster galaxies from the background is difficult, especially given the tendency of TOC to select fields containing multiple structures at different redshifts.

  12. Probabilistic Selection of High-redshift Quasars with Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Onoue, Masafusa

    High-redshift quasars are an important probe of the distant Universe. They enable observational studies of the early growth of supermassive blackholes, cosmic reionization, chemical enrichment of host galaxies, and so on. Through pioneering optical and near-infrared wide-area surveys such as the SDSS and the VIKING Survey, about one hundred quasars have been found at z > 6 (e.g., Fan et al. (2006b), Venemans et al. (2013)). However, its current small sample size and the fact that most of them are the most luminous (M 1450 <~ -24) population in this epoch prevents one from constraining statistics on high-redshift quasars, namely quasar luminosity function (QLF), and redshift evolution of IGM neutral fraction. Thus, discovery of large number of z > 6 quasars, especially low-luminous or z > 7 quasars, is highly desired for further understanding of the early universe. We are now starting a new ground-breaking survey of high-redshift (z > 6) quasars using the exquisite imaging data provided by the Hyper Suprime-Cam (HSC) Subaru Strategic Program (SSP) Survey. Thanks to its extremely wide coverage and its high sensitivity thorough five optical bands (1,400 deg2 to the depth of r ~ 26 in HSC-Wide layer), it is one of the most powerful contemporary surveys that makes it possible for us to increase the number of z > 6 quasars by almost an order of magnitude, i.e., 300 at z ~ 6 and 50 at z ~ 7, based on the current estimate of the QLF at z > 6 by Willott et al. (2010b). One of the biggest challenges in z > 6 quasar candidate selection is contamination of Galactic brown dwarfs, which have the same point-like appearance as and similarly red colors to the quasars. To overcome this issue and maximize the selection efficiency, we apply a double-layered approach to the HSC survey products, namely combination of two probabilistic selections: SED-fitting and Bayesian selection. In particular, we have developed a template SED fitting method optimized to high-redshift quasars

  13. Large-scale clustering of galaxies in the CfA Redshift Survey

    NASA Technical Reports Server (NTRS)

    Vogeley, Michael S.; Park, Changbom; Geller, Margaret J.; Huchra, John P.

    1992-01-01

    The power spectrum of the galaxy distribution in the Center for Astrophysics Redshift Survey (de Lapparent et al., 1986; Geller and Huchra, 1989; and Huchra et al., 1992) is measured up to wavelengths of 200/h Mpc. Results are compared with several cosmological simulations with Gaussian initial conditions. It is shown that the power spectrum of the standard CDM model is inconsistent with the observed power spectrum at the 99 percent confidence level.

  14. THE POPULATION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE CHANDRA-COSMOS SURVEY

    SciTech Connect

    Civano, F.; Elvis, M.; Hao, H.; Brusa, M.; Comastri, A.; Zamorani, G.; Gilli, R.; Mignoli, M.; Salvato, M.; Capak, P.; Kakazu, Y.; Masters, D.; Fiore, F.; Ikeda, H.; Kartaltepe, J. S.; Miyaji, T.; Puccetti, S.; Shankar, F.; Silverman, J.; Vignali, C.

    2011-11-10

    We present the high-redshift (3 Survey. The sample comprises 81 X-ray-detected sources with available spectroscopic (31) and photometric (50) redshifts plus 20 sources with a formal z{sub phot} < 3 but with a broad photometric redshift probability distribution, such that z{sub phot} + 1{sigma} > 3. Eighty-one sources are selected in the 0.5-2 keV band, fourteen are selected in the 2-10 keV and six in the 0.5-10 keV bands. We sample the high-luminosity (log L{sub (2-10keV)} > 44.15 erg s{sup -1}) space density up to z {approx} 5 and a fainter luminosity range (43.5 erg s{sup -1} < log L{sub (2-10keV)} < 44.15 erg s{sup -1}) than previous studies, up to z = 3.5. We weighted the contribution to the number counts and the space density of the sources with photometric redshift by using their probability of being at z > 3. We find that the space density of high-luminosity AGNs declines exponentially at all the redshifts, confirming the trend observed for optically selected quasars. At lower luminosity, the measured space density is not conclusive, and a larger sample of faint sources is needed. Comparisons with optical luminosity functions and black hole formation models are presented together with prospects for future surveys.

  15. The DEEP2 Galaxy Redshift Survey: The Voronoi-Delaunay Method Catalog of Galaxy Groups

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Marinoni, Christian; Yan, Renbin; Coil, Alison L.; Conroy, Charlie; Cooper, Michael C.; Faber, S.M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Weiner, Benjamin J.; /Maryland U.

    2012-02-14

    We use the first 25% of the DEEP2 Galaxy Redshift Survey spectroscopic data to identify groups and clusters of galaxies in redshift space. The data set contains 8370 galaxies with confirmed redshifts in the range 0.7 {<=} z {<=} 1.4, over one square degree on the sky. Groups are identified using an algorithm (the Voronoi-Delaunay Method) that has been shown to accurately reproduce the statistics of groups in simulated DEEP2-like samples. We optimize this algorithm for the DEEP2 survey by applying it to realistic mock galaxy catalogs and assessing the results using a stringent set of criteria for measuring group-finding success, which we develop and describe in detail here. We find in particular that the group-finder can successfully identify {approx}78% of real groups and that {approx}79% of the galaxies that are true members of groups can be identified as such. Conversely, we estimate that {approx}55% of the groups we find can be definitively identified with real groups and that {approx}46% of the galaxies we place into groups are interloper field galaxies. Most importantly, we find that it is possible to measure the distribution of groups in redshift and velocity dispersion, n({sigma}, z), to an accuracy limited by cosmic variance, for dispersions greater than 350 km s{sup -1}. We anticipate that such measurements will allow strong constraints to be placed on the equation of state of the dark energy in the future. Finally, we present the first DEEP2 group catalog, which assigns 32% of the galaxies to 899 distinct groups with two or more members, 153 of which have velocity dispersions above 350 km s{sup -1}. We provide locations, redshifts and properties for this high-dispersion subsample. This catalog represents the largest sample to date of spectroscopically detected groups at z {approx} 1.

  16. GALAXY ZOO MORPHOLOGY AND PHOTOMETRIC REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Way, M. J.

    2011-06-10

    It has recently been demonstrated that one can accurately derive galaxy morphology from particular primary and secondary isophotal shape estimates in the Sloan Digital Sky Survey (SDSS) imaging catalog. This was accomplished by applying Machine Learning techniques to the Galaxy Zoo morphology catalog. Using the broad bandpass photometry of the SDSS in combination with precise knowledge of galaxy morphology should help in estimating more accurate photometric redshifts for galaxies. Using the Galaxy Zoo separation for spirals and ellipticals in combination with SDSS photometry we attempt to calculate photometric redshifts. In the best case we find that the root-mean-square error for luminous red galaxies classified as ellipticals is as low as 0.0118. Given these promising results we believe better photometric redshift estimates for all galaxies in the SDSS ({approx}350 million) will be feasible if researchers can also leverage their derived morphologies via Machine Learning. These initial results look to be promising for those interested in estimating weak lensing, baryonic acoustic oscillation, and other fields dependent upon accurate photometric redshifts.

  17. RED-SEQUENCE GALAXIES AT HIGH REDSHIFT BY THE COMBO-17+4 SURVEY

    SciTech Connect

    Nicol, Marie-Helene; Meisenheimer, Klaus; Wolf, Christian; Tapken, Christian E-mail: meise@mpia.de E-mail: ctapken@aip.de

    2011-01-20

    We investigate the evolution of the galaxy population since redshift 2 with a focus on the color bimodality and mass density of the red sequence. We obtain precise and reliable photometric redshifts up to z = 2 by supplementing the optical survey COMBO-17 with observations in four near-infrared bands on 0.2 deg{sup 2} of the COMBO-17 A901-field. Our results are based on an H-band-selected catalog of 10,692 galaxies complete to H = 21fm7. We measure the rest-frame color (U{sub 280}-V) of each galaxy, which across the redshift range of our interest requires no extrapolation and is robust against moderate redshift errors by staying clear of the 4000 A break. We measure the color-magnitude relation of the red sequence as a function of look-back time from the peak in a color-error-weighted histogram, and thus trace the galaxy bimodality out to z {approx_equal} 1.65. The (U{sub 280}-V) of the red sequence is found to evolve almost linearly with look-back time. At high redshift, we find massive galaxies in both the red and the blue population. Red-sequence galaxies with log M{sub *}/M{sub sun}>11 increase in mass density by a factor of {approx}4 from z {approx} 2 to 1 and remain nearly constant at z < 1. However, some galaxies as massive as log M{sub *}/M{sub sun} = 11.5 are already in place at z {approx} 2.

  18. Photometric Redshift Survey Forecast for Luminous Red Galaxies at z 1.0

    NASA Astrophysics Data System (ADS)

    Huang, Xiaosheng; Schlegel, D. J.

    2006-12-01

    We analyzed the data from the DEEP2 Redshift Survey to obtain the number densities for luminous red galaxies between z=0.4 and 1.2. Based on the DEEP photometric data in B, R and I bands and the spectroscopic redshift we synthesized spectrophotometry for the 4000 DEEP galaxies in the extended groth strip (EGS) field, using templates from the Kinney-Calzetti catalog and Coleman, Wu and Weedman. We determined the number densities in the redshift ranges of 0.4survey, the sound horizon scale can be measured to an accuracy of 1.2-2% and w to 6-10%. This work has been supported by the Office of Science, U.S. Department of Energy, through contract DE-AC02-05CH11231.

  19. Redshifts for fainter galaxies in the first CfA survey slice. II

    NASA Technical Reports Server (NTRS)

    Wegner, Gary; Thorstensen, John R.; Kurtz, Michael J.; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    Redshifts were measured for 96 galaxies in right ascension alpha between 8h and 17h declination delta between 30 and 31 deg, and with m(Zwicky) in the range 15.6-15.7. These correspond to 94 of the 96 entries in the Zwicky-Nilson merged catalog. The declination range delta between 29 deg and 31 deg is now complete to m(Zwicky) = 15.7. The structures in the first 6-deg-wide slice of the Center for Astrophysics redshift survey slice (delta between 26.5 and 32.5 deg are clearly defined in the 2-deg-wide slightly deeper sample; the fainter galaxies trace the structures defined by the brighter ones.

  20. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Hierarchical scaling and biasing

    NASA Astrophysics Data System (ADS)

    Cappi, A.; Marulli, F.; Bel, J.; Cucciati, O.; Branchini, E.; de la Torre, S.; Moscardini, L.; Bolzonella, M.; Guzzo, L.; Abbas, U.; Adami, C.; Arnouts, S.; Bottini, D.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Granett, B. R.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Schimd, C.; Schlagenhaufer, H.; Wolk, M.; Zamorani, G.

    2015-07-01

    Aims: Building on the two-point correlation function analyses of the VIMOS Public Extragalactic Redshift Survey (VIPERS), we investigate the higher-order correlation properties of the same galaxy samples to test the hierarchical scaling hypothesis at z ~ 1 and the dependence on galaxy luminosity, stellar mass, and redshift. With this work we also aim to assess possible deviations from the linearity of galaxy bias independently from a previously performed analysis of our survey. Methods: We have measured the count probability distribution function in spherical cells of varying radii (3 ≤ R ≤ 10 h-1 Mpc), deriving σ8g (the galaxy rms at 8 h-1 Mpc), the volume-averaged two-, three-, and four-point correlation functions and the normalized skewness S3g and kurtosis S4g for different volume-limited subsamples, covering the following ranges: -19.5 ≤ MB(z = 1.1) - 5log (h) ≤ -21.0 in absolute magnitude, 9.0 ≤ log (M∗/M⊙h-2) ≤ 11.0 in stellar mass, and 0.5 ≤ z< 1.1 in redshift. Results: We have performed the first measurement of high-order correlation functions at z ~ 1 in a spectroscopic redshift survey. Our main results are the following. 1) The hierarchical scaling between the volume-averaged two- and three-point and two- and four-point correlation functions holds throughout the whole range of scale and redshift we could test. 2) We do not find a significant dependence of S3g on luminosity (below z = 0.9 the value of S3g decreases with luminosity, but only at 1σ-level). 3) We do not detect a significant dependence of S3g and S4g on scale, except beyond z ~ 0.9, where S3g and S4g have higher values on large scales (R ≥ 10 h-1 Mpc): this increase is mainly due to one of the two CFHTLS Wide Fields observed by VIPERS and can be explained as a consequence of sample variance, consistently with our analysis of mock catalogs. 4) We do not detect a significant evolution of S3g and S4g with redshift (apart from the increase of their values with scale in the

  1. COMPARING DENSE GALAXY CLUSTER REDSHIFT SURVEYS WITH WEAK-LENSING MAPS

    SciTech Connect

    Hwang, Ho Seong; Geller, Margaret J.; Zahid, H. Jabran; Diaferio, Antonaldo; Rines, Kenneth J. E-mail: mgeller@cfa.harvard.edu E-mail: diaferio@ph.unito.it

    2014-12-20

    We use dense redshift surveys of nine galaxy clusters at z ∼ 0.2 to compare the galaxy distribution in each system with the projected matter distribution from weak lensing. By combining 2087 new MMT/Hectospec redshifts and the data in the literature, we construct spectroscopic samples within the region of weak-lensing maps of high (70%-89%) and uniform completeness. With these dense redshift surveys, we construct galaxy number density maps using several galaxy subsamples. The shape of the main cluster concentration in the weak-lensing maps is similar to the global morphology of the number density maps based on cluster members alone, mainly dominated by red members. We cross-correlate the galaxy number density maps with the weak-lensing maps. The cross-correlation signal when we include foreground and background galaxies at 0.5z {sub cl} < z < 2z {sub cl} is 10%-23% larger than for cluster members alone at the cluster virial radius. The excess can be as high as 30% depending on the cluster. Cross-correlating the galaxy number density and weak-lensing maps suggests that superimposed structures close to the cluster in redshift space contribute more significantly to the excess cross-correlation signal than unrelated large-scale structure along the line of sight. Interestingly, the weak-lensing mass profiles are not well constrained for the clusters with the largest cross-correlation signal excesses (>20% for A383, A689, and A750). The fractional excess in the cross-correlation signal including foreground and background structures could be a useful proxy for assessing the reliability of weak-lensing cluster mass estimates.

  2. Probing primordial non-Gaussianity with SKA galaxy redshift surveys: a fully relativistic analysis

    NASA Astrophysics Data System (ADS)

    Camera, Stefano; Santos, Mário G.; Maartens, Roy

    2015-04-01

    The Square Kilometre Array (SKA) will produce spectroscopic surveys of tens to hundreds of millions of neutral hydrogen (H I) galaxies, eventually covering 30 000 deg2 and reaching out to redshift z ≳ 2. The huge volumes probed by the SKA will allow for some of the best constraints on primordial non-Gaussianity, based on measurements of the large-scale power spectrum. We investigate various observational set-ups for H I galaxy redshift surveys, compatible with the SKA Phase 1 and Phase 2 (full SKA) configurations. We use the corresponding number counts and bias for each survey from realistic simulations and derive the magnification bias and the evolution of source counts directly from these. For the first time, we produce forecasts that fully include the general relativistic effects on the galaxy number counts. These corrections to the standard analysis become important on very large scales, where the signal of primordial non-Gaussianity grows strongest. Our results show that, for the full survey, the non-Gaussianity parameter fNL can be constrained down to σ(fNL) = 1.54. This improves the current limit set by the Planck satellite by a factor of 5, using a completely different approach.

  3. THE SLOAN DIGITAL SKY SURVEY CO-ADD: A GALAXY PHOTOMETRIC REDSHIFT CATALOG

    SciTech Connect

    Reis, Ribamar R. R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao Jiangang; Johnston, David; Kubo, Jeffrey; Lin Huan; Seo, Hee-Jong; Simet, Melanie

    2012-03-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z) for the Sloan Digital Sky Survey (SDSS) Co-add Data. We use the artificial neural network (ANN) technique to calculate the photo-z and the nearest neighbor error method to estimate photo-z errors for {approx}13 million objects classified as galaxies in the co-add with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx}83,000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey, the Deep Extragalactic Evolutionary Probe Data Release 3, the VIsible imaging Multi-Object Spectrograph-Very Large Telescope Deep Survey, and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.031. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  4. Gravitational redshift of galaxies in clusters from the sloan digital sky survey and the Baryon Oscillation spectroscopic survey.

    PubMed

    Sadeh, Iftach; Feng, Low Lerh; Lahav, Ofer

    2015-02-20

    The gravitational redshift effect allows one to directly probe the gravitational potential in clusters of galaxies. Following up on Wojtak et al. [Nature (London) 477, 567 (2011)], we present a new measurement. We take advantage of new data from the tenth data release of the Sloan Digital Sky Survey and the Baryon Oscillation Spectroscopic Survey. We compare the spectroscopic redshift of the brightest cluster galaxies (BCGs) with that of galaxies at the outskirts of clusters, using a sample with an average cluster mass of 1014M⊙. We find that these galaxies have an average relative redshift of -11  km/s compared with that of BCGs, with a standard deviation of +7 and -5  km/s. Our measurement is consistent with that of Wojtak et al. [Nature (London) 477, 567 (2011)]. However, our derived standard deviation is larger, as we take into account various systematic effects, beyond the size of the data set. The result is in good agreement with the predictions from general relativity. PMID:25763947

  5. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hikage, Chiaki; Totani, Tomonori; Tonegawa, Motonari; Okada, Hiroyuki; Glazebrook, Karl; Blake, Chris; Ferreira, Pedro G.; More, Surhud; Taruya, Atsushi; Tsujikawa, Shinji; Akiyama, Masayuki; Dalton, Gavin; Goto, Tomotsugu; Ishikawa, Takashi; Iwamuro, Fumihide; Matsubara, Takahiko; Nishimichi, Takahiro; Ohta, Kouji; Shimizu, Ikkoh; Takahashi, Ryuichi; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Yoshida, Naoki

    2016-04-01

    We measure the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers a redshift range of 1.19 < z < 1.55, is the first cosmological study at such high redshifts. We detect clear anisotropy due to redshift-space distortions (RSD) both in the correlation function as a function of separations parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at z < 1. Adopting a ΛCDM cosmology with the fixed expansion history and no velocity dispersion (σv = 0), and using the RSD measurements on scales above 8 h-1 Mpc, we obtain the first constraint on the growth rate at the redshift, f (z)σ8(z) = 0.482 ± 0.116 at z ˜ 1.4 after marginalizing over the galaxy bias parameter b(z)σ8(z). This corresponds to 4.2 σ detection of RSD. Our constraint is consistent with the prediction of general relativity fσ8 ˜ 0.392 within the 1 σ confidence level. When we allow σv to vary and marginalize over it, the growth rate constraint becomes fσ _8=0.494^{+0.126}_{-0.120}. We also demonstrate that by combining with the low-z constraints on fσ8, high-z galaxy surveys like the FastSound can be useful to distinguish modified gravity models without relying on CMB anisotropy experiments.

  6. The Subaru FMOS galaxy redshift survey (FastSound). IV. New constraint on gravity theory from redshift space distortions at z ˜ 1.4

    NASA Astrophysics Data System (ADS)

    Okumura, Teppei; Hikage, Chiaki; Totani, Tomonori; Tonegawa, Motonari; Okada, Hiroyuki; Glazebrook, Karl; Blake, Chris; Ferreira, Pedro G.; More, Surhud; Taruya, Atsushi; Tsujikawa, Shinji; Akiyama, Masayuki; Dalton, Gavin; Goto, Tomotsugu; Ishikawa, Takashi; Iwamuro, Fumihide; Matsubara, Takahiko; Nishimichi, Takahiro; Ohta, Kouji; Shimizu, Ikkoh; Takahashi, Ryuichi; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Yoshida, Naoki

    2016-06-01

    We measure the redshift-space correlation function from a spectroscopic sample of 2783 emission line galaxies from the FastSound survey. The survey, which uses the Subaru Telescope and covers a redshift range of 1.19 < z < 1.55, is the first cosmological study at such high redshifts. We detect clear anisotropy due to redshift-space distortions (RSD) both in the correlation function as a function of separations parallel and perpendicular to the line of sight and its quadrupole moment. RSD has been extensively used to test general relativity on cosmological scales at z < 1. Adopting a ΛCDM cosmology with the fixed expansion history and no velocity dispersion (σv = 0), and using the RSD measurements on scales above 8 h-1 Mpc, we obtain the first constraint on the growth rate at the redshift, f (z)σ8(z) = 0.482 ± 0.116 at z ˜ 1.4 after marginalizing over the galaxy bias parameter b(z)σ8(z). This corresponds to 4.2 σ detection of RSD. Our constraint is consistent with the prediction of general relativity fσ8 ˜ 0.392 within the 1 σ confidence level. When we allow σv to vary and marginalize over it, the growth rate constraint becomes fσ _8=0.494^{+0.126}_{-0.120}. We also demonstrate that by combining with the low-z constraints on fσ8, high-z galaxy surveys like the FastSound can be useful to distinguish modified gravity models without relying on CMB anisotropy experiments.

  7. Photometric Redshifts for the Large-Area Stripe 82X Multiwavelength Survey

    NASA Astrophysics Data System (ADS)

    Tasnim Ananna, Tonima; Salvato, Mara; Urry, C. Megan; LaMassa, Stephanie M.; STRIPE 82X

    2016-06-01

    The Stripe 82X survey currently includes 6000 X-ray sources in 31.3 square degrees of XMM-Newton and Chandra X-ray coverage, most of which are AGN. Using a maximum-likelihood approach, we identified optical and infrared counterparts in the SDSS, VHS K-band and WISE W1-band catalogs. 1200 objects which had different best associations in different catalogs were checked by eye. Our most recent paper provided the multiwavelength catalogs for this sample. More than 1000 counterparts have spectroscopic redshifts, either from SDSS spectroscopy or our own follow-up program. Using the extensive multiwavelength data in this field, we provide photometric redshift estimates for most of the remaining sources, which are 80-90% accurate according to the training set. Our sample has a large number of candidates that are very faint in optical and bright in IR. We expect a large fraction of these objects to be the obscured AGN sample we need to complete the census on black hole growth at a range of redshifts.

  8. A DATA-DRIVEN MODEL FOR SPECTRA: FINDING DOUBLE REDSHIFTS IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Tsalmantza, P.; Hogg, David W.

    2012-07-10

    We present a data-driven method-heteroscedastic matrix factorization, a kind of probabilistic factor analysis-for modeling or performing dimensionality reduction on observed spectra or other high-dimensional data with known but non-uniform observational uncertainties. The method uses an iterative inverse-variance-weighted least-squares minimization procedure to generate a best set of basis functions. The method is similar to principal components analysis (PCA), but with the substantial advantage that it uses measurement uncertainties in a responsible way and accounts naturally for poorly measured and missing data; it models the variance in the noise-deconvolved data space. A regularization can be applied, in the form of a smoothness prior (inspired by Gaussian processes) or a non-negative constraint, without making the method prohibitively slow. Because the method optimizes a justified scalar (related to the likelihood), the basis provides a better fit to the data in a probabilistic sense than any PCA basis. We test the method on Sloan Digital Sky Survey (SDSS) spectra, concentrating on spectra known to contain two redshift components: these are spectra of gravitational lens candidates and massive black hole binaries. We apply a hypothesis test to compare one-redshift and two-redshift models for these spectra, utilizing the data-driven model trained on a random subset of all SDSS spectra. This test confirms 129 of the 131 lens candidates in our sample and all of the known binary candidates, and turns up very few false positives.

  9. THE AzTEC/SMA INTERFEROMETRIC IMAGING SURVEY OF SUBMILLIMETER-SELECTED HIGH-REDSHIFT GALAXIES

    SciTech Connect

    Younger, Joshua D.; Fazio, Giovanni G.; Huang Jiasheng; Ashby, Matthew L. N.; Gurwell, Mark A.; Petitpas, Glen R.; Wilner, David J.; Yun, Min S.; Wilson, Grant W.; Scott, Kimberly S.; Austermann, Jason; Perera, Thushara; Peck, Alison B.; Hughes, David H.; Aretxaga, Itziar; Kim, Sungeun; Lowenthal, James D.

    2009-10-10

    We present results from a continuing interferometric survey of high-redshift submillimeter galaxies (SMGs) with the Submillimeter Array, including high-resolution (beam size approx2 arcsec) imaging of eight additional AzTEC 1.1 mm selected sources in the COSMOS field, for which we obtain six reliable (peak signal-to-noise ratio (S/N) >5 or peak S/N >4 with multiwavelength counterparts within the beam) and two moderate significance (peak S/N >4) detections. When combined with previous detections, this yields an unbiased sample of millimeter-selected SMGs with complete interferometric follow up. With this sample in hand, we (1) empirically confirm the radio-submillimeter association, (2) examine the submillimeter morphology-including the nature of SMGs with multiple radio counterparts and constraints on the physical scale of the far infrared-of the sample, and (3) find additional evidence for a population of extremely luminous, radio-dim SMGs that peaks at higher redshift than previous, radio-selected samples. In particular, the presence of such a population of high-redshift sources has important consequences for models of galaxy formation-which struggle to account for such objects even under liberal assumptions-and dust production models given the limited time since the big bang.

  10. Clustering of High Redshift (z>2.9) Quasars from the Sloan Digital Sky Survey

    SciTech Connect

    Shen, Yue; Strauss, Michael A.; Oguri, Masamune; Hennawi, Joseph F.; Fan, Xiaohui; Richards, Gordon T.; Hall, Patrick B.; Schneider, Donald P.; Szalay, Alexander S.; Thakar, Anirudda R.; Berk, Daniel E.Vanden; Anderson, Scott F.; Bahcall, Neta A.; /KIPAC, Menlo Park

    2006-11-30

    We study the two-point correlation function of a uniformly selected sample of 4,428 optically selected luminous quasars with redshift 2.9 {le} z {le} 5.4 selected over 4041 deg{sup 2} from the Fifth Data Release of the Sloan Digital Sky Survey. We fit a power-law to the projected correlation function w{sub p}(r{sub p}) to marginalize over redshift space distortions and redshift errors. For a real-space correlation function of the form {zeta}(r) = (r/r{sub 0}){sup -{gamma}}, the fitted parameters in comoving coordinates are r{sub 0} = 15.2 {+-} 2.7 h{sup -1} Mpc and {gamma} = 2.0 {+-} 0.3, over a scale range 4 {le} r{sub p} {le} 150 h{sup -1} Mpc. Thus high-redshift quasars are appreciably more strongly clustered than their z {approx} 1.5 counterparts, which have a comoving clustering length r{sub 0} {approx} 6.5 h{sup -1} Mpc. Dividing our sample into two redshift bins: 2.9 {le} z {le} 3.5 and z {ge} 3.5, and assuming a power-law index {gamma} = 2.0, we find a correlation length of r{sub 0} = 16.9 {+-} 1.7 h{sup -1} Mpc for the former, and r{sub 0} = 24.3 {+-} 2.4 h{sup -1} Mpc for the latter. Strong clustering at high redshift indicates that quasars are found in very massive, and therefore highly biased, halos. Following Martini & Weinberg, we relate the clustering strength and quasar number density to the quasar lifetimes and duty cycle. Using the Sheth & Tormen halo mass function, the quasar lifetime is estimated to lie in the range 4 {approx} 50 Myr for quasars with 2.9 {le} z {le} 3.5; and 30 {approx} 600 Myr for quasars with z {ge} 3.5. The corresponding duty cycles are 0.004 {approx} 0.05 for the lower redshift bin and 0.03 {approx} 0.6 for the higher redshift bin. The minimum mass of halos in which these quasars reside is 2-3 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with 2.9 {le} z {le} 3.5 and 4-6 x 10{sup 12} h{sup -1} M{sub {circle_dot}} for quasars with z {ge} 3.5; the effective bias factor b{sub eff} increases with redshift, e.g., b

  11. Measures of large-scale structure in the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1991-01-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall.

  12. Measures of large-scale structure in the CfA redshift survey slices

    SciTech Connect

    De Lapparent, V.; Geller, M.J.; Huchra, J.P. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA )

    1991-03-01

    Variations of the counts-in-cells with cell size are used here to define two statistical measures of large-scale clustering in three 6 deg slices of the CfA redshift survey. A percolation criterion is used to estimate the filling factor which measures the fraction of the total volume in the survey occupied by the large-scale structures. For the full 18 deg slice of the CfA redshift survey, f is about 0.25 + or - 0.05. After removing groups with more than five members from two of the slices, variations of the counts in occupied cells with cell size have a power-law behavior with a slope beta about 2.2 on scales from 1-10/h Mpc. Application of both this statistic and the percolation analysis to simulations suggests that a network of two-dimensional structures is a better description of the geometry of the clustering in the CfA slices than a network of one-dimensional structures. Counts-in-cells are also used to estimate at 0.3 galaxy h-squared/Mpc the average galaxy surface density in sheets like the Great Wall. 46 refs.

  13. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  14. VLP - High-Redshift AGNs and the X-SERVS Survey

    NASA Astrophysics Data System (ADS)

    Brandt, W.

    2016-06-01

    In the first part of this talk, I will review how X-ray observations of high-redshift AGNs at z = 4-7 have played a critical role in understanding their basic demographics as well as their physical processes; e.g., accretion rates, jet emission, X-ray absorption by nuclear material and winds. Since 2000, XMM-Newton and Chandra have provided new X-ray detections for more than 120 such objects, and well-defined samples of z > 4 AGNs now allow reliable basic X-ray population studies. I will point out key remaining areas of uncertainty, highlighting where further XMM-Newton and Chandra observations can advance understanding. I will then describe the X-SERVS project which aims to go ``beyond COSMOS'' via a 12 deg^2 survey of three prime sky regions: W-CDF-S, XMM-LSS, and ELAIS-S1. The X-SERVS survey will allow outstanding studies of the detected AGNs and groups/clusters by powerfully leveraging multiple intensive radio-to-UV surveys: ATLAS/HerMES/SERVS/VIDEO/DES/HSC/PS1MD/VOICE/ CSI/PRIMUS. We aim to dramatically advance studies of SMBH growth across the full range of cosmic environments, links between SMBH accretion and star formation, exceptional AGNs at high redshifts, protoclusters, etc. The targeted X-SERVS fields will have extraordinary legacy value as MOONS massive spectroscopy fields, prime ALMA fields, and DES/LSST deep-drilling fields.

  15. A redshift survey of IRAS galaxies. V - The acceleration on the Local Group

    NASA Technical Reports Server (NTRS)

    Strauss, Michael A.; Yahil, Amos; Davis, Marc; Huchra, John P.; Fisher, Karl

    1992-01-01

    The acceleration on the Local Group is calculated based on a full-sky redshift survey of 5288 galaxies detected by IRAS. A formalism is developed to compute the distribution function of the IRAS acceleration for a given power spectrum of initial perturbations. The computed acceleration on the Local Group points 18-28 deg from the direction of the Local Group peculiar velocity vector. The data suggest that the CMB dipole is indeed due to the motion of the Local Group, that this motion is gravitationally induced, and that the distribution of IRAS galaxies on large scales is related to that of dark matter by a simple linear biasing model.

  16. A simple test of independence for truncated data with applications to redshift surveys

    NASA Technical Reports Server (NTRS)

    Efron, Bradley; Petrosian, Vahe

    1992-01-01

    This paper presents an easily applied permutation test for H0, closely related to Lyden-Bell's (1971) estimate of the marginal distribution of truncated data. The test is applied to two redshift-magnitude surveys, one of galaxies and one of quasars. Assuming statistical independence, testing H0 amounts to testing validity of the cosmological model. Segal's (1986) chronomatic cosmological model is rejected under H0. On the other hand, for the quasar sample H0 is rejected strongly in a conventional cosmological model (and in a chronomatic model as well) indicating either incorrectness of the models or, as is more commonly assumed, indicating strong luminosity evolution.

  17. A REDSHIFT SURVEY OF HERSCHEL FAR-INFRARED SELECTED STARBURSTS AND IMPLICATIONS FOR OBSCURED STAR FORMATION

    SciTech Connect

    Casey, C. M.; Budynkiewicz, J.; Berta, S.; Lutz, D.; Magnelli, B.; Bethermin, M.; Le Floc'h, E.; Magdis, G.; Burgarella, D.; Chapin, E.; Chapman, S. C.; Clements, D. L.; Conley, A.; Conselice, C. J.; Cooray, A.; Farrah, D.; Hatziminaoglou, E.; Ivison, R. J.; and others

    2012-12-20

    We present Keck spectroscopic observations and redshifts for a sample of 767 Herschel-SPIRE selected galaxies (HSGs) at 250, 350, and 500 {mu}m, taken with the Keck I Low Resolution Imaging Spectrometer and the Keck II DEep Imaging Multi-Object Spectrograph. The redshift distribution of these SPIRE sources from the Herschel Multitiered Extragalactic Survey peaks at z = 0.85, with 731 sources at z < 2 and a tail of sources out to z {approx} 5. We measure more significant disagreement between photometric and spectroscopic redshifts (({Delta}z/(1 + z{sub spec})) = 0.29) than is seen in non-infrared selected samples, likely due to enhanced star formation rates and dust obscuration in infrared-selected galaxies. The infrared data are used to directly measure integrated infrared luminosities and dust temperatures independent of radio or 24 {mu}m flux densities. By probing the dust spectral energy distribution (SED) at its peak, we estimate that the vast majority (72%-83%) of z < 2 Herschel-selected galaxies would drop out of traditional submillimeter surveys at 0.85-1 mm. We find that dust temperature traces infrared luminosity, due in part to the SPIRE wavelength selection biases, and partially from physical effects. As a result, we measure no significant trend in SPIRE color with redshift; if dust temperature were independent of luminosity or redshift, a trend in SPIRE color would be expected. Composite infrared SEDs are constructed as a function of infrared luminosity, showing the increase in dust temperature with luminosity, and subtle change in near-infrared and mid-infrared spectral properties. Moderate evolution in the far-infrared (FIR)/radio correlation is measured for this partially radio-selected sample, with q{sub IR}{proportional_to}(1 + z){sup -0.30{+-}0.02} at z < 2. We estimate the luminosity function and implied star formation rate density contribution of HSGs at z < 1.6 and find overall agreement with work based on 24 {mu}m extrapolations of the LIRG

  18. A deep redshift survey of field galaxies. Comments on the reality of the Butcher-Oemler effect

    NASA Technical Reports Server (NTRS)

    Koo, David C.; Kron, Richard G.

    1987-01-01

    A spectroscopic survey of over 400 field galaxies has been completed in three fields for which we have deep UBVI photographic photometry. The galaxies typically range from B=20 to 22 and possess redshifts z from 0.1 to 0.5 that are often quite spiky in distribution. Little, if any, luminosity evolution is observed up to redshifts z approx 0.5. By such redshifts, however, an unexpectedly large fraction of luminous galaxies has very blue intrinsic colors that suggest extensive star formation; in contrast, the reddest galaxies still have colors that match those of present-day ellipticals.

  19. The Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey

    NASA Astrophysics Data System (ADS)

    Squires, Gordon K.; Lubin, L. M.; Gal, R. R.

    2007-05-01

    We present the motivation, design, and latest results from the Observations of Redshift Evolution in Large Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 Mpc around 20 known galaxy clusters at z > 0.6. When complete, the survey will cover nearly 5 square degrees, all targeted at high-density regions, making it complementary and comparable to field surveys such as DEEP2, GOODS, and COSMOS. For the survey, we are using the Large Format Camera on the Palomar 5-m and SuPRIME-Cam on the Subaru 8-m to obtain optical/near-infrared imaging of an approximately 30 arcmin region around previously studied high-redshift clusters. Colors are used to identify likely member galaxies which are targeted for follow-up spectroscopy with the DEep Imaging Multi-Object Spectrograph on the Keck 10-m. This technique has been used to identify successfully the Cl 1604 supercluster at z = 0.9, a large scale structure containing at least eight clusters (Gal & Lubin 2004; Gal, Lubin & Squires 2005). We present the most recent structures to be photometrically and spectroscopically confirmed through this program, discuss the properties of the member galaxies as a function of environment, and describe our planned multi-wavelength (radio, mid-IR, and X-ray) observations of these systems. The goal of this survey is to identify and examine a statistical sample of large scale structures during an active period in the assembly history of the most massive clusters. With such a sample, we can begin to constrain large scale cluster dynamics and determine the effect of the larger environment on galaxy evolution.

  20. Clustering at High Redshift: Precise Constraints from a Deep, Wide-Area Survey

    NASA Astrophysics Data System (ADS)

    Postman, Marc; Lauer, Tod R.; Szapudi, István; Oegerle, William

    1998-10-01

    We present constraints on the evolution of large-scale structure from a catalog of 710,000 galaxies with IAB <= 24 derived from a KPNO 4 m CCD imaging survey of a contiguous 4° × 4° region. The advantage of using large contiguous surveys for measuring clustering properties on even modest angular scales is substantial: the effects of cosmic scatter are strongly suppressed. We provide highly accurate measurements of the two-point angular correlation function, ω(θ), as a function of magnitude on scales up to 1.5d. The amplitude of ω(θ) declines by a factor of ~10 over the range 16 <= I <= 20 but only by a factor of 2-3 over the range 20 < I <= 23. For a redshift dependence of the spatial correlation function, ξ(r), parameterized as ξ(r, z) = (r/r0)-γ(1 + z)-(3+ε), we find r0 = 5.2 +/- 0.4 h-1 Mpc, and ε >~ 0 for I <= 20. This is in good agreement with the results from local redshift surveys. At I > 20, our best-fit values shift toward lower r0 and more negative ε. A strong covariance between r0 and ε prevents us from rejecting ε > 0 even at faint magnitudes, but if ε > 1, we strongly reject r0 <~ 4 h-1 Mpc (comoving). The above expression for ξ(r, z) and our data give a correlation length of r0(z = 0.5) ~ 3.0 +/- 0.4 h-1 Mpc, about a factor of 2 larger than the correlation length at z = 0.5 derived from the Canada-France Redshift Survey (CFRS). The small volume sampled by the CFRS and other deep redshift probes, however, makes these spatial surveys strongly susceptible to cosmic scatter and will tend to bias their derived correlation lengths toward the low end. Our results are consistent with redshift distributions in which ~30%-50% of the galaxies at I = 23 lie at z > 1. The best-fit power-law slope of the correlation function remains independent of I magnitude for I <= 22. At fainter limits, there is a suggestive trend toward flatter slopes that occurs at fluxes consistent with similar trends seen by Neuschaffer & Windhorst and Campos and coworkers

  1. The Team Keck Redshift Survey 2: MOSFIRE Spectroscopy of the GOODS-North Field

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Trump, Jonathan R.; Barro, Guillermo; Guo, Yicheng; Koo, David C.; Liu, Fengshan; Kassis, Marc; Lyke, Jim; Rizzi, Luca; Campbell, Randy; Goodrich, Robert W.; Faber, S. M.

    2015-11-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a near-infrared spectral observing program targeting selected galaxies within the CANDELS subsection of the GOODS-North Field. The TKRS2 program exploits the unique capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE), which entered service on the Keck I telescope in 2012 and contributes substantially to the study of galaxy spectral features at redshifts inaccessible to optical spectrographs. The TKRS2 project targets 97 galaxies drawn from samples that include z ≈ 2 emission-line galaxies with features observable in the JHK bands as well as lower-redshift targets with features in the Y band. We present a detailed measurement of MOSFIRE’s sensitivity as a function of wavelength, including the effects of telluric features across the YJHK filters. The largest utility of our survey is in providing rest-frame-optical emission lines for z > 1 galaxies, and we demonstrate that the ratios of strong, optical emission lines of z ≈ 2 galaxies suggest the presence of either higher N/O abundances than are found in z ≈ 0 galaxies or low-metallicity gas ionized by an active galactic nucleus. We have released all TKRS2 data products into the public domain to allow researchers access to representative raw and reduced MOSFIRE spectra. Based in part on data obtained at the W. M. Keck Observatory, which operates as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The generous financial support of the W. M. Keck Foundation made the Observatory possible.

  2. EARLY-TYPE GALAXIES IN THE PEARS SURVEY: PROBING THE STELLAR POPULATIONS AT MODERATE REDSHIFT

    SciTech Connect

    Ferreras, Ignacio; Pasquali, Anna; Malhotra, Sangeeta; Rhoads, James; Cohen, Seth; Windhorst, Rogier; Pirzkal, Nor; Grogin, Norman; Koekemoer, Anton M.; Panagia, Nino; Lisker, Thorsten; Daddi, Emanuele; Hathi, Nimish P.

    2009-11-20

    Using Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) slitless grism spectra from the PEARS program, we study the stellar populations of morphologically selected early-type galaxies in the GOODS North and South fields. The sample-extracted from a visual classification of the (v2.0) HST/ACS images and restricted to redshifts z > 0.4-comprises 228 galaxies (i {sub F775W} < 24 mag, AB) out to z approx< 1.3 over 320 arcmin{sup 2}, with a median redshift z {sub M} = 0.75. This work significantly increases our previous sample from the GRAPES survey in the HUDF (18 galaxies over approx11 arcmin{sup 2}). The grism data allow us to separate the sample into 'red' and 'blue' spectra, with the latter comprising 15% of the total. Three different grids of models parameterizing the star formation history are used to fit the low-resolution spectra. Over the redshift range of the sample-corresponding to a cosmic age between 5 and 10 Gyr-we find a strong correlation between stellar mass and average age, whereas the spread of ages (defined by the root mean square of the distribution) is roughly approx1 Gyr and independent of stellar mass. The best-fit parameters suggest that it is the formation epoch and not the formation timescale that best correlates with mass in early-type galaxies. This result-along with the recently observed lack of evolution of the number density of massive galaxies-motivates the need for a channel of (massive) galaxy formation bypassing any phase in the blue cloud, as suggested by the simulations of Dekel et al.

  3. Two Micron All Sky Survey Photometric Redshift Catalog: A Comprehensive Three-dimensional Census of the Whole Sky

    NASA Astrophysics Data System (ADS)

    Bilicki, Maciej; Jarrett, Thomas H.; Peacock, John A.; Cluver, Michelle E.; Steward, Louise

    2014-01-01

    Key cosmological applications require the three-dimensional (3D) galaxy distribution on the entire celestial sphere. These include measuring the gravitational pull on the Local Group, estimating the large-scale bulk flow, and testing the Copernican principle. However, the largest all-sky redshift surveys—the 2MASS Redshift Survey and IRAS Point Source Catalog Redshift Survey—have median redshifts of only z = 0.03 and sample the very local universe. All-sky galaxy catalogs exist that reach much deeper—SuperCOSMOS in the optical, the Two Micron All Sky Survey (2MASS) in the near-IR, and WISE in the mid-IR—but these lack complete redshift information. At present, the only rapid way toward larger 3D catalogs covering the whole sky is through photometric redshift techniques. In this paper we present the 2MASS Photometric Redshift catalog (2MPZ) containing one million galaxies, constructed by cross-matching Two Micron All Sky Survey Extended Source Catalog (2MASS XSC), WISE, and SuperCOSMOS all-sky samples and employing the artificial neural network approach (the ANNz algorithm), trained on such redshift surveys as the Sloan Digital Sky Survey, 6dFGS, and 2dFGRS. The derived photometric redshifts have errors nearly independent of distance, with an all-sky accuracy of σ z = 0.015 and a very small percentage of outliers. In this way, we obtain redshift estimates with a typical precision of 12% for all the 2MASS XSC galaxies that lack spectroscopy. In addition, we have made an early effort toward probing the entire 3D sky beyond 2MASS, by pairing up WISE with SuperCOSMOS and training the ANNz on GAMA redshift data currently reaching to z med ~ 0.2. This has yielded photo-z accuracies comparable to those in the 2MPZ. These all-sky photo-z catalogs, with a median z ~ 0.1 for the 2MPZ, and significantly deeper for future WISE-based samples, will be the largest and most complete of their kind for the foreseeable future.

  4. High efficiency SNAP survey for Lyman alpha emitters at low redshift

    NASA Astrophysics Data System (ADS)

    McCandliss, Stephan

    2014-10-01

    The goal of this proposal is to provide the first statistically significant survey of star-forming galaxies with Lyman alpha emission at redshifts 0.02 < z < 0.24. It will provide an overall assessment of the evolution in Lyman alpha luminosity at the lowest redshifts and allowed detailed studies of the physical processes that shape the Lyman alpha profile and govern escape in multi-phase, kinematic media. It will also provide a serendipitous search for star-forming galaxies with high LyC escape fractions that are analogous to those commonly invoked as being responsible for initiating and sustaining the epoch of reionization. The SNAP survey proposed here employing the G140L mode of COS offers a highly efficient means to examine the Lyman alpha emission properties of our candidate emitters and to inform our choice of objects that could warrant deeper integrations in future observations. These data have high UV legacy value and will be of broad interest to the star-forming galaxy community, so we have elected to waive the proprietary period.

  5. The Brightest of Reionizing Galaxies Survey: A Protocluster Candidate at redshift z 8

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Collective, BoRG

    2012-01-01

    Theoretical and numerical modeling of dark-matter halo assembly predicts that the most luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with HST observations acquired by our Brightest of Reionizing Galaxies (BoRG) survey, finding a correlation between counts of bright and faint candidate galaxies at z 8 which is significant at >99.8% confidence. Furthermore, the best z 8 bright candidate of the survey is associated to the most significant overdensity of faint galaxies (4 additional sources within a region of diameter 70arcsec, where only 0.2 where expected), indicating that we identified a candidate protocluster at confidence >99.99%. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark matter halo has mass Mh (4-7)x1011Msun ( 5sigma density peak) and is surrounded by several Mh 1011Msun halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh>2x1014Msun galaxy cluster by z=0. Follow-up observations with ground and space based telescopes are required to secure the z 8 nature of the overdensity, discover new members, and measure their precise redshift.

  6. H-alpha Imaging Survey of Low-Redshift Cluster Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Barkhouse, Wayne; Kalawila, Sandanuwan; Rude, Cody; Sultanova, Madina; Archer, Haylee Nichole; Foote, Gregory

    2016-01-01

    We describe our on-going H-alpha imaging survey to measure the star formation activity of dwarf galaxies selected from a sample of low-redshift (0.02 < z< 0.15) galaxy clusters using the KPNO 4-meter telescope+Mosaic camera. H-alpha observations are obtained using the narrow-band BATC filters centered on the redshifted H-alpha emission line. The continuum-subtracted H-alpha images allow us to constrain star formation rates via the correlation between star formation and H-alpha luminosity and equivalent width. The impact of the cluster environment can be quantified using radial-dependent measures of the star formation rate within individual clusters, and by comparing clusters within our sample on a cluster-to-cluster basis. Comparison of our H-alpha measurements to CFHT u-band imaging data of our cluster sample, permits us to explore the correlation between the UV continuum and H-alpha emission of the dwarf galaxy population. The goal of our survey is to further understand the mechanism that is responsible for the enhancement/quenching of star formation as dwarf galaxies fall into the galaxy cluster environment.

  7. Investigating the Local and High Redshift Universe With Deep Survey Data and Ground-Based Spectroscopy

    NASA Astrophysics Data System (ADS)

    Masters, Daniel Charles

    Large multiwavelength surveys are now driving the frontiers of astronomical research. I describe results from my work using data from two large astronomical surveys: the Cosmic Evolution Survey (COSMOS), which has obtained deep photometric and spectroscopic data on two square degrees of the sky using many of the most powerful telescopes in the world, and the WFC3 Infrared Spectroscopic Parallels (WISP) Survey, which uses the highly sensitive slitless spectroscopic capability of the Hubble Space Telescope Wide Field Camera 3 to detect star-forming galaxies over most of the universe's history. First I describe my work on the evolution of the high-redshift quasar luminosity function, an important observational quantity constraining the growth of the supermassive black holes in the early universe. I show that the number density of faint quasars declines rapidly above z ˜ 3. This result is discussed in the context of cosmic reionization and the coevolution of galaxies and their central black holes. Next I present results of a multi-year campaign of near-infrared spectroscopy with FIRE, a world-class near-infrared spectrometer on the Magellan Baade 6.5 meter telescope in Chile, targeting emission-line galaxies at z ˜ 2 discovered with the Hubble Space Telescope. Our results showed that the typical emission-line galaxy at this redshift has low-metallicity, low dust obscuration, high ionization parameter, and little evidence for significant active galactic nucleus (AGN) contribution to the emission lines. We also find evidence that high redshift star-forming galaxies have enhanced nitrogen abundances. This result has interesting implications for the nature of the star formation in such galaxies -- in particular, it could mean that a large fraction of such galaxies harbor substantial populations of Wolf-Rayet stars, which are massive, evolved stars ejecting large amounts of enriched matter into the interstellar medium. Finally, I will discuss the discovery of three

  8. Redshift Survey of Galaxies around a Selected Sample of Compact Groups

    NASA Astrophysics Data System (ADS)

    de Carvalho, Reinaldo R.; Ribeiro, André L. B.; Capelato, Hugo V.; Zepf, Stephen E.

    We report the results of a spectroscopic survey of faint galaxies in the regions surrounding Hickson compact groups. Our sample is composed of 17 groups within 9000 km s-1. The spectra were taken at the prime focus of the Tololo 4 m telescope, using the ARGUS fiber-fed spectrograph. From these observations, redshifts were determined for the faint galaxies previously identified by de Carvalho, Ribeiro, & Zepf in the surroundings of the groups. Statistical methods were applied to the resultant catalog in order to determine the kinematical structure of each group. This analysis confirms the idea that the Hickson sample of compact groups contains a wide variety of projection and dynamical configurations. Our results demonstrate the necessity of new spectroscopic surveys around compact groups in order to assess their complete velocity distribution.

  9. The DEEP2 Galaxy Redshift Survey: Clustering of Galaxies in Early Data

    NASA Astrophysics Data System (ADS)

    Coil, Alison L.; Davis, Marc; Madgwick, Darren S.; Newman, Jeffrey A.; Conselice, Christopher J.; Cooper, Michael; Ellis, Richard S.; Faber, S. M.; Finkbeiner, Douglas P.; Guhathakurta, Puragra; Kaiser, Nick; Koo, David C.; Phillips, Andrew C.; Steidel, Charles C.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2004-07-01

    We measure the two-point correlation function ξ(rp,π) in a sample of 2219 galaxies between z=0.7 and 1.35 to a magnitude limit of RAB=24.1 from the first season of the DEEP2 Galaxy Redshift Survey. From ξ(rp,π) we recover the real-space correlation function, ξ(r), which we find can be approximated within the errors by a power law, ξ(r)=(r/r0)-γ, on scales ~0.1-10 h-1 Mpc. In a sample with an effective redshift of zeff=0.82, for a ΛCDM cosmology we find r0=3.53+/-0.81 h-1 Mpc (comoving) and γ=1.66+/-0.12, while in a higher redshift sample with zeff=1.14 we find r0=3.12+/-0.72 h-1 Mpc and γ=1.66+/-0.12. These errors are estimated from mock galaxy catalogs and are dominated by the cosmic variance present in the current data sample. We find that red, absorption-dominated, passively evolving galaxies have a larger clustering scale length, r0, than blue, emission-line, actively star-forming galaxies. Intrinsically brighter galaxies also cluster more strongly than fainter galaxies at z~=1. Our results imply that the DEEP2 galaxies have an effective bias b=0.96+/-0.13 if σ8DM=1 today or b=1.19+/-0.16 if σ8DM=0.8 today. This bias is lower than that predicted by semianalytic simulations at z~=1, which may be the result of our R-band target selection. We discuss possible evolutionary effects within our survey volume, and we compare our results with galaxy-clustering studies at other redshifts, noting that our star-forming sample at z~=1 has selection criteria very similar to the Lyman break galaxies at z~=3 and that our red, absorption-line sample displays a clustering strength comparable to the expected clustering of the Lyman break galaxy descendants at z~=1. Our results demonstrate that galaxy-clustering properties as a function of color, spectral type, and luminosity seen in the local universe were largely in place by z~=1.

  10. An HST/COS Survey of the Low-redshift Intergalactic Medium. I. Survey, Methodology, and Overall Results

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Keeney, Brian A.; Tilton, Evan M.; Shull, J. Michael; Stocke, John T.; Stevans, Matthew; Pieri, Matthew M.; Savage, Blair D.; France, Kevin; Syphers, David; Smith, Britton D.; Green, James C.; Froning, Cynthia; Penton, Steven V.; Osterman, Steven N.

    2016-02-01

    We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts zAGN < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H i and 25 different metal-ion species grouped into 2611 distinct redshift systems at zabs < 0.75 covering total redshift pathlengths ΔzH i = 21.7 and ΔzO vi = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H i systems can be parametrized d{ N }(\\gt N)/{dz} = {C}14{(N/{10}14{{cm}}-2)}-(β -1), with C14 = 25 ± 1 and β = 1.65 ± 0.02. This distribution is seen to evolve both in amplitude, {C}14\\propto {(1+z)}2.3+/- 0.1, and slope β(z) = 1.75-0.31 z for z ≤ 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on {N}{{H}{{I}}}. The distribution of O vi absorbers appears to evolve in the same sense as the Lyα forest. We calculate contributions to Ωb from different components of the low-z IGM and determine the Lyα decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H i absorbers on scales of Δv = 50-300 km s-1 with no significant clustering at Δv ≳ 1000 km s-1. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NH i ≳ 1013.5 cm-2, metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science

  11. Spectroscopic identification of a redshift 1.55 supernova host galaxy from the Subaru Deep Field Supernova Survey

    NASA Astrophysics Data System (ADS)

    Frederiksen, Teddy F.; Graur, Or; Hjorth, Jens; Maoz, Dan; Poznanski, Dovi

    2014-03-01

    Context. The Subaru Deep Field (SDF) Supernova Survey discovered ten Type Ia supernovae (SNe Ia) in the redshift range 1.5 < z < 2.0, determined solely from photometric redshifts of the host galaxies. However, photometric redshifts might be biased, and the SN sample could be contaminated by active galactic nuclei (AGNs). Aims: We aim to obtain the first robust redshift measurement and classification of a z > 1.5 SDF SN Ia host galaxy candidate. Methods: We use the X-shooter (U-to-K-band) spectrograph on the Very Large Telescope to allow the detection of different emission lines in a wide spectral range. Results: We measure a spectroscopic redshift of 1.54563 ± 0.00027 of hSDF0705.25, consistent with its photometric redshift of 1.552 ± 0.018. From the strong emission-line spectrum we rule out AGN activity, thereby confirming the optical transient as a SN. The host galaxy follows the fundamental metallicity relation showing that the properties of this high-redshift SN Ia host galaxy is similar to other field galaxies. Conclusions: Spectroscopic confirmation of additional SDF SN hosts would be required to confirm the cosmic SN rate evolution measured in the SDF. Based on observations made with ESO telescopes at the La Silla Paranal Observatory under program ID 089.A-0739.

  12. The ESO Slice Project (ESP) galaxy redshift survey. II. The luminosity function and mean galaxy density.

    NASA Astrophysics Data System (ADS)

    Zucca, E.; Zamorani, G.; Vettolani, G.; Cappi, A.; Merighi, R.; Mignoli, M.; Stirpe, G. M.; MacGillivray, H.; Collins, C.; Balkowski, C.; Cayatte, V.; Maurogordato, S.; Proust, D.; Chincarini, G.; Guzzo, L.; Maccagni, D.; Scaramella, R.; Blanchard, A.; Ramella, M.

    1997-10-01

    The ESO Slice Project (ESP) is a galaxy redshift survey we have recently completed as an ESO Key-Project over about 23 square degrees, in a region near the South Galactic Pole. The survey is nearly complete to the limiting magnitude b_J_=19.4 and consists of 3342 galaxies with reliable redshift determination. The ESP survey is intermediate between shallow, wide angle samples and very deep, one-dimensional pencil beams: spanning a volume of ~5x10^4^h^-3^Mpc^3^ at the sensitivity peak (z~0.1), it provides an accurate determination of the "local" luminosity function and the mean galaxy density. We find that, although a Schechter function (with α=-1.22, M^*^_bJ_=-19.61+5logh and φ^*^=0.020h^3^/Mpc^3^) is an acceptable representation of the luminosity function over the entire range of magnitudes (M_bJ_<=-12.4+5logh), our data suggest the presence of a steepening of the luminosity function for M_bJ_>=-17+5logh. Such a steepening at the faint end of the luminosity function, well fitted by a power law with slope β~-1.6, is almost completely due to galaxies with emission lines: in fact, dividing our galaxies into two samples, i.e. galaxies with and without emission lines, we find significant differences in their luminosity functions. In particular, galaxies with emission lines show a significantly steeper slope and a fainter M^*^. The amplitude and the α and M^*^ parameters of our luminosity function are in good agreement with those of the AUTOFIB redshift survey (Ellis et al. 1996). Vice-versa, our amplitude is significantly higher, by a factor ~1.6 at M~M^*^, than that found for both the Stromlo-APM (Loveday et al. 1992) and the Las Campanas (Lin et al. 1996) redshift surveys. Also the faint end slope of our luminosity function is significantly steeper than that found in these two surveys. The galaxy number density for M_bJ_<=-16+5logh is well determined (n{bar}=0.08+/-0.015h^3^/Mpc^3^). Its estimate for M_bJ_<=-12.4+5logh is more uncertain, ranging from n{bar}=0.28h

  13. New Approaches to Photometric Redshift Prediction Via Gaussian Process Regression in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Way, M. J.; Foster, L. V.; Gazis, P. R.; Srivastava, A. N.

    2009-11-01

    Expanding upon the work of Way & Srivastava we demonstrate how the use of training sets of comparable size continue to make Gaussian process regression (GPR) a competitive approach to that of neural networks and other least-squares fitting methods. This is possible via new large-size matrix inversion techniques developed for Gaussian processes (GPs) that do not require that the kernel matrix be sparse. This development, combined with a neural-network kernel function appears to give superior results for this problem. Our best-fit results for the Sloan Digital Sky Survey (SDSS) Main Galaxy Sample using u, g, r, i, z filters gives an rms error of 0.0201 while our results for the same filters in the luminous red galaxy sample yield 0.0220. We also demonstrate that there appears to be a minimum number of training-set galaxies needed to obtain the optimal fit when using our GPR rank-reduction methods. We find that morphological information included with many photometric surveys appears, for the most part, to make the photometric redshift evaluation slightly worse rather than better. This would indicate that most morphological information simply adds noise from the GP point of view in the data used herein. In addition, we show that cross-match catalog results involving combinations of the Two Micron All Sky Survey, SDSS, and Galaxy Evolution Explorer have to be evaluated in the context of the resulting cross-match magnitude and redshift distribution. Otherwise one may be misled into overly optimistic conclusions.

