Science.gov

Sample records for 2h nqr parameters

  1. Ab initio DFT study of bisphosphonate derivatives as a drug for inhibition of cancer: NMR and NQR parameters.

    PubMed

    Aghabozorg, Hussein; Sohrabi, Beheshteh; Mashkouri, Sara; Aghabozorg, Hamid Reza

    2012-03-01

    DFT computations were carried out to characterize the (17)Oand (2)H electric field gradient, EFG, in various bisphosphonate derivatives. The computations were performed at the B3LYP level with 6-311++G (d,P) standard basis set. Calculated EFG tensors were used to determine the (17)O and (2)H nuclear quadrupole coupling constant, χ and asymmetry parameter, η. For better understanding of the bonding and electronic structure of bisphosphonates, isotropic and anisotropic NMR chemical shieldings were calculated for the (13)C, (17)O and (31)P nuclei using GIAO method for the optimized structure of intermediate bisphosphonates at B3LYP level of theory using 6-311++G (d, p) basis set. The results showed that various substituents have a strong effect on the nuclear quadrupole resonance (NQR) parameters (χ, η) of (17)O in contrast with (2)H NQR parameters. The NMR and NQR parameters were studied in order to find the correlation between electronic structure and the activity of the desired bisphosphonates. In addition, the effect of substitutions on the bisphosphonates polarity was investigated. Molecular polarity was determined via the DFT calculated dipole moment vectors and the results showed that substitution of bromine atom on the ring would increase the activity of bisphosphonates. PMID:21633790

  2. NQR Characteristics of an RDX Plastic Explosives Simulant.

    PubMed

    Turecek, J; Schwitter, B; Miljak, D; Stancl, M

    2012-12-01

    For reliable detection of explosives, a combination of methods integrated within a single measurement platform may increase detection performance. However, the efficient field testing of such measurement platforms requires the use of inexplosive simulants that are detectable by a wide range of methods. Physical parameters such as simulant density, elemental composition and crystalline structure must closely match those of the target explosive. The highly discriminating bulk detection characteristics of nuclear quadrupole resonance (NQR) especially constrain simulant design. This paper describes the development of an inexplosive RDX simulant suited to a wide range of measurement methods, including NQR. Measurements are presented that confirm an RDX NQR response from the simulant. The potential use of the simulant for field testing a prototype handheld NQR-based RDX detector is analyzed. Only modest changes in prototype operation during field testing would be required to account for the use of simulant rather than real explosive. PMID:23204647

  3. NQR studies on 2,5-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Kasturi, Alapati; Venkatacharyulu, P.; Premaswarup, D.

    1990-11-01

    Nuclear quadrupole resonance (NQR) Zeeman effect studies were carried out on cylindrical single crystals of 2,5-dichlorophenol, using the two 35Cl-NQR frequencies. A self-quenched superregenerative NQR spectrometer was used, and the spectra were analysed ot obtain information on the nature of the crystalline unit cell. An analysis of the experimental data reveals that: (1) the results are in good agreement with the structural reports of Bavoux and Perrin; (2) the crystal unequivocally belongs to the monoclinic system; (3) there are two crystallographically equivalent but physically inequivalent directions for the principal field gradient axes for both the low- and high-frequency resonance lines; (4) as the number of physically inequivalent directions for each of the two resonance lines is two, the minimum number of molecules per unit cell is two; (5) the b axis (90°,90°) is identified as the symmetry axis; (6) the growth axis is slightly inclined to the c axis; (7) the asymmetry parameters obtained for the loci corresponding to the low-frequency line, which is hydrogen bonded, are greater than those for the high-frequency line, which is nonhydrogen bonded; (8) the double-bond character is greater for the hydrogen-bonded chlorine than for the non-hydrogen-bonded chlorine; (9) the ratios of the various bond characters estimated for both the low- and high-frequency resonance lines are 69:24:7 and 74:24:2.

  4. Electron swarm parameters in pure C2H2 and in C2H2-Ar mixtures and electron collision cross sections for the C2H2 molecule

    NASA Astrophysics Data System (ADS)

    Nakamura, Yoshiharu

    2010-09-01

    Electron swarm parameters (the drift velocity and the longitudinal diffusion coefficient) were measured in pure C2H2 and also in C2H2-Ar mixtures containing 0.517% and 5.06% acetylene over wide E/N ranges. These swarm parameters were analysed using a Boltzmann equation analysis and a set of electron collision cross sections for the C2H2 molecule was derived so that it was consistent with the present swarm data and published ionization coefficient. The present result suggested the presence of a Ramsauer-Townsend minimum in the elastic momentum transfer cross section at 0.08 eV and prominent threshold and resonance peaks in the ν4/ν5 vibrational excitation cross section. The present cross section set was also confirmed to be consistent with the published experimental total cross section of C2H2.

  5. Spectroscopic Line Parameters in the Infrared Bands of CH3CN and C2H6

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy

    2010-10-01

    In this paper, measurements of critical spectroscopic line parameters such as positions, absolute intensities and pressure broadened (self- and N2) half-width coefficients for transitions in the ν4 band of CH3CN (acetonitile, ethanenitrile, methyl cyanide) and the ν9 band of C2H6 (ethane) are presented. CH3CN has been measured by remote sensing in the earth's atmosphere, in comets and in interstellar molecular clouds. It is also a constituent in the atmospheres of Titan, Saturn's largest moon. Likewise, C2H6 is also an important constituent in the atmosphere of earth, the giant planets and comets. The 12- μm(˜720-850 cm-1) emission features of this molecule have been observed in spectra from outer solar system bodies of Jupiter, Saturn, Neptune and Titan. Because of their importance in remote sensing measurements, we recently recorded and analyzed a large number of laboratory infrared absorption spectra of pure and N2-broadened spectra of both these molecular bands. Spectra used in these analyses were recorded using either the Bruker IFS 125HR or the Bruker IFS 120HR FTS located at the Pacific Northwest National Laboratory (PNNL), in Richland Washington. To retrieve the various spectral line parameters, a multispectrum nonlinear least squares fitting algorithm was employed and all spectra belonging to each band were fitted simultaneously. Using this fitting technique, the same spectral regions from multiple spectra were fit all at once to maximize the accuracy of the retrieved parameters. The results obtained from present analyses are briefly discussed. In the case of C2H6 both room- and low temperature (˜210-296 K) spectra were recorded, but results from analyzing only room-temperature spectra will be discussed in this work.

  6. Optimization of intermolecular potential parameters for the CO2/H2O mixture.

    PubMed

    Orozco, Gustavo A; Economou, Ioannis G; Panagiotopoulos, Athanassios Z

    2014-10-01

    Monte Carlo simulations in the Gibbs ensemble were used to obtain optimized intermolecular potential parameters to describe the phase behavior of the mixture CO2/H2O, over a range of temperatures and pressures relevant for carbon capture and sequestration processes. Commonly used fixed-point-charge force fields that include Lennard-Jones 12-6 (LJ) or exponential-6 (Exp-6) terms were used to describe CO2 and H2O intermolecular interactions. For force fields based on the LJ functional form, changes of the unlike interactions produced higher variations in the H2O-rich phase than in the CO2-rich phase. A major finding of the present study is that for these potentials, no combination of unlike interaction parameters is able to adequately represent properties of both phases. Changes to the partial charges of H2O were found to produce significant variations in both phases and are able to fit experimental data in both phases, at the cost of inaccuracies for the pure H2O properties. By contrast, for the Exp-6 case, optimization of a single parameter, the oxygen-oxygen unlike-pair interaction, was found sufficient to give accurate predictions of the solubilities in both phases while preserving accuracy in the pure component properties. These models are thus recommended for future molecular simulation studies of CO2/H2O mixtures. PMID:25198539

  7. Determination of orientational order parameters from 2H NMR spectra of magnetically partially oriented lipid bilayers.

    PubMed Central

    Schäfer, H; Mädler, B; Sternin, E

    1998-01-01

    The partial orientation of multilamellar vesicles (MLVs) in high magnetic fields is known to affect the shape of 2H NMR spectra. There are numerical methods for extracting either the orientational order parameters of lipid molecules for a random distribution of domain orientations in the sample, or the distribution of orientations for a known set of spectral anisotropies. A first attempt at determining the orientational order parameters in the presence of an unknown nonrandom distribution of orientations is presented. The numerical method is based on the Tikhonov regularization algorithm. It is tested using simulated partially oriented spectra. An experimental spectrum of a phospholipid-ether mixture in water is analyzed as an example. The experimental spectrum is consistent with an ellipsoidal shape of MLVs with a ratio of semiaxes of approximately 3.4. PMID:9533713

  8. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  9. /sup 127/I NQR spectra of carborane-containing compounds of polycoordinated iodine

    SciTech Connect

    Semin, G.K.; Grushin, V.V.; Gushchin, S.I.; Lisichkina, I.N.; Petokhov, S.A.; Tolstaya, T.P.

    1985-05-20

    The NQR spectra of polycoordinated iodine compounds is studied. A table presents the I 127 NQR spectra of electroneutral PhIC1/sub 2/ derivatives with intermolecular coordination in the solid state and ionic compounds including compounds with interionic coordination. A considerable increase in the quadrupole coupling constants and significant decrease in the asymmetry parameter is found in carborane-containing CBIC1/sub 2/ and PhCBIX compounds in comparison with the corresponding phenyl and diphenyl derivatives.

  10. (14)N NQR, relaxation and molecular dynamics of the explosive TNT.

    PubMed

    Smith, John A S; Rowe, Michael D; Althoefer, Kaspar; Peirson, Neil F; Barras, Jamie

    2015-10-01

    Multiple pulse sequences are widely used for signal enhancement in NQR detection applications. Since the various (14)N NQR relaxation times, signal decay times and frequency of each NQR line have a major influence on detection sequence performance, it is important to characterise these parameters and their temperature variation, as fully as possible. In this paper we discuss such measurements for a number of the ν+ and ν- NQR lines of monoclinic and orthorhombic TNT and relate the temperature variation results to molecular dynamics. The temperature variation of the (14)N spin-lattice relaxation times T1 is interpreted as due to hindered rotation of the NO2 group about the C-NO2 bond with an activation energy of 89 kJ mol(-1) for the ortho and para groups of monoclinic TNT and 70 kJ mol(-1) for the para group of orthorhombic TNT. PMID:26440130

  11. Mixed H2/H(infinity)-Control with an output-feedback compensator using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  12. Mixed H(2)/H(sub infinity): Control with output feedback compensators using parameter optimization

    NASA Technical Reports Server (NTRS)

    Schoemig, Ewald; Ly, Uy-Loi

    1992-01-01

    Among the many possible norm-based optimization methods, the concept of H-infinity optimal control has gained enormous attention in the past few years. Here the H-infinity framework, based on the Small Gain Theorem and the Youla Parameterization, effectively treats system uncertainties in the control law synthesis. A design approach involving a mixed H(sub 2)/H-infinity norm strives to combine the advantages of both methods. This advantage motivates researchers toward finding solutions to the mixed H(sub 2)/H-infinity control problem. The approach developed in this research is based on a finite time cost functional that depicts an H-infinity bound control problem in a H(sub 2)-optimization setting. The goal is to define a time-domain cost function that optimizes the H(sub 2)-norm of a system with an H-infinity-constraint function.

  13. FPGA based pulsed NQR spectrometer

    NASA Astrophysics Data System (ADS)

    Hemnani, Preeti; Rajarajan, A. K.; Joshi, Gopal; Motiwala, Paresh D.; Ravindranath, S. V. G.

    2014-04-01

    An NQR spectrometer for the frequency range of 1 MHz to 5 MHZ has been designed constructed and tested using an FPGA module. Consisting of four modules viz. Transmitter, Probe, Receiver and computer controlled (FPGA & Software) module containing frequency synthesizer, pulse programmer, mixer, detection and display, the instrument is capable of exciting nuclei with a power of 200W and can detect signal of a few microvolts in strength. 14N signal from NaNO2 has been observed with the expected signal strength.

  14. 63Cu NQR in copper (II) compounds

    NASA Astrophysics Data System (ADS)

    Bastow, T. J.; Campbell, I. D.; Whitfield, H. J.

    1980-01-01

    We report observations of 63Cu NQR in CuF 2, KCuF 3, and RbCuF 3 in the paramagnetic state, NQR line widths of 63Cu in CuF 2 and CuBr 2 and of 81Br in CuBr 2, SnBr 2 and ZnBr 2. The NQR resonances of certain Cu (II) paramagnetic compounds are exchange-narrowed to values commensurate with linewidths of the diamagnetic infinite-lattice compounds.

  15. Effect of hydrogen ratio on plasma parameters of N2-H2 gas mixture glow discharge

    NASA Astrophysics Data System (ADS)

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-01

    A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.

  16. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device

    NASA Astrophysics Data System (ADS)

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting 14N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring 14N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel 14N NQR based detection device.

  17. A miniaturized NQR spectrometer for a multi-channel NQR-based detection device.

    PubMed

    Beguš, Samo; Jazbinšek, Vojko; Pirnat, Janez; Trontelj, Zvonko

    2014-10-01

    A low frequency (0.5-5 MHz) battery operated sensitive pulsed NQR spectrometer with a transmitter power up to 5 W and a total mass of about 3 kg aimed at detecting (14)N NQR signals, predominantly of illicit materials, was designed and assembled. This spectrometer uses a standard software defined radio (SDR) platform for the data acquisition unit. Signal processing is done with the LabView Virtual instrument on a personal computer. We successfully tested the spectrometer by measuring (14)N NQR signals from aminotetrazole monohydrate (ATMH), potassium nitrate (PN), paracetamol (PCM) and trinitrotoluene (TNT). Such a spectrometer is a feasible component of a portable single or multichannel (14)N NQR based detection device. PMID:25233110

  18. The effects of additive gases (Ar, N2, H2, Cl2, O2) on HCl plasma parameters and composition

    NASA Astrophysics Data System (ADS)

    Efremov, A.; Yudina, A.; Davlyatshina, A.; Murin, D.; Svetsov, V.

    2013-01-01

    The direct current (dc) glow discharge plasma parameters and active species kinetics in HCl-X (X = Ar, N2, H2, Cl2, O2) mixtures were studied using both plasma diagnostics Langmuir probes and modeling. The 0-dimensional self-consistent steady-state model included the simultaneous solution of Boltzmann kinetic equation, the equations of chemical kinetics for neutral and charge particles, plasma conductivity equation and the quasi-neutrality conditions for volume densities of charged particles as well as for their fluxes to the reactor walls. The data on the steady-state electron energy distribution function, electron gas characteristics (mean energy, drift rate and transport coefficients), volume-averaged densities of plasma active species and their fluxed to the reactor walls were obtained as functions of gas mixing ratios and gas pressure at fixed discharge current.

  19. Line Parameters of Ethane (12C_2H_6) at 12 μm with Constrained Multispectrum Fitting

    NASA Astrophysics Data System (ADS)

    Devi, V. Malathy; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, J.-M.; Sung, K.; Brown, L. R.; Mantz, A. W.

    2010-06-01

    A multispectrum nonlinear least squares technique was applied to simultaneously fit 43 infrared absorption spectra of C_2H_6 between 795 and 850 cm-1. The high resolution (0.0016-0.005 cm-1) spectra were recorded with two different Bruker Fourier transform spectrometers at PNNL and JPL to support Earth and planetary atmosphere studies, e.g. Titan's cold stratosphere. Accurate line positions and absolute intensities at room temperature were retrieved for over 1750 transitions of ν_9. N_2- and self-broadened halfwidth coefficients with their temperature dependences were obtained for over 1330 lines using sample temperatures between ˜150 and 298 K. Constraints to intensity ratios, torsional splittings, halfwidth coefficients and their temperature dependence exponents were incorporated in the analysis to determine these parameters for both torsional split components. The variations of the observed halfwidth coefficients and their temperature dependences with respect to J, K quanta are discussed. No pressure-induced shifts were measured or even required to fit the spectra to their noise levels. Present results are compared with previously reported measurements and predictions. D. Chris Benner, C. P. Rinsland, V. M. Devi, M. A. H. Smith, and D. A. Atkins, JQSRT 1995;53:705-21. Part of the research described in this paper was performed at the Jet Propulsion Laboratory, California Institute of Technology, the College of William and Mary, Connecticut College, and NASA Langley Research Center under contracts and cooperative agreements with the National Aeronautics and Space Administration.

  20. Nanoscale NMR and NQR with Nitrogen Vacancy Centers

    NASA Astrophysics Data System (ADS)

    Urbach, Elana; Lovchinsky, Igor; Sanchez-Yamagishi, Javier; Choi, Soonwon; Bylinskii, Alexei; Dwyer, Bo; Andersen, Trond; Sushkov, Alex; Park, Hongkun; Lukin, Mikhail

    2016-05-01

    Nuclear quadrupole resonance (NQR) is a powerful tool which is used to detect quadrupolar interaction in nuclear spins with I > 1/2. Conventional NQR and NMR technology, however, rely on measuring magnetic fields from a macroscopic number of spins. Extending NMR and NQR techniques to the nanoscale could allow us to learn structural information about interesting materials and biomolecules. We present recent progress on using Nitrogen-Vacancy (NV) centers in diamond to perform room temperature nanoscale NMR and NQR spectroscopy on small numbers of nuclear spins in hexagonal boron nitride.

  1. NQR detection of explosive simulants using RF atomic magnetometers

    NASA Astrophysics Data System (ADS)

    Monti, Mark C.; Alexson, Dimitri A.; Okamitsu, Jeffrey K.

    2016-05-01

    Nuclear Quadrupole Resonance (NQR) is a highly selective spectroscopic method that can be used to detect and identify a number of chemicals of interest to the defense, national security, and law enforcement community. In the past, there have been several documented attempts to utilize NQR to detect nitrogen bearing explosives using induction sensors to detect the NQR RF signatures. We present here our work on the NQR detection of explosive simulants using optically pumped RF atomic magnetometers. RF atomic magnetometers can provide an order of magnitude (or more) improvement in sensitivity versus induction sensors and can enable mitigation of RF interference, which has classically has been a problem for conventional NQR using induction sensors. We present the theory of operation of optically pumped RF atomic magnetometers along with the result of laboratory work on the detection of explosive simulant material. An outline of ongoing work will also be presented along with a path for a fieldable detection system.

  2. Crystallization and preliminary analysis of the NqrA and NqrC subunits of the Na+-translocating NADH:ubiquinone oxidoreductase from Vibrio cholerae

    PubMed Central

    Vohl, Georg; Nedielkov, Ruslan; Claussen, Björn; Casutt, Marco S.; Vorburger, Thomas; Diederichs, Kay; Möller, Heiko M.; Steuber, Julia; Fritz, Günter

    2014-01-01

    The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio cholerae is a membrane protein complex consisting of six different subunits NqrA–NqrF. The major domains of the NqrA and NqrC subunits were heterologously expressed in Escherichia coli and crystallized. The structure of NqrA1–377 was solved in space groups C2221 and P21 by SAD phasing and molecular replacement at 1.9 and 2.1 Å resolution, respectively. NqrC devoid of the transmembrane helix was co-expressed with ApbE to insert the flavin mononucleotide group covalently attached to Thr225. The structure was determined by molecular replacement using apo-NqrC of Parabacteroides distasonis as search model at 1.8 Å resolution. PMID:25005105

  3. A new approach to mixed H2/H infinity controller synthesis using gradient-based parameter optimization methods

    NASA Technical Reports Server (NTRS)

    Ly, Uy-Loi; Schoemig, Ewald

    1993-01-01

    In the past few years, the mixed H(sub 2)/H-infinity control problem has been the object of much research interest since it allows the incorporation of robust stability into the LQG framework. The general mixed H(sub 2)/H-infinity design problem has yet to be solved analytically. Numerous schemes have considered upper bounds for the H(sub 2)-performance criterion and/or imposed restrictive constraints on the class of systems under investigation. Furthermore, many modern control applications rely on dynamic models obtained from finite-element analysis and thus involve high-order plant models. Hence the capability to design low-order (fixed-order) controllers is of great importance. In this research a new design method was developed that optimizes the exact H(sub 2)-norm of a certain subsystem subject to robust stability in terms of H-infinity constraints and a minimal number of system assumptions. The derived algorithm is based on a differentiable scalar time-domain penalty function to represent the H-infinity constraints in the overall optimization. The scheme is capable of handling multiple plant conditions and hence multiple performance criteria and H-infinity constraints and incorporates additional constraints such as fixed-order and/or fixed structure controllers. The defined penalty function is applicable to any constraint that is expressible in form of a real symmetric matrix-inequity.

  4. NQR in tert-butyl chloride

    NASA Astrophysics Data System (ADS)

    Brunetti, Aldo H.

    2004-03-01

    Tert-butyl chloride has been broadly studied experimentally through various techniques such as X-ray crystallography, DTA, and NMR. It was also studied experimentally through nuclear quadrupole resonance (NQR), but this study was limited and incomplete. In this paper, we present a more detailed study of TBC through the NQR of 35Cl. Our results show that near 120 K, the onset of the CH 3 groups semirotations around symmetry axis C3 takes place with an activation energy U=16.1 kJ mol -1. This intramolecular movement produces a T1 minimum near 148 K and is the dominant mechanism of the nuclear spin-lattice relaxation in phase III of this compound. In phase II of TBC, we show that there are not only methyl groups semirotations, but also semirotations of the whole molecule around a different axis from the symmetry axis C' 3 (C-Cl bond) with an activation energy of E=10.4 kJ mol -1.

  5. Effect of hydrogen ratio on plasma parameters of N{sub 2}-H{sub 2} gas mixture glow discharge

    SciTech Connect

    El-Brulsy, R. A.; Abd Al-Halim, M. A.; Abu-Hashem, A.; Rashed, U. M.; Hassouba, M. A.

    2012-05-15

    A dc plane glow discharge in a nitrogen-hydrogen (N{sub 2}-H{sub 2}) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H{sub 2} concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H{sub 2} concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H{sub 2} concentration.

  6. Frequency selective detection of nuclear quadrupole resonance (NQR) spin echoes

    NASA Astrophysics Data System (ADS)

    Somasundaram, Samuel D.; Jakobsson, Andreas; Smith, John A. S.; Althoefer, Kaspar A.

    2006-05-01

    Nuclear Quadrupole Resonance (NQR) is a radio frequency (RF) technique that can be used to detect the presence of quadrupolar nuclei, such as the 14N nucleus prevalent in many explosives and narcotics. The technique has been hampered by low signal-to-noise ratios and is further aggravated by the presence of RF interference (RFI). To ensure accurate detection, proposed detectors should exploit the rich form of the NQR signal. Furthermore, the detectors should also be robust to any remaining residual interference, left after suitable RFI mitigation has been employed. In this paper, we propose a new NQR data model, particularly for the realistic case where multiple pulse sequences are used to generate trains of spin echoes. Furthermore, we refine two recently proposed approximative maximum likelihood (AML) detectors, enabling the algorithm to optimally exploit the data model of the entire echo train and also incorporate knowledge of the temperature dependent spin-echo decay time. The AML-based detectors ensure accurate detection and robustness against residual RFI, even when the temperature of the sample is not precisely known, by exploiting the dependencies of the NQR resonant lines on temperature. Further robustness against residual interference is gained as the proposed detector is frequency selective; exploiting only those regions of the spectrum where the NQR signal is expected. Extensive numerical evaluations based on both simulated and measured NQR data indicate that the proposed Frequency selective Echo Train AML (FETAML) detector offers a significant improvement as compared to other existing detectors.

  7. Site-directed mutagenesis of conserved cysteine residues in NqrD and NqrE subunits of Na+-translocating NADH:quinone oxidoreductase.

    PubMed

    Fadeeva, M S; Bertsova, Y V; Verkhovsky, M I; Bogachev, A V

    2008-02-01

    Each of two hydrophobic subunits of Na+-translocating NADH:quinone oxidoreductase (NQR), NqrD and NqrE, contain a pair of strictly conserved cysteine residues within their transmembrane alpha-helices. Site-directed mutagenesis showed that substitutions of these residues in NQR of Vibrio harveyi blocked the Na+-dependent and 2-n-heptyl-4-hydroxyquinoline N-oxide-sensitive quinone reductase activity of the enzyme. However, these mutations did not affect the interaction of NQR with NADH and menadione. It was demonstrated that these conserved cysteine residues are necessary for the correct folding and/or the stability of the NQR complex. Mass and EPR spectroscopy showed that NQR from V. harveyi bears only a 2Fe-2S cluster as a metal-containing prosthetic group. PMID:18298367

  8. The Photon Polarization Parameter of 2H(n, γ)3H reaction with Inclusion of the Electric Quadrupole Contribution

    NASA Astrophysics Data System (ADS)

    Sadeghi, H.; Mosavi-Khansari, M.

    2014-09-01

    We use effective field theory (EFT) for the calculation of neutron—deuteron radiative capture at very low energies. We present here the use of EFT to calculate a low-energy photo-nuclear observable in three-body systems, the photon polarization parameter and fore—aft asymmetry at thermal neutron energies up to next-to-next to leading order (N2LO), with inclusion of the electric quadrupole contribution. The photon polarization parameter in total is found to be Rc = -0.421 ± 0.003 and is in good agreement with the other modern theoretical calculations based on modern nucleon—nucleon potentials. In comparison with our previous work, a satisfactory agreement with the available experimental data is found by inclusion of the electric quadrupole contribution.

  9. Electron density distribution in cladribine (2-chloro-2‧-deoxyadenosine) - A drug against leukemia and multiple sclerosis - Studied by multinuclear NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Latosińska, J. N.; Latosińska, M.; Seliger, J.; Žagar, V.; Kazimierczuk, Z.

    2009-07-01

    2-Chloro-2'-deoxyadenosine (Cladribine) chemotherapeutic drug has been studied experimentally in solid state by 35Cl NQR and NMR-NQR double resonance and theoretically by the Density Functional Theory. Fifteen resonance frequencies on 14N have been detected and assigned to particular nitrogen sites in the 2-CdA molecule. The effects of tautomerism, regioisomerism, conformations and molecular aggregations, related to intermolecular hydrogen bond formation, on the NQR parameters have been analysed within the DFT and AIM ( Atoms in Molecules) formalism. The properties of the whole molecule, the so-called global reactivity descriptors, have been calculated for a comparison of both syn and anti conformations of 2-CdA molecule to check the effect of crystal packing on molecular conformation.

  10. Detection of {sup 14}N and {sup 35}Cl in cocaine base and hydrochloride using NQR, NMR, and SQUID techniques

    SciTech Connect

    Yesinowski, J.P.; Buess, M.L.; Garroway, A.N.; Ziegeweid, M.; Pines, A. |

    1995-07-01

    Results from {sup 14}N pure NQR of cocaine in the free base form (cocaine base) yield a nuclear quadrupole coupling constant (NQCC) e{sup 2}Qq/h of 5.0229 ({+-}0.0001) MHz and an asymmetry parameter {eta} of 0.0395 ({+-}0.0001) at 295 K, with corresponding values of 5.0460 ({+-}0.0013) MHz and 0.0353 ({+-}0.0008) at 77 K. Both pure NQR (at 295-77 K) and a superconducting quantum interference device (SQUID) detector (at 4.2 K) were used to measure the very low (<1 MHz) {sup 14}N transition frequencies in cocaine hydrochloride; at 295 K the NQCC is 1.1780 ({+-}0.0014) MHz and the asymmetry parameter is 0.2632 ({+-}0.0034). Stepping the carrier frequency enables one to obtain a powder pattern without the severe intensity distortions that otherwise arise from finite pulse power. A powder pattern simulation using an NQCC value of 5.027 MHz and an asymmetry parameter {eta} of 0.2 agrees reasonably well with the experimental stepped-frequency spectrum. The use of pure NQR for providing nondestructive, quantitative, and highly specific detection of crystalline compounds is discussed, as are experimental strategies. 31 refs., 8 figs., 1 tab.

  11. Generation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone from rhamnose as affected by reaction parameters: experimental design approach.

    PubMed

    Illmann, Silke; Davidek, Tomas; Gouézec, Elisabeth; Rytz, Andreas; Schuchmann, Heike P; Blank, Imre

    2009-04-01

    The formation of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF) was studied in aqueous model systems containing L-rhamnose and L-lysine. The approach consisted in systematically varying four reaction parameters (rhamnose concentration, rhamnose to lysine ratio, pH, and phosphate concentration) at 3 levels. A fractional factorial design was used to reduce the number of trials. The degradation of rhamnose was followed by high performance anion exchange chromatography and the formation of HDMF by solid phase extraction in combination with GC/MS. The study permitted the identification of critical reaction parameters that affect the formation of HDMF from rhamnose in aqueous systems. Although all studied parameters have some impact on the HDMF formation and rhamnose degradation kinetics, the effect of phosphate is by far the most important, followed by concentration of precursors and pH. The experimental design approach permitted us, with a limited number of experiments, to accurately model the effects of the four investigated reaction parameters on the kinetics of rhamnose degradation and HDMF formation (R(2)>0.93). Overall, the results indicate that rhamnose can be an excellent precursor of HDMF (yield >40 mol%), if the reaction conditions are well mastered. PMID:19256512

  12. Solid-state NMR/NQR and first-principles study of two niobium halide cluster compounds.

    PubMed

    Perić, Berislav; Gautier, Régis; Pickard, Chris J; Bosiočić, Marko; Grbić, Mihael S; Požek, Miroslav

    2014-01-01

    Two hexanuclear niobium halide cluster compounds with a [Nb6X12](2+) (X=Cl, Br) diamagnetic cluster core, have been studied by a combination of experimental solid-state NMR/NQR techniques and PAW/GIPAW calculations. For niobium sites the NMR parameters were determined by using variable Bo field static broadband NMR measurements and additional NQR measurements. It was found that they possess large positive chemical shifts, contrary to majority of niobium compounds studied so far by solid-state NMR, but in accordance with chemical shifts of (95)Mo nuclei in structurally related compounds containing [Mo6Br8](4+) cluster cores. Experimentally determined δiso((93)Nb) values are in the range from 2,400 to 3,000 ppm. A detailed analysis of geometrical relations between computed electric field gradient (EFG) and chemical shift (CS) tensors with respect to structural features of cluster units was carried out. These tensors on niobium sites are almost axially symmetric with parallel orientation of the largest EFG and the smallest CS principal axes (Vzz and δ33) coinciding with the molecular four-fold axis of the [Nb6X12](2+) unit. Bridging halogen sites are characterized by large asymmetry of EFG and CS tensors, the largest EFG principal axis (Vzz) is perpendicular to the X-Nb bonds, while intermediate EFG principal axis (Vyy) and the largest CS principal axis (δ11) are oriented in the radial direction with respect to the center of the cluster unit. For more symmetrical bromide compound the PAW predictions for EFG parameters are in better correspondence with the NMR/NQR measurements than in the less symmetrical chlorine compound. Theoretically predicted NMR parameters of bridging halogen sites were checked by (79/81)Br NQR and (35)Cl solid-state NMR measurements. PMID:24581866

  13. NqrM (DUF539) Protein Is Required for Maturation of Bacterial Na+-Translocating NADH:Quinone Oxidoreductase

    PubMed Central

    Kostyrko, Vitaly A.; Bertsova, Yulia V.; Serebryakova, Marina V.; Baykov, Alexander A.

    2015-01-01

    ABSTRACT Na+-translocating NADH:quinone oxidoreductase (Na+-NQR) catalyzes electron transfer from NADH to ubiquinone in the bacterial respiratory chain, coupled with Na+ translocation across the membrane. Na+-NQR maturation involves covalent attachment of flavin mononucleotide (FMN) residues, catalyzed by flavin transferase encoded by the nqr-associated apbE gene. Analysis of complete bacterial genomes has revealed another putative gene (duf539, here renamed nqrM) that usually follows the apbE gene and is present only in Na+-NQR-containing bacteria. Expression of the Vibrio harveyi nqr operon alone or with the associated apbE gene in Escherichia coli, which lacks its own Na+-NQR, resulted in an enzyme incapable of Na+-dependent NADH or reduced nicotinamide hypoxanthine dinucleotide (dNADH) oxidation. However, fully functional Na+-NQR was restored when these genes were coexpressed with the V. harveyi nqrM gene. Furthermore, nqrM lesions in Klebsiella pneumoniae and V. harveyi prevented production of functional Na+-NQR, which could be recovered by an nqrM-containing plasmid. The Na+-NQR complex isolated from the nqrM-deficient strain of V. harveyi lacks several subunits, indicating that nqrM is necessary for Na+-NQR assembly. The protein product of the nqrM gene, NqrM, contains a single putative transmembrane α-helix and four conserved Cys residues. Mutating one of these residues (Cys33 in V. harveyi NqrM) to Ser completely prevented Na+-NQR maturation, whereas mutating any other Cys residue only decreased the yield of the mature protein. These findings identify NqrM as the second specific maturation factor of Na+-NQR in proteobacteria, which is presumably involved in the delivery of Fe to form the (Cys)4[Fe] center between subunits NqrD and NqrE. IMPORTANCE Na+-translocating NADH:quinone oxidoreductase complex (Na+-NQR) is a unique primary Na+ pump believed to enhance the vitality of many bacteria, including important pathogens such as Vibrio cholerae, Vibrio

  14. Influence of operational key parameters on the photocatalytic decolorization of Rhodamine B dye using Fe2+/H2O2/Nb2O5/UV system.

    PubMed

    Hashemzadeh, Fatemeh; Rahimi, Rahmatollah; Gaffarinejad, Ali

    2014-04-01

    The present research deals with the development of a new heterogeneous photocatalysis and Fenton hybrid system for the removal of color from textile dyeing wastewater as Rhodamine B (RhB) solutions by using Fe(2+)/H2O2/Nb2O5 as a photocatalytic system. The application of this photocatalytic system for the decolorization of dye contaminants is not reported in the literature yet. Different parameters like dye concentration, Nb2O5/Fe(2+) catalyst amount, pH, and H2O2 concentration have been studied. The optimum conditions for the decolorization of the dye were initial concentration of 10 mg L(-1) of dye, pH 4, and Nb2O5/Fe(2+) catalyst concentration of 0.5 g L(-1)/50 mg L(-1). The optimum value of H2O2 concentration for the conditions used in this study was 700 mg L(-1). Moreover, the efficiency of the Nb2O5/photo-Fenton hybrid process in comparison to photo-Fenton alone and a dark Fenton process as a control experiment to decolorize the RhB solution has been investigated. The combination of photo-Fenton and Nb2O5 catalysts has been proved to be the most effective for the treatment of such type of wastewaters. The results revealed that the RhB dye was decolorized in a higher percent (78 %) by the Nb2O5/photo-Fenton hybrid process (Fe(2+)/H2O2/Nb2O5/UV) than by the photo-Fenton process alone (37 %) and dark Fenton process (14 %) after 120 min of treatment. Moreover, the Nb2O5 catalyst as a heterogeneous part of the photocatalytic system was demonstrated to have good stability and reusability. PMID:24374619

  15. The single NqrB and NqrC subunits in the Na(+)-translocating NADH: quinone oxidoreductase (Na(+)-NQR) from Vibrio cholerae each carry one covalently attached FMN.

    PubMed

    Casutt, Marco S; Schlosser, Andreas; Buckel, Wolfgang; Steuber, Julia

    2012-10-01

    The Na(+)-translocating NADH:quinone oxidoreductase (Na(+)-NQR) is the prototype of a novel class of flavoproteins carrying a riboflavin phosphate bound to serine or threonine by a phosphodiester bond to the ribityl side chain. This membrane-bound, respiratory complex also contains one non-covalently bound FAD, one non-covalently bound riboflavin, ubiquinone-8 and a [2Fe-2S] cluster. Here, we report the quantitative analysis of the full set of flavin cofactors in the Na(+)-NQR and characterize the mode of linkage of the riboflavin phosphate to the membrane-bound NqrB and NqrC subunits. Release of the flavin by β-elimination and analysis of the cofactor demonstrates that the phosphate group is attached at the 5'-position of the ribityl as in authentic FMN and that the Na(+)-NQR contains approximately 1.7mol covalently bound FMN per mol non-covalently bound FAD. Therefore, each of the single NqrB and NqrC subunits in the Na(+)-NQR carries a single FMN. Elimination of the phosphodiester bond yields a dehydro-2-aminobutyrate residue, which is modified with β-mercaptoethanol by Michael addition. Proteolytic digestion followed by mass determination of peptide fragments reveals exclusive modification of threonine residues, which carry FMN in the native enzyme. The described reactions allow quantification and localization of the covalently attached FMNs in the Na(+)-NQR and in related proteins belonging to the Rhodobacter nitrogen fixation (RNF) family of enzymes. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). PMID:22366169

  16. 2H nuclear magnetic resonance order parameter profiles suggest a change of molecular shape for phosphatidylcholines containing a polyunsaturated acyl chain.

    PubMed Central

    Holte, L. L.; Peter, S. A.; Sinnwell, T. M.; Gawrisch, K.

    1995-01-01

    Solid-state 2H nuclear magnetic resonance spectroscopy was used to determine the orientational order parameter profiles for a series of phosphatidylcholines with perdeuterated stearic acid, 18:0d35, in position sn-1 and 18:1 omega 9, 18:2 omega 6, 18:3 omega 3, 20:4 omega 6, 20:5 omega 3, or 22:6 omega 3 in position sn-2. The main phase transition temperatures were derived from a first moment analysis, and order parameter profiles of sn-1 chains were calculated from dePaked nuclear magnetic resonance powder patterns. Comparison of the profiles at 37 degrees C showed that unsaturation causes an inhomogenous disordering along the sn-1 chain. Increasing sn-2 chain unsaturation from one to six double bonds resulted in a 1.6-kHz decrease in quadrupolar splittings of the sn-1 chain in the upper half of the chain (or plateau region) and maximum splitting difference of 4.4 kHz at methylene carbon 14. The change in chain order corresponds to a decrease in the 18:0 chain length of 0.4 +/- 0.2 A with 18:2 omega 6 versus 18:1 omega 9 in position sn-2. Fatty acids containing three or more double bonds in sn-2 showed a decrease in sn-1 chain length of 0.7 +/- 0.2 A compared with 18:1 omega 9. The chain length of all lipids decreased with increasing temperature. Highly unsaturated phosphatidylcholines (three or more double bonds in sn-2) had shorter sn-1 chains, but the chain length was somewhat less sensitive to temperature. The profiles reveal that the sn-1 chain exhibits a selective increase in motional freedom in a region located toward the bottom half of the chain as sn-2 unsaturation is increased. This corresponds to an area increase around carbon atom number 14 that is three to four times greater than the increase for the top part of the chain. A similar asymmetric decrease in order, largest toward the methyl end of the chain, was observed when 1 -palmitoyl-2-oleoylphosphatidylethanolamine goes from a lamellar to an inverse hexagonal (H,,) phase. This is consistent with a

  17. NMR and NQR study of the thermodynamically stable quasicrystals

    SciTech Connect

    Shastri, A.

    1995-02-10

    {sup 27}Al and {sup 61,65}Cu NMR measurements are reported for powder samples of stable AlCuFe and AlCuRu icosahedral quasicrystals and their crystalline approximants, and for a AlPdMn single grain quasicrystal. Furthermore, {sup 27}Al NQR spectra at 4.2 K have been observed in the AlCuFe and AlCuRu samples. From the quadrupole perturbed NMR spectra at different magnetic fields, and from the zero field NQR spectra, a wide distribution of local electric field gradient (EFG) tensor components and principal axis system orientations was found at the Al site. A model EFG calculation based on a 1/1 AlCuFe approximant was successful in explaining the observed NQR spectra. It is concluded that the average local gradient is largely determined by the p-electron wave function at the Al site, while the width of the distribution is due to the lattice contribution to the EFG. Comparison of {sup 63}Cu NMR with {sup 27}Al NMR shows that the EFG distribution at the two sites is similar, but that the electronic contribution to the EFG is considerably smaller at the Cu site, in agreement with a more s-type wave function of the conduction electrons.

  18. SQUID detected NMR and NQR. Superconducting Quantum Interference Device.

    PubMed

    Augustine, M P; TonThat, D M; Clarke, J

    1998-03-01

    The dc Superconducting QUantum Interference Device (SQUID) is a sensitive detector of magnetic flux, with a typical flux noise of the order 1 muphi0 Hz(-1/2) at liquid helium temperatures. Here phi0 = h/2e is the flux quantum. In our NMR or NQR spectrometer, a niobium wire coil wrapped around the sample is coupled to a thin film superconducting coil deposited on the SQUID to form a flux transformer. With this untuned input circuit the SQUID measures the flux, rather than the rate of change of flux, and thus retains its high sensitivity down to arbitrarily low frequencies. This feature is exploited in a cw spectrometer that monitors the change in the static magnetization of a sample induced by radio frequency irradiation. Examples of this technique are the detection of NQR in 27Al in sapphire and 11B in boron nitride, and a level crossing technique to enhance the signal of 14N in peptides. Research is now focused on a SQUID-based spectrometer for pulsed NQR and NMR, which has a bandwidth of 0-5 MHz. This spectrometer is used with spin-echo techniques to measure the NQR longitudinal and transverse relaxation times of 14N in NH4ClO4, 63+/-6 ms and 22+/-2 ms, respectively. With the aid of two-frequency pulses to excite the 359 kHz and 714 kHz resonances in ruby simultaneously, it is possible to obtain a two-dimensional NQR spectrum. As a third example, the pulsed spectrometer is used to study NMR spectrum of 129Xe after polariza-tion with optically pumped Rb. The NMR line can be detected at frequencies as low as 200 Hz. At fields below about 2 mT the longitudinal relaxation time saturates at about 2000 s. Two recent experiments in other laboratories have extended these pulsed NMR techniques to higher temperatures and smaller samples. In the first, images were obtained of mineral oil floating on water at room temperature. In the second, a SQUID configured as a thin film gradiometer was used to detect NMR in a 50 microm particle of 195Pt at 6 mT and 4.2 K. PMID:9650797

  19. Single crystal zeeman effect studies on 35Cl NQR lines of 2,6-dichlorophenol

    NASA Astrophysics Data System (ADS)

    Prasad, N. V. L. N.; Venkatacharyulu, P.; Premaswarup, D.

    1987-10-01

    Zeeman effect studies on the two 35Cl NQR lines in cylindrical single crystals of 2,6-dichlorophenol were carried out using a self-quenched super-regenerative NQR spectrometer to obtain information on the nature of the crystalline unit cell and the effect of hydrogen bonding on the electric field gradient tensor. Analysis of the experimental data reveals: (1) the results are in good agreement with those reported from X-ray studies; (2) the crystal is unequivocally identified as belonging to the orthorhombic system; (3) there are two crystallographically equivalent and four physically nonequivalent directions for the principal field gradients for both the low and high frequency resonance lines; (4) the directions of the crystalline a, b, c axes are uniquely identified as (90°, 0°), (0°, -), and (90°, 90°); (5) the b-axis is identified as the growth axis; (6) there are a minimum of four molecules per unit cell, the four molecules lie in different planes, which are, however, connected by symmetry operations; (7)_there exists a weak intramolecular hydrogen bonding in the crystal; (8) the asymmetry parameters for the loci corresponding to the low frequency resonance line, which is affected by hydrogen bonding, are less than the asymmetry parameters of the loci corresponding to the high frequency resonance line, which is not affected by hydrogen bonding; (9) the single bond and ionic bond characters for the hish frequency line are less than that of the low frequency line, while the double bond character for the low frequency line is less than that of the high frequency line and (10) the small deviation between the single bond and double bond characters of the two resonance lines is attributed to the existence of weak hydrogen bonding in the crystal.

  20. Polymorphism and disorder in natural active ingredients. Low and high-temperature phases of anhydrous caffeine: Spectroscopic ((1)H-(14)N NMR-NQR/(14)N NQR) and solid-state computational modelling (DFT/QTAIM/RDS) study.

    PubMed

    Seliger, Janez; Žagar, Veselko; Apih, Tomaž; Gregorovič, Alan; Latosińska, Magdalena; Olejniczak, Grzegorz Andrzej; Latosińska, Jolanta Natalia

    2016-03-31

    The polymorphism of anhydrous caffeine (1,3,7-trimethylxanthine; 1,3,7-trimethyl-1H-purine-2,6-(3H,7H)-dione) has been studied by (1)H-(14)N NMR-NQR (Nuclear Magnetic Resonance-Nuclear Quadrupole Resonance) double resonance and pure (14)N NQR (Nuclear Quadrupole Resonance) followed by computational modelling (Density Functional Theory, supplemented Quantum Theory of Atoms in Molecules with Reduced Density Gradient) in solid state. For two stable (phase II, form β) and metastable (phase I, form α) polymorphs the complete NQR spectra consisting of 12 lines were recorded. The assignment of signals detected in experiment to particular nitrogen sites was verified with the help of DFT. The shifts of the NQR frequencies, quadrupole coupling constants and asymmetry parameters at each nitrogen site due to polymorphic transition were evaluated. The strongest shifts were observed at N(3) site, while the smallest at N(9) site. The commercial pharmaceutical sample was found to contain approximately 20-25% of phase I and 75-80% of phase II. The orientational disorder in phase II with a local molecular arrangement mimics that in phase I. Substantial differences in the intermolecular interaction phases I and II of caffeine were analysed using computational (DFT/QTAIM/RDS) approach. The analysis of local environment of each nitrogen nucleus permitted drawing some conclusions on the topology of interactions in both polymorphs. For the most stable orientations in phase I and phase II the maps of the principal component qz of EFG tensor and its asymmetry parameter at each point of the molecular system were calculated and visualized. The relevant maps calculated for both phases I and II indicates small variation in electrostatic potential upon phase change. Small differences between packings in phases slightly disturb the neighbourhood of the N(1) and N(7) nitrogens, thus are meaningless from the biological point of view. The composition of two phases in pharmaceutical material

  1. Pulsed Spin Locking in Spin-1 NQR: Broadening Mechanisms

    NASA Astrophysics Data System (ADS)

    Malone, Michael W.

    Nuclear Quadrupole Resonance (NQR) is a branch of magnetic resonance physics that allows for the detection of spin I > 1/2 nuclei in crystalline and semi-crystalline materials. Through the application of a resonant radio frequency (rf) pulse, the nuclei's response is to create an oscillating magnetic moment at a frequency unique to the target substance. This creates the NQR signal, which is typically weak and rapidly decaying. The decay is due to the various line broadening mechanisms, the relative strengths of which are functions of the specific material, in addition to thermal relaxation processes. Through the application of a series of rf pulses the broadening mechanisms can be refocused, narrowing the linewidth and extending the signal in time. Three line broadening mechanisms are investigated to explain the NQR signal's linewidth and behavior. The first, electric field gradient (EFG) inhomogeneity, is due to variations in the local electric environment among the target nuclei, for instance from crystal imperfections. While EFG inhomogeneity can vary between samples of the same chemical composition and structure, the other broadening mechanisms of homonuclear and heteronuclear dipolar coupling are specific to this composition and structure. Simple analytical models are developed that explain the NQR signal response to pulse sequences by accounting for the behavior of each broadening mechanism. After a general theoretical introduction, a model of pairs of spin-1 nuclei is investigated, and the refocusing behaviors of EFG and homonuclear dipolar coupling are analyzed. This reveals the conditions where EFG is refocused but homonuclear dipolar coupling is not. In this case the resulting signal shows a rapid decay, the rate of which becomes a measure of interatomic distances. This occurs even in the more complex case of a powder sample with its many randomly oriented crystallites, under particular pulsing conditions. Many target NQR compounds are rich in hydrogen

  2. Studies of the electronic structure and biological activity of chosen 1,4-benzodiazepines by 35Cl NQR spectroscopy and DFT calculations

    NASA Astrophysics Data System (ADS)

    Bronisz, K.; Ostafin, M.; Poleshchuk, O. Kh.; Mielcarek, J.; Nogaj, B.

    2006-11-01

    Selected derivatives of 1,4-benzodiazepine: lorazepam, lormetazepam, oxazepam and temazepam, used as active substances in anxiolytic drugs, have been studied by 35Cl NQR method in order to find the correlation between electronic structure and biological activity. The 35Cl NQR resonance frequencies ( νQ) measured at 77 K have been correlated with the following parameters characterising their biological activity: biological half-life period ( t0.5), affinity to benzodiazepine receptor (IC 50) and mean dose equivalent. The results of experimental study of some benzodiazepine derivatives by nuclear quadrupole resonance of 35Cl nuclei are compared with theoretical results based on DFT calculations which were carried out by means of Gaussian'98 W software.

  3. 35Cl NQR study of lattice dynamic and magnetic property of a crystalline coordination polymer {CuCA(phz)(H 2O) 2} n

    NASA Astrophysics Data System (ADS)

    Gotoh, Kazuma; Terao, Takeshi; Asaji, Tetsuo

    2007-01-01

    Copper(II) compounds {CuCA(phz)(H 2O) 2} n (H 2CA = chloranilic acid, phz = phenazine) having a layer structure of -CuCA(H 2O) 2- polymer chains and phenazine were studied by 35Cl nuclear quadrupole resonance (NQR). The single NQR line observed at 35.635 MHz at 261.5 K increased to 35.918 MHz at 4.2 K. The degree of reduction of electric field gradient due to lattice vibrations was similar to that of chloranilic acid crystal. Temperature dependence of spin-lattice relaxation time, T1, of the 35Cl NQR signal below 20 K, between 20 and 210 K, and above 210 K, was explained by (1) a decrease of effective electron-spin density caused by antiferromagnetic interaction, (2) a magnetic interaction between Cl nuclear-spin and electron-spins on paramagnetic Cu(II) ions, and (3) an increasing contribution from reorientation of ligand molecules, respectively. The electron spin-exchange parameter ∣ J∣ between the neighboring Cu(II) electrons was estimated to be 0.33 cm -1 from the T1 value of the range 20-210 K. Comparing this value with that of J = -1.84 cm -1 estimated from the magnetic susceptibility, it is suggested that the magnetic dipolar coupling with the electron spins on Cu(II) ions must be the principal mechanism for the 35Cl NQR spin-lattice relaxation of {CuCA(phz)(H 2O) 2} n but a delocalization of electron spin over the chloranilate ligand has to be taken into account.

  4. Enhancing nuclear quadrupole resonance (NQR) signature detection leveraging interference suppression algorithms

    NASA Astrophysics Data System (ADS)

    DeBardelaben, James A.; Miller, Jeremy K.; Myrick, Wilbur L.; Miller, Joel B.; Gilbreath, G. Charmaine; Bajramaj, Blerta

    2012-06-01

    Nuclear quadrupole resonance (NQR) is a radio frequency (RF) magnetic spectroscopic technique that has been shown to detect and identify a wide range of explosive materials containing quadrupolar nuclei. The NQR response signal provides a unique signature of the material of interest. The signal is, however, very weak and can be masked by non-stationary RF interference (RFI) and thermal noise, limiting detection distance. In this paper, we investigate the bounds on the NQR detection range for ammonium nitrate. We leverage a low-cost RFI data acquisition system composed of inexpensive B-field sensing and commercial-off-the-shelf (COTS) software-defined radios (SDR). Using collected data as RFI reference signals, we apply adaptive filtering algorithms to mitigate RFI and enable NQR detection techniques to approach theoretical range bounds in tactical environments.

  5. Localization and Function of the Membrane-bound Riboflavin in the Na+-translocating NADH:Quinone Oxidoreductase (Na+-NQR) from Vibrio cholerae*

    PubMed Central

    Casutt, Marco S.; Huber, Tamara; Brunisholz, René; Tao, Minli; Fritz, Günter; Steuber, Julia

    2010-01-01

    The sodium ion-translocating NADH:quinone oxidoreductase (Na+-NQR) from the human pathogen Vibrio cholerae is a respiratory membrane protein complex that couples the oxidation of NADH to the transport of Na+ across the bacterial membrane. The Na+-NQR comprises the six subunits NqrABCDEF, but the stoichiometry and arrangement of these subunits are unknown. Redox-active cofactors are FAD and a 2Fe-2S cluster on NqrF, covalently attached FMNs on NqrB and NqrC, and riboflavin and ubiquinone-8 with unknown localization in the complex. By analyzing the cofactor content and NADH oxidation activity of subcomplexes of the Na+-NQR lacking individual subunits, the riboflavin cofactor was unequivocally assigned to the membrane-bound NqrB subunit. Quantitative analysis of the N-terminal amino acids of the holo-complex revealed that NqrB is present in a single copy in the holo-complex. It is concluded that the hydrophobic NqrB harbors one riboflavin in addition to its covalently attached FMN. The catalytic role of two flavins in subunit NqrB during the reduction of ubiquinone to ubiquinol by the Na+-NQR is discussed. PMID:20558724

  6. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    PubMed

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit. PMID:20184327

  7. Experimental investigation of the EPR parameters and molecular orbital bonding coefficients for VO2+ ion in NaH2PO4·2H2O single crystals

    NASA Astrophysics Data System (ADS)

    Kalfaoğlu, Emel; Karabulut, Bünyamin

    2016-09-01

    Electron paramagnetic resonance (EPR) spectra of VO2+ ions in NaH2PO4·2H2O single crystal have been studied. The spin-Hamiltonian parameters and molecular orbital bonding coefficients were calculated. The angular variation of the EPR spectra shows two different VO2+ complexes. These are located in different chemical environment and each environment contains four magnetically inequivalent VO2+ sites. The crystal field around VO2+ ion is approximately axially symmetric since a strong V=O bond distorts the crystal lattice. Spin Hamiltonian parameters and molecular orbital bonding coefficients were calculated from the EPR data and the nature of bonding in the complex was discussed together.

  8. NMR and NQR study of Si-doped (6,0) zigzag single-walled aluminum nitride nanotube as n or P-semiconductors.

    PubMed

    Baei, Mohammad T; Peyghan, Ali Ahmadi; Tavakoli, Khadijeh; Babaheydari, Ali Kazemi; Moghimi, Masoumeh

    2012-09-01

    Density functional theory (DFT) calculations were performed to investigate the electronic structure properties of pristine and Si-doped aluminum nitride nanotubes as n or P-semiconductors at the B3LYP/6-31G* level of theory in order to evaluate the influence of Si-doped in the (6,0) zigzag AlNNTs. We extended the DFT calculation to predict the electronic structure properties of Si-doped aluminum nitride nanotubes, which are very important for production of solid-state devices and other applications. To this aim, pristine and Si-doped AlNNT structures in two models (Si(N) and Si(Al)) were optimized, and then the electronic properties, the isotropic (CS(I)) and anisotropic (CS(A)) chemical shielding parameters for the sites of various (27)Al and (14)N atoms, NQR parameters for the sites of various of (27)Al and (14)N atoms, and quantum molecular descriptors were calculated in the optimized structures. The optimized structures, the electronic properties, NMR and NQR parameters, and quantum molecular descriptors for the Si(N) and Si(Al) models show that the Si(N) model is a more reactive material than the pristine or Si(Al) model. PMID:22588584

  9. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  10. Temperature dependence of 35Cl NQR in 3,4-Dichlorophenol

    NASA Astrophysics Data System (ADS)

    Chandramani, R.; Devaraj, N.; Indumathy, A.; Ramakrishna, J.

    NQR frequencies in 3,4-dichlorophenol are investigated in the temperature range 77 K to room temperature. Two resonances have been observed throughout the temperature range, corresponding to the two chemically inequivalent chlorine sites. Using Bayer's theory and Brown's method torsional frequencies and their temperature dependence in this range are estimated.

  11. Methyl quantum tunneling and nitrogen-14 NQR NMR studies using a SQUID magnetic resonance spectrometer

    SciTech Connect

    Black, B.E. |

    1993-07-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) techniques have been very successful in obtaining molecular conformation and dynamics information. Unfortunately, standard NMR and NQR spectrometers are unable to adequately detect resonances below a few megahertz due to the frequency dependent sensitivity of their Faraday coil detectors. For this reason a new spectrometer with a dc SQUID (Superconducting Quantum Interference Device) detector, which has no such frequency dependence, has been developed. Previously, this spectrometer was used to observe {sup 11}B and {sup 27}Al NQR resonances. The scope of this study was increased to include {sup 23}Na, {sup 51}V, and {sup 55}Mn NQR transitions. Also, a technique was presented to observe {sup 14}N NQR resonances through cross relaxation of the nitrogen polarization to adjacent proton spins. When the proton Zeeman splitting matches one nitrogen quadrupoler transition the remaining two {sup 14}N transitions can be detected by sweeping a saturating rf field through resonance. Additionally, simultaneous excitation of two nitrogen resonances provides signal enhancement which helps to connect transitions from the same site. In this way, nitrogen-14 resonances were observed in several amino acids and polypeptides. This spectrometer has also been useful in the direct detection of methyl quantum tunneling splittings at 4.2 K. Tunneling, frequencies of a homologous series of carboxylic acids were measured and for solids with equivalent crystal structures, an exponential correlation between the tunneling frequency and the enthalpy of fusion is observed. This correlation provides information about the contribution of intermolecular interactions to the energy barrier for methyl rotation.

  12. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    NASA Astrophysics Data System (ADS)

    Cho, Herman

    2016-09-01

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3 / 2 , 5 / 2 , 7 / 2, and 9 / 2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  13. Dependence of nuclear quadrupole resonance transitions on the electric field gradient asymmetry parameter for nuclides with half-integer spins

    DOE PAGESBeta

    Cho, Herman

    2016-02-28

    Allowed transition energies and eigenstate expansions have been calculated and tabulated in numerical form as functions of the electric field gradient asymmetry parameter for the zero field Hamiltonian of quadrupolar nuclides with I = 3/2,5/2,7/2, and 9/2. These results are essential to interpret nuclear quadrupole resonance (NQR) spectra and extract accurate values of the electric field gradient tensors. Furthermore, applications of NQR methods to studies of electronic structure in heavy element systems are proposed.

  14. The Conformational Changes Induced by Ubiquinone Binding in the Na+-pumping NADH:Ubiquinone Oxidoreductase (Na+-NQR) Are Kinetically Controlled by Conserved Glycines 140 and 141 of the NqrB Subunit*

    PubMed Central

    Strickland, Madeleine; Juárez, Oscar; Neehaul, Yashvin; Cook, Darcie A.; Barquera, Blanca; Hellwig, Petra

    2014-01-01

    Na+-pumping NADH:ubiquinone oxidoreductase (Na+-NQR) is responsible for maintaining a sodium gradient across the inner bacterial membrane. This respiratory enzyme, which couples sodium pumping to the electron transfer between NADH and ubiquinone, is not present in eukaryotes and as such could be a target for antibiotics. In this paper it is shown that the site of ubiquinone reduction is conformationally coupled to the NqrB subunit, which also hosts the final cofactor in the electron transport chain, riboflavin. Previous work showed that mutations in conserved NqrB glycine residues 140 and 141 affect ubiquinone reduction and the proper functioning of the sodium pump. Surprisingly, these mutants did not affect the dissociation constant of ubiquinone or its analog HQNO (2-n-heptyl-4-hydroxyquinoline N-oxide) from Na+-NQR, which indicates that these residues do not participate directly in the ubiquinone binding site but probably control its accessibility. Indeed, redox-induced difference spectroscopy showed that these mutations prevented the conformational change involved in ubiquinone binding but did not modify the signals corresponding to bound ubiquinone. Moreover, data are presented that demonstrate the NqrA subunit is able to bind ubiquinone but with a low non-catalytically relevant affinity. It is also suggested that Na+-NQR contains a single catalytic ubiquinone binding site and a second site that can bind ubiquinone but is not active. PMID:25006248

  15. Temperature variation of ultralow frequency modes and mean square displacements in solid lasamide (diuretic drug) studied by 35Cl-NQR, X-ray and DFT/QTAIM.