  14. DISCOVERY OF NINE INTERMEDIATE-REDSHIFT COMPACT QUIESCENT GALAXIES IN THE SLOAN DIGITAL SKY SURVEY

    SciTech Connect

    Damjanov, Ivana; Chilingarian, Igor; Hwang, Ho Seong; Geller, Margaret J.

    2013-10-01

    We identify nine galaxies with dynamical masses of M {sub dyn} ∼> 10{sup 10} M {sub ☉} as photometric point sources, but with redshifts between z = 0.2 and z = 0.6, in the Sloan Digital Sky Survey (SDSS) spectro-photometric database. All nine galaxies have archival Hubble Space Telescope images. Surface brightness profile fitting confirms that all nine galaxies are extremely compact (0.4 < R {sub e,c} < 6.6 kpc with the median R {sub e,c} = 0.74 kpc) for their velocity dispersion (110 < σ < 340 km s{sup –1}; median σ = 178 km s{sup –1}). From the SDSS spectra, three systems are dominated by very young stars; the other six are older than ∼1 Gyr (two are E+A galaxies). The three young galaxies have disturbed morphologies and the older systems have smooth profiles consistent with a single-Sérsic function. All nine lie below the z ∼ 0 velocity dispersion-half-light radius relation. The most massive system—SDSSJ123657.44+631115.4—lies right within the locus for massive compact z > 1 galaxies and the other eight objects follow the high-redshift dynamical size-mass relation.

  15. Detecting the integrated Sachs-Wolfe effect with high-redshift 21-cm surveys

    NASA Astrophysics Data System (ADS)

    Raccanelli, Alvise; Kovetz, Ely; Dai, Liang; Kamionkowski, Marc

    2016-04-01

    We investigate the possibility of detecting the integrated Sachs-Wolfe (ISW) effect by cross-correlating 21-cm surveys at high redshifts with galaxies in a way similar to the usual CMB-galaxy cross-correlation. The high-redshift 21-cm signal is dominated by CMB photons that travel freely without interacting with the intervening matter, and hence its late-time ISW signature should correlate extremely well with that of the CMB at its peak frequencies. Using the 21-cm temperature brightness instead of the CMB would thus be a further check of the detection of the ISW effect, measured by different instruments at different frequencies and suffering from different systematics. We also study the ISW effect on the photons that are scattered by HI clouds. We show that a detection of the unscattered photons is achievable with planned radio arrays, while one using scattered photons will require advanced radio interferometers, either an extended version of the planned Square Kilometre Array or futuristic experiments such as a lunar radio array.

  16. Spectroscopic Determination of the Low Redshift Type Ia Supernova Rate from the Sloan Digital Sky Survey

    SciTech Connect

    Krughoff, K. S.; Connolly, Andrew J.; Frieman, Joshua; SubbaRao, Mark; Kilper, Gary; Schneider, Donald P.

    2011-04-10

    Supernova rates are directly coupled to high mass stellar birth and evolution. As such, they are one of the few direct measures of the history of cosmic stellar evolution. In this paper we describe an probabilistic technique for identifying supernovae within spectroscopic samples of galaxies. We present a study of 52 type Ia supernovae ranging in age from -14 days to +40 days extracted from a parent sample of \\simeq 50,000 spectra from the SDSS DR5. We find a Supernova Rate (SNR) of 0.472^{+0.048}_{-0.039}(Systematic)^{+0.081}_{-0.071}(Statistical)SNu at a redshift of = 0.1. This value is higher than other values at low redshift at the 1{\\sigma}, but is consistent at the 3{\\sigma} level. The 52 supernova candidates used in this study comprise the third largest sample of supernovae used in a type Ia rate determination to date. In this paper we demonstrate the potential for the described approach for detecting supernovae in future spectroscopic surveys.

  17. Mapping the Galaxy Color-Redshift Relation: Optimal Photo-z Calibration Strategies for Cosmology Surveys

    NASA Astrophysics Data System (ADS)

    Masters, Daniel C.; Capak, Peter L.; Stern, Daniel; Rhodes, Jason; Mobasher, Bahram; Schmidt, Samuel; Steinhardt, Charles L.; Faisst, Andreas; Speagle, Josh S.

    2016-01-01

    A primary objective of the upcoming dark energy surveys LSST, Euclid, and WFIRST is to map the 3D distribution of matter over a significant fraction of the universe via the weak lensing cosmic shear field. Doing so will require accurate distance estimates to billions of faint galaxies, meaning that photo-z's will be essential for the ultimate scientific success of these missions. Because galaxy colors drive photo-z estimates, spectroscopic calibration samples must at least be representative in color. Here we present a technique, based on the self-organizing map (Kohonen 1990), to map the empirical distribution of galaxies in the high-dimensional color space of a given survey. We apply the technique to Euclid-like data for ~131k galaxies from the COSMOS survey, allowing us to determine where - in galaxy color space - spectroscopic coverage exists and where it is systematically missing. We show that the mapping technique lets us develop efficient spectroscopic sampling strategies to measure the color-redshift relation by focusing effort on poorly constrained regions of multicolor space. We discuss the nature of the galaxies in un-sampled regions of galaxy color space, and show that a fiducial survey with Keck (making use of LRIS, DEIMOS, and MOSFIRE) could meet the Euclid calibration requirements in ~40 nights of observing.

  18. Superclusters of galaxies from the 2dF redshift survey. 2. Comparison with simulations

    SciTech Connect

    Einasto, Jaan; Einasto, M.; Saar, E.; Tago, E.; Liivamagi, L.J.; Joeveer, M.J; Suhhonenko, I.; Hutsi, G.; Jaaniste, J.; Heinamaki, P.; Muller, V.; Knebe, A.; Tucker, D.; /Fermilab

    2006-04-01

    We investigate properties of superclusters of galaxies found on the basis of the 2dF Galaxy Redshift Survey, and compare them with properties of superclusters from the Millennium Simulation.We study the dependence of various characteristics of superclusters on their distance from the observer, on their total luminosity, and on their multiplicity. The multiplicity is defined by the number of Density Field (DF) clusters in superclusters. Using the multiplicity we divide superclusters into four richness classes: poor, medium, rich and extremely rich.We show that superclusters are asymmetrical and have multi-branching filamentary structure, with the degree of asymmetry and filamentarity being higher for the more luminous and richer superclusters. The comparison of real superclusters with Millennium superclusters shows that most properties of simulated superclusters agree very well with real data, the main differences being in the luminosity and multiplicity distributions.

  19. New upper limit on the total neutrino mass from the 2 degree field galaxy redshift survey.

    PubMed

    Elgarøy, Ø; Lahav, O; Percival, W J; Peacock, J A; Madgwick, D S; Bridle, S L; Baugh, C M; Baldry, I K; Bland-Hawthorn, J; Bridges, T; Cannon, R; Cole, S; Colless, M; Collins, C; Couch, W; Dalton, G; De Propris, R; Driver, S P; Efstathiou, G P; Ellis, R S; Frenk, C S; Glazebrook, K; Jackson, C; Lewis, I; Lumsden, S; Maddox, S; Norberg, P; Peterson, B A; Sutherland, W; Taylor, K

    2002-08-01

    We constrain f(nu) identical with Omega(nu)/Omega(m), the fractional contribution of neutrinos to the total mass density in the Universe, by comparing the power spectrum of fluctuations derived from the 2 Degree Field Galaxy Redshift Survey with power spectra for models with four components: baryons, cold dark matter, massive neutrinos, and a cosmological constant. Adding constraints from independent cosmological probes we find f(nu)<0.13 (at 95% confidence) for a prior of 0.1

  20. The VLT LBG Redshift Survey - I. Clustering and dynamics of ≈1000 galaxies at z≈ 3

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Shanks, T.; Weilbacher, P. M.; Infante, L.; Crighton, N. H. M.; Bornancini, C.; Bouché, N.; Héraudeau, P.; Lambas, D. G.; Lowenthal, J.; Minniti, D.; Padilla, N.; Petitjean, P.; Theuns, T.

    2011-06-01

    We present the initial imaging and spectroscopic data acquired as part of the Very Large Telescope (VLT) VIMOS Lyman-break galaxy Survey. UBR (or UBVI) imaging covers five ≈36 × 36 arcmin2 fields centred on bright z > 3 quasi-stellar objects (QSOs), allowing ≈21 000 2 < z < 3.5 galaxy candidates to be selected using the Lyman-break technique. We performed spectroscopic follow-up using VLT VIMOS, measuring redshifts for 1020 z > 2 Lyman-break galaxies and 10 z > 2 QSOs from a total of 19 VIMOS pointings. From the galaxy spectra, we observe a 625 ± 510 km s-1 velocity offset between the interstellar absorption and Lyman α emission-line redshifts, consistent with previous results. Using the photometric and spectroscopic catalogues, we have analysed the galaxy clustering at z≈ 3. The angular correlation function, w(θ), is well fitted by a double power law with clustering scalelength, r0= 3.19+0.32-0.54 h-1 Mpc and slope γ= 2.45 for r < 1 h-1 Mpc and r0= 4.37+0.43-0.55 h-1 Mpc with γ= 1.61 ± 0.15 at larger scales. Using the redshift sample we estimate the semiprojected correlation function, wp(σ), and, for a γ= 1.8 power law, find r0= 3.67+0.23-0.24 h-1 Mpc for the VLT sample and r0= 3.98+0.14-0.15 h-1 Mpc for a combined VLT+Keck sample. From ξ(s) and ξ(σ, π), and assuming the above ξ(r) models, we find that the combined VLT and Keck surveys require a galaxy pairwise velocity dispersion of ≈700 km s-1, higher than ≈400 km s-1 assumed by previous authors. We also measure a value for the gravitational growth rate parameter of β(z= 3) = 0.48 ± 0.17, again higher than that previously found and implying a low value for the bias of b= 2.06+1.1-0.5. This value is consistent with the galaxy clustering amplitude which gives b= 2.22 ± 0.16, assuming the standard cosmology, implying that the evolution of the gravitational growth rate is also consistent with Einstein gravity. Finally, we have compared our Lyman-break galaxy clustering amplitudes with

  1. VizieR Online Data Catalog: Team Keck Redshift Survey 2 (TKRS2) (Wirth+, 2015)

    NASA Astrophysics Data System (ADS)

    Wirth, G. D.; Trump, J. R.; Barro, G.; Guo, Y.; Koo, D. C.; Liu, F.; Kassis, M.; Lyke, J.; Rizzi, L.; Campbell, R.; Goodrich, R. W.; Faber, S. M.

    2016-04-01

    We present the Team Keck Redshift Survey 2 (TKRS2), a spectroscopic survey of 97 distant galaxies exploiting the capabilities of the Multi-Object Spectrometer For Infra-Red Exploration (MOSFIRE) on the Keck I telescope at the W. M. Keck Observatory. MOSFIRE features a 2048*2048 pixel HAWAII-2RG HgCdTe detector array from Teledyne Imaging Sensors that couples high quantum efficiency with low noise and low dark current. The operating range of 0.97-2.41μm covers the YJHK infrared passbands, with wavelength coverage of 0.97-1.12μm in Y, 1.15-1.35μm in J, 1.47-1.80μm in H, and 1.95-2.40μm in K. The resolving power for the default slit width of 0.7" is R=3380 in Y, 3310 in J, 3660 in H, and 3620 in K, corresponding to full-width-half-maximum (FWHM) spectral resolutions of 3.1Å in Y, 3.7Å in J, 4.4Å in H, and 6.0Å in K. Our survey targets the south-central region of the GOODS-North survey field (Giavalisco et al. 2004, cat. II/261). We employed MOSFIRE to acquire spectra in the GOODS-North field over a series of partial nights spanning the period from 2012 November to 2013 May. We present the results of our survey in Table3 and on the website (http://arcoiris.ucsc.edu/TKRS2/) devoted to the survey. (1 data file).

  2. BULK FLOWS FROM GALAXY LUMINOSITIES: APPLICATION TO 2MASS REDSHIFT SURVEY AND FORECAST FOR NEXT-GENERATION DATA SETS

    SciTech Connect

    Nusser, Adi; Branchini, Enzo; Davis, Marc E-mail: branchin@fis.uniroma3.it

    2011-07-10

    We present a simple method for measuring cosmological bulk flows from large redshift surveys, based on the apparent dimming or brightening of galaxies due to their peculiar motion. It is aimed at estimating bulk flows of cosmological volumes containing large numbers of galaxies. Constraints on the bulk flow are obtained by minimizing systematic variations in galaxy luminosities with respect to a reference luminosity function measured from the whole survey. This method offers two advantages over more popular bulk flow estimators: it is independent of error-prone distance indicators and of the poorly known galaxy bias. We apply the method to the Two Micron All Sky Survey redshift survey to measure the local bulk flows of spherical shells centered on the Milky Way (MW). The result is consistent with that obtained by Nusser and Davis using the SFI++ catalogue of Tully-Fisher distance indicators. We also make an assessment of the ability of the method to constrain bulk flows at larger redshifts (z = 0.1-0.5) from next-generation data sets. As a case study we consider the planned EUCLID survey. Using this method we will be able to measure a bulk motion of {approx}200 km s{sup -1} of 10{sup 6} galaxies with photometric redshifts, at the 3{sigma} level for both z {approx} 0.15 and z {approx} 0.5. Thus, the method will allow us to put strong constraints on dark energy models as well as alternative theories for structure formation.

  3. Redshift-Distance Survey of Early-Type Galaxies. I. The ENEARc Cluster Sample

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Alonso, M. V.; da Costa, L. N.; Willmer, C. N. A.; Wegner, G.; Pellegrini, P. S.; Rité, C.; Maia, M. A. G.

    2002-06-01

    This paper presents data on the ENEARc subsample of the larger ENEAR survey of nearby early-type galaxies. The ENEARc galaxies belong to clusters and were specifically chosen to be used for the construction of a Dn-σ template. The ENEARc sample includes new measurements of spectroscopic and photometric parameters (redshift, velocity dispersion, line index Mg2, and the angular diameter dn), as well as data from the literature. New spectroscopic data are given for 229 cluster early-type galaxies, and new photometry is presented for 348 objects. Repeat and overlap observations with external data sets are used to construct a final merged catalog consisting of 640 early-type galaxies in 28 clusters. Objective criteria, based on catalogs of groups of galaxies derived from complete redshift surveys of the nearby universe, are used to assign galaxies to clusters. In a companion paper, these data are used to construct the template Dn-σ distance relation for early-type galaxies, which has been used to estimate galaxy distances and derive peculiar velocities for the ENEAR all-sky sample. Based on observations at Complejo Astronomico El Leoncito, operated under agreement between the Consejo Nacional de Investigaciones Científicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan; Cerro Tololo Inter-American Observatory, National Optical Astronomical Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation; the European Southern Observatory (ESO), partially under the ESO-ON agreement; the Fred Lawrence Whipple Observatory; the Observatório do Pico dos Dias, operated by the Laboratório Nacional de Astrofísica and the MDM Observatory at Kitt Peak.

  4. The Galaxy Mass Function at High-Redshift from the Largest Available Spitzer-Based Survey (SERVS)

    NASA Astrophysics Data System (ADS)

    Morice-Atkinson, Xan; Maraston, Claudia; Lacy, Mark; Capozzi, Diego

    2015-08-01

    We exploit the largest (18 deg2) and deepest (AB = 23.1) galaxy and QSO survey available up to date of five highly observed astronomical fields (SERVS) to derive the galaxy stellar mass function and detailed galaxy properties as a function of cosmic time. SERVS obtained Spitzer 3.6µm and 4.5µm magnitudes for ~1 million galaxies up to redshift ~6, which we complement with multi-wavelength data from other on-going surveys, including VIDEO, GALEX, CFHTLS, UKIDSS, etc. in order to perform full SED fitting to models. The power of Spitzer data is its sensitivity to evolved stars at high-redshift, which allows us to better constrain the galaxy star formation histories. The wide area and depth of SERVS was designed precisely to capture the light from the most massive galaxies up to high-redshift. Results and comparison with the literature will be presented.

  5. The DEEP Groth Strip Survey. VIII. The Evolution of Luminous Field Bulges at Redshift z ~ 1

    NASA Astrophysics Data System (ADS)

    Koo, David C.; Simard, Luc; Willmer, Christopher N. A.; Gebhardt, Karl; Bouwens, Rychard J.; Kauffmann, Guinevere; Crosby, Timothy; Faber, S. M.; Harker, Justin; Sarajedini, Vicki L.; Vogt, Nicole P.; Weiner, Benjamin J.; Phillips, Andrew J.; Im, Myungshin; Wu, K. L.

    2005-04-01

    We present a candidate sample of luminous bulges (including ellipticals) found within the Groth Strip Survey (GSS), with spectroscopic redshifts of 0.73redshift z~0.8 are nearly as red (U-B~0.50) as local E/S0s. Almost all (90%) of these very red bulges reside in galaxies with the morphologies of normal early-type or spiral galaxies. Moreover, the slope of the color-luminosity relation is shallow (-0.04+/-0.04) and the intrinsic U-B color dispersion is small (σ<~0.03 mag), suggesting roughly coeval formation. All three results are similar to that seen among early-type cluster galaxies at the same epoch. Yet we also measured ~1 mag increase in surface brightness. Since simple passive evolution of a single-burst stellar population results in redder colors as the galaxy fades, the observed constancy of very red colors at high redshift suggests more complex histories. One alternative starts with a metal-rich (twice solar), early-formation (z~1.5-2.0) population that is later polluted with small amounts (~4% by total mass) of star formation over an extended period of several Gyr. This ``drizzling'' history is supported by our finding spectroscopic evidence for continued star formation ([O II] emission lines) among 80% of luminous high-redshift

  6. The VLT LBG redshift survey - V. Characterizing the z = 3.1 Lyman α emitter population

    NASA Astrophysics Data System (ADS)

    Bielby, R. M.; Tummuangpak, P.; Shanks, T.; Francke, H.; Crighton, N. H. M.; Bañados, E.; González-López, Jorge; Infante, L.; Orsi, A.

    2016-03-01

    We present a survey of z ˜ 3 Lyα emitters (LAEs) within the fields of the VLT Lyman break galaxies (LBG) redshift survey. The data encompass five independent survey fields co-spatial with spectroscopic LBG data and covering a larger total area than previously analysed for LAE number counts and clustering. This affords an improved analysis over previous work by minimizing the effects of cosmic variance and allowing the cross-clustering analysis of LAEs and LBGs. Our photometric sample consists of ≈600 LAE candidates, over an area of 1.07 deg2, with equivalent widths of ≳65 Å and a flux limit of ≈2 × 10-17 erg cm-2 s-1. From spectroscopic follow-up, we measured a success rate of 78 ± 18 per cent. We find the R-band continuum luminosity function to be ˜10 times lower than the luminosity function of LBGs at this redshift, consistent with previous studies. Exploiting the large area of the survey, we estimate the LAE auto-correlation function and find a clustering length of r0 = 2.86 ± 0.33 h-1 Mpc, low compared to the z ˜ 3 LBG population, but somewhat higher than previous LAE measurements. This corresponds to a median halo mass of MDM = 1011.0±0.3 h-1 M⊙. We present an analysis of clustering length versus continuum magnitude and find that the measurements for LAEs and LBGs are consistent at faint magnitudes. Our combined data set of LAEs and LBGs allows us to measure, for the first time, the LBG-LAE cross-correlation, finding a clustering length of r0 = 3.29 ± 0.57 h-1 Mpc and a LAE halo mass of 1011.1±0.4 h-1 M⊙. Overall, we conclude that LAEs inhabit primarily low-mass haloes, but form a relatively small proportion of the galaxy population found in such haloes.

  7. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    NASA Technical Reports Server (NTRS)

    Kapahi, Vijay K.; Kulkarni, Vasant K.

    1990-01-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.

  8. The Radio luminosity Function of Radio-Loud Quasars from the 7C Redshift Survey

    NASA Technical Reports Server (NTRS)

    Willott, Chris J.; Rawlings, Steve; Blundell, Katherine M.; Lacy, Mark

    1998-01-01

    We present a complete sample of 24 radio-loud quasars (RLQs) from the new 7C Redshift Survey. Every quasar with a low-frequency (151 MHz) radio flux-density S(sub 151) > 0.5 Jy in two regions of the sky covering 0.013 sr is included; 23 of these have sufficient extended flux to meet the selection criteria, 18 of these have steep radio spectra (hereafter denoted as SSQs). The key advantage of this sample over most samples of RLQs is the lack of an optical magnitude limit. By combining the 7C and 3CRR samples, we have investigated the properties of RLQs as a function of redshift z and radio luminosity L(sub 151). We derive the radio luminosity function (RLF) of RLQs and find that the data are well fitted by a single power-law with slope alpha(sub 1) = 1.9 +/- 0.1 (for H(sub 0) = 50 km/s.Mpc, OMEGA(sub M) = 1, OMEGA(sub DELTA) = 0). We find that there must be a break in the RLQ RLF at log(sub 10)(L(sub 151)/W Hz.sr) approximately < or = 27, in order for the models to be consistent with the 7C and 6C source counts. The z-dependence of the RLF follows a one-tailed gaussian which peaks at z = 1.7 +/- 0.2. We find no evidence for a decline in the co-moving space density of RLQs at higher redshifts. A positive correlation between the radio and optical luminosities of SSQs is observed, confirming a result of Serjeant. We are able to rule out this correlation being due to selection effects or biases in our combined sample. The radio-optical correlation and best-fit model RLF enable us to estimate the distribution of optical magnitudes of quasars in samples selected at low radio frequencies, We con- clude that for samples with S(sub 151) approximately < or = 1 Jy one must use optical data significantly deeper than the POSS-I limit (R approximately equal 20), in order to avoid severe incompleteness.

  9. High-Redshift QSOs in the SWIRE Survey and the z~3 QSO Luminosity Function

    NASA Astrophysics Data System (ADS)

    Siana, Brian; Polletta, Maria del Carmen; Smith, Harding E.; Lonsdale, Carol J.; Gonzalez-Solares, Eduardo; Farrah, Duncan; Babbedge, Tom S. R.; Rowan-Robinson, Michael; Surace, Jason; Shupe, David; Fang, Fan; Franceschini, Alberto; Oliver, Seb

    2008-03-01

    We use a simple optical/infrared (IR) photometric selection of high-redshift QSOs that identifies a Lyman break in the optical photometry and requires a red IR color to distinguish QSOs from common interlopers. The search yields 100 z ~ 3 (U-dropout) QSO candidates with 19 < r' < 22 over 11.7 deg2 in the ELAIS-N1 (EN1) and ELAIS-N2 (EN2) fields of the Spitzer Wide-area Infrared Extragalactic (SWIRE) Legacy Survey. The z ~ 3 selection is reliable, with spectroscopic follow-up of 10 candidates confirming that they are all QSOs at 2.83 < z < 3.44. We find that our z ~ 4 (g'-dropout) sample suffers from both unreliability and incompleteness but present seven previously unidentified QSOs at 3.50 < z < 3.89. Detailed simulations show our z ~ 3 completeness to be ~80%-90% from 3.0 < z < 3.5, significantly better than the ~30%-80% completeness of the SDSS at these redshifts. The resulting luminosity function extends 2 mag fainter than SDSS and has a faint-end slope of β = - 1.42 +/- 0.15, consistent with values measured at lower redshift. Therefore, we see no evidence for evolution of the faint-end slope of the QSO luminosity function. Including the SDSS QSO sample, we have now directly measured the space density of QSOs responsible for ~70% of the QSO UV luminosity density at z ~ 3. We derive a maximum rate of H I photoionization from QSOs at z ~ 3.2, Γ = 4.8 × 10-13 s-1, about half of the total rate inferred through studies of the Lyα forest. Therefore, star-forming galaxies and QSOs must contribute comparably to the photoionization of H I in the intergalactic medium at z ~ 3. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  10. The zCOSMOS redshift survey: how group environment alters global downsizing trends

    NASA Astrophysics Data System (ADS)

    Iovino, A.; Cucciati, O.; Scodeggio, M.; Knobel, C.; Kovač, K.; Lilly, S.; Bolzonella, M.; Tasca, L. A. M.; Zamorani, G.; Zucca, E.; Caputi, K.; Pozzetti, L.; Oesch, P.; Lamareille, F.; Halliday, C.; Bardelli, S.; Finoguenov, A.; Guzzo, L.; Kampczyk, P.; Maier, C.; Tanaka, M.; Vergani, D.; Carollo, C. M.; Contini, T.; Kneib, J.-P.; Le Fèvre, O.; Mainieri, V.; Renzini, A.; Bongiorno, A.; Coppa, G.; de la Torre, S.; de Ravel, L.; Franzetti, P.; Garilli, B.; Le Borgne, J.-F.; Le Brun, V.; Mignoli, M.; Pellò, R.; Peng, Y.; Perez-Montero, E.; Ricciardelli, E.; Silverman, J. D.; Tresse, L.; Abbas, U.; Bottini, D.; Cappi, A.; Cassata, P.; Cimatti, A.; Koekemoer, A. M.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Porciani, C.; Scaramella, R.; Schiminovich, D.; Scoville, N.

    2010-01-01

    Context. Groups of galaxies are a common environment, bridging the gap between starforming field galaxies and quiescent cluster galaxies. Within groups secular processes could be at play, contributing to the observed strong decrease of star formation with cosmic time in the global galaxy population. Aims: We took advantage of the wealth of information provided by the first 10 000 galaxies of the zCOSMOS-bright survey and its group catalogue to study in detail the complex interplay between group environment and galaxy properties. Methods: The classical indicator Fblue, i.e., the fraction of blue galaxies, proved to be a simple but powerful diagnostic tool. We studied its variation for different luminosity and mass selected galaxy samples, divided as to define groups/field/isolated galaxy subsamples. Results: Using rest-frame evolving B-band volume-limited samples, the groups galaxy population exhibits significant blueing as redshift increases, but maintains a systematic difference (a lower Fblue) with respect to the global galaxy population, and an even larger difference with respect to the isolated galaxy population. However moving to mass selected samples it becomes apparent that such differences are largely due to the biased view imposed by the B-band luminosity selection, being driven by the population of lower mass, bright blue galaxies for which we miss the redder, equally low mass, counterparts. By carefully focusing the analysis on narrow mass bins such that mass segregation becomes negligible we find that only for the lowest mass bin explored, i.e., log ({\\cal M}*/{\\cal M}⊙) ≤ 10.6 , does a significant residual difference in color remain as a function of environment, while this difference becomes negligible toward higher masses. Conclusions: Our results indicate that red galaxies of mass log ({\\cal M}*/{\\cal M}⊙) ≥ 10.8 are already in place at z 1 and do not exhibit any strong environmental dependence, possibly originating from so-called nature

  11. ESTIMATING PHOTOMETRIC REDSHIFTS OF QUASARS VIA THE k-NEAREST NEIGHBOR APPROACH BASED ON LARGE SURVEY DATABASES

    SciTech Connect

    Zhang Yanxia; Ma He; Peng Nanbo; Zhao Yongheng; Wu Xuebing

    2013-08-01

    We apply one of the lazy learning methods, the k-nearest neighbor (kNN) algorithm, to estimate the photometric redshifts of quasars based on various data sets from the Sloan Digital Sky Survey (SDSS), the UKIRT Infrared Deep Sky Survey (UKIDSS), and the Wide-field Infrared Survey Explorer (WISE; the SDSS sample, the SDSS-UKIDSS sample, the SDSS-WISE sample, and the SDSS-UKIDSS-WISE sample). The influence of the k value and different input patterns on the performance of kNN is discussed. kNN performs best when k is different with a special input pattern for a special data set. The best result belongs to the SDSS-UKIDSS-WISE sample. The experimental results generally show that the more information from more bands, the better performance of photometric redshift estimation with kNN. The results also demonstrate that kNN using multiband data can effectively solve the catastrophic failure of photometric redshift estimation, which is met by many machine learning methods. Compared with the performance of various other methods of estimating the photometric redshifts of quasars, kNN based on KD-Tree shows superiority, exhibiting the best accuracy.

  12. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Never mind the gaps: comparing techniques to restore homogeneous sky coverage

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Granett, B. R.; Branchini, E.; Marulli, F.; Iovino, A.; Moscardini, L.; Bel, J.; Cappi, A.; Peacock, J. A.; de la Torre, S.; Bolzonella, M.; Guzzo, L.; Polletta, M.; Fritz, A.; Adami, C.; Bottini, D.; Coupon, J.; Davidzon, I.; Franzetti, P.; Fumana, M.; Garilli, B.; Krywult, J.; Małek, K.; Paioro, L.; Pollo, A.; Scodeggio, M.; Tasca, L. A. M.; Vergani, D.; Zanichelli, A.; Di Porto, C.; Zamorani, G.

    2014-05-01

    Aims: Non-uniform sampling and gaps in sky coverage are common in galaxy redshift surveys, but these effects can degrade galaxy counts-in-cells measurements and density estimates. We carry out a comparative study of methods that aim to fill the gaps to correct for the systematic effects. Our study is motivated by the analysis of the VIMOS Public Extragalactic Redshift Survey (VIPERS), a flux-limited survey at iAB < 22.5 consisting of single-pass observations with the VLT Visible Multi-Object Spectrograph (VIMOS) with gaps representing 25% of the surveyed area and an averagesampling rate of 35%. However, our findings are generally applicable to other redshift surveys with similar observing strategies. Methods: We applied two algorithms that use photometric redshift information and assign redshifts to galaxies based upon the spectroscopic redshifts of the nearest neighbours. We compared these methods with two Bayesian methods, the Wiener filter and the Poisson-Lognormal filter. Using galaxy mock catalogues we quantified the accuracy and precision of the counts-in-cells measurements on scales of R = 5 h-1 Mpc and 8 h-1 Mpc after applying each of these methods. We further investigated how these methods perform to account for other sources of uncertainty typical of spectroscopic surveys, such as the spectroscopic redshift error and the sparse, inhomogeneous sampling rate. We analysed each of these sources separately, then all together in a mock catalogue that mimicks the full observational strategy of a VIPERS-like survey. Results: In a survey such as VIPERS, the errors in counts-in-cells measurements on R < 10 h-1 Mpc scales are dominated by the sparseness of the sample due to the single-pass observing strategy. All methods under-predict the counts in high-density regions by 20-35%, depending on the cell size, method, and underlying overdensity. This systematic bias is similar to random errors. No method outperforms the others: differences are not large, and methods

  13. Self-calibration of photometric redshift scatter in weak-lensing surveys

    SciTech Connect

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as the planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.

  14. Self-calibration of photometric redshift scatter in weak-lensing surveys

    DOE PAGESBeta

    Zhang, Pengjie; Pen, Ue -Li; Bernstein, Gary

    2010-06-11

    Photo-z errors, especially catastrophic errors, are a major uncertainty for precision weak lensing cosmology. We find that the shear-(galaxy number) density and density-density cross correlation measurements between photo-z bins, available from the same lensing surveys, contain valuable information for self-calibration of the scattering probabilities between the true-z and photo-z bins. The self-calibration technique we propose does not rely on cosmological priors nor parameterization of the photo-z probability distribution function, and preserves all of the cosmological information available from shear-shear measurement. We estimate the calibration accuracy through the Fisher matrix formalism. We find that, for advanced lensing surveys such as themore » planned stage IV surveys, the rate of photo-z outliers can be determined with statistical uncertainties of 0.01-1% for z < 2 galaxies. Among the several sources of calibration error that we identify and investigate, the galaxy distribution bias is likely the most dominant systematic error, whereby photo-z outliers have different redshift distributions and/or bias than non-outliers from the same bin. This bias affects all photo-z calibration techniques based on correlation measurements. As a result, galaxy bias variations of O(0.1) produce biases in photo-z outlier rates similar to the statistical errors of our method, so this galaxy distribution bias may bias the reconstructed scatters at several-σ level, but is unlikely to completely invalidate the self-calibration technique.« less

  15. Power spectrum, correlation function, and tests for luminosity bias in the CfA redshift survey

    NASA Technical Reports Server (NTRS)

    Park, Changbom; Vogeley, Michael S.; Geller, Margaret J.; Huchra, John P.

    1994-01-01

    We describe and apply a method for directly computing the power spectrum for the galaxy distribution in the extension of the Center for Astrophysics Redshift Survey. Tests show that our technique accurately reproduces the true power spectrum for k greater than 0.03 h Mpc(exp -1). The dense sampling and large spatial coverage of this survey allow accurate measurement of the redshift-space power spectrum on scales from 5 to approximately 200 h(exp -1) Mpc. The power spectrum has slope n approximately equal -2.1 on small scales (lambda less than or equal 25 h(exp -1) Mpc) and n approximately -1.1 on scales 30 less than lambda less than 120 h(exp -1) Mpc. On larger scales the power spectrum flattens somewhat, but we do not detect a turnover. Comparison with N-body simulations of cosmological models shows that an unbiased, open universe CDM model (OMEGA h = 0.2) and a nonzero cosmological constant (CDM) model (OMEGA h = 0.24, lambda(sub zero) = 0.6, b = 1.3) match the CfA power spectrum over the wavelength range we explore. The standard biased CDM model (OMEGA h = 0.5, b = 1.5) fails (99% significance level) because it has insufficient power on scales lambda greater than 30 h(exp -1) Mpc. Biased CDM with a normalization that matches the Cosmic Microwave Background (CMB) anisotropy (OMEGA h = 0.5, b = 1.4, sigma(sub 8) (mass) = 1) has too much power on small scales to match the observed galaxy power spectrum. This model with b = 1 matches both Cosmic Background Explorer Satellite (COBE) and the small-scale power spect rum but has insufficient power on scales lambda approximately 100 h(exp -1) Mpc. We derive a formula for the effect of small-scale peculiar velocities on the power spectrum and combine this formula with the linear-regime amplification described by Kaiser to compute an estimate of the real-space power spectrum. Two tests reveal luminosity bias in the galaxy distribution: First, the amplitude of the pwer spectrum is approximately 40% larger for the brightest

  16. SIX MORE QUASARS AT REDSHIFT 6 DISCOVERED BY THE CANADA-FRANCE HIGH-z QUASAR SURVEY

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Delfosse, Xavier; Forveille, Thierry; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; McLure, Ross J.

    2009-03-15

    We present imaging and spectroscopic observations for six quasars at z {>=} 5.9 discovered by the Canada-France High-z Quasar Survey (CFHQS). The CFHQS contains subsurveys with a range of flux and area combinations to sample a wide range of quasar luminosities at z {approx} 6. The new quasars have luminosities 10-75 times lower than the most luminous Sloan Digital Sky Survey quasars at this redshift. The least luminous quasar, CFHQS J0216-0455 at z = 6.01, has absolute magnitude M {sub 1450} = -22.21, well below the likely break in the luminosity function. This quasar is not detected in a deep XMM-Newton survey showing that optical selection is still a very efficient tool for finding high-redshift quasars.

  17. The middle-aged universe: Results from high-z supernovae and the DEEP2 Galaxy Redshift Survey

    NASA Astrophysics Data System (ADS)

    Coil, Alison Laurel

    2004-12-01

    This thesis presents observational results detailing the state of the Universe ~5-9 billion years ago, focusing primarily on the spatial distribution and clustering of galaxies. We first present optical spectra, obtained with the Keck 10-m telescope, of two high-redshift type Ia supernovae (SNe Ia) at maximum light, discovered by the High-z Supernova Search Team: SN 1999ff at z = 0.455 and SN 1999fv at z ~= 1.2. We compare our high- z spectra with low- z normal and peculiar SNe Ia as well as with SNe Ic, Ib, and II and find that are no significant differences between SN 1999ff and SN1999fv and normal SNe la at low redshift. This solidifies the use of type Ia SNe as standard candles at cosmological distances. We then develop and test mock galaxy catalogs to be used for the DEEP2 Galaxy Redshift Survey, which will obtain redshifts for ~50,000 galaxies between 0.7 < z < 1.5, mapping the galaxy distribution in a comoving volume of roughly 7 x 10 6 Mpc 3 h -3 . Using data from the first observing season of the DEEP2 Redshift Survey, we measure the amplitude of galaxy clustering using the two-point correlation function, x( r ), for a sample of 2219 galaxies between 0.7 < z < 1.35. We find that galaxies are significantly less clustered at z ~ 1 relative to z ~ 0; r 0 ~ 3.0-3.5 h -1 Mpc (comoving). We find that red, absorption-dominated, passively-evolving galaxies have a larger clustering scale length than blue, emission-line, actively star-forming galaxies. Intrinsically brighter galaxies also cluster more strongly than fainter galaxies at z ~= 1. Our results imply that the DEEP2 galaxies have an effective bias b ~ 1.0-1.2, lower than what is predicted by semi-analytic simulations at z ~= 1, which may be the result of our R -band target selection. Our results demonstrate that galaxy clustering properties as a function of color, spectral type and luminosity seen in the local Universe were largely in place by z ~= 1. We also present measurements of the projected angular

  18. High-Redshift Quasars Found in Sloan Digital Sky Survey Commissioning Data. II. The Spring Equatorial Stripe

    SciTech Connect

    Fan, Xiaohui; Strauss, Michael A.; Schneider, Donald P.; Gunn, James E.; Lupton, Robert H.; Anderson, Scott F.; Voges, Wolfgang; Margon, Bruce; Annis, James; Bahcall, Neta A.

    2000-01-01

    This is the second paper in a series aimed at finding high-redshift quasars from five-color (u{sup '} g{sup '} r{sup '} i{sup '} z{sup '}) imaging data taken along the Celestial Equator by the Sloan Digital Sky Survey (SDSS) during its commissioning phase. In this paper, we present 22 high-redshift quasars (z>3.6) discovered from {approx}250 deg2 of data in the spring Equatorial Stripe, plus photometry for two previously known high-redshift quasars in the same region of the sky. Our success rate in identifying high-redshift quasars is 68%. Five of the newly discovered quasars have redshifts higher than 4.6 (z=4.62, 4.69, 4.70, 4.92, and 5.03). All the quasars have i{sup *} <20.2 with absolute magnitude - 28.8

  19. Apples to apples A2 - I. Realistic galaxy simulated catalogues and photometric redshift predictions for next-generation surveys

    NASA Astrophysics Data System (ADS)

    Ascaso, B.; Mei, S.; Benítez, N.

    2015-11-01

    We present new mock catalogues for two of the largest Stage IV next-generation surveys in the optical and infrared: Large Synoptic Sky Telescope (LSST) and Euclid, based on an N-body simulation+semi-analytical cone with a posterior modification with PHOTREAL. This technique modifies the original photometry by using an empirical library of spectral templates to make it more realistic. The reliability of the catalogues is confirmed by comparing the obtained colour-magnitude relation, the luminosity and mass function and the angular correlation function with those of real data. Consistent comparisons between the expected photometric redshifts for different surveys are also provided. Very deep near-infrared surveys such as Euclid will provide very good performance (Δz/(1 + z) ˜ 0.025-0.053) down to H ˜ 24 AB mag and up to z ˜ 3 depending on the optical observations available from the ground, whereas extremely deep optical surveys such as LSST will obtain an overall lower photometric redshift resolution (Δz/(1 + z) ˜ 0.045) down to i ˜ 27.5 AB mag, being considerably improved (Δz/(1 + z) ˜ 0.035) if we restrict the sample down to i ˜ 24 AB mag. Those numbers can be substantially upgraded by selecting a subsample of galaxies with the best quality photometric redshifts. We finally discuss the impact that these surveys will have for the community in terms of photometric redshift legacy. This is the first of a series of papers where we set a framework for comparability between mock catalogues and observations with a particular focus on cluster surveys. The Euclid and LSST mocks are made publicly available.

  20. GALAXY CLUSTERING IN THE COMPLETED SDSS REDSHIFT SURVEY: THE DEPENDENCE ON COLOR AND LUMINOSITY

    SciTech Connect

    Zehavi, Idit; Zheng Zheng; Weinberg, David H.; Blanton, Michael R.; Bahcall, Neta A.; Gunn, James E.; Lupton, Robert H.; Strauss, Michael A.; Berlind, Andreas A.; Brinkmann, Jon; Frieman, Joshua A.; Nichol, Robert C.; Percival, Will J.; Schneider, Donald P.; Skibba, Ramin A.; Tegmark, Max; York, Donald G.

    2011-07-20

    We measure the luminosity and color dependence of galaxy clustering in the largest-ever galaxy redshift survey, the main galaxy sample of the Sloan Digital Sky Survey Seventh Data Release. We focus on the projected correlation function w{sub p} (r{sub p}) of volume-limited samples, extracted from the parent sample of {approx}700,000 galaxies over 8000 deg{sup 2}, extending up to redshift of 0.25. We interpret our measurements using halo occupation distribution (HOD) modeling assuming a {Lambda}CDM cosmology (inflationary cold dark matter with a cosmological constant). The amplitude of w{sub p} (r{sub p}) grows slowly with luminosity for L < L{sub *} and increases sharply at higher luminosities, with a large-scale bias factor b(> L) x ({sigma}{sub 8}/0.8) = 1.06 + 0.21(L/L{sub *}){sup 1.12}, where L is the sample luminosity threshold. At fixed luminosity, redder galaxies exhibit a higher amplitude and steeper correlation function, a steady trend that runs through the 'blue cloud' and 'green valley' and continues across the 'red sequence'. The cross-correlation of red and blue galaxies is close to the geometric mean of their autocorrelations, dropping slightly below at r{sub p} < 1 h{sup -1} Mpc. The luminosity trends for the red and blue galaxy populations separately are strikingly different. Blue galaxies show a slow but steady increase of clustering strength with luminosity, with nearly constant shape of w{sub p} (r{sub p}). The large-scale clustering of red galaxies shows little luminosity dependence until a sharp increase at L > 4 L{sub *}, but the lowest luminosity red galaxies (0.04-0.25 L{sub *}) show very strong clustering on small scales (r{sub p} < 2 h{sup -1} Mpc). Most of the observed trends can be naturally understood within the {Lambda}CDM+HOD framework. The growth of w{sub p} (r{sub p}) for higher luminosity galaxies reflects an overall shift in the mass scale of their host dark matter halos, in particular an increase in the minimum host halo mass M

  1. The Carnegie-Spitzer-IMACS redshift survey of galaxy evolution since z = 1.5. I. Description and methodology

    SciTech Connect

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-10

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ∼ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg{sup 2} of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ {sub z}/(1 + z) ≲ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ {sub z}/(1 + z) = 0.011 for galaxies at 0.7 ≤ z ≤ 0.9, and σ {sub z}/(1 + z) = 0.014 for galaxies at 0.9 ≤ z ≤ 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ {sub z}/(1 + z) = 0.008 and σ {sub z}/(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment.

  2. The Carnegie-Spitzer-IMACS Redshift Survey of Galaxy Evolution since z = 1.5. I. Description and Methodology

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel D.; Williams, Rik J.; Dressler, Alan; McCarthy, Patrick J.; Shectman, Stephen A.; Mulchaey, John S.; Villanueva, Edward V.; Crane, Jeffrey D.; Quadri, Ryan F.

    2014-03-01

    We describe the Carnegie-Spitzer-IMACS (CSI) Survey, a wide-field, near-IR selected spectrophotometric redshift survey with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on Magellan-Baade. By defining a flux-limited sample of galaxies in Spitzer Infrared Array Camera 3.6 μm imaging of SWIRE fields, the CSI Survey efficiently traces the stellar mass of average galaxies to z ~ 1.5. This first paper provides an overview of the survey selection, observations, processing of the photometry and spectrophotometry. We also describe the processing of the data: new methods of fitting synthetic templates of spectral energy distributions are used to derive redshifts, stellar masses, emission line luminosities, and coarse information on recent star formation. Our unique methodology for analyzing low-dispersion spectra taken with multilayer prisms in IMACS, combined with panchromatic photometry from the ultraviolet to the IR, has yielded high-quality redshifts for 43,347 galaxies in our first 5.3 deg2 of the SWIRE XMM-LSS field. We use three different approaches to estimate our redshift errors and find robust agreement. Over the full range of 3.6 μm fluxes of our selection, we find typical redshift uncertainties of σ z /(1 + z) <~ 0.015. In comparisons with previously published spectroscopic redshifts we find scatters of σ z /(1 + z) = 0.011 for galaxies at 0.7 <= z <= 0.9, and σ z /(1 + z) = 0.014 for galaxies at 0.9 <= z <= 1.2. For galaxies brighter and fainter than i = 23 mag, we find σ z /(1 + z) = 0.008 and σ z /(1 + z) = 0.022, respectively. Notably, our low-dispersion spectroscopy and analysis yields comparable redshift uncertainties and success rates for both red and blue galaxies, largely eliminating color-based systematics that can seriously bias observed dependencies of galaxy evolution on environment. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  3. SIS Mixer Design for a Broadband Millimeter Spectrometer Suitable for Rapid Line Surveys and Redshift Determinations

    NASA Technical Reports Server (NTRS)

    Rice, F.; Sumner, M.; Zmuidzinas, J.; Hu, R.; LeDuc, H.; Harris, A.; Miller, D.

    2004-01-01

    We present some detail of the waveguide probe and SIS mixer chip designs for a low-noise 180-300 GHz double- sideband receiver with an instantaneous RF bandwidth of 24 GHz. The receiver's single SIS junction is excited by a broadband, fixed-tuned waveguide probe on a silicon substrate. The IF output is coupled to a 6-18 GHz MMIC low- noise preamplifier. Following further amplification, the output is processed by an array of 4 GHz, 128-channel analog autocorrelation spectrometers (WASP 11). The single-sideband receiver noise temperature goal of 70 Kelvin will provide a prototype instrument capable of rapid line surveys and of relatively efficient carbon monoxide (CO) emission line searches of distant, dusty galaxies. The latter application's goal is to determine redshifts by measuring the frequencies of CO line emissions from the star-forming regions dominating the submillimeter brightness of these galaxies. Construction of the receiver has begun; lab testing should begin in the fall. Demonstration of the receiver on the Caltech Submillimeter Observatory (CSO) telescope should begin in spring 2003.

  4. The 2dF Galaxy Redshift Survey: voids and hierarchical scaling models

    NASA Astrophysics Data System (ADS)

    Croton, Darren J.; Colless, Matthew; Gaztañaga, Enrique; Baugh, Carlton M.; Norberg, Peder; Baldry, I. K.; Bland-Hawthorn, J.; Bridges, T.; Cannon, R.; Cole, S.; Collins, C.; Couch, W.; Dalton, G.; de Propris, R.; Driver, S. P.; Efstathiou, G.; Ellis, R. S.; Frenk, C. S.; Glazebrook, K.; Jackson, C.; Lahav, O.; Lewis, I.; Lumsden, S.; Maddox, S.; Madgwick, D.; Peacock, J. A.; Peterson, B. A.; Sutherland, W.; Taylor, K.

    2004-08-01

    We measure the redshift-space reduced void probability function (VPF) for 2dFGRS volume-limited galaxy samples covering the absolute magnitude range MbJ-5log10h=-18 to -22. Theoretically, the VPF connects the distribution of voids to the moments of galaxy clustering of all orders, and can be used to discriminate clustering models in the weakly non-linear regime. The reduced VPF measured from the 2dFGRS is in excellent agreement with the paradigm of hierarchical scaling of the galaxy clustering moments. The accuracy of our measurement is such that we can rule out, at a very high significance, popular models for galaxy clustering, including the lognormal distribution. We demonstrate that the negative binomial model gives a very good approximation to the 2dFGRS data over a wide range of scales, out to at least 20 h-1 Mpc. Conversely, the reduced VPF for dark matter in a Λ cold dark matter (ΛCDM) universe does appear to be lognormal on small scales but deviates significantly beyond ~4 h-1 Mpc. We find little dependence of the 2dFGRS reduced VPF on galaxy luminosity. Our results hold independently in both the North and South Galactic Pole survey regions.

  5. A PUBLIC VOID CATALOG FROM THE SDSS DR7 GALAXY REDSHIFT SURVEYS BASED ON THE WATERSHED TRANSFORM

    SciTech Connect

    Sutter, P. M.; Wandelt, Benjamin D.; Lavaux, Guilhem; Weinberg, David H.

    2012-12-10

    We produce the most comprehensive public void catalog to date using the Sloan Digital Sky Survey Data Release 7 main sample out to redshift z = 0.2 and the luminous red galaxy sample out to z = 0.44. Using a modified version of the parameter-free void finder ZOBOV, we fully take into account the presence of the survey boundary and masks. Our strategy for finding voids is thus appropriate for any survey configuration. We produce two distinct catalogs: a complete catalog including voids near any masks, which would be appropriate for void galaxy surveys, and a bias-free catalog of voids away from any masks, which is necessary for analyses that require a fair sampling of void shapes and alignments. Our discovered voids have effective radii from 5 to 135 h {sup -1} Mpc. We discuss basic catalog statistics such as number counts and redshift distributions and describe some additional data products derived from our catalog, such as radial density profiles and projected density maps. We find that radial profiles of stacked voids show a qualitatively similar behavior across nearly two decades of void radii and throughout the full redshift range.

  6. Machine-learning-based photometric redshifts for galaxies of the ESO Kilo-Degree Survey data release 2

    NASA Astrophysics Data System (ADS)

    Cavuoti, S.; Brescia, M.; Tortora, C.; Longo, G.; Napolitano, N. R.; Radovich, M.; Barbera, F. La; Capaccioli, M.; de Jong, J. T. A.; Getman, F.; Grado, A.; Paolillo, M.

    2015-09-01

    We have estimated photometric redshifts (zphot) for more than 1.1 million galaxies of the public European Southern Observatory (ESO) Kilo-Degree Survey (KiDS) data release 2. KiDS is an optical wide-field imaging survey carried out with the Very Large Telescope (VLT) Survey Telescope (VST) and the OmegaCAM camera, which aims to tackle open questions in cosmology and galaxy evolution, such as the origin of dark energy and the channel of galaxy mass growth. We present a catalogue of photometric redshifts obtained using the Multi-Layer Perceptron with Quasi-Newton Algorithm (MLPQNA) model, provided within the framework of the DAta Mining and Exploration Web Application REsource (DAMEWARE). These photometric redshifts are based on a spectroscopic knowledge base that was obtained by merging spectroscopic data sets from the Galaxy and Mass Assembly (GAMA) data release 2 and the Sloan Digital Sky Survey III (SDSS-III) data release 9. The overall 1σ uncertainty on Δz = (zspec - zphot)/(1 + zspec) is ˜0.03, with a very small average bias of ˜0.001, a normalized median absolute deviation of ˜0.02 and a fraction of catastrophic outliers (|Δz| > 0.15) of ˜0.4 per cent.

  7. Bright Galaxies at Hubble’s Redshift Detection Frontier: Preliminary Results and Design from the Redshift z ~ 9-10 BoRG Pure-Parallel HST Survey

    NASA Astrophysics Data System (ADS)

    Calvi, V.; Trenti, M.; Stiavelli, M.; Oesch, P.; Bradley, L. D.; Schmidt, K. B.; Coe, D.; Brammer, G.; Bernard, S.; Bouwens, R. J.; Carrasco, D.; Carollo, C. M.; Holwerda, B. W.; MacKenty, J. W.; Mason, C. A.; Shull, J. M.; Treu, T.

    2016-02-01

    We present the first results and design from the redshift z ˜ 9-10 Brightest of the Reionizing Galaxies Hubble Space Telescope survey BoRG[z9-10], aimed at searching for intrinsically luminous unlensed galaxies during the first 700 Myr after the Big Bang. BoRG[z9-10] is the continuation of a multi-year pure-parallel near-IR and optical imaging campaign with the Wide Field Camera 3. The ongoing survey uses five filters, optimized for detecting the most distant objects and offering continuous wavelength coverage from λ = 0.35 μm to λ = 1.7 μm. We analyze the initial ˜130 arcmin2 of area over 28 independent lines of sight (˜25% of the total planned) to search for z\\gt 7 galaxies using a combination of Lyman-break and photometric redshift selections. From an effective comoving volume of (5-25) × 105 Mpc3 for magnitudes brighter than {m}{AB}=26.5{{{--}}}24.0 in the {H}{{160}}-band respectively, we find five galaxy candidates at z\\quad ˜ 8.3-10 detected at high confidence ({{S}}/{{N}}\\gt 8), including a source at z\\quad ˜ 8.4 with {m}{AB}=24.5 ({{S}}/{{N}} ˜ 22), which, if confirmed, would be the brightest galaxy identified at such early times (z\\gt 8). In addition, BoRG[z9-10] data yield four galaxies with 7.3≲ z≲ 8. These new Lyman-break galaxies with m≲ 26.5 are ideal targets for follow-up observations from ground and space-based observatories to help investigate the complex interplay between dark matter growth, galaxy assembly, and reionization.

  8. Analytic photometric redshift estimator for Type Ia supernovae from the Large Synoptic Survey Telescope

    NASA Astrophysics Data System (ADS)

    Wang, Yun; Gjergo, E.; Kuhlmann, S.

    2015-08-01

    Accurate and precise photometric redshifts (photo-zs) of Type Ia supernovae (SNe Ia) can enable the use of SNe Ia, measured only with photometry, to probe cosmology. This dramatically increases the science return of supernova surveys planned for the Large Synoptic Survey Telescope (LSST). In this paper we describe a significantly improved version of the simple analytic photo-z estimator proposed by Wang and further developed by Wang, Narayan & Wood-Vasey. We apply it to 55 422 simulated SNe Ia generated using the SNANA package with the LSST filters. We find that the estimated errors on the photo-zs, σ _{z_phot}/(1+z_phot), can be used as filters to produce a set of photo-zs that have high precision, accuracy, and purity. Using SN Ia colours as well as SN Ia peak magnitude in the i band, we obtain a set of photo-zs with 2 per cent accuracy (with σ(zphot - zspec)/(1 + zspec) = 0.02), a bias in zphot (the mean of zphot - zspec) of -9 × 10-5, and an outlier fraction (with |(zphot - zspec)/(1 + zspec)| > 0.1) of 0.23 per cent, with the requirement that σ _{z_phot}/(1+z_phot)<0.01. Using the SN Ia colours only, we obtain a set of photo-zs with similar quality by requiring that σ _{z_phot}/(1+z_phot)<0.007; this leads to a set of photo-zs with 2 per cent accuracy, a bias in zphot of 5.9 × 10-4, and an outlier fraction of 0.32 per cent.

  9. THE DEEP2 GALAXY REDSHIFT SURVEY: THE VORONOI-DELAUNAY METHOD CATALOG OF GALAXY GROUPS

    SciTech Connect

    Gerke, Brian F.; Newman, Jeffrey A.; Davis, Marc; Coil, Alison L.; Cooper, Michael C.; Dutton, Aaron A.; Faber, S. M.; Guhathakurta, Puragra; Koo, David C.; Phillips, Andrew C.; Noeske, Kai; Rosario, David J.; Weiner, Benjamin J.; Willmer, Christopher N. A.; Yan, Renbin

    2012-05-20

    We present a public catalog of galaxy groups constructed from the spectroscopic sample of galaxies in the fourth data release from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Galaxy Redshift Survey, including the Extended Groth Strip (EGS). The catalog contains 1165 groups with two or more members in the EGS over the redshift range 0 < z < 1.5 and 1295 groups at z > 0.6 in the rest of DEEP2. Twenty-five percent of EGS galaxies and fourteen percent of high-z DEEP2 galaxies are assigned to galaxy groups. The groups were detected using the Voronoi-Delaunay method (VDM) after it has been optimized on mock DEEP2 catalogs following similar methods to those employed in Gerke et al. In the optimization effort, we have taken particular care to ensure that the mock catalogs resemble the data as closely as possible, and we have fine-tuned our methods separately on mocks constructed for the EGS and the rest of DEEP2. We have also probed the effect of the assumed cosmology on our inferred group-finding efficiency by performing our optimization on three different mock catalogs with different background cosmologies, finding large differences in the group-finding success we can achieve for these different mocks. Using the mock catalog whose background cosmology is most consistent with current data, we estimate that the DEEP2 group catalog is 72% complete and 61% pure (74% and 67% for the EGS) and that the group finder correctly classifies 70% of galaxies that truly belong to groups, with an additional 46% of interloper galaxies contaminating the catalog (66% and 43% for the EGS). We also confirm that the VDM catalog reconstructs the abundance of galaxy groups with velocity dispersions above {approx}300 km s{sup -1} to an accuracy better than the sample variance, and this successful reconstruction is not strongly dependent on cosmology. This makes the DEEP2 group catalog a promising probe of the growth of cosmic structure that can potentially be used for cosmological tests.

  10. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Environmental effects shaping the galaxy stellar mass function

    NASA Astrophysics Data System (ADS)

    Davidzon, I.; Cucciati, O.; Bolzonella, M.; De Lucia, G.; Zamorani, G.; Arnouts, S.; Moutard, T.; Ilbert, O.; Garilli, B.; Scodeggio, M.; Guzzo, L.; Abbas, U.; Adami, C.; Bel, J.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; de la Torre, S.; Di Porto, C.; Fritz, A.; Franzetti, P.; Fumana, M.; Granett, B. R.; Guennou, L.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Mellier, Y.; Moscardini, L.; Polletta, M.; Pollo, A.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.

    2016-02-01

    We exploit the first public data release of VIPERS to investigate environmental effects in the evolution of galaxies between z ~ 0.5 and 0.9. The large number of spectroscopic redshifts (more than 50 000) over an area of about 10 deg2 provides a galaxy sample with high statistical power. The accurate redshift measurements (σz = 0.00047(1 + zspec)) allow us to robustly isolate galaxies living in the lowest and highest density environments (δ< 0.7 and δ> 4, respectively) as defined in terms of spatial 3D density contrast δ. We estimate the stellar mass function of galaxies residing in these two environments and constrain the high-mass end (ℳ ≳ 1011 ℳ⊙) with unprecedented precision. We find that the galaxy stellar mass function in the densest regions has a different shape than was measured at low densities, with an enhancement of massive galaxies and a hint of a flatter (less negative) slope at z< 0.8. We normalise each mass function to the comoving volume occupied by the corresponding environment and relate estimates from different redshift bins. We observe an evolution of the stellar mass function of VIPERS galaxies in high densities, while the low-density one is nearly constant. We compare these results to semi-analytical models and find consistent environmental signatures in the simulated stellar mass functions. We discuss how the halo mass function and fraction of central/satellite galaxies depend on the environments considered, making intrinsic and environmental properties of galaxies physically coupled, hence difficult to disentangle. The evolution of our low-density regions is described well by the formalism introduced by Peng et al. (2010, ApJ, 721, 193), and is consistent with the idea that galaxies become progressively passive because of internal physical processes. The same formalism could also describe the evolution of the mass function in the high density regions, but only if a significant contribution from dry mergers is considered. Based on

  11. The mean density and two-point correlation function for the CfA redshift survey slices

    NASA Technical Reports Server (NTRS)

    De Lapparent, Valerie; Geller, Margaret J.; Huchra, John P.