    PubMed

    Latosińska, Jolanta Natalia; Latosińska, Magdalena; Kasprzak, Jerzy; Tomczak, Magdalena; Maurin, Jan Krzysztof

    2012-10-25

    The application of combined (35)Cl-NQR/X-ray/DFT/QTAIM methods to study the temperature variation of anisotropic displacement parameters and ultralow frequency modes of anharmonic torsional vibrations in the solid state is illustrated on the example of 2,4-dichloro-5-sulfamolybenzoic acid (lasamide, DSBA) which is a diuretic and an intermediate in the synthesis of furosemide and thus its common impurity. The crystallographic structure of lasamide is solved by X-ray diffraction and refined to a final R-factor of 3.06% at room temperature. Lasamide is found to crystallize in the triclinic space group P-1, with two equivalent molecules in the unit cell a = 7.5984(3) Å, b = 8.3158(3) Å, c = 8.6892(3) Å; α = 81.212(3)°, β = 73.799(3)°, γ = 67.599(3)°. Its molecules form symmetric dimers linked by two short and linear intermolecular hydrogen bonds O-H···O (O-H···O = 2.648 Å and ∠OHO = 171.5°), which are further linked by weaker and longer intermolecular hydrogen bonds N-H···O (N-H···O = 2.965 Å and ∠NHO = 166.4°). Two (35)Cl-NQR resonance frequencies, 36.899 and 37.129 MHz, revealed at room temperature are assigned to chlorine sites at the ortho and para positions, relative to the carboxyl functional group, respectively. The difference in C-Cl(1) and C-Cl(2) bond lengths only slightly affects the value of (35)Cl-NQR frequencies, which results mainly from chemical inequivalence of chlorine atoms but also involvement in different intermolecular interactions pattern. The smooth decrease in both (35)Cl-NQR frequencies with increasing temperature in the range of 77-300 K testifies to the averaging of EFG tensor at each chlorine site due to anharmonic torsional vibrations. Lasamide is thermally stable; no temperature-induced release of chlorine or decomposition of this compound is detected. The temperature dependence of ultralow frequency modes of anharmonic small-angle internal torsional vibrations averaging EFG tensor and mean square angle

  16. Spectral line parameters including temperature dependences of N2- and self-broadened widths in the region of the nu9 band of C2H6 using a multispectrum fitting technique

    NASA Astrophysics Data System (ADS)

    Malathy Devi, V.; Benner, D. Chris; Rinsland, C. P.; Smith, M. A. H.; Sams, R. L.; Blake, T. A.; Flaud, Jean-Marie; Sung, Keeyoon; Brown, L. R.; Mantz, A. W.

    2010-04-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the nu9 band at 12 micron. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and self-broadened half width coefficients and their temperature dependences for a large number transitions. These measurements include several PQ and RQ sub-bands (and other sub bands such as PP, RR) in the nu9 fundamental band of 12C2H6 centered near 822 cm-1. Positions and intensities were measured for more than 1750 transitions. N2- and self-broadened half width coefficients were measured for over 1450 transitions while the temperature dependence exponents were determined for 1330 transitions. About 1900 additional measurements (mostly line positions and intensities) belonging to the nu9+nu4-nu4 hot band, 13C12CH6 nu9 band and over 500 unidentified transitions were also made in the fitted intervals. Forty-three high resolution (0.0016-0.003 cm-1) infrared laboratory absorption spectra recorded at temperatures between 150 and 298 K were fitted simultaneously in retrieving these parameters. Forty-one of these spectra were recorded in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 150 K were obtained using the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena, California. A specialized cooling cell capable of achieving temperatures down to 70 K was employed to record the 150 K spectra. Constraints pertaining to intensity ratios, doublet separations, half width coefficients and their temperature dependence exponents were written in determining these parameters for each of the two torsional split components. Similar to N2- and self-broadened half width coefficients, their temperature dependence exponents were

  17. Multispectrum measurements of spectral line parameters including temperature dependences of N2- and self-broadened half-width coefficients in the region of the v9 band of 12C2H6

    SciTech Connect

    Malathy Devi, V.; Benner, D. C.; Rinsland, C.P.; Smith, M.A.H.; Sams, Robert L.; Blake, Thomas A.; Flaud, Jean Marie; Sung, Keeyoon; Brown, L.R.; Mantz, A. W.

    2010-11-01

    Ethane is a prominent contributor to the spectrum of Titan, particularly in the region of the v9 band at 12μm. A multispectrum nonlinear least squares fitting program was applied to laboratory spectra of ethane to measure accurate positions, absolute intensities, N2- and selfbroadened half- width coefficients and their temperature dependences for a large number transitions. These measurements include several pQ and rQ sub-bands (and other sub-bands such as pP, rR) in the v9 fundamental band of 12C2H6 centered near 822 cm-1. Positions were measured for 2958 transitions and intensities for 3771 transitions. N2- and self-broadened half-width coefficients were determined for over 1700 transitions while temperature dependence exponents were retrieved for over 1350 of those transitions. Of these, many measurements (mostly line positions and intensities) belong to the v9+v4-v4 hot band, v9+2v4-2v4 hot band, 13C12CH6 v9 band and unidentified transitions. Forty-three high resolution (0.0016-0.005 cm-1) infrared laboratory absorption spectra recorded at temperatures between 148 and 298 K were fitted simultaneously to retrieve these parameters. Forty-one of these spectra were obtained in the temperature range of 211-298 K using the Bruker IFS 120HR interferometer located at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington. Two additional spectra at 148 K were recorded using a new temperature stabilized cryogenic cell designed to work inside the sample compartment of the high resolution Bruker IFS 125HR interferometer of the Jet Propulsion Laboratory (JPL) in Pasadena California. The specialized cooling cell developed at Connecticut College and capable of achieving gas sample temperatures down to 70 K with a temperature stability and uniformity of better than ±0.05 K was employed to record the 148 K spectra. Constraints to intensity ratios, doublet separations, half-width coefficients and their temperature dependence exponents were required to

  18. Measurement of temperature and temperature gradient in millimeter samples by chlorine NQR

    NASA Astrophysics Data System (ADS)

    Lužnik, Janko; Pirnat, Janez; Trontelj, Zvonko

    2009-09-01

    A mini-thermometer based on the 35Cl nuclear quadrupole resonance (NQR) frequency temperature dependence in the chlorates KClO3 and NaClO3 was built and successfully tested by measuring temperature and temperature gradient at 77 K and higher in about 100 mm3 active volume of a mini Joule-Thomson refrigerator. In the design of the tank-circuit coil, an array of small coils connected in series enabled us (a) to achieve a suitable ratio of inductance to capacity in the NQR spectrometer input tank circuit, (b) to use a single crystal of KClO3 or NaClO3 (of 1-2 mm3 size) in one coil as a mini-thermometer with a resolution of 0.03 K and (c) to construct a system for measuring temperature gradients when the spatial coordinates of each chlorate single crystal within an individual coil are known.

  19. NQR application to the study of hydrogen dynamics in hydrogen-bonded molecular dimers

    NASA Astrophysics Data System (ADS)

    Asaji, Tetsuo

    2016-12-01

    The temperature dependences of 1H NMR as well as 35Cl NQR spin-lattice relaxation times T 1 were investigated in order to study the hydrogen transfer dynamics in carboxylic acid dimers in 3,5-dichloro- and 2,6-dichlorobenzoic acids. The asymmetry energy A/ k B and the activation energy V/ k B for the hydrogen transfer were estimated to be 240 K and 900 K, and 840 K and 2500 K, respectively, for these compounds. In spite of a large asymmetric potential the quantum nature of hydrogen transfer is recognized in the slope of the temperature dependence of T 1 on the low-temperature side of the T 1 minimum. The NQR T 1 measurements was revealed to be a good probe for the hydrogen transfer dynamics.

  20. 63Cu NQR spectra of dicoordinated Cu(I) cations with imidazole and pyrazole ligands

    NASA Astrophysics Data System (ADS)

    Khajenhouri, Fereidoun; Motallebi, Shahrock; Lucken, Edwin A. C.

    1995-02-01

    The 63Cu NQR spectra of five dicoordinated complex cations of Cu(I) with substituted imidazoles as ligands and six analogous complexes with substituted pyrazoles as ligands are reported. The structures of four of these complexes have been previously determined and the relationship of their 63Cu resonance frequency to the average CuN bond length is compared to that of the analogous lutidine or collidine complexes. It is concluded that there are probably significant differences between the electronic structures of the pyridine complexes and those of the pyrazole or imidazole series.

  1. 14N NQR investigation of some thermochromic and photochromic salicylideneanilines and related compounds

    NASA Astrophysics Data System (ADS)

    Hadjoudis, E.; Milia, F.; Seliger, J.; Zagar, V.; Blinc, R.

    1991-09-01

    The temperature dependence of the 14N NQR frequencies have been measured in a series of thermochromic and photochromic salicylideneanilines and related compounds using nuclear quadrupole double resonance. The results show that, in agreement with previous measurements, there is a fast exchange between inequivalent sites in the OH…N bond. The energy difference Δ E of the two proton sites was calculated for all the compounds and shows that it depends on their thermochromic behavior which is connected with the structure of the compounds.

  2. 35Cl NQR frequency and spin lattice relaxation time in 3,4-dichlorophenol as a function of pressure and temperature.

    PubMed

    Ramu, L; Ramesh, K P; Chandramani, R

    2013-01-01

    The pressure dependences of (35)Cl nuclear quadrupole resonance (NQR) frequency, temperature and pressure variation of spin lattice relaxation time (T(1)) were investigated in 3,4-dichlorophenol. T(1) was measured in the temperature range 77-300 K. Furthermore, the NQR frequency and T(1) for these compounds were measured as a function of pressure up to 5 kbar at 300 K. The temperature dependence of the average torsional lifetimes of the molecules and the transition probabilities W(1) and W(2) for the Δm = ±1 and Δm = ±2 transitions were also obtained. A nonlinear variation of NQR frequency with pressure has been observed and the pressure coefficients were observed to be positive. A thermodynamic analysis of the data was carried out to determine the constant volume temperature coefficients of the NQR frequency. An attempt is made to compare the torsional frequencies evaluated from NQR data with those obtained by IR spectra. On selecting the appropriate mode from IR spectra, a good agreement with torsional frequency obtained from NQR data is observed. The previously mentioned approach is a good illustration of the supplementary nature of the data from IR studies, in relation to NQR studies of compounds in solid state. PMID:23161529

  3. Roles of the Sodium-Translocating NADH:Quinone Oxidoreductase (Na+-NQR) on Vibrio cholerae Metabolism, Motility and Osmotic Stress Resistance

    PubMed Central

    Minato, Yusuke; Halang, Petra; Quinn, Matthew J.; Faulkner, Wyatt J.; Aagesen, Alisha M.; Steuber, Julia; Stevens, Jan F.; Häse, Claudia C.

    2014-01-01

    The Na+ translocating NADH:quinone oxidoreductase (Na+-NQR) is a unique respiratory enzyme catalyzing the electron transfer from NADH to quinone coupled with the translocation of sodium ions across the membrane. Typically, Vibrio spp., including Vibrio cholerae, have this enzyme but lack the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Thus, Na+-NQR should significantly contribute to multiple aspects of V. cholerae physiology; however, no detailed characterization of this aspect has been reported so far. In this study, we broadly investigated the effects of loss of Na+-NQR on V. cholerae physiology by using Phenotype Microarray (Biolog), transcriptome and metabolomics analyses. We found that the V. cholerae ΔnqrA-F mutant showed multiple defects in metabolism detected by Phenotype Microarray. Transcriptome analysis revealed that the V. cholerae ΔnqrA-F mutant up-regulates 31 genes and down-regulates 55 genes in both early and mid-growth phases. The most up-regulated genes included the cadA and cadB genes, encoding a lysine decarboxylase and a lysine/cadaverine antiporter, respectively. Increased CadAB activity was further suggested by the metabolomics analysis. The down-regulated genes include sialic acid catabolism genes. Metabolomic analysis also suggested increased reductive pathway of TCA cycle and decreased purine metabolism in the V. cholerae ΔnqrA-F mutant. Lack of Na+-NQR did not affect any of the Na+ pumping-related phenotypes of V. cholerae suggesting that other secondary Na+ pump(s) can compensate for Na+ pumping activity of Na+-NQR. Overall, our study provides important insights into the contribution of Na+-NQR to V. cholerae physiology. PMID:24811312

  4. Radio-frequency tunable atomic magnetometer for detection of solid-state NQR

    NASA Astrophysics Data System (ADS)

    Lee, S.-K.; Sauer, K. L.; Seltzer, S. J.; Alem, O.; Romalis, M. V.

    2007-06-01

    We constructed a potassium atomic magnetometer which resonantly detects rf magnetic fields with subfemtotesla sensitivity. The resonance frequency is set by the Zeeman resonance of the potassium atoms in a static magnetic field applied to the magnetometer cell. Strong optical pumping of the potassium atoms into a stretched state reduces spin-exchange broadening of the Zeeman resonance, resulting in relatively small linewidth of about 200 Hz (half-width at half-maximum). The magnetometer was used to detect ^14N NQR signal from powdered ammonium nitrate at 423 kHz, with sensitivity an order of magnitude higher than with a conventional room temperature pickup coil with comparable geometry. The demonstrated sensitivity of 0.24 fT/Hz^1/2 can be improved by several means, including use of higher power lasers for pumping and probing. Our technique can potentially be used to develop a mobile, open-access NQR spectrometer for detection of nitrogen-containing solids of interest in security applications.

  5. Estimation of Arrhenius parameters for the 1,1 elimination of H{sub 2} from Si{sub 2}H{sub 6} and the role of chemically activated disilane in silane pyrolysis

    SciTech Connect

    Moffat, H.K.; Jensen, K.F.; Carr, R.W.

    1992-09-17

    This paper analyzes the Arrhenius parameters for the 1,1 H{sub 2} dissociation channel reaction rate for the disilane thermal decomposition. The RRKM model is used to estimate these arrhenius parameters. The role that chemically active disilane plays in the pyrolysis of silanes is also discussed. The estimate of the heat of formation of H{sub 3}SiSiH is determined also.

  6. 14N NQR and the Molecular Charge Topology in Coordinated Ammonia

    NASA Astrophysics Data System (ADS)

    Murgich, Juan; Aray, Yosslen; Ospina, Edgar

    1992-02-01

    14N NQR spectra of [Co(NH3 ) 6 ] • 3Cl, [Co(NH3 ) 5CO3 ] • NO 3 , [Zn(NH3 ) 4 ] • 2Cl, [Zn(NH3 ) 4 ] •(BF4)2, and [Ag(NH3) 4 ] • NO 3 were obtained at 77 K. The results, analyzed by means of the topology of the charge distribution obtained from ab-initio MO calculations of free and of a model of coordinated NH3 , showed that bonding to the metal-ion produces a strong decrease (Co ≫ Zn ≈Ag) in the N nonbonded density ("lone pair") and an increase in the bonded maxima found in the N - H bond direction of the N valence shell.

  7. Structural and functional investigation of flavin binding center of the NqrC subunit of sodium-translocating NADH:quinone oxidoreductase from Vibrio harveyi.

    PubMed

    Borshchevskiy, Valentin; Round, Ekaterina; Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  8. Structural and Functional Investigation of Flavin Binding Center of the NqrC Subunit of Sodium-Translocating NADH:Quinone Oxidoreductase from Vibrio harveyi

    PubMed Central

    Bertsova, Yulia; Polovinkin, Vitaly; Gushchin, Ivan; Ishchenko, Andrii; Kovalev, Kirill; Mishin, Alexey; Kachalova, Galina; Popov, Alexander; Bogachev, Alexander; Gordeliy, Valentin

    2015-01-01

    Na+-translocating NADH:quinone oxidoreductase (NQR) is a redox-driven sodium pump operating in the respiratory chain of various bacteria, including pathogenic species. The enzyme has a unique set of redox active prosthetic groups, which includes two covalently bound flavin mononucleotide (FMN) residues attached to threonine residues in subunits NqrB and NqrC. The reason of FMN covalent bonding in the subunits has not been established yet. In the current work, binding of free FMN to the apo-form of NqrC from Vibrio harveyi was studied showing very low affinity of NqrC to FMN in the absence of its covalent bonding. To study structural aspects of flavin binding in NqrC, its holo-form was crystallized and its 3D structure was solved at 1.56 Å resolution. It was found that the isoalloxazine moiety of the FMN residue is buried in a hydrophobic cavity and that its pyrimidine ring is squeezed between hydrophobic amino acid residues while its benzene ring is extended from the protein surroundings. This structure of the flavin-binding pocket appears to provide flexibility of the benzene ring, which can help the FMN residue to take the bended conformation and thus to stabilize the one-electron reduced form of the prosthetic group. These properties may also lead to relatively weak noncovalent binding of the flavin. This fact along with periplasmic location of the FMN-binding domains in the vast majority of NqrC-like proteins may explain the necessity of the covalent bonding of this prosthetic group to prevent its loss to the external medium. PMID:25734798

  9. Studies of Ga NMR and NQR in SrGa4

    NASA Astrophysics Data System (ADS)

    Niki, H.; Higa, N.; Nakamura, S.; Kuroshima, H.; Toji, T.; Yogi, M.; Nakamura, A.; Hedo, M.; Nakama, T.; Ōnuki, Y.; Harima, H.

    2015-04-01

    In order to microscopically investigate the properties in SrGa4, the Ga NMR measurements of a powder sample were carried out. The Ga NMR spectra corresponding to Ga(I) and Ga(II) sites are obtained. The NMR spectra of 69&71Ga (a nuclear spin I = 3/2) in the powder sample of SrGa4 do not take a typical powder pattern caused by the NQR interaction, but take the spectra consisting of three well resolved resonance-lines, which indicates that the nonuniform distribution of crystal orientation in the powder sample occurs because of the magnetic anisotropy. From the analysis of the Ga NMR spectrum, it is found that the ab-plane of the crystal is parallel to the external magnetic field, which would be attributed to the anisotropy of the magnetic susceptibility with the easy axis parallel to the ab-plane. This result is also confirmed by the 69Ga NQR in SrGa4. The Knight shifts of the 69Ga(I) and 69Ga(II) shift slightly to the negative side with decreasing temperature due to the core polarization of the d-electrons. The values of the Knight shift of the 69Ga(I) and 69Ga(II) are 0.01 and -0.11 % at 4.2 K, and 0.09 and -0.08 % at 300 K, respectively. The values of the 1/ T 1 T of the NMR of both 69Ga(I) and 69Ga(II) are almost constant between 4.2 and 100 K, whose values are 1.5 s -1 K -1 at 69Ga(I) and 0.12 s -1 K -1 at 69Ga(II), while the 1/ T 1 T slightly increase above 100K with increasing temperature. The value of T 1 of 69Ga(I) is one order of magnitude less than that of 69Ga(II).

  10. C2H observations toward the Orion Bar

    NASA Astrophysics Data System (ADS)

    Nagy, Z.; Ossenkopf, V.; Van der Tak, F. F. S.; Faure, A.; Makai, Z.; Bergin, E. A.

    2015-06-01

    Context. The ethynyl radical (C2H) is one of the first radicals to be detected in the interstellar medium. Its higher rotational transitions have recently become available with the Herschel Space Observatory. Aims: We aim to constrain the physical parameters of the C2H emitting gas toward the Orion Bar. Methods: We analyze the C2H line intensities measured toward the Orion Bar CO+ Peak and Herschel/HIFI maps of C2H, CH, and HCO+ and a NANTEN map of [Ci]. We interpret the observed C2H emission using the combination of Herschel/HIFI and NANTEN data with radiative transfer and PDR models. Results: Five rotational transitions of C2H (from N = 6-5 up to N = 10-9) have been detected in the HIFI frequency range toward the CO+ peak of the Orion Bar. Based on the five detected C2H transitions, a single component rotational diagram analysis gives a rotation temperature of ~64 K and a beam-averaged C2H column density of 4 × 1013 cm-2. The rotational diagram is also consistent with a two-component fit, resulting in rotation temperatures of 43 ± 0.2 K and 123 ± 21 K and in beam-averaged column densities of ~8.3 × 1013 cm-2 and ~2.3 × 1013 cm-2 for the three lower-N and for the three higher-N transitions, respectively. The measured five rotational transitions cannot be explained by any single parameter model. According to a non-LTE model, most of the C2H column density produces the lower-N C2H transitions and traces a warm (Tkin ~ 100-150 K) and dense (n(H2) ~ 105-106 cm-3) gas. A small fraction of the C2H column density is required to reproduce the intensity of the highest-N transitions (N = 9-8 and N = 10-9) originating in a high-density (n(H2) ~5 × 106 cm-3) hot (Tkin ~ 400 K) gas. The total beam-averaged C2H column density in the model is 1014 cm-2. A comparison of the spatial distribution of C2H to those of CH, HCO+, and [Ci] shows the best correlation with CH. Conclusions: Both the non-LTE radiative transfer model and a simple PDR model representing the Orion Bar

  11. Global distributions of C2H6, C2H2, HCN, and PAN retrieved from MIPAS reduced spectral resolution measurements

    NASA Astrophysics Data System (ADS)

    Wiegele, A.; Glatthor, N.; Höpfner, M.; Grabowski, U.; Kellmann, S.; Linden, A.; Stiller, G.; von Clarmann, T.

    2011-08-01

    Vertical profiles of mixing ratios of C2H6, C2H2, HCN, and PAN were retrieved from MIPAS reduced spectral resolution nominal mode limb emission measurements. The retrieval strategy followed that of the analysis of MIPAS high resolution measurements, with occasional adjustments to cope with the reduced spectral resolution under which MIPAS is operated since 2005. Largest mixing ratios are found in the troposphere, and reach 1.2 ppbv for C2H6, 1 ppbv for HCN, 600 pptv for PAN, and 450 pptv for C2H2. The estimated precision in case of significantly enhanced mixing ratios (including measurement noise and propagation of uncertain parameters randomly varying in the time domain) and altitude resolution are typically 10 %, 3-4.5 km for C2H6, 15 %, 4-6 km for HCN, 6 %, 2.5-3.5 km for PAN, and 7 %, 2.5-4 km for C2H2.

  12. Chemical structure and intra-molecular effects on NMR-NQR tensors of harmine and harmaline alkaloids

    NASA Astrophysics Data System (ADS)

    Ahmadinejad, Neda; Tahan, Arezoo; Talebi Tari, Mostafa

    2016-02-01

    Density functional theory (DFT) methods were used to analyze the effects of molecular structure and ring currents on the NMR chemical shielding tensors and NQR frequencies of harmine and harmaline alkaloids in the gas phase. The results demonstrated that NMR tensors and NQR frequencies of 15N nuclei in these compounds depend on chemical environment and resonance interactions. Hence, their values are obviously different in the mentioned structures. The interpretation of natural bond orbital (NBO) data suggests that in harmine structure, the lone pair participation of N9 in π-system electron clouds causes to development of aromaticity nature in pyrrole ring. However, the chemical shielding around N9 atom in harmine structure is higher than in harmaline, while in harmaline structure, lone pair participation of N2 in π-system electron clouds causes to development of aromaticity nature in pyridine ring. Hence, chemical shielding around N2 atom in harmaline structure is higher than in harmine. It can be deduced that by increasing lone pair electrons contribution of nitrogen atoms in ring resonance interactions and aromaticity development, the values of NMR chemical shielding around them increase, while χ and q zz values of these nuclei decrease.

  13. (121,123)Sb and (75)As NMR and NQR investigation of the tetrahedrite (Cu12Sb4S13)--Tennantite (Cu12As4S13) system and other metal arsenides.

    PubMed

    Bastow, T J; Lehmann-Horn, J A; Miljak, D G

    2015-10-01

    This work is motivated by the recent developments in online minerals analysis in the mining and minerals processing industry via nuclear quadrupole resonance (NQR). Here we describe a nuclear magnetic resonance (NMR) and NQR study of the minerals tennantite (Cu12As4S13) and tetrahedrite (Cu12 Sb4S13). In the first part NQR lines associated with (75)As in tennantite and (121,123)Sb isotopes in tetrahedrite are reported. The spectroscopy has been restricted to an ambient temperature studies in accord with typical industrial conditions. The second part of this contribution reports nuclear quadrupole-perturbed NMR findings on further, only partially characterised, metal arsenides. The findings enhance the detection capabilities of NQR based analysers for online measurement applications and may aid to control arsenic and antimony concentrations in metal processing stages. PMID:26453410

  14. Search for the isomers of C2H3NO and C2H3NS in the Interstellar Medium

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel; Chakrabarti, Sandip Kumar; Das, Ankan; Gorai, Prasanta; Arunan, Elangannan

    2016-07-01

    With about 40% of all the known interstellar and circumstellar molecules having their isomeric analogues as known astromolecules, isomerism remains one of the leading themes in interstellar chemistry. In this regard, the recent detection of methyl isocyanate (with a number of isomeric analogues) in the Sgr B2(N) giant molecular cloud opens a new window for the possible astronomical detection of other C_2H_3NO isomers. The present work looks at the possibility of detecting other isomers of methyl isocyanate by considering different factors such as thermodynamic stability of the different isomers with respect to the Energy, Stability and Abundance (ESA) relationship, effect of interstellar hydrogen bonding with respect to the formation these isomers on the surface of the interstellar dust grains, possible formation routes for these isomers, spectroscopic parameters for potential astromolecules among these isomers, chemical modeling among other studies. The same studies are repeated for the C_2H_3NS isomers which are the isoelectroninc analogues of the C_2H_3NO isomers taking into account the unique chemistry of S and O-containing interstellar molecular species. Among the C_2H_3NS isomers, methyl isothiocyanate remains the most potential candidate for astronomical observation.

  15. Dissociative recombination of N2H+

    NASA Astrophysics Data System (ADS)

    dos Santos, S. Fonseca; Ngassam, V.; Orel, A. E.; Larson, Å.

    2016-08-01

    The direct and indirect mechanisms of dissociative recombination of N2H+ are theoretically studied. At low energies, the electron capture is found to be driven by recombination into bound Rydberg states, while at collision energies above 0.1 eV, the direct capture and dissociation along electronic resonant states becomes important. Electron-scattering calculations using the complex Kohn variational method are performed to obtain the scattering matrix as well as energy positions and autoionization widths of resonant states. Potential-energy surfaces of electronic bound states of N2H and N2H+ are computed using structure calculations with the multireference configuration interaction method. The cross section for the indirect mechanism is calculated using a vibrational frame transformation of the elements of the scattering matrix at energies just above the ionization threshold. Here vibrational excitations of the ionic core from v =0 to v =1 and v =2 for all three normal modes are considered and autoionization is neglected. The cross section for the direct dissociation along electronic resonant states is computed with wave-packet calculations using the multiconfiguration time-dependent Hartree method, where all three internal degrees of freedom are considered. The calculated cross sections are compared to measurements.

  16. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1991-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for x ranging from 0 up to 0.3, with particular emphasis on the effect of doping on the Cu(2+) magnetic correlations and dynamics, are reviewed. In the low doping limit, x less than or equal to 0.05, the results can be interpreted consistently in terms of a simple phenomenological 'two-fluids' model whereby the effect of thermally-activated mobile O(2p) holes is the one of disrupting locally the Cu(2+) spin correlations. For x greater than or equal to 0.1, the results indicate the onset, as T approaches T(sub c)(+), of a strong coupling between Cu(2+) spins and the Fermi liquid of O(2p) holes leading to the apparent disappearance of localized Cu(2+) moment in connection with the opening of a superconducting gap.

  17. 35C NQR studies in 2,4,6-,2,3,6-, and 2,3,4-trichloro anisoles

    NASA Astrophysics Data System (ADS)

    Rukmani, K.; Ramakrishna, J.

    1985-02-01

    The chlorine-35 NQR frequencies and their temperature variation in 2,4,6-, 2,3,6- and 2,3,4-trichloro anisoles have been studied and compared with the corresponding chlorophenols with a view to studying the effect of hydrogen bonding. The observed frequencies have been assigned to the various chlorines with the help of the additive model of the substituent effect. The temperature dependence has been analysed in terms of the Bayer—Kushida—Brown models. The torsional frequencies and their temperature dependence have been calculated numerically under a two mode approximation. A comparison of the trichloro anisoles with the corresponding trichloro phenols has shown that the resonance frequency decreases due to hydrogen bonding while the torsional frequencies are not affected.

  18. Ferromagnetic Spin Fluctuation and Unconventional Superconductivity in Rb2Cr3As3 Revealed by 75As NMR and NQR

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tang, Z. T.; Cao, G. H.; Zheng, Guo-qing

    2015-10-01

    We report 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb2Cr3As3 with a quasi-one-dimensional crystal structure. Below T ˜100 K , the spin-lattice relaxation rate (1 /T1 ) divided by temperature, 1 /T1T , increases upon cooling down to Tc=4.8 K , showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1 /T1 decreases rapidly below Tc without a Hebel-Slichter peak, and follows a T5 variation below T ˜3 K , which points to unconventional superconductivity with point nodes in the gap function.

  19. Isotope Substitution Effect in Polyatomic Molecules on the Example of 13C2H4 ← 12C2H4 Substitution

    NASA Astrophysics Data System (ADS)

    Bekhtereva, E. S.; Gromova, O. V.; Berezkin, K. B.; Kashirina, N. V.; Konov, I. A.; Bauerecker, S.

    2016-03-01

    General points of the theory of isotope substitution are applied to an analysis of the isotope substitution effect for the substitution 13C2H4←12C2H4 in the ethylene molecule. On the basis of the isotope relations so obtained, numerical predictions of band centers and the most significant rotational, centrifugal, and resonance parameters are made here for the first time for the four lower vibrational states of the 13C2H4 molecule, which can be used to analyze the complicated vibrational-rotational structure of the above-mentioned vibrational states.

  20. Synthesis Of [2h, 13c] And [2h3, 13c]Methyl Aryl Sulfides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-03-30

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4, and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2,.sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfides wherein the .sup.13 C methyl group attached to the sulfur of the sulfide includes exactly one, two or three deuterium atoms. The present invention is also directed to the labeled compounds of [.sup.2 H.sub.1, .sup.13 C]methyl iodide and [.sup.2 H.sub.2, .sup.13 C]methyl iodide.

  1. Volovik effect and Fermi-liquid behavior in the s-wave superconductor CaPd2As2: As75 NMR-NQR measurements

    DOE PAGESBeta

    Ding, Q. -P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-07

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1/T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T, confirming a conventional s-wave SC. Additionally, the Volovik effect, also known as the Doppler shift effect, hasmore » been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.« less

  2. Volovik effect and Fermi-liquid behavior in the s -wave superconductor CaPd2As2: 75As NMR-NQR measurements

    NASA Astrophysics Data System (ADS)

    Ding, Q.-P.; Wiecki, P.; Anand, V. K.; Sangeetha, N. S.; Lee, Y.; Johnston, D. C.; Furukawa, Y.

    2016-04-01

    The electronic and magnetic properties of the collapsed-tetragonal CaPd2As2 superconductor (SC) with a transition temperature of 1.27 K have been investigated by 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. The temperature (T ) dependence of the nuclear spin lattice relaxation rates (1 /T1) and the Knight shifts indicate the absence of magnetic correlations in the normal state. In the SC state, 1 /T1 measured by 75As NQR shows a clear Hebel-Slichter (HS) peak just below Tc and decreases exponentially at lower T , confirming a conventional s -wave SC. In addition, the Volovik effect, also known as the Doppler shift effect, has been clearly evidenced by the observation of the suppression of the HS peak with applied magnetic field.