    1988-01-01

    The effect of large-scale inhomogeneities on the determination of the mean number density and the two-point spatial correlation function were investigated for two complete slices of the extension of the Center for Astrophysics (CfA) redshift survey (de Lapparent et al., 1986). It was found that the mean galaxy number density for the two strips is uncertain by 25 percent, more so than previously estimated. The large uncertainty in the mean density introduces substantial uncertainty in the determination of the two-point correlation function, particularly at large scale; thus, for the 12-deg slice of the CfA redshift survey, the amplitude of the correlation function at intermediate scales is uncertain by a factor of 2. The large uncertainties in the correlation functions might reflect the lack of a fair sample.

  12. Using cross correlations to calibrate lensing source redshift distributions: Improving cosmological constraints from upcoming weak lensing surveys

    SciTech Connect

    De Putter, Roland; Doré, Olivier; Das, Sudeep

    2014-01-10

    Cross correlations between the galaxy number density in a lensing source sample and that in an overlapping spectroscopic sample can in principle be used to calibrate the lensing source redshift distribution. In this paper, we study in detail to what extent this cross-correlation method can mitigate the loss of cosmological information in upcoming weak lensing surveys (combined with a cosmic microwave background prior) due to lack of knowledge of the source distribution. We consider a scenario where photometric redshifts are available and find that, unless the photometric redshift distribution p(z {sub ph}|z) is calibrated very accurately a priori (bias and scatter known to ∼0.002 for, e.g., EUCLID), the additional constraint on p(z {sub ph}|z) from the cross-correlation technique to a large extent restores the cosmological information originally lost due to the uncertainty in dn/dz(z). Considering only the gain in photo-z accuracy and not the additional cosmological information, enhancements of the dark energy figure of merit of up to a factor of four (40) can be achieved for a SuMIRe-like (EUCLID-like) combination of lensing and redshift surveys, where SuMIRe stands for Subaru Measurement of Images and Redshifts). However, the success of the method is strongly sensitive to our knowledge of the galaxy bias evolution in the source sample and we find that a percent level bias prior is needed to optimize the gains from the cross-correlation method (i.e., to approach the cosmology constraints attainable if the bias was known exactly).

  13. The KMOS Redshift One Spectroscopic Survey (KROSS): The Tully-Fisher Relation at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Tiley, Alfred L.; Stott, John P.; Swinbank, A. M.; Bureau, Martin; Harrison, Chris M.; Bower, Richard; Johnson, Helen L.; Bunker, Andrew J.; Jarvis, Matt J.; Magdis, Georgios; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip

    2016-04-01

    We present the stellar mass (M★), and K-corrected K-band absolute magnitude (MK) Tully-Fisher relations (TFRs) for sub-samples of the 584 galaxies spatially resolved in Hα emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80% of the total integrated Hα flux. The large sample size of KROSS allowed us to select 210 galaxies with well measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M★ TFRs for this sub-sample to be MK / {mag}= (-7.3 ± 0.9) × [(log (V_{80}/{km s^{-1}})-2.25]- 23.4 ± 0.2 , and log (M_{*} / M_{⊙})= (4.7 ± 0.4) × [(log (V_{80}/{km s^{-1}}) - 2.25] + 10.0 ± 0.3, respectively. We find an evolution of the M★ TFR zero-point of -0.41 ± 0.08 dex over the last ˜8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ˜ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities.

  14. The KMOS Redshift One Spectroscopic Survey (KROSS): the Tully-Fisher relation at z ˜ 1

    NASA Astrophysics Data System (ADS)

    Tiley, Alfred L.; Stott, John P.; Swinbank, A. M.; Bureau, Martin; Harrison, Chris M.; Bower, Richard; Johnson, Helen L.; Bunker, Andrew J.; Jarvis, Matt J.; Magdis, Georgios; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip

    2016-07-01

    We present the stellar mass (M*), and K-corrected K-band absolute magnitude (MK) Tully-Fisher relations (TFRs) for subsamples of the 584 galaxies spatially resolved in H α emission by the KMOS Redshift One Spectroscopic Survey (KROSS). We model the velocity field of each of the KROSS galaxies and extract a rotation velocity, V80 at a radius equal to the major axis of an ellipse containing 80 per cent of the total integrated H α flux. The large sample size of KROSS allowed us to select 210 galaxies with well-measured rotation speeds. We extract from this sample a further 56 galaxies that are rotationally supported, using the stringent criterion V80/σ > 3, where σ is the flux weighted average velocity dispersion. We find the MK and M* TFRs for this subsample to be MK / {mag}= (-7.3 ± 0.9) × [(log (V_{80}/{km s^{-1}})-2.25]- 23.4 ± 0.2, and log (M_{{ast }} / M_{{⊙}})= (4.7 ± 0.4) × [(log (V_{80}/{km s^{-1}}) - 2.25] + 10.0 ± 0.3, respectively. We find an evolution of the M* TFR zero-point of -0.41 ± 0.08 dex over the last ˜8 billion years. However, we measure no evolution in the MK TFR zero-point over the same period. We conclude that rotationally supported galaxies of a given dynamical mass had less stellar mass at z ˜ 1 than the present day, yet emitted the same amounts of K-band light. The ability of KROSS to differentiate, using integral field spectroscopy with KMOS, between those galaxies that are rotationally supported and those that are not explains why our findings are at odds with previous studies without the same capabilities.

  15. The Herschel Multi-Tiered Extragalactic Survey: SPIRE-mm Photometric Redshifts

    NASA Technical Reports Server (NTRS)

    Roseboom, I. G.; Ivison, R. J.; Greve, T. R.; Amblard, A.; Arumugam, V.; Auld, R.; Aussel, H.; Bethermin, M.; Blain, A.; Bock, J.; Boselli, A.; Brisbin, D.; Buat, V.; Burgarella, D.; Castro-Rodriguez, N.; Cava, A.; Chanial, P.; Chapin, E.; Chapman, S.; Clements, D. L.; Conley, A.; Conversi, L.; Cooray, A.; Dowell, C. D.; Dwek, E.

    2011-01-01

    We investigate the potential of submm-mm and submm-mm-radio photometric red-shifts using a sample of mm-selected sources as seen at 250, 350 and 500 micrometers by the SPIRE instrument on Herschel. From a sample of 63 previously identified mm-sources with reliable radio identifications in the GOODS-N and Lockman Hole North fields 46 (73 per cent) are found to have detections in at least one SPIRE band. We explore the observed submm/mm colour evolution with redshift, finding that the colours of mm-sources are adequately described by a modified blackbody with constant optical depth Tau = (nu/nu(0))beta where beta = +1.8 and nu(0) = c/100 micrometers. We find a tight correlation between dust temperature and IR luminosity. Using a single model of the dust temperature and IR luminosity relation we derive photometric redshift estimates for the 46 SPIRE detected mm-sources. Testing against the 22 sources with known spectroscopic, or good quality optical/near-IR photometric, redshifts we find submm/mm photometric redshifts offer a redshift accuracy of |delta z|/(1+z) = 0.16 (less than |delta z| greater than = 0.51). Including constraints from the radio-far IR correlation the accuracy is improved to |delta z|/(1 + z) = 0.15 (less than |delta z| greater than = 0.45). We estimate the redshift distribution of mm-selected sources finding a significant excess at z greater than 3 when compared to 850 micrometer selected samples.

  16. Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification

    NASA Astrophysics Data System (ADS)

    Howell, D. A.; Sullivan, M.; Perrett, K.; Bronder, T. J.; Hook, I. M.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Fabbro, S.; Fouchez, D.; Guy, J.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Knop, R.; McMahon, R. G.; Perlmutter, S.; Walton, N. A.

    2005-12-01

    We present new techniques for improving the efficiency of supernova (SN) classification at high redshift using 64 candidates observed at Gemini North and South during the first year of the Supernova Legacy Survey (SNLS). The SNLS is an ongoing 5 year project with the goal of measuring the equation of state of dark energy by discovering and following over 700 high-redshift SNe Ia using data from the Canada-France-Hawaii Telescope Legacy Survey. We achieve an improvement in the SN Ia spectroscopic confirmation rate: at Gemini 71% of candidates are now confirmed as SNe Ia, compared to 54% using the methods of previous surveys. This is despite the comparatively high redshift of this sample, in which the median SN Ia redshift is z=0.81 (0.155<=z<=1.01). These improvements were realized because we use the unprecedented color coverage and light curve sampling of the SNLS to predict whether a candidate is a SN Ia and to estimate its redshift, before obtaining a spectrum, using a new technique called the ``SN photo-z.'' In addition, we have improved techniques for galaxy subtraction and SN template χ2 fitting, allowing us to identify candidates even when they are only 15% as bright as the host galaxy. The largest impediment to SN identification is found to be host galaxy contamination of the spectrum-when the SN was at least as bright as the underlying host galaxy the target was identified more than 90% of the time. However, even SNe in bright host galaxies can be easily identified in good seeing conditions. When the image quality was better than 0.55", the candidate was identified 88% of the time. Over the 5 year course of the survey, using the selection techniques presented here, we will be able to add ~170 more confirmed SNe Ia than would be possible using previous methods. APC, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France. DSM/DAPNIA, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France.

  17. The VIPERS Multi-Lambda Survey. I. UV and near-IR observations, multi-colour catalogues, and photometric redshifts

    NASA Astrophysics Data System (ADS)

    Moutard, T.; Arnouts, S.; Ilbert, O.; Coupon, J.; Hudelot, P.; Vibert, D.; Comte, V.; Conseil, S.; Davidzon, I.; Guzzo, L.; Llebaria, A.; Martin, C.; McCracken, H. J.; Milliard, B.; Morrison, G.; Schiminovich, D.; Treyer, M.; Van Werbaeke, L.

    2016-05-01

    We present observations collected in the CFHTLS-VIPERS region in the ultraviolet with the GALEX satellite (far- and near-ultraviolet channels) and in the near-infrared with the CFHT/WIRCam camera (Ks band) over an area of 22 and 27 deg2, respectively. The depth of the photometry was optimised to measure the physical properties (e.g., star formation rate, stellar masses) of all the galaxies in the VIPERS spectroscopic survey. The large volume explored by VIPERS will enable a unique investigation of the relationship between the galaxy properties and their environment (density field and cosmic web) at high redshift (0.5 ≤ z ≤ 1.2). In this paper, we present the observations, the data reductions, and the build-up of the multi-colour catalogues. The CFHTLS-T0007 (gri-χ2) images are used as reference to detect and measure the Ks-band photometry, while the T0007 u∗-selected sources are used as priors to perform the GALEX photometry based on a dedicated software (EMphot). Our final sample reaches NUVAB ~ 25 (at 5σ) and KAB ~ 22 (at 3σ). The large spectroscopic sample (~51 000 spectroscopic redshifts) allows us to highlight the robustness of our star/galaxy separation and the reliability of our photometric redshifts with a typical accuracy of σz ≤ 0.04 and a fraction of catastrophic failures η ≤ 2% down to i ~ 23. We present various tests on the Ks-band completeness and photometric redshift accuracy by comparing our results with existing overlapping deep photometric catalogues. Finally, we discuss the BzK sample of passive and active galaxies at high redshift and the evolution of galaxy morphology in the (NUV-r) vs. (r-Ks) diagram at low redshift (z ≤ 0.25) based on the high image quality of the CFHTLS. The catalogue is available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A102The images, catalogues, and photometric redshifts for 1.5 million sources (down to NUV

  18. Adjusting the Adjusted X[superscript 2]/df Ratio Statistic for Dichotomous Item Response Theory Analyses: Does the Model Fit?

    ERIC Educational Resources Information Center

    Tay, Louis; Drasgow, Fritz

    2012-01-01

    Two Monte Carlo simulation studies investigated the effectiveness of the mean adjusted X[superscript 2]/df statistic proposed by Drasgow and colleagues and, because of problems with the method, a new approach for assessing the goodness of fit of an item response theory model was developed. It has been previously recommended that mean adjusted…

  19. VizieR Online Data Catalog: SHELS: redshift survey of the F1 DLS field (Geller+, 2016)

    NASA Astrophysics Data System (ADS)

    Geller, M. J.; Hwang, H. S.; Dell'Antonio, I. P.; Zahid, H. J.; Kurtz, M. J.; Fabricant, D. G.

    2016-07-01

    The Smithsonian Hectospec Lensing Survey (SHELS) redshift survey covers two 4deg2 fields originally selected as part of the Deep Lens Survey (DLS; Wittman et al. 2006ApJ...643..128W). We used the 300-fiber Hectospec instrument on the MMT to acquire spectroscopy for galaxy candidates typically brighter than R=20.6. We observed the F1 field (centered at RA=00:53:25.3 and DEC=12:33:55 (J2000)) in queue mode during dark runs in four periods: 2005 October 24-28; 2006 October 17-November 22; 2012 October 10-December 10; 2014 September 26-November 28. The wavelength range covered by Hectospec in the observer's frame is 3700-9100Å with a resolution of ~5Å. See section 2.2 for further explanations. (4 data files).

  20. [Redshift estimation of galaxy spectra based on similarity measure].

    PubMed

    Liu, Rong; Qiao, Xue-Jun; Duan, Fu-Qing

    2008-01-01

    Automated spectra analysis is desirable and necessary for efficiency of large sky surveys such as SDSS (Sloan digital sky survey), 2DF (2 degree fields) and LAMOST (large sky area multi-object spectroscopic telescope). In the present paper, we present a method for redshift estimation of galaxy spectra based on similarity measure. Firstly, we extract the spectral lines of the observed spectrum using the feature constrains of spectral lines; secondly, the authors determine the redshift candidates of the observed spectrum by spectral line features; then, the similarity between the observed spectrum and the template spectra shifted by each redshift candidate is measured; finally, the candidate of the highest similarity is chosen as the estimated redshift. PCA (principal component analysis) is used to build the static galaxy template spectra. The authors perform PCA for the four template spectra E, S0, Sa and Sb of the normal galaxy and the seven template spectra Sc, Sb1, Sb2, Sb3, Sb4, Sb5 and Sb6 of the starburst galaxy respectively, where the eleven template spectra are presented by Kinney & Calzetti et al. Two eigen-spectra are produced with the variance contribution rate of 99%. The authors choose the two eigen-spectra as the galaxy templates. The similarity measure proposed, which is similar to the evidence accumulation, is defined as the weighted sum of several similarity evidences. It can reduce the influence caused by some error matching. The authors divide the observed spectrum and the template spectrum respectively into several parts, and measure the correlations of the corresponding parts of them, which is chosen as the similarity evidences in the proposed similarity measure. The principle of setting the weights is that the higher the correlation, the higher the corresponding weight. The proposed approach is compared with the method based on spectral line matching and the traditional cross correlation technique by experiments, the results show that the

  1. Quasi-stellar objects in the ALHAMBRA survey. I. Photometric redshift accuracy based on 23 optical-NIR filter photometry

    NASA Astrophysics Data System (ADS)

    Matute, I.; Márquez, I.; Masegosa, J.; Husillos, C.; del Olmo, A.; Perea, J.; Alfaro, E. J.; Fernández-Soto, A.; Moles, M.; Aguerri, J. A. L.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Cano, J.; Castander, F. J.; Cepa, J.; Cerviño, M.; Cristóbal-Hornillos, D.; Infante, L.; González Delgado, R. M.; Martínez, V. J.; Molino, A.; Prada, F.; Quintana, J. M.

    2012-06-01

    Context. Even the spectroscopic capabilities of today's ground and space-based observatories can not keep up with the enormous flow of detections (>105 deg-2) unveiled in modern cosmological surveys as: i) would be required enormous telescope time to perform the spectroscopic follow-ups and ii) spectra remain unattainable for the fainter detected population. In the past decade, the typical accuracy of photometric redshift (photo-z) determination has drastically improved. Nowdays, it has become a perfect complement to spectroscopy, closing the gap between photometric surveys and their spectroscopic follow-ups. The photo-z precision for active galactic nuclei (AGN) has always lagged behind that for the galaxy population owing to the lack of proper templates and their intrinsic variability. Aims: Our goal is to characterize the ability of the Advanced Large, Homogeneous Area Medium-Band Redshift Astronomical (ALHAMBRA) survey in assigning accurate photo-z's to broad-line AGN (BLAGN) and quasi-stellar objects (QSOs) based on their ALHAMBRA very-low-resolution optical-near-infrared (NIR) spectroscopy. This will serve as a benchmark for any future compilation of ALHAMBRA selected QSOs and the basis for the statistical analysis required to derive luminosity functions up to z ~ 5. Methods: We selected a sample of spectroscopically identified BLAGN and QSOs and used a library of templates (including the SEDs of AGN and both normal and starburst galaxies, as well as stars) to fit the 23 photometric data points provided by ALHAMBRA in the optical and NIR (20 medium-band optical filters plus the standard JHKs). Results: We find that the ALHAMBRA photometry is able to provide an accurate photo-z and spectral classification for ~88% of the 170 spectroscopically identified BLAGN/QSOs over 2.5 deg2 in different areas of the survey and brighter than m678 = 23.5 (equivalent to rSLOAN ~ 24.0). The derived photo-z accuracy is below 1% and is comparable to the most recent results in

  2. MEASUREMENTS OF CO REDSHIFTS WITH Z-SPEC FOR LENSED SUBMILLIMETER GALAXIES DISCOVERED IN THE H-ATLAS SURVEY

    SciTech Connect

    Lupu, R. E.; Scott, K. S.; Aguirre, J. E.; Aretxaga, I.; Auld, R.; Dariush, A.; Barton, E.; Cooke, J.; Cooray, A.; Beelen, A.; Bertoldi, F.; Bock, J. J.; Bradford, C. M.; Bonfield, D.; Buttiglione, S.; De Zotti, G.; Cava, A.; Dannerbauer, H.; and others

    2012-10-01

    We present new observations from Z-Spec, a broadband 185-305 GHz spectrometer, of five submillimeter bright lensed sources selected from the Herschel-Astrophysical Terahertz Large Area Survey science demonstration phase catalog. We construct a redshift-finding algorithm using combinations of the signal to noise of all the lines falling in the Z-Spec bandpass to determine redshifts with high confidence, even in cases where the signal to noise in individual lines is low. We measure the dust continuum in all sources and secure CO redshifts for four out of five (z {approx} 1.5-3). In one source, SDP.17, we tentatively identify two independent redshifts and a water line, confirmed at z = 2.308. Our sources have properties characteristic of dusty starburst galaxies, with magnification-corrected star formation rates of 10{sup 2-3} M{sub Sun} yr{sup -1}. Lower limits for the dust masses ({approx} a few 10{sup 8} M{sub Sun }) and spatial extents ({approx}1 kpc equivalent radius) are derived from the continuum spectral energy distributions, corresponding to dust temperatures between 54 and 69 K. In the local thermodynamic equilibrium (LTE) approximation, we derive relatively low CO excitation temperatures ({approx}< 100 K) and optical depths ({tau} {approx}< 1). Performing a non-LTE excitation analysis using RADEX, we find that the CO lines measured by Z-Spec (from J = 4 {yields} 3 to 10 {yields} 9, depending on the galaxy) localize the best solutions to either a high-temperature/low-density region or a low/temperature/high-density region near the LTE solution, with the optical depth varying accordingly. Observations of additional CO lines, CO(1-0) in particular, are needed to constrain the non-LTE models.

  3. The Role of Environment in Shaping Galaxy Evolution at High Redshift: Insights from the SpARCS Cluster Survey

    NASA Astrophysics Data System (ADS)

    Wilson, Gillian

    2015-08-01

    Between z = 2 and z = 1, the main progenitors of present-day massive clusters undergo rapid collapse, and cluster members transform from active star-forming to quiescent galaxies. The SpARCS survey is one of the largest surveys designed to detect clusters of galaxies at z> 1, and has discovered hundreds of Spitzer IR-selected clusters.I will present results from GCLASS, a 25-night Gemini/GMOS spectroscopic follow-up survey of ten of the most massive SpARCS clusters at z~1, and explain what we are learning about quenching and stellar mass assembly of galaxies in these, the densest of environments, relative to the field population. I will explain how predictions and observations of the stellar mass growth of Brightest Cluster Galaxies, previously controversially divergent, are now coming into agreement, and discuss the evidence for the relative importance of mergers versus in-situ star formation in driving this stellar mass growth as a function of redshift.I will also present a sample of newly-confirmed clusters at z~2 for which we have HST spectroscopy and imaging, and have been targeting with Keck/MOSFIRE. I will conclude by discussing GOGREEN and DEEPDRILL, two new large surveys approved by Gemini & Spitzer, designed to study the effects of environment at lower stellar mass and at higher redshift, respectively. Collectively, these powerful new surveys are beginning to allow us to place constraints on the location and timescale of quenching and, in concert with both hydro-simulations and semi-analytic models, identify the complex role of environment in shaping galaxy evolution over cosmic time.

  4. The VIMOS Public Extragalactic Redshift Survey (VIPERS). On the recovery of the count-in-cell probability distribution function

    NASA Astrophysics Data System (ADS)

    Bel, J.; Branchini, E.; Di Porto, C.; Cucciati, O.; Granett, B. R.; Iovino, A.; de la Torre, S.; Marinoni, C.; Guzzo, L.; Moscardini, L.; Cappi, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bolzonella, M.; Bottini, D.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Marchetti, A.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.

    2016-04-01

    We compare three methods to measure the count-in-cell probability density function of galaxies in a spectroscopic redshift survey. From this comparison we found that, when the sampling is low (the average number of object per cell is around unity), it is necessary to use a parametric method to model the galaxy distribution. We used a set of mock catalogues of VIPERS to verify if we were able to reconstruct the cell-count probability distribution once the observational strategy is applied. We find that, in the simulated catalogues, the probability distribution of galaxies is better represented by a Gamma expansion than a skewed log-normal distribution. Finally, we correct the cell-count probability distribution function from the angular selection effect of the VIMOS instrument and study the redshift and absolute magnitude dependency of the underlying galaxy density function in VIPERS from redshift 0.5 to 1.1. We found a very weak evolution of the probability density distribution function and that it is well approximated by a Gamma distribution, independently of the chosen tracers. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programmes 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/DAPNIA, at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l'Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at TERAPIX and the Canadian Astronomy Data Centre as part of the Canada-France-Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS. The VIPERS web site is http://www.vipers.inaf.it/

  5. The VIMOS Ultra-Deep Survey: ~10 000 galaxies with spectroscopic redshifts to study galaxy assembly at early epochs 2 < z ≃ 6

    NASA Astrophysics Data System (ADS)

    Le Fèvre, O.; Tasca, L. A. M.; Cassata, P.; Garilli, B.; Le Brun, V.; Maccagni, D.; Pentericci, L.; Thomas, R.; Vanzella, E.; Zamorani, G.; Zucca, E.; Amorin, R.; Bardelli, S.; Capak, P.; Cassarà, L.; Castellano, M.; Cimatti, A.; Cuby, J. G.; Cucciati, O.; de la Torre, S.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Lemaux, B. C.; Moreau, C.; Paltani, S.; Ribeiro, B.; Salvato, M.; Schaerer, D.; Scodeggio, M.; Sommariva, V.; Talia, M.; Taniguchi, Y.; Tresse, L.; Vergani, D.; Wang, P. W.; Charlot, S.; Contini, T.; Fotopoulou, S.; López-Sanjuan, C.; Mellier, Y.; Scoville, N.

    2015-04-01

    We present the VIMOS Ultra Deep Survey (VUDS), a spectroscopic redshift survey of ~10 000 very faint galaxies to study the main phase of galaxy assembly in 2 < z ≃ 6. The survey covers 1 deg2 in three separate fields: COSMOS, ECDFS, and VVDS-02h, with the selection of targets based on an inclusive combination of photometric redshifts and colour properties. Spectra covering 3650 < λ < 9350 Å are obtained with VIMOS on the ESO-VLT with integration times of 14h. Here we present the survey strategy, target selection, data processing, and the redshift measurement process with an emphasis on the specific methods used to adapt to this high-redshift range. We discuss the spectra quality and redshift reliability and derive a success rate in redshift measurement of 91%, or 74% by limiting the dataset to the most reliable measurements, down to a limiting magnitude iAB = 25. Measurements are performed all the way down to iAB = 27. The mean redshift of the main sample is z ~ 3 and extends over a broad redshift range mainly in 2 < z < 6. At 3 < z < 5, the galaxies cover a wide range of luminosities -23 < MNUV < -20.5, stellar mass 109M⊙ < M∗ < 1011M⊙, and star formation rates 1M⊙/yr < SFR < 103M⊙/yr. We discuss the spectral properties of galaxies using individual as well asstacked spectra. The comparison between spectroscopic and photometric redshifts as well as colour selection demonstrate the effectiveness of our selection scheme. From about ~ 90% of the data analysed so far, we expect to assemble >6000 galaxies with reliable spectroscopic redshifts in 2 < z < 6 when complete. This makes the VUDS the largest survey at these redshifts and offers the opportunity for unprecedented studies of the star-forming galaxy population and its distribution in large-scale structures during the main phase of galaxy assembly. Based on data obtained with the European Southern Observatory Very Large Telescope, Paranal, Chile, under Large Program 185.A-0791.Staged releases of the

  6. A far-infrared spectroscopic survey of intermediate redshift (ultra) luminous infrared galaxies

    SciTech Connect

    Magdis, Georgios E.; Rigopoulou, D.; Hopwood, R.; Clements, D.; Huang, J.-S.; Farrah, D.; Pearson, C.; Alonso-Herrero, Almudena; Bock, J. J.; Cooray, A.; Griffin, M. J.; Oliver, S.; Perez Fournon, I.; Riechers, D.; Swinyard, B. M.; Thatte, N.; Scott, D.; Valtchanov, I.; Vaccari, M.

    2014-11-20

    We present Herschel far-IR photometry and spectroscopy as well as ground-based CO observations of an intermediate redshift (0.21 ≤ z ≤ 0.88) sample of Herschel-selected (ultra)-luminous infrared galaxies (L {sub IR} > 10{sup 11.5} L {sub ☉}). With these measurements, we trace the dust continuum, far-IR atomic line emission, in particular [C II] 157.7 μm, as well as the molecular gas of z ∼ 0.3 luminous and ultraluminous infrared galaxies (LIRGs and ULIRGs) and perform a detailed investigation of the interstellar medium of the population. We find that the majority of Herschel-selected intermediate redshift (U)LIRGs have L {sub C} {sub II}/L {sub FIR} ratios that are a factor of about 10 higher than that of local ULIRGs and comparable to that of local normal and high-z star-forming galaxies. Using our sample to bridge local and high-z [C II] observations, we find that the majority of galaxies at all redshifts and all luminosities follow an L {sub C} {sub II}–L {sub FIR} relation with a slope of unity, from which local ULIRGs and high- z active-galactic-nucleus-dominated sources are clear outliers. We also confirm that the strong anti-correlation between the L {sub C} {sub II}/L {sub FIR} ratio and the far-IR color L {sub 60}/L {sub 100} observed in the local universe holds over a broad range of redshifts and luminosities, in the sense that warmer sources exhibit lower L {sub C} {sub II}/L {sub FIR} at any epoch. Intermediate redshift ULIRGs are also characterized by large molecular gas reservoirs and by lower star formation efficiencies compared to that of local ULIRGs. The high L {sub C} {sub II}/L {sub FIR} ratios, the moderate star formation efficiencies (L {sub IR}/L{sub CO}{sup ′} or L {sub IR}/M{sub H{sub 2}}), and the relatively low dust temperatures of our sample (which are also common characteristics of high-z star-forming galaxies with ULIRG-like luminosities) indicate that the evolution of the physical properties of (U)LIRGs between the

  7. Precise photometric redshifts with a narrow-band filter set: the PAU survey at the William Herschel Telescope

    NASA Astrophysics Data System (ADS)

    Martí, P.; Miquel, R.; Castander, F. J.; Gaztañaga, E.; Eriksen, M.; Sánchez, C.

    2014-07-01

    The Physics of the Accelerating Universe (PAU) survey at the William Herschel Telescope will use a new optical camera (PAUCam) with a large set of narrow-band filters to perform a photometric galaxy survey with a quasi-spectroscopic redshift precision of σ(z)/(1 + z) ˜ 0.0035 and map the large-scale structure of the universe in three dimensions up to iAB < 22.5-23.0. In this paper, we present a detailed photo-z performance study using photometric simulations for 40 equally spaced 12.5-nm-wide (full width at half-maximum) filters with an ˜25 per cent overlap and spanning the wavelength range from 450 to 850 nm, together with a ugrizY broad-band filter system. We then present the migration matrix rij, containing the probability that a galaxy in a true redshift bin j is measured in a photo-z bin i, and study its effect on the determination of galaxy auto- and cross-correlations. Finally, we also study the impact on the photo-z performance of small variations of the filter set in terms of width, wavelength coverage, etc., and find a broad region where slightly modified filter sets provide similar results, with the original set being close to optimal.

  8. Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys

    NASA Astrophysics Data System (ADS)

    Geach, James E.

    2012-01-01

    We present an application of unsupervised machine learning - the self-organized map (SOM) - as a tool for visualizing, exploring and mining the catalogues of large astronomical surveys. Self-organization culminates in a low-resolution representation of the 'topology' of a parameter volume, and this can be exploited in various ways pertinent to astronomy. Using data from the Cosmological Evolution Survey (COSMOS), we demonstrate two key astronomical applications of the SOM: (i) object classification and selection, using galaxies with active galactic nuclei as an example, and (ii) photometric redshift estimation, illustrating how SOMs can be used as totally empirical predictive tools. With a training set of ˜3800 galaxies with zspec≤ 1, we achieve photometric redshift accuracies competitive with other (mainly template fitting) techniques that use a similar number of photometric bands [σ(Δz) = 0.03 with a ˜2 per cent outlier rate when using u* band to 8 ?m photometry]. We also test the SOM as a photo-z tool using the PHoto-z Accuracy Testing (PHAT) synthetic catalogue of Hildebrandt et al., which compares several different photo-z codes using a common input/training set. We find that the SOM can deliver accuracies that are competitive with many of the established template fitting and empirical methods. This technique is not without clear limitations, which are discussed, but we suggest it could be a powerful tool in the era of extremely large -'petabyte'- data bases where efficient data mining is a paramount concern.

  9. Luminosity and redshift dependence of the covering factor of active galactic nuclei viewed with WISE and Sloan digital sky survey

    SciTech Connect

    Toba, Y.; Matsuhara, H.; Oyabu, S.; Malkan, M. A.; Gandhi, P.; Nakagawa, T.; Isobe, N.; Shirahata, M.; Oi, N.; Takita, S.; Yano, K.; Ohyama, Y.; Yamauchi, C.

    2014-06-10

    In this work, we investigate the dependence of the covering factor (CF) of active galactic nuclei (AGNs) on the mid-infrared (MIR) luminosity and the redshift. We constructed 12 and 22 μm luminosity functions (LFs) at 0.006 ≤z ≤ 0.3 using Wide-field Infrared Survey Explorer (WISE) data. Combining the WISE catalog with Sloan Digital Sky Survey (SDSS) spectroscopic data, we selected 223,982 galaxies at 12 μm and 25,721 galaxies at 22 μm for spectroscopic classification. We then identified 16,355 AGNs at 12 μm and 4683 AGNs at 22 μm by their optical emission lines and cataloged classifications in the SDSS. Following that, we estimated the CF as the fraction of Type 2 AGN in all AGNs whose MIR emissions are dominated by the active nucleus (not their host galaxies) based on their MIR colors. We found that the CF decreased with increasing MIR luminosity, regardless of the choice of Type 2 AGN classification criteria, and the CF did not change significantly with redshift for z ≤ 0.2. Furthermore, we carried out various tests to determine the influence of selection bias and confirmed that similar dependences exist, even when taking these uncertainties into account. The luminosity dependence of the CF can be explained by the receding torus model, but the 'modified' receding torus model gives a slightly better fit, as suggested by Simpson.

  10. THE BOSS EMISSION-LINE LENS SURVEY (BELLS). I. A LARGE SPECTROSCOPICALLY SELECTED SAMPLE OF LENS GALAXIES AT REDSHIFT {approx}0.5

    SciTech Connect

    Brownstein, Joel R.; Bolton, Adam S.; Pandey, Parul; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 {approx}< z {approx}< 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution.

  11. The two-point correlation function for groups of galaxies in the Center for Astrophysics redshift survey

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Huchra, John P.

    1990-01-01

    The large-scale distribution of groups of galaxies selected from complete slices of the CfA redshift survey extension is examined. The survey is used to reexamine the contribution of group members to the galaxy correlation function. The relationship between the correlation function for groups and those calculated for rich clusters is discussed, and the results for groups are examined as an extension of the relation between correlation function amplitude and richness. The group correlation function indicates that groups and individual galaxies are equivalent tracers of the large-scale matter distribution. The distribution of group centers is equivalent to random sampling of the galaxy distribution. The amplitude of the correlation function for groups is consistent with an extrapolation of the amplitude-richness relation for clusters. The amplitude scaled by the mean intersystem separation is also consistent with results for richer clusters.

  12. A Survey of Star-forming Galaxies in the 1.4<~Z<~ 2.5 Redshift Desert: Overview

    NASA Astrophysics Data System (ADS)

    Steidel, Charles C.; Shapley, Alice E.; Pettini, Max; Adelberger, Kurt L.; Erb, Dawn K.; Reddy, Naveen A.; Hunt, Matthew P.

    2004-04-01

    The redshift interval 1.4<~z<~2.5 has been described by some as the ``redshift desert'' because of historical difficulties in spectroscopically identifying galaxies in that range. In fact, galaxies can be found in large numbers with standard broadband color selection techniques coupled with follow-up spectroscopy with UV and blue-sensitive spectrographs. In this paper we present the first results of a large-scale survey of such objects, carried out with the blue channel of the LRIS spectrograph (LRIS-B) on the Keck I Telescope. We introduce two samples of star-forming galaxies, ``BX'' galaxies at =2.20+/-0.32 and ``BM'' galaxies at =1.70+/-0.34. In seven survey fields we have spectroscopically confirmed 749 of the former and 114 of the latter. Interlopers (defined as objects at z<1) account for less than 10% of the photometric candidates, and the fraction of faint active galactic nuclei is ~3% in the combined BX/BM sample. Deep near-IR photometry of a subset of the BX sample indicates that, compared with a sample of similarly UV-selected galaxies at z~3, the z~2 galaxies are on average significantly redder in (R-Ks), indicating longer star formation histories, increased reddening by dust, or both. Using near-IR Hα spectra of a subset of BX/BM galaxies to define the galaxies' systemic redshifts, we show that the galactic-scale winds that are a feature of star-forming galaxies at z~3 are also common at later epochs and have similar bulk outflow speeds of 200-300 km s-1. We illustrate with examples the information that can be deduced on the stellar populations, metallicities, and kinematics of redshift desert galaxies from easily accessible rest-frame far-UV and rest-frame optical spectra. Far from being hostile to observations, the universe at z~2 is uniquely suited to providing information on the astrophysics of star-forming galaxies and the intergalactic medium, and the relationship between the two. Based, in part, on data obtained at the W. M. Keck

  13. An integral field spectroscopic survey for high redshift damped Lyman-α galaxies

    NASA Astrophysics Data System (ADS)

    Christensen, L.; Wisotzki, L.; Roth, M. M.; Sánchez, S. F.; Kelz, A.; Jahnke, K.

    2007-06-01

    Aims:We search for galaxy counterparts to damped Lyman-α absorbers (DLAs) at z > 2 towards nine quasars, which have 14 DLAs and 8 sub-DLAs in their spectra. Methods: We use integral field spectroscopy to search for Lyα emission line objects at the redshifts of the absorption systems. Results: Besides recovering two previously confirmed objects, we find six statistically significant candidate Lyα emission line objects. The candidates are identified as having wavelengths close to the DLA line where the background quasar emission is absorbed. In comparison with the six currently known Lyα emitting DLA galaxies the candidates have similar line fluxes and line widths, while velocity offsets between the emission lines and systemic DLA redshifts are larger. The impact parameters are larger than 10 kpc, and lower column density systems are found at larger impact parameters. Conclusions: Assuming that a single gas cloud extends from the QSO line of sight to the location of the candidate emission line, we find that the average candidate DLA galaxy is surrounded by neutral gas with an exponential scale length of ~5 kpc. Based on observations collected at the Centro Astronómico Hispano Alemán (CAHA), operated by the Max-Planck Institut für Astronomie and the Instituto Astrofisica de Andalucia (CSIC). Full Fig. [see full text] is only available in electronic form at http://www.aanda.org

  14. See Change: First Results from the Supernova Cosmology Project High Redshift Cluster Supernova Survey

    NASA Astrophysics Data System (ADS)

    Hayden, Brian; Aldering, Greg Scott; Amanullah, Rahman; Barbary, Kyle H.; Boehringer, Hans; Brodwin, Mark; Cunha, Carlos E.; Deustua, Susana E.; Dixon, Samantha; Eisenhardt, Peter R.; Fagrelius, Parker; Fassbender, Rene; Fruchter, Andrew S.; Gladders, Michael; Gonzalez, Anthony H.; Goobar, Ariel; Hildebrandt, Hendrik; Hilton, Matt; Hoekstra, Henk; Hook, Isobel; Huang, Xiaosheng; Huterer, Dragan; Jee, James; Kim, Alex G.; Kowalski, Marek; Lidman, Chris; Linder, Eric; Luther, Kyle; Meyers, Joshua; Muzzin, Adam; Nordin, Jakob; Pain, Reynald; Perlmutter, Saul; Richard, Johan; Rosati, Piero; Rozo, Eduardo; Rubin, David; Rykoff, Eli S.; Santos, Joana; Saunders, Clare; Sofiatti, Caroline; Spadafora, Anthony L.; Stanford, S. Adam; Stern, Daniel; Suzuki, Nao; Wechsler, Risa H.; Willis, Jon; Wilson, Gillian; Yen, Mike

    2016-01-01

    Using the Hubble Space Telescope, the Supernova Cosmology Project is performing a type Ia supernova search in the highest-redshift, most massive clusters known to date. This large HST program spans Cycles 22-23. It will improve the constraint by a factor of 3 on the Dark Energy equation of state above z ~ 1, allowing an unprecedented probe of Dark Energy time variation. When combined with the improved cluster mass calibration from gravitational lensing provided by the deep WFC3-IR observations of the clusters, the SNe clusters observed also will triple the Dark Energy Task Force Figure of Merit. With Cycle 22 completed, we present preliminary supernova light curves above z=1.1 and discuss the number of supernovae discovered compared to our expectations from different SN rates models. Our HST imaging and extensive ground-based campaign are already producing unique results; we have spectroscopically confirmed several of the highest redshift cluster members to-date, and confirmed one of the most massive clusters at z~1.2 expected over the entire sky.

  15. THE CANADA-FRANCE HIGH-z QUASAR SURVEY: NINE NEW QUASARS AND THE LUMINOSITY FUNCTION AT REDSHIFT 6

    SciTech Connect

    Willott, Chris J.; Crampton, David; Hutchings, John B.; Schade, David; Delorme, Philippe; Reyle, Celine; Albert, Loic; Bergeron, Jacqueline; Omont, Alain; Delfosse, Xavier; Forveille, Thierry; McLure, Ross J.

    2010-03-15

    We present discovery imaging and spectroscopy for nine new z {approx} 6 quasars found in the Canada-France High-z Quasar Survey (CFHQS) bringing the total number of CFHQS quasars to 19. By combining the CFHQS with the more luminous Sloan Digital Sky Survey sample, we are able to derive the quasar luminosity function from a sample of 40 quasars at redshifts 5.74 < z < 6.42. Our binned luminosity function shows a slightly lower normalization and flatter slope than found in previous work. The binned data also suggest a break in the luminosity function at M {sub 1450} {approx} -25. A double power-law maximum likelihood fit to the data is consistent with the binned results. The luminosity function is strongly constrained (1{sigma} uncertainty <0.1 dex) over the range -27.5 < M {sub 1450} < -24.7. The best-fit parameters are {phi}(M*{sub 1450}) = 1.14 x 10{sup -8} Mpc{sup -3} mag{sup -1}, break magnitude M*{sub 1450} = -25.13, and bright end slope {beta} = -2.81. However, the covariance between {beta} and M*{sub 1450} prevents strong constraints being placed on either parameter. For a break magnitude in the range -26 < M*{sub 1450} < -24, we find -3.8 < {beta} < -2.3 at 95% confidence. We calculate the z = 6 quasar intergalactic ionizing flux and show it is between 20 and 100 times lower than that necessary for reionization. Finally, we use the luminosity function to predict how many higher redshift quasars may be discovered in future near-IR imaging surveys.

  16. Type-Ia supernova rates to redshift 2.4 from clash: The cluster lensing and supernova survey with Hubble

    SciTech Connect

    Graur, O.; Rodney, S. A.; Riess, A. G.; Medezinski, E.; Maoz, D.; Jha, S. W.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Postman, M.; Dahlen, T.; Strolger, L.-G.; Coe, D.; Bradley, L.; Koekemoer, A.; Benítez, N.; Molino, A.; Jouvel, S.; Nonino, M.; Balestra, I.; and others

    2014-03-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, ∼13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z > 1.2. We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range 1.8 < z < 2.4. The results are consistent with the rates measured by the HST/GOODS and Subaru Deep Field SN surveys. We model these results together with previous measurements at z < 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of −1.00{sub −0.06(0.10)}{sup +0.06(0.09)} (statistical){sub −0.08}{sup +0.12} (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at >99% significance level.

  17. Type-Ia Supernova Rates to Redshift 2.4 from Clash: The Cluster Lensing and Supernova Survey with Hubble

    NASA Technical Reports Server (NTRS)

    Graur, O.; Rodney, S. A.; Maoz, D.; Riess, A. G.; Jha, S. W.; Postman, M.; Dahlen, T.; Holoien, T. W.-S.; McCully, C.; Patel, B.; Strolger, L.-G.; Benitez, N.; Coe, D.; Jouvel, S.; Medezinski, E.; Molino, A.; Nonino, M.; Bradley, L.; Koehemoer, A.; Balestra, I.; Cenko, S. B.; Clubb, K. I.; Dickinson, M. E.; Filippenko, A. V.; Frederiksen, T. F.; Garnavich, P.; Hjorth, J.; Jones, D. O.; Leibundgut, B.; Matheson, T.; Mobasher, B.; Rosati, P.; Silverman, J. M.; U., V.; Jedruszczuk, K.

    2014-01-01

    We present the supernova (SN) sample and Type-Ia SN (SN Ia) rates from the Cluster Lensing And Supernova survey with Hubble (CLASH). Using the Advanced Camera for Surveys and the Wide Field Camera 3 on the Hubble Space Telescope (HST), we have imaged 25 galaxy-cluster fields and parallel fields of non-cluster galaxies. We report a sample of 27 SNe discovered in the parallel fields. Of these SNe, approximately 13 are classified as SN Ia candidates, including four SN Ia candidates at redshifts z greater than 1.2.We measure volumetric SN Ia rates to redshift 1.8 and add the first upper limit on the SN Ia rate in the range z greater than 1.8 and less than 2.4. The results are consistent with the rates measured by the HST/ GOODS and Subaru Deep Field SN surveys.We model these results together with previous measurements at z less than 1 from the literature. The best-fitting SN Ia delay-time distribution (DTD; the distribution of times that elapse between a short burst of star formation and subsequent SN Ia explosions) is a power law with an index of 1.00 (+0.06(0.09))/(-0.06(0.10)) (statistical) (+0.12/-0.08) (systematic), where the statistical uncertainty is a result of the 68% and 95% (in parentheses) statistical uncertainties reported for the various SN Ia rates (from this work and from the literature), and the systematic uncertainty reflects the range of possible cosmic star-formation histories. We also test DTD models produced by an assortment of published binary population synthesis (BPS) simulations. The shapes of all BPS double-degenerate DTDs are consistent with the volumetric SN Ia measurements, when the DTD models are scaled up by factors of 3-9. In contrast, all BPS single-degenerate DTDs are ruled out by the measurements at greater than 99% significance level.

  18. High-Redshift Galaxy Surveys and the Reionization of the Universe

    NASA Astrophysics Data System (ADS)

    Bouwens, Rychard

    Star-forming galaxies in the early universe provide us with perhaps the most natural way of explaining the reionization of the universe. Current observational results are sufficiently comprehensive, as to allow us to approximately calculate how the ionizing radiation from galaxies varies as a function of cosmic time. Important uncertainties in modeling reionization by galaxies revolve around the escape fraction and its luminosity and redshift dependence, a possible truncation of the galaxy luminosity function at the faint end, and an evolution in the production efficiency of Lyman-continuum photons with cosmic time. Despite these uncertainties, plausible choices for these parameters naturally predict a cosmic ionizing emissivity at z ˜ 6-10 whose evolution and overall normalization is in excellent agreement with that derived from current observational constraints. This strongly suggests that galaxies provide the necessary photons to reionize the universe.

  19. THE NEWFIRM MEDIUM-BAND SURVEY: PHOTOMETRIC CATALOGS, REDSHIFTS, AND THE BIMODAL COLOR DISTRIBUTION OF GALAXIES OUT TO z {approx} 3

    SciTech Connect

    Whitaker, Katherine E.; Van Dokkum, Pieter G.; Brammer, Gabriel; Muzzin, Adam; Bezanson, Rachel; Lee, Kyoung-Soo; Lundgren, Britt; Nelson, Erica J.; Tal, Tomer; Wake, David A.; Labbe, Ivo; Williams, Rik J.; Kriek, Mariska; Marchesini, Danilo; Quadri, Ryan F.; Franx, Marijn; Illingworth, Garth D.

    2011-07-10

    We present deep near-IR (NIR) medium-bandwidth photometry over the wavelength range 1-1.8 {mu}m in the All-wavelength Extended Groth strip International Survey (AEGIS) and Cosmic Evolution Survey (COSMOS) fields. The observations were carried out using the NOAO Extremely Wide-Field Infrared Imager (NEWFIRM) on the Mayall 4 m Telescope on Kitt Peak as part of the NEWFIRM Medium-Band Survey (NMBS), an NOAO survey program. In this paper, we describe the full details of the observations, data reduction, and photometry for the survey. We also present a public K-selected photometric catalog, along with accurate photometric redshifts. The redshifts are computed with 37 (20) filters in the COSMOS (AEGIS) fields, combining the NIR medium-bandwidth data with existing UV (Galaxy Evolution Explorer), visible and NIR (Canada-France-Hawaii Telescope and Subaru Telescope), and mid-IR (Spitzer/IRAC) imaging. We find excellent agreement with publicly available spectroscopic redshifts, with {sigma}{sub z}/(1 + z) {approx} 1%-2% for {approx}4000 galaxies at z = 0-3. The NMBS catalogs contain {approx}13,000 galaxies at z > 1.5 with accurate photometric redshifts and rest-frame colors. Due to the increased spectral resolution obtained with the five NIR medium-band filters, the median 68% confidence intervals of the photometric redshifts of both quiescent and star-forming galaxies are a factor of about two times smaller when comparing catalogs with medium-band NIR photometry to NIR broadband photometry. We show evidence for a clear bimodal color distribution between quiescent and star-forming galaxies that persists to z {approx} 3, a higher redshift than has been probed so far.

  20. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Ωm0 from the galaxy clustering ratio measured at z ~ 1

    NASA Astrophysics Data System (ADS)

    Bel, J.; Marinoni, C.; Granett, B. R.; Guzzo, L.; Peacock, J. A.; Branchini, E.; Cucciati, O.; de la Torre, S.; Iovino, A.; Percival, W. J.; Steigerwald, H.; Abbas, U.; Adami, C.; Arnouts, S.; Bolzonella, M.; Bottini, D.; Cappi, A.; Coupon, J.; Davidzon, I.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Phleps, S.; Wolk, M.; Zamorani, G.

    2014-03-01

    We use a sample of about 22 000 galaxies at 0.65 < z < 1.2 from the VIMOS Public Extragalactic Redshift Survey (VIPERS) Public Data Release 1 (PDR-1) catalogue, to constrain the cosmological model through a measurement of the galaxy clustering ratio ηg,R. This statistic has favourable properties, which is defined as the ratio of two quantities characterizing the smoothed density field in spheres of a given radius R: the value of its correlation function on a multiple of this scale, ξ(nR), and its variance σ2(R). For sufficiently large values of R, this is a universal number, which captures 2-point clustering information independently of the linear bias and linear redshift-space distortions of the specific galaxy tracers. In this paper, we discuss how to extend the application of ηg,R to quasi-linear scales and how to control and remove observational selection effects, which are typical of redshift surveys as VIPERS, in detail. We verify the accuracy and efficiency of these procedures using mock catalogues that match the survey selection process. These results show the robustness of ηg,R to non-linearities and observational effects, which is related to its very definition as a ratio of quantities that are similarly affected. At an effective redshift z = 0.93, we measured the value ηg,R(15) = 0.141 ± 0.013 at R = 5h-1 Mpc. Within a flat ΛCDM cosmology and by including the best available priors on H0, ns and baryon density, we obtain a matter density parameter at the current epoch Ωm,0 = 0.270-0.025+0.029. In addition to the great precision achieved on our estimation of Ωm using VIPERS PDR-1, this result is remarkable because it appears to be in good agreement with a recent estimate at z ≃ 0.3, which was obtained by applying the same technique to the SDSS-LRG catalogue. It, therefore, supports the robustness of the present analysis. Moreover, the combination of these two measurements at z ~ 0.3 and z ~ 0.9 provides us with a very precise estimate of Ωm,0

  1. MAPPING THE GALACTIC HALO WITH BLUE HORIZONTAL BRANCH STARS FROM THE TWO-DEGREE FIELD QUASAR REDSHIFT SURVEY

    SciTech Connect

    De Propris, Roberto; Harrison, Craig D.; Mares, Peter J.

    2010-08-20

    We use 666 blue horizontal branch stars from the 2Qz Redshift Survey to map the Galactic halo in four dimensions (position, distance, and velocity). We find that the halo extends to at least 100 kpc in Galactocentric distance, and obeys a single power-law density profile of index {approx}-2.5 in two different directions separated by about 150{sup 0} on the sky. This suggests that the halo is spherical. Our map shows no large kinematically coherent structures (streams, clouds, or plumes) and appears homogeneous. However, we find that at least 20% of the stars in the halo reside in substructures and that these substructures are dynamically young. The velocity dispersion profile of the halo appears to increase toward large radii while the stellar velocity distribution is non-Gaussian beyond 60 kpc. We argue that the outer halo consists of a multitude of low luminosity overlapping tidal streams from recently accreted objects.

  2. Errata: A Wide-Field Multicolor Survey for High-Redshift Quasars, Z >= 2.2. III. The Luminosity Function

    NASA Astrophysics Data System (ADS)

    Warren, Stephen J.; Hewett, Paul C.; Osmer, Patrick S.

    1995-01-01

    In the paper "A Wide-Field Multicolor Survey for High-Redshift Quasars, z >= 2.2. III. The Luminosity Function" by Stephen. Warren, Paul C. Hewett and Patrick S. Osmer (ApJ, 421,412 [1994]), two equations should be corrected: On page 419, column one, line 11, the expression following the words "the error,, should have an opening parenthesis just before the integral sign, to read: [{SIGMA} 1/({integral} ρ(z)dV_a_)^2^]^1/2^. On page 421, equation (15) is missing the asterisk (*) in the M_c_^*^ term just prior to (β + 1); that is, the exponent in the second term the denominator should read: 0.4(M_c_ - M_c_^*^)(β + 1). The authors wish to draw these errors to the attention of any readers who will be using the expression and equation.

  3. The VIMOS Public Extragalactic Redshift Survey (VIPERS). A support vector machine classification of galaxies, stars, and AGNs

    NASA Astrophysics Data System (ADS)

    Małek, K.; Solarz, A.; Pollo, A.; Fritz, A.; Garilli, B.; Scodeggio, M.; Iovino, A.; Granett, B. R.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Guzzo, L.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fevre, O.; Maccagni, D.; Marulli, F.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: The aim of this work is to develop a comprehensive method for classifying sources in large sky surveys and to apply the techniques to the VIMOS Public Extragalactic Redshift Survey (VIPERS). Using the optical (u∗,g',r',i') and near-infrared (NIR) data (z', Ks), we develop a classifier, based on broad-band photometry, for identifying stars, active galactic nuclei (AGNs), and galaxies, thereby improving the purity of the VIPERS sample. Methods: Support vector machine (SVM) supervised learning algorithms allow the automatic classification of objects into two or more classes based on a multidimensional parameter space. In this work, we tailored the SVM to classifying stars, AGNs, and galaxies and applied this classification to the VIPERS data. We trained the SVM using spectroscopically confirmed sources from the VIPERS and VVDS surveys. Results: We tested two SVM classifiers and concluded that including NIR data can significantly improve the efficiency of the classifier. The self-check of the best optical + NIR classifier has shown 97% accuracy in the classification of galaxies, 97% for stars, and 95% for AGNs in the 5-dimensional colour space. In the test of VIPERS sources with 99% redshift confidence, the classifier gives an accuracy equal to 94% for galaxies, 93% for stars, and 82% for AGNs. The method was applied to sources with low-quality spectra to verify their classification, hence increasing the security of measurements for almost 4900 objects. Conclusions: We conclude that the SVM algorithm trained on a carefully selected sample of galaxies, AGNs, and stars outperforms simple colour-colour selection methods and can be regarded as a very efficient classification method particularly suitable for modern large surveys. Based on observations collected at the European Southern Observatory, Cerro Paranal, Chile, using the Very Large Telescope under programme 182.A-0886 and partly 070.A-9007. Also based on observations obtained with MegaPrime/MegaCam, a joint

  4. The BOSS Emission-Line Lens Survey (BELLS). I. A Large Spectroscopically Selected Sample of Lens Galaxies at Redshift ~0.5

    NASA Astrophysics Data System (ADS)

    Brownstein, Joel R.; Bolton, Adam S.; Schlegel, David J.; Eisenstein, Daniel J.; Kochanek, Christopher S.; Connolly, Natalia; Maraston, Claudia; Pandey, Parul; Seitz, Stella; Wake, David A.; Wood-Vasey, W. Michael; Brinkmann, Jon; Schneider, Donald P.; Weaver, Benjamin A.

    2012-01-01

    We present a catalog of 25 definite and 11 probable strong galaxy-galaxy gravitational lens systems with lens redshifts 0.4 <~ z <~ 0.7, discovered spectroscopically by the presence of higher-redshift emission lines within the Baryon Oscillation Spectroscopic Survey (BOSS) of luminous galaxies, and confirmed with high-resolution Hubble Space Telescope (HST) images of 44 candidates. Our survey extends the methodology of the Sloan Lens Advanced Camera for Surveys survey (SLACS) to higher redshift. We describe the details of the BOSS spectroscopic candidate detections, our HST ACS image processing and analysis methods, and our strong gravitational lens modeling procedure. We report BOSS spectroscopic parameters and ACS photometric parameters for all candidates, and mass-distribution parameters for the best-fit singular isothermal ellipsoid models of definite lenses. Our sample to date was selected using only the first six months of BOSS survey-quality spectroscopic data. The full five-year BOSS database should produce a sample of several hundred strong galaxy-galaxy lenses and in combination with SLACS lenses at lower redshift, strongly constrain the redshift evolution of the structure of elliptical, bulge-dominated galaxies as a function of luminosity, stellar mass, and rest-frame color, thereby providing a powerful test for competing theories of galaxy formation and evolution. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 12209. Based on spectroscopic data from the Baryon Oscillation Spectroscopic Survey of the Sloan Digital Sky Survey III.

  5. THE HUBBLE SPACE TELESCOPE CLUSTER SUPERNOVA SURVEY. II. THE TYPE Ia SUPERNOVA RATE IN HIGH-REDSHIFT GALAXY CLUSTERS

    SciTech Connect

    Barbary, K.; Amanullah, R.; Fakhouri, H. K.; Goldhaber, G.; Huang, X.; Aldering, G.; Dawson, K. S.; Faccioli, L.; Hsiao, E.; Brodwin, M.; Connolly, N.; Doi, M.; Ihara, Y.; Eisenhardt, P.; Fadeyev, V.; Fruchter, A. S.; Gilbank, D. G.; Gladders, M. D.; Goobar, A.; Hattori, T.; Collaboration: Supernova Cosmology Project; and others

    2012-01-20

    We report a measurement of the Type Ia supernova (SN Ia) rate in galaxy clusters at 0.9 < z < 1.46 from the Hubble Space Telescope Cluster Supernova Survey. This is the first cluster SN Ia rate measurement with detected z > 0.9 SNe. Finding 8 {+-} 1 cluster SNe Ia, we determine an SN Ia rate of 0.50{sup +0.23}{sub -0.19} (stat){sup +0.10}{sub -0.09} (sys) h{sup 2}{sub 70} SNuB (SNuB {identical_to} 10{sup -12} SNe L{sup -1}{sub Sun ,B} yr{sup -1}). In units of stellar mass, this translates to 0.36{sup +0.16}{sub -0.13} (stat){sup +0.07}{sub -0.06} (sys) h{sup 2}{sub 70} SNuM (SNuM {identical_to} 10{sup -12} SNe M{sup -1}{sub Sun} yr{sup -1}). This represents a factor of Almost-Equal-To 5 {+-} 2 increase over measurements of the cluster rate at z < 0.2. We parameterize the late-time SN Ia delay time distribution (DTD) with a power law: {Psi}(t){proportional_to}t{sup s} . Under the approximation of a single-burst cluster formation redshift of z{sub f} = 3, our rate measurement in combination with lower-redshift cluster SN Ia rates constrains s = -1.41{sup +0.47}{sub -0.40}, consistent with measurements of the DTD in the field. This measurement is generally consistent with expectations for the 'double degenerate' scenario and inconsistent with some models for the 'single degenerate' scenario predicting a steeper DTD at large delay times. We check for environmental dependence and the influence of younger stellar populations by calculating the rate specifically in cluster red-sequence galaxies and in morphologically early-type galaxies, finding results similar to the full cluster rate. Finally, the upper limit of one hostless cluster SN Ia detected in the survey implies that the fraction of stars in the intra-cluster medium is less than 0.47 (95% confidence), consistent with measurements at lower redshifts.