  3. Broadband echo sequence using a pi composite pulse for the pure NQR of a spin I = 32 powder sample

    PubMed

    Odin

    2000-04-01

    This work presents a numerical approach to optimizing sequences with composite pulses for the pure NQR of a spin I = 32 powder sample. The calculations are based on a formalism developed in a previous paper, which allows a fast powder-averaging procedure to be implemented. The framework of the Cayley-Klein matrices to describe space rotations by 2 x 2 unitary and unimodular complex matrices is used to calculate the pulse propagators. The object of such a study is to design a high-performance echo sequence composed of a single preparation pulse and a three-pulse composite transfer pulse. We mean a sequence leading to a large excitation bandwidth with a good signal-to-noise ratio, a flat excitation profile near the irradiation frequency, and a good linearity of the phase as a function of frequency offset. Such a composite echo sequence is intended to give a better excitation profile than the classical Hahn (θ)-tau-(2θ) echo sequence. It is argued that in pure NQR of a powder sample, the sequence must be optimized as a whole since both the excitation and the reception of the signal depend on the relative orientation of the crystallites with respect to the coil axis. To our knowledge, this is the first time such a global approach is presented. An extensive numerical study of the composite echo sequence described above is performed in this article. The key of the discrimination between the sequences lies in using the first five reduced moments of the excitation profile as well as an estimator of the phase linearity. Based on such information, we suggest that the echo sequence that best fulfills our criterion is (1)(0)-tau-(0.35)(0)(2.1)(pi)(0.35)(0), the pulse angles omega(RF)t(p) being in radians. The subscripts are the relative pulse phases. We outlined the way to implement the spin echo mapping method to reconstruct large spectra with this sequence, and it is shown that it reduces the acquisition time by a factor of 1.7 if compared to the classical Hahn echo. Some

  4. B2H6 PLAD Doped PMOS Device Performance

    SciTech Connect

    Fang, Z.; Miller, T.; Winder, E.; Persing, H.; Arevalo, E.; Gupta, A.; Parrill, T.; Singh, V.; Qin, S.; McTeer, A.

    2006-11-13

    Plasma doping (PLAD) achieves high wafer throughput by directly extracting ions across the plasma sheath. PLAD profiles are typically surface peaked instead of retrograde as obtained from beamline (BL) implant. It may require optimization of PLAD energy and dose in order to match BL doping results. From device optimization point of view, it is necessary to understand the impact of doping parameters to device characteristics. In this paper we present the PMOS device performance with the poly gate and source drain (SD) implants carried out using B2H6 PLAD. The BL control conditions are 2-5 keV 11B+ 4-6x1015 cm-2. Equivalent device performance for p+ poly gate doping is obtained using PLAD with B2H6 / H2. In SD doping using same gas mixture, nearly 50% reduction in SD contact resistance is observed in the PLAD splits. The reduction in SD contact resistance leads to 10-15% increase in device on-current, hence demonstrating the process advantages of using PLAD in addition to having a high wafer throughput.

  5. Sb-NQR study on novel superconductivity in (Pr 1-xLa x)Os 4Sb 12

    NASA Astrophysics Data System (ADS)

    Nagai, Takayuki; Yogi, Mamoru; Imamura, Yoju; Mukuda, Hidekazu; Kitaoka, Yoshio; Kikuchi, Daisuke; Sugawara, Hitoshi; Sato, Hideyuki

    2007-03-01

    We report on superconducting (SC) properties in a series of filled-skutterudite compounds (Pr 1-xLa x)Os 4Sb 12 through the Sb nuclear-quadrupole-resonance (NQR). In the SC state, the nuclear spin-lattice relaxation rate 1/ T1Pr at Pr-cage decreases exponentially with no coherence peak below TC, consistent with the results for the pure PrOs 4Sb 12. In the Pr-rich compounds of x=0.05 and 0.2, the residual density of states (RDOS) at the Fermi level are induced below TC due to the La substitution. It is concluded that the RDOS is not due to the impurity effect that used to be observed in unconventional superconductors with line-node gap. Rather, a part of the Fermi surface that contributes to 5.5% of the total is suggested to become gapless for x=0.05 and 0.2, yielding the RDOS. For the La-rich compounds of x=0.4, 0.8 and 1, as the Pr-substitution for La increases, TC increases and a size of energy gap increases. The Pr-substitution for La makes the pairing interaction for forming the Cooper pairs strong and causes an anisotropy in its energy-gap structure.

  6. Electronic properties of Y-Ba-Cu-O superconductors as seen by Cu and O NMR/NQR

    NASA Technical Reports Server (NTRS)

    Brinkmann, D.

    1995-01-01

    Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) allow the investigation of electronic properties at the atomic level. We will report on such studies of typical members of the the Y-Ba-Cu-O family such as YBa2Cu30(6 + x) (1-2-3-(6 + x)), YBa2Cu4O8 (1-2-4) and Y2Ba4Cu7015 (2-4-7) with many examples of recent work performed in our laboratory. In particular, we will deal with Knight shift and relaxation studies of copper and oxygen. We will discuss important issues of current studies such as: (1) Existence of a common electronic spin-susceptibility in the planes (and perhaps in the chains) of 1-2-4; (2) Strong evidence for the existence of a pseudo spin-gap of the antiferromagnetic fluctuations in 1-2-4 and 2-4-7; (3) Evidence for d-wave pairing in 1-2-4; (4) Strong coupling of inequivalent Cu-O planes in 2-4-7 and possible origin for the high Tc value of this compound; and (5) The possibility to describe NMR data in the framework of a charge-excitation picture.

  7. Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat

    NASA Technical Reports Server (NTRS)

    Borsa, F.; Rigamonti, A.

    1990-01-01

    La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture.

  8. One dimensional 1H, 2H and 3H

    NASA Astrophysics Data System (ADS)

    Vidal, A. J.; Astrakharchik, G. E.; Vranješ Markić, L.; Boronat, J.

    2016-05-01

    The ground-state properties of one-dimensional electron-spin-polarized hydrogen 1H, deuterium 2H, and tritium 3H are obtained by means of quantum Monte Carlo methods. The equations of state of the three isotopes are calculated for a wide range of linear densities. The pair correlation function and the static structure factor are obtained and interpreted within the framework of the Luttinger liquid theory. We report the density dependence of the Luttinger parameter and use it to identify different physical regimes: Bogoliubov Bose gas, super-Tonks–Girardeau gas, and quasi-crystal regimes for bosons; repulsive, attractive Fermi gas, and quasi-crystal regimes for fermions. We find that the tritium isotope is the one with the richest behavior. Our results show unambiguously the relevant role of the isotope mass in the properties of this quantum system.

  9. Rate Coefficients of C2H with C2H4, C2H6, and H2 from 150 to 359 K

    NASA Technical Reports Server (NTRS)

    Opansky, Brian J.; Leone, Stephen R.

    1996-01-01

    Rate coefficients for the reactions C2H with C2H4, C2H6, and H2 are measured over the temperature range 150-359 K using transient infrared laser absorption spectroscopy. The ethynyl radical is formed by photolysis of C2H2 with a pulsed excimer laser at 193 nm, and its transient absorption is monitored with a color center laser on the Q(sub 11)(9) line of the A(sup 2) Pi-Chi(sup 2) Sigma transition at 3593.68 cm(exp -1). Over the experimental temperature range 150-359 K the rate constants of C2H with C2H4, C2H6, and H2 can be fitted to the Arrhenius expressions k(sub C2H4) = (7.8 +/- 0.6) x 10(exp -11) exp[(134 +/- 44)/T], k(sub C2H6) = (3.5 +/- 0.3) x 10(exp -11) exp[(2.9 +/- 16)/T], and k(sub H2) = (1.2 +/- 0.3) x 10(exp -11) exp[(-998 +/- 57)]/T cm(exp 3) molecule(exp -1) sec(exp -1). The data for C2H with C2H4 and C2H6 indicate a negligible activation energy to product formation shown by the mild negative temperature dependence of both reactions. When the H2 data are plotted together with the most recent high-temperature results from 295 to 854 K, a slight curvature is observed. The H2 data can be fit to the non-Arrhenius form k(sub H2) = 9.2 x 10(exp -18) T(sup 2.17 +/- 0.50) exp[(-478 +/- 165)/T] cm(exp 3) molecules(exp -1) sec(exp -1). The curvature in the Arrhenius plot is discussed in terms of both quantum mechanical tunneling of the H atom from H2 to the C2H radical and bending mode contributions to the partition function.

  10. Quantitation of methadone enantiomers in humans using stable isotope-labeled (2H3)-, (2H5)-, and (2H8)Methadone

    SciTech Connect

    Nakamura, K.; Hachey, D.L.; Kreek, M.J.; Irving, C.S.; Klein, P.D.

    1982-01-01

    A new technique for simultaneous stereoselective kinetic studies of methadone enantiomers was developed using three deuterium-labeled forms of methadone and GLC-chemical-ionization mass spectrometry. A racemic mixture (1:1) of (R)-(-)-(2H5)methadone (l-form) and (S)-(R)-(2H3)methadone (d-form) was administered orally in place of a single daily dose of unlabeled (+/-)-(2H0)methadone in long-term maintenance patients. Racemic (+/-)-(2H8)methadone was used as an internal standard for the simultaneous quantitation of (2H0)-, (2H3)-, and (2H5)methadone in plasma and urine. A newly developed extraction procedure, using a short, disposable C18 reversed-phase cartridge and improved chemical-ionization procedures employing ammonia gas, resulted in significant reduction of the background impurities contributing to the ions used for isotopic abundance measurements. These improvements enabled the measurement of labeled plasma methadone levels for 120 hr following a single dose. This methodology was applied to the study of methadone kinetics in two patients; in both patients, the analgesically active l-enantiomer of the drug had a longer plasma elimination half-life and a smaller area under the plasma disappearance curve than did the inactive d-form.

  11. Adiabatic hyperspherical study of weakly bound He(2)H(-), He(2)H, and HeH(2) systems.

    PubMed

    Suno, Hiroya

    2010-06-14

    The He(2)H(-), He(2)H, and HeH(2) triatomic systems are studied using the adiabatic hyperspherical representation. By adopting the best empirical interaction potentials, we search for weakly bound states of (4)He(2) H(-), (4)He(2) H, and (4)HeH(2). We consider not only zero total nuclear orbital angular momentum, J=0, states but also J>0 states. We find no bound state for the (4)He(2) H systems, while the (4)He(2) H(-) and (4)HeH(2) systems are shown to possess three and one bound states, respectively, for J(Pi)=0(+). Interestingly, one bound state has been found each for the J(Pi)=1(-) and 2(+) symmetries of the (4)He(2) H(-) anion. We shall calculate the bound state energies and analyze the molecular structure of these species in detail. PMID:20550401

  12. Coexistence of multiple charge-density waves and superconductivity in SrPt2As2 revealed by 75As-NMR /NQR and 195Pt-NMR

    NASA Astrophysics Data System (ADS)

    Kawasaki, Shinji; Tani, Yoshihiko; Mabuchi, Tomosuke; Kudo, Kazutaka; Nishikubo, Yoshihiro; Mitsuoka, Daisuke; Nohara, Minoru; Zheng, Guo-qing

    2015-02-01

    The relationship between charge-density wave (CDW) orders and superconductivity in arsenide superconductor SrPt2As2 with Tc=5.2 K which crystallizes in the CaBe2Ge2 -type structure was studied by 75As nuclear magnetic resonance (NMR) measurements up to 520 K, and 75As nuclear quadrupole resonance (NQR) and 195Pt-NMR measurements down to 1.5 K. At high temperature, 75As-NMR spectrum and nuclear-spin-relaxation rate (1 /T1) have revealed two distinct CDW orders, one realized in the As-Pt-As layer below TCDWAs (1 )=410 K and the other in the Pt-As-Pt layer below TCDWAs (2 )=255 K . The 1 /T1 measured by 75As-NQR shows a clear Hebel-Slichter peak just below Tc and decreases exponentially well below Tc. Concomitantly, 195Pt Knight shift decreases below Tc. Our results indicate that superconductivity in SrPt2As2 is in the spin-singlet state with an s -wave gap and is robust under the two distinct CDW orders in different layers.

  13. Ferromagnetic Quantum Critical Fluctuations and Anomalous Coexistence of Ferromagnetism and Superconductivity in UCoGe Revealed by Co-NMR and NQR Studies

    NASA Astrophysics Data System (ADS)

    Ohta, Tetsuya; Nakai, Yusuke; Ihara, Yoshihiko; Ishida, Kenji; Deguchi, Kazuhiko; Sato, Noriaki K.; Satoh, Isamu

    2008-02-01

    Co nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies were carried out for the recently discovered UCoGe, in which the ferromagnetic and superconducting (SC) transitions are reported to occur at TCurie˜ 3 K and TS˜ 0.8 K [Huy et al.: Phys. Rev. Lett. 99 (2007) 067006], in order to investigate the coexistence of ferromagnetism and superconductivity as well as the normal-state and SC properties from a microscopic point of view. From the nuclear spin-lattice relaxation rate 1/T1 and Knight-shift measurements, we confirm that ferromagnetic fluctuations that possess a quantum critical character are present above TCurie and also the occurrence of a ferromagnetic transition at 2.5 K in our polycrystalline sample. The magnetic fluctuations in the normal state show that UCoGe is an itinerant ferromagnet similar to ZrZn2 and YCo2. The onset SC transition is identified at TS˜ 0.7 K, below which 1/T1 arising from 30% of the volume fraction starts to decrease due to the opening of the SC gap. This component of 1/T1, which follows a T3 dependence in the temperature range 0.3-0.1 K, coexists with the magnetic components of 1/T1 showing a \\sqrt{T} dependence below TS. From the NQR measurements in the SC state, we suggest that the self-induced vortex state is realized in UCoGe.

  14. Synthesis Of [2h, 13c]M [2h2m 13c], And [2h3,, 13c] Methyl Aryl Sulfones And Sulfoxides

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.; Schmidt, Jurgen G.

    2004-07-20

    The present invention is directed to labeled compounds, [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfones and [.sup.2 H.sub.1, .sup.13 C], [.sup.2 H.sub.2, .sup.13 C] and [.sup.2 H.sub.3, .sup.13 C]methyl aryl sulfoxides, wherein the .sup.13 C methyl group attached to the sulfur of the sulfone or sulfoxide includes exactly one, two or three deuterium atoms and the aryl group is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure: ##STR1## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently, hydrogen, a C.sub.1 -C.sub.4 lower alkyl, a halogen, an amino group from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each a C.sub.1 -C.sub.4 lower alkyl, a phenyl, or an alkoxy group. The present invention is also directed to processes of preparing methyl aryl sulfones and methyl aryl sulfoxides.

  15. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL)

    Atmospheric Science Data Center

    2015-02-06

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OL) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access: OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  16. McDonnell F2H-3 Banshee

    NASA Technical Reports Server (NTRS)

    1957-01-01

    McDonnell F2H-3 Banshee: To more clearly mark the operators of this McDonnell F2H-3 Banshee, the 'VY' of Navy has been painted out and the appropriate lettering to spell NACA has been applied. Note that the second 'A' is of a different shape than the first. The 'Banjo' retained Navy titles on the wings, however.

  17. Determination of the arrhenius parameters for Si{sub 2}H{sub 6} {l_reversible} SiH{sub 4} + SiH{sub 2} and {Delta}H{degrees} {sub f}(SiH{sub 2}) by RRKM analysis of forward and reverse reaction rate data

    SciTech Connect

    Moffat, H.K.; Jensen, K.F.; Carr, R.W.

    1992-09-17

    RRKM theory is used to generate good estimates of the high-pressure Arrhenius parameters for the thermal decomposition of disilane. The heat of formation of SiH{sub 2} is determined by this process to be 64.4 +- 1.0 kcal/mol.

  18. Determination of muscle protein synthesis rates in fish using (2)H2O and (2)H NMR analysis of alanine.

    PubMed

    Marques, Cátia; Viegas, Filipa; Rito, João; Jones, John; Viegas, Ivan

    2016-09-15

    Following administration of deuterated water ((2)H2O), the fractional synthetic rate (FSR) of a given endogenous protein can be estimated by (2)H-enrichment quantification of its alanine residues. Currently, this is measured by mass spectrometry following a derivatization procedure. Muscle FSR was measured by (1)H/(2)H NMR analysis of alanine from seabass kept for 6 days in 5% (2)H-enriched saltwater, following acid hydrolysis and amino acid isolation by cation-exchange chromatography of muscle tissue. The analysis is simple and robust, and provides precise measurements of excess alanine (2)H-enrichment in the 0.1-0.4% range from 50 mmol of alanine recovered from muscle protein. PMID:27418547

  19. Theoretical study of the bonding of Nb(2+) to CH2, C2H2, and C2H4

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1991-01-01

    The bonding of Nb(2+) with CH2, C2H2, and C2H4 is studied by using electronic structure calculations that include high levels of electron correlation. The binding energy for NbCH2(2+) is in good agreement with the lower bound determined from the reaction with CH4 but is significantly smaller than the value determined from the binding energy and ionization potential of NbCH2(+). The calculations and a new interpretation of the experiment indicate that the larger value is in error primarily because the ionization potential of NbCH2(+) determined from bracketing charge-exchange reactions is too small. The computed binding energy of NbC2H2(2+) is in good agreement with experiment. The calculations show that the bonding is predominantly covalent in character for both NbCH2(2+) and NbC2H2(2+), whereas for NbC2H4(2+) the electronic states that are predominantly ionic and covalent are nearly degenerate. The trend in binding energies, CH2 greater than C2H2 greater than C2H4, is consistent with the energy required to prepare the ligands for bonding.

  20. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    SciTech Connect

    Furukawa, Yuji; Roy, Beas; Ran, Sheng; Budko, Sergey L.; Canfield, Paul C.

    2014-03-20

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  1. Suppression of electron correlations in the collapsed tetragonal phase of CaFe2As2 under ambient pressure demonstrated by As75 NMR/NQR measurements

    NASA Astrophysics Data System (ADS)

    Furukawa, Y.; Roy, B.; Ran, S.; Bud'ko, S. L.; Canfield, P. C.

    2014-03-01

    The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magnetic susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.

  2. Isotope effect on the temperature dependence of the 35Cl NQR frequency in (NH4)2RuCl6

    NASA Astrophysics Data System (ADS)

    Kume, Yoshio; Amino, Daiki; Asaji, Tetsuo

    2013-07-01

    The 35Cl nuclear quadrupole resonance frequencies and spin-lattice relaxation times for (NH4)2RuCl6, (ND4)2RuCl6, (NH4)2SnCl6, and (ND4)2SnCl6 were measured in the temperature range 4.2-300 K. In these four compounds, it was confirmed that no phase transition occurs in the observed temperature range. At 4.2 K, discrepancies of the NQR frequency between non-deuterated and deuterated compounds, which are attributed to the difference in the spatial distributions of hydrogen (deuterium) atoms in the ground states of the rotational motion of ammonium ion, reached to 24 kHz and 23 kHz for the ruthenate compounds and the stannate compounds, respectively. The separation between the ground and the first excited states of the rotational motion of the ammonium ion was estimated to be 466 J mol-1 and 840 J mol-1 for (ND4)2RuCl6 and (NH4)2RuCl6, respectively, by least-square fitting calculations of temperature dependence of the NQR frequency. For (ND4)2SnCl6 and (NH4)2SnCl6, these quantities were estimated to be 501 J mol-1 and 1544 J mol-1, respectively. It was clarified that the T1 minimum, which has been observed for the stannate compounds at around 60 K as a feature of the temperature dependence, was dependent on a method of sample preparation. It is concluded that the minimum is not an essential character of the ammonium hexachlorostannate(IV) since the crystals prepared in strong acid condition to prevent a partial substitution of chlorine atoms by hydroxyl groups, did not show such T1 minimum.

  3. Electron Transport Properties in HSi(OC2H5)3 Vapor

    NASA Astrophysics Data System (ADS)

    Yoshida, Kosaku; Sato, Ran; Yokota, Takuya; Kishimoto, Yasutaka; Date, Hiroyuki

    2011-12-01

    The electron swarm parameters in HSi(OC2H5)3 (triethoxysilane, TRIES) vapor have been investigated for relatively wide ranges of reduced electric field (E/N). Based on the arrival-time spectra (ATS) method for electrons using a double-shutter drift tube, the drift velocity and the longitudinal diffusion coefficient were measured for the E/N=20-5000 Td, and the ionization coefficient was obtained for E/N=300-5000 Td. The results were compared with those for SiH4 and Si(OC2H5)4 (tetraethoxysilane, TEOS), to show characteristics similar to the parameters in TEOS. We also determined the electron collision cross sections for TRIES by means of the Boltzmann equation analysis.

  4. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Romani, P. N.; Abbas, M.; LeClair, A.; Strobel, D.

    2004-01-01

    Hydrocarbons such as acetylene (C2H2) and ethane (C2H6) are important tracers in Jupiter's atmosphere, constraining our models of the chemical and dynamical processes. However, our knowledge of the vertical and meridional variations of their abundances has remained sparse. During the flyby of the Cassini spacecraft in December 2000, the Composite Infrared Spectrometer (CIRS) instrument was used to map the spatial variation of emissions from 10-1400 cm(sup -1) (1000-7 microns). In this paper we analyze a zonally-averaged set of CIRS spectra taken at the highest (0.5 cm(sup -1)) resolution, to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 band of CH4, and in the troposphere at 150-400 mbar, via the H2 absorption at 600-800 cm(sup -1). Simultaneously, we retrieve the abundances of C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIRS resolution, introducing a non-uniqueness into the retrievals, such that vertical gradient and column abundance cannot both be found without additional constraints. Assuming profile gradients from photochemical calculations, we show that the column abundance of C2H2 decreases sharply towards the poles by a factor approximately 4, while C2H6 is unchanged in the north and increasing in the south, by a factor approximately 1.8. An explanation for the meridional trends is proposed in terms of a combination of photochemistry and dynamics. Poleward, the decreasing UV flux is predicted to decrease the abundances of C2H2 and C2H6 by factors 2.7 and 3.5 respectively at a latitude 70 deg. However, the lifetime of C2H6 in the stratosphere (5 x 10(exp 9)) is much longer than the dynamical timescale for meridional motions inferred from SL-9 debris (5 x 10(exp 8 s)), and therefore the constant or rising abundance towards high latitudes likely indicates that meridional mixing dominates over photochemical effects. For C2H2, the opposite

  5. TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS)

    Atmospheric Science Data Center

    2015-01-30

    TES/Aura L2 Water Vapor (H2O) Limb (TL2H2OLS) News:  TES News ... Level:  L2 Platform:  TES/Aura L2 Water Vapor Spatial Coverage:  27 x 23 km Limb ... Access:  OPeNDAP Parameters:  H2O Water Volume Mixing Radio Precision Vertical Resolution Order ...

  6. Synthesis of Open-Framework Iron Phosphates, [C 6N 2H 14][Fe III2F 2(HPO 4) 2(H 2PO 4) 2]·2H 2O and [C 6N 2H 14] 2[Fe III3(OH)F 3(PO 4)(HPO 4) 2] 2·H 2O, with One- and Three-Dimensional Structures

    NASA Astrophysics Data System (ADS)

    Mahesh, S.; Green, Mark A.; Natarajan, Srinivasan

    2002-05-01

    The hydrothermal syntheses and structures of two new open-framework iron phosphates, I, [C6N2H14][FeIII2F2(HPO4)2 (H2PO4)2].2H2O, II, and [C6N2H14]2[FeIII3(OH)F3(PO4) (HPO4)2]2. H2O, are presented. The structures of both I and II consist of FeO4F2 octahedra and PO4 terahedra linked to form one- and three-dimensional structures. Both the compounds possess infinite one-dimensional chains of Fe-O/F-Fe formed by the FeO4F2 octahedra. The di-protonated DABCO cations are located in between the chains in I and within the channels in II. Whilst I possess the tancoite structure with a new chain composition, II has a three-dimensional structure similar to the gallophosphate, ULM-1. Crystal data for I: M=685.84, monoclinic, space group=C2/c (no. 15), a=7.232(2), b=20.520(7), c=13.933(4) Å, β=97.68(3)°, ν=2049.1(1) Å3, Z=4, ρcalc.=2.223 g cm-3, μ(MoKα)=1.841 mm-1, R1=0.06, wR2=0.12, S=1.17 for 163 parameters; II, M=1303.33, monoclinic, space group =C2/c (no. 15), a=18.1836(2), b=10.0126(7), c=20.0589(4) Å, β=106.08(3)°, ν=3509.0(2) Å3, Z=4, ρcalc=2.467 g cm-3, μ(MoKα)=2.830 mm-1, R1=0.034, wR2=0.081, S=1.06 for 284 parameters.

  7. First-principles characterization of potassium intercalation in the hexagonal 2H-MoS2

    SciTech Connect

    Andersen, Amity; Kathmann, Shawn M.; Lilga, Michael A.; Albrecht, Karl O.; Hallen, Richard T.; Mei, Donghai

    2012-01-12

    Periodic density functional theory calculations were performed to study the structural and electronic properties of potassium intercalated into hexagonal MoS{sub 2} (2H-MoS{sub 2}). Metallic potassium (K) atoms are incrementally loaded in the hexagonal sites of the interstitial spaces between MoS2 sheets of the 2H-MoS{sub 2} bulk structure generating 2H-KxMoS2 (0.125 {<=} x {<=} 1.0) structures. To accommodate the potassium atoms, the interstitial spacing c parameter in the 2H-MoS{sub 2} bulk expands from 12.816 {angstrom} in 2H-MoS{sub 2} to 16.086 {angstrom} in 2H-K{sub 0.125}MoS{sub 2}. The second lowest potassium loading concentration (K{sub 0.25}MoS{sub 2}) results in the largest interstitial spacing expansion (to c = 16.726 {angstrom}). Our calculations show that there is a small gradual contraction of the interstitial spacing as the potassium loading increases with c = 14.839 {angstrom} for KMoS{sub 2}. This interstitial contraction is correlated with an in-plane expansion of the MoS{sub 2} sheets, which is in good agreement with experimental X-ray diffraction (XRD) measurements. The electronic analysis shows that potassium readily donates its 4s electron to the conduction band of the 2H-K{sub x}MoS{sub 2}, and is largely ionic in character. As a result of the electron donation, the 2H-K{sub x}MoS{sub 2} system changes from a semiconductor to a more metallic system with increasing potassium intercalation. For loadings 0.25 {<=} x {<=} 0.625, triangular Mo-Mo-Mo moieties are prominent and tend to form rhombitrihexagonal motifs. Intercalation of H{sub 2}O molecules that solvate the K atoms is likely to occur in catalytic conditions. The inclusion of two H{sub 2}O molecules per K atom in the K{sub 0.25}MoS{sub 2} structure shows good agreement with XRD measurements.

  8. Meridional Variations of C2H2 and C2H6 in Jupiter's Atmosphere from Cassini CIRS Infrared Spectra

    NASA Technical Reports Server (NTRS)

    Nixon, C. A.; Achterberg, R. K.; Conrath, B. J.; Irwin, P. G. J.; Fouchet, T.; Parrish, P. D.; Abbas, M.; LeClaire, A.; Romani, P. N.; Simon-Miller, A. A.

    2004-01-01

    The abundances of hydrocarbons such as acetylene (C2H2) and ethane (C2H6) in Jupiter's atmosphere are important physical quantities, constraining our models of the chemical and dynamical processes. However, our knowledge of these quantities and their vertical and latitudinal variations has remained sparse. The flyby of the Cassini spacecraft with Jupiter at the end of 2000 provided an excellent opportunity to observe the infrared spectrum with the Composite Infrared Spectrometer (CIRS) instrument, mapping the spatial variation of emissions from 10-1400 cm-1. CIRS spectra taken at the highest resolution (0.5 cm-1) in early December 2000 have been analysed to infer atmospheric temperatures in the stratosphere at 0.5-20 mbar via the v4 of CH4, and in the troposphere at 100-400 mbar, via the hydrogen collision-induced continuum absorption at 600-800 cm. Simultaneously, we have searched for meridional abundance variations in C2H2 and C2H6 via the v5 and vg bands respectively. Tropospheric absorption and stratospheric emission are highly anti-correlated at the CIM resolution, introducing a non-uniqueness into the retrievals, which means that vertical gradient and column abundance cannot be simultaneously found without additional constraints. If we assume the profile shapes from photochemical model calculations, we show that the column abundance of C2H2 must decrease sharply towards the poles, while C2H6 is constant or slightly increasing. The relevance of these results to current photochemical and dynamical knowledge of Jupiter's atmosphere is discussed.

  9. Hunting for hydrogen: random structure searching and prediction of NMR parameters of hydrous wadsleyite† †Electronic supplementary information (ESI) available: Further information on the structures generated by AIRSS, alternative structural models, supercell calculations, total enthalpies of all computed structures and further information on 1H/2H NMR parameters. Example input and all raw output files from AIRSS and CASTEP NMR calculations are also included. See DOI: 10.1039/c6cp01529h Click here for additional data file.

    PubMed Central

    Moran, Robert F.; McKay, David; Pickard, Chris J.; Berry, Andrew J.; Griffin, John M.

    2016-01-01

    The structural chemistry of materials containing low levels of nonstoichiometric hydrogen is difficult to determine, and producing structural models is challenging where hydrogen has no fixed crystallographic site. Here we demonstrate a computational approach employing ab initio random structure searching (AIRSS) to generate a series of candidate structures for hydrous wadsleyite (β-Mg2SiO4 with 1.6 wt% H2O), a high-pressure mineral proposed as a repository for water in the Earth's transition zone. Aligning with previous experimental work, we solely consider models with Mg3 (over Mg1, Mg2 or Si) vacancies. We adapt the AIRSS method by starting with anhydrous wadsleyite, removing a single Mg2+ and randomly placing two H+ in a unit cell model, generating 819 candidate structures. 103 geometries were then subjected to more accurate optimisation under periodic DFT. Using this approach, we find the most favourable hydration mechanism involves protonation of two O1 sites around the Mg3 vacancy. The formation of silanol groups on O3 or O4 sites (with loss of stable O1–H hydroxyls) coincides with an increase in total enthalpy. Importantly, the approach we employ allows observables such as NMR parameters to be computed for each structure. We consider hydrous wadsleyite (∼1.6 wt%) to be dominated by protonated O1 sites, with O3/O4–H silanol groups present as defects, a model that maps well onto experimental studies at higher levels of hydration (J. M. Griffin et al., Chem. Sci., 2013, 4, 1523). The AIRSS approach adopted herein provides the crucial link between atomic-scale structure and experimental studies. PMID:27020937

  10. The distribution and abundance of interstellar C2H

    NASA Technical Reports Server (NTRS)

    Huggins, P. J.; Carlson, W. J.; Kinney, A. L.