  6. Populating dark matter haloes with galaxies: comparing the 2dFGRS with mock galaxy redshift surveys

    NASA Astrophysics Data System (ADS)

    Yang, Xiaohu; Mo, H. J.; Jing, Y. P.; van den Bosch, Frank C.; Chu, YaoQuan

    2004-06-01

    In two recent papers, we developed a powerful technique to link the distribution of galaxies to that of dark matter haloes by considering halo occupation numbers as a function of galaxy luminosity and type. In this paper we use these distribution functions to populate dark matter haloes in high-resolution N-body simulations of the standard ΛCDM cosmology with Ωm= 0.3, ΩΛ= 0.7 and σ8= 0.9. Stacking simulation boxes of 100 h-1 Mpc and 300 h-1 Mpc with 5123 particles each we construct mock galaxy redshift surveys out to a redshift of z= 0.2 with a numerical resolution that guarantees completeness down to 0.01L*. We use these mock surveys to investigate various clustering statistics. The predicted two-dimensional correlation function ξ(rp, π) reveals clear signatures of redshift space distortions. The projected correlation functions for galaxies with different luminosities and types, derived from ξ(rp, π), match the observations well on scales larger than ~3 h-1 Mpc. On smaller scales, however, the model overpredicts the clustering power by about a factor two. Modelling the `finger-of-God' effect on small scales reveals that the standard ΛCDM model predicts pairwise velocity dispersions (PVD) that are ~400 km s-1 too high at projected pair separations of ~1 h-1 Mpc. A strong velocity bias in massive haloes, with bvel≡σgal/σdm~ 0.6 (where σgal and σdm are the velocity dispersions of galaxies and dark matter particles, respectively) can reduce the predicted PVD to the observed level, but does not help to resolve the overprediction of clustering power on small scales. Consistent results can be obtained within the standard ΛCDM model only when the average mass-to-light ratio of clusters is of the order of 1000 (M/L)solar in the B-band. Alternatively, as we show by a simple approximation, a ΛCDM model with σ8~= 0.75 may also reproduce the observational results. We discuss our results in light of the recent WMAP results and the constraints on σ8 obtained

  7. GAMMA-RAY BURST HOST GALAXY SURVEYS AT REDSHIFT z {approx}> 4: PROBES OF STAR FORMATION RATE AND COSMIC REIONIZATION

    SciTech Connect

    Trenti, Michele; Perna, Rosalba; Levesque, Emily M.; Shull, J. Michael; Stocke, John T.

    2012-04-20

    Measuring the star formation rate (SFR) at high redshift is crucial for understanding cosmic reionization and galaxy formation. Two common complementary approaches are Lyman break galaxy (LBG) surveys for large samples and gamma-ray burst (GRB) observations for sensitivity to SFR in small galaxies. The z {approx}> 4 GRB-inferred SFR is higher than the LBG rate, but this difference is difficult to understand, as both methods rely on several modeling assumptions. Using a physically motivated galaxy luminosity function model, with star formation in dark matter halos with virial temperature T{sub vir} {approx}> 2 Multiplication-Sign 10{sup 4} K (M{sub DM} {approx}> 2 Multiplication-Sign 10{sup 8} M{sub Sun }), we show that GRB- and LBG-derived SFRs are consistent if GRBs extend to faint galaxies (M{sub AB} {approx}< -11). To test star formation below the detection limit L{sub lim} {approx} 0.05L*{sub z=3} of LBG surveys, we propose to measure the fraction f{sub det}(L > L{sub lim}, z) of GRB hosts with L > L{sub lim}. This fraction quantifies the missing star formation fraction in LBG surveys, constraining the mass-suppression scale for galaxy formation, with weak dependence on modeling assumptions. Because f{sub det}(L > L{sub lim}, z) corresponds to the ratio of SFRs derived from LBG and GRB surveys, if these estimators are unbiased, measuring f{sub det}(L > L{sub lim}, z) also constrains the redshift evolution of the GRB production rate per unit mass of star formation. Our analysis predicts significant success for GRB host detections at z {approx} 5 with f{sub det}(L > L{sub lim}, z) {approx} 0.4, but rarer detections at z > 6. By analyzing the upper limits on host galaxy luminosities of six z > 5 GRBs from literature data, we infer that galaxies with M{sub AB} > -15 were present at z > 5 at 95% confidence, demonstrating the key role played by very faint galaxies during reionization.

  8. REDSHIFTS, SAMPLE PURITY, AND BCG POSITIONS FOR THE GALAXY CLUSTER CATALOG FROM THE FIRST 720 SQUARE DEGREES OF THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Song, J.; Zenteno, A.; Desai, S.; Bazin, G.; Stalder, B.; Ashby, M. L. N.; Bayliss, M.; Bleem, L. E.; Benson, B. A.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Aird, K. A.; Armstrong, R.; Bertin, E.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; and others

    2012-12-10

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg{sup 2} of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of {Delta}z/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z{sub med} = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance {xi} > 5({xi} > 4.5) is {>=}95% ({>=}70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  9. Redshifts, Sample Purity, and BCG Positions for the Galaxy Cluster Catalog from the First 720 Square Degrees of the South Pole Telescope Survey

    NASA Astrophysics Data System (ADS)

    Song, J.; Zenteno, A.; Stalder, B.; Desai, S.; Bleem, L. E.; Aird, K. A.; Armstrong, R.; Ashby, M. L. N.; Bayliss, M.; Bazin, G.; Benson, B. A.; Bertin, E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; George, E. M.; Gettings, D.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Natoli, T.; Nurgaliev, D.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Šuhada, R.; Spieler, H. G.; Stanford, S. A.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Williamson, R.; Zahn, O.

    2012-12-01

    We present the results of the ground- and space-based optical and near-infrared (NIR) follow-up of 224 galaxy cluster candidates detected with the Sunyaev-Zel'dovich (SZ) effect in the 720 deg2 of the South Pole Telescope (SPT) survey completed in the 2008 and 2009 observing seasons. We use the optical/NIR data to establish whether each candidate is associated with an overdensity of galaxies and to estimate the cluster redshift. Most photometric redshifts are derived through a combination of three different cluster redshift estimators using red-sequence galaxies, resulting in an accuracy of Δz/(1 + z) = 0.017, determined through comparison with a subsample of 57 clusters for which we have spectroscopic redshifts. We successfully measure redshifts for 158 systems and present redshift lower limits for the remaining candidates. The redshift distribution of the confirmed clusters extends to z = 1.35 with a median of z med = 0.57. Approximately 18% of the sample with measured redshifts lies at z > 0.8. We estimate a lower limit to the purity of this SPT SZ-selected sample by assuming that all unconfirmed clusters are noise fluctuations in the SPT data. We show that the cumulative purity at detection significance ξ > 5(ξ > 4.5) is >=95% (>=70%). We present the red brightest cluster galaxy (rBCG) positions for the sample and examine the offsets between the SPT candidate position and the rBCG. The radial distribution of offsets is similar to that seen in X-ray-selected cluster samples, providing no evidence that SZ-selected cluster samples include a different fraction of recent mergers from X-ray-selected cluster samples.

  10. A redshift survey of the strong-lensing cluster ABELL 383

    SciTech Connect

    Geller, Margaret J.; Hwang, Ho Seong; Kurtz, Michael J.; Diaferio, Antonaldo; Coe, Dan; Rines, Kenneth J. E-mail: hhwang@cfa.harvard.edu E-mail: diaferio@ph.unito.it E-mail: kenneth.rines@wwu.edu

    2014-03-01

    Abell 383 is a famous rich cluster (z = 0.1887) imaged extensively as a basis for intensive strong- and weak-lensing studies. Nonetheless, there are few spectroscopic observations. We enable dynamical analyses by measuring 2360 new redshifts for galaxies with r {sub Petro} ≤ 20.5 and within 50' of the Brightest Cluster Galaxy (BCG; R.A.{sub 2000} = 42.°014125, decl.{sub 2000} = –03.°529228). We apply the caustic technique to identify 275 cluster members within 7 h {sup –1} Mpc of the hierarchical cluster center. The BCG lies within –11 ± 110 km s{sup –1} and 21 ± 56 h {sup –1} kpc of the hierarchical cluster center; the velocity dispersion profile of the BCG appears to be an extension of the velocity dispersion profile based on cluster members. The distribution of cluster members on the sky corresponds impressively with the weak-lensing contours of Okabe et al. especially when the impact of foreground and background structure is included. The values of R {sub 200} = 1.22 ± 0.01 h {sup –1} Mpc and M {sub 200} = (5.07 ± 0.09) × 10{sup 14} h {sup –1} M {sub ☉} obtained by application of the caustic technique agree well with recent completely independent lensing measures. The caustic estimate extends direct measurement of the cluster mass profile to a radius of ∼5 h {sup –1} Mpc.

  11. Measurements of the Rate of Type Ia Supernovae at Redshift z < ~0.3 from the SDSS-II Supernova Survey

    SciTech Connect

    Dilday, Benjamin; Smith, Mathew; Bassett, Bruce; Becker, Andrew; Bender, Ralf; Castander, Francisco; Cinabro, David; Filippenko, Alexei V.; Frieman, Joshua A.; Galbany, Lluis; Garnavich, Peter M.; /Notre Dame U. /Stockholm U., OKC /Stockholm U.

    2010-01-01

    We present a measurement of the volumetric Type Ia supernova (SN Ia) rate based on data from the Sloan Digital Sky Survey II (SDSS-II) Supernova Survey. The adopted sample of supernovae (SNe) includes 516 SNe Ia at redshift z {approx}< 0.3, of which 270 (52%) are spectroscopically identified as SNe Ia. The remaining 246 SNe Ia were identified through their light curves; 113 of these objects have spectroscopic redshifts from spectra of their host galaxy, and 133 have photometric redshifts estimated from the SN light curves. Based on consideration of 87 spectroscopically confirmed non-Ia SNe discovered by the SDSS-II SN Survey, we estimate that 2.04{sub -0.95}{sup +1.61}% of the photometric SNe Ia may be misidentified. The sample of SNe Ia used in this measurement represents an order of magnitude increase in the statistics for SN Ia rate measurements in the redshift range covered by the SDSS-II Supernova Survey. If we assume a SN Ia rate that is constant at low redshift (z < 0.15), then the SN observations can be used to infer a value of the SN rate of r{sub V} = (2.69{sub -0.30-0.01}{sup +0.34+0.21}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} at a mean redshift of {approx} 0.12, based on 79 SNe Ia of which 72 are spectroscopically confirmed. However, the large sample of SNe Ia included in this study allows us to place constraints on the redshift dependence of the SN Ia rate based on the SDSS-II Supernova Survey data alone. Fitting a power-law model of the SN rate evolution, r{sub V} (z) = A{sub p} x ((1+z)/(1+z{sub 0})){sup {nu}}, over the redshift range 0.0 < z < 0.3 with z{sub 0} = 0.21, results in A{sub p} = (3.43{sub -0.15}{sup +0.15}) x 10{sup -5} SNe yr{sup -1} Mpc{sup -3} (H{sub 0}/(70 km s{sup -1} Mpc{sup -1})){sup 3} and {nu} = 2.04{sub -0.89}{sup +0.90}.

  12. The DEEP2 Galaxy Redshift Survey: The Evolution of Void Statistics from z ~ 1 to z ~ 0

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Coil, Alison L.; White, Martin; Newman, Jeffrey A.; Yan, Renbin; Cooper, Michael C.; Gerke, Brian F.; Davis, Marc; Koo, David C.

    2005-12-01

    We present measurements of the void probability function (VPF) at z~1 using data from the Deep Extragalactic Evolutionary Probe 2 (DEEP2) Redshift Survey and its evolution to z~0 using data from the Sloan Digital Sky Survey (SDSS). We measure the VPF as a function of galaxy color and luminosity in both surveys and find that it mimics trends displayed in the two-point correlation function, ξ: namely, that samples of brighter, red galaxies have larger voids (i.e., are more strongly clustered) than fainter, blue galaxies. We also clearly detect evolution in the VPF with cosmic time, with voids being larger in comoving units at z~0. We find that the reduced VPF matches the predictions of a ``negative binomial'' model for galaxies of all colors, luminosities, and redshifts studied. This model lacks a physical motivation but produces a simple analytic prediction for sources of any number density and integrated two-point correlation function, ξ¯. This implies that differences in the VPF across different galaxy populations are consistent with being due entirely to differences in the population number density and ξ¯. We compare the VPF at z~1 to N-body ΛCDM simulations and find good agreement between the DEEP2 data and mock galaxy catalogs. Interestingly, we find that the dark matter particle reduced VPF follows the physically motivated ``thermodynamic'' model, while the dark matter halo reduced VPF more closely follows the negative binomial model. The robust result that all galaxy populations follow the negative binomial model appears to be due primarily to the clustering of dark matter halos. The reduced VPF is insensitive to changes in the parameters of the halo occupation distribution, in the sense that halo models with the same ξ¯ will produce the same VPF. For the wide range of galaxies studied, the VPF therefore does not appear to provide useful constraints on galaxy evolution models that cannot be gleaned from studies of ξ¯ alone.

  13. The bispectrum of galaxies from high-redshift galaxy surveys: Primordial non-Gaussianity and non-linear galaxy bias

    SciTech Connect

    Sefusatti, Emiliano; Komatsu, Eiichiro; /Texas U., Astron. Dept.

    2007-05-01

    The greatest challenge in the interpretation of galaxy clustering data from any surveys is galaxy bias. Using a simple Fisher matrix analysis, we show that the bispectrum provides an excellent determination of linear and non-linear bias parameters of intermediate and high-z galaxies, when all measurable triangle configurations down to mildly non-linear scales, where perturbation theory is still valid, are included. The bispectrum is also a powerful probe of primordial non-Gaussianity. The planned galaxy surveys at z {approx}> 2 should yield constraints on non-Gaussian parameters, f{sub NL}{sup loc.} and f{sub NL}{sup eq.}, that are comparable to, or even better than, those from CMB experiments. We study how these constraints improve with volume, redshift range, as well as the number density of galaxies. Finally we show that a halo occupation distribution may be used to improve these constraints further by lifting degeneracies between gravity, bias, and primordial non-Gaussianity.

  14. Galaxy evolution at high-redshift: Millimeter-wavelength surveys with the AzTEC camera

    NASA Astrophysics Data System (ADS)

    Scott, Kimberly S.

    Galaxies detected by their thermal dust emission at submillimeter (submm) and millimeter (mm) wavelengths comprise a population of massive, intensely star-forming systems in the early Universe. These "submm/mm- galaxies", or SMGs, likely represent an important phase in the assembly and/or evolution of massive galaxies and are thought to be the progenitors of massive elliptical galaxies. While their projected number density as a function of source brightness provides key constraints on models of galaxy evolution, SMG surveys carried out over the past twelve years with the first generation of submm/mm-wavelength cameras have not imaged a large enough area to sufficient depths to provide the statistical power needed to discriminate between competing galaxy evolution scenarios. In this dissertation, we present the results from SMG surveys carried out over the past four years using the new sensitive mm-wavelength camera AzTEC. With the improved mapping speed of the AzTEC camera combined with dedicated telescope time devoted to deep, large-area extragalactic surveys, we have tripled both the area surveyed towards blank- fields (that is, regions with no known galaxy over-densities) at submm/mm wavelengths and the total number of detected SMGs. Here, we describe the properties and performance of the AzTEC instrument while operating on the James Clerk Maxwell Telescope (JCMT) and the Atacama Submillimeter Telescope Experiment (ASTE). We then present the results from two of the blank-field regions imaged with AzTEC: the JCMT/COSMOS field, which we discovered is over- dense in the number of very bright SMGs, and the ASTE survey of the Great Observatories Origins Deep-South field, which represents one of the deepest surveys ever carried out at submm/mm wavelengths. Finally, we combine the results from all of the blank-fields imaged with AzTEC while operating on the JCMT and the ASTE to calculate the most accurate measurements to date of the SMG number counts.

  15. Mass calibration of galaxy clusters at redshift 0.1-1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    NASA Astrophysics Data System (ADS)

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-09-01

    We present galaxy cluster mass-richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass-richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass-richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass-richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h-1 M⊙ for each of the four redshift bins, respectively. We find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.

  16. QSO Clustering - Part One - Optical Surveys in the Redshift Range 0.3

    NASA Astrophysics Data System (ADS)

    Shanks, T.; Boyle, B. J.

    1994-12-01

    We present QSO clustering results from ~700 QSOs detected in three surveys, including the Durham/AAT UVX Survey. We have made a 4σ detection of QSO clustering at scales of < 10 h^-1^ Mpc (q_0_ = 0.5), stronger than expected on the basis of models of the evolution of the galaxy correlation function where the clustering is assumed to be stable in proper coordinates. A model in which QSOs randomly sample a galaxy distribution with present-day clustering coherence length, r_0_ ~ 6 h^-1^ Mpc, and which is fixed in comoving coordinates, is strongly suggested by the data; a stable-clustering, high-amplitude (r_0_ ~ 11 h^-1^ Mpc) model can be excluded when the low-redshift Seyfert clustering results of Georgantopoulos & Shanks (Paper II) are considered. The conclusion that ultraviolet-excess (UVX) QSOs randomly sample the underlying galaxy distribution is also given strong support from the observation by Ellingson, Yee & Green that the clustering environment of z ~ 0.6 radio- quiet QSOs is no different from that of average galaxies. Our results therefore suggest that a comoving model may also describe the evolution of galaxy clustering out to z = 2.2; such a model is consistent with biased models of galaxy clustering with either q_0_ = 0.01 or q_0_ = 0.5. We have also tentatively detected, at a lower level of significance (~2σ), anticorrelation at the ξ ~ -0.1 level in the range 40 < r < 100 h^-1^ Mpc in the q_0_ = 0.5 QSO correlation function. Anticorrelation is expected in models where the power-law spectral index, n, of the primordial mass spectrum has a value >= 1. No other features are detectable at the +/- 0.05 level in ξ at any scale in the range 10 < r < 1000 h^-1^ Mpc. Finally, we show that the spatial position of features in the QSO correlation function is very sensitive to the cosmological model. In particular, we find that, in a model with zero spatial curvature, {LAMBDA} not equal to 0 and {OMEGA}_0_ < 0.03, the QSO clustering extends up to a comoving

  17. The Blanco Cosmology Survey: Data Reduction, Calibration and Photometric Redshift Estimation to Four Distant Galaxy Clusters Discovered by the South Pole Telescope

    NASA Astrophysics Data System (ADS)

    Ngeow, Chow Choong; Mohr, J.; Zenteno, A.; Data Management, DES; BCS; SPT Collaborations

    2009-01-01

    The Blanco Cosmology Survey (BCS) is designed to enable a study of the cosmic acceleration using multiple techniques. To date, BCS has acquired Sloan griz band imaging data from 60 nights (15 nights per year from 2005 to 2008) using the Blanco 4m Telescope located at CTIO. The astronomical imaging data taken from this survey have been processed on high performance computer TeraGrid platforms at NCSA, using the automated Dark Energy Survey (DES) data management (DM) system. The DES DM system includes (1) middlewares for controlling and managing the processing jobs, and serve as an application container encapsulating the scientific codes; and (2) DES archive, which includes filesystem nodes, a relational database and a data access framework, to support the pipeline processing, data storage and scientific analyzes. Photometric solution module (PSM) were run on photometric nights to determine the zeropoints (ZP) and other photometric solutions. We remapped and coadded the images that lie within the pre-defined coadd tiles in the sky. When running the coaddition pipeline, we determined the ZP for each images using the photometric ZP from PSM, the magnitude offsets between overlapping images, and the sky brightness ratio for CCDs within a given exposure. We also applied aperture correction and color-term correction to the coadded catalogs. Satisfactory photometric and astrometric precision were achieved. These enabled initial estimation of photometric redshifts using ANNz codes, trained from 5000 galaxies with spectroscopic redshifts. RMS in the photometric redshifts ranges from 0.05 to 0.1 in sigma_z/(1+z) for redshift extended to z=1. We used the BCS data to optically confirm and estimate redshifts for four of the highest S/N galaxy clusters discovered with the South Pole Telescope using the Sunyaev-Zel'dovich Effect.

  18. Bright Galaxies at Hubble's Detection Frontier: The redshift z~9-10 BoRG pure-parallel survey

    NASA Astrophysics Data System (ADS)

    Trenti, Michele

    2014-10-01

    Hubble/WFC3 observations transformed our view of early galaxy formation by building reliable samples of galaxies out to redshift z 8, 700 Myr after the Big Bang and hinting at a dramatic evolution in properties at yet earlier times. From z 8 to z 10 { 200Myr} the luminosity density seems to decrease by a factor ten, but bright galaxies may remain relatively common, based on the four z>9 objects detected so far with m_AB<27. To investigate this apparent conundrum, and study the formation of the most massive and luminous galaxies at 500 Myr without being affected by cosmic variance, we propose a random-pointing survey to detect 20+/-5 galaxies at z 9-10 as faint as m_AB=27.1 {5-sigma} at zero prime orbit cost. This request builds on our successful Cycle 17 & 19 Brightest of Reionizing Galaxies {BoRG} Survey, which found the largest sample of L>L* galaxies at z 8. BoRG[z8] demonstrated, by adding constraints from the Ultra Deep Field {UDF}, that the luminosity function follows a Schechter form, as at lower z, but with a steeper faint-end slope, leading to a photon production sufficient to complete reionization. BoRG[z9-10] will similarly complement the UDF and Frontier Fields datasets by imaging 550 arcmin^2 over 120 sightlines in five WFC3 bands {F350LP, F105W, F125W, F140W, F160W}. Besides twenty new catches at z>9, we will double {from 60 to 120} the number of bright z 8 galaxies within reach of spectroscopy, to tighten constraints on Ly-alpha emission and reionization obtained by our BoRG@Keck follow-up. This new public dataset will reveal the connection between massive dark matter halos and formation of first galaxies, and create a legacy of rare targets for JWST

  19. A Constant Bar Fraction out to Redshift z ~ 1 in the Advanced Camera for Surveys Field of the Tadpole Galaxy

    NASA Astrophysics Data System (ADS)

    Elmegreen, Bruce G.; Elmegreen, Debra Meloy; Hirst, Amelia C.

    2004-09-01

    Barlike structures were investigated in a sample of 186 disk galaxies larger than 0.5" that are in the I-band image of the Tadpole galaxy taken with the Hubble Space Telescope Advanced Camera for Surveys. We found 22 clear cases of barred galaxies, 21 galaxies with small bars that appear primarily as isophotal twists in a contour plot, and 11 cases of peculiar bars in clump-cluster galaxies, which are face-on versions of chain galaxies. The latter bars are probably young, as the galaxies contain only weak interclump emission. Four of the clearly barred galaxies at z~0.8-1.2 have grand-design spirals. The bar fraction was determined as a function of galaxy inclination and compared with the analogous distribution in the local universe. The bar fraction was also determined as a function of galaxy angular size. These distributions suggest that inclination and resolution effects obscure nearly half of the bars in our sample. The bar fraction was also determined as a function of redshift. We found a nearly constant bar fraction of 0.23+/-0.03 from z~0 to z=1.1. When corrected for inclination and size effects, this fraction is comparable to the bar fraction in the local universe, ~0.4, which we tabulated for all bar and Hubble types in the Third Reference Catalogue of Bright Galaxies. The average major axis of a barred galaxy in our sample is ~10 kpc after correcting for redshift with a Λ-dominated cold dark matter cosmology. The average exponential scale length is ~2 kpc. These are half the sizes of local barred galaxies and not likely to be influenced much by cosmological dimming, because the high-z galaxies are intrinsically brighter. We conclude that galaxy bars were present in normal abundance at least ~8 Gyr ago (z~1) the bars in clump-cluster galaxies may have formed from gaseous disk instabilities and star formation rather than stellar disk instabilities, and bar dissolution cannot be common during a Hubble time unless the bar formation rate is comparable to the

  20. The Richness Dependence of Galaxy Cluster Correlations: Results From A Redshift Survey Of Rich APM Clusters

    NASA Technical Reports Server (NTRS)

    Croft, R. A. C.; Dalton, G. B.; Efstathiou, G.; Sutherland, W. J.; Maddox, S. J.

    1997-01-01

    We analyze the spatial clustering properties of a new catalog of very rich galaxy clusters selected from the APM Galaxy Survey. These clusters are of comparable richness and space density to Abell Richness Class greater than or equal to 1 clusters, but selected using an objective algorithm from a catalog demonstrably free of artificial inhomogeneities. Evaluation of the two-point correlation function xi(sub cc)(r) for the full sample and for richer subsamples reveals that the correlation amplitude is consistent with that measured for lower richness APM clusters and X-ray selected clusters. We apply a maximum likelihood estimator to find the best fitting slope and amplitude of a power law fit to x(sub cc)(r), and to estimate the correlation length r(sub 0) (the value of r at which xi(sub cc)(r) is equal to unity). For clusters with a mean space density of 1.6 x 10(exp -6) h(exp 3) MpC(exp -3) (equivalent to the space density of Abell Richness greater than or equal to 2 clusters), we find r(sub 0) = 21.3(+11.1/-9.3) h(exp -1) Mpc (95% confidence limits). This is consistent with the weak richness dependence of xi(sub cc)(r) expected in Gaussian models of structure formation. In particular, the amplitude of xi(sub cc)(r) at all richnesses matches that of xi(sub cc)(r) for clusters selected in N-Body simulations of a low density Cold Dark Matter model.

  1. A New Determination of the High Redshift Type Ia Supernova Rateswith the Hubble Space Telescope Advanced Camera for Surveys

    SciTech Connect

    Kuznetsova, N.; Barbary, K.; Connolly, B.; Kim, A.G.; Pain, R.; Roe, N.A.; Aldering, G.; Amanullah, R.; Dawson, K.; Doi, M.; Fadeyev, V.; Fruchter, A.S.; Gibbons, R.; Goldhaber, G.; Goober, A.; Gude, A.; Knop,R.A.; Kowalski, M.; Lidman, C.; Morokuma, T.; Meyers, J.; Perlmutter, S.; Rubin, D.; Schlegel, D.J.; Spadafora, A.L.; Stanishev, V.; Strovink, M.; Suzuki, N.; Wang, L.; Yasuda, N.

    2007-10-01

    We present a new measurement of the volumetric rate of Type Ia supernova up to a redshift of 1.7, using the Hubble Space Telescope (HST) GOODS data combined with an additional HST dataset covering the North GOODS field collected in 2004. We employ a novel technique that does not require spectroscopic data for identifying Type Ia supernovae (although spectroscopic measurements of redshifts are used for over half the sample); instead we employ a Bayesian approach using only photometric data to calculate the probability that an object is a Type Ia supernova. This Bayesian technique can easily be modified to incorporate improved priors on supernova properties, and it is well-suited for future high-statistics supernovae searches in which spectroscopic follow up of all candidates will be impractical. Here, the method is validated on both ground- and space-based supernova data having some spectroscopic follow up. We combine our volumetric rate measurements with low redshift supernova data, and fit to a number of possible models for the evolution of the Type Ia supernova rate as a function of redshift. The data do not distinguish between a flat rate at redshift > 0.5 and a previously proposed model, in which the Type Ia rate peaks at redshift {approx} 1 due to a significant delay from star-formation to the supernova explosion. Except for the highest redshifts, where the signal to noise ratio is generally too low to apply this technique, this approach yields smaller or comparable uncertainties than previous work.

  2. The Star Formation History of BCGs to z = 1.8 from the SpARCS/SWIRE Survey: Evidence for Significant In Situ Star Formation at High Redshift

    NASA Astrophysics Data System (ADS)

    Webb, Tracy M. A.; Muzzin, Adam; Noble, Allison; Bonaventura, Nina; Geach, James; Hezevah, Yashar; Lidman, Chris; Wilson, Gillian; Yee, H. K. C.; Surace, Jason; Shupe, David

    2015-12-01

    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 < z < 1.8 within the Spitzer Wide-Area Infrared Extragalactic (SWIRE) Survey fields. Twenty percent, or 106 clusters, have spectroscopically confirmed redshifts, and the rest have redshifts estimated from the color of their red sequence. A comparison with the public SWIRE images detects 125 individual BCGs at 24 μm ≳ 100 μJy, or 23%. The luminosity-limited detection rate of BCGs in similar richness clusters (Ngal > 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of LIR > 1012 L⊙, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.

  3. A direct probe of cosmological power spectra of the peculiar velocity field and the gravitational lensing magnification from photometric redshift surveys

    SciTech Connect

    Nusser, Adi; Feix, Martin; Branchini, Enzo E-mail: branchin@fis.uniroma3.it

    2013-01-01

    The cosmological peculiar velocity field (deviations from the pure Hubble flow) of matter carries significant information on dark energy, dark matter and the underlying theory of gravity on large scales. Peculiar motions of galaxies introduce systematic deviations between the observed galaxy redshifts z and the corresponding cosmological redshifts z{sub c{sub o{sub s}}}. A novel method for estimating the angular power spectrum of the peculiar velocity field based on observations of galaxy redshifts and apparent magnitudes m (or equivalently fluxes) is presented. This method exploits the fact that a mean relation between z{sub c{sub o{sub s}}} and m of galaxies can be derived from all galaxies in a redshift-magnitude survey. Given a galaxy magnitude, it is shown that the z{sub c{sub o{sub s}}}(m) relation yields its cosmological redshift with a 1σ error of σ{sub z} ∼ 0.3 for a survey like Euclid ( ∼ 10{sup 9} galaxies at z∼<2), and can be used to constrain the angular power spectrum of z−z{sub c{sub o{sub s}}}(m) with a high signal-to-noise ratio. At large angular separations corresponding to l∼<15, we obtain significant constraints on the power spectrum of the peculiar velocity field. At 15∼

  4. Baryon cycling in the low-redshift circumgalactic medium: a comparison of simulations to the COS-Halos survey

    NASA Astrophysics Data System (ADS)

    Ford, Amanda Brady; Werk, Jessica K.; Davé, Romeel; Tumlinson, Jason; Bordoloi, Rongmon; Katz, Neal; Kollmeier, Juna A.; Oppenheimer, Benjamin D.; Peeples, Molly S.; Prochaska, Jason X.; Weinberg, David H.

    2016-06-01

    We analyse the low-redshift (z ≈ 0.2) circumgalactic medium (CGM) by comparing absorption-line data from the COS-Halos survey to absorption around a matched galaxy sample from two cosmological hydrodynamic simulations. The models include different prescriptions for galactic outflows, namely hybrid energy/momentum driven wind (ezw), and constant winds (cw). We compare equivalent widths, covering factors, ion ratios, and kinematics. Both wind models show generally ≲ 1σ agreement with these observations for H I and certain low-ionization metal lines, but poorer agreement with higher ionization metal lines including Si III and O VI that are well observed by COS-Halos. This suggests that both models predict too much cool, metal-enriched gas and not enough hot gas, and / or that metals are not sufficiently mixed. This may reflect our model assumption of ejecting outflows as cool and unmixing gas. Our ezw simulation includes a heuristic prescription to quench massive galaxies by superheating interstellar medium gas. This produces low-ionization absorption broadly consistent with observations, but substantial O VI absorption inconsistent with data, suggesting that gas around quenched galaxies in the real Universe does not cool. At impact parameters of ≲ 50 kpc, recycling winds dominate the absorption of low ions and even H I, while O VI generally arises from metals ejected ≳ 1 Gyr ago. The similarity between the wind models is surprising, since they differ substantially in the amount and phase distribution of halo gas. We show that this similarity owes mainly to our comparison at fixed stellar (not halo) mass, suggesting that CGM properties are more closely tied to galaxy's stellar (versus halo) mass.

  5. Superclusters of galaxies in the 2dF redshift survey. 3. The properties of galaxies in superclusters

    SciTech Connect

    Einasto, Maret; Einasto, J.; Tago, E.; Saar, E.; Liivamagi, L.J.; oeveer, M.J; Hutsi, G.; Heinamaki, P.; Muller, V.; Tucker, D.; /Fermilab

    2006-09-01

    We use catalogues of superclusters of galaxies from the 2dF Galaxy Redshift Survey to study the properties of galaxies in superclusters. We compare the properties of galaxies in high and low density regions of rich superclusters, in poor superclusters and in the field, as well as in groups, and of isolated galaxies in superclusters of various richness. We show that in rich superclusters the values of the luminosity density smoothed on a scale of 8 h{sup -1} Mpc are higher than in poor superclusters: the median density in rich superclusters is {sigma} {approx} 7.5, in poor superclusters {delta} {approx} 6.0. Rich superclusters contain high density cores with densities {sigma} > 10 while in poor superclusters such high density cores are absent. The properties of galaxies in rich and poor superclusters and in the field are different: the fraction of early type, passive galaxies in rich superclusters is slightly larger than in poor superclusters, and is the smallest among the field galaxies. Most importantly, in high density cores of rich superclusters ({delta} > 10) there is an excess of early type, passive galaxies in groups and clusters, as well as among those which do not belong to groups or clusters. The main galaxies of superclusters have a rather limited range of absolute magnitudes. The main galaxies of rich superclusters have larger luminosities than those of poor superclusters and of groups in the field (the median values are correspondingly M{sub bj} = -21.02, M{sub bj} = -20.9 and M{sub bj} = -19.7 for rich and poor superclusters and groups in the field). Our results show that both the local (group/cluster) environments and global (supercluster) environments influence galaxy morphologies and their star formation activity.

  6. The Multiwavelength Survey by Yale-Chile (MUSYC): Deep Medium-band Optical Imaging and High-quality 32-band Photometric Redshifts in the ECDF-S

    NASA Astrophysics Data System (ADS)

    Cardamone, Carolin N.; van Dokkum, Pieter G.; Urry, C. Megan; Taniguchi, Yoshi; Gawiser, Eric; Brammer, Gabriel; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E.; Bond, Nicholas; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro

    2010-08-01

    We present deep optical 18-medium-band photometry from the Subaru telescope over the ~30' × 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC "BVR" image we find ~40,000 galaxies with R AB < 25.3, the median 5σ limit of the 18 medium bands. Photometric redshifts are determined using the EAzY code and compared to ~2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z >~ 3.5. For 0.1 < z < 1.2, we find a 1σ scatter in Δz/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that ~20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site. Based (in part) on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  7. THE MULTIWAVELENGTH SURVEY BY YALE-CHILE (MUSYC): DEEP MEDIUM-BAND OPTICAL IMAGING AND HIGH-QUALITY 32-BAND PHOTOMETRIC REDSHIFTS IN THE ECDF-S

    SciTech Connect

    Cardamone, Carolin N.; Van Dokkum, Pieter G.; Urry, C. Megan; Brammer, Gabriel; Taniguchi, Yoshi; Gawiser, Eric; Bond, Nicholas; Taylor, Edward; Damen, Maaike; Treister, Ezequiel; Cobb, Bethany E.; Schawinski, Kevin; Lira, Paulina; Murayama, Takashi; Saito, Tomoki; Sumikawa, Kentaro

    2010-08-15

    We present deep optical 18-medium-band photometry from the Subaru telescope over the {approx}30' x 30' Extended Chandra Deep Field-South, as part of the Multiwavelength Survey by Yale-Chile (MUSYC). This field has a wealth of ground- and space-based ancillary data, and contains the GOODS-South field and the Hubble Ultra Deep Field. We combine the Subaru imaging with existing UBVRIzJHK and Spitzer IRAC images to create a uniform catalog. Detecting sources in the MUSYC 'BVR' image we find {approx}40,000 galaxies with R {sub AB} < 25.3, the median 5{sigma} limit of the 18 medium bands. Photometric redshifts are determined using the EAzY code and compared to {approx}2000 spectroscopic redshifts in this field. The medium-band filters provide very accurate redshifts for the (bright) subset of galaxies with spectroscopic redshifts, particularly at 0.1 < z < 1.2 and at z {approx}> 3.5. For 0.1 < z < 1.2, we find a 1{sigma} scatter in {Delta}z/(1 + z) of 0.007, similar to results obtained with a similar filter set in the COSMOS field. As a demonstration of the data quality, we show that the red sequence and blue cloud can be cleanly identified in rest-frame color-magnitude diagrams at 0.1 < z < 1.2. We find that {approx}20% of the red sequence galaxies show evidence of dust emission at longer rest-frame wavelengths. The reduced images, photometric catalog, and photometric redshifts are provided through the public MUSYC Web site.

  8. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    DOE PAGESBeta

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stackedmore » weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M⊙ for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.« less

  9. Mass calibration of galaxy clusters at redshift 0.1–1.0 using weak lensing in the Sloan Digital Sky Survey Stripe 82 co-add

    SciTech Connect

    Wiesner, Matthew P.; Lin, Huan; Soares-Santos, Marcelle

    2015-07-08

    We present galaxy cluster mass–richness relations found in the Sloan Digital Sky Survey Stripe 82 co-add using clusters found using a Voronoi tessellation cluster finder. These relations were found using stacked weak lensing shear observed in a large sample of galaxy clusters. These mass–richness relations are presented for four redshift bins, 0.1 < z ≤ 0.4, 0.4 < z ≤ 0.7, 0.7 < z ≤ 1.0 and 0.1 < z ≤ 1.0. We describe the sample of galaxy clusters and explain how these clusters were found using a Voronoi tessellation cluster finder. We fit a Navarro-Frenk-White profile to the stacked weak lensing shear signal in redshift and richness bins in order to measure virial mass (M200). We describe several effects that can bias weak lensing measurements, including photometric redshift bias, the effect of the central BCG, halo miscentering, photometric redshift uncertainty and foreground galaxy contamination. We present mass–richness relations using richness measure NVT with each of these effects considered separately as well as considered altogether. We also examine redshift evolution of the mass–richness relation. As a result, we present measurements of the mass coefficient (M200|20) and the power-law slope (α) for power-law fits to the mass and richness values in each of the redshift bins. We find values of the mass coefficient of 8.49 ± 0.526, 14.1 ± 1.78, 30.2 ± 8.74 and 9.23 ± 0.525 × 1013 h–1 M for each of the four redshift bins, respectively. As a result, we find values of the power-law slope of 0.905 ± 0.0585, 0.948 ± 0.100, 1.33 ± 0.260 and 0.883 ± 0.0500, respectively.

  10. The 3D-HST Survey: Hubble Space Telescope WFC3/G141 Grism Spectra, Redshifts, and Emission Line Measurements for ~ 100,000 Galaxies

    NASA Astrophysics Data System (ADS)

    Momcheva, Ivelina G.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Skelton, Rosalind E.; Whitaker, Katherine E.; Nelson, Erica J.; Fumagalli, Mattia; Maseda, Michael V.; Leja, Joel; Franx, Marijn; Rix, Hans-Walter; Bezanson, Rachel; Da Cunha, Elisabete; Dickey, Claire; Förster Schreiber, Natascha M.; Illingworth, Garth; Kriek, Mariska; Labbé, Ivo; Ulf Lange, Johannes; Lundgren, Britt F.; Magee, Daniel; Marchesini, Danilo; Oesch, Pascal; Pacifici, Camilla; Patel, Shannon G.; Price, Sedona; Tal, Tomer; Wake, David A.; van der Wel, Arjen; Wuyts, Stijn

    2016-08-01

    We present reduced data and data products from the 3D-HST survey, a 248-orbit HST Treasury program. The survey obtained WFC3 G141 grism spectroscopy in four of the five CANDELS fields: AEGIS, COSMOS, GOODS-S, and UDS, along with WFC3 H 140 imaging, parallel ACS G800L spectroscopy, and parallel I 814 imaging. In a previous paper, we presented photometric catalogs in these four fields and in GOODS-N, the fifth CANDELS field. Here we describe and present the WFC3 G141 spectroscopic data, again augmented with data from GO-1600 in GOODS-N (PI: B. Weiner). We developed software to automatically and optimally extract interlaced two-dimensional (2D) and one-dimensional (1D) spectra for all objects in the Skelton et al. (2014) photometric catalogs. The 2D spectra and the multi-band photometry were fit simultaneously to determine redshifts and emission line strengths, taking the morphology of the galaxies explicitly into account. The resulting catalog has redshifts and line strengths (where available) for 22,548 unique objects down to {{JH}}{IR}≤slant 24 (79,609 unique objects down to {{JH}}{IR}≤slant 26). Of these, 5459 galaxies are at z\\gt 1.5 and 9621 are at 0.7\\lt z\\lt 1.5, where Hα falls in the G141 wavelength coverage. The typical redshift error for {{JH}}{IR}≤slant 24 galaxies is {σ }z≈ 0.003× (1+z), i.e., one native WFC3 pixel. The 3σ limit for emission line fluxes of point sources is 2.1× {10}-17 erg s‑1 cm‑2. All 2D and 1D spectra, as well as redshifts, line fluxes, and other derived parameters, are publicly available.18

  11. The Chandra Deep Survey of the Hubble Deep Field-North Area. II. Results from the Caltech Faint Field Galaxy Redshift Survey Area

    NASA Astrophysics Data System (ADS)

    Hornschemeier, A. E.; Brandt, W. N.; Garmire, G. P.; Schneider, D. P.; Barger, A. J.; Broos, P. S.; Cowie, L. L.; Townsley, L. K.; Bautz, M. W.; Burrows, D. N.; Chartas, G.; Feigelson, E. D.; Griffiths, R. E.; Lumb, D.; Nousek, J. A.; Ramsey, L. W.; Sargent, W. L. W.

    2001-06-01

    A deep X-ray survey of the Hubble Deep Field-North (HDF-N) and its environs is performed using data collected by the Advanced CCD Imaging Spectrometer (ACIS) on board the Chandra X-Ray Observatory. Currently a 221.9 ks exposure is available, the deepest ever presented, and here we give results on X-ray sources located in the 8.6‧×8.7‧ area covered by the Caltech Faint Field Galaxy Redshift Survey (the ``Caltech area''). This area has (1) deep photometric coverage in several optical and near-infrared bands; (2) extensive coverage at radio, submillimeter, and mid-infrared wavelengths; and (3) some of the deepest and most complete spectroscopic coverage ever obtained. It is also where the X-ray data have the greatest sensitivity; the minimum detectable fluxes in the 0.5-2 keV (soft) and 2-8 keV (hard) bands are ~1.3×10-16 and ~6.5×10-16 ergs cm-2 s-1, respectively. More than ~80% of the extragalactic X-ray background in the hard band is resolved. The 82 Chandra sources detected in the Caltech area are correlated with more than 25 multiwavelength source catalogs, and the results of these correlations as well as spectroscopic follow-up results obtained with the Keck and Hobby-Eberly Telescopes are presented. All but nine of the Chandra sources are detected optically with R<~26.5. Redshifts are available for 39% of the Chandra sources, including 96% of the sources with R<23 the redshift range is 0.1-3.5, with most sources having z<1.5. Eight of the X-ray sources are located in the HDF-N itself, including two not previously reported. A population of X-ray faint, optically bright, nearby galaxies emerges at soft-band fluxes of <~3×10-16 ergs cm-2 s-1. Our multiwavelength correlations have set the tightest constraints to date on the X-ray emission properties of μJy radio sources, mid-infrared sources detected by the Infrared Space Observatory (ISO), and very red (R-Ks>5.0) objects. A total of 16 of the 67 1.4 GHz μJy sources in the Caltech area are detected in the

  12. Overconfidence in photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Wittman, David; Bhaskar, Ramya; Tobin, Ryan

    2016-04-01

    We describe a new test of photometric redshift performance given a spectroscopic redshift sample. This test complements the traditional comparison of redshift differences by testing whether the probability density functions p(z) have the correct width. We test two photometric redshift codes, BPZ and EAZY, on each of two data sets and find that BPZ is consistently overconfident (the p(z) are too narrow) while EAZY produces approximately the correct level of confidence. We show that this is because EAZY models the uncertainty in its spectral energy distribution templates, and that post-hoc smoothing of the BPZ p(z) provides a reasonable substitute for detailed modelling of template uncertainties. Either remedy still leaves a small surplus of galaxies with spectroscopic redshift very far from the peaks. Thus, better modelling of low-probability tails will be needed for high-precision work such as dark energy constraints with the Large Synoptic Survey Telescope and other large surveys.

  13. The KMOS AGN Survey at High redshift (KASHz): the prevalence and drivers of ionized outflows in the host galaxies of X-ray AGN

    NASA Astrophysics Data System (ADS)

    Harrison, C. M.; Alexander, D. M.; Mullaney, J. R.; Stott, J. P.; Swinbank, A. M.; Arumugam, V.; Bauer, F. E.; Bower, R. G.; Bunker, A. J.; Sharples, R. M.

    2016-02-01

    We present the first results from the KMOS (K-band Multi-Object Spectrograph) AGN (active galactic nuclei) Survey at High redshift (KASHz), a VLT/KMOS integral-field spectroscopic (IFS) survey of z ≳ 0.6 AGN. We present galaxy-integrated spectra of 89 X-ray AGN (L2-10 keV = 1042-1045 erg s-1), for which we observed [O III] (z ≈ 1.1-1.7) or Hα emission (z ≈ 0.6-1.1). The targets have X-ray luminosities representative of the parent AGN population and we explore the emission-line luminosities as a function of X-ray luminosity. For the [O III] targets, ≈50 per cent have ionized gas velocities indicative of gas that is dominated by outflows and/or highly turbulent material (i.e. overall line widths ≳600 km s-1). The most luminous half (i.e. LX > 6 × 1043 erg s-1) have a ≳2 times higher incidence of such velocities. On the basis of our results, we find no evidence that X-ray obscured AGN are more likely to host extreme kinematics than unobscured AGN. Our KASHz sample has a distribution of gas velocities that is consistent with a luminosity-matched sample of z < 0.4 AGN. This implies little evolution in the prevalence of ionized outflows, for a fixed AGN luminosity, despite an order-of-magnitude decrease in average star formation rates over this redshift range. Furthermore, we compare our Hα targets to a redshift-matched sample of star-forming galaxies and despite a similar distribution of Hα luminosities and likely star formation rates, we find extreme ionized gas velocities are up to ≈10 times more prevalent in the AGN-host galaxies. Our results reveal a high prevalence of extreme ionized gas velocities in high-luminosity X-ray AGN and imply that the most powerful ionized outflows in high-redshift galaxies are driven by AGN activity.

  14. A GREEN BANK TELESCOPE SURVEY FOR H I 21 cm ABSORPTION IN THE DISKS AND HALOS OF LOW-REDSHIFT GALAXIES

    SciTech Connect

    Borthakur, Sanchayeeta; Tripp, Todd M.; Yun, Min S.; Meiring, Joseph D.; Bowen, David V.; York, Donald G.; Momjian, Emmanuel

    2011-01-20

    We present an H I 21 cm absorption survey with the Green Bank Telescope (GBT) of galaxy-quasar pairs selected by combining galaxy data from the Sloan Digital Sky Survey (SDSS) and radio sources from the Faint Images of the Radio Sky at Twenty-Centimeters (FIRST) survey. Our sample consists of 23 sight lines through 15 low-redshift foreground galaxy-background quasar pairs with impact parameters ranging from 1.7 kpc up to 86.7 kpc. We detected one absorber in the GBT survey from the foreground dwarf galaxy, GQ1042+0747, at an impact parameter of 1.7 kpc and another possible absorber in our follow-up Very Large Array (VLA) imaging of the nearby foreground galaxy UGC 7408. The line widths of both absorbers are narrow (FWHM of 3.6 and 4.8km s{sup -1}). The absorbers have sub-damped Ly{alpha} column densities, and most likely originate in the disk gas of the foreground galaxies. We also detected H I emission from three foreground galaxies including UGC 7408. Although our sample contains both blue and red galaxies, the two H I absorbers as well as the H I emissions are associated with blue galaxies. We discuss the physical conditions in the 21 cm absorbers and some drawbacks of the large GBT beam for this type of survey.

  15. The zCOSMOS redshift survey: the role of environment and stellar mass in shaping the rise of the morphology-density relation from z ~ 1

    NASA Astrophysics Data System (ADS)

    Tasca, L. A. M.; Kneib, J.-P.; Iovino, A.; Le Fèvre, O.; Kovač, K.; Bolzonella, M.; Lilly, S. J.; Abraham, R. G.; Cassata, P.; Cucciati, O.; Guzzo, L.; Tresse, L.; Zamorani, G.; Capak, P.; Garilli, B.; Scodeggio, M.; Sheth, K.; Zucca, E.; Carollo, C. M.; Contini, T.; Mainieri, V.; Renzini, A.; Bardelli, S.; Bongiorno, A.; Caputi, K.; Coppa, G.; de La Torre, S.; de Ravel, L.; Franzetti, P.; Kampczyk, P.; Knobel, C.; Koekemoer, A. M.; Lamareille, F.; Le Borgne, J.-F.; Le Brun, V.; Maier, C.; Mignoli, M.; Pello, R.; Peng, Y.; Perez Montero, E.; Ricciardelli, E.; Silverman, J. D.; Vergani, D.; Tanaka, M.; Abbas, U.; Bottini, D.; Cappi, A.; Cimatti, A.; Ilbert, O.; Leauthaud, A.; Maccagni, D.; Marinoni, C.; McCracken, H. J.; Memeo, P.; Meneux, B.; Oesch, P.; Porciani, C.; Pozzetti, L.; Scaramella, R.; Scarlata, C.

    2009-08-01

    Context: For more than two decades we have known that galaxy morphological segregation is present in the Local Universe. It is important to see how this relation evolves with cosmic time. Aims: To investigate how galaxy assembly took place with cosmic time, we explore the evolution of the morphology-density relation up to redshift z ~ 1 using about 10 000 galaxies drawn from the zCOSMOS Galaxy Redshift Survey. Taking advantage of accurate HST/ACS morphologies from the COSMOS survey, of the well-characterised zCOSMOS 3D environment, and of a large sample of galaxies with spectroscopic redshift, we want to study here the evolution of the morphology-density relation up to z ~ 1 and its dependence on galaxy luminosity and stellar mass. The multi-wavelength coverage of the field also allows a first study of the galaxy morphological segregation dependence on colour. We further attempt to disentangle between processes that occurred early in the history of the Universe or late in the life of galaxies. Methods: The zCOSMOS field benefits of high-resolution imaging in the F814W filter from the Advanced Camera for Survey (ACS). We use standard morphology classifiers, optimised for being robust against band-shifting and surface brightness dimming, and a new, objective, and automated method to convert morphological parameters into early, spiral, and irregular types. We use about 10 000 galaxies down to I_AB = 22.5 with a spectroscopic sampling rate of 33% to characterise the environment of galaxies up to z ~ 1 from the 100 kpc scales of galaxy groups up to the 100 Mpc scales of the cosmic web. The evolution of the morphology-density relation in different environments is then studied for luminosity and stellar-mass selected, volume-limited samples of galaxies. The trends are described and related to the various physical processes that could play a relevant role in the build-up of the morphology-density relation. Results: We confirm that the morphological segregation is present

  16. The VIMOS Public Extragalactic Redshift Survey (VIPERS) . Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1

    NASA Astrophysics Data System (ADS)

    Marulli, F.; Bolzonella, M.; Branchini, E.; Davidzon, I.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Iovino, A.; Moscardini, L.; Pollo, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bottini, D.; Cappi, A.; Coupon, J.; Cucciati, O.; De Lucia, G.; Fritz, A.; Franzetti, P.; Fumana, M.; Garilli, B.; Ilbert, O.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; McCracken, H. J.; Paioro, L.; Polletta, M.; Schlagenhaufer, H.; Scodeggio, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Nichol, R. C.; Peacock, J. A.; Percival, W. J.; Phleps, S.; Wolk, M.; Zamorani, G.

    2013-09-01

    Aims: We investigate the dependence of galaxy clustering on luminosity and stellar mass in the redshift range 0.5 < z < 1.1, using the first ~ 55 000 redshifts from the VIMOS Public Extragalactic Redshift Survey (VIPERS). Methods: We measured the redshift-space two-point correlation functions (2PCF), ξ(s) and ξ(rp,π) , and the projected correlation function, wp(rp), in samples covering different ranges of B-band absolute magnitudes and stellar masses. We considered both threshold and binned galaxy samples, with median B-band absolute magnitudes - 21.6 ≲ MB - 5log (h) ≲ - 19.5 and median stellar masses 9.8 ≲ log (M⋆ [h-2 M⊙]) ≲ 10.7. We assessed the real-space clustering in the data from the projected correlation function, which we model as a power law in the range 0.2 < rp [h-1 Mpc ] < 20. Finally, we estimated the galaxy bias as a function of luminosity, stellar mass, and redshift, assuming a flat Λ cold dark matter model to derive the dark matter 2PCF. Results: We provide the best-fit parameters of the power-law model assumed for the real-space 2PCF - the correlation length, r0, and the slope, γ - as well as the linear bias parameter, as a function of the B-band absolute magnitude, stellar mass, and redshift. We confirm and provide the tightest constraints on the dependence of clustering on luminosity at 0.5 < z < 1.1. We prove the complexity of comparing the clustering dependence on stellar mass from samples that are originally flux-limited and discuss the possible origin of the observed discrepancies. Overall, our measurements provide stronger constraints on galaxy formation models, which are now required to match, in addition to local observations, the clustering evolution measured by VIPERS galaxies between z = 0.5 and z = 1.1 for a broad range of luminosities and stellar masses. Based on observations collected at the European Southern Observatory, Paranal, Chile, under programmes 182.A-0886 (LP) at the Very Large Telescope, and also based on

  17. Twenty-Three High-Redshift Supernovae from the Institute for Astronomy Deep Survey: Doubling the Supernova Sample at z > 0.7

    NASA Astrophysics Data System (ADS)

    Barris, Brian J.; Tonry, John L.; Blondin, Stéphane; Challis, Peter; Chornock, Ryan; Clocchiatti, Alejandro; Filippenko, Alexei V.; Garnavich, Peter; Holland, Stephen T.; Jha, Saurabh; Kirshner, Robert P.; Krisciunas, Kevin; Leibundgut, Bruno; Li, Weidong; Matheson, Thomas; Miknaitis, Gajus; Riess, Adam G.; Schmidt, Brian P.; Smith, R. Chris; Sollerman, Jesper; Spyromilio, Jason; Stubbs, Christopher W.; Suntzeff, Nicholas B.; Aussel, Hervé; Chambers, K. C.; Connelley, M. S.; Donovan, D.; Henry, J. Patrick; Kaiser, Nick; Liu, Michael C.; Martín, Eduardo L.; Wainscoat, Richard J.

    2004-02-01

    We present photometric and spectroscopic observations of 23 high-redshift supernovae (SNe) spanning a range of z=0.34-1.03, nine of which are unambiguously classified as Type Ia. These SNe were discovered during the IfA Deep Survey, which began in 2001 September and observed a total of 2.5 deg2 to a depth of approximately m~25-26 in RIZ over 9-17 visits, typically every 1-3 weeks for nearly 5 months, with additional observations continuing until 2002 April. We give a brief description of the survey motivations, observational strategy, and reduction process. This sample of 23 high-redshift SNe includes 15 at z>=0.7, doubling the published number of objects at these redshifts, and indicates that the evidence for acceleration of the universe is not due to a systematic effect proportional to redshift. In combination with the recent compilation of Tonry et al. (2003), we calculate cosmological parameter density contours that are consistent with the flat universe indicated by the cosmic microwave background (Spergel et al. 2003). Adopting the constraint that Ωtotal=1.0, we obtain best-fit values of (Ωm,ΩΛ)=(0.33,0.67) using 22 SNe from this survey augmented by the literature compilation. We show that using the empty-beam model for gravitational lensing does not eliminate the need for ΩΛ>0. Experience from this survey indicates great potential for similar large-scale surveys while also revealing the limitations of performing surveys for z>1 SNe from the ground. CFHT: Based in part on observations obtained at the Canada-France-Hawaii Telescope (CFHT), which is operated by the National Research Council of Canada, the Institut National des Science de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii. CTIO: Based in part on observations taken at the Cerro Tololo Inter-American Observatory. Keck: Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership

  18. COMOVING SPACE DENSITY AND OBSCURED FRACTION OF HIGH-REDSHIFT ACTIVE GALACTIC NUCLEI IN THE SUBARU/XMM-NEWTON DEEP SURVEY

    SciTech Connect

    Hiroi, Kazuo; Ueda, Yoshihiro; Akiyama, Masayuki; Watson, Mike G.

    2012-10-10

    We study the comoving space density of X-ray-selected luminous active galactic nuclei (AGNs) and the obscured AGN fraction at high redshifts (3 < z < 5) in the Subaru/XMM-Newton Deep Survey field. From an X-ray source catalog with high completeness of optical identification thanks to deep optical images, we select a sample of 30 AGNs at z > 3 with intrinsic (de-absorbed and rest-frame 2-10 keV) luminosities of L{sub X} = 10{sup 44-45} erg s{sup -1} detected in the 0.5-2 keV band, consisting of 20 and 10 objects with spectroscopic and photometric redshifts, respectively. Utilizing the 1/V{sub max} method, we confirm that the comoving space density of luminous AGNs decreases with redshift above z > 3. When combined with the Chandra-COSMOS result of Civano et al., the density decline of AGNs with L{sub X} = 10{sup 44-45} erg s{sup -1} is well represented by a power law of (1 + z){sup -6.2{+-}0.9}. We also determine the fraction of X-ray obscured AGNs with N{sub H} > 10{sup 22} cm{sup -2} in the Compton-thin population to be 0.54{sup +0.17}{sub -0.19}, by carefully taking into account observational biases including the effects of photon statistics for each source. This result is consistent with an independent determination of the type-2 AGN fraction based on optical properties, for which the fraction is found to be 0.59 {+-} 0.09. Comparing our result with that obtained in the local universe, we conclude that the obscured fraction of luminous AGNs increases significantly from z = 0 to z > 3 by a factor of 2.5 {+-} 1.1.

  19. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    SciTech Connect

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-03-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the {<=}15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be {approx}35% to redshift z {approx} 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B{sub gc} and a red-sequence redshift estimator. We measure the intrinsic scatter of the B{sub gc}-mass relation to be approximately log normal with {sigma}{sub log10M}{approx}0.25 and we demonstrate photometric redshift accuracies for massive clusters at the {approx}3% level out to z {approx} 0.7.

  20. The KMOS Redshift One Spectroscopic Survey (KROSS): dynamical properties, gas and dark matter fractions of typical z ˜ 1 star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Stott, John P.; Swinbank, A. M.; Johnson, Helen L.; Tiley, Alfie; Magdis, Georgios; Bower, Richard; Bunker, Andrew J.; Bureau, Martin; Harrison, Chris M.; Jarvis, Matt J.; Sharples, Ray; Smail, Ian; Sobral, David; Best, Philip; Cirasuolo, Michele

    2016-04-01

    The KMOS Redshift One Spectroscopic Survey (KROSS) is an ESO-guaranteed time survey of 795 typical star-forming galaxies in the redshift range z = 0.8-1.0 with the KMOS instrument on the Very Large Telescope. In this paper, we present resolved kinematics and star formation rates for 584 z ˜ 1 galaxies. This constitutes the largest near-infrared Integral Field Unit survey of galaxies at z ˜ 1 to date. We demonstrate the success of our selection criteria with 90 per cent of our targets found to be H α emitters, of which 81 per cent are spatially resolved. The fraction of the resolved KROSS sample with dynamics dominated by ordered rotation is found to be 83 ± 5 per cent. However, when compared with local samples these are turbulent discs with high gas to baryonic mass fractions, ˜35 per cent, and the majority are consistent with being marginally unstable (Toomre Q ˜ 1). There is no strong correlation between galaxy averaged velocity dispersion and the total star formation rate, suggesting that feedback from star formation is not the origin of the elevated turbulence. We postulate that it is the ubiquity of high (likely molecular) gas fractions and the associated gravitational instabilities that drive the elevated star formation rates in these typical z ˜ 1 galaxies, leading to the 10-fold enhanced star formation rate density. Finally, by comparing the gas masses obtained from inverting the star formation law with the dynamical and stellar masses, we infer an average dark matter to total mass fraction within 2.2re (9.5 kpc) of 65 ± 12 per cent, in agreement with the results from hydrodynamic simulations of galaxy formation.

  1. Is the misalignment of the Local Group velocity and the dipole generated by the 2MASS Redshift Survey typical in {lambda} cold dark matter and the halo model of galaxies?

    SciTech Connect

    Erdogdu, Pirin; Lahav, Ofer

    2009-08-15

    We predict the acceleration of the Local Group generated by the 2MASS Redshift Survey within the framework of {lambda} cold dark matter and the halo model of galaxies. We show that as the galaxy fluctuations derived from the halo model have more power on small scales compared with the mass fluctuations, the misalignment angle between the CMB velocity vector and the 2MASS Redshift Survey dipole is in reasonable agreement with the observed 21 deg. This statistical analysis suggests that it is not necessary to invoke a hypothetical nearby galaxy or a distant cluster to explain this misalignment.

  2. The Deep2 Galaxy Redshift Survey: Mean Ages and Metallicities ofRed Field Galaxies at Z ~; 0.9 from Stacked Keck/Deimos Spectra

    SciTech Connect

    Schiavon, Ricardo P.; Faber, S.M.; Konidaris, Nicholas; Graves,Genevieve; Willmer, Christopher N.A.; Weiner, Benjamin J.; Coil, AlisonL.; Cooper, Michael C.; Davis, Marc; Harker, Justin; Koo, David C.; Newman, Jeffrey A.; Yan, Renbin

    2006-10-19

    As part of the DEEP2 galaxy redshift survey, we analyze absorption line strengths in stacked Keck/DEIMOS spectra of red field galaxies with weak to no emission lines, at redshifts 0.7 {approx}< z {approx}< 1. Comparison with models of stellar population synthesis shows that red galaxies at z {approx} 0:9 have mean luminosity-weighted ages of the order of only 1 Gyr and at least solar metallicities. These ages cannot be reconciled with a scenario where all stars evolved passively after forming at very high z. Rather, a significant fraction of stars can be no more than 1 Gyr old, which means that some star formation in the stacked populations continued to at least z {approx} 1:2. Furthermore, a comparison of these distant galaxies with a local SDSS sample, using stellar populations synthesis models, shows that the drop in the equivalent width of H{delta} from z {approx} 0:9 to 0.1 is less than predicted by passively evolving models. This admits of two interpretations: either each individual galaxy experiences continuing low-level star formation, or the red-sequence galaxy population from z {approx} 0:9 to 0.1 is continually being added to by new galaxies with younger stars.

  3. Photometric Redshifts in the Sloan Colors

    NASA Astrophysics Data System (ADS)

    Sowards-Emmerd, D.; McKay, T. A.; Sheldon, E.; Smith, J. A.

    1999-05-01

    In the past few years, photometric redshifts have proven themselves to be a robust means of estimating redshifts. In the near future, the Sloan Digital Sky Survey will compile high-quality photometric data for 108 galaxies. Photometric redshifts will provide approximate distances to this enormous set of objects. In this poster, we describe results from a preliminary study of photometric redshift calibration on data in the SDSS colors. We present 5 color photometry for 2195 galaxies drawn from the Las Campanas Redshift Survey. Data was obtained on the Curtis Schmidt telescope at CTIO during Aug 97 and Feb/Mar 98 using filters nearly identical to the SDSS system. We also present photometric redshift predictions expressed as polynomial functions of galaxy colors and magnitudes derived from this training set. Finally, applications of photometric redshifts will be considered, including lensing studies, cosmology, and determination of fundamental astrophysical quantities. Support was provided by NSF grant #9703282.

  4. Upper Bound of 0.28 eV on Neutrino Masses from the Largest Photometric Redshift Survey

    SciTech Connect

    Thomas, Shaun A.; Abdalla, Filipe B.; Lahav, Ofer

    2010-07-16

    We present a new limit of (95% CL) on the sum of the neutrino masses assuming a flat {Lambda}CDM cosmology. This relaxes slightly to and when quasinonlinear scales are removed and w{ne}-1, respectively. These are derived from a new photometric catalogue of over 700 000 luminous red galaxies (MegaZ DR7) with a volume of 3.3 (Gpc h{sup -1}){sup 3} and redshift range 0.45

  5. A DETERMINATION OF THE INTERGALACTIC REDSHIFT-DEPENDENT ULTRAVIOLET-OPTICAL-NIR PHOTON DENSITY USING DEEP GALAXY SURVEY DATA AND THE GAMMA-RAY OPACITY OF THE UNIVERSE

    SciTech Connect

    Stecker, Floyd W.; Scully, Sean T. E-mail: malkan@astro.ucla.edu

    2012-12-20

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to {gamma}-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  6. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  7. The Carnegie-Spitzer-IMACS Redshift Survey: How the Universe Shaped Galaxies over the Past 8 Gyr and Why It Wasn't All Finished Before z~2

    NASA Astrophysics Data System (ADS)

    Kelson, Daniel David

    2015-08-01

    While the peak of cosmic star-formation occurs by z~2, hierarchical growth leads to the assembly of galaxy groups at much later times. The galaxies in these groups host a substantial fraction of the stellar mass at z~0. Probing the evolution of galaxies in these environments is therefore imperative for understanding the forces that shaped the distributions of galaxies we see today. The Carnegie-Spitzer-IMACS Spectrophotometric Redshift Survey, with its wide-field (total 15 degs^2) and near-IR selection, is uniquely positioned to trace the combined evolution of galaxies and their environments. The survey targets a flux-limited sample of galaxies selected from Spitzer IRAC 3.6µm imaging of SWIRE fields, in order to efficiently trace the stellar mass growth of average galaxies to z~1.5. Our unique methodology for analyzing low-dispersion spectra from IMACS, combined with panchromatic photometry from the ultraviolet to the IR, yielded high quality redshifts, stellar masses, emission line luminosities, and information on recent star-formation. For galaxies up to z~1, the redshift precision is sigma_z/(1+z)<1%, with a spectroscopic completeness sufficient to reliably detect galaxy groups M200 ~ 10^13 Msun. In the Chandra Deep Field South we combine the CSI data with the ultra-deep Chandra and XMM-Newton X-ray observations to make the first statistical measurements of the stellar mass-halo mass relation of low-mass X-ray groups at 0.5

  8. The VISTA Kilo-degree Infrared Galaxy (VIKING) Survey: Bridging the Gap between Low and High Redshift

    NASA Astrophysics Data System (ADS)

    Edge, A.; Sutherland, W.; Kuijken, K.; Driver, S.; McMahon, R.; Eales, S.; Emerson, J. P.

    2013-12-01

    VIKING is a medium-deep survey of 1500 square degrees over two areas of the extragalactic sky with VISTA in zYJHKs bands to sample the restframe optical for galaxies at z >~ 1. VIKING complements the two other surveys — VHS with its large area but shallower depth and VIDEO with its greater photometric depth and smaller spatial coverage. In addition to a 0.7 < z < 2 galaxy survey, the area and depth of VIKING enables other studies, such as detection of distant quasars and low-mass stars and many galaxy clusters and superclusters. The early results are summarised and future prospects presented.

  9. Upper bound of 0.28 eV on neutrino masses from the largest photometric redshift survey.

    PubMed

    Thomas, Shaun A; Abdalla, Filipe B; Lahav, Ofer

    2010-07-16

    We present a new limit of ∑m(v) ≤ 0.28 (95% CL) on the sum of the neutrino masses assuming a flat ΛCDM cosmology. This relaxes slightly to ∑m(ν) ≤ 0.34 and ∑m(v) ≤ 0.47 when quasinonlinear scales are removed and w≠ -1, respectively. These are derived from a new photometric catalogue of over 700,000 luminous red galaxies (MegaZ DR7) with a volume of 3.3  (Gpc h(-1))(3) and redshift range 0.45 < z < 0.65. The data are combined with WMAP 5-year CMB, baryon acoustic oscillations, supernovae, and a Hubble Space Telescope prior on h. When combined with WMAP these data are as constraining as adding all supernovae and baryon oscillation data available. The upper limit is one of the tightest constraints on the neutrino from cosmology or particle physics. Further, if these bounds hold, they all predict that current-to-next generation neutrino experiments, such as KATRIN, are unlikely to obtain a detection. PMID:20867754

  10. A CHANDRA SNAPSHOT SURVEY FOR 3C RADIO GALAXIES WITH REDSHIFTS BETWEEN 0.3 AND 0.5

    SciTech Connect

    Massaro, F.; Harris, D. E.; Paggi, A.; Tremblay, G. R.; Liuzzo, E.; Bonafede, A.

    2013-05-01

    This paper contains an analysis of short Chandra observations of 19 3C sources with redshifts between 0.3 and 0.5 not previously observed in the X-rays. This sample is part of a project to obtain Chandra data for all of the extragalactic sources in the 3C catalog. Nuclear X-ray intensities as well as any X-ray emission associated with radio jet knots, hotspots, or lobes have been measured in three energy bands: soft, medium, and hard. Standard X-ray spectral analysis for the four brightest nuclei has also been performed. X-ray emission was detected for all the nuclei of the radio sources in the current sample with the exception of 3C 435A. There is one compact steep spectrum source while all the others are FR II radio galaxies. X-ray emission from two galaxy clusters (3C 19 and 3C 320), from six hotspots in four radio galaxies (3C 16, 3C 19, 3C 268.2, 3C 313), and extended X-ray emission on kiloparsec scales in 3C 187 and 3C 313, has been detected.

  11. The VIMOS Public Extragalactic Redshift Survey (VIPERS). An unprecedented view of galaxies and large-scale structure at 0.5 < z < 1.2

    NASA Astrophysics Data System (ADS)

    Guzzo, L.; Scodeggio, M.; Garilli, B.; Granett, B. R.; Fritz, A.; Abbas, U.; Adami, C.; Arnouts, S.; Bel, J.; Bolzonella, M.; Bottini, D.; Branchini, E.; Cappi, A.; Coupon, J.; Cucciati, O.; Davidzon, I.; De Lucia, G.; de la Torre, S.; Franzetti, P.; Fumana, M.; Hudelot, P.; Ilbert, O.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Małek, K.; Marulli, F.; McCracken, H. J.; Paioro, L.; Peacock, J. A.; Polletta, M.; Pollo, A.; Schlagenhaufer, H.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zamorani, G.; Zanichelli, A.; Burden, A.; Di Porto, C.; Marchetti, A.; Marinoni, C.; Mellier, Y.; Moscardini, L.; Nichol, R. C.; Percival, W. J.; Phleps, S.; Wolk, M.

    2014-06-01

    We describe the construction and general features of VIPERS, the VIMOS Public Extragalactic Redshift Survey. This ESO Large Programme is using the Very Large Telescope with the aim of building a spectroscopic sample of ~ 100 000 galaxies with iAB< 22.5 and 0.5 survey covers a total area of ~ 24 deg2 within the CFHTLS-Wide W1 and W4 fields. VIPERS is designed to address a broad range of problems in large-scale structure and galaxy evolution, thanks to a unique combination of volume (~ 5 × 107h-3 Mpc3) and sampling rate (~ 40%), comparable to state-of-the-art surveys of the local Universe, together with extensive multi-band optical and near-infrared photometry. Here we present the survey design, the selection of the source catalogue and the development of the spectroscopic observations. We discuss in detail the overall selection function that results from the combination of the different constituents of the project. This includes the masks arising from the parent photometric sample and the spectroscopic instrumental footprint, together with the weights needed to account for the sampling and the success rates of the observations. Using the catalogue of 53 608 galaxy redshifts composing the forthcoming VIPERS Public Data Release 1 (PDR-1), we provide a first assessment of the quality of the spectroscopic data. The stellar contamination is found to be only 3.2%, endorsing the quality of the star-galaxy separation process and fully confirming the original estimates based on the VVDS data, which also indicate a galaxy incompleteness from this process of only 1.4%. Using a set of 1215 repeated observations, we estimate an rms redshift error σz/ (1 + z) = 4.7 × 10-4 and calibrate the internal spectral quality grading. Benefiting from the combination of size and detailed sampling of this dataset, we conclude by presenting a map showing in unprecedented detail the large-scale distribution of galaxies between 5 and 8 billion years ago. Based on observations

  12. The Muenster Redshift Project (MRSP).

    NASA Astrophysics Data System (ADS)

    Schuecker, P.; Horstmann, H.; Seitter, W. C.; Ott, H.-A.; Duemmler, R.; Tucholke, H.-J.; Teuber, D.; Meijer, J.; Cunow, B.

    The Astronomical Institute Muenster, in 1986, has started the Muenster Redshift Project (MRSP), where redshifts z are measured automatically from low-dispersion objective prism plates. The number of galaxy redshifts per square degree is approximately 250, the scale reached z = 0.3, compared to about 2 galaxies per square degree and z = 0.05 for currently available large-area surveys. This is a significant growth, gained, however, with the loss of resolution in redshift space: the low dispersion of the spectra gives redshift accuracies of dz = 0.01 or 30 h-1Mpc (H0 = 100 h km s-1Mpc-1, q0 = 0.5). Nevertheless, in most cases the large numbers of objects compensate for the statistical redshift errors, while the derivations of global and cosmological quantities are less affected by small-number statistics, are more representative, and thus lead to more reliable values. The detection of voids on scales z < 0.02 is not possible, unless the structures in redshift space are sharpened, using, e.g. deconvolution techniques.

  13. The Subaru-XMM-Newton Deep Survey (SXDS). VIII. Multi-wavelength identification, optical/NIR spectroscopic properties, and photometric redshifts of X-ray sources†

    NASA Astrophysics Data System (ADS)

    Akiyama, Masayuki; Ueda, Yoshihiro; Watson, Mike G.; Furusawa, Hisanori; Takata, Tadafumi; Simpson, Chris; Morokuma, Tomoki; Yamada, Toru; Ohta, Kouji; Iwamuro, Fumihide; Yabe, Kiyoto; Tamura, Naoyuki; Moritani, Yuuki; Takato, Naruhisa; Kimura, Masahiko; Maihara, Toshinori; Dalton, Gavin; Lewis, Ian; Lee, Hanshin; Curtis-Lake, Emma; Macaulay, Edward; Clarke, Frazer; Silverman, John D.; Croom, Scott; Ouchi, Masami; Hanami, Hitoshi; Díaz Tello, Jorge; Yoshikawa, Tomohiro; Fujishiro, Naofumi; Sekiguchi, Kazuhiro

    2015-10-01

    We report on the multi-wavelength identification of the X-ray sources found in the Subaru-XMM-Newton Deep Survey (SXDS) using deep imaging data covering the wavelength range between the far-UV and mid-IR (MIR). We select a primary counterpart of each X-ray source by applying the likelihood ratio method to R-band, 3.6 μm, near-UV, and 24 μm source catalogs as well as matching catalogs of active galactic nucleus (AGN) candidates selected in 1.4 GHz radio and i '-band variability surveys. Once candidates for Galactic stars, ultra-luminous X-ray sources in a nearby galaxy, and clusters of galaxies are removed there are 896 AGN candidates in the sample. We conduct spectroscopic observations of the primary counterparts with multi-object spectrographs in the optical and NIR; 65% of the X-ray AGN candidates are spectroscopically identified. For the remaining X-ray AGN candidates, we evaluate their photometric redshift with photometric data in 15 bands. Utilizing the multi-wavelength photometric data of the large sample of X-ray-selected AGNs, we evaluate the stellar masses, M*, of the host galaxies of the narrow-line AGNs. The distribution of the stellar mass is remarkably constant from z = 0.1 to 4.0. The relation between M* and 2-10 keV luminosity can be explained with strong cosmological evolution of the relationship between the black hole mass and M*. We also evaluate the scatter of the UV-MIR spectral energy distribution (SED) of the X-ray AGNs as a function of X-ray luminosity and absorption by the nucleus. The scatter is compared with galaxies which have redshift and stellar mass distribution matched with the X-ray AGN. The UV-NIR (near-IR) SEDs of obscured X-ray AGNs are similar to those of the galaxies in the matched sample. In the NIR-MIR range, the median SEDs of X-ray AGNs are redder, but the scatter of the SEDs of the X-ray AGN broadly overlaps that of the galaxies in the matched sample.

  14. Searches for High Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Stevens, R.

    In recent years, the technique of Lyman break imaging has proven very effective at identifying large numbers of galaxies at high redshifts through deep multicolour imaging (Steidel et al 1996b; Steidel et al 1999). The combination of an intrinsic break in the spectra of star-forming galaxies below the rest-frame wavelength of Lyman-alpha and attenuation by intervening HI systems on the line of sight to high redshifts makes for a pronounced drop in the flux of high redshift galaxies between 912 Å and 1216 Å in the rest-frame. At redshifts z> 3, the break is shifted sufficiently far into the optical window accessible to ground-based telescopes for galaxies at such redshift to be distinguished from the foreground galaxy population through photometry alone. Through modelling of the expected colours of a wide range of galaxy types, ages and redshifts, taking into account the effects of reddening (Calzetti, Kinney and Storchi-Bergmann 1994) and intergalactic attenuation (Madau 1995), we assess the likely colours of high redshift galaxies and determine the redshift ranges most effectively probed by the imaging filters. We obtain multicolour imaging of the fields of four high redshift radio galaxies, covering around 40 arcmin2 in each, allowing us to attempt to find ordinary galaxies at similar redshifts to the central radio galaxies through photometric colour selection techniques. Some idea as to the effectiveness comes through additional colour and morphological information obtained from high-resolution Hubble Space Telescope images and from data taken in the near infra-red. While we do not have spectroscopic evidence for the redshifts of our candidates, given the available evidence we conclude that the number densities of Lyman break galaxies in the radio galaxy fields are in broad agreement with the data of Steidel et al (1999). Finally, we assess the prospects for future studies of the high redshift Universe, in particular the potential of the Oxford Deep Wide Field

  15. Clusters and groups of galaxies in the 2dF galaxy redshift survey: A new catalogue

    NASA Astrophysics Data System (ADS)

    Tago, E.; Einasto, J.; Saar, E.; Einasto, M.; Suhhonenko, I.; Jõeveer, M.; Vennik, J.; Heinämäki, P.; Tucker, D. L.

    2006-05-01

    We create a new catalogue of groups and clusters, applying the friends-of-friends method to the 2dF GRS final release. We investigate various selection effects due to the use of a magnitude limited sample. For this purpose we follow the changes in group sizes and mean galaxy number densities within groups when shifting nearby observed groups to larger distances. We study the distribution of sizes of dark matter haloes in N-body simulations and compare properties of these haloes and the 2dF groups. We show that at large distances from the observer luminous and intrinsically greater groups dominate, but in these groups only very bright members are seen, which form compact cores of the groups. These two effects almost cancel each other, so that the mean sizes and densities of groups do not change considerably with distance. Our final sample contains 10750 groups in the Northern part, and 14465 groups in the Southern part of the 2dF survey with membership N_gal ≥ 2. We estimate the total luminosities of our groups, correcting for group members fainter than the observational limit of the survey. The cluster catalogue is available at our web-site (\\texttt{http://www.aai.ee/˜maret/2dfgr.html}).

  16. The large scale structure of the Universe revealed with high redshift emission-line galaxies: implications for future surveys

    NASA Astrophysics Data System (ADS)

    Antonino Orsi, Alvaro

    2015-08-01

    Nebular emission in galaxies trace their star-formation activity within the last 10 Myr or so. Hence, these objects are typically found in the outskirts of massive clusters, where otherwise environmental effects can effectively stop the star formation process. In this talk I discuss the nature of emission-line galaxies (ELGs) and its implications for their clustering properties. To account for the relevant physical ingredients that produce nebular emission, I combine semi-analytical models of galaxy formation with a radiative transfer code of Ly-alpha photons, and the photoionzation and shock code MAPPINGS-III. As a result, the clustering strength of ELGs is found to correlate weakly with the line luminosities. Also, their 2-d clustering displays a weak finger-of-god effect, and the clustering in linear scales is affected by assembly bias. I review the impact of the nature of this galaxy population for future spectroscopic large surveys targeting ELGs to extract cosmological results. In particular, I present forecasts for the ELG population in J-PAS, an 8000 deg^2 survey with 54 narrow-band filters covering the optical range, expected to start in 2016.

  17. The Subaru FMOS galaxy redshift survey (FastSound). II. The emission line catalog and properties of emission line galaxies

    NASA Astrophysics Data System (ADS)

    Okada, Hiroyuki; Totani, Tomonori; Tonegawa, Motonari; Akiyama, Masayuki; Dalton, Gavin; Glazebrook, Karl; Iwamuro, Fumihide; Ohta, Kouji; Takato, Naruhisa; Tamura, Naoyuki; Yabe, Kiyoto; Bunker, Andrew J.; Goto, Tomotsugu; Hikage, Chiaki; Ishikawa, Takashi; Okumura, Teppei; Shimizu, Ikkoh

    2016-06-01

    We present basic properties of ˜3300 emission line galaxies detected by the FastSound survey, which are mostly Hα emitters at z ˜ 1.2-1.5 in the total area of about 20 deg2, with the Hα flux sensitivity limit of ˜1.6 × 10-16 erg cm-2 s-1 at 4.5 σ. This paper presents the catalog of the FastSound emission lines and galaxies, which is open to the public. We also present basic properties of typical FastSound Hα emitters, which have Hα luminosities of 1041.8-1043.3 erg s-1, star formation rates (SFRs) of 20-500 M⊙ yr-1, and stellar masses of 1010.0-1011.3 M⊙. The 3D distribution maps for the four fields of Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W1-4 are presented, clearly showing large scale clustering of galaxies at the scale of ˜100-600 comoving Mpc. Based on 1105 galaxies with detections of multiple emission lines, we estimate that the contamination of non-Hα lines is about 4% in the single-line emission galaxies, which is mostly [O III]λ5007. This contamination fraction is also confirmed by the stacked spectrum of all the FastSound spectra, in which Hα, [N II]λλ6548,6583, [S II]λλ6717,6731, and [O I]λλ6300,6364 are seen.

  18. The XXL survey. V. Detection of the Sunyaev-Zel'dovich effect of the redshift 1.9 galaxy cluster XLSSU J021744.1–034536 with CARMA

    SciTech Connect

    Mantz, A. B.; Abdulla, Z.; Carlstrom, J. E.; Leitch, E. M.; Greer, C. H.; Marrone, D. P.; Muchovej, S.; Adami, C.; Birkinshaw, M.; Bremer, M.; Giles, P.; Maughan, B.; Clerc, N.; Horellou, C.; Pacaud, F.; Pierre, M.; Willis, J.

    2014-10-20

    We report the detection of the Sunyaev-Zel'dovich (SZ) effect of galaxy cluster XLSSU J021744.1–034536, using 30 GHz Combined Array for Research in Millimeter-wave Astronomy (CARMA) data. This cluster was discovered via its extended X-ray emission in the XMM- Newton Large Scale Structure survey, the precursor to the XXL survey. It has a photometrically determined redshift z=1.91{sub −0.21}{sup +0.19}, making it among the most distant clusters known, and nominally the most distant for which the SZ effect has been measured. The spherically integrated Comptonization is Y {sub 500} = (3.0 ± 0.4) × 10{sup –12}, a measurement that is relatively insensitive to assumptions regarding the size and redshift of the cluster, as well as the background cosmology. Using a variety of locally calibrated cluster scaling relations extrapolated to z ∼ 2, we estimate a mass M {sub 500} ∼ (1-2) × 10{sup 14} M {sub ☉} from the X-ray flux and SZ signal. The measured properties of this cluster are in good agreement with the extrapolation of an X-ray luminosity-SZ effect scaling relation calibrated from clusters discovered by the South Pole Telescope at higher masses and lower redshifts. The full XXL-CARMA sample will provide a more complete, multi-wavelength census of distant clusters in order to robustly extend the calibration of cluster scaling relations to these high redshifts.

  19. The Highest Redshift Relativistic Jets

    SciTech Connect

    Cheung, C.C.; Stawarz, L.; Siemiginowska, A.; Harris, D.E; Schwartz, D.A.; Wardle, J.F.C.; Gobeille, D.; Lee, N.P.

    2007-12-18

    We describe our efforts to understand large-scale (10's-100's kpc) relativistic jet systems through observations of the highest-redshift quasars. Results from a VLA survey search for radio jets in {approx} 30 z > 3.4 quasars are described along with new Chandra observations of 4 selected targets.

  20. OVERDENSITIES OF Y-DROPOUT GALAXIES FROM THE BRIGHTEST-OF-REIONIZING GALAXIES SURVEY: A CANDIDATE PROTOCLUSTER AT REDSHIFT z Almost-Equal-To 8

    SciTech Connect

    Trenti, Michele; Shull, J. M.; Bradley, L. D.; Stiavelli, M.; Oesch, P.; Bouwens, R. J.; Munoz, J. A.; Romano-Diaz, E.; Shlosman, I.; Treu, T.; Carollo, C. M.

    2012-02-10

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z {approx} 8 candidates as Y{sub 098}-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y{sub 098}-dropouts to fainter luminosities (M{sub *} galaxies with M{sub AB} {approx} -20), with detections at {>=}5{sigma} confidence (compared to the 8{sigma} confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y{sub 098}-dropouts at {>=}99.84% confidence. Field BoRG58, which contains the best bright z {approx} 8 candidate (M{sub AB} = -21.3), has the most significant overdensity of faint Y{sub 098}-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z {approx} 8 candidate. The overdensity of Y{sub 098}-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y{sub 098}-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass M{sub h} Almost-Equal-To (4-7) Multiplication-Sign 10{sup 11} M{sub Sun} ({approx}5{sigma} density peak) and is surrounded by several M{sub h} Almost-Equal-To 10{sup 11} M{sub Sun} halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a M{sub h} > 2 Multiplication-Sign 10{sup 14} M{sub Sun} galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z {approx} 8 nature of the

  1. Overdensities of Y-dropout Galaxies from the Brightest-of-Reionizing Galaxies Survey: A Candidate Protocluster at Redshift z ≈ 8

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; Bradley, L. D.; Stiavelli, M.; Shull, J. M.; Oesch, P.; Bouwens, R. J.; Muñoz, J. A.; Romano-Diaz, E.; Treu, T.; Shlosman, I.; Carollo, C. M.

    2012-02-01

    Theoretical and numerical modeling of the assembly of dark-matter halos predicts that the most massive and luminous galaxies at high redshift are surrounded by overdensities of fainter companions. We test this prediction with Hubble Space Telescope observations acquired by our Brightest-of-Reionizing Galaxies (BoRG) survey, which identified four very bright z ~ 8 candidates as Y 098-dropout sources in four of the 23 non-contiguous Wide Field Camera 3 fields observed. We extend here the search for Y 098-dropouts to fainter luminosities (M * galaxies with M AB ~ -20), with detections at >=5σ confidence (compared to the 8σ confidence threshold adopted earlier) identifying 17 new candidates. We demonstrate that there is a correlation between number counts of faint and bright Y 098-dropouts at >=99.84% confidence. Field BoRG58, which contains the best bright z ~ 8 candidate (M AB = -21.3), has the most significant overdensity of faint Y 098-dropouts. Four new sources are located within 70'' (corresponding to 3.1 comoving Mpc at z = 8) from the previously known brighter z ~ 8 candidate. The overdensity of Y 098-dropouts in this field has a physical origin to very high confidence (p > 99.975%), independent of completeness and contamination rate of the Y 098-dropout selection. We modeled the overdensity by means of cosmological simulations and estimate that the principal dark-matter halo has mass Mh ≈ (4-7) × 1011 M ⊙ (~5σ density peak) and is surrounded by several Mh ≈ 1011 M ⊙ halos which could host the fainter dropouts. In this scenario, we predict that all halos will eventually merge into a Mh > 2 × 1014 M ⊙ galaxy cluster by z = 0. Follow-up observations with ground- and space-based telescopes are required to secure the z ~ 8 nature of the overdensity, discover new members, and measure their precise redshift. Based on observations made with the NASA/ESA Hubble Space Telescope, which is operated by the Association of Universities for Research in

  2. THE COS-HALOS SURVEY: AN EMPIRICAL DESCRIPTION OF METAL-LINE ABSORPTION IN THE LOW-REDSHIFT CIRCUMGALACTIC MEDIUM

    SciTech Connect

    Werk, Jessica K.; Prochaska, J. Xavier; Tripp, Todd M.; O'Meara, John M.; Peeples, Molly S.

    2013-02-15

    We present the equivalent width and column density measurements for low and intermediate ionization states of the circumgalactic medium (CGM) surrounding 44 low-z, L Almost-Equal-To L* galaxies drawn from the COS-Halos survey. These measurements are derived from far-UV transitions observed in HST/COS and Keck/HIRES spectra of background quasars within an impact parameter R < 160 kpc to the targeted galaxies. The data show significant metal-line absorption for 33 of the 44 galaxies, including quiescent systems, revealing the common occurrence of a cool (T Almost-Equal-To 10{sup 4}-10{sup 5} K), metal-enriched CGM. The detection rates and column densities derived for these metal lines decrease with increasing impact parameter, a trend we interpret as a declining metal surface density profile for the CGM. A comparison of the relative column densities of adjacent ionization states indicates that the gas is predominantly ionized. The large surface density in metals demands a large reservoir of metals and gas in the cool CGM (very conservatively, M {sup cool} {sub CGM} > 10{sup 9} M {sub Sun }), which likely traces a distinct density and/or temperature regime from the highly ionized CGM traced by O{sup +5} absorption. The large dispersion in absorption strengths (including non-detections) suggests that the cool CGM traces a wide range of densities or a mix of local ionizing conditions. Lastly, the kinematics inferred from the metal-line profiles are consistent with the cool CGM being bound to the dark matter halos hosting the galaxies; this gas may serve as fuel for future star formation. Future work will leverage this data set to provide estimates on the mass, metallicity, dynamics, and origin of the cool CGM in low-z, L* galaxies.

  3. An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies

    NASA Astrophysics Data System (ADS)

    Richter, P.; Wakker, B. P.; Fechner, C.; Herenz, P.; Tepper-García, T.; Fox, A. J.

    2016-05-01

    Aims: Doubly ionized silicon (Si iii) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si iii-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z ≤ 0.1) galaxies. Methods: We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si iii absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of ~64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si iii absorbers and the CGM. Results: Along a total redshift path of Δz ≈ 24, we identify 69 intervening Si iii systems that all show associated absorption from other low and high ions (e.g., H i, Si ii, Si iv, C ii, C iv). We derive a bias-corrected number density of dN/dz(Si iii)= 2.5 ± 0.4 for absorbers with column densities log N(Si iii) > 12.2, which is ~3 times the number density of strong Mg ii systems at z = 0. This number density matches the expected cross section of a Si iii absorbing CGM around the local galaxy population with a mean covering fraction of ⟨ fc ⟩ = 0.69. For the majority (~60 percent) of the absorbers, we identify possible host galaxies within 300 km s-1 of the absorbers and derive impact parameters ρ < 200 kpc, demonstrating that the spatial distributions of Si iii absorbers and galaxies are highly correlated. Conclusions: Our study indicates that the majority of Si iii-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a

  4. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS

    SciTech Connect

    Carliles, Samuel; Szalay, Alexander S.; Budavari, Tamas; Heinis, Sebastien; Priebe, Carey

    2010-03-20

    The main challenge today in photometric redshift estimation is not in the accuracy but in understanding the uncertainties. We introduce an empirical method based on Random Forests to address these issues. The training algorithm builds a set of optimal decision trees on subsets of the available spectroscopic sample, which provide independent constraints on the redshift of each galaxy. The combined forest estimates have intriguing statistical properties, notable among which are Gaussian errors. We demonstrate the power of our approach on multi-color measurements of the Sloan Digital Sky Survey.

  5. THE SLOAN LENS ACS SURVEY. XI. BEYOND HUBBLE RESOLUTION: SIZE, LUMINOSITY, AND STELLAR MASS OF COMPACT LENSED GALAXIES AT INTERMEDIATE REDSHIFT

    SciTech Connect

    Newton, Elisabeth R.; Marshall, Philip J.; Treu, Tommaso; Auger, Matthew W.; Gavazzi, Raphaeel; Bolton, Adam S.; Koopmans, Leon V. E.; Moustakas, Leonidas A.

    2011-06-20

    We exploit the strong lensing effect to explore the properties of intrinsically faint and compact galaxies at intermediate redshift (z{sub s} {approx_equal} 0.4-0.8) at the highest possible resolution at optical wavelengths. Our sample consists of 46 strongly lensed emission line galaxies (ELGs) discovered by the Sloan Lens ACS Survey (SLACS). The galaxies have been imaged at high resolution with the Hubble Space Telescope (HST) in three bands (V{sub HST} , I{sub 814}, and H{sub 160}), allowing us to infer their size, luminosity, and stellar mass using stellar population synthesis models. Lens modeling is performed using a new fast and robust code, KLENS, which we test extensively on real and synthetic non-lensed galaxies, and also on simulated galaxies multiply imaged by SLACS-like galaxy-scale lenses. Our tests show that our measurements of galaxy size, flux, and Sersic index are robust and accurate, even for objects intrinsically smaller than the HST point-spread function. The median magnification is 8.8, with a long tail that extends to magnifications above 40. Modeling the SLACS sources reveals a population of galaxies with colors and Sersic indices (median n {approx} 1) consistent with the galaxies detected with HST in the Galaxy Evolution from Morphology and SEDs (GEMS) and Hubble Ultra Deep Field (HUDF) surveys, but that are (typically) {approx}2 mag fainter and {approx}5 times smaller in apparent size than GEMS and {approx}4 mag brighter than but similar in size to HUDF. The size-stellar-mass and size-luminosity relations for the SLACS sources are offset to smaller sizes with respect to both comparison samples. The closest analog are ultracompact ELGs identified by HST grism surveys. The lowest mass galaxies in our sample are comparable to the brightest Milky Way satellites in stellar mass (10{sup 7} M{sub sun}) and have well-determined half-light radii of 0.''05 ({approx}0.3 kpc).

  6. The Subaru FMOS Galaxy Redshift Survey (FastSound). III. The mass-metallicity relation and the fundamental metallicity relation at z ˜ 1.4*

    NASA Astrophysics Data System (ADS)

    Yabe, Kiyoto; Ohta, Kouji; Akiyama, Masayuki; Bunker, Andrew; Dalton, Gavin; Ellis, Richard; Glazebrook, Karl; Goto, Tomotsugu; Imanishi, Masatoshi; Iwamuro, Fumihide; Okada, Hiroyuki; Shimizu, Ikkoh; Takato, Naruhisa; Tamura, Naoyuki; Tonegawa, Motonari; Totani, Tomonori

    2015-12-01

    We present the results from a large near-infrared spectroscopic survey made with Subaru/FMOS (FastSound) consisting of ˜ 4000 galaxies at z ˜ 1.4 with significant Hα detection. We measure the gas-phase metallicity from the [N II]λ6583/Hα emission line ratio of the composite spectra in various stellar mass and star-formation rate bins. The resulting mass-metallicity relation generally agrees with previous studies obtained in a similar redshift range to that of our sample. No clear dependence of the mass-metallicity relation on star-formation rate is found. Our result at z ˜ 1.4 is roughly in agreement with the fundamental metallicity relation at z ˜ 0.1 with a fiber aperture corrected star-formation rate. We detect significant [S II]λλ6716,6731 emission lines from the composite spectra. The electron density estimated from the [S II]λλ6716,6731 line ratio ranges from 10-500 cm-3, which generally agrees with that of local galaxies. On the other hand, the distribution of our sample on [N II]λ6583/Hα vs. [S II]λλ6716,6731/Hα is different to that found locally. We estimate the nitrogen-to-oxygen abundance ratio (N/O) from the N2S2 index, and find that the N/O in galaxies at z ˜ 1.4 is significantly higher than the local values at a fixed metallicity and stellar mass. The metallicity at z ˜ 1.4 recalculated with this N/O enhancement taken into account decreases by 0.1-0.2 dex. The resulting metallicity is lower than the local fundamental metallicity relation.

  7. Direct Minkowski Functional analysis of large redshift surveys: a new high-speed code tested on the luminous red galaxy Sloan Digital Sky Survey-DR7 catalogue

    NASA Astrophysics Data System (ADS)

    Wiegand, Alexander; Buchert, Thomas; Ostermann, Matthias

    2014-09-01

    As deeper galaxy catalogues are soon to come, it becomes even more important to measure large-scale fluctuations in the catalogues with robust statistics that cover all moments of the galaxy distribution. In this paper, we reinforce a direct analysis of galaxy data by employing the Germ-Grain method to calculate the family of Minkowski Functionals. We introduce a new code, suitable for the analysis of large data sets without smoothing and without the construction of excursion sets. We provide new tools to measure correlation properties, putting emphasis on explicitly isolating non-Gaussian correlations with the help of integral-geometric relations. As a first application, we present the analysis of large-scale fluctuations in the luminous red galaxy sample of Sloan Digital Sky Survey data release 7 data. We find significant deviations from the Λ cold dark matter mock catalogues on samples as large as 500 h- 1 Mpc (more than 3σ) and slight deviations of around 2σ on 700 h- 1 Mpc, and we investigate possible sources of these deviations.

  8. Dusty Quasars at High Redshifts

    NASA Astrophysics Data System (ADS)

    Weedman, Daniel; Sargsyan, Lusine

    2016-09-01

    A population of quasars at z ˜ 2 is determined based on dust luminosities νL ν (7.8 μm) that includes unobscured, partially obscured, and obscured quasars. Quasars are classified by the ratio νL ν (0.25 μm)/νL ν (7.8 μm) = UV/IR, assumed to measure obscuration of UV luminosity by the dust that produces IR luminosity. Quasar counts at rest-frame 7.8 μm are determined for quasars in the Boötes field of the NOAO Deep Wide Field Survey using 24 μm sources with optical redshifts from the AGN and Galaxy Evolution Survey (AGES) or infrared redshifts from the Spitzer Infrared Spectrograph. Spectral energy distributions are extended to far-infrared wavelengths using observations from the Herschel Space Observatory Spectral and Photometric Imaging Receiver (SPIRE), and new SPIRE photometry is presented for 77 high-redshift quasars from the Sloan Digital Sky Survey. It is found that unobscured and obscured quasars have similar space densities at rest-frame 7.8 μm, but the ratio L ν (100 μm)/L ν (7.8 μm) is about three times higher for obscured quasars than for unobscured, so that far-infrared or submillimeter quasar detections are dominated by obscured quasars. We find that only ˜5% of high-redshift submillimeter sources are quasars and that existing 850 μm surveys or 2 mm surveys should already have detected sources at z ˜ 10 if quasar and starburst luminosity functions remain the same from z = 2 until z = 10.

  9. Quasars, Redshifts and Controversies

    NASA Astrophysics Data System (ADS)

    Arp, Halton C.

    1988-09-01

    Introduction; 1. Distance of quasars; 2. The battle over statistics; 3. Galaxies visibly connected to quasars; 4. Certain galaxies with many quasars; 5. Distribution of quasars in space; 6. Galaxies with excess redshift; 7. Small excess redshifts, the local group of galaxies, and quantization of redshifts; 8. Correcting intrinsic redshifts and identifying hydrogen clouds within nearby groups of galaxies; 9. Ejection from galaxies; 10. The sociology of the controversy; 11. Interpretations; Glossary; Index.

  10. Real-time cosmography with redshift derivatives

    NASA Astrophysics Data System (ADS)

    Martins, C. J. A. P.; Martinelli, M.; Calabrese, E.; Ramos, M. P. L. P.

    2016-08-01

    The drift in the redshift of objects passively following the cosmological expansion has long been recognized as a key model-independent probe of cosmology. Here, we study the cosmological relevance of measurements of time or redshift derivatives of this drift, arguing that the combination of first and second redshift derivatives is a powerful test of the Λ CDM cosmological model. In particular, the latter can be obtained numerically from a set of measurements of the drift at different redshifts. We show that, in the low-redshift limit, a measurement of the derivative of the drift can provide a constraint on the jerk parameter, which is j =1 for flat Λ CDM , while generically j ≠1 for other models. We emphasize that such a measurement is well within the reach of the ELT-HIRES and SKA Phase 2 array surveys.

  11. WHERE DO WET, DRY, AND MIXED GALAXY MERGERS OCCUR? A STUDY OF THE ENVIRONMENTS OF CLOSE GALAXY PAIRS IN THE DEEP2 GALAXY REDSHIFT SURVEY

    SciTech Connect

    Lin, Lihwai; Cooper, Michael C.; Willmer, Christopher N. A.; Jian, Hung-Yu; Chiueh, Tzihong; Koo, David C.; Guhathakurta, Puragra; Yan, Renbin; Coil, Alison L.; Croton, Darren J.; Gerke, Brian F.; Newman, Jeffrey A.

    2010-08-01

    We study the environments of wet, dry, and mixed galaxy mergers at 0.75 < z < 1.2 using close pairs in the DEEP2 Galaxy Redshift Survey. We find that the typical environment of dry and mixed merger candidates is denser than that of wet mergers, mostly due to the color-density relation. While the galaxy companion rate (N{sub c}) is observed to increase with overdensity, using N-body simulations, we find that the fraction of pairs that will eventually merge decreases with the local density, predominantly because interlopers are more common in dense environments. After taking into account the merger probability of pairs as a function of local density, we find only marginal environment dependence of the galaxy merger rate for wet mergers. On the other hand, the dry and mixed merger rates increase rapidly with local density due to the increased population of red galaxies in dense environments, implying that the dry and mixed mergers are most effective in overdense regions. We also find that the environment distribution of K+A galaxies is similar to that of wet mergers alone and of wet+mixed mergers, suggesting a possible connection between K+A galaxies and wet and/or wet+mixed mergers. Based on our results, we therefore expect that the properties, including structures and masses, of red-sequence galaxies should be different between those in underdense regions and those in overdense regions since the dry mergers are significantly more important in dense environments. We conclude that, as early as z {approx} 1, high-density regions are the preferred environment in which dry mergers occur, and that present-day red-sequence galaxies in overdense environments have, on average, undergone 1.2 {+-} 0.3 dry mergers since this time, accounting for (38 {+-} 10)% of their mass accretion in the last 8 billion years. The main uncertainty in this finding is the conversion from the pair fraction to the galaxy merger rate, which is possibly as large as a factor of 2. Our findings

  12. Leveraging 3D-HST Grism Redshifts to Quantify Photometric Redshift Performance

    NASA Astrophysics Data System (ADS)

    Bezanson, Rachel; Wake, David A.; Brammer, Gabriel B.; van Dokkum, Pieter G.; Franx, Marijn; Labbé, Ivo; Leja, Joel; Momcheva, Ivelina G.; Nelson, Erica J.; Quadri, Ryan F.; Skelton, Rosalind E.; Weiner, Benjamin J.; Whitaker, Katherine E.

    2016-05-01

    We present a study of photometric redshift accuracy in the 3D-HST photometric catalogs, using 3D-HST grism redshifts to quantify and dissect trends in redshift accuracy for galaxies brighter than JH IR > 24 with an unprecedented and representative high-redshift galaxy sample. We find an average scatter of 0.0197 ± 0.0003(1 + z) in the Skelton et al. photometric redshifts. Photometric redshift accuracy decreases with magnitude and redshift, but does not vary monotonically with color or stellar mass. The 1σ scatter lies between 0.01 and 0.03 (1 + z) for galaxies of all masses and colors below z < 2.5 (for JH IR < 24), with the exception of a population of very red (U ‑ V > 2), dusty star-forming galaxies for which the scatter increases to ∼0.1 (1 + z). We find that photometric redshifts depend significantly on galaxy size; the largest galaxies at fixed magnitude have photo-zs with up to ∼30% more scatter and ∼5 times the outlier rate. Although the overall photometric redshift accuracy for quiescent galaxies is better than that for star-forming galaxies, scatter depends more strongly on magnitude and redshift than on galaxy type. We verify these trends using the redshift distributions of close pairs and extend the analysis to fainter objects, where photometric redshift errors further increase to ∼0.046 (1 + z) at {H}F160W=26. We demonstrate that photometric redshift accuracy is strongly filter dependent and quantify the contribution of multiple filter combinations. We evaluate the widths of redshift probability distribution functions and find that error estimates are underestimated by a factor of ∼1.1–1.6, but that uniformly broadening the distribution does not adequately account for fitting outliers. Finally, we suggest possible applications of these data in planning for current and future surveys and simulate photometric redshift performance in the Large Synoptic Survey Telescope, Dark Energy Survey (DES), and combined DES and Vista Hemisphere

  13. A Survey of Metal Lines at High Redshift. II. SDSS Absorption Line Studies—O VI Line Density, Space Density, and Gas Metallicity at z abs ~ 3.0

    NASA Astrophysics Data System (ADS)

    Frank, S.; Mathur, S.; Pieri, M.; York, D. G.

    2010-09-01

    We have analyzed a large data set of O VI absorber candidates found in the spectra of 3702 Sloan Digital Sky Survey (SDSS) quasars, focusing on a subsample of 387 active galactic nuclei sight lines with an average S/N >=5.0, allowing for the detection of absorbers above a rest-frame equivalent width limit of W r >= 0.19 Å for the O VI 1032 Å component. Accounting for random interlopers mimicking an O VI doublet, we derive for the first time a secure lower limit for the redshift number density ΔN/Δz for redshifts z abs >= 2.8. With extensive Monte Carlo simulations, we quantify the losses of absorbers due to blending with the ubiquitous Lyα forest lines and estimate the success rate of retrieving each individual candidate as a function of its redshift, the emission redshift of the quasar, the strength of the absorber, and the measured signal-to-noise ratio (S/N) of the spectrum by modeling typical Lyman forest spectra. These correction factors allow us to derive the "incompleteness and S/N-corrected" redshift number densities of O VI absorbers: ΔN O VI,c /Δzc (2.8 < z < 3.2) = 4.6 ± 0.3, ΔN O VI,c /Δzc (3.2 < z < 3.6) = 6.7 ± 0.8, and ΔN O VI,c /Δzc (3.6 < z < 4.0) = 8.4 ± 2.9. We can place a secure lower limit for the contribution of O VI to the closure mass density at the redshifts probed here: ΩO VI (2.8 < z < 3.2) >= 1.9 × 10-8 h -1. We show that the strong lines we probe account for over 65% of the mass in the O VI absorbers; the weak absorbers, while dominant in line number density, do not contribute significantly to the mass density. Making a conservative assumption about the ionization fraction, {O VI}/{O}, and adopting the Anders & Grevesse solar abundance values, we derive the mean metallicity of the gas probed in our search: ζ(2.8 < z < 3.2) >= 3.6 × 10-4 h, in good agreement with other studies. These results demonstrate that large spectroscopic data sets such as SDSS can play an important role in QSO absorption line studies, in spite of

  14. The DAFT/FADA survey. I.Photometric redshifts along lines of sight to clusters in the z=[0.4,0.9] interval

    SciTech Connect

    Guennou, L.; Adami, C.; Ulmer, M.P.; LeBrun, V.; Durret, F.; Johnston, D.; Ilbert, O.; Clowe, D.; Gavazzi, R.; Murphy, K.; Schrabback, T.; /Leiden Observ. /Fermilab

    2010-08-01

    As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from Weak Lensing Tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims. The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. This project is based on a sample of 91 high redshift (z {ge} 0.4), massive ({approx}> 3 x 10{sup 14} M{sub {circle_dot}}) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of I{sub AB} = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 {le} z {le} 1.5. We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used Spectral Energy Distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight.

  15. An ALMA survey of submillimeter galaxies in the extended Chandra deep field south: The redshift distribution and evolution of submillimeter galaxies

    SciTech Connect

    Simpson, J. M.; Swinbank, A. M.; Smail, Ian; Alexander, D. M.; Danielson, A. L. R.; Thomson, A. P.; Brandt, W. N.; Bertoldi, F.; Karim, A.; De Breuck, C.; Chapman, S. C.; Coppin, K. E. K.; Da Cunha, E.; Hodge, J. A.; Schinnerer, E.; Dannerbauer, H.; Greve, T. R.; Ivison, R. J.; Knudsen, K. K.; Poggianti, B. M.; and others

    2014-06-20

    We present the first photometric redshift distribution for a large sample of 870 μm submillimeter galaxies (SMGs) with robust identifications based on observations with ALMA. In our analysis we consider 96 SMGs in the Extended Chandra Deep Field South, 77 of which have 4-19 band photometry. We model the SEDs for these 77 SMGs, deriving a median photometric redshift of z {sub phot} = 2.3 ± 0.1. The remaining 19 SMGs have insufficient photometry to derive photometric redshifts, but a stacking analysis of Herschel observations confirms they are not spurious. Assuming that these SMGs have an absolute H-band magnitude distribution comparable to that of a complete sample of z ∼ 1-2 SMGs, we demonstrate that they lie at slightly higher redshifts, raising the median redshift for SMGs to z {sub phot} = 2.5 ± 0.2. Critically we show that the proportion of galaxies undergoing an SMG-like phase at z ≥ 3 is at most 35% ± 5% of the total population. We derive a median stellar mass of M {sub *} = (8 ± 1) × 10{sup 10} M {sub ☉}, although there are systematic uncertainties of up to 5 × for individual sources. Assuming that the star formation activity in SMGs has a timescale of ∼100 Myr, we show that their descendants at z ∼ 0 would have a space density and M{sub H} distribution that are in good agreement with those of local ellipticals. In addition, the inferred mass-weighted ages of the local ellipticals broadly agree with the look-back times of the SMG events. Taken together, these results are consistent with a simple model that identifies SMGs as events that form most of the stars seen in the majority of luminous elliptical galaxies at the present day.

  16. The DAFT/FADA survey. I. Photometric redshifts along lines of sight to clusters in the z = [0.4, 0.9] interval

    NASA Astrophysics Data System (ADS)

    Guennou, L.; Adami, C.; Ulmer, M. P.; Lebrun, V.; Durret, F.; Johnston, D.; Ilbert, O.; Clowe, D.; Gavazzi, R.; Murphy, K.; Schrabback, T.; Allam, S.; Annis, J.; Basa, S.; Benoist, C.; Biviano, A.; Cappi, A.; Kubo, J. M.; Marshall, P.; Mazure, A.; Rostagni, F.; Russeil, D.; Slezak, E.

    2010-11-01

    Context. As a contribution to the understanding of the dark energy concept, the Dark energy American French Team (DAFT, in French FADA) has started a large project to characterize statistically high redshift galaxy clusters, infer cosmological constraints from weak lensing tomography, and understand biases relevant for constraining dark energy and cluster physics in future cluster and cosmological experiments. Aims: The purpose of this paper is to establish the basis of reference for the photo-z determination used in all our subsequent papers, including weak lensing tomography studies. Methods: This project is based on a sample of 91 high redshift (z ≥ 0.4), massive (⪆3 × 1014 M_⊙) clusters with existing HST imaging, for which we are presently performing complementary multi-wavelength imaging. This allows us in particular to estimate spectral types and determine accurate photometric redshifts for galaxies along the lines of sight to the first ten clusters for which all the required data are available down to a limit of IAB = 24./24.5 with the LePhare software. The accuracy in redshift is of the order of 0.05 for the range 0.2 ≤ z ≤ 1.5. Results: We verified that the technique applied to obtain photometric redshifts works well by comparing our results to with previous works. In clusters, photo-z accuracy is degraded for bright absolute magnitudes and for the latest and earliest type galaxies. The photo-z accuracy also only slightly varies as a function of the spectral type for field galaxies. As a consequence, we find evidence for an environmental dependence of the photo-z accuracy, interpreted as the standard used spectral energy distributions being not very well suited to cluster galaxies. Finally, we modeled the LCDCS 0504 mass with the strong arcs detected along this line of sight. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Institute and the Space Telescope European

  17. A new method to search for high-redshift clusters using photometric redshifts

    SciTech Connect

    Castignani, G.; Celotti, A.; Chiaberge, M.; Norman, C.

    2014-09-10

    We describe a new method (Poisson probability method, PPM) to search for high-redshift galaxy clusters and groups by using photometric redshift information and galaxy number counts. The method relies on Poisson statistics and is primarily introduced to search for megaparsec-scale environments around a specific beacon. The PPM is tailored to both the properties of the FR I radio galaxies in the Chiaberge et al. sample, which are selected within the COSMOS survey, and to the specific data set used. We test the efficiency of our method of searching for cluster candidates against simulations. Two different approaches are adopted. (1) We use two z ∼ 1 X-ray detected cluster candidates found in the COSMOS survey and we shift them to higher redshift up to z = 2. We find that the PPM detects the cluster candidates up to z = 1.5, and it correctly estimates both the redshift and size of the two clusters. (2) We simulate spherically symmetric clusters of different size and richness, and we locate them at different redshifts (i.e., z = 1.0, 1.5, and 2.0) in the COSMOS field. We find that the PPM detects the simulated clusters within the considered redshift range with a statistical 1σ redshift accuracy of ∼0.05. The PPM is an efficient alternative method for high-redshift cluster searches that may also be applied to both present and future wide field surveys such as SDSS Stripe 82, LSST, and Euclid. Accurate photometric redshifts and a survey depth similar or better than that of COSMOS (e.g., I < 25) are required.

  18. CONSTRAINING SOURCE REDSHIFT DISTRIBUTIONS WITH GRAVITATIONAL LENSING

    SciTech Connect

    Wittman, D.; Dawson, W. A.

    2012-09-10

    We introduce a new method for constraining the redshift distribution of a set of galaxies, using weak gravitational lensing shear. Instead of using observed shears and redshifts to constrain cosmological parameters, we ask how well the shears around clusters can constrain the redshifts, assuming fixed cosmological parameters. This provides a check on photometric redshifts, independent of source spectral energy distribution properties and therefore free of confounding factors such as misidentification of spectral breaks. We find that {approx}40 massive ({sigma}{sub v} = 1200 km s{sup -1}) cluster lenses are sufficient to determine the fraction of sources in each of six coarse redshift bins to {approx}11%, given weak (20%) priors on the masses of the highest-redshift lenses, tight (5%) priors on the masses of the lowest-redshift lenses, and only modest (20%-50%) priors on calibration and evolution effects. Additional massive lenses drive down uncertainties as N{sub lens}{sup -1/2}, but the improvement slows as one is forced to use lenses further down the mass function. Future large surveys contain enough clusters to reach 1% precision in the bin fractions if the tight lens-mass priors can be maintained for large samples of lenses. In practice this will be difficult to achieve, but the method may be valuable as a complement to other more precise methods because it is based on different physics and therefore has different systematic errors.

  19. Properties of the redshift

    NASA Technical Reports Server (NTRS)

    Tifft, William G.; Cocke, W. J.

    1990-01-01

    Central to any analysis of dynamical systems, or large scale motion, is the interpretation of redshifts of galaxies as classical Doppler velocity shifts. This is a testable assumption and for many years evidence has accumulated that is inconsistent with the assumption. Here, the authors review recent evidence suggesting systematic radial dependence and temporal variation of redshifts.

  20. HIGH-REDSHIFT COOL-CORE GALAXY CLUSTERS DETECTED VIA THE SUNYAEV-ZEL'DOVICH EFFECT IN THE SOUTH POLE TELESCOPE SURVEY

    SciTech Connect

    Semler, D. R.; Suhada, R.; Bazin, G.; Bocquet, S.; Desai, S.; Aird, K. A.; Ashby, M. L. N.; Bayliss, M.; Bautz, M.; Benson, B. A.; Bleem, L. E.; Carlstrom, J. E.; Chang, C. L.; Crawford, T. M.; Crites, A. T.; Brodwin, M.; Cho, H. M.; Clocchiatti, A.; De Haan, T.; Dobbs, M. A.; and others

    2012-12-20

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg{sup 2} observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 Multiplication-Sign 10{sup 14} M{sub Sun} h {sup -1}{sub 70}) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (c{sub SB}) and cuspiness ({alpha}). We find that c{sub SB} is better constrained. We measure c{sub SB} for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4{sigma} level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c{sub SB} distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.