    1984-01-01

    C2H(N = 1-0) emission has been extensively observed in a variety of molecular clouds, including: 12 hot, dense, cloud cores, 3 bright-rimmed clouds (in NGC 1977, IC 1396, and IC 1848), and across the extended OMC - 1 cloud. It has also been observed in the circumstellar envelopes IRC + 10216 and AFGL 2688. Abundance analyses of the molecular clouds yield C2H/(C-13)O abundance ratios of about 0.01, with little variation (less than about a factor of 4) either between clouds or across individual clouds. In the Orion plateau source, the C2H abundance is enhanced by less than a factor of 4, relative to the extended cloud. The generally high levels of C2H found in the molecular clouds are not readily accounted for by simple, steady-state chemical models, and suggest, as do earlier observations of atomic carbon, that the carbon chemistry in dense clouds is more active than is commonly assumed.

  11. Evaluation of an electrochemical N2/H2 gas separator

    NASA Technical Reports Server (NTRS)

    Marshall, R. D.; Wynveen, R. A.; Carlson, J. N.

    1973-01-01

    A program was successfully completed to evaluate an electrochemical nitrogen/hydrogen (N2/H2) separator for use in a spacecraft nitrogen (N2) generator. Based on the technical data obtained a N2/H2 separator subsystem consisting of an organic polymer gas permeator first stage and an electrochemical second and third stage was estimated to have the lowest total spared equivalent weight, 257 kg (566 lb), for a 15 lb/day N2 generation rate. A pre-design analysis of the electrochemical N2/H2 separator revealed that its use as a first stage resulted in too high a power requirement to be competitive with the organic polymer membrane and the palladium-silver membrane separation methods. As a result, program emphasis was placed on evaluating the electrochemical. A parametric test program characterized cell performance and established second- and third-stage electrochemical N2/H2 separator operating conditions. A design verification test was completed on the second and third stages. The second stage was then successfully endurance tested for 200 hours.

  12. Conformation-Specific Infrared Spectroscopy of γ2-PEPTIDE Foldamers: Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe

    NASA Astrophysics Data System (ADS)

    James, William H., III; Buchanan, Evan G.; Müller, Christian W.; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    IR/UV double-resonance spectroscopy has been used to study the intrinsic conformational preferences of naturally occurring and synthetic peptides. These studies demonstrated the power of double-resonance methods and highlighted the ability of even short peptide mimics to form a variety of intramolecular hydrogen bonded architectures. Currently, we are extending these studies to a series of model γ2-peptides, which differ from α-peptides by virtue of having two additional, substitutable methylene units separating amide groups in the peptide backbone. Initial studies centered on the conformation-specific infrared spectra of Ac-γ2-hPhe-NHMe, where three unique conformational isomers (two hydrogen-bonded and one intramolecular amide stacked) were observed under the isolated-molecule conditions of a jet-cooled environment. This talk will focus on on two larger γ2-peptides, Ac-γ2-hPhe-γ2-hAla-NHMe and Ac-γ2-hAla-γ2-hPhe-NHMe. Utilizing resonant ion-dip infrared spectroscopy, the single-conformation infrared spectra of eight resolved conformers of the two molecules were recorded in the amide NH stretch region. The resulting infrared spectra of the tri-amides contain evidence for structures comprised of one, two, and three intramolecular amide-amide hydrogen bonds, the last of which is unprecedented for a tri-amide. In an effort to make firm conformational assignments, the spectroscopic data will be compared to the results of harmonic vibrational frequency calculations using traditional DFT and dispersion-corrected DFT methods, the results of which will be discussed.

  13. The infrared spectra of C2H4(+) and C2H3 trapped in solid neon.

    PubMed

    Jacox, Marilyn E; Thompson, Warren E

    2011-02-14

    When a mixture of ethylene in a large excess of neon is codeposited at 4.3 K with a beam of neon atoms that have been excited in a microwave discharge, two groups of product absorptions appear in the infrared spectrum of the deposit. Similar studies using C(2)H(4)-1-(13)C and C(2)D(4) aid in product identification. The first group of absorptions arises from a cation product which possesses two identical carbon atoms, giving the first infrared identification of two fundamentals of C(2)H(4)(+) and three of C(2)D(4)(+), as well as a tentative identification of ν(9) of C(2)H(4)(+). The positions of these absorptions are consistent with the results of density functional calculations and of earlier photoelectron studies. All of the members of the second group of product absorptions possess two inequivalent carbon atoms. They are assigned to the vinyl radical, C(2)H(3), and to C(2)D(3), in agreement with other recent infrared assignments for those species. PMID:21322694

  14. Observations of CH4, C2H6, and C2H2 in the stratosphere of Jupiter.

    PubMed

    Sada, P V; Bjoraker, G L; Jennings, D E; McCabe, G H; Romani, P N

    1998-12-01

    We have performed high-resolution spectral observations at mid-infrared wavelengths of CH4 (8.14 micrometers), C2H6 (12.16 micrometers), and C2H2 (13.45 micrometers) on Jupiter. These emission features probe the stratosphere of the planet and provide information on the carbon-based photochemical processes taking place in that region of the atmosphere. The observations were performed using our cryogenic echelle spectrometer CELESTE, in conjunction with the McMath-Pierce 1.5-m solar telescope between November 1994 and February 1995. We used the methane observations to derive the temperature profile of the jovian atmosphere in the 1-10 mbar region of the stratosphere. This profile was then used in conjunction with height-dependent mixing ratios of each hydrocarbon to determine global abundances for ethane and acetylene. The resulting mixing ratios are 3.9(+1.9)(-1.3) x 10(-6) for C2H6 (5 mbar pressure level), and 2.3 +/- 0.5 x 10(-8) for C2H2 (8 mbar pressure level), where the quoted uncertainties are derived from model variations in the temperature profile which match the methane observation uncertainties. PMID:11878354

  15. I: Low Frequency NMR and NQR Using a dc SQUID. II: Variable-temperature 13C CP/MAS of Organometallics

    SciTech Connect

    Ziegeweid, M.A.

    1995-11-29

    NMR and NQR at low frequencies are difficult prospects due to small nuclear spin polarization. Furthermore, the sensitivity'of the inductive pickup circuitry of standard spectrometers is reduced as the frequency is lowered. I have used a cw-SQUID (Superconducting QUantum Interference Device) spectrometer, which has no such frequency dependence, to study the local atomic environment of {sup 14}N via the quadrupolar interaction. Because {sup 14}N has spin I = 1 and a 0-6 MHz frequency range, it is not possible to obtain well-resolved spectra in high magnetic fields. I have used a technique to observe {sup 14}N NQR resonances via their effect on neighboring protons mediated by the heteronuclear dipolar interaction to study peptides and narcotics. The sensitivity of the SQUID is not enough to measure low-frequency surface (or other low spin density) systems. The application of spin-polarized xenon has been previously used to enhance polarization in conventional NMR experiments. Because xenon only polarizes spins with which it is in contact, it is surface selective. While differences in chemical shifts between surface and bulk spins are not large, it is expected that the differences in quadrupole coupling constant should be very large due to the drastic change of the electric field gradient surrounding spins at the surface. With this in mind, I have taken preliminary steps to measure SQUID detected polarization transfer from Xe to another spin species at 4.2 K and in small magnetic fields (<50 G). In this regime, the spin-lattice relaxation of xenon is dependent on the applied magnetic field. The results of our efforts to characterize the relaxation of xenon are presented. The final section describes the solid-state variable-temperature (VT) one- and two-dimensional {sup 13}C cross polarization (CP)/magic angle spinning (MAS) NMR of Hf({eta}{sup 5}-C{sub 5}H{sub 5}){sub 2}({eta}{sup 1}-C{sub 5}H{sub 5}){sub 2}, Zr({eta}{sup 5}-C{sub 5}H{sub 5}){sub 3}({eta}{sup 1}-C

  16. Refractive index and birefringence of 2H silicon carbide

    NASA Technical Reports Server (NTRS)

    Powell, J. A.

    1972-01-01

    The refractive indices of 2H SiC were measured over the wavelength range 435.8 to 650.9 nm by the method of minimum deviation. At the wavelength lambda = 546.1 nm, the ordinary index n sub 0 was 2.6480 and the extraordinary index n sub e was 2.7237. The estimated error (standard deviation) in the measured values is 0.0006 for n sub 0 and 0.0009 for n sub e. The experimental data were curve fitted to the Cauchy equation for the index of refraction as a function of wavelength. The birefringence of 2H SiC was found to vary from 0.0719 at lambda = 650.9 nm to 0.0846 at lambda = 435.8 nm.

  17. Lattice Instability of 2H-TaSe2

    NASA Astrophysics Data System (ADS)

    John Bosco Balaguru, R.; Lawrence, N.; Alfred Cecil Raj, S.

    The charge density wave (CDW) in the layered compound 2H-TaSe2 at low temperatures has a commensurate phase, which causes super lattice points to appear in the Brillöuin zone of the undistorted phase. A Born-von Karman formalism has been employed for the calculation of phonon frequency distribution curves of 2H-TaSe2 both in the normal and in the commensurate charge density wave (CCDW) phases. A folding technique has been adopted for the calculation in the CCDW phase. The phonon distribution for both the phases have been reported. With these distributions the thermal properties such as specific heat capacity, Debye Waller factor W(k) and thermal conductivity have been worked out, and compared with the available experimental results.

  18. Charge transfer in energetic Li^2+ - H collisions

    NASA Astrophysics Data System (ADS)

    Mancev, I.

    2008-07-01

    The total cross sections for charge transfer in Li^2+ - H collisions have been calculated, using the four-body first Born approximation with correct boundary conditions (CB1-4B) and four-body continuum distorted wave method (CDW-4B) in the energy range 10 - 5000 keV/amu. Present results call for additional experimental data at higher impact energies than presently available.

  19. C(2)H(4) metabolism in morning glory flowers.

    PubMed

    Beyer, E M; Sundin, O

    1978-06-01

    Flowers of Ipomoea tricolor Cav. (cv. Heavenly Blue) were cut at various stages of development and evaluated for their ability to metabolize ethylene. Freshly cut buds or flowers were treated in glass containers for 8 hours with 6 mul/liter of highly purified (14)C(2)H(4). Following removal of dissolved (14)C(2)H(4), radioactivity was determined for the different flower tissues and trappd CO(2). (14)C(2)H(4) oxidation to (14)CO(2) and tissue incorporation occurred at very low to nondetectable levels 2 to 3 days prior to flower opening. About 1 day prior to full bloom, just at the time when mature buds become responsive to ethylene (Kende and Hanson, Plant Physiol 1976, 57: 523-527), there was a dramatic increase in the capacity of the buds to oxidize (14)C(2)H(4) to (14)CO(2). This activity continued to increase until the flower was fully opened reaching a peak activity of 2,500 dpm per three flowers per 8 hours. It then declined as the flower closed and rapidly senesced. A similar but smaller peak occurred in tissue incorporation and it was followed by a second peak during late flower senescence. This first peak in tissue incorporation and the dramatic peak in ethylene oxidation slightly preceded a large peak of natural ethylene production which accompanied flower senescence. The ethylene metabolism observed was clearly dependent on cellular metabolism and did not involve microorganisms since heat killing destroyed this activity and badly contaminated heat-killed flowers were unable to metabolize ethylene. PMID:16660421

  20. 2H Evaporator CP class instrumentation uncertainties evaluations

    SciTech Connect

    Hwang, E.

    1994-02-10

    The Evaporator Pot Temperature Instrumentations and the Steam Condensate Gamma Monitors are two instrumentation systems in the 2H Evaporator facilities that are classified as the critical protection. The temperature high alarm and interlock circuit and the temperature recorder circuit of the pot temperature instrumentation loop are described. From the gamma monitor loop, the high gamma alarm and interlock circuit, failure alarm and interlock circuit, cesium activity recorder circuit, and americium activity recorder circuit are described. (GHH)

  1. Measurement of regional cerebral blood flow in cat brain using intracarotid 2H2O and 2H NMR imaging

    SciTech Connect

    Detre, J.A.; Subramanian, V.H.; Mitchell, M.D.; Smith, D.S.; Kobayashi, A.; Zaman, A.; Leigh, J.S. Jr. )

    1990-05-01

    Cerebral blood flow (CBF) was measured in cat brain in vivo at 2.7 T using 2H NMR to monitor the washout of deuterated saline injected into both carotid arteries via the lingual arteries. In anesthetized cats, global CBF varied directly with PaCO{sub 2} over a range of 20-50 mm Hg, and the corresponding global CBF values ranged from 25 to 125 ml.100 g-1.min-1. Regional CBF was measured in a 1-cm axial section of cat brain using intracarotid deuterated saline and gradient-echo 2H NMR imaging. Blood flow images with a maximum pixel resolution of 0.3 x 0.3 x 1.0 cm were generated from the deuterium signal washout at each pixel. Image derived values for CBF agreed well with other determinations, and decreased significantly with hypocapnia.

  2. CO2/H(+) sensing: peripheral and central chemoreception.

    PubMed

    Lahiri, Sukhamay; Forster, Robert E

    2003-10-01

    H(+) is maintained constant in the internal environment at a given body temperature independent of external environment according to Bernard's principle of "milieu interieur". But CO2 relates to ventilation and H(+) to kidney. Hence, the title of the chapter. In order to do this, sensors for H(+) in the internal environment are needed. The sensor-receptor is CO2/H(+) sensing. The sensor-receptor is coupled to integrate and to maintain the body's chemical environment at equilibrium. This chapter dwells on this theme of constancy of H(+) of the blood and of the other internal environments. [H(+)] is regulated jointly by respiratory and renal systems. The respiratory response to [H(+)] originates from the activities of two groups of chemoreceptors in two separate body fluid compartments: (A) carotid and aortic bodies which sense arterial P(O2) and H(+); and (B) the medullary H(+) receptors on the ventrolateral medulla of the central nervous system (CNS). The arterial chemoreceptors function to maintain arterial P(O2) and H(+) constant, and medullary H(+) receptors to maintain H(+) of the brain fluid constant. Any acute change of H(+) in these compartments is taken care of almost instantly by pulmonary ventilation, and slowly by the kidney. This general theme is considered in Section 1. The general principles involving cellular CO2 reactions mediated by carbonic anhydrase (CA), transport of CO2 and H(+) are described in Section 2. Since the rest of the chapter is dependent on these key mechanisms, they are given in detail, including the role of Jacobs-Stewart Cycle and its interaction with carbonic anhydrase. Also, this section deals briefly with the mechanisms of membrane depolarization of the chemoreceptor cells because this is one mechanism on which the responses depend. The metabolic impact of endogenous CO2 appears in the section with a historical twist, in the context of acclimatization to high altitude (Section 3). Because low P(O2) at high altitude stimulates

  3. A thermodynamic model of methyldiethanolamine-CO{sub 2}-H{sub 2}S-water

    SciTech Connect

    Posey, M.L.; Rochelle, G.T.

    1997-09-01

    Methyldiethanolamine (MDEA) is one of the favored alkanolamines in acid gas treating. It is receiving increased use due to its lower heat of reaction and lower corrosivity compared to the other amines. The electrolyte-nonrandom two-liquid model has been used to represent the thermodynamic behavior of the system: methyldiethanolamine-CO{sub 2}-H{sub 2}S-water. The Data Regression System (DRS) of Aspen Plus was used to regress parameters of the model to experimental data. pH and conductivity data were utilized to supplement vapor-liquid equilibria (VLE) data and improve confidence in model predictions at low acid gas loadings. Predictions for the mixed acid gas systems can be accurately made from the single acid gas parameter sets without the need to regress additional parameters. VLE data were fit well and the calculated heat absorption matches calorimetric data.

  4. Modeling studies of the chemical vapor deposition of boron films from B 2H 6

    NASA Astrophysics Data System (ADS)

    Lamborn, Daniel R.; Snyder, David W.; Xi, X. X.; Redwing, Joan M.

    2007-02-01

    The effect of growth conditions on the chemical vapor deposition of boron thin films from diborane (B 2H 6) was investigated using a combination of experimental studies and computational fluid dynamics-based reactor modeling. A multi-physics computational model was developed to simulate the thermal-fluid environment in the reactor. The proposed chemistry model incorporated into the simulations includes gas-phase decomposition and formation of B 2H 6 and surface adsorption and reaction of borane (BH 3). The model accurately predicts the experimentally measured temperature and partial pressure dependence of the boron growth rate using the sticking coefficient of BH 3 on the growth surface as the only adjustable parameter in the calculations. The results indicate that at lower growth temperatures (<500 °C) the boron growth rate is limited by gas-phase kinetics while at higher temperatures (>500 °C) the growth rate is limited by mass transfer of BH 3 to the substrate surface. The studies of boron thin film growth are relevant to the deposition of superconducting MgB 2 thin films, in which B 2H 6 is used as the boron precursor.

  5. Modelling of c-C2H4O formation on grain surfaces

    NASA Astrophysics Data System (ADS)

    Occhiogrosso, A.; Viti, S.; Ward, M. D.; Price, S. D.

    2012-12-01

    Despite its potential reactivity due to ring strain, ethylene oxide (c-C2H4O) is a complex molecule that seems to be stable under the physical conditions of an interstellar dense core; indeed, it has been detected towards several high-mass star-forming regions with a column density of the order of 1013 cm-2. To date, its observational abundances cannot be reproduced by chemical models and this may be due to the significant contribution played by its chemistry on grain surfaces. Recently, Ward & Price have performed experiments in order to investigate the surface formation of ethylene oxide starting with oxygen atoms and ethylene ice as reactants. We present a chemical model which includes the most recent experimental results from Ward & Price on the formation of c-C2H4O. We study the influence of the physical parameters of dense cores on the abundances of c-C2H4O. We verify that ethylene oxide can indeed be formed during the cold phase (when the interstellar medium dense cores are formed), via addition of an oxygen atom across the C=C double bond of the ethylene molecule, and released by thermal desorption during the hot core phase. A qualitative comparison between our theoretical results and those from the observations shows that we are able to reproduce the abundances of ethylene oxide towards high-mass star-forming regions.

  6. Hydration and Lateral Organization in Phospholipid Bilayers Containing Sphingomyelin: A 2H-NMR Study

    PubMed Central

    Steinbauer, Bernhard; Mehnert, Thomas; Beyer, Klaus

    2003-01-01

    Interfacial properties of lipid bilayers were studied by 2H nuclear magnetic resonance spectroscopy, with emphasis on a comparison between phosphatidylcholine and sphingomyelin. Spectral resolution and sensitivity was improved by macroscopic membrane alignment. The motionally averaged quadrupolar interaction of interlamellar deuterium oxide was employed to probe the interfacial polarity of the membranes. The D2O quadrupolar splittings indicated that the sphingomyelin lipid-water interface is less polar above the phase transition temperature Tm than below Tm. The opposite behavior was found in phosphatidylcholine bilayers. Macroscopically aligned sphingomyelin bilayers also furnished 2H-signals from the amide residue and from the hydroxyl group of the sphingosine moiety. The rate of water-hydroxyl deuteron exchange could be measured, whereas the exchange of the amide deuteron was too slow for the inversion-transfer technique employed, suggesting that the amide residue is involved in intermolecular hydrogen bonding. Order parameter profiles in mixtures of sphingomyelin and chain-perdeuterated phosphatidylcholine revealed an ordering effect as a result of the highly saturated chains of the sphingolipids. The temperature dependence of the 2H quadrupolar splittings was indicative of lateral phase separation in the mixed systems. The results are discussed with regard to interfacial structure and lateral organization in sphingomyelin-containing biomembranes. PMID:12885648

  7. Phthalazin-1(2H)-one–picric acid (1/1)

    PubMed Central

    Yathirajan, H. S.; Narayana, B.; Swamy, M. T.; Sarojini, B. K.; Bolte, Michael

    2008-01-01

    The geometric parameters of the title compound, C8H6N2O·C6H3N3O7, are in the usual ranges. The three nitro groups are almost coplanar with the aromatic picrate ring [dihedral angles 10.2 (2)°, 7.62 (16) and 8.08 (17)°]. The mol­ecular conformation of the picric acid is stabilized by an intra­molecular O—H⋯O hydrogen bond. The phthalazin-1(2H)-one mol­ecules are connected via N—H⋯O hydrogen bonds, forming centrosymmetric dimers. PMID:21200682

  8. Theoretical kinetics of O + C2H4

    DOE PAGESBeta

    Li, Xiaohu; Jasper, Ahren W.; Zádor, Judit; Miller, James A.; Klippenstein, Stephen J.

    2016-06-01

    The reaction of atomic oxygen with ethylene is a fundamental oxidation step in combustion and is prototypical of reactions in which oxygen adds to double bonds. For 3O+C2H4 and for this class of reactions generally, decomposition of the initial adduct via spin-allowed reaction channels on the triplet surface competes with intersystem crossing (ISC) and a set of spin-forbidden reaction channels on the ground-state singlet surface. The two surfaces share some bimolecular products but feature different intermediates, pathways, and transition states. In addition, the overall product branching is therefore a sensitive function of the ISC rate. The 3O+C2H4 reaction has beenmore » extensively studied, but previous experimental work has not provided detailed branching information at elevated temperatures, while previous theoretical studies have employed empirical treatments of ISC. Here we predict the kinetics of 3O+C2H4 using an ab initio transition state theory based master equation (AITSTME) approach that includes an a priori description of ISC. Specifically, the ISC rate is calculated using Landau–Zener statistical theory, consideration of the four lowest-energy electronic states, and a direct classical trajectory study of the product branching immediately after ISC. The present theoretical results are largely in good agreement with existing low-temperature experimental kinetics and molecular beam studies. Good agreement is also found with past theoretical work, with the notable exception of the predicted product branching at elevated temperatures. Above ~1000 K, we predict CH2CHO+H and CH2+CH2O as the major products, which differs from the room temperature preference for CH3+HCO (which is assumed to remain at higher temperatures in some models) and from the prediction of a previous detailed master equation study.« less

  9. Dissociative attachment of electrons with Si2H6

    NASA Technical Reports Server (NTRS)

    Krishnakumar, E.; Srivastava, S. K.; Iga, I.

    1991-01-01

    Cross-sections for the production of negative ion fragments by electron attachment to Si2H6 and ion pair formation from it have been measured by utilizing the crossed electron beam-molecular beam collision technique. The negative ions are mass-analyzed by employing a quadrupole mass spectrometer. There are serious disagreements between the present and two previously published results. In the present paper cross-section values, appearance potentials, and the various channels of dissociation for the formation of negative monosilane fragments are presented.

  10. Rotational spectroscopy of 2H,3H-perfluoropentane

    NASA Astrophysics Data System (ADS)

    Duong, Chinh H.; Obenchain, Daniel A.; Cooke, S. A.; Novick, Stewart E.

    2016-06-01

    The structure of 2H,3H-perfluoropentane, CF3CHFCHFCF2CF3, has been determine by a combination of Chirp-pulsed Fourier transform microwave (CP-FTMW) spectroscopy and cavity FTMW spectroscopy. Of the four possible stereoisomers, only the enantiomeric pair (R,R)/(S,S) were observed experimentally; there was no spectroscopic evidence for the enantiomeric pair (R,S)/(S,R). The conformeric structure of the (R,R)/(S,S) stereoisomer(s) was that of partial helices with C-C-C-C dihedral angles of 12° (helical) and 1° (staggered).

  11. Synthesis Of 2h- And 13c-Substituted Dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2004-05-04

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  12. Synthesis of 2H- and 13C-substituted dithanes

    DOEpatents

    Martinez, Rodolfo A.; Alvarez, Marc A.; Silks, III, Louis A.; Unkefer, Clifford J.

    2003-01-01

    The present invention is directed to labeled compounds, [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to processes of preparing [2-.sup.13 C]dithiane wherein the .sup.13 C atom is directly bonded to one or two deuterium atoms. The present invention is also directed to labeled compounds, e.g., [.sup.2 H.sub.1-2, .sup.13 C]methanol (arylthio)-, acetates wherein the .sup.13 C atom is directly bonded to exactly one or two deuterium atoms.

  13. A microporous six-fold interpenetrated hydrogen-bonded organic framework for highly selective separation of C2H4/C2H6.

    PubMed

    Li, Peng; He, Yabing; Arman, Hadi D; Krishna, Rajamani; Wang, Hailong; Weng, Linhong; Chen, Banglin

    2014-11-01

    A unique six-fold interpenetrated hydrogen-bonded organic framework (HOF) has been developed, for the first time, for highly selective separation of C2H4/C2H6 at room temperature and normal pressure. PMID:25223376

  14. Investigation of multiaxial molecular dynamics by 2H MAS NMR spectroscopy.

    PubMed

    Kristensen, J H; Hoatson, G L; Vold, R L

    1998-11-01

    The technique of 2H MAS NMR spectroscopy is presented for the investigation of multiaxial molecular dynamics. To evaluate the effects of discrete random reorientation a Lie algebraic formalism based on the stochastic Liouville-von Neumann equation is developed. The solution to the stochastic Liouville-von Neumann equation is obtained both in the presence and absence of rf irradiation. This allows effects of molecular dynamics to be evaluated during rf pulses and extends the applicability of the formalism to arbitrary multiple pulse experiments. Theoretical methods are presented for the description of multiaxial dynamics with particular emphasis on the application of vector parameters to represent molecular rotations. Numerical time and powder integration algorithms are presented that are both efficient and easy to implement computationally. The applicability of 2H MAS NMR spectroscopy for investigating molecular dynamics is evaluated from theoretical spectra. To demonstrate the potential of the technique the dynamics of thiourea-2H4 is investigated experimentally. From a series of variable temperature MAS and quadrupole echo spectra it has been found that the dynamics can be described by composite rotation about the CS and CN bonds. Both experiments are sensitive to the fast CS rotation which is shown to be described by the Arrhenius parameters E(CS) = 46.4 +/- 2.3 kJ mol(-1) and ln(A(CS))= 32.6 +/- 0.9. The MAS experiment represents a significant improvement by simultaneously allowing the dynamics of the slow CN rotation to be fully characterized in terms of E(CN) = 56.3 +/- 3.4 kJ mol(-1) and ln(A(CN)) = 25.3 +/- 1.1. PMID:9875600

  15. Bonding and molecular motions in the 1:1 molecular complexes of 1,4-diazabicyclo[2.2.2]octane with tetrahalomethane as studied by means of NQR

    NASA Astrophysics Data System (ADS)

    Okuda, T.; Suzuki, T.; Negita, H.

    1983-12-01

    NQR spectra were observed in the complexes of 1,4-diazabicyclo[2.2.2]octane (DABCO) with tetrachloromethane and tetrabromomethane at various temperatures. A phase transition was found at 319 K for DABCO·CBr 4. From spin-lattice relaxation times of nitrogen-14 in DABCO·CBr 4, the activation energy of the reorientation of DABCO about the NN axis was calculated to be 18.3 kJ/mol which agrees with the value obtained from the second moment of proton NMR spectra. The bond nature is discussed using the Townes-Dailey treatment.

  16. Hydrophobization of epoxy nanocomposite surface with 1H,1H,2H,2H-perfluorooctyltrichlorosilane for superhydrophobic properties

    NASA Astrophysics Data System (ADS)

    Psarski, Maciej; Marczak, Jacek; Celichowski, Grzegorz; Sobieraj, Grzegorz B.; Gumowski, Konrad; Zhou, Feng; Liu, Weimin

    2012-10-01

    Nature inspires the design of synthetic materials with superhydrophobic properties, which can be used for applications ranging from self-cleaning surfaces to microfluidic devices. Their water repellent properties are due to hierarchical (micrometer- and nanometre-scale) surface morphological structures, either made of hydrophobic substances or hydrophobized by appropriate surface treatment. In this work, the efficiency of two surface treatment procedures, with a hydrophobic fluoropolymer, synthesized and deposited from 1H,1H,2H,2H-perfluorooctyltrichlorosilane (PFOTS) is investigated. The procedures involved reactions from the gas and liquid phases of the PFOTS/hexane solutions. The hierarchical structure is created in an epoxy nanocomposite surface, by filling the resin with alumina nanoparticles and micron-sized glass beads and subsequent sandblasting with corundum microparticles. The chemical structure of the deposited fluoropolymer was examined using XPS spectroscopy. The topography of the modified surfaces was characterized using scanning electron microscopy (SEM), and atomic force microscopy (AFM). The hydrophobic properties of the modified surfaces were investigated by water contact and sliding angles measurements. The surfaces exhibited water contact angles of above 150° for both modification procedures, however only the gas phase modification provided the non-sticking behaviour of water droplets (sliding angle of 3°). The discrepancy is attributed to extra surface roughness provided by the latter procedure.

  17. Plasma chemistry and diagnostic in an Ar-N2-H2 microwave expanding plasma used for nitriding treatments

    NASA Astrophysics Data System (ADS)

    Touimi, S.; Jauberteau, J. L.; Jauberteau, I.; Aubreton, J.

    2010-05-01

    This paper reports on the mass spectrometry analysis performed downstream a microwave discharge in an Ar-N2-H2 gas mixture under nitriding conditions. Investigations are focused on the main simple radicals NH2, NH and N, and on the molecular species NH3 and N2H2 produced. Because of wall desorptions due to catalytic effects, we must develop a specific method taking into account both wall desorption and the dissociative ionization effects in order to correct the mass spectrometer signal intensity. The relative concentrations of the above-mentioned species are studied in various gas mixtures. Correlations are made between the plasma chemistry and the plasma parameters (electron density and energy electron distribution function), measured by means of a Langmuir probe spatially resolved within the plasma expansion. These results show the efficiency of ternary gas mixtures (Ar-N2-H2) in producing electrons and NxHy species used in plasma nitriding processes.

  18. 2H NMR studies of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Nath, R.; Nowaczyk, A.; Geil, B.; Bohmer, R.

    2007-11-01

    Acetyl salicylic acid, deuterated at the methyl group, was investigated using 2H-NMR in its supercooled and glassy states. Just above the glass transition temperature the molecular reorientations were studied using stimulated-echo spectroscopy and demonstrated a large degree of similarity with other glass formers. Deep in the glassy phase the NMR spectra look similar to those reported for the crystal [A. Detken, P. Focke, H. Zimmermann, U. Haeberlen, Z. Olejniczak, Z. T. Lalowicz, Z. Naturforsch. A 50 (1995) 95] and below 20 K they are indicative for rotational tunneling with a relatively large tunneling frequency. Measurements of the spin-lattice relaxation times for temperatures below 150 K reveal a broad distribution of correlation times in the glass. The dominant energy barrier characterizing the slow-down of the methyl group is significantly smaller than the well defined barrier in the crystal.