  1. High-redshift Cool-core Galaxy Clusters Detected via the Sunyaev-Zel'dovich Effect in the South Pole Telescope Survey

    NASA Astrophysics Data System (ADS)

    Semler, D. R.; Šuhada, R.; Aird, K. A.; Ashby, M. L. N.; Bautz, M.; Bayliss, M.; Bazin, G.; Bocquet, S.; Benson, B. A.; Bleem, L. E.; Brodwin, M.; Carlstrom, J. E.; Chang, C. L.; Cho, H. M.; Clocchiatti, A.; Crawford, T. M.; Crites, A. T.; de Haan, T.; Desai, S.; Dobbs, M. A.; Dudley, J. P.; Foley, R. J.; George, E. M.; Gladders, M. D.; Gonzalez, A. H.; Halverson, N. W.; Harrington, N. L.; High, F. W.; Holder, G. P.; Holzapfel, W. L.; Hoover, S.; Hrubes, J. D.; Jones, C.; Joy, M.; Keisler, R.; Knox, L.; Lee, A. T.; Leitch, E. M.; Liu, J.; Lueker, M.; Luong-Van, D.; Mantz, A.; Marrone, D. P.; McDonald, M.; McMahon, J. J.; Mehl, J.; Meyer, S. S.; Mocanu, L.; Mohr, J. J.; Montroy, T. E.; Murray, S. S.; Natoli, T.; Padin, S.; Plagge, T.; Pryke, C.; Reichardt, C. L.; Rest, A.; Ruel, J.; Ruhl, J. E.; Saliwanchik, B. R.; Saro, A.; Sayre, J. T.; Schaffer, K. K.; Shaw, L.; Shirokoff, E.; Song, J.; Spieler, H. G.; Stalder, B.; Staniszewski, Z.; Stark, A. A.; Story, K.; Stubbs, C. W.; van Engelen, A.; Vanderlinde, K.; Vieira, J. D.; Vikhlinin, A.; Williamson, R.; Zahn, O.; Zenteno, A.

    2012-12-01

    We report the first investigation of cool-core properties of galaxy clusters selected via their Sunyaev-Zel'dovich (SZ) effect. We use 13 galaxy clusters uniformly selected from 178 deg2 observed with the South Pole Telescope (SPT) and followed up by the Chandra X-ray Observatory. They form an approximately mass-limited sample (>3 × 1014 M ⊙ h -1 70) spanning redshifts 0.3 < z < 1.1. Using previously published X-ray-selected cluster samples, we compare two proxies of cool-core strength: surface brightness concentration (c SB) and cuspiness (α). We find that c SB is better constrained. We measure c SB for the SPT sample and find several new z > 0.5 cool-core clusters, including two strong cool cores. This rules out the hypothesis that there are no z > 0.5 clusters that qualify as strong cool cores at the 5.4σ level. The fraction of strong cool-core clusters in the SPT sample in this redshift regime is between 7% and 56% (95% confidence). Although the SPT selection function is significantly different from the X-ray samples, the high-z c SB distribution for the SPT sample is statistically consistent with that of X-ray-selected samples at both low and high redshifts. The cool-core strength is inversely correlated with the offset between the brightest cluster galaxy and the X-ray centroid, providing evidence that the dynamical state affects the cool-core strength of the cluster. Larger SZ-selected samples will be crucial in understanding the evolution of cluster cool cores over cosmic time.

  2. THE METALLICITY EVOLUTION OF STAR-FORMING GALAXIES FROM REDSHIFT 0 TO 3: COMBINING MAGNITUDE-LIMITED SURVEY WITH GRAVITATIONAL LENSING

    SciTech Connect

    Yuan, T.-T.; Kewley, L. J.; Richard, J.

    2013-01-20

    We present a comprehensive observational study of the gas-phase metallicity of star-forming galaxies from z {approx} 0 {yields} 3. We combine our new sample of gravitationally lensed galaxies with existing lensed and non-lensed samples to conduct a large investigation into the mass-metallicity (MZ) relation at z > 1. We apply a self-consistent metallicity calibration scheme to investigate the metallicity evolution of star-forming galaxies as a function of redshift. The lensing magnification ensures that our sample spans an unprecedented range of stellar mass (3 Multiplication-Sign 10{sup 7} to 6 Multiplication-Sign 10{sup 10} M {sub Sun }). We find that at the median redshift of z = 2.07, the median metallicity of the lensed sample is 0.35 dex lower than the local SDSS star-forming galaxies and 0.18 dex lower than the z {approx} 0.8 DEEP2 galaxies. We also present the z {approx} 2 MZ relation using 19 lensed galaxies. A more rapid evolution is seen between z {approx} 1 {yields} 3 than z {approx} 0 {yields} 1 for the high-mass galaxies (10{sup 9.5} M {sub Sun} < M {sub *} < 10{sup 11} M {sub Sun }), with almost twice as much enrichment between z {approx} 1 {yields} 3 than between z {approx} 1 {yields} 0. We compare this evolution with the most recent cosmological hydrodynamic simulations with momentum-driven winds. We find that the model metallicity is consistent with the observed metallicity within the observational error for the low-mass bins. However, for higher masses, the model overpredicts the metallicity at all redshifts. The overprediction is most significant in the highest mass bin of 10{sup 10}-10{sup 11} M {sub Sun }.

  3. Cosmological constraints from Sunyaev-Zeldovich cluster counts: An approach to account for missing redshifts

    SciTech Connect

    Bonaldi, A.; Battye, R. A.; Brown, M. L.

    2014-05-10

    The accumulation of redshifts provides a significant observational bottleneck when using galaxy cluster surveys to constrain cosmological parameters. We propose a simple method to allow the use of samples where there is a fraction of the redshifts that are not known. The simplest assumption is that the missing redshifts are randomly extracted from the catalog, but the method also allows one to take into account known selection effects in the accumulation of redshifts. We quantify the reduction in statistical precision of cosmological parameter constraints as a function of the fraction of missing redshifts for simulated surveys, and also investigate the impact of making an incorrect assumption for the distribution of missing redshifts.

  4. THE OBSERVATIONS OF REDSHIFT EVOLUTION IN LARGE-SCALE ENVIRONMENTS (ORELSE) SURVEY. I. THE SURVEY DESIGN AND FIRST RESULTS ON CL 0023+0423 AT z = 0.84 AND RX J1821.6+6827 AT z = 0.82

    SciTech Connect

    Lubin, L. M.; Lemaux, B. C.; Kocevski, D. D.; Gal, R. R.; Squires, G. K.

    2009-06-15

    We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h {sup -1} {sub 70} Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z {approx} 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc x 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s{sup -1}. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the H{delta} line in a composite spectrum of 138 members indicates a substantial contribution from recent

  5. The Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey. I. The Survey Design and First Results on CL 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82

    NASA Astrophysics Data System (ADS)

    Lubin, L. M.; Gal, R. R.; Lemaux, B. C.; Kocevski, D. D.; Squires, G. K.

    2009-06-01

    We present the Observations of Redshift Evolution in Large-Scale Environments (ORELSE) Survey, a systematic search for structure on scales greater than 10 h -1 70 Mpc around 20 well-known clusters at redshifts of 0.6 < z < 1.3. The goal of the survey is to examine a statistical sample of dynamically active clusters and large-scale structures in order to quantify galaxy properties over the full range of local and global environments. We describe the survey design, the cluster sample, and our extensive observational data covering at least 25' around each target cluster. We use adaptively smoothed red galaxy density maps from our wide-field optical imaging to identify candidate groups/clusters and intermediate-density large-scale filaments/walls in each cluster field. Because photometric techniques (such as photometric redshifts, statistical overdensities, and richness estimates) can be highly uncertain, the crucial component of this survey is the unprecedented amount of spectroscopic coverage. We are using the wide-field, multiobject spectroscopic capabilities of the Deep Multiobject Imaging Spectrograph to obtain 100-200+ confirmed cluster members in each field. Our survey has already discovered the Cl 1604 supercluster at z ≈ 0.9, a structure which contains at least eight groups and clusters and spans 13 Mpc × 100 Mpc. Here, we present the results on the large-scale environments of two additional clusters, Cl 0023+0423 at z = 0.84 and RX J1821.6+6827 at z = 0.82, which highlight the diversity of global properties at these redshifts. The optically selected Cl 0023+0423 is a four-way group-group merger with constituent groups having measured velocity dispersions between 206 and 479 km s-1. The galaxy population is dominated by blue, star-forming galaxies, with 80% of the confirmed members showing [O II] emission. The strength of the Hδ line in a composite spectrum of 138 members indicates a substantial contribution from recent starbursts to the overall galaxy

  6. Exploring the SDSS photometric galaxies with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-07-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  7. Exploring the SDSS Photometric Galaxies with Clustering Redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Mendez, Alexander J.; Ménard, Brice; Scranton, Ryan; Schmidt, Samuel J.; Morrison, Christopher B.; Budavári, Tamás

    2016-04-01

    We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r = 22. We map the relationships between colours and redshift, without assumption of the sources' spectral energy distributions (SED). We identify and locate star-forming, quiescent galaxies, and AGN, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour-redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z ˜ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric redshift estimates (likely artifacts imprinted by their spectroscopic training set). We also infer a higher fraction of high redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.

  8. Redshift-space Enhancement of Line-of-sight Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Main-galaxy Sample

    NASA Astrophysics Data System (ADS)

    Tian, H. J.; Neyrinck, Mark C.; Budavári, Tamás; Szalay, Alexander S.

    2011-02-01

    We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the baryon acoustic oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium simulation. We also analyze the SDSS DR7 main-galaxy sample, splitting the sample into slices 2fdg5 on the sky in various rotations. Measuring two-dimensional correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 ± 10) h -1 Mpc. Averaging only along the line of sight, we estimate its significance at a particular wavelet scale and location at 2.2σ. In a flat angular weighting in the (π, rp ) coordinate system, the noise level is suppressed, pushing the bump's significance to 4σ. We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.

  9. Redshift-Space Enhancement of Line-of-Sight Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Main-Galaxy Sample

    NASA Astrophysics Data System (ADS)

    Tian, Haijun; Neyrinck, Mark C.; Budavari, Tamas; SZALAY, AlEXANDER

    2015-08-01

    We show that redshift-space distortions of galaxy correlations have a strong effect on correlation functions with distinct, localized features, like the signature of the baryon acoustic oscillations (BAO). Near the line of sight, the features become sharper as a result of redshift-space distortions. We demonstrate this effect by measuring the correlation function in Gaussian simulations and the Millennium simulation. We also analyze the SDSS DR7 main-galaxy sample, splitting the sample into slices 2.5 on the sky in various rotations. Measuring two-dimensional correlation functions in each slice, we do see a sharp bump along the line of sight. Using Mexican-hat wavelets, we localize it to (110 ± 10) Mpc/h. Averaging only along the line of sight, we estimate its significance at a particular wavelet scale and location at 2.2σ. In a flat angular weighting in the (π,rp) coordinate system, the noise level is suppressed, pushing the bump’s significance to 4σ . We estimate that there is about a 0.2% chance of getting such a signal anywhere in the vicinity of the BAO scale from a power spectrum lacking a BAO feature. However, these estimates of the significances make some use of idealized Gaussian simulations, and thus are likely a bit optimistic.

  10. High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1996-01-01

    The report for this period includes three papers: 'Associated Absorption at Low and High Redshift'; 'Strong X-ray Absorption in a Broad Absorption Line Quasar: PHL5200'; and 'ASCA and ROSAT X-ray Spectra of High-Redshift Radio-Loud Quasars'. The first gives examples from both low and high redshift for combining information on absorbing material in active galactic nuclei from both x-ray and the UV. The second presents ASCA observations of the z = 1.98 prototype broad absorption line quasar (BALQSO): PHL 5200, detected with both the solid-state imaging spectrometers and the gas imaging spectometers. The third paper presents results on the x-ray properties of 9 high-redshift radio-loud quasars observed by ASCA and ROSAT, including ASCA observations of S5 0014+81 (z = 3.38) and S5 0836+71 (z = 2.17) and ROSAT observations of PKS 2126-158.

  11. MARZ: Redshifting Program

    NASA Astrophysics Data System (ADS)

    Hinton, Samuel

    2016-05-01

    MARZ analyzes objects and produces high quality spectroscopic redshift measurements. Spectra not matched correctly by the automatic algorithm can be redshifted manually by cycling automatic results, manual template comparison, or marking spectral features. The software has an intuitive interface and powerful automatic matching capabilities on spectra, and can be run interactively or from the command line, and runs as a Web application. MARZ can be run on a local server; it is also available for use on a public server.

  12. Plasma Redshift Cosmology

    NASA Astrophysics Data System (ADS)

    Brynjolfsson, Ari

    2011-04-01

    The newly discovered plasma redshift cross section explains a long range of phenomena; including the cosmological redshift, and the intrinsic redshift of Sun, stars, galaxies and quasars. It explains the beautiful black body spectrum of the CMB, and it predicts correctly: a) the observed XRB, b) the magnitude redshift relation for supernovae, and c) the surface- brightness-redshift relation for galaxies. There is no need for Big Bang, Inflation, Dark Energy, Dark Matter, Accelerated Expansion, and Black Holes. The universe is quasi-static and can renew itself forever (for details, see: http://www.plasmaredshift.org). There is no cosmic time dilation. In intergalactic space, the average electron temperature is T = 2.7 million K, and the average electron density is N = 0.0002 per cubic cm. Plasma redshift is derived theoretically from conventional axioms of physics by using more accurate methods than those conventionally used. The main difference is: 1) the proper inclusion of the dielectric constant, 2) more exact calculations of imaginary part of the dielectric constant, and as required 3) a quantum mechanical treatment of the interactions.

  13. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Collister, Adrian A.; Lahav, Ofer

    2004-04-01

    We introduce ANNz, a freely available software package for photometric redshift estimation using artificial neural networks. ANNz learns the relation between photometry and redshift from an appropriate training set of galaxies for which the redshift is already known. Where a large and representative training set is available, ANNz is a highly competitive tool when compared with traditional template-fitting methods. The ANNz package is demonstrated on the Sloan Digital Sky Survey Data Release 1, and for this particular data set the rms redshift error in the range 0<~z<~0.7 is σrms=0.023. Nonideal conditions (spectroscopic sets that are small or brighter than the photometric set for which redshifts are required) are simulated, and the impact on the photometric redshift accuracy is assessed.2

  14. The evolution of host mass and black hole mass in quasi-stellar objects from the 2dF QSO Redshift Survey

    NASA Astrophysics Data System (ADS)

    Fine, S.; Croom, S. M.; Miller, L.; Babic, A.; Moore, D.; Brewer, B.; Sharp, R. G.; Boyle, B. J.; Shanks, T.; Smith, R. J.; Outram, P. J.; Loaring, N. S.

    2006-12-01

    We investigate the relation between the mass of supermassive black holes (MBH) in quasi-stellar objects (QSOs) and the mass of the dark matter haloes hosting them (MDH). We measure the widths of broad emission lines (MgII λ2798, CIV λ1549) from QSO composite spectra as a function of redshift. These widths are then used to determine virial black hole mass estimates. We compare our virial black hole mass estimates to dark matter halo masses for QSO hosts derived by Croom et al. based on measurements of QSO clustering. This enables us to trace the MBH-MDH relation over the redshift range z = 0.5-2.5. We calculate the mean zero-point of the MBH-MDH relation to be MBH = 108.4+/-0.2Msolar for an MDH = 1012.5Msolar. These data are then compared with several models connecting MBH and MDH as well as recent hydrodynamical simulations of galaxy evolution. We note that the flux-limited nature of QSO samples can cause a Malmquist-type bias in the measured zero-point of the MBH-MDH relation. The magnitude of this bias depends on the scatter in the MBH-MDH relation, and we re-evaluate the zero-point assuming three published values for this scatter. We create a subsample of our data defined by a constant magnitude interval around L* and find (1 + z)3.3+/-1.3 evolution in MBH between z ~ 0.5 and 2.5 for typical, L* QSOs. We also determine the Eddington ratios (L/LEdd) for the same subsample and find no significant evolution: (1 + z)-0.4+/-1.1. Taken at face value, our data suggest that a decrease in active black hole mass since z ~ 2.5 is the driving force behind luminosity evolution of typical, L*, optically selected QSOs. However, we note that our data are also consistent with a picture in which reductions in both black hole mass and accretion rate contribute equally to luminosity evolution. In addition, we find that these evolution results are strongly affected by the virial black hole mass estimators used. Changes to the calibration of these have a significant effect on the

  15. Photometric Redshift Techniques in Big-data Era

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Xia; Zhao, Yong-Heng

    Photometric data increase with large survey projects running. The huge volume of data influences the means and methods to deal with them. As such, the techniques of photometric redshift estimation based on photometric data must be developed and improved.

  16. Testing dark matter clustering with redshift space distortions

    SciTech Connect

    Linder, Eric V.

    2013-04-01

    The growth rate of large scale structure can probe whether dark matter clusters at gravitational strength or deviates from this, e.g. due to self interactions. Measurement of the growth rate through redshift space distortions in galaxy redshift surveys constrains the clustering strength, and its redshift dependence. We compare such effects on growth to those from high redshift deviations (e.g. early dark energy) or modified gravity, and give a simple, highly accurate analytic prescription. Current observations can constrain the dark matter clustering strength to F{sub cl} = 0.99±0.02 of standard, if all other parameters are held fixed, but substantial covariances exist. Future galaxy redshift surveys may constrain an evolving clustering strength to 28%, marginalizing over the other parameters, or 4% if the dark energy parameters are held fixed while fitting for dark matter growth. Tighter constraints on the nature of dark matter could be obtained by combining cosmological and astrophysical probes.

  17. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION

    SciTech Connect

    Dahlen, Tomas; Ferguson, Henry C.; Mobasher, Bahram; Faber, Sandra M.; Barro, Guillermo; Guo, Yicheng; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Dickinson, Mark E.; Salvato, Mara; Wuyts, Stijn; Wiklind, Tommy; Acquaviva, Viviana; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.; and others

    2013-10-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.

  18. A Critical Assessment of Photometric Redshift Methods: A CANDELS Investigation

    NASA Astrophysics Data System (ADS)

    Dahlen, Tomas; Mobasher, Bahram; Faber, Sandra M.; Ferguson, Henry C.; Barro, Guillermo; Finkelstein, Steven L.; Finlator, Kristian; Fontana, Adriano; Gruetzbauch, Ruth; Johnson, Seth; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn; Acquaviva, Viviana; Dickinson, Mark E.; Guo, Yicheng; Huang, Jiasheng; Huang, Kuang-Han; Newman, Jeffrey A.; Bell, Eric F.; Conselice, Christopher J.; Galametz, Audrey; Gawiser, Eric; Giavalisco, Mauro; Grogin, Norman A.; Hathi, Nimish; Kocevski, Dale; Koekemoer, Anton M.; Koo, David C.; Lee, Kyoung-Soo; McGrath, Elizabeth J.; Papovich, Casey; Peth, Michael; Ryan, Russell; Somerville, Rachel; Weiner, Benjamin; Wilson, Grant

    2013-10-01

    We present results from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) photometric redshift methods investigation. In this investigation, the results from 11 participants, each using a different combination of photometric redshift code, template spectral energy distributions (SEDs), and priors, are used to examine the properties of photometric redshifts applied to deep fields with broadband multi-wavelength coverage. The photometry used includes U-band through mid-infrared filters and was derived using the TFIT method. Comparing the results, we find that there is no particular code or set of template SEDs that results in significantly better photometric redshifts compared to others. However, we find that codes producing the lowest scatter and outlier fraction utilize a training sample to optimize photometric redshifts by adding zero-point offsets, template adjusting, or adding extra smoothing errors. These results therefore stress the importance of the training procedure. We find a strong dependence of the photometric redshift accuracy on the signal-to-noise ratio of the photometry. On the other hand, we find a weak dependence of the photometric redshift scatter with redshift and galaxy color. We find that most photometric redshift codes quote redshift errors (e.g., 68% confidence intervals) that are too small compared to that expected from the spectroscopic control sample. We find that all codes show a statistically significant bias in the photometric redshifts. However, the bias is in all cases smaller than the scatter; the latter therefore dominates the errors. Finally, we find that combining results from multiple codes significantly decreases the photometric redshift scatter and outlier fraction. We discuss different ways of combining data to produce accurate photometric redshifts and error estimates.

  19. Cluster redshifts in five suspected superclusters

    NASA Technical Reports Server (NTRS)

    Ciardullo, R.; Ford, H.; Harms, R.

    1985-01-01

    Redshift surveys for rich superclusters were carried out in five regions of the sky containing surface-density enhancements of Abell clusters. While several superclusters are identified, projection effects dominate each field, and no system contains more than five rich clusters. Two systems are found to be especially interesting. The first, field 0136 10, is shown to contain a superposition of at least four distinct superclusters, with the richest system possessing a small velocity dispersion. The second system, 2206 - 22, though a region of exceedingly high Abell cluster surface density, appears to be a remarkable superposition of 23 rich clusters almost uniformly distributed in redshift space between 0.08 and 0.24. The new redshifts significantly increase the three-dimensional information available for the distance class 5 and 6 Abell clusters and allow the spatial correlation function around rich superclusters to be estimated.

  20. Dusty Galaxies at the Highest Redshifts

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    Galaxies with very high star formation rates are usually shrouded in substantial amounts of dust obscuration, making their discovery impossible through optical and/or near-IR observations. Observations in the far-IR/submm in contrast can identify such objects from their colours, allowing these rare objects to be followup up in detail. Herschel surveys have found a significant population of such objects at 4redshift record holder lying at z=6.34. Such objects are a challenge for all current models of galaxy formation and evolution. We here present the latest results from the HerMES consortium's ongoing work on this population, including new imaging and spectroscopic redshifts from ALMA, analysis of lensing for bright z>5 sources, and progress in the search for dusty star forming galaxies at still higher redshifts.

  1. MARZ: Manual and automatic redshifting software

    NASA Astrophysics Data System (ADS)

    Hinton, S. R.; Davis, Tamara M.; Lidman, C.; Glazebrook, K.; Lewis, G. F.

    2016-04-01

    The Australian Dark Energy Survey (OzDES) is a 100-night spectroscopic survey underway on the Anglo-Australian Telescope using the fibre-fed 2-degree-field (2dF) spectrograph. We have developed a new redshifting application MARZ with greater usability, flexibility, and the capacity to analyse a wider range of object types than the RUNZ software package previously used for redshifting spectra from 2dF. MARZ is an open-source, client-based, Javascript web-application which provides an intuitive interface and powerful automatic matching capabilities on spectra generated from the AAOmega spectrograph to produce high quality spectroscopic redshift measurements. The software can be run interactively or via the command line, and is easily adaptable to other instruments and pipelines if conforming to the current FITS file standard is not possible. Behind the scenes, a modified version of the AUTOZ cross-correlation algorithm is used to match input spectra against a variety of stellar and galaxy templates, and automatic matching performance for OzDES spectra has increased from 54% (RUNZ) to 91% (MARZ). Spectra not matched correctly by the automatic algorithm can be easily redshifted manually by cycling automatic results, manual template comparison, or marking spectral features.

  2. The impact of foregrounds on redshift space distortion measurements with the highly redshifted 21-cm line

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.

    2015-02-01

    The highly redshifted 21-cm line of neutral hydrogen has become recognized as a unique probe of cosmology from relatively low redshifts (z ˜ 1) up through the Epoch of Reionization (EoR) (z ˜ 8) and even beyond. To date, most work has focused on recovering the spherically averaged power spectrum of the 21-cm signal, since this approach maximizes the signal to noise in the initial measurement. However, like galaxy surveys, the 21-cm signal is affected by redshift space distortions, and is inherently anisotropic between the line of sight and transverse directions. A measurement of this anisotropy can yield unique cosmological information, potentially even isolating the matter power spectrum from astrophysical effects. However, in interferometric measurements, foregrounds also have an anisotropic footprint between the line of sight and transverse directions: the so-called foreground `wedge'. Although foreground subtraction techniques are actively being developed, a `foreground avoidance' approach of simply ignoring contaminated modes has arguably proven most successful to date. In this work, we analyse the effect of this foreground anisotropy in recovering the redshift space distortion signature in 21-cm measurements at both high and intermediate redshifts. We find the foreground wedge corrupts nearly all of the redshift space signal for even the largest proposed EoR experiments (Hydrogen Epoch of Reionization Array and the Square Kilometre Array), making cosmological information unrecoverable without foreground subtraction. The situation is somewhat improved at lower redshifts, where the redshift-dependent mapping from observed coordinates to cosmological coordinates significantly reduces the size of the wedge. Using only foreground avoidance, we find that a large experiment like Canadian Hydrogen Intensity Mapping Experiment can place non-trivial constraints on cosmological parameters.

  3. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  4. Theoretical investigation on the bond dissociation enthalpies of phenolic compounds extracted from Artocarpus altilis using ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method

    NASA Astrophysics Data System (ADS)

    Thong, Nguyen Minh; Duong, Tran; Pham, Linh Thuy; Nam, Pham Cam

    2014-10-01

    Theoretical calculations have been performed to predict the antioxidant property of phenolic compounds extracted from Artocarpus altilis. The Osbnd H bond dissociation enthalpy (BDE), ionization energy (IE), and proton dissociation enthalpy (PDE) of the phenolic compounds have been computed. The ONIOM(ROB3LYP/6-311++G(2df,2p):PM6) method is able to provide reliable evaluation for the BDE(Osbnd H) in phenolic compounds. An important property of antioxidants is determined via the BDE(Osbnd H) of those compounds extracted from A. altilis. Based on the BDE(Osbnd H), compound 12 is considered as a potential antioxidant with the estimated BDE value of 77.3 kcal/mol in the gas phase.

  5. High-redshift QSOs in GOODS

    NASA Astrophysics Data System (ADS)

    Fontanot, Fabio; Monaco, Pierluigi; Cristiani, Stefano; Nonino, Mario; Vanzella, Eros

    2004-12-01

    Multiwavelenght surveys are a key instrument in detecting AGNs. AGNs are recognizable from their color properties and/or their infrared/X-ray emission. We discuss the recent developments of the GOODS survey and our selection of candidates based on optical color criteria and on the matching of the optical ACS database with infrared and X-rays counterparts. We pay particular attention to the high-z QSOs search in those fields. From these observation we obtain a sample of QSOs at redshifts from 3.5 to 5.2 and we put new constraints on the faint end of the Luminosity Function at those redshift, which is particularly important to understand the interplay between the formation of galaxies and super-massive black holes inside Dark Matter Halos and to measure the QSOs contribution to the UV ionizing background.

  6. Redshifts of southern radio sources. VII

    NASA Technical Reports Server (NTRS)

    White, Graeme L.; Jauncey, David L.; Wright, Alan E.; Batty, Michael J.; Savage, Ann; Peterson, Bruce A.; Gulkis, Sam

    1988-01-01

    Redshifts and low-resolution spectral data are presented for 47 objects, most of which are QSOs identified with flat-spectrum radio sources from the Parkes 2.7 GHz survey. These data were taken with the 3.9 m Anglo-Australian Telescope using both the IPCS and FORS spectrographs. The total spectral coverage is 3200-9500 A. Three objects are optical counterparts identified with IRAS sources.

  7. Metals at high redshifts

    NASA Astrophysics Data System (ADS)

    Petitjean, Patrick

    The amount of metals present in the Universe and its cosmological evolution is a key issue for our understanding of how star formation proceeds from the collapse of the first objects to the formation of present day galaxies. We discuss here recent results at the two extremes of the density scale. 1. Part of the tenuous intergalactic medium (IGM) revealed by neutral hydrogen absorptions in the spectra of remote quasars (the so-called Lyman-α forest) contains metals. This is not surprising as there is a close interplay between the formation of galaxies and the evolution of the IGM. The IGM acts as the baryonic reservoir from which galaxies form, while star formation in the forming galaxies strongly influences the IGM by enrichment with metals and the emission of ionizing radiation. The spatial distribution of metals in the IGM is largely unknown however. The possibility remains that metals are associated with the filaments and sheets of the dark matter spatial distribution where stars are expected to form, whereas the space delineated by these features remains unpolluted. 2. Damped Lyman-α (DLA) systems observed in the spectra of high-redshift quasars are considered as the progenitors of present-day galaxies. Indeed, the large neutral hydrogen column densities observed and the presence of metals imply that the gas is somehow closely associated with regions of star formation. The nature of the absorbing objects is unclear however. It is probable that very different objects contribute to this population of absorption systems. Here we concentrate on summarizing the properties of the gas: presence of dust in small amount; nucleosynthesis signature and lack of H_2 molecules. The presence of H_2 molecules has been investigated in the course of a mini-survey with UVES at the VLT. The upper limits on the molecular fraction, f = 2N(H_2)/(2N(H_2)+N(HI)), derived in eight systems are in the range 1.2 ×10^-7 - 1.6 × 10^-5. There is no evidence in this sample for any

  8. High redshift GRBs

    NASA Astrophysics Data System (ADS)

    Gehrels, Neil; Cannizzo, John K.

    2012-09-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  9. High Redshift GRBs

    NASA Technical Reports Server (NTRS)

    Gehrels, Neil; Cannizzo, John K.

    2012-01-01

    The Swift mission has opened a new, high redshift window on the universe. In this review we provide an overview of gamma-ray burst (GRB) science, describe the Swift mission, discuss high-z GRBs and tools for high-z studies, and look forward at future capabilities. A new mission concept - Lobster - is described that would monitor the X-ray sky at order of magnitude higher sensitivity than current missions.

  10. The number density of quiescent compact galaxies at intermediate redshift

    SciTech Connect

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-20

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ∼200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ∼ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  11. The MOSDEF Survey: Measurements of Balmer Decrements and the Dust Attenuation Curve at Redshifts z ~ 1.4–2.6

    NASA Astrophysics Data System (ADS)

    Reddy, Naveen A.; Kriek, Mariska; Shapley, Alice E.; Freeman, William R.; Siana, Brian; Coil, Alison L.; Mobasher, Bahram; Price, Sedona H.; Sanders, Ryan L.; Shivaei, Irene

    2015-06-01

    We present results on the dust attenuation curve of z ∼ 2 galaxies using early observations from the MOSFIRE Deep Evolution Field survey. Our sample consists of 224 star-forming galaxies with zspec = 1.36–2.59 and high signal-to-noise ratio measurements of Hα and Hβ obtained with Keck/MOSFIRE. We construct composite spectral energy distributions (SEDs) of galaxies in bins of Balmer decrement to measure the attenuation curve. We find a curve that is similar to the SMC extinction curve at λ ≳ 2500 Å. At shorter wavelengths, the shape is identical to that of the Calzetti et al. relation, but with a lower normalization. Hence, the new attenuation curve results in star formation rates (SFRs) that are ≈ 20% lower, and stellar masses that are {Δ }{log}({M}*{/M}ȯ )≃ 0.16 dex lower, than those obtained with the Calzetti relation. We find that the difference in the total attenuation of the ionized gas and stellar continuum correlates strongly with SFR, such that for dust-corrected SFRs ≳ 20 M⊙ yr‑1, assuming a Chabrier initial mass function, the nebular emission lines suffer an increasing degree of obscuration relative to the continuum. A simple model that can account for these trends is one in which the UV through optical stellar continuum is dominated by a population of less-reddened stars, while the nebular line and bolometric luminosities become increasingly dominated by dustier stellar populations for galaxies with large SFRs, as a result of the increased dust enrichment that accompanies such galaxies. Consequently, UV- and SED-based SFRs may underestimate the total SFR at even modest levels of ≈20 M⊙ yr‑1. Based on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  12. Spatial clustering in the ESO-Sculptor survey: two-point correlation functions by galaxy type at redshifts 0.1-0.5

    NASA Astrophysics Data System (ADS)

    de Lapparent, V.; Slezak, E.

    2007-09-01

    Context: Galaxy clustering shows segregation effects with galaxy type, color and luminosity, which bring clues on the relationship with the underlying density field. Aims: We explore these effects among the populations of giant and dwarf galaxies detected in the ESO-Sculptor survey. Methods: We calculate the spatial two-point auto and cross-correlation functions for the 765 galaxies with R_c≤ 21.5 and 0.1 ≤ z ≤ 0.51 and for subsets by spectral type and luminosity. Results: At separation of 0.3 h-1 Mpc, pairs of early-type galaxies dominate the clustering over all the other types of pairs. At intermediate scales, 0.3-5 h-1 Mpc, mixed pairs of dwarf and giant galaxies contribute equally as pairs of giant galaxies, whereas the latter dominate at ≃10 h-1 Mpc. Moreover, the correlation functions per galaxy type display the expected transition between the 1-halo and 2-halo regimes in the scenario of hierarchical merging of dark matter halos. The 1-halo component of the early-type galaxies largely outdoes that for the late spiral galaxies, and that for the dwarf galaxies is intermediate between both. In contrast, the 2-halo component of the early-type galaxies and late spiral galaxies are comparable, whereas that for the dwarf galaxies is consistent with null clustering. Conclusions: We link the clustering segregation of the early-type and late spiral galaxies to their spatial distribution within the underlying dark matter halos. The early-type galaxies are preferentially located near the centers of the most massive halos, whereas late spiral galaxies tend to occupy their outskirts or the centers of less massive halos. This appears to be independent of luminosity for the early-type galaxies, whereas faint late spiral galaxies might reside in less dense regions than their bright analogs. The present analysis also unveils unprecedented results on the contribution from dwarf galaxies: at the scale at which they significantly cluster inside the halos (≤0.3 h-1 Mpc

  13. Bayesian photometric redshifts with empirical training sets

    NASA Astrophysics Data System (ADS)

    Wolf, Christian

    2009-07-01

    We combine in a single framework the two complementary benefits of χ2 template fits and empirical training sets used e.g. in neural nets: χ2 is more reliable when its probability density functions (PDFs) are inspected for multiple peaks, while empirical training is more accurate when calibration and priors of query data and training set match. We present a χ2 empirical method that derives PDFs from empirical models as a subclass of kernel regression methods, and apply it to the Sloan Digital Sky Survey Data Release 5 sample of >75000 quasi-stellar objects, which is full of ambiguities. Objects with single-peak PDFs show <1 per cent outliers, rms redshift errors <0.05 and vanishing redshift bias. At z > 2.5, these figures are two times better. Outliers result purely from the discrete nature and limited size of the model, and rms errors are dominated by the intrinsic variety of object colours. PDFs classed as ambiguous provide accurate probabilities for alternative solutions and thus weights for using both solutions and avoiding needless outliers. E.g. the PDFs predict 78.0 per cent of the stronger peaks to be correct, which is true for 77.9 per cent of them. Redshift incompleteness is common in faint spectroscopic surveys and turns into a massive undetectable outlier risk above other performance limitations, but we can quantify residual outlier risks stemming from size and completeness of the model. We propose a matched χ2 error scale for noisy data and show that it produces correct error estimates and redshift distributions accurate within Poisson errors. Our method can easily be applied to future large galaxy surveys, which will benefit from the reliability in ambiguity detection and residual risk quantification.

  14. Quasar redshifts: the intrinsic component

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2016-09-01

    The large observed redshift of quasars has suggested large cosmological distances and a corresponding enormous energy output to explain the brightness or luminosity as seen at earth. Alternative or complementary sources of redshift have not been identified by the astronomical community. This study examines one possible source of additional redshift: an intrinsic component based on the plasma characteristics of high temperature and high electron density which are believed to be present.

  15. Morphologies at High Redshift from Galaxy Zoo

    NASA Astrophysics Data System (ADS)

    Masters, Karen; Melvin, Tom; Simmons, Brooke; Willett, Kyle; Lintott, Chris

    2015-08-01

    I will present results from Galaxy Zoo classification of galaxies observed in public observed frame optical HST surveys (e.g. COSMOS, GOODS) as well as in observed frame NIR with (ie. CANDELS). Early science results from these classifications have investigated the changing bar fraction in disc galaxies as a function of redshift (to z~1 in Melvin et al. 2014; and at z>1 in Simmons et al. 2015), as well as how the morphologies of galaxies on the red sequence have been changing since z~1 (Melvin et al. in prep.). These unique dataset of quantitative visual classifications for high redshift galaxies will be made public in forthcoming publications (planned as Willett et al. for Galaxy Zoo Hubble, and Simmons et al. for Galaxy Zoo CANDELS).

  16. EZ: A Tool For Automatic Redshift Measurement

    NASA Astrophysics Data System (ADS)

    Garilli, B.; Fumana, M.; Franzetti, P.; Paioro, L.; Scodeggio, M.; Le Fèvre, O.; Paltani, S.; Scaramella, R.

    2010-07-01

    We present EZ (Easy redshift), a tool we have developed within the VVDS project to help in redshift measurement from optical spectra. EZ has been designed with large spectroscopic surveys in mind, and in its development particular care has been given to the reliability of the results obtained in an automatic and unsupervised mode. Nevertheless, the possibility of running it interactively has been preserved, and a graphical user interface for results inspection has been designed. EZ has been successfully used within the VVDS project, as well as the zCosmos one. In this article we describe its architecture and the algorithms used, and evaluate its performances both on simulated and real data. EZ is an open-source program, freely downloadable from the Pandora Web Site.1

  17. Photometric redshifts for the SDSS Data Release 12

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-08-01

    We present the methodology and data behind the photometric redshift data base of the Sloan Digital Sky Survey (SDSS) Data Release 12. We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalogue was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1976 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208 474 076 galaxies of the SDSS primary photometric catalogue. We achieve an average bias of overline{Δ z_{norm}} = {5.84 × 10^{-5}}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11 per cent when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high-quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  18. Tuning target selection algorithms to improve galaxy redshift estimates

    NASA Astrophysics Data System (ADS)

    Hoyle, Ben; Paech, Kerstin; Rau, Markus Michael; Seitz, Stella; Weller, Jochen

    2016-06-01

    We showcase machine learning (ML) inspired target selection algorithms to determine which of all potential targets should be selected first for spectroscopic follow-up. Efficient target selection can improve the ML redshift uncertainties as calculated on an independent sample, while requiring less targets to be observed. We compare seven different ML targeting algorithms with the Sloan Digital Sky Survey (SDSS) target order, and with a random targeting algorithm. The ML inspired algorithms are constructed iteratively by estimating which of the remaining target galaxies will be most difficult for the ML methods to accurately estimate redshifts using the previously observed data. This is performed by predicting the expected redshift error and redshift offset (or bias) of all of the remaining target galaxies. We find that the predicted values of bias and error are accurate to better than 10-30 per cent of the true values, even with only limited training sample sizes. We construct a hypothetical follow-up survey and find that some of the ML targeting algorithms are able to obtain the same redshift predictive power with 2-3 times less observing time, as compared to that of the SDSS, or random, target selection algorithms. The reduction in the required follow-up resources could allow for a change to the follow-up strategy, for example by obtaining deeper spectroscopy, which could improve ML redshift estimates for deeper test data.

  19. Photometric redshifts for the SDSS Data Release 12

    NASA Astrophysics Data System (ADS)

    Beck, Róbert; Dobos, László; Budavári, Tamás; Szalay, Alexander S.; Csabai, István

    2016-04-01

    We present the methodology and data behind the photometric redshift database of the Sloan Digital Sky Survey Data Release 12 (SDSS DR12). We adopt a hybrid technique, empirically estimating the redshift via local regression on a spectroscopic training set, then fitting a spectrum template to obtain K-corrections and absolute magnitudes. The SDSS spectroscopic catalog was augmented with data from other, publicly available spectroscopic surveys to mitigate target selection effects. The training set is comprised of 1, 976, 978 galaxies, and extends up to redshift z ≈ 0.8, with a useful coverage of up to z ≈ 0.6. We provide photometric redshifts and realistic error estimates for the 208, 474, 076 galaxies of the SDSS primary photometric catalog. We achieve an average bias of overline{Δ z_{norm}} = 5.84 × 10^{-5}, a standard deviation of σ(Δznorm) = 0.0205, and a 3σ outlier rate of Po = 4.11% when cross-validating on our training set. The published redshift error estimates and photometric error classes enable the selection of galaxies with high quality photometric redshifts. We also provide a supplementary error map that allows additional, sophisticated filtering of the data.

  20. Sky Mining - Application to Photomorphic Redshift Estimation

    NASA Astrophysics Data System (ADS)

    Nayak, Pragyansmita

    The field of astronomy has evolved from the ancient craft of observing the sky. In it's present form, astronomers explore the cosmos not just by observing through the tiny visible window used by our eyes, but also by exploiting the electromagnetic spectrum from radio waves to gamma rays. The domain is undoubtedly at the forefront of data-driven science. The data growth rate is expected to be around 50%--100% per year. This data explosion is attributed largely to the large-scale wide and deep surveys of the different regions of the sky at multiple wavelengths (both ground and space-based surveys). This dissertation describes the application of machine learning methods to the estimation of galaxy redshifts leveraging such a survey data. Galaxy is a large system of stars held together by mutual gravitation and isolated from similar systems by vast regions of space. Our view of the universe is closely tied to our understanding of galaxy formation. Thus, a better understanding of the relative location of the multitudes of galaxies is crucial. The position of each galaxy can be characterized using three coordinates. Right Ascension (ra) and Declination (dec) are the two coordinates that locate the galaxy in two dimensions on the plane of the sky. It is relatively straightforward to measure them. In contrast, fixing the third coordinate that is the galaxy's distance from the observer along the line of sight (redshift 'z') is considerably more challenging. "Spectroscopic redshift" method gives us accurate and precise measurements of z. However, it is extremely time-intensive and unusable for faint objects. Additionally, the rate at which objects are being identified via photometric surveys far exceeds the rate at which the spectroscopic redshift measurements can keep pace in determining their distance. As the surveys go deeper into the sky, the proportion of faint objects being identified also continues to increase. In order to tackle both these drawbacks increasing in

  1. Probabilistic Photometric Redshifts in the Era of Petascale Astronomy

    SciTech Connect

    Carrasco Kind, Matias

    2014-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. These surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these photometric redshift PDFs will be non-trivial, and this challenge becomes even more severe if a survey plans to compute and store multiple different PDFs. In this thesis, we have developed an end-to-end framework that will compute accurate and robust photometric redshift PDFs for massive data sets by using two new, state-of-the-art machine learning techniques that are based on a random forest and a random atlas, respectively. By using data from several photometric surveys, we demonstrate the applicability of these new techniques, and we demonstrate that our new approach is among the best techniques currently available. We also show how different techniques can be combined by using novel Bayesian techniques to improve the photometric redshift precision to unprecedented levels while also presenting new approaches to better identify outliers. In addition, our framework provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, and a quantification of the relative importance of the variables used during the estimation process. Furthermore, we present a new approach to represent and store photometric redshift PDFs by using a sparse representation with outstanding compression and reconstruction capabilities. We also demonstrate how this framework can also be directly incorporated into cosmological analyses. The new techniques presented in this thesis are crucial

  2. Filling in the 2MASX Redshift Zone of Avoidance

    NASA Astrophysics Data System (ADS)

    Kraan-Korteweg, Renee; Staveley-Smith, Lister; Jarrett, Thomas; Schroeder, Anja; Henning, Trish; van Driel, Wim; Said, Khaled

    2014-04-01

    Despite nearly 20 years of concerted effort, the dynamics of the local Universe remain poorly understood. This in part is due to the lack of data in the Zone of Avoidance (ZOA). The current most homogeneous "all-sky'' redshift survey is the 2MASX Redshift Survey (2MRS). However, 2MASX galaxies in the ZOA were excluded from the Redshift follow-up Survey. To fill in the 2MASX redshift gap and map the hidden large-scale structures we started a systematic HI redshift follow-up programme of the brightest 2MASX galaxies, i.e. complement the 2MRS and the 2MASX Tully-Fisher survey (2MTF). A thousand galaxies without previous redshift measurement and Dec > -38 deg have been observed with the Nancay Radio Telescope (NRT). For the remaining southern ZOA we started using the Parkes Radio Telescope. 121 hours of observing time were allocated in the previous semesters (2012OCTS and 2013OCTS/P831). The TAC rating for our previous semester 2013OCT/P831 was 4.1 and they suggest to resubmit for the remainder of the remaining time in 2014APR, with the expectation those observations will be scheduled at the beginning of April. To complete the survey, a further 94 hours with the Parkes MultiBeam System are needed. With the here proposed observations, the ZoA will have systematic coverage from the northern to southern end, providing a unique TF data set to map the important flow fields that cross the ZOA, including the Great Attractor (GA), Perseus-Pisces(PP), Puppis, and the Local Void (LV).

  3. Dust Emission from High-Redshift QSOs.

    PubMed

    Carilli; Bertoldi; Menten; Rupen; Kreysa; Fan; Strauss; Schneider; Bertarini; Yun; Zylka

    2000-04-10

    We present detections of emission at 250 GHz (1.2 mm) from two high-redshift QSOs from the Sloan Digital Sky Survey sample using the bolometer array at the IRAM 30 m telescope. The sources are SDSSp 015048.83+004126.2 at z=3.7 and SDSSp J033829.31+002156.3 at z=5.0; the latter is the third highest redshift QSO known and the highest redshift millimeter-emitting source yet identified. We also present deep radio continuum imaging of these two sources at 1.4 GHz using the Very Large Array. The combination of centimeter and millimeter observations indicate that the 250 GHz emission is most likely thermal dust emission, with implied dust masses approximately 108 M middle dot in circle. We consider possible dust heating mechanisms, including UV emission from the active galactic nucleus (AGN) and a massive starburst concurrent with the AGN, with implied star formation rates greater than 103 M middle dot in circle yr-1. PMID:10727380

  4. Relativistic redshifts in quasar broad lines

    SciTech Connect

    Tremaine, Scott; Shen, Yue; Liu, Xin; Loeb, Abraham E-mail: yshen@obs.carnegiescience.edu E-mail: aloeb@cfa.harvard.edu

    2014-10-10

    The broad emission lines commonly seen in quasar spectra have velocity widths of a few percent of the speed of light, so special- and general-relativistic effects have a significant influence on the line profile. We have determined the redshift of the broad Hβ line in the quasar rest frame (determined from the core component of the [O III] line) for over 20,000 quasars from the Sloan Digital Sky Survey Data Release 7 quasar catalog. The mean redshift as a function of line width is approximately consistent with the relativistic redshift that is expected if the line originates in a randomly oriented Keplerian disk that is obscured when the inclination of the disk to the line of sight exceeds ∼30°-45°, consistent with simple active galactic nucleus unification schemes. This result also implies that the net line-of-sight inflow/outflow velocities in the broad-line region are much less than the Keplerian velocity when averaged over a large sample of quasars with a given line width.

  5. Steep radio spectra in high-redshift radio galaxies

    NASA Technical Reports Server (NTRS)

    Krolik, Julian H.; Chen, Wan

    1991-01-01

    The generic spectrum of an optically thin synchrotron source steepens by 0.5 in spectral index from low frequencies to high whenever the source lifetime is greater than the energy-loss timescale for at least some of the radiating electrons. Three effects tend to decrease the frequency nu(b) of this spectral bend as the source redshift increases: (1) for fixed bend frequency nu* in the rest frame, nu(b) = nu*/(1 + z); (2) losses due to inverse Compton scattering the microwave background rise with redshift as (1 + z) exp 4, so that, for fixed residence time in the radiating region, the energy of the lowest energy electron that can cool falls rapidly with increasing redshift; and (3) if the magnetic field is proportional to the equipartition field and the emitting volume is fixed or slowly varying, flux-limited samples induce a selection effect favoring low nu* at high z because higher redshift sources require higher emissivity to be included in the sample, and hence have stronger implied fields and more rapid synchrotron losses. A combination of these effects may explain the trend observed in the 3CR sample for higher redshift radio galaxies to have steeper spectra, and the successful use of ultrasteep spectrum surveys to locate high-redshift galaxies.

  6. High redshift QSOs and the x ray background

    NASA Technical Reports Server (NTRS)

    Impey, Chris

    1993-01-01

    ROSAT pointed observations were made of 9 QSO's from the Large Bright Quasar Survey (LBQS). The LBQS is based on machine measurement of objective prism plates taken with the UK Schmidt Telescope. Software has been used to select QSO's by both color and by the presence of spectral features and continuum breaks. The probability of detection can be calculated as a function of magnitude, redshift and spectral features, and the completeness of the survey can be accurately estimated. Nine out of 1040 QSO's in the LBQS have z greater than 3. The observations will provide an important data point in the X-ray luminosity function of QSO's at high redshift. The QSO's with z greater than 3 span less than a magnitude in M(sub B), so can be combined as a homogeneous sample. This analysis is only possible with a sample drawn from a large and complete catalog such as the LBQS. Four of the 9 QSO's that were observed with the ROSAT PSPC for this proposal were detected, including one of the most luminous X-ray sources ever observed. The April 1992 version of the PROS DETECT package was used to reduce the data. The results have been used to search for evolution of the X-ray properties of QSO's in redshift. The 9 QSO's lie in the range -28.7 less than M(sub B) less than -27.8. When combined with data for 16 QSO's in a similar luminosity range at lower redshift correlations with luminosity and redshift can be separated out. The LBQS sample also yields a new constraint on the contribution of high redshift QSO's to the X-ray background. An initial requirement is knowledge of the X-ray properties (alpha(sub OX)) as a function of redshift. Integration over the evolving luminosity function of the LBQS then gives the QSO contribution to the source counts.

  7. A sparse Gaussian process framework for photometric redshift estimation

    NASA Astrophysics Data System (ADS)

    Almosallam, Ibrahim A.; Lindsay, Sam N.; Jarvis, Matt J.; Roberts, Stephen J.

    2016-01-01

    Accurate photometric redshifts are a lynchpin for many future experiments to pin down the cosmological model and for studies of galaxy evolution. In this study, a novel sparse regression framework for photometric redshift estimation is presented. Synthetic data set simulating the Euclid survey and real data from SDSS DR12 are used to train and test the proposed models. We show that approaches which include careful data preparation and model design offer a significant improvement in comparison with several competing machine learning algorithms. Standard implementations of most regression algorithms use the minimization of the sum of squared errors as the objective function. For redshift inference, this induces a bias in the posterior mean of the output distribution, which can be problematic. In this paper, we directly minimize the target metric Δz = (zs - zp)/(1 + zs) and address the bias problem via a distribution-based weighting scheme, incorporated as part of the optimization objective. The results are compared with other machine learning algorithms in the field such as artificial neural networks (ANN), Gaussian processes (GPs) and sparse GPs. The proposed framework reaches a mean absolute Δz = 0.0026(1 + zs), over the redshift range of 0 ≤ zs ≤ 2 on the simulated data, and Δz = 0.0178(1 + zs) over the entire redshift range on the SDSS DR12 survey, outperforming the standard ANNz used in the literature. We also investigate how the relative size of the training sample affects the photometric redshift accuracy. We find that a training sample of >30 per cent of total sample size, provides little additional constraint on the photometric redshifts, and note that our GP formalism strongly outperforms ANNz in the sparse data regime for the simulated data set.

  8. Very high redshift radio galaxies

    SciTech Connect

    van Breugel, W.J.M., LLNL

    1997-12-01

    High redshift radio galaxies (HzRGs) provide unique targets for the study of the formation and evolution of massive galaxies and galaxy clusters at very high redshifts. We discuss how efficient HzRG samples ae selected, the evidence for strong morphological evolution at near-infracd wavelengths, and for jet-induced star formation in the z = 3 800 HzRG 4C41 17

  9. PHOTOMETRIC REDSHIFTS OF SUBMILLIMETER GALAXIES

    SciTech Connect

    Chakrabarti, Sukanya; Magnelli, Benjamin; Lutz, Dieter; Berta, Stefano; Popesso, Paola; McKee, Christopher F.; Pozzi, Francesca

    2013-08-20

    We use the photometric redshift method of Chakrabarti and McKee to infer photometric redshifts of submillimeter galaxies with far-IR (FIR) Herschel data obtained as part of the PACS Evolutionary Probe program. For the sample with spectroscopic redshifts, we demonstrate the validity of this method over a large range of redshifts (4 {approx}> z {approx}> 0.3) and luminosities, finding an average accuracy in (1 + z{sub phot})/(1 + z{sub spec}) of 10%. Thus, this method is more accurate than other FIR photometric redshift methods. This method is different from typical FIR photometric methods in deriving redshifts from the light-to-gas mass (L/M) ratio of infrared-bright galaxies inferred from the FIR spectral energy distribution, rather than dust temperatures. To assess the dependence of our photometric redshift method on the data in this sample, we contrast the average accuracy of our method when we use PACS data, versus SPIRE data, versus both PACS and SPIRE data. We also discuss potential selection effects that may affect the Herschel sample. Once the redshift is derived, we can determine physical properties of infrared-bright galaxies, including the temperature variation within the dust envelope, luminosity, mass, and surface density. We use data from the GOODS-S field to calculate the star formation rate density (SFRD) of submillimeter bright sources detected by AzTEC and PACS. The AzTEC-PACS sources, which have a threshold 850 {mu}m flux {approx}> 5 mJy, contribute 15% of the SFRD from all ultraluminous infrared galaxies (L{sub IR} {approx}> 10{sup 12} L{sub Sun }), and 3% of the total SFRD at z {approx} 2.

  10. Finding high-redshift voids using Lyman α forest tomography

    NASA Astrophysics Data System (ADS)

    Stark, Casey W.; Font-Ribera, Andreu; White, Martin; Lee, Khee-Gan

    2015-11-01

    We present a new method of finding cosmic voids using tomographic maps of Lyα forest flux. We identify cosmological voids with radii of 2-12 h-1 Mpc in a large N-body simulation at z = 2.5, and characterize the signal of the high-redshift voids in density and Lyα forest flux. The void properties are similar to what has been found at lower redshifts, but they are smaller and have steeper radial density profiles. Similarly to what has been found for low-redshift voids, the radial velocity profiles have little scatter and agree very well with the linear theory prediction. We run the same void finder on an ideal Lyα flux field and tomographic reconstructions at various spatial samplings. We compare the tomographic map void catalogues to the density void catalogue and find good agreement even with modest-sized voids (r > 6 h-1 Mpc). Using our simple void-finding method, the configuration of the ongoing COSMOS Lyman Alpha Mapping And Tomography Observations (CLAMATO) survey covering 1 deg2 would provide a sample of about 100 high-redshift voids. We also provide void-finding forecasts for larger area surveys, and discuss how these void samples can be used to test modified gravity models, study high-redshift void galaxies, and to make an Alcock-Paczynski measurement. To aid future work in this area, we provide public access to our simulation products, catalogues, and sample tomographic flux maps.

  11. Redshift distortions of clustering: a Lagrangian approach.

    NASA Astrophysics Data System (ADS)

    Hivon, E.; Bouchet, F. R.; Colombi, S.; Juszkiewicz, R.

    1995-06-01

    We study the effects of peculiar velocities on statistical measures of galaxy clustering. These effects occur when distances to the galaxies are estimated from their redshifts. It is assumed that the clustering pattern results from the gravitational instability of initially Gaussian, small-amplitude perturbations of a Friedman-Lemaitre cosmological model. Explicit expressions are given for an arbitrary density parameter {OMEGA} of the model, both when the cosmological constant, {LAMBDA}, is zero, and when the model is spatially flat, {OMEGA}+ {LAMBDA}/3H^2^ =1. Kaiser (1987) had analyzed the redshift distortion of the two-point correlation function. This function determines the variance of the density field distribution function and can be computed using linear perturbation theory. We show here how to compute higher order moments in redshift space, paying special attention to the skewness, or third moment of the density field, and its Fourier space counterpart, the bispectrum. This calls for a weakly non-linear analysis. We rely on a perturbative expansion of particle trajectories in Lagrangian coordinates, using the formalism introduced by Moutarde et al. (1991) and further developed by Bouchet et al. (1992, 1994). This formalism extends to higher orders the Zel'dovich first order (i.e. linear) solution (1970). The lowest non-vanishing contribution to the skewness comes from the first and second-order terms in perturbation theory. Therefore, using Zel'dovich approximation would not be self-consistent and would yield inaccurate results. We show that a physically consistent and quantitatively accurate analysis of the growth skewness in redshift space can be obtained from second-order Lagrangian theory. With practical applications to redshift surveys in mind, we also study the effects of spatial smoothing of the evolved density field. The necessary formalism was developed by Juszkiewicz & Bouchet (1991) and Juszkiewicz et al. (1993a). Here we give the first complete

  12. Redshifts distribution in A262

    NASA Astrophysics Data System (ADS)

    Hassan, M. S. R.; Abidin, Z. Z.; Ibrahim, U. F. S. U.; Hashim, N.; Lee, D. A. A.

    2016-05-01

    Galaxy clusters are the largest virialized systems in the Universe containing a collection of galaxies of different redshifts. The redshift distribution of galaxies in galaxy clusters is concentrated at a certain redshift range which remarkably tells us that only the galaxies in a certain radial range belong to the galaxy cluster. This leads to a boundary estimation of the cluster. Background and foreground systems are represented by a histogram that determines whether some of the galaxies are too far or too high in redshift to be counted as the member of the cluster. With the recent advances in multifibre spectroscopy, it has become possible to perform detailed analysis of the redshift distribution of several galaxy clusters in the Abell Catalogue. This has given rise to significantly improved estimates of cluster membership, extent and dynamical history. Here we present a spectroscopic analysis of the galaxy cluster A262. We find 55 galaxies fall within z = 0.0143 and 0.0183 with velocity range 4450-5300 km s-1, and are therefore members of the cluster. We derived a new mean redshift of z = 0.016 173 ± 0.000 074 (4852 ± 22 km s-1) for the system of which we compare with our neutral hydrogen (H I) detection which peaks at 4970 ± 0.5 km s-1. It is found that the distribution of H I tends to be located at the edge of the cluster since most of spiral rich galaxies were away from cluster centre.

  13. Leveraging Spitzer's Legacy: Quasars and Feedback at High Redshift

    NASA Astrophysics Data System (ADS)

    Richards, Gordon; Anderson, Scott; Bauer, Franz; Deo, Rajesh; Fan, Xiaohui; Gallagher, Sarah; Myers, Adam; Strauss, Michael; Zakamska, Nadia

    2009-04-01

    Recent research efforts to understand the evolution of galaxies and quasars are beginning to form a consistent picture. Galaxies and their supermassive black holes grow through mergers, but with decreasing characteristic mass scales over time. Much less, however, is known about the evolution of galaxies at high redshifts and the role played by energy injection from the onset of active black hole growth. Understanding these events requires investigating a statistically significant number of high-redshift quasars and crossing the L* boundary in luminosity. To construct an appropriate data set requires both relatively wide-areas (to find these rare objects) and moderate-depth imaging (to probe below L* in luminosity). Unfortunately, existing optical and MIR surveys fail to meet both of these requirements. Furthermore, both optical and MIR quasar selection are blindest at the most crucial redshifts. Here we propose to address these gaps with targeted IRAC observations of a few hundred high-redshift quasars from the Sloan Digital Sky Survey. Such a sample will enable the construction of a proper training set for the discovery of 2.5redshift quasars in other fields over a large range in luminosity. With this knowledge, we will crack open the high-z quasar discovery space within existing IRAC legacy surveys (SWIRE, XFLS, Bootes, COSMOS). With a large sample of high-redshift quasars spanning a large range in luminosity, we can turn the quasar luminosity function and quasar clustering analysis into tools for distinguishing between different evolutionary models and feedback prescriptions. In all, we will observe 330 SDSS quasars using 307 pointings/AORs, totaling 48.5 hours of IRAC time.

  14. Redshift weights for baryon acoustic oscillations: application to mock galaxy catalogues

    NASA Astrophysics Data System (ADS)

    Zhu, Fangzhou; Padmanabhan, Nikhil; White, Martin; Ross, Ashley J.; Zhao, Gongbo

    2016-09-01

    Large redshift surveys capable of measuring the baryon acoustic oscillation (BAO) signal have proven to be an effective way of measuring the distance-redshift relation in cosmology. Building off the work in Zhu et al., we develop a technique to directly constrain the distance-redshift relation from BAO measurements without splitting the sample into redshift bins. We apply the redshift weighting technique in Zhu et al. to the clustering of galaxies from 1000 Quick particle mesh (QPM) mock simulations after reconstruction and achieve a 0.75 per cent measurement of the angular diameter distance DA at z = 0.64 and the same precision for Hubble parameter H at z = 0.29. These QPM mock catalogues mimic the clustering and noise level of the Baryon Oscillation Spectroscopic Survey Data Release 12 (DR12). We compress the correlation functions in the redshift direction on to a set of weighted correlation functions. These estimators give unbiased DA and H measurements across the entire redshift range of the combined sample. We demonstrate the effectiveness of redshift weighting in improving the distance and Hubble parameter estimates. Instead of measuring at a single `effective' redshift as in traditional analyses, we report our DA and H measurements at all redshifts. The measured fractional error of DA ranges from 1.53 per cent at z = 0.2 to 0.75 per cent at z = 0.64. The fractional error of H ranges from 0.75 per cent at z = 0.29 to 2.45 per cent at z = 0.7. Our measurements are consistent with a Fisher forecast to within 10-20 per cent depending on the pivot redshift. We further show the results are robust against the choice of fiducial cosmologies, galaxy bias models, and redshift-space distortions streaming parameters.

  15. Compact Nuclei in Galaxies at Moderate Redshift

    NASA Astrophysics Data System (ADS)

    Sarajedini, Vicki Lynn

    The purpose of this study is to understand the space density and properties of active galaxies to z ≃ 0.8. We have investigated the frequency and nature of unresolved nuclei in galaxies at moderate redshift as indicators of nuclear activity such as Active Galactic Nuclei (AGN) or starbursts. Candidates are selected by fitting imaged galaxies with multi-component models using maximum likelihood estimate techniques to determine the best model fit. We select those galaxies requiring an unresolved, point source component in the galaxy nucleus, in addition to a disk and/or bulge component, to adequately model the galaxy light. We have searched 70 WFPC2 images primarily from the Medium Deep Survey for galaxies containing compact nuclei. In our survey of 1033 galaxies, the fraction containing an unresolved nuclear component ≥3% of the total galaxy light is 16±3% corrected for incompleteness and 9±1% for nuclei ≥5% of the galaxy light. Most of the nuclei are ~<20% of the total galaxy light. The majority of the host galaxies are spirals with little or no bulge component. The V-I colors of the nuclei are compared with synthetic colors for Seyferts and starburst nuclei to help differentiate between AGNs and starbursts in our sample. Spectroscopic redshifts have been obtained for 35 of our AGN/starburst candidates and photometric redshifts are estimated to an accuracy of σz≃0.1 for the remaining sample. We present the upper limit luminosity function (LF) for low-luminosity AGN (LLAGN) in two redshift bins to z = 0.8. We detect mild number density evolution of the form φ∝ (1+z)1.9 for nuclei at -18 ~

  16. Reconstructing the galaxy density field with photometric redshifts. I. Methodology and validation on stellar mass functions

    NASA Astrophysics Data System (ADS)

    Malavasi, N.; Pozzetti, L.; Cucciati, O.; Bardelli, S.; Cimatti, A.

    2016-01-01

    Context. Measuring environment for large numbers of galaxies in the distant Universe is an open problem in astrophysics, as environment is important in determining many properties of galaxies during their formation and evolution. In order to measure galaxy environments, we need galaxy positions and redshifts. Photometric redshifts are more easily available for large numbers of galaxies, but at the price of larger uncertainties than spectroscopic redshifts. Aims: We study how photometric redshifts affect the measurement of galaxy environment and how the reconstruction of the density field may limit an analysis of the galaxy stellar mass function (GSMF) in different environments. Methods: Through the use of mock galaxy catalogues, we measured galaxy environment with a fixed aperture method, using each galaxy's true and photometric redshifts. We varied the parameters defining the fixed aperture volume and explored different configurations. We also used photometric redshifts with different uncertainties to simulate the case of various surveys. We then computed GSMF of the mock galaxy catalogues as a function of redshift and environment to see how the environmental estimate based on photometric redshifts affects their analysis. Results: We found that the most extreme environments can be reconstructed in a fairly accurate way only when using high-precision photometric redshifts with σΔz/ (1 + z) ≲ 0.01, with a fraction ≥ 60 ÷ 80% of galaxies placed in the correct density quartile and a contamination of ≤10% by opposite quartile interlopers. A length of the volume in the radial direction comparable to the ±1.5σ error of photometric redshifts and a fixed aperture radius of a size similar to the physical scale of the studied environment grant a better reconstruction than other volume configurations. When using this kind of an estimate of the density field, we found that any difference between the starting GSMF (divided accordingly to the true galaxy environment

  17. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES

    SciTech Connect

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-06-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single 'best estimate' and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  18. ArborZ: Photometric Redshifts Using Boosted Decision Trees

    NASA Astrophysics Data System (ADS)

    Gerdes, David W.; Sypniewski, Adam J.; McKay, Timothy A.; Hao, Jiangang; Weis, Matthew R.; Wechsler, Risa H.; Busha, Michael T.

    2010-06-01

    Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper, we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of boosted decision trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey (SDSS) and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single "best estimate" and error, and also provides a photo-z quality figure of merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.

  19. Precision Photometric Redshifts Of Clusters

    NASA Astrophysics Data System (ADS)

    Holden, L.; Annis, J.

    2006-06-01

    Clusters of galaxies provide a means to achieve more precise photometric redshifts than achievable using individual galaxies simply because of the numbers of galaxies available in clusters. Here we examine the expectation that one can achieve root-N improvement using the N galaxies in a cluster. We extracted from a maxBCG SDSS cluster catalog 28,000 clusters and used SDSS DR4 spectra to find spectroscopic redshifts for the cluster. We examined both using the brightest cluster galaxy redshift as the proxy for the cluster and using the mean of a collection of galaxies within a given angular diameter and redshift (about the cluster photo-z) range. We find that the BCG provides a better estimate of the cluster redshift, to be understood in the context of a handful of spectra in the neighborhood of the cluster. We find that the cluster photo-z has an approximate root-N scaling behavior with the normalization for maxBCG techniques being 0.07. We predict what ``afterburner photo-z'' techniques, which use individual galaxy photo-z's good to 0.03-0.05, can achieve for cluster catalogs and for cluster cosmology.

  20. Relativistic Transverse Gravitational Redshift

    NASA Astrophysics Data System (ADS)

    Mayer, A. F.

    2012-12-01

    symmetric energy potential exists between the frames that is quantified by the instantaneous Δ {v} = v\\cdot{d}φ between them; in order for either frame to become indistinguishable from the other, such that their respective velocity and acceleration vectors are parallel, a change in velocity is required. While the qualitative features of general relativity imply this phenomenon (i.e., a symmetric potential difference between two points on a Newtonian `equipotential surface' that is similar to a friction effect), it is not predicted by the field equations due to a modeling error concerning time. This is an error of omission; time has fundamental geometric properties implied by the principles of relativity that are not reflected in the field equations. Where b is the radius and g is the gravitational acceleration characterizing a spherical geoid S of an ideal point-source gravitational field, an elegant derivation that rests on first principles shows that for two points at rest on S separated by a distance d << b, a symmetric relativistic redshift exists between these points of magnitude z = gd2/bc^2, which over 1 km at Earth sea level yields z ˜{10-17}. It can be tested with a variety of methods, in particular laser interferometry. A more sophisticated derivation yields a considerably more complex predictive formula for any two points in a gravitational field.

  1. Redshift determination through weighted phase correlation: a linearithmic implementation

    NASA Astrophysics Data System (ADS)

    Delchambre, L.

    2016-05-01

    We present a new algorithm having a time complexity of O(N log N) and designed to retrieve the phase at which an input signal and a set of not necessarily orthogonal templates match at best in a weighted chi-squared sense. The proposed implementation is based on an orthogonalization algorithm and thus also benefits from a high numerical stability. We successfully apply this method to the redshift determination of quasars from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalog and derive the proper spectral reduction and redshift selection methods. Also provided are the derivations of the redshift uncertainty and of the associated confidence. Results of this application are comparable to the performances of the SDSS pipeline while not having a quadratic time dependency.

  2. Redshift determination through weighted phase correlation: a linearithmic implementation

    NASA Astrophysics Data System (ADS)

    Delchambre, L.

    2016-08-01

    We present a new algorithm having a time complexity of O(N log N) and designed to retrieve the phase at which an input signal and a set of not necessarily orthogonal templates match best in a weighted chi-squared sense. The proposed implementation is based on an orthogonalization algorithm and thus also benefits from high numerical stability. We apply this method successfully to the redshift determination of quasars from the twelfth Sloan Digital Sky Survey (SDSS) quasar catalogue and derive the proper spectral reduction and redshift selection methods. Derivations of the redshift uncertainty and the associated confidence are also provided. The results of this application are comparable to the performance of the SDSS pipeline, while not having a quadratic time dependence.

  3. Photometric redshift techniques of quasars in big-data era

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxia

    2015-08-01

    With the availability of the huge amounts of data from ground- and space-based large multiband photometric surveys, photometric redshifts provide an estimate for the distance of an astronomical object and have become a crucial tool for extragalactic astronomy and cosmology. Various phtometric redshift approaches are in bloom. Their performance and efficiency not only depend on completeness and quality of data, but also on the volume of data. The increase of data volume lead to different choice of techniques. We present various data mining methods used for photometric redshift estimation of quasars and compare their advantages and disadvantages. In the big-data era, the methods fit for large-scale data are in great requirement.

  4. Radio-loud high-redshift protogalaxy canidates in Bootes

    SciTech Connect

    Croft, S; van Breugel, W; Brown, M J; de Vries, W; Dey, A; Eisenhardt, P; Jannuzi, B; Rottgering, H; Stanford, S A; Stern, D; Willner, S P

    2007-07-20

    We used the Near Infrared Camera (NIRC) on Keck I to obtain K{sub s}-band images of four candidate high-redshift radio galaxies selected using optical and radio data in the NOAO Deep Wide-Field Survey in Bootes. Our targets have 1.4 GHz radio flux densities greater than 1 mJy, but are undetected in the optical. Spectral energy distribution fitting suggests that three of these objects are at z > 3, with radio luminosities near the FR-I/FR-II break. The other has photometric redshift z{sub phot} = 1.2, but may in fact be at higher redshift. Two of the four objects exhibit diffuse morphologies in K{sub s}-band, suggesting that they are still in the process of forming.

  5. A Model-independent Photometric Redshift Estimator for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Wang, Yun

    2007-01-01

    The use of Type Ia supernovae (SNe Ia) as cosmological standard candles is fundamental in modern observational cosmology. In this Letter, we derive a simple empirical photometric redshift estimator for SNe Ia using a training set of SNe Ia with multiband (griz) light curves and spectroscopic redshifts obtained by the Supernova Legacy Survey (SNLS). This estimator is analytical and model-independent it does not use spectral templates. We use all the available SNe Ia from SNLS with near-maximum photometry in griz (a total of 40 SNe Ia) to train and test our photometric redshift estimator. The difference between the estimated redshifts zphot and the spectroscopic redshifts zspec, (zphot-zspec)/(1+zspec), has rms dispersions of 0.031 for 20 SNe Ia used in the training set, and 0.050 for 20 SNe Ia not used in the training set. The dispersion is of the same order of magnitude as the flux uncertainties at peak brightness for the SNe Ia. There are no outliers. This photometric redshift estimator should significantly enhance the ability of observers to accurately target high-redshift SNe Ia for spectroscopy in ongoing surveys. It will also dramatically boost the cosmological impact of very large future supernova surveys, such as those planned for the Advanced Liquid-mirror Probe for Astrophysics, Cosmology, and Asteroids (ALPACA) and the Large Synoptic Survey Telescope (LSST).

  6. Understanding redshift space distortions in density-weighted peculiar velocity

    NASA Astrophysics Data System (ADS)

    Sugiyama, Naonori S.; Okumura, Teppei; Spergel, David N.

    2016-07-01

    Observations of the kinetic Sunyaev-Zel'dovich (kSZ) effect measure the density-weighted velocity field, a potentially powerful cosmological probe. This paper presents an analytical method to predict the power spectrum and two-point correlation function of the density-weighted velocity in redshift space, the direct observables in kSZ surveys. We show a simple relation between the density power spectrum and the density-weighted velocity power spectrum that holds for both dark matter and halos. Using this relation, we can then extend familiar perturbation expansion techniques to the kSZ power spectrum. One of the most important features of density-weighted velocity statistics in redshift space is the change in sign of the cross-correlation between the density and density-weighted velocity at mildly small scales due to nonlinear redshift space distortions. Our model can explain this characteristic feature without any free parameters. As a result, our results can precisely predict the non-linear behavior of the density-weighted velocity field in redshift space up to ~ 30 h‑1 Mpc for dark matter particles at the redshifts of z=0.0, 0.5, and 1.0.

  7. Atom gravimeters and gravitational redshift.

    PubMed

    Wolf, Peter; Blanchet, Luc; Bordé, Christian J; Reynaud, Serge; Salomon, Christophe; Cohen-Tannoudji, Claude

    2010-09-01

    In ref. 1 the authors present a re-interpretation of atom interferometry experiments published a decade ago. They now consider the atom interferometry experiments as a measurement of the gravitational redshift on the quantum clock operating at the Compton frequency omega(C) = mc(2)/ approximately 2pi x 3.0 x 10(25) Hz, where m is the caesium (Cs) atom rest mass. They then argue that this redshift measurement compares favourably with existing as well as projected clock tests. Here we show that this interpretation is incorrect. PMID:20811407

  8. THE REDSHIFT EVOLUTION OF THE RELATION BETWEEN STELLAR MASS, STAR FORMATION RATE, AND GAS METALLICITY OF GALAXIES

    SciTech Connect

    Niino, Yuu

    2012-12-20

    We investigate the relation between stellar mass (M{sub *}), star formation rate (SFR), and metallicity (Z) of galaxies, the so-called fundamental metallicity relation, in the galaxy sample of the Sloan Digital Sky Survey Data Release 7. We separate the galaxies into narrow redshift bins and compare the relation at different redshifts and find statistically significant (>99%) evolution. We test various observational effects that might cause seeming Z evolution and find it difficult to explain the evolution of the relation only by the observational effects. In the current sample of low-redshift galaxies, galaxies with different M{sub *} and SFR are sampled from different redshifts, and there is degeneracy between M{sub *}/SFR and redshift. Hence, it is not straightforward to distinguish a relation between Z and SFR from a relation between Z and redshift. The separation of the intrinsic relation from the redshift evolution effect is a crucial issue in the understanding of the evolution of galaxies.

  9. Can Selforganizing Maps Accurately Predict Photometric Redshifts?

    NASA Technical Reports Server (NTRS)

    Way, Michael J.; Klose, Christian

    2012-01-01

    We present an unsupervised machine-learning approach that can be employed for estimating photometric redshifts. The proposed method is based on a vector quantization called the self-organizing-map (SOM) approach. A variety of photometrically derived input values were utilized from the Sloan Digital Sky Survey's main galaxy sample, luminous red galaxy, and quasar samples, along with the PHAT0 data set from the Photo-z Accuracy Testing project. Regression results obtained with this new approach were evaluated in terms of root-mean-square error (RMSE) to estimate the accuracy of the photometric redshift estimates. The results demonstrate competitive RMSE and outlier percentages when compared with several other popular approaches, such as artificial neural networks and Gaussian process regression. SOM RMSE results (using delta(z) = z(sub phot) - z(sub spec)) are 0.023 for the main galaxy sample, 0.027 for the luminous red galaxy sample, 0.418 for quasars, and 0.022 for PHAT0 synthetic data. The results demonstrate that there are nonunique solutions for estimating SOM RMSEs. Further research is needed in order to find more robust estimation techniques using SOMs, but the results herein are a positive indication of their capabilities when compared with other well-known methods

  10. Photometric redshifts and clustering of emission line galaxies selected jointly by DES and eBOSS

    SciTech Connect

    Jouvel, S.; et al.

    2015-09-23

    We present the results of the first test plates of the extended Baryon Oscillation Spectroscopic Survey. This paper focuses on the emission line galaxies (ELG) population targetted from the Dark Energy Survey (DES) photometry. We analyse the success rate, efficiency, redshift distribution, and clustering properties of the targets. From the 9000 spectroscopic redshifts targetted, 4600 have been selected from the DES photometry. The total success rate for redshifts between 0.6 and 1.2 is 71\\% and 68\\% respectively for a bright and faint, on average more distant, samples including redshifts measured from a single strong emission line. We find a mean redshift of 0.8 and 0.87, with 15 and 13\\% of unknown redshifts respectively for the bright and faint samples. In the redshift range 0.6redshifts, the mean redshift for the bright and faint sample is 0.85 and 0.9 respectively. Star contamination is lower than 2\\%. We measure a galaxy bias averaged on scales of 1 and 10~Mpc/h of 1.72 \\pm 0.1 for the bright sample and of 1.78 \\pm 0.12 for the faint sample. The error on the galaxy bias have been obtained propagating the errors in the correlation function to the fitted parameters. This redshift evolution for the galaxy bias is in agreement with theoretical expectations for a galaxy population with MB-5\\log h < -21.0. We note that biasing is derived from the galaxy clustering relative to a model for the mass fluctuations. We investigate the quality of the DES photometric redshifts and find that the outlier fraction can be reduced using a comparison between template fitting and neural network, or using a random forest algorithm.

  11. Exploring the 2MASS extended and point source catalogues with clustering redshifts

    NASA Astrophysics Data System (ADS)

    Rahman, Mubdi; Ménard, Brice; Scranton, Ryan

    2016-04-01

    The Two-Micron All-Sky Survey (2MASS) has mapped out the low-redshift Universe down to KS ˜ 14 mag. As its near-infrared photometry primarily probes the featureless Rayleigh-Jeans tail of galaxy spectral energy distributions, colour-based redshift estimation is rather uninformative. Until now, redshift estimates for this data set have relied on optical follow-up suffering from selection biases. Here, we use the newly developed technique of clustering-based redshift estimation to infer the redshift distribution of the 2MASS sources regardless of their optical properties. We characterize redshift distributions of objects from the Extended Source Catalogue as a function of near-infrared colours and brightness and report some observed trends. We also apply the clustering redshift technique to dropout populations, sources with non-detections in one or more near-infrared bands, and present their redshift distributions. Combining all extended sources, we confirm with clustering redshifts that the distribution of this sample extends up to z ˜ 0.35. We perform a similar analysis with the Point Source Catalogue and show that it can be separated into stellar and extragalactic contributions with galaxies reaching z ˜ 0.7. We estimate that the Point Source Catalogue contains 1.6 million extragalactic objects: as many as in the Extended Source Catalogue but probing a cosmic volume 10 times larger.

  12. Are quasar redshifts randomly distributed

    NASA Technical Reports Server (NTRS)

    Weymann, R. J.; Boroson, T.; Scargle, J. D.

    1978-01-01

    A statistical analysis of possible clumping (not periodicity) of emission line redshifts of QSO's shows the available data to be compatible with random fluctuations of a smooth, non-clumped distribution. This result is demonstrated with Monte Carlo simulations as well as with the Kolmogorov-Smirnov test. It is in complete disagreement with the analysis by Varshni, which is shown to be incorrect.

  13. The redshift-distance relation.

    PubMed Central

    Segal, I E

    1993-01-01

    Key predictions of the Hubble law are inconsistent with direct observations on equitable complete samples of extragalactic sources in the optical, infrared, and x-ray wave bands-e.g., the predicted dispersion in apparent magnitude is persistently greatly in excess of its observed value, precluding an explanation via hypothetical perturbations or irregularities. In contrast, the predictions of the Lundmark (homogeneous quadratic) law are consistent with the observations. The Lundmark law moreover predicts the deviations between Hubble law predictions and observation with statistical consistency, while the Hubble law provides no explanation for the close fit of the Lundmark law. The flux-redshift law F [symbol, see text] (1 + z)/z appears consistent with observations on equitable complete samples in the entire observed redshift range, when due account is taken of flux limits by an optimal statistical method. Under the theoretical assumption that space is a fixed sphere, as in the Einstein universe, this law implies the redshift-distance relation z = tan2(r/2R), where R is the radius of the spherical space. This relation coincides with the prediction of chronometric cosmology, which estimates R as 160 +/- 40 Mpc (1 parsec = 3.09 x 10(16) m) from the proper motion to redshift relation of superluminal sources. Tangential aspects, including statistical methodology, fundamental physical theory, bright cluster galaxy samples, and proposed luminosity evolution, are briefly considered. PMID:11607390

  14. The Weyl Definition of Redshifts

    ERIC Educational Resources Information Center

    Harvey, Alex

    2012-01-01

    In 1923, Weyl published a (not widely known) protocol for the calculation of redshifts. It is completely independent of the origin of the shift and treats it as a pure Doppler shift. The method is comprehensive and depends solely on the relation between the world lines of source and observer. It has the merit of simplicity of statement and…

  15. Photometric Redshift with Bayesian Priors on Physical Properties of Galaxies

    NASA Astrophysics Data System (ADS)

    Tanaka, Masayuki

    2015-03-01

    We present a proof-of-concept analysis of photometric redshifts with Bayesian priors on physical properties of galaxies. This concept is particularly suited for upcoming/on-going large imaging surveys, in which only several broadband filters are available and it is hard to break some of the degeneracies in the multi-color space. We construct model templates of galaxies using a stellar population synthesis code and apply Bayesian priors on physical properties such as stellar mass and star formation rate. These priors are a function of redshift and they effectively evolve the templates with time in an observationally motivated way. We demonstrate that the priors help reduce the degeneracy and deliver significantly improved photometric redshifts. Furthermore, we show that a template error function, which corrects for systematic flux errors in the model templates as a function of rest-frame wavelength, delivers further improvements. One great advantage of our technique is that we simultaneously measure redshifts and physical properties of galaxies in a fully self-consistent manner, unlike the two-step measurements with different templates often performed in the literature. One may rightly worry that the physical priors bias the inferred galaxy properties, but we show that the bias is smaller than systematic uncertainties inherent in physical properties inferred from the spectral energy distribution fitting and hence is not a major issue. We will extensively test and tune the priors in the on-going Hyper Suprime-Cam survey and will make the code publicly available in the future.

  16. CMB quenching of high-redshift radio-loud AGNs

    NASA Astrophysics Data System (ADS)

    Ghisellini, G.; Haardt, F.; Ciardi, B.; Sbarrato, T.; Gallo, E.; Tavecchio, F.; Celotti, A.

    2015-10-01

    The very existence of more than a dozen of high-redshift (z ≳ 4) blazars indicates that a much larger population of misaligned powerful jetted active galactic nucleus (AGN) was already in place when the Universe was ≲1.5 Gyr old. Such parent population proved to be very elusive, and escaped direct detection in radio surveys so far. High-redshift blazars themselves seem to be failing in producing extended radio lobes, raising questions about the connection between such class and the vaster population of radio galaxies. We show that the interaction of the jet electrons with the intense cosmic microwave background (CMB) radiation explains the lack of extended radio emission in high-redshift blazars and in their parent population, helping to explain the apparently missing misaligned counterparts of high-redshift blazars. On the other hand, the emission from the more compact and more magnetized hotspots are less affected by the enhanced CMB energy density. By modelling the spectral energy distribution of blazar lobes and hotspots, we find that most of them should be detectable by low-frequency deep radio observations, e.g. by LOw-Frequency ARray for radio astronomy and by relatively deep X-ray observations with good angular resolution, e.g. by the Chandra satellite. At high redshifts, the emission of a misaligned relativistic jet, being debeamed, is missed by current large sky area surveys. The isotropic flux produced in the hotspots can be below ˜1 mJy and the isotropic lobe radio emission is quenched by the CMB cooling. Consequently, even sources with very powerful jets can go undetected in current radio surveys, and misclassified as radio-quiet AGNs.

  17. GALAXY CLUSTERS AT HIGH REDSHIFT AND EVOLUTION OF BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Wen, Z. L.; Han, J. L.

    2011-06-10

    Identification of high-redshift clusters is important for studies of cosmology and cluster evolution. Using photometric redshifts of galaxies, we identify 631 clusters from the Canada-France-Hawaii Telescope (CFHT) wide field, 202 clusters from the CFHT deep field, 187 clusters from the Cosmic Evolution Survey (COSMOS) field, and 737 clusters from the Spitzer Wide-area InfraRed Extragalactic Survey (SWIRE) field. The redshifts of these clusters are in the range 0.1 {approx}< z {approx}< 1.6. Merging these cluster samples gives 1644 clusters in the four survey fields, of which 1088 are newly identified and more than half are from the large SWIRE field. Among 228 clusters of z {>=} 1, 191 clusters are newly identified, and most of them from the SWIRE field. With this large sample of high-redshift clusters, we study the color evolution of the brightest cluster galaxies (BCGs). The r' - z' and r{sup +} - m{sub 3.6{mu}m} colors of the BCGs are consistent with a stellar population synthesis model in which the BCGs are formed at redshift z{sub f} {>=} 2 and evolved passively. The g' - z' and B - m{sub 3.6{mu}m} colors of the BCGs at redshifts z > 0.8 are systematically bluer than the passive evolution model for galaxies formed at z{sub f} {approx} 2, indicating star formation in high-redshift BCGs.

  18. Spectroscopy of Moderately High Redshift RCS-1 Clusters

    NASA Astrophysics Data System (ADS)

    Gilbank, David G.; Yee, H. K. C.; Ellingson, E.; Gladders, M. D.; Barrientos, L. F.; Blindert, K.

    2007-07-01

    We present spectroscopic observations of 11 moderately high-redshift (z~0.7-1.0) clusters from the first Red-Sequence Cluster Survey (RCS-1). We confirm that at least 10 of the 11 systems represent genuine overdensities in redshift space and show that for the remaining system, the spectroscopy was not deep enough to confirm a cluster. This is in good agreement with the estimated false positive rate of <5% at these redshifts from simulations. We find excellent agreement between the red-sequence-estimated redshift and the spectroscopic redshift, with a scatter of 10% at z>0.7. At the high-redshift end (z>~0.9) of the sample, we find that two of the systems selected are projections of pairs of comparably rich systems, with red sequences too close to discriminate in (R-z') color. In one of these systems, the two components are close enough to be physically associated. For a subsample of clusters with sufficient spectroscopic members, we examine the correlation between BgcR (optical richness) and the dynamical mass inferred from the velocity dispersion. We find these measurements to be compatible, within the relatively large uncertainties, with the correlation established at lower redshift for the X-ray-selected Canadian Network for Observational Cosmology clusters and also for a lower redshift sample of RCS-1 clusters. Confirmation of this and calibration of the scatter in the relation will require larger samples of clusters at these and higher redshifts. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile. This work is based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Particle Physics and Astronomy Research Council (United Kingdom), the National Research Council (Canada), CONICYT

  19. RECONSTRUCTING REDSHIFT DISTRIBUTIONS WITH CROSS-CORRELATIONS: TESTS AND AN OPTIMIZED RECIPE

    SciTech Connect

    Matthews, Daniel J.; Newman, Jeffrey A. E-mail: janewman@pitt.ed

    2010-09-20

    Many of the cosmological tests to be performed by planned dark energy experiments will require extremely well-characterized photometric redshift measurements. Current estimates for cosmic shear are that the true mean redshift of the objects in each photo-z bin must be known to better than 0.002(1 + z), and the width of the bin must be known to {approx}0.003(1 + z) if errors in cosmological measurements are not to be degraded significantly. A conventional approach is to calibrate these photometric redshifts with large sets of spectroscopic redshifts. However, at the depths probed by Stage III surveys (such as DES), let alone Stage IV (LSST, JDEM, and Euclid), existing large redshift samples have all been highly (25%-60%) incomplete, with a strong dependence of success rate on both redshift and galaxy properties. A powerful alternative approach is to exploit the clustering of galaxies to perform photometric redshift calibrations. Measuring the two-point angular cross-correlation between objects in some photometric redshift bin and objects with known spectroscopic redshift, as a function of the spectroscopic z, allows the true redshift distribution of a photometric sample to be reconstructed in detail, even if it includes objects too faint for spectroscopy or if spectroscopic samples are highly incomplete. We test this technique using mock DEEP2 Galaxy Redshift survey light cones constructed from the Millennium Simulation semi-analytic galaxy catalogs. From this realistic test, which incorporates the effects of galaxy bias evolution and cosmic variance, we find that the true redshift distribution of a photometric sample can, in fact, be determined accurately with cross-correlation techniques. We also compare the empirical error in the reconstruction of redshift distributions to previous analytic predictions, finding that additional components must be included in error budgets to match the simulation results. This extra error contribution is small for surveys that

  20. Predicting the Redshift 2 H-Alpha Luminosity Function Using [OIII] Emission Line Galaxies

    NASA Technical Reports Server (NTRS)

    Mehta, Vihang; Scarlata, Claudia; Colbert, James W.; Dai, Y. S.; Dressler, Alan; Henry, Alaina; Malkan, Matt; Rafelski, Marc; Siana, Brian; Teplitz, Harry I.; Bagley, Micaela; Beck, Melanie; Ross, Nathaniel R.; Rutkowski, Michael; Wang, Yun

    2015-01-01

    Upcoming space-based surveys such as Euclid and WFIRST-AFTA plan to measure Baryonic Acoustic Oscillations (BAOs) in order to study dark energy. These surveys will use IR slitless grism spectroscopy to measure redshifts of a large number of galaxies over a significant redshift range. In this paper, we use the WFC3 Infrared Spectroscopic Parallel Survey (WISP) to estimate the expected number of H-alpha emitters observable by these future surveys. WISP is an ongoing Hubble Space Telescope slitless spectroscopic survey, covering the 0.8 - 1.65 micrometers wavelength range and allowing the detection of H-alpha emitters up to z approximately equal to 1.5 and [OIII] emitters to z approximately equal to 2.3. We derive the H-alpha-[OIII] bivariate line luminosity function for WISP galaxies at z approximately equal to 1 using a maximum likelihood estimator that properly accounts for uncertainties in line luminosity measurement, and demonstrate how it can be used to derive the H-alpha luminosity function from exclusively fitting [OIII] data. Using the z approximately equal to 2 [OIII] line luminosity function, and assuming that the relation between H-alpha and [OIII] luminosity does not change significantly over the redshift range, we predict the H-alpha number counts at z approximately equal to 2 - the upper end of the redshift range of interest for the future surveys. For the redshift range 0.7 less than z less than 2, we expect approximately 3000 galaxies per sq deg for a flux limit of 3 x 10(exp -16) ergs per sec per sq cm (the proposed depth of Euclid galaxy redshift survey) and approximately 20,000 galaxies per sq deg for a flux limit of approximately 10(exp -16) ergs per sec per sq cm (the baseline depth of WFIRST galaxy redshift survey).

  1. Photometric Properties of the Most Massive High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Robertson, Brant; Li, Yuexing; Cox, Thomas J.; Hernquist, Lars; Hopkins, Philip F.

    2007-09-01

    We calculate the observable properties of the most massive high-redshift galaxies in the hierarchical formation scenario where stellar spheroid and supermassive black hole growth are fueled by gas-rich mergers. Combining high-resolution hydrodynamical simulations of the hierarchical formation of a z~6 quasar, stellar population synthesis models, template active galactic nucleus (AGN) spectra, prescriptions for interstellar and intergalactic absorption, and the response of modern telescopes, the photometric evolution of galaxies destined to host z~6 quasars is modeled at redshifts z~4-14. These massive galaxies, with enormous stellar masses of M*~1011.5-1012 Msolar and star formation rates of SFR~103-104 Msolar yr-1 at z>~7, satisfy a variety of photometric selection criteria based on Lyman break techniques, including V-band dropouts at z>~5, i-band dropouts at z>~6, and z-band dropouts at z>~7. The observability of the most massive high-redshift galaxies is assessed and compared with a wide range of existing and proposed photometric surveys, including the Sloan Digital Sky Survey (SDSS), Great Observatories Origins Deep Survey (GOODS)/Hubble Ultra Deep Field (HUDF), National Optical Astronomy Observatory Deep Wide-Field Survey (NDWFS), UKIRT Infared Deep Sky Survey (UKIDSS), Infrared Array Camera (IRAC) Shallow Survey, Ultradeep Visible and Infrared Survey Telescope for Astronomy (VISTA), Dark Universe Explorer (DUNE), Panoramic Survey Telescope and Rapid Response System (Pan-STARRS), Large Synoptic Survey Telescope (LSST), and Supernova/Acceleration Probe (SNAP). Massive stellar spheroids descended from z~6 quasars will likely be detected at z~4 by existing surveys, but owing to their low number densities the discovery of quasar progenitor galaxies at z>7 will likely require future surveys of large portions of the sky (>~0.5%) at wavelengths λ>~1 μm. The detection of rare, starbursting, massive galaxies at redshifts z>~6 would provide support for the

  2. Precision Cosmology with a New Probabilistic Photometric Redshifts Approach

    NASA Astrophysics Data System (ADS)

    Carrasco Kind, Matias; Brunner, R. J.

    2013-06-01

    A complete understanding of both dark energy and dark matter remains one of most important challenges in astrophysics today. Recent theoretical and numerical computations have made important progress in quantifying the role of these dark components on the formation and evolution of galaxies through cosmic time, but observational verification of these predictions and the development of new, more stringent constraints has not kept pace. It is in this context that, photometric redshifts have become more important with the growth of large imaging surveys, such as DES and LSST, that have been designed to address this issue. But their basic implementation has not changed significantly from their original development, as most techniques provide a single photometric redshift estimate and an associated error for the an extragalactic source. In this work, we present a unique and powerful solution that leverages the full information contained in the photometric data to address this cosmological challenge with a new approach that provides accurate photometric redshift probability density functions (PDF) for galaxies. This new approach, which scales efficiently to massive data, efficiently combines standard template fitting techniques with powerful machine learning methods. Included in this framework is our recently developed technique entitled Trees for PhotoZ (TPZ); a new, robust, parallel photometric redshift code that uses prediction trees and random forests to generate photo-z PDFs in a reliable and fast manner. In addition, our approach also provides ancillary information about the internal structure of the data, including the relative importance of variables used during the redshift estimation, an identification of areas in the training sample that provide poor predictions, and an accurate outlier rejection method. We will also present current results of this approach on a variety of datasets and discuss, by using specific examples, how the full photo-z PDF can be

  3. Obtaining an unbiased redshift distribution for submm galaxies

    NASA Astrophysics Data System (ADS)

    Ivison, Rob; Norris, Ray; Feain, Ilana; Huynh, Minh; Smail, Ian; Thomson, Alasdair

    2009-07-01

    We request 36hr with ATCA to test a new method for determining an unbiased redshift distribution for submm galaxies (SMGs) - a critical parameter capable of breaking degeneracies in galaxy evolution models. Our method is based on the expectation that dusty ULIRGs will exhibit maser activity similar to that observed in other IR-luminous AGN. As well as determining redshifts, detections will allow us to estimate the mass of the central black hole (to compare with X-ray-based estimates), to pinpoint the maser relative to the synchrotron emission, and to explore any correlation between L(FIR) and L(H2O). The key to our project is the largest deep submm survey undertaken thus far - LESS - in the Extended Chandra Deep Field South. We propose to piggyback on the Huynh et al. 5-GHz survey of ECDFS, going 2.3x deeper in two pointings centred on over-densities of bright SMGs.

  4. DNF - Galaxy photometric redshift by Directional Neighbourhood Fitting

    NASA Astrophysics Data System (ADS)

    De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.

    2016-07-01

    Wide field images taken in several photometric bands allow simultaneous measurement of redshifts for thousands of galaxies. A variety of algorithms to make this measurement have appeared in the last few years, the majority of which can be classified as either template- or training-based methods. Among the latter, nearest neighbour estimators stand out as one of the most successful, in terms of both precision and the quality of error estimation. In this paper we describe the Directional Neighbourhood Fitting (DNF) algorithm based on the following: a new neighbourhood metric (Directional Neighbourhood), a photo-z estimation strategy (Neighbourhood Fitting) and a method for generating the photo-z probability distribution function. We compare DNF with other well-known empirical photometric redshift tools using different public data sets (Sloan Digital Sky Survey, VIMOS VLT Deep Survey and Photo-z Accuracy Testing). DNF achieves high-quality results with reliable error.

  5. The Color Selection of Quasars from Redshifts 5 to 10: Cloning and Discovery

    NASA Astrophysics Data System (ADS)

    Chiu, Kuenley; Zheng, Wei; Schneider, Donald P.; Glazebrook, Karl; Iye, Masanori; Kashikawa, Nobunari; Tsvetanov, Zlatan; Yoshida, Michitoshi; Brinkmann, Jon

    2005-07-01

    We present simulations of quasar colors, magnitudes, and numbers at redshifts 5redshift quasars and the cloning of lower redshift Sloan Digital Sky Survey (SDSS) quasars. The 10 quasars have redshifts ranging from z=4.7 to 5.3 and i magnitudes of 20.21-20.94. The natural diversity of spectral features in the cloned sample allows more realistic simulation of the quasar locus width than was previously possible with synthetic template spectra. Colors are generated for the z>6 epoch, taking advantage of the new UKIRT Infrared Deep Sky Survey near-infrared filter set, and we examine the redshift intervals of maximum productivity, discussing color selection and survey depth issues. On the basis of the SDSS sample, we find that the surface density of z>4.7 quasars increases by a factor of 3 times by extending 0.7 i magnitudes deeper than the SDSS spectroscopic survey limit of i=20.2; correspondingly, we predict a total of ~400 faint quasars in the SDSS main area that have redshift z>4.7 and magnitudes i<20.9.

  6. High-redshift galaxy populations.

    PubMed

    Hu, Esther M; Cowie, Lennox L

    2006-04-27

    We now see many galaxies as they were only 800 million years after the Big Bang, and that limit may soon be exceeded when wide-field infrared detectors are widely available. Multi-wavelength studies show that there was relatively little star formation at very early times and that star formation was at its maximum at about half the age of the Universe. A small number of high-redshift objects have been found by targeting X-ray and radio sources and most recently, gamma-ray bursts. The gamma-ray burst sources may provide a way to reach even higher-redshift galaxies in the future, and to probe the first generation of stars. PMID:16641986

  7. Determining spectroscopic redshifts by using k nearest neighbor regression. I. Description of method and analysis

    NASA Astrophysics Data System (ADS)

    Kügler, S. D.; Polsterer, K.; Hoecker, M.

    2015-04-01

    Context. In astronomy, new approaches to process and analyze the exponentially increasing amount of data are inevitable. For spectra, such as in the Sloan Digital Sky Survey spectral database, usually templates of well-known classes are used for classification. In case the fitting of a template fails, wrong spectral properties (e.g. redshift) are derived. Validation of the derived properties is the key to understand the caveats of the template-based method. Aims: In this paper we present a method for statistically computing the redshift z based on a similarity approach. This allows us to determine redshifts in spectra for emission and absorption features without using any predefined model. Additionally, we show how to determine the redshift based on single features. As a consequence we are, for example, able to filter objects that show multiple redshift components. Methods: The redshift calculation is performed by comparing predefined regions in the spectra and individually applying a nearest neighbor regression model to each predefined emission and absorption region. Results: The choice of the model parameters controls the quality and the completeness of the redshifts. For ≈90% of the analyzed 16 000 spectra of our reference and test sample, a certain redshift can be computed that is comparable to the completeness of SDSS (96%). The redshift calculation yields a precision for every individually tested feature that is comparable to the overall precision of the redshifts of SDSS. Using the new method to compute redshifts, we could also identify 14 spectra with a significant shift between emission and absorption or between emission and emission lines. The results already show the immense power of this simple machine-learning approach for investigating huge databases such as the SDSS.

  8. Close companions to two high-redshift quasars

    SciTech Connect

    McGreer, Ian D.; Fan, Xiaohui; Bian, Fuyan; Strauss, Michael A.; Haiman, Zoltàn; Richards, Gordon T.; Jiang, Linhua; Schneider, Donald P.

    2014-10-01

    We report the serendipitous discoveries of companion galaxies to two high-redshift quasars. SDSS J025617.7+001904 is a z = 4.79 quasar included in our recent survey of faint quasars in the SDSS Stripe 82 region. The initial MMT slit spectroscopy shows excess Lyα emission extending well beyond the quasar's light profile. Further imaging and spectroscopy with LBT/MODS1 confirms the presence of a bright galaxy (i {sub AB} = 23.6) located 2'' (12 kpc projected) from the quasar with strong Lyα emission (EW{sub 0} ≈ 100 Å) at the redshift of the quasar, as well as faint continuum. The second quasar, CFHQS J005006.6+344522 (z = 6.25), is included in our recent HST SNAP survey of z ∼ 6 quasars searching for evidence of gravitational lensing. Deep imaging with ACS and WFC3 confirms an optical dropout ∼4.5 mag fainter than the quasar (Y {sub AB} = 25) at a separation of 0.''9. The red i {sub 775} – Y {sub 105} color of the galaxy and its proximity to the quasar (5 kpc projected if at the quasar redshift) strongly favor an association with the quasar. Although it is much fainter than the quasar, it is remarkably bright when compared to field galaxies at this redshift, while showing no evidence for lensing. Both systems may represent late-stage mergers of two massive galaxies, with the observed light for one dominated by powerful ongoing star formation and for the other by rapid black hole growth. Observations of close companions are rare; if major mergers are primarily responsible for high-redshift quasar fueling then the phase when progenitor galaxies can be observed as bright companions is relatively short.

  9. Equivalence Principle and Gravitational Redshift

    SciTech Connect

    Hohensee, Michael A.; Chu, Steven; Mueller, Holger; Peters, Achim

    2011-04-15

    We investigate leading order deviations from general relativity that violate the Einstein equivalence principle in the gravitational standard model extension. We show that redshift experiments based on matter waves and clock comparisons are equivalent to one another. Consideration of torsion balance tests, along with matter-wave, microwave, optical, and Moessbauer clock tests, yields comprehensive limits on spin-independent Einstein equivalence principle-violating standard model extension terms at the 10{sup -6} level.

  10. El Universo a alto redshift

    NASA Astrophysics Data System (ADS)

    Alonso, M. V.

    The Universe we see today is the result of structures and galaxies that have been evolving since earlier times. Looking the evolution of the galaxy population at z ˜ 1 has emphasized the important role played by high redshift data. This is the case of the morphology - density relationship, where the morphological type of galaxies in distant clusters has given us a clear vision of evolutionary processes, partly led by environmental effects. I review part of the data available at high redshifts that are fundamental today to check the validity of galaxy formation models in reproducing local and basic galaxy properties. Briefly, I will comment about high redshift studies, a still little explored portion of the Universe, and the current strategies that allow us the study. In this sense, the epoch of reionization is essential for understanding the formation of structures because it is the phase where the first protogalaxies were formed, creating stars and enriching the intergalactic medium. Because of the great distances involved in these studies, gamma-ray bursts, quasars and Lyman-α galaxies are the best tools to study these earlier times. FULL TEXT IN SPANISH

  11. Neutrino Redshifts -- A Search for Information.

    NASA Astrophysics Data System (ADS)

    Gallo, Charles

    2005-04-01

    Neutrinos will undergo Redshifts due to Doppler and/or Space Expansion effects similar to Electromagnetic Radiation (Photons). However, in some situations (ex., Quasars, etc), Photon Redshifts may be due to cumulative energy-loss mechanisms with the intervening medium. In this situation, the corresponding Neutrino Redshifts will be much smaller since the interaction cross-section for neutrino-medium interactions will be much smaller than any photon-medium cross-section. Thus, observation and comparison of photon redshifts vs corresponding neutrinos redshifts will be very informative. If the photon and neutrino redshifts are similar, then a Doppler and/or Space Expansion interpretation is justified. If the neutrino redshift is much smaller than any corresponding photon redshift, then an interpretation via a cumulative energy-loss mechanism is justified. This is a very definitive experimental test of redshift interpretations. The latest neutrino data will be examined, particularly relevant to quasars and supernova. Reference: ``Redshifts of Cosmological Neutrinos as Definitive Experimental Test of Doppler versus Non-Doppler Redshifts'' by C. F. Gallo in IEEE Trans. Plasma Science, vol. 31, No. 6, pgs. 1230-1231, Dec. 2003.

  12. A WFC3 Grism Emission Line Redshift Catalog in the GOODS-South Field

    NASA Astrophysics Data System (ADS)

    Morris, Aaron M.; Kocevski, Dale D.; Trump, Jonathan R.; Weiner, Benjamin J.; Hathi, Nimish P.; Barro, Guillermo; Dahlen, Tomas; Faber, Sandra M.; Finkelstein, Steven L.; Fontana, Adriano; Ferguson, Henry C.; Grogin, Norman A.; Grützbauch, Ruth; Guo, Yicheng; Hsu, Li-Ting; Koekemoer, Anton M.; Koo, David C.; Mobasher, Bahram; Pforr, Janine; Salvato, Mara; Wiklind, Tommy; Wuyts, Stijn

    2015-06-01

    We combine Hubble Space Telescope (HST)/Wide Field Camera3 (WFC3) imaging and G141 grism observations from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and 3D-HST surveys to produce a catalog of grism spectroscopic redshifts for galaxies in the CANDELS/GOODS-South field. The WFC3/G141 grism spectra cover a wavelength range of 1.1≤slant λ ≤slant 1.7 μm with a resolving power of R∼ 130 for point sources, thus providing rest-frame optical spectra for galaxies out to z∼ 3.5. The catalog is selected in the H-band (F160W) and includes both galaxies with and without previously published spectroscopic redshifts. Grism spectra are extracted for all H-band detected galaxies with H ≤slant 24 and a CANDELS photometric redshift {{z}phot}≥slant 0.6. The resulting spectra are visually inspected to identify emission lines, and redshifts are determined using cross-correlation with empirical spectral templates. To establish the accuracy of our redshifts, we compare our results against high-quality spectroscopic redshifts from the literature. Using a sample of 411 control galaxies, this analysis yields a precision of {{σ }NMAD}=0.0028 for the grism-derived redshifts, which is consistent with the accuracy reported by the 3D-HST team. Our final catalog covers an area of 153 arcmin2 and contains 1019 redshifts for galaxies in GOODS-S. Roughly 60% (608/1019) of these redshifts are for galaxies with no previously published spectroscopic redshift. These new redshifts span a range of 0.677≤slant z≤slant 3.456 and have a median redshift of z = 1.282. The catalog contains a total of 234 new redshifts for galaxies at z\\gt 1.5. In addition, we present 20 galaxy pair candidates identified for the first time using the grism redshifts in our catalog, including four new galaxy pairs at z∼ 2, nearly doubling the number of such pairs previously identified.

  13. PRIMUS: Redshifts for 140,000 Galaxies to z 1

    NASA Astrophysics Data System (ADS)

    Moustakas, John; PRIMUS Collaboration

    2011-01-01

    The elapsed time since z 1, spanning roughly 60% of the age of the Universe, represents an important and dramatic epoch in galaxy evolution. During this time galaxies agglomerate into large-scale structures like groups and clusters, the cosmic rate of star formation declines by an order-of-magnitude, and there is a significant buildup in the population of red, passively evolving galaxies. However, efforts to understand this evolution by leveraging the tremendous multiwavelength datasets acquired from space -- from Spitzer, GALEX, Chandra, XMM, and HST -- have been hampered by a lack of precise redshifts for large samples of galaxies over a wide enough area of the sky to mitigate the effects of cosmic variance. To address these issues, we have carried out the PRIsm MUlti-object Survey (PRIMUS), the largest spectroscopic survey of intermediate-redshift galaxies conducted to date. Combining redshifts from PRIMUS with ancillary ground- and space-based observations from the X-ray to the infrared, we have begun to measure the relative importance of large-scale environment on galaxy evolution, and the multivariate distributions of luminosity, color, star formation rate, stellar mass, and AGN activity in galaxies since z 1 with unprecedented precision. We introduce the survey and highlight the first science results from PRIMUS. PRIMUS is generously supported by grants from NASA and NSF.

  14. Baryon acoustic oscillations in 2D: Modeling redshift-space power spectrum from perturbation theory

    SciTech Connect

    Taruya, Atsushi; Nishimichi, Takahiro; Saito, Shun

    2010-09-15

    We present an improved prescription for the matter power spectrum in redshift space taking proper account of both nonlinear gravitational clustering and redshift distortion, which are of particular importance for accurately modeling baryon acoustic oscillations (BAOs). Contrary to the models of redshift distortion phenomenologically introduced but frequently used in the literature, the new model includes the corrections arising from the nonlinear coupling between the density and velocity fields associated with two competitive effects of redshift distortion, i.e., Kaiser and Finger-of-God effects. Based on the improved treatment of perturbation theory for gravitational clustering, we compare our model predictions with the monopole and quadrupole power spectra of N-body simulations, and an excellent agreement is achieved over the scales of BAOs. Potential impacts on constraining dark energy and modified gravity from the redshift-space power spectrum are also investigated based on the Fisher-matrix formalism, particularly focusing on the measurements of the Hubble parameter, angular diameter distance, and growth rate for structure formation. We find that the existing phenomenological models of redshift distortion produce a systematic error on measurements of the angular diameter distance and Hubble parameter by 1%-2%, and the growth-rate parameter by {approx}5%, which would become non-negligible for future galaxy surveys. Correctly modeling redshift distortion is thus essential, and the new prescription for the redshift-space power spectrum including the nonlinear corrections can be used as an accurate theoretical template for anisotropic BAOs.

  15. Spectral Evolution in High Redshift Quasars from the Final BOSS Sample

    NASA Astrophysics Data System (ADS)

    Jensen, Trey; Bautista, Julian; Dawson, Kyle; Harris, David; Kamble, Vikrant; Mariappan, Vivek; Suzuki, Nao

    2016-01-01

    We report on a study of the spectral variations in a sample of 102,150 quasars from the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey (SDSS-III). After mitigating selection effects and Malmquist bias over the redshift range 2.1 ≤ z ≤ 3.5, we create high signal-to-noise composite spectra binned by luminosity, spectral index, and redshift. We use these composite spectra to inspect the variations in quasar properties as a function of each of these three parameters. We confirm the traditional Baldwin effect (i.e. the anti-correlation of CIV equivalent width and luminosity) and identify physical trends associated with spectral index and redshift. In this poster, we will present these results with a particular focus on the clear spectroscopic signature that we find in redshift evolution.

  16. A Catalog of Candidate High-redshift Blazars for GLAST

    SciTech Connect

    Arias, Tersi M.; /SLAC /San Francisco State U.

    2006-09-27

    High-redshift blazars are promising candidates for detection by the Gamma-ray Large Area Space Telescope (GLAST). GLAST, expected to be launched in the Fall of 2007, is a high-energy gamma-ray observatory designed for making observations of celestial gamma-ray sources in the energy band extending from 10 MeV to more than 200 GeV. It is estimated that GLAST will find several thousand blazars. The motivations for measuring the gamma-ray emission from distant blazars include the study of the high-energy emission processes occurring in these sources and an indirect measurement of the extragalactic background light. In anticipation of the launch of GLAST we have compiled a catalog of candidate high-redshift blazars. The criteria for sources chosen for the catalog were: high radio emission, high redshift, and a flat radio spectrum. A preliminary list of 307 radio sources brighter than 70mJy with a redshift z {ge} 2.5 was acquired using data from the NASA Extragalactic Database. Flux measurements of each source were obtained at two or more radio frequencies from surveys and catalogs to calculate their radio spectral indices {alpha}. The sources with a flat-radio spectrum ({alpha} {le} 0.5) were selected for the catalog, and the final catalog includes about 200 sources.

  17. Evolution of high-redshift Lyman-limit absorption systems

    SciTech Connect

    Lanzetta, K.M. )

    1991-07-01

    Results are presented of a new spectroscopic survey of high-redshift Lyman-limit absorption systems. Based on this data set, the rate of incidence of the Lyman-limit systems with z greater than about 2.5 is found to evolve strongly with redshift in the sense that the product of the number density per unit comoving volume and the absorption cross section increases with increasing redshift. If the observed evolution indicates intrinsic evolution of the absorbers, this result suggests that the evolution detected previously for the C IV-selected absorbers over a similar redshift range is not naturally interpreted as evolution of the ionization level of the absorbers rather than as a chemical enrichment effect. The data are also used to investigate the H I column density distribution and to examine the multiple-component structure of the absorbing complexes. The H I column density distribution is found to be well fitted by a power-law form. 35 refs.

  18. An automated algorithm for determining photometric redshifts of quasars

    NASA Astrophysics Data System (ADS)

    Wang, Dan; Zhang, Yanxia; Zhao, Yongheng

    2010-07-01

    We employ k-nearest neighbor algorithm (KNN) for photometric redshift measurement of quasars with the Fifth Data Release (DR5) of the Sloan Digital Sky Survey (SDSS). KNN is an instance learning algorithm where the result of new instance query is predicted based on the closest training samples. The regressor do not use any model to fit and only based on memory. Given a query quasar, we find the known quasars or (training points) closest to the query point, whose redshift value is simply assigned to be the average of the values of its k nearest neighbors. Three kinds of different colors (PSF, Model or Fiber) and spectral redshifts are used as input parameters, separatively. The combination of the three kinds of colors is also taken as input. The experimental results indicate that the best input pattern is PSF + Model + Fiber colors in all experiments. With this pattern, 59.24%, 77.34% and 84.68% of photometric redshifts are obtained within ▵z < 0.1, 0.2 and 0.3, respectively. If only using one kind of colors as input, the model colors achieve the best performance. However, when using two kinds of colors, the best result is achieved by PSF + Fiber colors. In addition, nearest neighbor method (k = 1) shows its superiority compared to KNN (k ≠ 1) for the given sample.

  19. UV Spectroscopy of Type Ia Supernovae at Low- andHigh-Redshift

    SciTech Connect

    Nugent, Peter

    2005-04-20

    In the past three years two separate programs were initiated to study the restframe UV properties of Type Ia Supernovae. The low-redshift study was carried out using several ground-based facilities coupled with HST/STIS observations. The high-redshift program is an offshoot of the CFHT Legacy Survey and uses Keck/LRIS to obtain spectra. Here we present the preliminary results from each program and their implications for current cosmology measurements.

  20. Cosmological baryonic and matter densities from 600000 SDSS luminous red galaxies with photometric redshifts

    NASA Astrophysics Data System (ADS)

    Blake, Chris; Collister, Adrian; Bridle, Sarah; Lahav, Ofer

    2007-02-01

    We analyse MegaZ-LRG, a photometric-redshift catalogue of luminous red galaxies (LRGs) based on the imaging data of the Sloan Digital Sky Survey (SDSS) 4th Data Release. MegaZ-LRG, presented in a companion paper, contains >106 photometric redshifts derived with ANNZ, an artificial neural network method, constrained by a spectroscopic subsample of ~13000 galaxies obtained by the 2dF-SDSS LRG and Quasar (2SLAQ) survey. The catalogue spans the redshift range 0.4 < z < 0.7 with an rms redshift error σz ~ 0.03(1 + z), covering 5914 deg2 to map out a total cosmic volume 2.5h-3Gpc3. In this study we use the most reliable 600000 photometric redshifts to measure the large-scale structure using two methods: (1) a spherical harmonic analysis in redshift slices, and (2) a direct re-construction of the spatial clustering pattern using Fourier techniques. We present the first cosmological parameter fits to galaxy angular power spectra from a photometric-redshift survey. Combining the redshift slices with appropriate covariances, we determine best-fitting values for the matter density Ωm and baryon density Ωb of Ωmh = 0.195 +/- 0.023 and Ωb/Ωm = 0.16 +/- 0.036 (with the Hubble parameter h = 0.75 and scalar index of primordial fluctuations nscalar = 1 held fixed). These results are in agreement with and independent of the latest studies of the cosmic microwave background radiation, and their precision is comparable to analyses of contemporary spectroscopic-redshift surveys. We perform an extensive series of tests which conclude that our power spectrum measurements are robust against potential systematic photometric errors in the catalogue. We conclude that photometric-redshift surveys are competitive with spectroscopic surveys for measuring cosmological parameters in the simplest `vanilla' models. Future deep imaging surveys have great potential for further improvement, provided that systematic errors can be controlled.

  1. Identifying Ionized Regions in Noisy Redshifted 21 cm Data Sets

    NASA Astrophysics Data System (ADS)

    Malloy, Matthew; Lidz, Adam

    2013-04-01

    One of the most promising approaches for studying reionization is to use the redshifted 21 cm line. Early generations of redshifted 21 cm surveys will not, however, have the sensitivity to make detailed maps of the reionization process, and will instead focus on statistical measurements. Here, we show that it may nonetheless be possible to directly identify ionized regions in upcoming data sets by applying suitable filters to the noisy data. The locations of prominent minima in the filtered data correspond well with the positions of ionized regions. In particular, we corrupt semi-numeric simulations of the redshifted 21 cm signal during reionization with thermal noise at the level expected for a 500 antenna tile version of the Murchison Widefield Array (MWA), and mimic the degrading effects of foreground cleaning. Using a matched filter technique, we find that the MWA should be able to directly identify ionized regions despite the large thermal noise. In a plausible fiducial model in which ~20% of the volume of the universe is neutral at z ~ 7, we find that a 500-tile MWA may directly identify as many as ~150 ionized regions in a 6 MHz portion of its survey volume and roughly determine the size of each of these regions. This may, in turn, allow interesting multi-wavelength follow-up observations, comparing galaxy properties inside and outside of ionized regions. We discuss how the optimal configuration of radio antenna tiles for detecting ionized regions with a matched filter technique differs from the optimal design for measuring power spectra. These considerations have potentially important implications for the design of future redshifted 21 cm surveys.