  19. Study of the $\\tau^- to 3h^- 2h^+ \

    SciTech Connect

    Aubert, Bernard; Barate, R.; Boutigny, D.; Couderc, F.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Tisserand, V.; Zghiche, A.; Grauges, E.; Palano, A.; Pappagallo, M.; Pompili, A.; Chen, J.C.; Qi, N.D.; Rong, G.; Wang, P.; Zhu, Y.S.; Eigen, G.; Ofte, I.; Stugu, B. /more authors..

    2005-05-04

    The branching fraction of the {tau}{sup -} {yields} 3h{sup -} 2h{sup +} {nu}{sub {tau}} decay (h = {pi}, K) is measured with the BABAR detector to be (8.56 {+-} 0.05 {+-} 0.42) x 10{sup -4}, where the first error is statistical and the second systematic. The observed structure of this decay is significantly different from the phase space prediction, with the {rho} resonance playing a strong role. The decay {tau}{sup -} {yields} f{sub 1}(1285){pi}{sup -}{nu}{sub {tau}}, with the f{sub 1}(1285) meson decaying to four charged pions, is observed and the branching fraction is measured to be (3.9 {+-} 0.7 {+-} 0.5) x 10{sup -4}.

  20. The ultraviolet spectrum of Herbig-Haro object 2H

    NASA Technical Reports Server (NTRS)

    Brugel, E. W.; Seab, C. G.; Shull, J. M.

    1982-01-01

    IUE spectra of Herbig-Haro object 2H are presented. The spectra show a strong 'excess' UV continuum and prominent emission lines of C, N, O, Si, Mg, and possibly Al. The continuum, F(lambda), exhibits a turnover shortward of about 1450 A, confirming for the first time the H0 two-photon nature of the emission source. A possible absorption feature near 1680 A, which could result from a new grain or molecular constituent in these protostellar objects is also noted. Recently computed models of steady shocks into partially ionized gas reproduce the two-photon spectral shape, but its observed intensity relative to H-beta and the Balmer continuum is anomalously high. It is suggested that a range of shock velocities, 70-100 km/s, or nonsteady, 'truncated' shocks may be responsible. Future high-sensitivity UV observations of HH objects may be used to probe grain extinction curves in star-forming regions.

  1. Detailed Studies of Hydrocarbon Radicals: C2H Dissociation

    SciTech Connect

    Wittig, Curt

    2014-10-06

    A novel experimental technique was examined whose goal was the ejection of radical species into the gas phase from a platform (film) of cold non-reactive material. The underlying principle was one of photo-initiated heat release in a stratum that lies below a layer of CO2 or a layer of amorphous solid water (ASW) and CO2. A molecular precursor to the radical species of interest is deposited near or on the film's surface, where it can be photo-dissociated. It proved unfeasible to avoid the rampant formation of fissures, as opposed to large "flakes." This led to many interesting results, but resulted in our aborting the scheme as a means of launching cold C2H radical into the gas phase. A journal article resulted that is germane to astrophysics but not combustion chemistry.

  2. Doping dependent plasmon dispersion in 2 H -transition metal dichalcogenides

    NASA Astrophysics Data System (ADS)

    Müller, Eric; Büchner, Bernd; Habenicht, Carsten; König, Andreas; Knupfer, Martin; Berger, Helmuth; Huotari, Simo

    2016-07-01

    We report the behavior of the charge carrier plasmon of 2 H -transition metal dichalcogenides (TMDs) as a function of intercalation with alkali metals. Intercalation and concurrent doping of the TMD layers have a substantial impact on plasmon energy and dispersion. While the plasmon energy shifts are related to the intercalation level as expected within a simple homogeneous electron gas picture, the plasmon dispersion changes in a peculiar manner independent of the intercalant and the TMD materials. Starting from a negative dispersion, the slope of the plasmon dispersion changes sign and grows monotonously upon doping. Quantitatively, the increase of this slope depends on the orbital character (4 d or 5 d ) of the conduction bands, which indicates a decisive role of band structure effects on the plasmon behavior.

  3. Dual-laser absorption spectroscopy of C2H2 at 1.4 μ m

    NASA Astrophysics Data System (ADS)

    Fasci, E.; Odintsova, T. A.; Castrillo, A.; De Vizia, M. D.; Merlone, A.; Bertiglia, F.; Moretti, L.; Gianfrani, L.

    2016-04-01

    Spectroscopic parameters (line intensity factor, pressure self-broadening, and shifting coefficients) of C2H2 at 1.4 μ m were accurately measured using a dual-laser approach, based upon the technique of optical phase locking. This generated an absolute frequency scale underneath the absorption spectra. A pair of extended-cavity diode lasers was used. One of them, the probe laser, is forced to maintain a precise frequency offset from a reference laser, which is an optical frequency standard based on noise-immune cavity-enhanced optical heterodyne molecular spectroscopy. Laser-gas interaction takes place inside an isothermal multipass cell that is stabilized at the temperature of the triple point of water. The fidelity in the observation of the shape associated to the Pe(14) line of the 2 ν3+ν5 band allowed us to measure the spectroscopic parameters, with a global uncertainty for the line strength of 0.22%.

  4. 2H and 18O Freshwater Isoscapes of Scotland

    NASA Astrophysics Data System (ADS)

    Meier-Augenstein, Wolfram; Hoogewerff, Jurian; Kemp, Helen; Frew, Danny

    2013-04-01

    Scotland's freshwater lochs and reservoirs provide a vital resource for sustaining biodiversity, agriculture, food production as well as for human consumption. Regular monitoring of freshwaters by the Scottish Environment Protection Agency (SEPA) fulfils legislative requirements with regards to water quality but new scientific methods involving stable isotope analysis present an opportunity combining these mandatory monitoring schemes with fundamental research to inform and deliver on current and nascent government policies [1] through gaining a greater understanding of Scottish waters and their importance in the context of climate change, environmental sustainability and food security. For example, 2H and 18O isoscapes of Scottish freshwater could be used to underpin research and its applications in: • Climate change - Using longitudinal changes in the characteristic isotope composition of freshwater lochs and reservoirs as proxy, isoscapes will provide a means to assess if and how changes in temperature and weather patterns might impact on precipitation patterns and amount. • Scottish branding - Location specific stable isotope signatures of Scottish freshwater have the potential to be used as a tool for provenancing and thus protecting premium Scottish produce such as Scottish beef, Scottish soft fruit and Scottish Whisky. During 2011 and 2012, with the support of SEPA more than 110 samples from freshwater lochs and reservoirs were collected from 127 different locations across Scotland including the Highlands and Islands. Here we present the results of this sampling and analysis exercise isotope analyses in form of 2H and 18O isoscapes with an unprecedented grid resolution of 26.5 × 26.5 km (or 16.4 × 16.4 miles). [1] Adaptation Framework - Adapting Our Ways: Managing Scotland's Climate Risk (2009): Scotland's Biodiversity: It's in Your Hands - A strategy for the conservation and enhancement of biodiversity in Scotland (2005); Recipe For Success - Scotland

  5. Probing perturbation of bovine lung surfactant extracts by albumin using DSC and 2H-NMR.

    PubMed

    Nag, Kaushik; Keough, Kevin M W; Morrow, Michael R

    2006-05-15

    Lung surfactant (LS), a lipid-protein mixture, forms films at the lung air-water interface and prevents alveolar collapse at end expiration. In lung disease and injury, the surface activity of LS is inhibited by leakage of serum proteins such as albumin into the alveolar hypophase. Multilamellar vesicular dispersions of a clinically used replacement, bovine lipid extract surfactant (BLES), to which (2% by weight) chain-perdeuterated dipalmitoylphosphatidycholine (DPPG mixtures-d(62)) had been added, were studied using deuterium-NMR spectroscopy ((2)H-NMR) and differential scanning calorimetry (DSC). DSC scans of BLES showed a broad gel to liquid-crystalline phase transition between 10-35 degrees C, with a temperature of maximum heat flow (T(max)) around 27 degrees C. Incorporation of the DPPC-d(62) into BLES-reconstituted vesicles did not alter the T(max) or the transition range as observed by DSC or the hydrocarbon stretching modes of the lipids observed using infrared spectroscopy. Transition enthalpy change and (2)H-NMR order parameter profiles were not significantly altered by addition of calcium and cholesterol to BLES. (2)H-NMR spectra of the DPPC-d(62) probes in these samples were characteristic of a single average lipid environment at all temperatures. This suggested either continuous ordering of the bilayer through the transition during cooling or averaging of the DPPC-d(62) environment by rapid diffusion between small domains on a short timescale relative to that characteristic of the (2)H-NMR experiment. Addition of 10% by weight of soluble bovine serum albumin (1:0.1, BLES/albumin, dry wt/wt) broadened the transition slightly and resulted in the superposition of (2)H-NMR spectral features characteristic of coexisting fluid and ordered phases. This suggests the persistence of phase-separated domains throughout the transition regime (5-35 degrees C) of BLES with albumin. The study suggests albumin can cause segregation of protein bound-lipid domains in

  6. Site-resolved 2H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra

    NASA Astrophysics Data System (ADS)

    Lindh, E. L.; Stilbs, P.; Furó, I.

    2016-07-01

    We investigate a way one can achieve good spectral resolution in 2H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the 2H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two 2H spin populations with similar chemical shifts but different quadrupole splittings. In 2H-exchanged cellulose containing two 2H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics.

  7. Site-resolved (2)H relaxation experiments in solid materials by global line-shape analysis of MAS NMR spectra.

    PubMed

    Lindh, E L; Stilbs, P; Furó, I

    2016-07-01

    We investigate a way one can achieve good spectral resolution in (2)H MAS NMR experiments. The goal is to be able to distinguish between and study sites in various deuterated materials with small chemical shift dispersion. We show that the (2)H MAS NMR spectra recorded during a spin-relaxation experiment are amenable to spectral decomposition because of the different evolution of spectral components during the relaxation delay. We verify that the results are robust by global least-square fitting of the spectral series both under the assumption of specific line shapes and without such assumptions (COmponent-REsolved spectroscopy, CORE). In addition, we investigate the reliability of the developed protocol by analyzing spectra simulated with different combinations of spectral parameters. The performance is demonstrated in a model material of deuterated poly(methacrylic acid) that contains two (2)H spin populations with similar chemical shifts but different quadrupole splittings. In (2)H-exchanged cellulose containing two (2)H spin populations with very similar chemical shifts and quadrupole splittings, the method provides new site-selective information about the molecular dynamics. PMID:27152833

  8. 2F and 2H evaporator loop evaluation closure report

    SciTech Connect

    Bates, W.F.

    1994-01-28

    As a result of the Concentrate Transfer System (CTS) tank ventilation system contamination event, a task team was formed to evaluate instrument loops associated with waste reduction equipment. During the event a conductivity probe designed to provide an alarm and initiate an interlock failed to respond to the presence of liquid. An investigation revealed that the probe had become disconnected from the loop. The daily functional check of the conductivity probe circuit only tested the circuit continuity from the ventilation unit to the control room and did not actually test the probe. To test the continuity, a test switch was used to simulate the conducting probe. Because the functional check did not test each part of the loop, the test could be satisfactorily completed even though the probe itself was inoperable. The function of the task team was to develop a list of loops and interlocks prioritized by importance and likelihood of similar failure. The team evaluated the associated loop calibration and functional test procedures to verify that they are adequate to ensure loop performance on a periodic frequency. This report documents the evaluation findings and associated actions required prior to startup of the 2F and 2H evaporators.

  9. Ca2+/H+ exchange in acidic vacuoles of Trypanosoma brucei.

    PubMed Central

    Vercesi, A E; Moreno, S N; Docampo, R

    1994-01-01

    The use of digitonin to permeabilize the plasma membrane of Trypanosoma brucei procyclic and bloodstream trypomastigotes allowed the identification of a non-mitochondrial nigericin-sensitive Ca2+ compartment. The proton ionophore carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) was able to cause Ca2+ release from this compartment, which was also sensitive to sodium orthovanadate. Preincubation of the cells with the vacuolar H(+)-ATPase inhibitor bafilomycin A1 greatly reduced the nigericin-sensitive Ca2+ compartment. Bafilomycin A1 inhibited the initial rate of ATP-dependent non-mitochondrial Ca2+ uptake and stimulated the initial rate of nigericin-induced Ca2+ release by permeabilized procyclic trypomastigotes. ATP-dependent and bafilomycin A1- and 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl)-sensitive Acridine Orange uptake was demonstrated in permeabilized cells. Under these conditions Acridine Orange was concentrated in abundant cytoplasmic round vacuoles by a process inhibited by bafilomycin A1, NBD-Cl, nigericin, and Ca2+. Vanadate or EGTA significantly increased Acridine Orange uptake, while Ca2+ released Acridine Orange from these preparations, thus suggesting that the dye and Ca2+ were being accumulated in the same acidic vacuole. Acridine Orange uptake was reversed by nigericin, bafilomycin A1 and NH4Cl. The results are consistent with the presence of a Ca2+/H(+)-ATPase system pumping Ca2+ into an acidic vacuole, that we tentatively named the acidocalcisome. Images Figure 5 PMID:7998937

  10. Model dependence of the {sup 2}H electric dipole moment

    SciTech Connect

    Afnan, I. R.; Gibson, B. F.

    2010-12-15

    Background: Direct measurement of the electric dipole moment (EDM) of the neutron is in the future; measurement of a nuclear EDM may well come first. The deuteron is one nucleus for which exact model calculations are feasible. Purpose: We explore the model dependence of deuteron EDM calculations. Methods: Using a separable potential formulation of the Hamiltonian, we examine the sensitivity of the deuteron EDM to variation in the nucleon-nucleon interaction. We write the EDM as the sum of two terms, the first depending on the target wave function with plane-wave intermediate states, and the second depending on intermediate multiple scattering in the {sup 3}P{sub 1} channel, the latter being sensitive to the off-shell behavior of the {sup 3}P{sub 1} amplitude. Results: We compare the full calculation with the plane-wave approximation result, examine the tensor force contribution to the model results, and explore the effect of short-range repulsion found in realistic, contemporary potential models of the deuteron. Conclusions: Because one-pion exchange dominates the EDM calculation, separable potential model calculations will provide an adequate description of the {sup 2}H EDM until such time as a measurement better than 10% is obtained.

  11. Electron paramagnetic resonance spectra and structures of Cu(C sub 2 H sub 4 ), Cu(C sub 2 H sub 4 ) sub 2 , and Cu(C sub 2 H sub 4 ) sub 3 in hydrocarbon matrices

    SciTech Connect

    Howard, J.A.; Joly, H.A.; Mile, B. )

    1990-02-22

    Two mononuclear {pi}-complexes, Cu(C{sub 2}H{sub 4}) and Cu(C{sub 2}H{sub 4}){sub 2}, have been positively identified by EPR spectroscopy from reaction of Cu atoms and ethylene at 77 K in inert hydrocarbon matrices on a rotating cryostat. The spectra of these copper(O) complexes are consistent with dative bonding for both species and with a C{sub 2v} structure for Cu(C{sub 2}H{sub 4}) and a D{sub 2h} structure for Cu(C{sub 2}H{sub 4}){sub 2}. Spectra of Cu({sup 13}CH{sub 2}CH{sub 2}) and Cu({sup 13}CH{sub 2}CH{sub 2}){sub 2} are consistent with these assignments. A third complex is formed in both adamantane and cyclohexane that could be Cu(C{sub 2}H{sub 4}){sub 2} with a structure other than D{sub 2h} but is more likely to be the mononuclear trisligand complex Cu(C{sub 2}H{sub 4}){sub 3} with a D{sub 3h} structure. In the absence of a well-resolved isotropic spectrum of Cu({sup 13}CH{sub 2}CH{sub 2}){sub 3}, this assignment must however be taken as tentative.

  12. Scattering cross sections for electrons in C2 H2F4 and its mixtures with Ar from measured transport coefficients

    NASA Astrophysics Data System (ADS)

    Šašić, Olivera; Dupljanin, Snježana; de Urquijo, Jaime; Petrović, Zoran Lj

    2013-08-01

    Previous measurements of the drift velocities, W, and the density-normalized effective ionization (multiplication) coefficients (ionization minus attachment), (α - η)/N, measured in C2H2F4 (1,1,1,2 tetrafluoroethane) and in C2H2F4-Ar mixtures have been analysed with a standard swarm procedure. As a result of this analysis a set of electron collision cross sections for the C2H2F4 molecule has been obtained. This set has been further used to calculate other transport parameters such as the characteristic energies and rate coefficients for individual processes.

  13. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface.

    PubMed

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H

    2016-05-21

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values. PMID:27208951

  14. Theoretical study of the C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1991-01-01

    The successive C-H bond dissociation energies of CH4, C2H2, C2H4, and H2C2O (ketene) are determined using large-basis sets and a high level of correlation treatment. For CH4, C2H2, and C2H4 the computed values are in excellent agreement with experiment. Using these results, the values 107.9 + or - 2.0 and 96.7 + or - 2.0 kcal/mol are recommended for the C-H bond dissociation energies of H2C2O and HC2O, respectively.

  15. Full-dimensional quantum dynamics study of the H2 + C2H → H + C2H2 reaction on an ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Chen, Liuyang; Shao, Kejie; Chen, Jun; Yang, Minghui; Zhang, Dong H.

    2016-05-01

    This work performs a time-dependent wavepacket study of the H2 + C2H → H + C2H2 reaction on a new ab initio potential energy surface (PES). The PES is constructed using neural network method based on 68 478 geometries with energies calculated at UCCSD(T)-F12a/aug-cc-pVTZ level and covers H2 + C2H↔H + C2H2, H + C2H2 → HCCH2, and HCCH2 radial isomerization reaction regions. The reaction dynamics of H2 + C2H → H + C2H2 are investigated using full-dimensional quantum dynamics method. The initial-state selected reaction probabilities are calculated for reactants in eight vibrational states. The calculated results showed that the H2 vibrational excitation predominantly enhances the reactivity while the excitation of bending mode of C2H slightly inhibits the reaction. The excitations of two stretching modes of C2H molecule have negligible effect on the reactivity. The integral cross section is calculated with J-shift approximation and the mode selectivity in this reaction is discussed. The rate constants over 200-2000 K are calculated and agree well with the experimental measured values.

  16. Ion-neutral reaction of the C2H2N+ cation with C2H2: An experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Fathi, P.; Geppert, W. D.; Kaiser, A.; Ascenzi, D.

    2016-03-01

    The ion-neutral reactions of the C2H2N+ cation with C2H2 have been investigated using a Guided Ion Beam Mass Spectrometer (GIB-MS). The following ionic products were observed: CH3+, C2H2+, C2H3+, HNC+ /HCN+ , HCNH+, C3H+ , C2N+ , C3H3+, HCCN+ and C4H2N+ . Theoretical calculations have been carried out to propose reaction pathways leading to the observed products. These processes are of relevance for the generation of long chain nitrogen-containing species and they may be of interest for the chemistry of Titan's ionosphere or circumstellar envelopes.

  17. Herman-Wallis factors in the C2H2nu5 infrared fundamental near 14 microns

    NASA Technical Reports Server (NTRS)

    Maguire, William C.; Hillman, John J.; Weber, Mark; Blass, William E.

    1991-01-01

    The presence of acetylene has been confirmed for some time in the atmospheres of the outer planets Jupiter, Saturn, Neptune, and Saturn's satellite Titan. For these atmospheres, the determination of C2H2 abundances using its strong nu5 fundamental requires laboratory line position and intensity measurements. The 1-m Fourier transform spectrometer at McMath solar telescope of Kitt Peak National Observatory was used to measure C2H2 at an unapodized spectral resolution of 0.0025/cm. Synthetic spectra are generated by convolving a Voigt line shape with an instrument function and varying intensity parameters by means of a nonlinear least squares technique. Intensities of 37 nu5 lines spanning P18 through R20 were measured using 0.123 torr of gas in a 1-cm cell. A Herman-Wallis intensity correction parameter of 1.3(4) x 10 to the -3rd has been derived using a least squares linear fit.

  18. High/variable mixture ratio O2/H2 engine

    NASA Technical Reports Server (NTRS)

    Adams, A.; Parsley, R. C.

    1988-01-01

    Vehicle/engine analysis studies have identified the High/Dual Mixture Ratio O2/H2 Engine cycle as a leading candidate for an advanced Single Stage to Orbit (SSTO) propulsion system. This cycle is designed to allow operation at a higher than normal O/F ratio of 12 during liftoff and then transition to a more optimum O/F ratio of 6 at altitude. While operation at high mixture ratios lowers specific impulse, the resultant high propellant bulk density and high power density combine to minimize the influence of atmospheric drag and low altitude gravitational forces. Transition to a lower mixture ratio at altitude then provides improved specific impulse relative to a single mixture ratio engine that must select a mixture ratio that is balanced for both low and high altitude operation. This combination of increased altitude specific impulse and high propellant bulk density more than offsets the compromised low altitude performance and results in an overall mission benefit. Two areas of technical concern relative to the execution of this dual mixture ratio cycle concept are addressed. First, actions required to transition from high to low mixture ratio are examined, including an assessment of the main chamber environment as the main chamber mixture ratio passes through stoichiometric. Secondly, two approaches to meet a requirement for high turbine power at high mixture ratio condition are examined. One approach uses high turbine temperature to produce the power and requires cooled turbines. The other approach incorporates an oxidizer-rich preburner to increase turbine work capability via increased turbine mass flow.

  19. Electron capture processes in Li2+ + H collisions

    NASA Astrophysics Data System (ADS)

    Yan, Ling Ling; Liu, Ling; Wang, Jian Guo; Janev, Ratko K.; Buenker, Robert J.

    2015-01-01

    The electron capture processes in Li2 + + H collisions have been investigated by using the quantum-mechanical molecular-orbital close-coupling method and the two-center atomic-orbital close-coupling method in the energy ranges of 10-8-10 keV/u and 0.1-300 keV/u, respectively. The capture to singlet and triplet systems of states of Li+(1 s,n l 2S + 1L) is considered separately. Total, n,S-resolved and n,l,S-resolved electron capture cross sections are calculated and compared with the results of available experimental and theoretical studies. The present calculations show that the n = 2 shell of Li+ is the main capture channel for all energies considered in both the singlet and triplet case. While for collision energies E> 5 keV/u, the cross sections for capture to the n = 2 manifold are of the same order of magnitude for both the singlet and triplet states (with the 2 p capture cross section being dominant), for energies below ~5 keV/u the cross sections for capture to the n = 2 triplet manifold is significantly (more than three orders of magnitude at 0.1 keV/u) larger than that for capture to the n = 2 singlet manifold of states (with the 2 s capture cross section being dominant). The capture dynamics at low collision energies is discussed in considerable detail, revealing the important role of rotational couplings in population of l> 0 capture states. The elastic scattering processes have been studied as well in the energy range of 10-8-1 keV/u. The calculated elastic scattering cross section is much larger than the electron capture cross section in both the singlet and triplet case. However, as the collision energy increases, the difference between the elastic and electron capture cross sections decreases rapidly.

  20. Reactions of C{sub 2}H{sub 5} radicals with O, O{sub 3}, and NO{sub 3}: Decomposition pathways of the intermediate C{sub 2}H{sub 5}O radical

    SciTech Connect

    Hoyermann, K.; Seeba, J.; Olzmann, M.; Viskolcz

    1999-07-22

    Alkoxy radicals are important species in the atmospheric degradation of hydrocarbons as well as in combustion processes. Additionally, they play a crucial role in the pyrolysis of oxygen-containing hydrocarbons. The reactions of C{sub 2}H{sub 5} with O, O{sub 3}, and NO{sub 3} have been investigated in a discharge flow reactor at room temperature and pressures between 1 and 3 mbar. The reaction products were detected by mass spectrometry with electron-impact ionization. The product pattern observed is explained in terms of the decomposition of an intermediately formed, chemically activated ethoxy radical. It is shown that, with this assumption, the experimentally determined branching ratios of the different product channels can be reproduced nearly quantitatively by RRKM calculations based on ab initio results for the stationary points of the potential energy surface of C{sub 2}H{sub 5}O. For C{sub 2}H{sub 5} + O and C{sub 2}H{sub 5} + O{sub 3}, the existence of an additional, parallel channel leading to OH has to be assumed.. High-pressure Arrhenius parameters for the unimolecular reactions of the ethoxy radical are given and discussed.

  1. Ab initio and RRKM calculations for multichannel rate constants of the C{sub 2}H{sub 3}+O{sub 2} reaction

    SciTech Connect

    Mebel, A.M.; Diau, E.W.G.; Lin, M.C.; Morokuma, K.

    1996-10-09

    A potential energy surface for the reaction of vinyl radical with molecular oxygen has been studied using the ab initio G2M(RCC, MP2) method. The most favorable reaction pathway leading to the major CHO+CH{sub 2}O products is described. The C{sub 2}H{sub 3}O+O products can be formed by elimination of the oxygen atom from C{sub 2}H{sub 3}OO via TS 23, which is by 7.8 kcal/mol lower in energy than the reactants, but by 6.5 kcal/mol higher than TS 9`. The hydrogen migration in 1` gives rise to another significant product channel: C{sub 2}H{sub 3}+O{sub 2} {yields} 1` {yields} TS 25` {yields} C{sub 2}H{sub 2}+O{sub 2}H, with TS 25` lying below C{sub 2}H{sub 3}+O{sub 2} by 3.5 kcal/mol. Multichannel RRKM calculations have been carried out for the total and individual rate constants for various channels using the G2M(RCC, MP2) energetics and molecular parameters of the intermediates and transition states. The computed low pressure reaction rate constant is in quantitative agreement with experiment. At atmospheric pressure, the title reaction is dominated by the stabilization of vinylperoxy radical C{sub 2}H{sub 3}OO at room temperature. In the 500-900 K temperature range, the CHO+CH{sub 2}O channel has the highest rate constant, and at T >= 900 K, C{sub 2}H{sub 3}O+O are the major products. At very high temperatures, the channel producing C{sub 2}H{sub 2} + O{sub 2}H becomes competitive. 15 refs., 3 figs., 4 tabs.

  2. An ignored but most favorable channel for NCO +C2H2 reaction

    NASA Astrophysics Data System (ADS)

    Xie, Hong-bin; Wang, Jian; Zhang, Shao-wen; Ding, Yi-hong; Sun, Chia-chung

    2006-09-01

    The NCO +C2H2 reaction has been considered as a prototype for understanding the chemical reactivity of the isocyanate radical towards unsaturated hydrocarbons in fuel-rich combustion. It has also been proposed to provide an effective route for formation of oxazole-containing compounds in organic synthesis, and might have potential applications in interstellar processes. Unfortunately, this reaction has met mechanistic controversy both between experiments and between experiments and theoretical calculations. In this paper, detailed theoretical investigations at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-31G(d), B3LYP /6-311++G(d,p), quadratic configuration interaction with single and double excitations QCISD /6-31G(d), and Gaussian-3 levels are performed for the NCO +C2H2 reaction, covering various entrance, isomerization, and decomposition channels. Also, the highly cost-expensive coupled-cluster theory including single and double excitations and perturbative inclusion of triple excitations CCSD(T)/aug-cc-pVTZ single-point energy calculation is performed for the geometries obtained at the Becke's three parameter Lee-Yang-Parr-B3LYP /6-311++G(d,p) level. A previously ignored yet most favorable channel via a four-membered ring intermediate with allyl radical character is found. However, formation of P3 H +HCCNCO and the five-membered ring channel predicted by previous experimental and theoretical studies is kinetically much less competitive. With the new channel, master equation rate constant calculations over a wide range of temperatures (298-1500K) and pressures (10-560Torr) show that the predicted total rate constants exhibit a positive-temperature dependence and no distinct pressure dependence effect. This is in qualitative agreement with available experimental results. Under the experimental conditions, the predicted values are about 50% lower than the latest experimental results. Also, the branching ratio variations of the fragments P2 HCN +HCCO and P5

  3. A theoretical study of the CH[sub 3]+C[sub 2]H[sub 2] reaction

    SciTech Connect

    Diau, E.W.; Lin, M.C. ); Melius, C.F. )

    1994-09-01

    The rate constants for the formation of various products in the CH[sub 3]+C[sub 2]H[sub 2] reaction have been computed by multichannel RRKM calculations using the molecular and transition-state parameters predicted by the BAC-MP4 method. The results of the calculations agree quantitatively with experimental data obtained under varying conditions: [ital T]=300--2200 K, [ital P]=30--2500 Torr. At low temperatures ([ital T][lt]1300 K), the CH[sub 3]+C[sub 2]H[sub 2] reaction is dominated by the addition-stabilization process producing CH[sub 3]C[sub 2]H[sub 2]. Under high-temperature ([ital T][gt]1400 K) and atmospheric-pressure conditions, the reaction occurs primarily by the CH[sub 3]-for-H displacement process producing CH[sub 3]C[sub 2]H, a likely source of the C[sub 3]H[sub 3] radical (which has recently been shown to be a key precursor of C[sub 6]H[sub 6] in hydrocarbon combustion reactions).

  4. The role of multifunctional kinetics during early-stage silicon hydride pyrolysis: reactivity of Si2H2 isomers with SiH4 and Si2H6.