  2. A systematic search for lensed high-redshift galaxies in HST images of MACS clusters

    NASA Astrophysics Data System (ADS)

    Repp, A.; Ebeling, H.; Richard, J.

    2016-04-01

    We present the results of a 135-arcmin2 search for high-redshift galaxies lensed by 29 clusters from the MAssive Cluster and extended MAssive Cluster Surveys. We use relatively shallow images obtained with the Hubble Space Telescope in four passbands, namely, F606W, F814W, F110W, and F140W. We identify 130 F814W dropouts as candidates for galaxies at z ≳ 6. In order to fit the available broad-band photometry to galaxy spectral energy distribution (SED) templates, we develop a prior for the level of dust extinction at various redshifts. We also investigate the systematic biases incurred by the use of SED-fit software. The fits we obtain yield an estimate of 20 Lyman-break galaxies with photometric redshifts from z ˜ 7 to 9. In addition, our survey has identified over 100 candidates with a significant probability of being lower redshift (z ˜ 2) interlopers. We conclude that even as few as four broad-band filters - when combined with fitting the SEDs - are capable of isolating promising objects. Such surveys thus allow one both to probe the bright end (M1500 ≲ -19) of the high-redshift ultraviolet luminosity function and to identify candidate massive evolved galaxies at lower redshifts.

  3. The SDSS Coadd: A Galaxy Photometric Redshift Catalog

    SciTech Connect

    Reis, Ribamar R.R.; Soares-Santos, Marcelle; Annis, James; Dodelson, Scott; Hao, Jiangang; Johnston, David; Kubo, Jeffrey; Lin, Huan; Seo, Hee-Jong; Simet, Melanie; /Chicago U.

    2011-11-01

    We present and describe a catalog of galaxy photometric redshifts (photo-z's) for the Sloan Digital Sky Survey (SDSS) Coadd Data. We use the Artificial Neural Network (ANN) technique to calculate photo-z's and the Nearest Neighbor Error (NNE) method to estimate photo-z errors for {approx} 13 million objects classified as galaxies in the coadd with r < 24.5. The photo-z and photo-z error estimators are trained and validated on a sample of {approx} 89, 000 galaxies that have SDSS photometry and spectroscopic redshifts measured by the SDSS Data Release 7 (DR7), the Canadian Network for Observational Cosmology Field Galaxy Survey (CNOC2), the Deep Extragalactic Evolutionary Probe Data Release 3(DEEP2 DR3), the SDSS-III's Baryon Oscillation Spectroscopic Survey (BOSS), the Visible imaging Multi-Object Spectrograph - Very Large Telescope Deep Survey (VVDS) and the WiggleZ Dark Energy Survey. For the best ANN methods we have tried, we find that 68% of the galaxies in the validation set have a photo-z error smaller than {sigma}{sub 68} = 0.036. After presenting our results and quality tests, we provide a short guide for users accessing the public data.

  4. Submegaparsec individual photometric redshift estimation from cosmic web constraints

    NASA Astrophysics Data System (ADS)

    Aragon-Calvo, M. A.; Weygaert, Rien van de; Jones, Bernard J. T.; Mobasher, Bahram

    2015-11-01

    We present a method, PhotoWeb, for estimating photometric redshifts of individual galaxies, and their equivalent distance, with megaparsec and even submegaparsec accuracy using the cosmic web as a constraint over photo-z estimates. PhotoWeb redshift errors of individual galaxies are of the order of Δz ≃ 0.0007, compared to errors of Δz ≃ 0.02 for current photo-z techniques. The mean redshift error is of the order of Δz ≃ 5 × 10-5-5 × 10-4 compared to mean errors in the range Δz ≃ 0.001-0.01 for the best available photo-z estimates in the literature. Current photo-z techniques produce redshift estimates with large errors due to the poor constraining power the galaxy's spectral energy distribution and projected clustering can provide. The cosmic web, on the other hand, provides the strongest constraints on the position of galaxies. The network of walls, filaments and voids occupy ˜ 10 per centof the volume of the Universe, yet they contain ˜ 95 per centof galaxies. The cosmic web, being a cellular system with well-defined boundaries, defines a restricted set of intermittent positions a galaxy can occupy along a given line of sight. Using the information in the density field computed from spectroscopic redshifts, we can narrow the possible locations of a given galaxy along the line of sight from a single broad probability distribution (from photo-z) to one or a few narrow peaks. Our first results improve previous photo-z errors by more than one order of magnitude allowing submegaparsec errors in some cases. Such accurate estimates for tens of millions of galaxies will allow unprecedented galaxy-Large Scale Structure (LSS) studies. In this work, we apply our technique to the Sloan Digital Sky Survey photo-z galaxy sample and discuss its performance and future improvements.

  5. Formation of elongated galaxies with low masses at high redshift

    NASA Astrophysics Data System (ADS)

    Ceverino, Daniel; Primack, Joel; Dekel, Avishai

    2015-10-01

    We report the identification of elongated (triaxial or prolate) galaxies in cosmological simulations at z ≃ 2. These are preferentially low-mass galaxies (M* ≤ 109.5 M⊙), residing in dark matter (DM) haloes with strongly elongated inner parts, a common feature of high-redshift DM haloes in the Λ cold dark matter cosmology. Feedback slows formation of stars at the centres of these haloes, so that a dominant and prolate DM distribution gives rise to galaxies elongated along the DM major axis. As galaxies grow in stellar mass, stars dominate the total mass within the galaxy half-mass radius, making stars and DM rounder and more oblate. A large population of elongated galaxies produces a very asymmetric distribution of projected axis ratios, as observed in high-z galaxy surveys. This indicates that the majority of the galaxies at high redshifts are not discs or spheroids but rather galaxies with elongated morphologies.

  6. Testing the CMB Quenching for High-Redshift Radio Galaxies

    NASA Astrophysics Data System (ADS)

    Wu, Jianfeng; Gallo, Elena

    2016-04-01

    The identification of a dozen of high-redshift (z > 4) blazars implies that a much larger population of powerful, but mis-aligned jetted AGNs already exists in the early Universe. However, this parent population remains elusive, although they are expected to be within the sensitivity threshold of modern wide-field radio surveys. One appealing mechanism is that the CMB photons upscatter the diffuse synchrotron radio emission in the lobes to the X-ray band. In this scenario, the lobes will turn into luminous X-ray sources. We analyzed the extended X-ray emission around several radio galaxies at z~4 and constructed their broad-band spectral energy distributions (SEDs). Modeling their SEDs will test this CMB quenching scenario for high-redshift radio galaxies.

  7. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z˜ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  8. Local Analogs for High-redshift Galaxies: Resembling the Physical Conditions of the Interstellar Medium in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bian, Fuyan; Kewley, Lisa J.; Dopita, Michael A.; Juneau, Stephanie

    2016-05-01

    We present a sample of local analogs for high-redshift galaxies selected in the Sloan Digital Sky Survey (SDSS). The physical conditions of the interstellar medium (ISM) in these local analogs resemble those in high-redshift galaxies. These galaxies are selected based on their positions in the [O iii]/Hβ versus [N ii]/Hα nebular emission-line diagnostic diagram. We show that these local analogs share similar physical properties with high-redshift galaxies, including high specific star formation rates (sSFRs), flat UV continuums, and compact galaxy sizes. In particular, the ionization parameters and electron densities in these analogs are comparable to those in z ≃ 2–3 galaxies, but higher than those in normal SDSS galaxies by ≃0.6 dex and ≃0.9 dex, respectively. The mass–metallicity relation (MZR) in these local analogs shows ‑0.2 dex offset from that in SDSS star-forming galaxies at the low-mass end, which is consistent with the MZR of the z∼ 2{--}3 galaxies. We compare the local analogs in this study with those in other studies, including Lyman break analogs (LBA) and green pea (GP) galaxies. The analogs in this study share a similar star formation surface density with LBAs, but the ionization parameters and electron density in our analogs are higher than those in LBAs by factors of 1.5 and 3, respectively. The analogs in this study have comparable ionization parameters and electron densities to the GP galaxies, but our method can select galaxies in a wider redshift range. We find the high sSFR and SFR surface density can increase the electron density and ionization parameters, but still cannot fully explain the difference in ISM condition between nearby galaxies and the local analogs/high-redshift galaxies.

  9. The redshift-space neighborhoods of 36 loose groups of galaxies. 1: The data

    NASA Technical Reports Server (NTRS)

    Ramella, Massimo; Geller, Margaret J.; Hurchra, John P.; Thorstensen, John R.

    1995-01-01

    We have selected 36 loose groups of galaxies (RGH89) with at least five members, and with mean redshift average value of CZ is greater than 3200 km/s. These groups all lie within the first two slices of the CfA redshift survey 8(sup h) less than or equal to alpha less than or equal to 17(sup h) and 26.5 deg less than or equal to delta less than or equal to 38.5 deg). For each of these groups, we define the redshift-space neighborhood as a region centered on the group coordinates and delimited by a circle of projected radius R(sub cir) = 1.5/h Mpc on the sky, and by a velocity interval delta (sub cz) = 3000 km/s. Here we give the redshifts of 334 galaxies in these redshift-space neighborhoods. For completeness, we also give the redshifts of the 232 original members. These data include 199 new redshifts. We demonstrate that these samples of fainter galaxies significantly increase the number of members.

  10. Omega from the anisotropy of the redshift correlation function

    NASA Technical Reports Server (NTRS)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  11. BINARY QUASARS AT HIGH REDSHIFT. I. 24 NEW QUASAR PAIRS AT z {approx} 3-4

    SciTech Connect

    Hennawi, Joseph F.; Myers, Adam D.; Shen, Yue; Strauss, Michael A.; Djorgovski, S. G.; Glikman, Eilat; Mahabal, Ashish; Fan Xiaohui; Martin, Crystal L.; Richards, Gordon T.; Schneider, Donald P.; Shankar, Francesco

    2010-08-20

    The clustering of quasars on small scales yields fundamental constraints on models of quasar evolution and the buildup of supermassive black holes. This paper describes the first systematic survey to discover high-redshift binary quasars. Using color-selection and photometric redshift techniques, we searched 8142 deg{sup 2} of Sloan Digital Sky Survey imaging data for binary quasar candidates, and confirmed them with follow-up spectroscopy. Our sample of 27 high-redshift binaries (24 of them new discoveries) at redshifts 2.9 < z < 4.3 with proper transverse separations 10 kpc < R{sub perpendicular} < 650 kpc increases the number of such objects known by an order of magnitude. Eight members of this sample are very close pairs with R{sub perpendicular} < 100 kpc, and of these close systems four are at z>3.5. The completeness and efficiency of our well-defined selection algorithm are quantified using simulated photometry and we find that our sample is {approx}50% complete. Our companion paper uses this knowledge to make the first measurement of the small-scale clustering (R < 1 h {sup -1} Mpc comoving) of high-redshift quasars. High-redshift binaries constitute exponentially rare coincidences of two extreme (M {approx}> 10{sup 9} M {sub sun}) supermassive black holes. At z {approx} 4, there is about one close binary per 10 Gpc{sup 3}, thus these could be the highest sigma peaks, the analogs of superclusters, in the early universe.

  12. Lyman Break Analogs: Constraints on the Formation of Extreme Starbursts at Low and High Redshift

    NASA Technical Reports Server (NTRS)

    Goncalves, Thiago S.; Overzier, Roderik; Basu-Zych, Antara; Martin, D. Christopher

    2011-01-01

    Lyman Break Analogs (LBAs), characterized by high far-UV luminosities and surface brightnesses as detected by GALEX, are intensely star-forming galaxies in the low-redshift universe (z approximately equal to 0.2), with star formation rates reaching up to 50 times that of the Milky Way. These objects present metallicities, morphologies and other physical properties similar to higher redshift Lyman Break Galaxies (LBGs), motivating the detailed study of LBAs as local laboratories of this high-redshift galaxy population. We present results from our recent integral-field spectroscopy survey of LBAs with Keck/OSIRIS, which shows that these galaxies have the same nebular gas kinematic properties as high-redshift LBGs. We argue that such kinematic studies alone are not an appropriate diagnostic to rule out merger events as the trigger for the observed starburst. Comparison between the kinematic analysis and morphological indices from HST imaging illustrates the difficulties of properly identifying (minor or major) merger events, with no clear correlation between the results using either of the two methods. Artificial redshifting of our data indicates that this problem becomes even worse at high redshift due to surface brightness dimming and resolution loss. Whether mergers could generate the observed kinematic properties is strongly dependent on gas fractions in these galaxies. We present preliminary results of a CARMA survey for LBAs and discuss the implications of the inferred molecular gas masses for formation models.

  13. Intergalactic shells at large redshift

    NASA Technical Reports Server (NTRS)

    Shull, J. M.; Silk, J.

    1981-01-01

    The intergalactic shells produced by galactic explosions at large redshift, whose interiors cool by inverse Compton scattering off the cosmic background radiation, have a characteristic angular size of about 1 arcmin at peak brightness. At z values lower than 2, the shells typically have a radius of 0.5 Mpc, a velocity of about 50 km/sec, a metal abundance of about 0.0001 of cosmic values, and strong radiation in H I(Lyman-alpha), He II 304 A, and the IR fine-structure lines of C II and Si II. The predicted extragalactic background emission from many shells, strongly peaked toward the UV, sets an upper limit to the number of exploding sources at z values of about 10. Shell absorption lines of H I, C II, Si II, and Fe II, which may be seen at more recent epochs in quasar spectra, may probe otherwise invisible explosions in the early universe.

  14. Gravitational redshift in Kerr-Newman geometry

    NASA Astrophysics Data System (ADS)

    Dubey, Anuj Kumar; Sen, A. K.

    2015-11-01

    It is well known fact that gravitational mass can alter the space time structure and gravitational redshift is one of its examples. Static electric or magnetic charge can also alter the space time structure, similar to gravitational mass, giving rise to its effect on redshift. This can also be considered as electro and magneto static redshift. Gravitational redshift has been reported by most of the authors without consideration of static electric and/or magnetic charges present in the rotating body. In the present paper, we considered the three parameters: mass, rotation parameter and charge to discuss their combined effect on redshift, for a charged rotating body by using Kerr-Newman metric. It has been found that, the presence of electrostatic and magnetostatic charge increases the value of so-called gravitational redshift. Calculations have been also done here to determine the effect of electrostatic and magnetostatic charges on the amount of redshift of a light ray emitted at various latitudes from a charged rotating body. The variation of gravitational redshift from equatorial to non- equatorial region has been calculated, for a given set of values of electrostatic and magnetostatic charges.

  15. Lower Bounds on Photometric Redshift Errors from Type Ia Supernova Templates

    NASA Astrophysics Data System (ADS)

    Asztalos, S.; Nikolaev, S.; de Vries, W.; Olivier, S.; Cook, K.; Wang, L.

    2010-04-01

    Cosmology with Type Ia supernova heretofore has required extensive spectroscopic follow-up to establish an accurate redshift. Though this resource-intensive approach is tolerable at the present discovery rate, the next generation of ground-based all-sky survey instruments will render it unsustainable. Photometry-based redshift determination may be a viable alternative, though the technique introduces non-negligible errors that ultimately degrade the ability to discriminate between competing cosmologies. We present a strictly template-based photometric redshift estimator and compute redshift reconstruction errors in the presence of statistical errors. Under highly degraded photometric conditions corresponding to a statistical error σ of 0.5, the residual redshift error is found to be 0.236 when assuming a nightly observing cadence and a single Large Synoptic Science Telescope (LSST) u-band filter. Utilizing all six LSST bandpass filters reduces the residual redshift error to 9.1 × 10-3. Assuming a more optimistic statistical error σ of 0.05, we derive residual redshift errors of 4.2 × 10-4, 5.2 × 10-4, 9.2 × 10-4, and 1.8 × 10-3 for observations occuring nightly, every 5th, 20th and 45th night, respectively, in each of the six LSST bandpass filters. Adopting an observing cadence in which photometry is acquired with all six filters every 5th night and a realistic supernova distribution, binned redshift errors are combined with photometric errors with a σ of 0.17 and systematic errors with a σ~ 0.003 to derive joint errors (σ w , σ_{w'}) of (0.012, 0.066), respectively, in (w,w') with 68% confidence using Fisher matrix formalism. Though highly idealized in the present context, the methodology is nonetheless quite relevant for the next generation of ground-based all-sky surveys.

  16. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests

    NASA Astrophysics Data System (ADS)

    Carrasco Kind, Matias; Brunner, Robert J.

    2013-06-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process, has become increasingly important. In this paper, we present a new, publicly available, parallel, machine learning algorithm that generates photometric redshift PDFs by using prediction trees and random forest techniques, which we have named TPZ.1 This new algorithm incorporates measurement errors into the calculation while also dealing efficiently with missing values in the data. In addition, our implementation of this algorithm provides supplementary information regarding the data being analysed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, a quantification of the relative importance of the variables used to construct the PDF, and a robust identification of outliers. This extra information can be used to optimally target new spectroscopic observations and to improve the overall efficacy of the redshift estimation. We have tested TPZ on galaxy samples drawn from the Sloan Digital Sky Survey (SDSS) main galaxy sample and from the Deep Extragalactic Evolutionary Probe-2 (DEEP2) survey, obtaining excellent results in each case. We also have tested our implementation by participating in the PHAT1 project, which is a blind photometric redshift contest, finding that TPZ performs comparable to if not better than other empirical photometric redshift algorithms. Finally, we discuss the various parameters that control the operation of TPZ, the specific limitations of this approach and an application of photometric redshift PDFs.

  17. Photometric Selection of High-Redshift Type Ia Supernova Candidates

    NASA Astrophysics Data System (ADS)

    Sullivan, M.; Howell, D. A.; Perrett, K.; Nugent, P. E.; Astier, P.; Aubourg, E.; Balam, D.; Basa, S.; Carlberg, R. G.; Conley, A.; Fabbro, S.; Fouchez, D.; Guy, J.; Hook, I.; Lafoux, H.; Neill, J. D.; Pain, R.; Palanque-Delabrouille, N.; Pritchet, C. J.; Regnault, N.; Rich, J.; Taillet, R.; Aldering, G.; Baumont, S.; Bronder, J.; Filiol, M.; Knop, R. A.; Perlmutter, S.; Tao, C.

    2006-02-01

    We present a method for selecting high-redshift Type Ia supernovae (SNe Ia) located via rolling SN searches. The technique, using both color and magnitude information of events from only two to three epochs of multiband real-time photometry, is able to discriminate between SNe Ia and core-collapse SNe. Furthermore, for SNe Ia the method accurately predicts the redshift, phase, and light-curve parameterization of these events based only on pre-maximum-light data. We demonstrate the effectiveness of the technique on a simulated survey of SNe Ia and core-collapse SNe, where the selection method effectively rejects most core-collapse SNe while retaining SNe Ia. We also apply the selection code to real-time data acquired as part of the Canada-France-Hawaii Telescope Supernova Legacy Survey (SNLS). During the period 2004 May to 2005 January in the SNLS, 440 SN candidates were discovered, of which 70 were confirmed spectroscopically as SNe Ia and 15 as core-collapse events. For this test data set, the selection technique correctly identifies 100% of the identified SNe II as non-SNe Ia with only a 1%-2% false rejection rate. The predicted parameterization of the SNe Ia has a precision of Δz/(1+zspec)<0.09 in redshift and +/-2-3 rest-frame days in phase, providing invaluable information for planning spectroscopic follow-up observations. We also investigate any bias introduced by this selection method on the ability of surveys such as SNLS to measure cosmological parameters (e.g., w and ΩM) and find any effect to be negligible.

  18. Galaxy bispectrum, primordial non-Gaussianity and redshift space distortions

    NASA Astrophysics Data System (ADS)

    Tellarini, Matteo; Ross, Ashley J.; Tasinato, Gianmassimo; Wands, David

    2016-06-01

    Measurements of the non-Gaussianity of the primordial density field have the power to considerably improve our understanding of the physics of inflation. Indeed, if we can increase the precision of current measurements by an order of magnitude, a null-detection would rule out many classes of scenarios for generating primordial fluctuations. Large-scale galaxy redshift surveys represent experiments that hold the promise to realise this goal. Thus, we model the galaxy bispectrum and forecast the accuracy with which it will probe the parameter fNL, which represents the degree of primordial local-type non Gaussianity. Specifically, we address the problem of modelling redshift space distortions (RSD) in the tree-level galaxy bispectrum including fNL. We find novel contributions associated with RSD, with the characteristic large scale amplification induced by local-type non-Gaussianity. These RSD effects must be properly accounted for in order to obtain un-biased measurements of fNL from the galaxy bispectrum. We propose an analytic template for the monopole which can be used to fit against data on large scales, extending models used in the recent measurements. Finally, we perform idealised forecasts on σfNL—the accuracy of the determination of local non-linear parameter fNL—from measurements of the galaxy bispectrum. Our findings suggest that current surveys can in principle provide fNL constraints competitive with Planck, and future surveys could improve them further.

  19. Impacts of satellite galaxies on the redshift-space distortions

    SciTech Connect

    Hikage, Chiaki; Yamamoto, Kazuhiro E-mail: kazuhiro@hiroshima-u.ac.jp

    2013-08-01

    We study the impacts of the satellite galaxies on the redshift-space distortions. In our multipole power spectrum analysis of the luminous red galaxies (LRGs) samples of the Sloan digital sky survey (SDSS), we have clearly detected the non-zero signature of the hexadecapole and tetrahexadecapole spectrum, which almost disappears in the power spectrum with the sample of the brightest LRGs only. We thus demonstrate that the satellite LRGs in multiple systems make a significant contribution to the multipole power spectrum though its fraction is small. The behavior can be understood by a simple halo model, in which the one-halo term, describing the Finger of God (FoG) effect from the satellite galaxies, makes the dominant contribution to the higher multipole spectra. We demonstrate that the small-scale information of higher multipole spectrum is useful for calibrating the satellite FoG effect and improves the measurement of the cosmic growth rate dramatically. We further demonstrate that the fiber collision in the galaxy survey influences the one-halo term and the higher multipole spectra, because the number of satellite galaxies in the halo occupation distribution (HOD) is changed. We also discuss about the impact of satellite galaxies on future high-redshift surveys targeting the H-alpha emitters.

  20. On the formation redshift of Low-Mass Star-Forming Galaxies at intermediate redshifts

    NASA Astrophysics Data System (ADS)

    Gallego, Jesus; Rodriguez-Muñoz, Lucía; Pacifici, Camilla; Tresse, Laurence; Charlot, Stéphane; Gil de Paz, Armando; Barro, Guillermo; Gomez-Guijarro, Carlos; Villar, Víctor

    2015-08-01

    Dwarf galaxies play a key role in galaxy formation and evolution: (1) hierarchical models predict that low-mass systems merged to form massive galaxies (building block paradigm; Dekel & Silk 1986); (2) dwarf systems might have been responsible for the reionization of the Universe (Wyithe & Loeb 2006); (3) theoretical models are particularly sensitive to the density of low-mass systems at diferent redshifts (Mamon et al. 2011), being one of the key science cases for the future E-ELT (Evans et al. 2013). While the history of low-mass dark matter halos is relatively well understood, the formation history of dwarf galaxies is still poorly reproduced by the models due to the distinct evolution of baryonic and dark matter.We present constraints on the star formation histories (SFHs) of a sample of low-mass Star-Forming Galaxies (LMSFGs; 7.3 < log M∗/Mo < 8.0, at 0.3 < zspec < 0.9) selected by photometric stellar mass and apparent magnitude. The SFHs were obtained through the analysis of their spectral energy distributions using a novel approach (Pacifici et al. 2012) that (1) consistently combines photometric (HST and ground-based multi-broadband) and spectroscopic (equivalent widths of emission lines from VLT and GTC spectroscopy) data, and (2) uses physically motivated SFHs with non-uniform variations of the star formation rate (SFR) as a function of time.The median SFH of our LMSFGs appears to form 90% of the median stellar mass inferred for the sample in the ˜0.5-1.8 Gyr immediately preceding the observation. These results suggest a recent stellar mass assembly for dwarf SFGs, consistent with the cosmological downsizing trends. We find similar median SFH timescales for a slightly more massive secondary sample 8.0 < log M∗/Mo < 9.1).This is a pilot study for future surveys on dwarf galaxies at high redshift.

  1. Nine optically selected quasars with redshifts larger than 3

    NASA Technical Reports Server (NTRS)

    Schmidt, Maarten; Schneider, Donald P.; Gunn, James E.

    1987-01-01

    The detection of nine quasars with redshifts between 3.0 and 3.8 is reported. The quasars were all found in a grism survey from their Lyman-alpha emission line. The r magnitudes of the quasars range from 18.5 to 21.7. The strengths of the Lyman-alpha lines are comparable to the values observed in other quasars (rest equivalent widths from 40 to 160 A). The spectrum of one of the objects possesses complex broad absorption features, similar to those seen in PHL 5200. A preliminary evaluation of these findings suggests that the comoving quasar density declines gradually beyond z = 3.

  2. Candidate High Redshift Clusters of Dusty Galaxies from Herschel & Planck

    NASA Astrophysics Data System (ADS)

    Clements, David L.

    2015-08-01

    The cross identification of Planck compact sources with objects in karger area Herschel surveys, such as HerMES and H-ATLAS, has led to the discovery of candidate high redshift (out to z~3) clusters of far-IR luminous star forming galaxies. These objects are not easily reproduced in the current generations of galaxy and large scale formation simulations and are thus a potentially powerful new tool for comnstraining galaxy and cluster formation models. We will review the current results on these sources and examine future prospects for progress in this novel and potentially important new field.

  3. Comparision of approaches to photometric redshift estimation of quasars

    NASA Astrophysics Data System (ADS)

    Tu, Yang; Zhang, Yanxia; Zhao, Yongheng; Tian, Haijun

    2015-08-01

    Based on databases from various different band photometric surveys (optical from SDSS, infrared from UKIDSS and WISE), we compare k-nearest neighbor regression based on KD-tree and Ball-tree, LASSO, PLS (Partial Least Squares), SDG, ridge regression and kernel ridge regression applied for photometric redshift estimation of quasars. The experimental result shows that the perfomance order of these methods is KD-tree kNN, Ball-tree kNN, kernal ridge regression, ridge regression, PLS, SGD, LASSO.

  4. IONIZED NITROGEN AT HIGH REDSHIFT

    SciTech Connect

    Decarli, R.; Walter, F.; Neri, R.; Cox, P.; Bertoldi, F.; Carilli, C.; Kneib, J. P.; Lestrade, J. F.; Maiolino, R.; Omont, A.; Richard, J.; Riechers, D.; Thanjavur, K.; Weiss, A.

    2012-06-10

    We present secure [N II]{sub 205{mu}m} detections in two millimeter-bright, strongly lensed objects at high redshift, APM 08279+5255 (z = 3.911) and MM 18423+5938 (z = 3.930), using the IRAM Plateau de Bure Interferometer. Due to its ionization energy [N II]{sub 205{mu}m} is a good tracer of the ionized gas phase in the interstellar medium. The measured fluxes are S([N II]{sub 205{mu}m}) = (4.8 {+-} 0.8) Jy km s{sup -1} and (7.4 {+-} 0.5) Jy km s{sup -1}, respectively, yielding line luminosities of L([N II]{sub 205{mu}m}) = (1.8 {+-} 0.3) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for APM 08279+5255 and L([N II]{sub 205{mu}m}) = (2.8 {+-} 0.2) Multiplication-Sign 10{sup 9} {mu}{sup -1} L{sub Sun} for MM 18423+5938. Our high-resolution map of the [N II]{sub 205{mu}m} and 1 mm continuum emission in MM 18423+5938 clearly resolves an Einstein ring in this source and reveals a velocity gradient in the dynamics of the ionized gas. A comparison of these maps with high-resolution EVLA CO observations enables us to perform the first spatially resolved study of the dust continuum-to-molecular gas surface brightness ({Sigma}{sub FIR}{proportional_to}{Sigma}{sup N}{sub CO}, which can be interpreted as the star formation law) in a high-redshift object. We find a steep relation (N = 1.4 {+-} 0.2), consistent with a starbursting environment. We measure a [N II]{sub 205{mu}m}/FIR luminosity ratio in APM 08279+5255 and MM 18423+5938 of 9.0 Multiplication-Sign 10{sup -6} and 5.8 Multiplication-Sign 10{sup -6}, respectively. This is in agreement with the decrease of the [N II]{sub 205{mu}m}/FIR ratio at high FIR luminosities observed in local galaxies.

  5. POLARIZED RADIO SOURCES: A STUDY OF LUMINOSITY, REDSHIFT, AND INFRARED COLORS

    SciTech Connect

    Banfield, Julie K.; George, Samuel J.; Taylor, A. Russ; Stil, Jeroen M.; Kothes, Roland; Scott, Douglas

    2011-05-20

    The Dominion Radio Astrophysical Observatory Deep Field polarization study has been matched with the Spitzer Wide-Area Infrared Extragalactic Survey of the European Large Area Infrared Space Observatory Survey North 1 field. We have used Very Large Array observations with a total intensity rms of 87 {mu}Jy beam{sup -1} to match SWIRE counterparts to the radio sources. Infrared color analysis of our radio sample shows that the majority of polarized sources are elliptical galaxies with an embedded active galactic nucleus. Using available redshift catalogs, we found 429 radio sources of which 69 are polarized with redshifts in the range of 0.04 < z < 3.2. We find no correlation between redshift and percentage polarization for our sample. However, for polarized radio sources, we find a weak correlation between increasing percentage polarization and decreasing luminosity.

  6. Infrared-faint radio sources are at high redshifts. Spectroscopic redshift determination of infrared-faint radio sources using the Very Large Telescope

    NASA Astrophysics Data System (ADS)

    Herzog, A.; Middelberg, E.; Norris, R. P.; Sharp, R.; Spitler, L. R.; Parker, Q. A.

    2014-07-01

    Context. Infrared-faint radio sources (IFRS) are characterised by relatively high radio flux densities and associated faint or even absent infrared and optical counterparts. The resulting extremely high radio-to-infrared flux density ratios up to several thousands were previously known only for high-redshift radio galaxies (HzRGs), suggesting a link between the two classes of object. However, the optical and infrared faintness of IFRS makes their study difficult. Prior to this work, no redshift was known for any IFRS in the Australia Telescope Large Area Survey (ATLAS) fields which would help to put IFRS in the context of other classes of object, especially of HzRGs. Aims: This work aims at measuring the first redshifts of IFRS in the ATLAS fields. Furthermore, we test the hypothesis that IFRS are similar to HzRGs, that they are higher-redshift or dust-obscured versions of these massive galaxies. Methods: A sample of IFRS was spectroscopically observed using the Focal Reducer and Low Dispersion Spectrograph 2 (FORS2) at the Very Large Telescope (VLT). The data were calibrated based on the Image Reduction and Analysis Facility (IRAF) and redshifts extracted from the final spectra, where possible. This information was then used to calculate rest-frame luminosities, and to perform the first spectral energy distribution modelling of IFRS based on redshifts. Results: We found redshifts of 1.84, 2.13, and 2.76, for three IFRS, confirming the suggested high-redshift character of this class of object. These redshifts and the resulting luminosities show IFRS to be similar to HzRGs, supporting our hypothesis. We found further evidence that fainter IFRS are at even higher redshifts. Conclusions: Considering the similarities between IFRS and HzRGs substantiated in this work, the detection of IFRS, which have a significantly higher sky density than HzRGs, increases the number of active galactic nuclei in the early universe and adds to the problems of explaining the formation of

  7. ON THE SHAPES AND STRUCTURES OF HIGH-REDSHIFT COMPACT GALAXIES

    SciTech Connect

    Chevance, Melanie; Damjanov, Ivana; Abraham, Roberto G.; Weijmans, Anne-Marie; Simard, Luc; Van den Bergh, Sidney; Caris, Evelyn; Glazebrook, Karl

    2012-08-01

    Recent deep Hubble Space Telescope WFC3 imaging suggests that a majority of compact quiescent massive galaxies at z {approx} 2 may contain disks. To investigate this claim, we have compared the ellipticity distribution of 31 carefully selected high-redshift massive quiescent compact galaxies to a set of mass-selected ellipticity and Sersic index distributions obtained from two-dimensional structural fits to {approx}40, 000 nearby galaxies from the Sloan Digital Sky Survey. A Kolmogorov-Smirnov test shows that the distribution of ellipticities for the high-redshift galaxies is consistent with the ellipticity distribution of a similarly chosen sample of massive early-type galaxies. However, the distribution of Sersic indices for the high-redshift sample is inconsistent with that of local early-type galaxies, and instead resembles that of local disk-dominated populations. The mismatch between the properties of high-redshift compact galaxies and those of both local early-type and disk-dominated systems leads us to conclude that the basic structures of high-redshift compact galaxies probably do not closely resemble those of any single local galaxy population. Any galaxy population analog to the high-redshift compact galaxies that exists at the current epoch is either a mix of different types of galaxies, or possibly a unique class of objects on their own.

  8. Estimating luminosities and stellar masses of galaxies photometrically without determining redshifts

    SciTech Connect

    Hsieh, B. C.; Yee, H. K. C. E-mail: hyee@astro.utoronto.ca

    2014-09-10

    Large direct imaging surveys usually use a template-fitting technique to estimate photometric redshifts for galaxies, which are then applied to derive important galaxy properties such as luminosities and stellar masses. These estimates can be noisy and suffer from systematic biases because of the possible mis-selection of templates and the propagation of the photometric redshift uncertainty. We introduce an algorithm, the Direct Empirical Photometric method (DEmP), that can be used to directly estimate these quantities using training sets, bypassing photometric redshift determination. DEmP also applies two techniques to minimize the effects arising from the non-uniform distribution of training set galaxy redshifts from a flux-limited sample. First, for each input galaxy, fitting is performed using a subset of the training set galaxies with photometry and colors closest to those of the input galaxy. Second, the training set is artificially resampled to produce a flat distribution in redshift or other properties, e.g., luminosity. To test the performance of DEmP, we use a four filter-band mock catalog to examine its ability to recover redshift, luminosity, stellar mass, and luminosity and stellar mass functions. We also compare the results to those from two publicly available template-fitting methods, finding that the DEmP algorithm outperforms both. We find that resampling the training set to have a uniform redshift distribution produces the best results not only in photometric redshift, but also in estimating luminosity and stellar mass. The DEmP method is especially powerful in estimating quantities such as near-IR luminosities and stellar mass using only data from a small number of optical bands.

  9. Redshifts for Superliminal Candidates.II.

    NASA Astrophysics Data System (ADS)

    Vermeulen, R. C.; Taylor, G. B.; Readhead, A. C. S.; Browne, I. W. A.

    1996-03-01

    Spectra are presented for 24 compact extragalactic radio sources from complete samples being studied with VLBI. New emission line redshifts are given for 21 of the objects; in 7 of these we have also identified associated or intervening absorption line systems. In 1 other source there are absorption lines which provide a lower limit to the redshift. The remaining 2 objects have strong featureless spectra and are likely to be blazars.

  10. RX J1759.4+6638: An x-ray selected quasars at a redshift of 4.320

    NASA Technical Reports Server (NTRS)

    Henry, J. P.; Gioia, I. M.; Boehringer, H.; Bower, R. G.; Briel, U. G.; Hasinger, G. H.; Aragon-Salamanca, A.; Castander, F. J.; Ellis, R. S.; Huchra, J. P.

    1994-01-01

    We report the discovery of an x-ray selected Quasi-Stellar Objects (QSO) at a redshift of 4.320 +/- 0.005. This is the most distant x-ray selected object known, and it is the eighth most distant QSO known. The properties of this QSO are very similar to other QSOs at redshifts greater than 4. The x-ray discovery of this object, and that of high redshift clusters of galaxies, shows that present x-ray surveys are reaching depths competitive with other methods.

  11. REDSHIFT EVOLUTION OF THE GALAXY VELOCITY DISPERSION FUNCTION

    SciTech Connect

    Bezanson, Rachel; Van Dokkum, Pieter G.; Whitaker, Katherine E.; Franx, Marijn; Brinchmann, Jarle; Labbe, Ivo; Van de Sande, Jesse; Brammer, Gabriel B.; Kriek, Mariska; Quadri, Ryan F.; Williams, Rik J.; Rix, Hans-Walter

    2011-08-20

    We present a study of the evolution of the galaxy velocity dispersion function (VDF) from z = 0 to z = 1.5 using photometric data from the Ultra-Deep and the NEWFIRM Medium-Band Survey in the COSMOS field. The VDF has been measured locally using direct kinematic measurements from the Sloan Digital Sky Survey (SDSS), but direct studies of the VDF at high redshift are difficult as they require velocity dispersion measurements of many thousands of galaxies. Taylor et al. demonstrated that dynamical and stellar masses are linearly related when the structure of the galaxy is accounted for. We show that the stellar mass, size, and Sersic index can reliably predict the velocity dispersions of SDSS galaxies. We apply this relation to galaxies at high redshift and determine the evolution of the inferred VDF. We find that the VDF at z {approx} 0.5 is very similar to the VDF at z = 0. At higher redshifts, we find that the number density of galaxies with dispersions {approx}< 200 km s{sup -1} is lower, but the number of high-dispersion galaxies is constant or even higher. At fixed cumulative number density, the velocity dispersions of galaxies with log N[Mpc{sup -3}] < -3.5 increase with time by a factor of {approx}1.4 from z {approx} 1.5-0, whereas the dispersions of galaxies with lower number density are approximately constant or decrease with time. The VDF appears to show less evolution than the stellar mass function, particularly at the lowest number densities. We note that these results are still somewhat uncertain and we suggest several avenues for further calibrating the inferred velocity dispersions.

  12. Interstellar MG II Absorption Lines from Low-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Bowen, David V.; Blades, J. Chris; Pettini, Max

    1995-08-01

    We have used the GHRS aboard HST to search for interstellar Mg II 2796, 2803 absorption from the disks and halos of 17 low-redshift galaxies, using as probes QSOs and extragalactic supernovae whose sight lines pass close to, or through, intervening galaxies. The galaxies studied are of diverse morphological type, reside in different environments, and lie at separations of p' ≃ 2-113 h-1 kpc from a QSO line of sight. Ten of 11 galaxies at separations 31-113 h-1 kpc show no absorption to equivalent width limits of W(λ2796) <40-90 mÅ, which corresponds to N(Mg II) ≃1-4 × 1012 cm-2. Six galaxies lie at p' ≤ 9 kpc, and of these, four (NGC 4319, the LMC, M81, and the Milky Way) show absorption. Two early-type galaxies (NGC 1380 and Leo I) show no absorption at p' < 9 kpc: these nondetections are surprising because the separations are small and point to the possibility that the existence of extended absorbing halos may be a function of galaxy type. All of the galaxies which produce absorption are plausibly members of interacting systems. For absorbing galaxies probed below 9 kpc, the sight line passes within the optical radius of the galaxy, where the interstellar medium (ISM) is expected to have a high covering factor, and we do not attribute the absorption to the interactions. However, we do find that the environment of the absorbing galaxies affects the characteristics of the absorption detected the strength of lines, the complexity of line components, the ionization state of the gas and we warn of the dangers inherent in constructing models of generic halos based on statistical properties of QSO absorption-line surveys. Our data suggest that the covering factor of Mg II absorption is high for galaxies within ≍10 kpc, but very small beyond ≍30 h-1 kpc, a result consistent with the size found of Mg II halos deduced for galaxies at redshifts z > 0.2. The low-redshift galaxies observed in this study which show Mg II absorption are probably drawn from the same

  13. MSE velocity survey

    NASA Astrophysics Data System (ADS)

    Schimd, C.; Courtois, H.; Koda, J.

    2015-12-01

    A huge velocity survey based on the Maunakea Spectroscopic Explorer facility (MSE) is proposed, aiming at investigating the structure and dynamics of the cosmic web over 3π steradians up to ˜1 Gpc and at unprecedented spatial resolution, its relationship with the galaxy formation process, and the bias between galaxies and dark matter during the last three billions years. The cross-correlation of velocity and density fields will further allow the probe any deviation from General Relativity by measuring the the linear-growth rate of cosmic structures at precision competitive with high-redshift spectroscopic redshift surveys.

  14. Astronomical redshifts and the expansion of space

    NASA Astrophysics Data System (ADS)

    Kaiser, Nick

    2014-03-01

    In homogeneous cosmological models, the wavelength λ of a photon exchanged between two fundamental observers changes in proportion to expansion of the space D between them, so Δ log (λ/D) = 0. This is exactly the same as for a pair of observers receding from each other in flat space-time where the effect is purely kinematic. The interpretation of this has been the subject of considerable debate, and it has been suggested that all redshifts are a relative velocity effect, raising the question of whether the wavelength always stretches in proportion to the emitter-receiver separation. Here, we show that, for low redshift at least, Δ log (λ/D) vanishes for a photon exchanged between any two freely falling observers in a spatially constant tidal field, because such a field stretches wavelengths and the space between the observers identically. But in general there is a non-kinematic, and essentially gravitational, component of the redshift that is given by a weighted average of the gradient of the tidal field along the photon path. While the redshift can always be formally expressed using the Doppler formula, in situations where the gravitational redshift dominates, the `relative velocity' is typically quite different from the rate of change of D and it is misleading to think of the redshift as being a velocity or `kinematic' effect.

  15. Simulation of High-Redshift Galactic Images

    NASA Astrophysics Data System (ADS)

    Morgan, Robert J.; Scannapieco, E.; Windhorst, R. A.; Thacker, R.

    2009-12-01

    We construct an observational model of galaxies at high redshifts (z 3 - 13) from numerical N-body and SPH simulations of galaxy formation using the computing cluster "Saguaro” at Arizona State University. The model uses a concordance Lambda-CDM model including baryonic components with gas heating and cooling and star formation using Gadget-2 simulations. Snapshots at various redshifts yield star "particles” (populations) with a modeled metallicity and age of formation. The Bruzual-Charlot '03 stellar population models are used to compute a red-shifted flux for various filters for each simulated star population. The flux and spatial coordinates are then used to create a pixel image in a fits file format. The different redshift "slices” are shifted randomly in the simulation periodic box, and resized according to the comoving distance to correct for the angular pixel mapping. The various redshift corrected fits images are then combined into a single image for each filter to produce simulated observational images. This is to enable the use of observational imaging tools to detect galaxies and to aid observational proposals at high redshifts including the new WFC3 camera to be installed on the HST. This method also permits estimates of the luminosity function at z >6 directly from the simulated stellar populations rather than just the size of the Dark Matter haloes. With runs of higher resolution, this will permit exploration of the faint end of the luminosity function. The computing time was supplied by the ASU Fulton HPC center.

  16. Astronomical redshifts of highly ionized regions

    NASA Astrophysics Data System (ADS)

    Hansen, Peter M.

    2014-07-01

    Astronomical or cosmological redshifts are an observable property of extragalactic objects and have historically been wholly attributed to the recessional velocity of that object. The question of other, or intrinsic, components of the redshift has been highly controversial since it was first proposed. This paper investigates one theoretical source of intrinsic redshift that has been identified. The highly ionized regions of Active Galactic Nuclei (AGN) and Quasi-Stellar Objects (QSO) are, by definition, plasmas. All plasmas have electromagnetic scattering characteristics that could contribute to the observed redshift. To investigate this possibility, one region of a generalized AGN was selected, the so called Broad Line Region (BLR). Even though unresolvable with current instrumentation, physical estimates of this region have been published for years in the astronomical literature. These data, selected and then averaged, are used to construct an overall model that is consistent with the published data to within an order of magnitude. The model is then subjected to a theoretical scattering investigation. The results suggest that intrinsic redshifts, derivable from the characteristics of the ambient plasma, may indeed contribute to the overall observed redshift of these objects.

  17. SDSS-IV: The Clustering of eBOSS LRGs using photometric redshifts

    NASA Astrophysics Data System (ADS)

    Prakash, Abhishek; SDSS-IV/eBOSS

    2016-01-01

    SDSS-IV/eBOSS is producing an exciting data set for cosmology which will add to our understanding of the large-scale structure of the Universe. The Luminous Red Galaxy (LRG) component of this survey will cover a redshift regime barely explored by SDSS-III/BOSS and will allow a ˜1% measurement of the Baryon Acoustic Oscillation (BAO) scale and a 4.0% Redshift Space Distortion (RSD) measurement using a relatively uniform set of luminous, early-type galaxies in the redshift range 0.6 < z < 1. We briefly review a new technique of selecting high-z LRGs utilizing SDSS and WISE (infrared) photometry in combination. These galaxies are old, elliptical systems with strong 4000 °A breaks. Old stellar populations exhibit a global maximum in their spectral energy distributions (SEDs) at a wavelength of 1.6 μm, commonly referred to as the '1.6 μm bump'. Since LRGs possess very few young stars, this feature generally dominates their overall SEDs which makes them extremely bright in infrared. SDSS-IV/eBOSS LRGs range from redshift z = 0.6 to 1.0 over 10,000 square degrees of the sky. Here we briefly present the results of the 3D real space clustering power spectrum of a sample of 600,000 luminous red galaxies (LRGs) measured by the Sloan Digital Sky Survey (SDSS), using photometric redshifts. Although spectroscopic redshifts provide stronger constraints on large scale measurements, these results demonstrate the ability to make precise clustering measurements with photometric surveys.

  18. A Search for Moderate-redshift Survivors from the Population of Luminous Compact Passive Galaxies at High Redshift

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W.

    2014-01-01

    From a search of a ~2400 deg2 region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ~ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ~ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed >~ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  19. A search for moderate-redshift survivors from the population of luminous compact passive galaxies at high redshift

    SciTech Connect

    Stockton, Alan; Shih, Hsin-Yi; Larson, Kirsten; Mann, Andrew W. E-mail: hsshih@ifa.hawaii.edu E-mail: amann@ifa.hawaii.edu

    2014-01-10

    From a search of a ∼2400 deg{sup 2} region covered by both the Sloan Digital Sky Survey and UKIRT Infrared Deep Sky Survey databases, we have attempted to identify galaxies at z ∼ 0.5 that are consistent with their being essentially unmodified examples of the luminous passive compact galaxies found at z ∼ 2.5. After isolating good candidates via deeper imaging, we further refine the sample with Keck moderate-resolution spectroscopy and laser guide star adaptive-optics imaging. For four of the five galaxies that so far remain after passing through this sieve, we analyze plausible star-formation histories based on our spectra in order to identify galaxies that may have survived with little modification from the population formed at high redshift. We find two galaxies that are consistent with having formed ≳ 95% of their mass at z > 5. We attempt to estimate masses both from our stellar population determinations and from velocity dispersions. Given the high frequency of small axial ratios, both in our small sample and among samples found at high redshifts, we tentatively suggest that some of the more extreme examples of passive compact galaxies may have prolate morphologies.

  20. PHOTOMETRIC ESTIMATES OF REDSHIFTS AND DISTANCE MODULI FOR TYPE Ia SUPERNOVAE

    SciTech Connect

    Kessler, Richard; Frieman, Joshua A.; Cinabro, David; Bassett, Bruce; Smith, Mathew; Dilday, Benjamin; Jha, Saurabh; Garnavich, Peter M.; Marriner, John; Nichol, Robert C.; Sako, Masao; Bernstein, Joseph P.; Kuhlmann, Stephen; Bizyaev, Dmitry; Goobar, Ariel; Schneider, Donald P.; Stritzinger, Maximilian

    2010-07-01

    Large planned photometric surveys will discover hundreds of thousands of supernovae (SNe), outstripping the resources available for spectroscopic follow-up and necessitating the development of purely photometric methods to exploit these events for cosmological study. We present a light curve fitting technique for type Ia supernova (SN Ia) photometric redshift (photo-z) estimation in which the redshift is determined simultaneously with the other fit parameters. We implement this 'LCFIT+Z' technique within the frameworks of the MLCS2K2 and SALTII light curve fit methods and determine the precision on the redshift and distance modulus. This method is applied to a spectroscopically confirmed sample of 296 SNe Ia from the Sloan Digital Sky Survey-II (SDSS-II) SN Survey and 37 publicly available SNe Ia from the Supernova Legacy Survey (SNLS). We have also applied the method to a large suite of realistic simulated light curves for existing and planned surveys, including the SDSS, SNLS, and the Large Synoptic Survey Telescope. When intrinsic SN color fluctuations are included, the photo-z precision for the simulation is consistent with that in the data. Finally, we compare the LCFIT+Z photo-z precision with previous results using color-based SN photo-z estimates.

  1. Probing the dark ages: Observations of the high-redshift universe

    NASA Astrophysics Data System (ADS)

    Stevens, Daniel Keith

    This thesis attempts to describe some of the earliest phases in the collapse of galaxies from an observational standpoint. The work is composed of an assortment of projects which sample objects at very high redshift, probing the Universe 1-3 Gyr after the Big Bang. The first section of the thesis concerns high-redshift galaxies. Search techniques for identifying distant galaxies are extensively reviewed. Radio selection was once the primary vehicle to targeting the early Universe. Keck spectroscopy of high-redshift radio galaxies from the MIT-Greenbank radio catalog (S5GHz >~ 50 mJy) are discussed. We synthesize a composite radio galaxy spectrum, which we compare with other composite active galaxy spectra. Our data suggests a correlation between radio power and ionization state in high-redshift radio galaxies. The following three chapters detail individual galaxies confirmed at z > 5. These galaxies are among the half-dozen most distant sources known at the close of the 20th Century. Two of the galaxies were photometrically-selected from the Hubble Deep Field (HDF 4-473.0 at z = 5.60 and HDF 3-951.0 at z = 5.34 +/- 0.01). The third is TN J0924-2201, a radio galaxy at z = 5.19 selected on the basis of steep radio spectral index and faint K-band brightness. This source contains the most distant active galactic nucleus currently known, requiring early formation of supermassive blackholes within a Gyr after the Big Bang. The second section of the thesis concerns searches for high-redshift Lyα emission, identified either from deep, narrow-band imaging surveys or deep slit spectra. We discuss in detail one faint, high equivalent width line-emitter. Conventional wisdom would suggest identifying the 9185 Å line with Lyα at z = 6.55. We argue [O II] λ3727 at z = 1.46 is the more likely identification and discuss observational tests to distinguish Lyα-emitters at high redshift from foreground (active) sources. The final section of the thesis concerns high-redshift

  2. Spectra of High-Redshift Type Ia Supernovae and a Comparison withtheir Low-Redshift Counterparts

    SciTech Connect

    Hook, I.M.; Howell, D.A.; Aldering, G.; Amanullah, R.; Burns,M.S.; Conley, A.; Deustua, S.E.; Ellis, R.; Fabbro, S.; Fadeyev, V.; Folatelli, G.; Garavini, G.; Gibbons, R.; Goldhaber, G.; Goobar, A.; Groom, D.E.; Kim, A.G.; Knop, R.A.; Kowalski, M.; Lidman, C.; Nobili, S.; Nugent, P.E.; Pain, R.; Pennypacker, C.R.; Perlmutter, S.; Ruiz-Lapuente,P.; Sainton, G.; Schaefer, B.E.; Smith, E.; Spadafora, A.L.; Stanishev,V.; Thomas, R.C.; Walton, N.A.; Wang, L.; Wood-Vasey, W.M.

    2005-07-20

    We present spectra for 14 high-redshift (0.17 < z < 0.83) supernovae, which were discovered by the Supernova Cosmology Project as part of a campaign to measure cosmological parameters. The spectra are used to determine the redshift and classify the supernova type, essential information if the supernovae are to be used for cosmological studies. Redshifts were derived either from the spectrum of the host galaxy or from the spectrum of the supernova itself. We present evidence that these supernovae are of Type Ia by matching to spectra of nearby supernovae. We find that the dates of the spectra relative to maximum light determined from this fitting process are consistent with the dates determined from the photometric light curves, and moreover the spectral time-sequence for SNe Type Ia at low and high redshift is indistinguishable. We also show that the expansion velocities measured from blueshifted Ca H&K are consistent with those measured for low-redshift Type Ia supernovae. From these first-level quantitative comparisons we find no evidence for evolution in SNIa properties between these low- and high-redshift samples. Thus even though our samples may not be complete, we conclude that there is a population of SNe Ia at high redshift whose spectral properties match those at low redshift.

  3. ZEN and the Search for High-Redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Willis, J. P.

    2006-01-01

    We present the ZEN (z equals nine) survey: a deep, narrow J-band search for proto-galactic Lya emission at redshifts z=9. In the first phase of the survey, dubbed ZEN1, we combine an exceptionally deep image of the Hubble Deep Field South, obtained using a narrow band filter centred on the wavelength 1.187 microns, with existing deep, broad band images covering optical to near infrared wavelengths. Candidate z=9 Lya-emitting galaxies display a significant narrow band excess relative to the Js-band that are undetected at optical wavelengths. We detect no sources consistent with this criterion to the 90% point source flux limit of the NB image, F_NB = 3.28e-18 ergs/s/cm2. The survey selection function indicates that we have sampled a volume of approximately 340 h^{-3} Mpc3 to a Lya emission luminosity of 10e43 h^{-2} ergs/s. When compared to the predicted properties of z=9 galaxies based upon no evolution of observed z=6 Lya-emitting galaxies, the `volume shortfall' of the current survey, i.e. the volume required to detect this putative population, is a factor of at least 8 to 10. We also discuss continuing narrow J-band imaging surveys that will reduce the volume shortfall factor to the point where the no-evolution prediction from z=6 is probed in a meaningful manner.

  4. Improving dark energy constraints with high-redshift Type Ia supernovae from CANDELS and CLASH

    NASA Astrophysics Data System (ADS)

    Salzano, Vincenzo; Rodney, Steven A.; Sendra, Irene; Lazkoz, Ruth; Riess, Adam G.; Postman, Marc; Broadhurst, Tom; Coe, Dan

    2013-09-01

    Aims: We investigated the degree of improvement in dark energy constraints that can be achieved by extending Type Ia supernova (SN Ia) samples to redshifts z > 1.5 with the Hubble Space Telescope (HST), particularly in the ongoing Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) and the Cluster Lensing and Supernova survey with Hubble (CLASH) multi-cycle treasury programs. Methods: Using the popular Chevalier-Polarski-Linder (CPL) parametrization of the dark energy w = w0 + wa(1 - a) we generated mock SN Ia samples that can be projected out to higher redshifts. The synthetic datasets thus generated were fitted to the CPL model, and we evaluated the improvements that a high-z sample can add to improve the statistical and systematic uncertainties on cosmological parameters. Results: In an optimistic but still very achievable scenario, we find that extending the HST sample beyond CANDELS+CLASH to reach a total of 28 SN Ia at z > 1.0 could improve the uncertainty in the wa parameter σwaby up to 21%. The corresponding improvement in the figure of merit (FoM) would be as high as 28%. Finally, we consider the use of high-redshift SN Ia samples to detect non-cosmological evolution in SN Ia luminosities with redshift, finding that these tests could be undertaken by future space-based infrared surveys using the James Webb Space Telescope (JWST).

  5. RED NUGGETS AT HIGH REDSHIFT: STRUCTURAL EVOLUTION OF QUIESCENT GALAXIES OVER 10 Gyr OF COSMIC HISTORY

    SciTech Connect

    Damjanov, Ivana; Abraham, Roberto G.; Carlberg, Raymond G.; Mentuch, Erin; Glazebrook, Karl; Caris, Evelyn; Green, Andrew W.; McCarthy, Patrick J.; Chen, Hsiao-Wen; Crampton, David; Murowinski, Richard; Joergensen, Inger; Roth, Kathy; Juneau, Stephanie; Marzke, Ronald O.; Savaglio, Sandra; Yan Haojing

    2011-10-01

    We present an analysis of the size growth seen in early-type galaxies over 10 Gyr of cosmic time. Our analysis is based on a homogeneous synthesis of published data from 16 spectroscopic surveys observed at similar spatial resolution, augmented by new measurements for galaxies in the Gemini Deep Deep Survey. In total, our sample contains structural data for 465 galaxies (mainly early-type) in the redshift range 0.2 < z < 2.7. The size evolution of passively evolving galaxies over this redshift range is gradual and continuous, with no evidence for an end or change to the process around z {approx} 1, as has been hinted at by some surveys which analyze subsets of the data in isolation. The size growth appears to be independent of stellar mass, with the mass-normalized half-light radius scaling with redshift as R{sub e} {proportional_to}(1 + z){sup -1.62{+-}0.34}. Surprisingly, this power law seems to be in good agreement with the recently reported continuous size evolution of UV-bright galaxies in the redshift range z {approx} 0.5-3.5. It is also in accordance with the predictions from recent theoretical models.

  6. The redshift evolution of the mass function of cold gas in hierarchical galaxy formation models

    NASA Astrophysics Data System (ADS)

    Power, C.; Baugh, C. M.; Lacey, C. G.

    2010-07-01

    Accurately predicting how the cosmic abundance of neutral hydrogen evolves with redshift is a challenging problem facing modellers of galaxy formation. We investigate the predictions of four currently favoured semi-analytical galaxy formation models applied to the Millennium simulation for the mass function of cold neutral gas (atomic and molecular) in galaxies as a function of redshift, and we use these predictions to construct number counts for the next generation of all-sky neutral atomic hydrogen (HI) surveys. Despite the different implementations of the physical ingredients of galaxy formation, we find that the model predictions are broadly consistent with one another; the key differences reflect how the models treat active galactic nuclei feedback and how the time-scale for star formation evolves with redshift. The models produce mass functions of cold gas in galaxies that are generally in good agreement with HI surveys at . Interestingly, we find that these mass functions do not evolve significantly with redshift. Adopting a simple conversion factor for cold gas mass to HI mass that we apply to all galaxies at all redshifts, we derive mass functions of HI in galaxies from the predicted mass functions of cold gas, which we use to predict the number counts of sources likely to be detected by HI surveys on next generation radio telescopes such as the Square Kilometre Array and its pathfinders. We find the number counts peak at galaxies deg at for a year long HI hemispheric survey on a 1/10/100 per cent SKA with a 30 deg field of view, corresponding to an integration time of 12 h. On a full SKA with a 200 deg field of view (equivalent to an integration time of 80 h) the number counts peak at galaxies deg at . We show also how adopting a conversion factor for cold gas mass to HI mass that varies from galaxy to galaxy impacts on number counts. In addition, we examine how the typical angular sizes of galaxies vary with redshift. These decline strongly with

  7. Photometric Redshift Probability Distributions for Galaxies in the SDSS DR8

    NASA Astrophysics Data System (ADS)

    Sheldon, Erin S.; Cunha, Carlos E.; Mandelbaum, Rachel; Brinkmann, J.; Weaver, Benjamin A.