    PubMed

    Adamczyk, Andrew J; Broadbelt, Linda J

    2011-03-24

    Kinetic parameters for the dominant pathways during the addition of the four Si(2)H(2) isomers, i.e., trans-HSiSiH, SiSiH(2), Si(H)SiH, and Si(H(2))Si, to monosilane, SiH(4), and disilane, Si(2)H(6), have been calculated using G3//B3LYP, statistical thermodynamics, conventional and variational transition state theory, and internal rotation corrections. The direct addition products of the multifunctional Si(2)H(2) isomers were monofunctional substituted silylenes, hydrogen-bridged species, and silenes. During addition to monosilane and disilane, the SiSiH(2) isomer was found to be most reactive over the temperature range of 800 to 1200 K. Revised parameters for the Evans-Polanyi correlation and a representative pre-exponential factor for multifunctional silicon hydride addition and elimination reaction families under pyrolysis conditions were regressed from the reactions in this study. This revised kinetic correlation was found to capture the activation energies and rate coefficients better than the current literature methods. PMID:21361329

  5. Theoretical study of the radiative capture reactions {sup 2}H(n,{gamma}){sup 3}H and {sup 2}H(p,{gamma}){sup 3}He at low energies

    SciTech Connect

    M. Viviani; R. Schiavilla; A. Kievsky

    1996-02-01

    Correlated Hyperspherical Harmonics wave functions with {Delta}-isobar admixtures obtained from realistic interactions are used to study the thermal neutron radiative capture on deuterium, and the {sup 2}H({rvec p},{gamma}){sup 3}He and p({rvec d},{gamma}){sup 3}He reactions in the center of mass energy range 0-100 keV. The nuclear electromagnetic current includes one and two-body components. Results for the {sup 2}H({rvec d},{gamma}){sup 3}H cross section and photon polarization parameter, as well as for the energy dependence of the astrophysical factor and angular distributions of the differential cross section, vector and tensor analyzing powers, and photon linear polarization coefficient of the {sup 2}H({rvec p},{gamma}){sup 3}He and p({rvec d},{gamma}){sup 3}He reactions are reported. Large effects due to two-body currents, in particular the long-range ones associated with the tensor component of the nucleon-nucleon interaction, are observed in the photon polarization parameter and vector analyzing power. Good, quantitative agreement between theory and experiment is found for all observables, with the exception of the vector analyzing power for which the calculated values underestimate the data by about 30%.

  6. Comparison of one-particle basis set extrapolation to explicitly correlated methods for the calculation of accurate quartic force fields, vibrational frequencies, and spectroscopic constants: application to H2O, N2H+, NO2+, and C2H2.

    PubMed

    Huang, Xinchuan; Valeev, Edward F; Lee, Timothy J

    2010-12-28

    One-particle basis set extrapolation is compared with one of the new R12 methods for computing highly accurate quartic force fields (QFFs) and spectroscopic data, including molecular structures, rotational constants, and vibrational frequencies for the H(2)O, N(2)H(+), NO(2)(+), and C(2)H(2) molecules. In general, agreement between the spectroscopic data computed from the best R12 and basis set extrapolation methods is very good with the exception of a few parameters for N(2)H(+) where it is concluded that basis set extrapolation is still preferred. The differences for H(2)O and NO(2)(+) are small and it is concluded that the QFFs from both approaches are more or less equivalent in accuracy. For C(2)H(2), however, a known one-particle basis set deficiency for C-C multiple bonds significantly degrades the quality of results obtained from basis set extrapolation and in this case the R12 approach is clearly preferred over one-particle basis set extrapolation. The R12 approach used in the present study was modified in order to obtain high precision electronic energies, which are needed when computing a QFF. We also investigated including core-correlation explicitly in the R12 calculations, but conclude that current approaches are lacking. Hence core-correlation is computed as a correction using conventional methods. Considering the results for all four molecules, it is concluded that R12 methods will soon replace basis set extrapolation approaches for high accuracy electronic structure applications such as computing QFFs and spectroscopic data for comparison to high-resolution laboratory or astronomical observations, provided one uses a robust R12 method as we have done here. The specific R12 method used in the present study, CCSD(T)(R12), incorporated a reformulation of one intermediate matrix in order to attain machine precision in the electronic energies. Final QFFs for N(2)H(+) and NO(2)(+) were computed, including basis set extrapolation, core-correlation, scalar

  7. Estimated critical conditions for UO[sub 2]F[sub 2]--H[sub 2]O systems in fully water-reflected spherical geometry

    SciTech Connect

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO[sub 2]F[sub 2]-H[sub 2]O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO[sub 2]F[sub 2]-H[sub 2]O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k[sub [infinity

  8. Effect of metformin therapy on 2-h post-glucose insulin levels in patients of polycystic ovarian syndrome

    PubMed Central

    Saxena, Pikee; Prakash, Anupam; Nigam, Aruna

    2010-01-01

    AIMS: To evaluate if 2-h post glucose insulin level is an effective tool to monitor insulin resistance in response to metformin therapy, in infertile women with polycystic ovarian syndrome (PCOS). SETTINGS AND DESIGN: This prospective observational study was carried out in a tertiary care infertility clinic. MATERIALS AND METHODS: 40 women with PCOS were categorized as having insulin resistance if fasting or 2-h post glucose insulin levels were >25 or >41μU/ml respectively. Post glucose insulin was compared before and after six months of metformin therapy along with other clinical, hormonal and metabolic parameters by using McNemar and the Student’s t-test. RESULTS: Fasting insulin was elevated in 4 (10%) and post-load insulin in 34 (85%) patients; after metformin therapy respective values were 2 (5%) and 16 (40%). Metformin therapy reduced post glucose insulin levels (P<0.001), improved the regularity of periods (P<0.001) and resulted in reduction of LH levels (P<0.001), total testosterone (P<0.001) and mean Body mass index (BMI) (P=0.047). Metformin therapy did not alter waist-hip ratio and fasting insulin levels. CONCLUSION: 2-h post glucose insulin level is an effective tool to monitor insulin resistance in PCOS patients and improves significantly after metformin therapy, similar to improvements observed in clinical, hormonal and metabolic parameters. PMID:21234175

  9. Terahertz Spectroscopy of the Bending Vibrations of Acetylene 12C2H2 and 12C2D2

    NASA Astrophysics Data System (ADS)

    Yu, Shanshan; Drouin, B.; Pearson, J.

    2009-12-01

    Several fundamental interstellar molecules, e.g., C2H2, CH4 and C3, are completely symmetric molecules and feature no permanent dipole moment and no pure rotation spectrum. As a result they have only previously been observed in the infrared. However, directly observing them with the rest of the molecular column especially when the source is spatially resolved would be very valuable in understanding chemical evolution. Vibrational difference bands provide a means to detect symmetric molecules with microwave precision using terahertz techniques. Herschel, SOFIA and ALMA have the potential to identify a number of vibrational difference bands of light symmetric species. This paper reports laboratory results on 12C2H2 and 12C2D2. Symmetric acetylene isotopologues have two bending modes, the trans bending and the cis bending. Their difference bands are allowed and occur in the microwave, terahertz, and far-infrared wavelengths, with band origins at 3500 GHz for 12C2H2 and 900 GHz for 12C2D2. Twenty 12C2H2 P branch high-J transitions and two hundred and fifty-one 12C2D2 P Q and R branch transitions have been measured in the 0.2 - 1.6 THz region with precision of 50 to 100 kHz. These lines were modeled together with prior data on the pure bending levels. Significantly improved molecular parameters were obtained for 12C2H2 and 12C2D2 with the combined data set, and new frequency and intensity predictions were made to support astrophysics applications. The research was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. S. Y. was supported by an appointment to the NASA Postdoctoral Program, administrated by Oak Ridge Associated Universities through a contract with NASA.

  10. Central nervous system dysfunction in a mouse model of FA2H deficiency.

    PubMed

    Potter, Kathleen A; Kern, Michael J; Fullbright, George; Bielawski, Jacek; Scherer, Steven S; Yum, Sabrina W; Li, Jian J; Cheng, Hua; Han, Xianlin; Venkata, Jagadish Kummetha; Khan, P Akbar Ali; Rohrer, Bärbel; Hama, Hiroko

    2011-07-01

    Fatty acid 2-hydroxylase (FA2H) is responsible for the synthesis of myelin galactolipids containing hydroxy fatty acid (hFA) as the N-acyl chain. Mutations in the FA2H gene cause leukodystrophy, spastic paraplegia, and neurodegeneration with brain iron accumulation. Using the Cre-lox system, we developed two types of mouse mutants, Fa2h(-/-) mice (Fa2h deleted in all cells by germline deletion) and Fa2h(flox/flox) Cnp1-Cre mice (Fa2h deleted only in oligodendrocytes and Schwann cells). We found significant demyelination, profound axonal loss, and abnormally enlarged axons in the CNS of Fa2h(-/-) mice at 12 months of age, while structure and function of peripheral nerves were largely unaffected. Fa2h(-/-) mice also exhibited histological and functional disruption in the cerebellum at 12 months of age. In a time course study, significant deterioration of cerebellar function was first detected at 7 months of age. Further behavioral assessments in water T-maze and Morris water maze tasks revealed significant deficits in spatial learning and memory at 4 months of age. These data suggest that various regions of the CNS are functionally compromised in young adult Fa2h(-/-) mice. The cerebellar deficits in 12-month-old Fa2h(flox/flox) Cnp1-Cre mice were indistinguishable from Fa2h(-/-) mice, indicating that these phenotypes likely stem from the lack of myelin hFA-galactolipids. In contrast, Fa2h(flox/flox) Cnp1-Cre mice did not show reduced performance in water maze tasks, indicating that oligodendrocytes are not involved in the learning and memory deficits found in Fa2h(-/-) mice. These findings provide the first evidence that FA2H has an important function outside of oligodendrocytes in the CNS. PMID:21491498

  11. Environmental, trophic, and ecological factors influencing bone collagen δ2H

    NASA Astrophysics Data System (ADS)

    Topalov, Katarina; Schimmelmann, Arndt; David Polly, P.; Sauer, Peter E.; Lowry, Mark

    2013-06-01

    Organic deuterium/hydrogen stable isotope ratios (i.e., 2H/1H, expressed as δ2H value in ‰) in animal tissues are related to the 2H/1H in diet and ingested water. Bone collagen preserves the biochemical 2H/1H isotopic signal in the δ2H value of collagen's non-exchangeable hydrogen. Therefore, δ2H preserved in bone collagen has the potential to constrain environmental and trophic conditions, which is of interest to researchers studying of both living and fossil vertebrates. Our data examine the relationship of δ2H values of collagen with geographic variation in δ2H of meteoric waters, with local variations in the ecology and trophic level of species, and with the transition from mother's milk to adult diet. Based on 97 individuals from 22 marine and terrestrial vertebrates (predominately mammals), we found the relationships of collagen δ2H to both geographic variation in meteoric water δ2H (R2 = 0.55) and to δ15N in bone collagen (R2 = 0.17) statistically significant but weaker than previously reported. The second strongest control on collagen δ2H in our data is dietary, with nearly 50 percent of the variance in δ2H explained by trophic level (R2 = 0.47). Trophic level effects potentially confound the local meteoric signal if not held constant: herbivores tend to have the lowest δ2H values, omnivores have intermediate ones, and carnivores have the highest values. Body size (most likely related to mass-specific metabolic rates) has a strong influence on collagen δ2H (R2 = 0.30), by causing greater sensitivity in smaller animals to seasonal climate variations and/or high evapotranspiration leading to 2H-enrichment in tissues. In marine mammals weaning produces a dramatic effect on collagen δ2H with adult values being universally higher than pup values (R2 = 0.79). Interestingly, the shift in δ15N at weaning is downward, even though normally hydrogen and nitrogen isotope ratios are positively correlated with one another in respect to trophic level. Our

  12. Probing the aromaticity of the [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6],+, and [(HtPa)3(μ2-H)6] clusters

    NASA Astrophysics Data System (ADS)

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-01

    In this study we report about the aromaticity of the prototypical [(HtAc)3(μ2-H)6], [(HtTh)3(μ2-H)6]+, and [(HtPa)3(μ2-H)6] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(HtAc)3(μ2-H)6] and [(HtTh)3(μ2-H)6]+ are non-aromatic whereas [(HtPa)3(μ2-H)6] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(HtPa)3(μ2-H)6] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index.

  13. Probing the aromaticity of the [(H(t)Ac)3(μ2-H)6], [(H(t)Th)3(μ2-H)6],(+), and [(H(t)Pa)3(μ2-H)6] clusters.

    PubMed

    Ramírez-Tagle, Rodrigo; Alvarado-Soto, Leonor; Arratia-Perez, Ramiro; Bast, Radovan; Alvarez-Thon, Luis

    2011-09-14

    In this study we report about the aromaticity of the prototypical [(H(t)Ac)(3)(μ(2)-H)(6)], [(H(t)Th)(3)(μ(2)-H)(6)](+), and [(H(t)Pa)(3)(μ(2)-H)(6)] clusters via two magnetic criteria: nucleus-independent chemical shifts (NICS) and the magnetically induced current density. All-electron density functional theory calculations were carried out using the two-component zeroth-order regular approach and the four-component Dirac-Coulomb Hamiltonian, including scalar and spin-orbit relativistic effects. Four-component current density maps and the integration of induced ring-current susceptibilities clearly show that the clusters [(H(t)Ac)(3)(μ(2)-H)(6)] and [(H(t)Th)(3)(μ(2)-H)(6)](+) are non-aromatic whereas [(H(t)Pa)(3)(μ(2)-H)(6)] is anti-aromatic. However, for the thorium cluster we find a discrepancy between the current density plots and the classification through the NICS index. Our results also demonstrate the increasing influence of f orbitals, on bonding and magnetic properties, with increasing atomic number in these clusters. We think that the enhanced electron mobility in [(H(t)Pa)(3)(μ(2)-H)(6)] is due the significant 5f character of its valence shell. Also the participation of f orbitals in bonding is the reason why the protactinium cluster has the shortest bond lengths of the three clusters. This study provides another example showing that the magnetically induced current density approach can give more reliable results than the NICS index. PMID:21932909

  14. The Microwave Spectrum of the HCOOCD_2H Species of Methyl Formate

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.; Huet, T. R.; Margulès, L.; Motiyenko, R.; Mollendal, H.

    2010-06-01

    Methyl formate is a non-rigid molecule displaying internal rotation of its methyl group. The microwave spectra of its normal and mono deuterated HCOOCH_2D species have already been studied and values for the tunneling splitting due to the internal rotation were determined. The normal species displays a 405 MHz A/E splitting, the mono deuterated one, a smaller 84.76 MHz A'/A'' splitting. For the bideuterated species HCOOCD_2H, the value of this splitting is not known as its microwave spectrum has not been studied yet. In this paper experimental and theoretical investigations of the microwave spectrum of HCOOCD_2H are presented. More than 9000 transitions were measured with a submillimeter wave spectrometer. About 20 lines were recorded with a molecular beam spectrometer. Like for the mono deuterated species,^c depending on the location of the only hydrogen atom of the methyl group, two configurations arise. The C_s-symmetry H-in plane configuration displays a rigid rotator spectrum and its data was analyzed using a Watson-type Hamiltonian. The C_1-symmetry H-out of plane configuration undergoes the large amplitude internal rotation. Its data was analyzed using the so called water dimer formalism which allowed us to accurately reproduce the observed frequencies and to obtain the value of the tunneling splitting as well as the parameters involved in its rotational dependence. The hyperfine structure due to quadrupole coupling at the two deuterium atoms was also analyzed. Unexpectedly, for the H-out of plane configuration, the observed hyperfine patterns are neither those expected for two equivalent deuterium atoms nor those of a rigid molecule. Ilyushin, Kryvda, and Alekseev, J. Mol. Spec. 255 (2009) 32. Margulès, Coudert, Mollendal, Guillemin, Huet, and Janeckovà, J. Mol. Spec. 254 (2009) 55. Hougen, J. Mol. Spec. 114 (1985) 395; and Coudert and Hougen, J. Mol. Spec. 130 (1988) 86.

  15. Persistence of singlet fluctuations in the coupled spin tetrahedra system Cu2Te2O5Br2 revealed by high-field magnetization, 79Br NQR, and 125Te NMR

    NASA Astrophysics Data System (ADS)

    Baek, S.-H.; Choi, K.-Y.; Berger, H.; Büchner, B.; Grafe, H.-J.

    2012-11-01

    We present high-field magnetization and 79Br nuclear quadrupole resonance (NQR) and 125Te nuclear magnetic resonance (NMR) studies in the weakly coupled Cu2+ (S=1/2) tetrahedral system Cu2Te2O5Br2. The field-induced level crossing effects were observed by the magnetization measurements in a long-ranged magnetically ordered state which was confirmed by a strong divergence of the spin-lattice relaxation rate T1-1 at T0=13.5 K. In the paramagnetic state, T1-1 reveals an effective singlet-triplet spin gap much larger than that observed by static bulk measurements. Our results imply that the inter- and the intratetrahedral interactions compete, but at the same time they cooperate strengthening effectively the local intratetrahedral exchange couplings. We discuss that the unusual feature originates from the frustrated intertetrahedral interactions.

  16. Strong enhancement of superconductivity at high pressures within the charge-density-wave states of 2 H -TaS2 and 2 H -TaSe2

    NASA Astrophysics Data System (ADS)

    Freitas, D. C.; Rodière, P.; Osorio, M. R.; Navarro-Moratalla, E.; Nemes, N. M.; Tissen, V. G.; Cario, L.; Coronado, E.; García-Hernández, M.; Vieira, S.; Núñez-Regueiro, M.; Suderow, H.

    2016-05-01

    We present measurements of the superconducting and charge-density-wave (CDW) critical temperatures (Tc and TCDW) as a function of pressure in the transition metal dichalchogenides 2 H -TaSe2 and 2 H -TaS2 . Resistance and susceptibility measurements show that Tc increases from temperatures below 1 K up to 8.5 K at 9.5 GPa in 2 H -TaS2 and 8.2 K at 23 GPa in 2 H -TaSe2 . We observe a kink in the pressure dependence of TCDW at about 4 GPa that we attribute to the lock-in transition from incommensurate CDW to commensurate CDW. Above this pressure, the commensurate TCDW slowly decreases, coexisting with superconductivity within our full pressure range.

  17. The role of isovalency in the reactions of the cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H) radicals with unsaturated hydrocarbons acetylene (C2H2) and ethylene (C2H4).

    PubMed

    Parker, D S N; Mebel, A M; Kaiser, R I

    2014-04-21

    The classification of chemical reactions based on shared characteristics is at the heart of the chemical sciences, and is well exemplified by Langmuir's concept of isovalency, in which 'two molecular entities with the same number of valence electrons have similar chemistries'. Within this account we further investigate the ramifications of the isovalency of four radicals with the same X(2)Σ(+) electronic structure - cyano (CN), boron monoxide (BO), silicon nitride (SiN), and ethynyl (C2H), and their reactions with simple prototype hydrocarbons acetylene (C2H2) and ethylene (C2H4). The fact that these four reactants own the same X(2)Σ(+) electronic ground state should dictate the outcome of their reactions with prototypical hydrocarbons holding a carbon-carbon triple and double bond. However, we find that other factors come into play, namely, atomic radii, bonding orbital overlaps, and preferential location of the radical site. These doublet radical reactions with simple hydrocarbons play significant roles in extreme environments such as the interstellar medium and planetary atmospheres (CN, SiN and C2H), and combustion flames (C2H, BO). PMID:24418936

  18. Fabrication and tests of 3He and 2H targets for beam polarization measurement

    PubMed

    Naqvi; Aksoy; Nagadi; Al-Ohali; Kidwai; Fageeha

    2000-09-01

    3He and 2H targets were fabricated through implantation of 3He and 2H ions in 0.2-0.3 mm thick tantalum and titanium foils. The energy of 3He and 2H ions was 45-100 and 78 keV, respectively. Ions beams with typical current of 90-300 microA were used for implantation. Stability tests of 3He and 2H targets were carried out by monitoring the yield of 3He(d, p)4He and 2H(d, p)3H reactions. For the 3He target, the reaction yield was stable for both tantalum and titanium foils but the most stabilized maximum yield was observed for the 100 keV tantalum target. In the case of 2H targets, the yield increased with increasing total dose implanted on the target. PMID:10972150

  19. Structure, phase transitions, dielectric and spectroscopic studies of the 2-aminopyrimidinium salts: [(2-NH 2C 4N 2H 3) 2H][ClO 4] and [2-NH 2C 4N 2H 4][BF 4

    NASA Astrophysics Data System (ADS)

    Czupiński, O.; Wojtaś, M.; Ciunik, Z.; Jakubas, R.

    2006-01-01

    Crystal structure of the 2-aminopyrimidinium derivatives: [(2-NH 2C 4N 2H 3) 2H][ClO 4] (I) and [2-NH 2C 4N 2H 4][BF 4] (II) has been determined at 100 K (I) and 293 K (II) by means of single crystal X-ray diffraction as monoclinic space group, P2/c and P2/n, respectively. The asymmetric part of the unit cell of (I) contains two symmetry independent 2-aminopyrimidine forming one dimeric cation and one disordered perchlorate anion. The structure of (II) consists of 2-aminopyrimidinium cation, [2-NH 2C 4N 2H 4] +, protonated at a pyrimidine ring-N atom and [BF 4] - anion. Differential scanning calorimetry (DSC) on perchlorate derivative ( 1:1), [2-NH 2C 4N 2H 3][ClO 4] (III)—being isomorphic to tetrafluoroborate one (I) at room temperature, reveals two phase transitions of first order: at 250/275 K and 390/410 K (cooling-heating, respectively), whereas the analog (II) only one transition at high temperatures—343/385 K. The dielectric studies in the frequency range 75 kHz - 10 MHz disclose relaxation process at high temperatures in salt (I). Infrared spectra of polycrystalline [2-NH 2C 4N 2H 4][BF 4] have been studied in the temperature range 300-420 K. Substantial changes in the temperature evolution of frequencies of internal modes of the 2-aminopyrimidinium cations and [BF 4] - anions near 390 K are due to the variations in the motion of both moieties and hydrogen bond configuration. The experimental studies indicate that all phase transitions taking place in studied 2-aminopyrimidinium derivatives are classified as an order-disorder.

  20. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH, and H2CO total columns measured in the Canadian High Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2013-12-01

    the Northern Hemisphere, attributed to fossil fuel emission decrease. The importance of poleward transport on the atmospheric budgets of HCN and C2H2 is highlighted. Columns and variabilities of CH3OH, and HCOOH at PEARL are comparable to previous measurements performed at other remote sites. However, the small columns of H2CO in early May might reflect its large atmospheric variability, and/or the effect of the updated spectroscopic parameters used in our retrievals. Overall, emissions from biomass burning contribute to the day-to-day variabilities of the seven tropospheric species observed at Eureka.

  1. Five years of CO, HCN, C2H6, C2H2, CH3OH, HCOOH and H2CO total columns measured in the Canadian high Arctic

    NASA Astrophysics Data System (ADS)

    Viatte, C.; Strong, K.; Walker, K. A.; Drummond, J. R.

    2014-06-01

    Northern Hemisphere, attributed to fossil fuel emission decrease. The importance of poleward transport for the atmospheric budgets of HCN and C2H2 is highlighted. Columns and variabilities of CH3OH and HCOOH at PEARL are comparable to previous measurements performed at other remote sites. However, the small columns of H2CO in early May might reflect its large atmospheric variability and/or the effect of the updated spectroscopic parameters used in our retrievals. Overall, emissions from biomass burning contribute to the day-to-day variabilities of the seven tropospheric species observed at Eureka.

  2. Chemical behavior of the gas-phase pentacoordinated carbonium ion, C2H+7

    NASA Astrophysics Data System (ADS)

    Heck, Albert J. R.; de Koning, Leo J.; Nibbering, Nico M. M.

    1992-09-01

    The uni- and bimolecular chemistry of C2H+7 ions have been studied in the gas phase using the methods of sector and Fourier transform ion cyclotron resonance mass spectrometry. Unimolecular decomposition of the C2H+7 ions predominantly shows the elimination of a hydrogen molecule which proceeds without a significant kinetic energy release. However, the elimination of a hydrogen molecule is found to suffer from a very large isotope effect, which has been rationalized by the difference in Gibbs free energy change for H2, HD and D2 loss from the various isotopomers of protonated ethane. In general, long-lived C2H+7 ions can be generated either by proton transfer to ethane, methyl cation transfer to methane or by association of C2H+5 and H2. Conversely, C2H+7 ions can react as a proton or a methyl cation donor, or eliminate an H2 molecule. In contrast to CH+5, C2H+7 displays an ambident chemical behavior, which shows a balanced competition between a proton and a methyl cation donor. Both the uni- and bimolecular reactivity of C2H+7 reveal that the proton accepted in an exothermic protonation of ethane randomizes with the original hydrogen atoms of ethane. This intramolecular randomization is found to be a very fast process which precedes decomposition of the metastable C2H+7 ions as well as the bimolecular processes of the long-lived C2H+7 ions.

  3. SNF2H promotes hepatocellular carcinoma proliferation by activating the Wnt/β-catenin signaling pathway

    PubMed Central

    Wang, Yanan; Qin, Juanxiu; Liu, Qian; Hong, Xufen; Li, Tianming; Zhu, Yuanjun; He, Lei; Zheng, Bing; Li, Min

    2016-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide and has an extremely poor prognosis. Surgical resection is always inapplicable to HCC patients diagnosed at an advanced tumor stage. The mechanisms underlying HCC cell proliferation remain obscure. In the present study, SWItch/sucrose nonfermentable catalytic subunit SNF2 (SNF2H) expression was tested in HCC tissues and Wnt/β-catenin pathway activation upon overexpression of SNF2H or knockdown of SNF2H expression was investigated in cultured HCC cells. It was demonstrated that SNF2H is a vital factor for HCC growth. The SNF2H expression level is increased in HCC tissues compared with paratumoral liver tissues. SNF2H promotes HCC cell proliferation and colony formation ability in vitro. SNF2H may increase the protein level of β-catenin and enhance its nuclear accumulation in HCC cells, thereby leading to the activation of the Wnt/β-catenin signaling pathway. In conclusion, the present results indicate that SNF2H plays a vital role in HCC cell growth, suggesting that SNF2H may be a promising therapeutic target for HCC treatment. PMID:27446433

  4. The SNF2H Chromatin Remodeling Enzyme Has Opposing Effects on Cytokine Gene Expression

    PubMed Central

    Precht, Patricia; Wurster, Andrea L.; Pazin, Michael J.

    2010-01-01

    Cytokine gene expression is a key control point in the function of the immune system. Cytokine gene regulation is linked to changes in chromatin structure; however, little is known about the remodeling enzymes mediating these changes. Here we investigated the role of the ATP-dependent chromatin remodeling enzyme SNF2H in mouse T cells; to date, SNF2H has not been investigated in T cells. We found that SNF2H repressed expression of IL-2 and other cytokines in activated cells. By contrast, SNF2H activated expression of IL-3. The ISWI components SNF2H and ACF1 bound to the tested loci, suggesting the regulation was direct. SNF2H decreased accessibility at some binding sites within the IL2 locus, and increased accessibility within some IL3 binding sites. The changes in gene expression positively correlated with accessibility changes, suggesting a simple model that accessibility enables transcription. We also found that loss of the ISWI ATPase SNF2H reduced binding to target genes and protein expression of ACF1, a binding partner for SNF2H, suggesting complex formation stabilized ACF1. Together, these findings reveal a direct role for SNF2H in both repression and activation of cytokine genes. PMID:20471682

  5. Synthesis and crystal structure of [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{center_dot}2H{sub 2}O

    SciTech Connect

    Serezhkina, L. B.; Vologzhanina, A. V.; Novikov, S. A.; Korlyukov, A. A.; Serezhkin, V. N.

    2011-03-15

    Crystals of UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)] {center_dot} 2H{sub 2}O are synthesized and their structure is studied by X-ray diffraction. The compound crystallizes in the triclinic crystal system. The unit cell parameters are as follows: a = 7.0834(10) Angstrom-Sign , b = 10.6358(14) Angstrom-Sign , c = 12.9539(17) Angstrom-Sign , {alpha} = 75.096(2) Degree-Sign , {beta} = 74.490(2) Degree-Sign , and {gamma} = 80.657(2) Degree-Sign ; V = 904.1(2) Angstrom-Sign {sup 3}, space group P1-bar, Z = 2, and R = 0.026. The structure is built of [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{sub 2} centrosymmetric dimers, which are linked into a framework by a system of hydrogen bonds involving inner-sphere and outer-sphere water molecules. The coordination number of the U(VI) atom is seven, and the coordination polyhedron is a pentagonal bipyramid with the oxygen atoms of the uranyl group, two chromate groups, two molecules of isonicotinic acid, and a water molecule at the vertices. The crystal chemical formula of the [UO{sub 2}CrO{sub 4}(C{sub 5}NH{sub 5}COO){sub 2}(H{sub 2}O)]{sub 2} dimer is represented as AB{sup 2}M{sub 3}{sup 1}, where AB{sup 2}M{sub 3}{sup 1}, where A = UO{sub 2}{sup 2+}, B{sup 2} = CrO{sub 4}{sup 2-}, and M{sup 1} = = C{sub 5}NH{sub 4}COOH and H{sub 2}O.

  6. Syntheses, crystal structures and vibrational spectra of KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=La, Nd, Sm, Eu, Gd, Dy)

    SciTech Connect

    Kazmierczak, Karolina; Hoeppe, Henning A.

    2010-09-15

    The potassium lanthanide double sulphates KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO{sub 4}){sub 2}.H{sub 2}O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P2{sub 1}/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) A, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO{sub 4}){sub 2}.H{sub 2}O adopts space group P3{sub 2}21 (Z=3, a=7.1490(5), c=13.2439(12) A, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO{sub 4}){sub 2}.H{sub 2}O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO{sub 4}){sub 2}.H{sub 2}O and the UV-vis reflection spectra of KEu(SO{sub 4}){sub 2}.H{sub 2}O and KNd(SO{sub 4}){sub 2}.H{sub 2}O are also reported. - Graphical abstract: The lanthanide potassium double sulphates exhibit an unexpected change in the coordination mode by a simple rotation of sulphate tetrahedron 2.

  7. Calculational and Experimental Investigations of the Pressure Effects on Radical - Radical Cross Combinations Reactions: C2H5 + C2H3

    NASA Technical Reports Server (NTRS)

    Fahr, Askar; Halpern, Joshua B.; Tardy, Dwight C.

    2007-01-01

    Pressure-dependent product yields have been experimentally determined for the cross-radical reaction C2H5 + C2H3. These results have been extended by calculations. It is shown that the chemically activated combination adduct, 1-C4H8*, is either stabilized by bimolecular collisions or subject to a variety of unimolecular reactions including cyclizations and decompositions. Therefore the "apparent" combination/disproportionation ratio exhibits a complex pressure dependence. The experimental studies were performed at 298 K and at selected pressures between about 4 Torr (0.5 kPa) and 760 Torr (101 kPa). Ethyl and vinyl radicals were simultaneously produced by 193 nm excimer laser photolysis of C2H5COC2H3 or photolysis of C2H3Br and C2H5COC2H5. Gas chromatograph/mass spectrometry/flame ionization detection (GC/MS/FID) were used to identify and quantify the final reaction products. The major combination reactions at pressures between 500 (66.5 kPa) and 760 Torr are (1c) C2H5 + C2H3 yields 1-butene, (2c) C2H5 + C2H5 yields n-butane, and (3c) C2H3 + C2H3 yields 1,3-butadiene. The major products of the disproportionation reactions are ethane, ethylene, and acetylene. At moderate and lower pressures, secondary products, including propene, propane, isobutene, 2-butene (cis and trans), 1-pentene, 1,4-pentadiene, and 1,5-hexadiene are also observed. Two isomers of C4H6, cyclobutene and/or 1,2-butadiene, were also among the likely products. The pressure-dependent yield of the cross-combination product, 1-butene, was compared to the yield of n-butane, the combination product of reaction (2c), which was found to be independent of pressure over the range of this study. The [ 1-C4H8]/[C4H10] ratio was reduced from approx.1.2 at 760 Torr (101 kPa) to approx.0.5 at 100 Torr (13.3 kPa) and approx.0.1 at pressures lower than about 5 Torr (approx.0.7 kPa). Electronic structure and RRKM calculations were used to simulate both unimolecular and bimolecular processes. The relative importance

  8. Exceptional point and degeneracy of the neutral heavy Higgs boson system H{sub 2}-H{sub 3}

    SciTech Connect

    Felix-Beltran, O.; Gomez-Bock, M.; Hernandez, E.; Mondragon, A.; Mondragon, M.

    2010-02-10

    We analyze the masses and mixings of the isolated doublet of neutral, heavy Higgs bosons, H{sub 2} and H{sub 3} of two Higgs doublet models with CP-violation. There is a set of Lagrangian parameter values for which the isolated doublet of mass eigenstates is degenerate. Associated with this singularity, the propagator of the mixing H{sub 2}-H{sub 3} neutral Higgs system has one double pole in the complex energy squared s-plane. This analysis suggests that a detailed study of the lineshape of this Higgs system may provide valuable information on the CP nature of the underlying theory.

  9. Solid-State 2H NMR Shows Equivalence of Dehydration and Osmotic Pressures in Lipid Membrane Deformation

    PubMed Central

    Mallikarjunaiah, K.J.; Leftin, Avigdor; Kinnun, Jacob J.; Justice, Matthew J.; Rogozea, Adriana L.; Petrache, Horia I.; Brown, Michael F.

    2011-01-01

    Lipid bilayers represent a fascinating class of biomaterials whose properties are altered by changes in pressure or temperature. Functions of cellular membranes can be affected by nonspecific lipid-protein interactions that depend on bilayer material properties. Here we address the changes in lipid bilayer structure induced by external pressure. Solid-state 2H NMR spectroscopy of phospholipid bilayers under osmotic stress allows structural fluctuations and deformation of membranes to be investigated. We highlight the results from NMR experiments utilizing pressure-based force techniques that control membrane structure and tension. Our 2H NMR results using both dehydration pressure (low water activity) and osmotic pressure (poly(ethylene glycol) as osmolyte) show that the segmental order parameters (SCD) of DMPC approach very large values of ≈0.35 in the liquid-crystalline state. The two stresses are thermodynamically equivalent, because the change in chemical potential when transferring water from the interlamellar space to the bulk water phase corresponds to the induced pressure. This theoretical equivalence is experimentally revealed by considering the solid-state 2H NMR spectrometer as a virtual osmometer. Moreover, we extend this approach to include the correspondence between osmotic pressure and hydrostatic pressure. Our results establish the magnitude of the pressures that lead to significant bilayer deformation including changes in area per lipid and volumetric bilayer thickness. We find that appreciable bilayer structural changes occur with osmotic pressures in the range of 10−100 atm or lower. This research demonstrates the applicability of solid-state 2H NMR spectroscopy together with bilayer stress techniques for investigating the mechanism of pressure sensitivity of membrane proteins. PMID:21190661

  10. 77 FR 74283 - Clearing Requirement Determination Under Section 2(h) of the CEA

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ...\\ Clearing Requirement Determination Under Section 2(h) of the CEA; Proposed Rule, 77 FR 47170 (Aug. 7, 2012... to Trade Under Section 2(h)(8) of the Commodity Exchange Act, 76 FR 77728 (Dec. 14, 2011). Clearing... FR 44464 (July 26, 2011); 17 CFR 39.5. The determinations and rules adopted in this release...

  11. MICROWAVE SPECTRA AND GEOMETRIES OF C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}

    NASA Astrophysics Data System (ADS)

    Stephens, Susanna L.; Tew, David Peter; Walker, Nick; Legon, Anthony

    2015-06-01

    A chirped-pulse Fourier transform microwave spectrometer has been used to measure the microwave spectra of both C2H_{2\\cdots AgI} and C2H_{4\\cdots AgI}. These complexes are generated via laser ablation at 532 nm of a silver surface in the presence of CF3I and either C2H_{2} or C2H_{4} and argon and are stabilized by a supersonic expansion. Rotational (A0, B0, C0) and centrifugal distortion constants (ΔJ and ΔJK) of each molecule have been determined as well the nuclear electric quadrupole coupling constants the iodine atom (χaa(I) and χbb-χcc(I)). The spectrum of each molecule is consistent with a C2v structure in which the metal atom interacts with the π-orbital of the ethene or ethyne molecule. Isotopic substitutions of atoms within the C2H_{2} or C2H_{4} subunits are in progress and in conjunction with high level ab initio calculations will allow for accurate determination of the geometry of each molecule. These to complexes are put in the context of the recently studied H2S\\cdots AgI, OC\\cdotsAgI, H3N\\cdots AgI and (CH3)_{3N\\cdots AgI}. S.Z. Riaz, S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, Chem. Phys. Let., 531, 1-12 (2012) S.L. Stephens, W. Mizukami, D.P. Tew, N.R. Walker, A.C. Legon, J. Chem. Phys., 136(6), 064306 (2012) D.M. Bittner, D.P. Zaleski, S.L. Stephens, N.R. Walker, A.C. Legon, Study in progress.

  12. The transcriptional regulator c2h2 accelerates mushroom formation in Agaricus bisporus.

    PubMed

    Pelkmans, Jordi F; Vos, Aurin M; Scholtmeijer, Karin; Hendrix, Ed; Baars, Johan J P; Gehrmann, Thies; Reinders, Marcel J T; Lugones, Luis G; Wösten, Han A B

    2016-08-01

    The Cys2His2 zinc finger protein gene c2h2 of Schizophyllum commune is involved in mushroom formation. Its inactivation results in a strain that is arrested at the stage of aggregate formation. In this study, the c2h2 orthologue of Agaricus bisporus was over-expressed in this white button mushroom forming basidiomycete using Agrobacterium-mediated transformation. Morphology, cap expansion rate, and total number and biomass of mushrooms were not affected by over-expression of c2h2. However, yield per day of the c2h2 over-expression strains peaked 1 day earlier. These data and expression analysis indicate that C2H2 impacts timing of mushroom formation at an early stage of development, making its encoding gene a target for breeding of commercial mushroom strains. PMID:27207144

  13. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2 H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1 H decoupling (HPPD) and 1 H- 2 H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2 H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2 H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1 H to 2 H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  14. Natural abundance high-resolution solid state 2 H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Aliev, Abil E.; Harris, Kenneth D. M.; Apperley, David C.

    1994-08-01

    We report for the first time an approach for natural abundance solid state 2H NMR spectroscopy involving magic angle sample spinning (MAS), high-power 1H decoupling (HPPD) and 1H- 2H cross polarization (CP). Taking tetrakis(trimethylsilyl)silane (TTMSS), adamantane, 1-chloroadamantane, hexamethylbenzene (HMB), 2,2-dimethyl-1,3-propanediol (DMPD) and 2-hydroxymethyl-2-methyl-1,3-propanediol (HMPD) as examples, it has been shown that the combination of HPPD and MAS can be applied readily to study rotator phase solids, allowing isotropic peaks arising from chemically inequivalent 2H nuclei to be resolved. For natural abundance samples of TTMSS and chloroadamantane, it has been shown that 2H CP/HPPD/MAS NMR experiments, involving polarization transfer from 1H to 2H, may provide considerable sensitivity enhancement in comparison with single pulse experiments.

  15. Bi(OTf)3-catalyzed addition of isocyanides to 2H-chromene acetals: an efficient pathway for accessing 2-carboxamide-2H-chromenes.

    PubMed

    Lyu, Longyun; Jin, Ming Yu; He, Qijie; Xie, Han; Bian, Zhaoxiang; Wang, Jun

    2016-09-14

    Bismuth triflate (Bi(OTf)3) is identified as an efficient catalyst for the direct addition of isocyanides to 2H-chromene acetals. The large scope of isocyanides and chromene acetals makes them suitable substrates in this catalytic system. By this synthetic strategy, a polyfunctional molecular scaffold, 2-carboxamide-2H-chromenes could be prepared efficiently in one step up to 95% yield. In addition, this efficient and practical protocol proceeded smoothly in the gram scale even when the catalytic loading was reduced to 2 mol%. PMID:27503764

  16. Hydrogen bridging in the compounds X2H (X=Al,Si,P,S)

    NASA Astrophysics Data System (ADS)

    Owens, Zachary T.; Larkin, Joseph D.; Schaefer, Henry F.

    2006-10-01

    X2H hydrides (X =Al, Si, P, and S) have been investigated using coupled cluster theory with single, double, and triple excitations, the latter incorporated as a perturbative correction [CCSD(T)]. These were performed utilizing a series of correlation-consistent basis sets augmented with diffuse functions (aug-cc-pVXZ, X =D, T, and Q). Al2H and Si2H are determined to have H-bridged C2v structures in their ground states: the Al2H ground state is of B12 symmetry with an Al-H-Al angle of 87.6°, and the Si2H ground state is of A12 symmetry with a Si-H-Si angle of 79.8°. However, P2H and S2H have nonbridged, bent Cs structures: the P2H ground state is of A'2 symmetry with a P-P-H angle of 97.0°, and the S2H ground state is of A'2 symmetry with a S-S-H angle of 93.2°. Ground state geometries, vibrational frequencies, and electron affinities have been computed at all levels of theory. Our CCSD(T)/aug-cc-pVQZ adiabatic electron affinity of 2.34eV for the Si2H radical is in excellent agreement with the photoelectron spectroscopy experiments of Xu et al. [J. Chem. Phys. 108, 7645 (1998)], where the electron affinity was determined to be 2.31±0.01eV.

  17. Modeling of collision-induced infrared absorption spectra of H2-H2 pairs in the fundamental band at temperatures from 20 to 300 K. [Planetary atmospheres

    SciTech Connect

    Borysow, A. )

    1991-08-01

    The 20-300 K free-free rotovibrational collision-induced absorption (RV CIA) spectra of H2-H2 pairs are presently obtained by a numerical method which, in addition to closely matching known CIA spectra of H2-H2, can reproduce the results of the quantum-mechanical computations to within a few percent. Since the spectral lineshape parameters are derivable by these means from the lowest three quantum-mechanical spectral moments, these outer-planet atmosphere-pertinent model spectra may be computed on even small computers. 35 refs.

  18. Importance of Tensor Asymmetry for the Analysis of 2H-NMR Spectra from Deuterated Aromatic Rings

    PubMed Central

    Pulay, Peter; Scherer, Erin M.; van der Wel, Patrick C. A.; Koeppe, Roger E.

    2008-01-01

    We have used ab initio calculations to compute all of the tensor elements of the electric field gradient for each carbon-deuterium bond in the ring of deuterated 3-methyl-indole. Previous analyses have ignored the smaller tensor elements perpendicular to principal component Vzz which is aligned with the C-2H bond (local bond z-axis). At each ring position, the smallest element Vxx is in the molecular plane and Vyy is normal to the plane of the ring. The asymmetry parameter η = (|Vyy|-|Vxx|)/|Vzz| ranges from 0.07 at C4 to 0.11 at C2. We used the perpendicular (off-bond) tensor elements, in concert with an improved understanding of the indole ring geometry1, to analyze prototype 2H-NMR spectra from well-oriented, hydrated peptide/lipid samples. For each of the 4 tryptophans of membrane-spanning gramicidin A (gA)2 channels, the inclusion of the perpendicular elements changes the deduced ring tilt by nearly 10° and increases the ring principal order parameter Szz for overall ‘wobble’ with respect to the membrane normal (molecular z-axis). With the improved analysis, the magnitude of Szz for the outermost indole rings of Trp13 and Trp15 is indistinguishable from that observed previously for backbone atoms (0.93 ± 0.03). For the Trp9 and Trp11 rings, which are slightly more buried within the membrane, Szz is slightly lower (0.86 ± 0.03). The results show that the perpendicular elements are important for the detailed analysis of 2H-NMR spectra from aromatic ring systems. PMID:16332101

  19. Synthesis of [.sup.13C] and [.sup.2H] substituted methacrylic acid, [.sup.13C] and [.sup.2H] substituted methyl methacrylate and/or related compounds

    DOEpatents

    Alvarez, Marc A.; Martinez, Rodolfo A.; Unkefer, Clifford J.

    2008-01-22

    The present invention is directed to labeled compounds of the formulae ##STR00001## wherein Q is selected from the group consisting of --S--, --S(.dbd.O)--, and --S(.dbd.O).sub.2--, Z is selected from the group consisting of 1-naphthyl, substituted 1-naphthyl, 2-naphthyl, substituted 2-naphthyl, and phenyl groups with the structure ##STR00002## wherein R.sub.1, R.sub.2, R.sub.3, R.sub.4 and R.sub.5 are each independently selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl, a halogen, and an amino group selected from the group consisting of NH.sub.2, NHR and NRR' where R and R' are each independently selected from the group consisting of a C.sub.1-C.sub.4 lower alkyl, an aryl, and an alkoxy group, and X is selected from the group consisting of hydrogen, a C.sub.1-C.sub.4 lower alkyl group, and a fully-deuterated C.sub.1-C.sub.4 lower alkyl group. The present invention is also directed to a process of preparing labeled compounds, e.g., process of preparing [.sup.13C]methacrylic acid by reacting a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13CH.sub.2)-- aryl sulfone precursor with .sup.13CHI to form a (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate, and, reacting the (CH.sub.3CH.sub.2O--.sup.13C(O)--.sup.13C(.sup.13CH.sub.3).sub.2)-- aryl sulfone intermediate with sodium hydroxide, followed by acid to form [.sup.13C]methacrylic acid. The present invention is further directed to a process of preparing [.sup.2H.sub.8]methyl methacrylate by reacting a (HOOC--C(C.sup.2H.sub.3).sub.2-- aryl sulfinyl intermediate with CD.sub.3I to form a (.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate, and heating the(.sup.2H.sub.3COOC--C(C.sup.2H.sub.3).sub.2)-- aryl sulfinyl intermediate at temperatures and for time sufficient to form [.sup.2H.sub.8]methyl methacrylate.

  20. Fluid resuscitation with O2 vs. non-O2 carriers after 2 h of hemorrhagic shock in conscious hamsters.

    PubMed

    Kerger, H; Tsai, A G; Saltzman, D J; Winslow, R M; Intaglietta, M

    1997-01-01

    Efficacy of a cell-free o-raffinose cross-linked and oligomerized hemoglobin (Hemo-link) solution in restoring macro- and microcirculatory conditions after 2 h of hemorrhagic shock (40 mmHg) was compared with conventional treatment with autologous whole blood, Ringer lactate (RL), and Dextran 70. Studies were conducted in the dorsal skinfold microcirculation of conscious hamsters. Initial infusion was equivalent to shed blood volume (SBV) for RL and 50% of SBV for remaining solutions. After 2 h all animals received blood at 50% of SBV. Vessel diameter, functional capillary density, microvascular red blood cell velocity, and flow were measured. Arteriolar, venular, and tissue PO2 were determined by phosphorescence decay. Systemic parameters included mean arterial blood pressure, heart rate, arterial blood gases, pH, and base excess. Autologous whole blood and Hemolink, but not Dextran 70 and RL, restored mean arterial blood pressure, systemic blood gas, and metabolic parameters. Tissue PO2 recovered to 40-50% with blood and Hemolink but remained significantly lower (10-15% of control) with Dextran 70 and RL. Initial volume replacement after shock with blood or Hemolink yields equivalent macro- and microhemodynamic improvements not attainable with non-O2-carrying plasma expanders. PMID:9038975

  1. Chromatin remodeling enzyme Snf2h regulates embryonic lens differentiation and denucleation.

    PubMed

    He, Shuying; Limi, Saima; McGreal, Rebecca S; Xie, Qing; Brennan, Lisa A; Kantorow, Wanda Lee; Kokavec, Juraj; Majumdar, Romit; Hou, Harry; Edelmann, Winfried; Liu, Wei; Ashery-Padan, Ruth; Zavadil, Jiri; Kantorow, Marc; Skoultchi, Arthur I; Stopka, Tomas; Cvekl, Ales

    2016-06-01

    Ocular lens morphogenesis is a model for investigating mechanisms of cellular differentiation, spatial and temporal gene expression control, and chromatin regulation. Brg1 (Smarca4) and Snf2h (Smarca5) are catalytic subunits of distinct ATP-dependent chromatin remodeling complexes implicated in transcriptional regulation. Previous studies have shown that Brg1 regulates both lens fiber cell differentiation and organized degradation of their nuclei (denucleation). Here, we employed a conditional Snf2h(flox) mouse model to probe the cellular and molecular mechanisms of lens formation. Depletion of Snf2h induces premature and expanded differentiation of lens precursor cells forming the lens vesicle, implicating Snf2h as a key regulator of lens vesicle polarity through spatial control of Prox1, Jag1, p27(Kip1) (Cdkn1b) and p57(Kip2) (Cdkn1c) gene expression. The abnormal Snf2h(-/-) fiber cells also retain their nuclei. RNA profiling of Snf2h(-/) (-) and Brg1(-/-) eyes revealed differences in multiple transcripts, including prominent downregulation of those encoding Hsf4 and DNase IIβ, which are implicated in the denucleation process. In summary, our data suggest that Snf2h is essential for the establishment of lens vesicle polarity, partitioning of prospective lens epithelial and fiber cell compartments, lens fiber cell differentiation, and lens fiber cell nuclear degradation. PMID:27246713

  2. Absorption of 3(2H)-furanones by human intestinal epithelial Caco-2 cells.

    PubMed

    Stadler, Nicole Christina; Somoza, Veronika; Schwab, Wilfried

    2009-05-13

    A number of 3(2H)-furanones are synthesized by fruits and have been found in cooked foodstuffs, where they impart flavor and odor because of their low perception thresholds. They show genotoxic properties in model studies but are also ranked among the antioxidants and anticarcinogens. This study examined the efficiency of intestinal absorption and metabolic conversion of 3(2H)-furanones by using Caco-2 cell monolayers as an intestinal epithelial cell model. The permeability of each agent was measured in both the apical to basal and basal to apical directions. 2,5-Dimethyl-4-methoxy-3(2H)-furanone (DMMF) showed the highest absorption rate in all experiments, while similar amounts of 4-hydroxy-2,5-dimethyl-3(2H)-furanone (HDMF), 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF), and 4-hydroxy-5-methyl-3(2H)-furanone (HMF) were taken up. HDMF-glucoside was almost not absorbed but was hydrolyzed to a small extent. The transport of 3(2H)-furanones could not be saturated even at levels of 500 microM and occurred in both directions. Because the uptake was only slightly reduced by apical hyperosmolarity, passive diffusion by paracellular transport is proposed. PMID:19338346

  3. A Ring of C2H in the Protoplanetary Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Forveille, Thierry; Oberg, Karin I.

    2015-01-01

    The circumstellar disk orbiting the nearby (D = 54 pc), ~8 Myr-old, ~0.8 Msun classical T Tauri star TW Hya represents a rich source of information concerning the chemical composition of a protoplanetary disk in its late evolutionary stages, just at or after the epoch of giant planet formation. Following up on the detection of strong mm-wave C2H (4-3) emission from this disk via an unbiased single-dish line survey (Kastner et al. 2014, ApJ, 793, 55), we have used the SMA to image C2H (3-2) at ~1.5" resolution. We find the C2H emission emanates from a relatively narrow ring of inner radius ~1" (~50 AU). We consider various interpretations of this striking, ring-like C2H emission morphology, including whether C2H might serve as a disk "snow line" marker (as is the case for N2H+ Qi et al. 2013, Science, 341, 630) and the possibility that C2H traces particularly efficient photodissociation of hydrocarbons and/or the photoevaporation of small, C-rich grains in this region of the disk.

  4. Direct measurements of rate constants for the reactions of CH3 radicals with C2H6, C2H4, and C2H2 at high temperatures.

    PubMed

    Peukert, S L; Labbe, N J; Sivaramakrishnan, R; Michael, J V

    2013-10-10

    The shock tube technique has been used to study the reactions CH3 + C2H6 → C2H4 + CH4 + H (1), CH3 + C2H4 → Products + H (2), and CH3 + C2H2 → Products + H (3). Biacetyl, (CH3CO)2, was used as a clean high temperature thermal source for CH3-radicals for all the three reactions studied in this work. For reaction 1, the experiments span a T-range of 1153 K ≤ T ≤ 1297 K, at P ~ 0.4 bar. The experiments on reaction 2 cover a T-range of 1176 K ≤ T ≤ 1366 K, at P ~ 1.0 bar, and those on reaction 3 a T-range of 1127 K ≤ T ≤ 1346 K, at P ~ 1.0 bar. Reflected shock tube experiments performed on reactions 1-3, monitored the formation of H-atoms with H-atom Atomic Resonance Absorption Spectrometric (ARAS). Fits to the H-atom temporal profiles using an assembled kinetics model were used to make determinations for k1, k2, and k3. In the case of C2H6, the measurements of [H]-atoms were used to derive direct high-temperature rate constants, k1, that can be represented by the Arrhenius equation k1(T) = 5.41 × 10(-12) exp(-6043 K/T) cm(3) molecules(-1) s(-1) (1153 K ≤ T ≤ 1297 K) for the only bimolecular process that occurs, H-atom abstraction. TST calculations based on ab initio properties calculated at the CCSD(T)/CBS//M06-2X/cc-pVTZ level of theory show excellent agreement, within ±20%, of the measured rate constants. For the reaction of CH3 with C2H4, the present rate constant results, k2', refer to the sum of rate constants, k(2b) + k(2c), from two competing processes, addition-elimination, and the direct abstraction CH3 + C2H4 → C3H6 + H (2b) and CH3 + C2H4 → C2H2 + H + CH4 (2c). Experimental rate constants for k2' can be represented by the Arrhenius equation k2'(T) = 2.18 × 10(-10) exp(-11830 K/T) cm(3) molecules(-1) s(-1) (1176 K ≤ T ≤ 1366 K). The present results are in excellent agreement with recent theoretical predictions. The present study provides the only direct measurement for the high-temperature rate constants for these channels

  5. Optical emission spectroscopy study of premixed C2H4/O2 and C2H4/C2H2/O2 flames for diamond growth with and without CO2 laser excitation

    NASA Astrophysics Data System (ADS)

    He, X. N.; Gebre, T.; Shen, X. K.; Xie, Z. Q.; Zhou, Y. S.; Lu, Y. F.

    2010-02-01

    Optical emission spectroscopy (OES) measurements were carried out to study premixed C2H4/O2 and C2H4/C2H2/O2 combustion flame for diamond deposition with and without a CO2 laser excitation. Strong emissions from radicals C2 and CH were observed in the visible range in all the OES spectra acquired. By adding a continuous-wave CO2 laser to irradiate the flame at a wavelength of 10.591 μm, the common CO2 laser wavelength, it was discovered that the emission intensities of the C2 and CH radicals were increased due to the laser beam induced excitation. OES measurements of the C2 and CH radicals were performed using different gas combinations and laser powers. The rotational temperatures in the flame were determined by analyzing the spectra of the R-branch of the A2Δ-->X2Π (0, 0) electronic transition near 430 nm (CH band head). Information obtained from the OES spectra, including the emission intensities of the C2 and CH radicals, the intensity ratios, and the rotational temperatures, was integrated into the study of diamond deposition on tungsten carbide substrates for mechanism analysis of the laser induced vibrational excitation and laser-assisted diamond deposition.

  6. C(2)H(4): Its Incorporation and Metabolism by Pea Seedlings under Aseptic Conditions.

    PubMed

    Beyer, E M

    1975-08-01

    The effects of various treatments on the recently reported system in pea (Pisum sativum cv. Alaska), which results in (a) the incorporation of (14)C(2)H(4) into the tissue and (b) the conversion of (14)C(2)H(4) to (14)CO(2), was investigated using 2-day-old etiolated seedlings which exhibit a maximum response. Heat treatment (80 C, 1 min) completely inhibited both a and b, whereas homogenization completely inhibited b but only partially inhibited a. Detaching the cotyledons from the root-shoot axis immediately before exposing the detached cotyledons together with the root-shoot axis to (14)C(2)H(4) markedly reduced both a and b. Increasing the (14)C(2)H(4) concentration from 0.14 to over 100 mul/l progressively increased the rate of a and b with tissue incorporation being greater than (14)C(2)H(4) to (14)CO(2) conversion only below 0.3 mul/l (14)C(2)H(4). Reduction of the O(2) concentration reduced both a and b, with over 99% inhibition occurring under anaerobic conditions. The addition of CO(2) (5%) severely inhibited (14)C(2)H(4) to (14)CO(2) conversion without significantly affecting tissue incorporation. Exposure of etiolated seedlings to fluorescent light during (14)C(2)H(4) treatment was without effect. Similarly, indoleacetic acid, gibberellic acid, benzyladenine, abscisic acid, and dibutyryl cyclic adenosine monophosphate had no significant effect on either a or b.The possibilities that the incorporation of (14)C(2)H(4) into pea tissues and its conversion to (14)CO(2) is linked to ethylene action, or that it represents a means of reducing the endogenous ethylene level, are discussed.Several problems encountered with the use of polyethylene vials, rubber serum stoppers, Clorox, and microbial contamination are also described. PMID:16659286

  7. New Determination of the 2H(d,p)3H and 2H(d,n)3He Reaction Rates at Astrophysical Energies

    NASA Astrophysics Data System (ADS)

    Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Pizzone, R. G.; Tognelli, E.; Degl'Innocenti, S.; Burjan, V.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Mrazek, J.; Piskor, S.; Prada Moroni, P. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2014-04-01

    The cross sections of the 2H(d,p)3H and 2H(d,n)3He reactions have been measured via the Trojan Horse method applied to the quasi-free 2H(3He,p 3H)1H and 2H(3He,n 3He)1H processes at 18 MeV off the proton in 3He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the 2H(d,n)3He reaction is quite influential on 7Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (<=1 Myr) with masses >=1 M ⊙.

  8. New determination of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reaction rates at astrophysical energies

    SciTech Connect

    Tumino, A.; Spartà, R.; Spitaleri, C.; Pizzone, R. G.; La Cognata, M.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A. M.; Typel, S.; Tognelli, E.; Degl'Innocenti, S.; Prada Moroni, P. G.; Burjan, V.; Kroha, V.; Hons, Z.; Mrazek, J.; Piskor, S.; Lamia, L.

    2014-04-20

    The cross sections of the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions have been measured via the Trojan Horse method applied to the quasi-free {sup 2}H({sup 3}He,p {sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n {sup 3}He){sup 1}H processes at 18 MeV off the proton in {sup 3}He. For the first time, the bare nucleus S(E) factors have been determined from 1.5 MeV, across the relevant region for standard Big Bang nucleosynthesis, down to the thermal energies of deuterium burning in the pre-main-sequence (PMS) phase of stellar evolution, as well as of future fusion reactors. Both the energy dependence and the absolute value of the S(E) factors deviate by more than 15% from the available direct data and existing fitting curves, with substantial variations in the electron screening by more than 50%. As a consequence, the reaction rates for astrophysics experience relevant changes, with a maximum increase of up to 20% at the temperatures of the PMS phase. From a recent primordial abundance sensitivity study, it turns out that the {sup 2}H(d,n){sup 3}He reaction is quite influential on {sup 7}Li, and the present change in the reaction rate leads to a decrease in its abundance by up to 10%. The present reaction rates have also been included in an updated version of the FRANEC evolutionary code to analyze their influence on the central deuterium abundance in PMS stars with different masses. The largest variation of about 10%-15% pertains to young stars (≤1 Myr) with masses ≥1 M {sub ☉}.

  9. Electron paramagnetic resonance spectral study of [Mn(acs)2(2-pic)2(H2O)2] single crystals

    NASA Astrophysics Data System (ADS)

    Kocakoç, Mehpeyker; Tapramaz, Recep

    2016-03-01

    Acesulfame potassium salt is a synthetic and non-caloric sweetener. It is also important chemically for its capability of being ligand in coordination compounds, because it can bind over Nitrogen and Oxygen atoms of carbonyl and sulfonyl groups and ring oxygen. Some acesulfame containing transition metal ion complexes with mixed ligands exhibit solvato and thermo chromic properties and these properties make them physically important. In this work single crystals of Mn+2 ion complex with mixed ligand, [Mn(acs)2(2-pic)2(H2O)2], was studied with electron paramagnetic resonance (EPR) spectroscopy. EPR parameters were determined. Zero field splitting parameters indicated that the complex was highly symmetric. Variable temperature studies showed no detectable chance in spectra.

  10. The Effect of N2 Photoabsorption Cross Section Resolution on C2H6 Production in Titan’s Ionosphere

    NASA Astrophysics Data System (ADS)

    Luspay-Kuti, Adrienn; Mandt, Kathleen E.; Plessis, Sylvain; Greathouse, Thomas K.

    2014-11-01

    Titan’s rich organic chemistry begins with the photochemistry of only two molecules: N2 and CH4. The details on how higher-order hydrocarbons and nitriles are formed from these molecules have key implications for both the structure and evolution of Titan’s atmosphere, and for its surface-atmosphere interactions. Of high importance is the production of C2H6, which is a sink for CH4, and a main component in the polar lakes. Results of photochemical models, though, may be sensitive to the choice of input parameters, such as the N2 photoabsorption cross section resolution, as previously shown for nitrogen (Liang et al. (2007) ApJL 664, 115-118), and CH4 (Lavvas et al. (2011) Icarus 213, 233-251). Here we investigate the possibility of the same effect on the production rates of C2H6. We modeled production and loss rates, as well as mixing ratio and density profiles between an altitude of 600 and 1600 km for low and high resolution N2 cross sections via a coupled ion-neutral-thermal model (De La Haye et al. (2008) Icarus 197, 110-136; Mandt et al. (2012) JGR 117, E10006). Our results show a clear impact of photoabsorption cross section resolution used on all neutral and ion species contributing to C2H6 production. The magnitude of the influence varies amongst species. Ethane production profiles exhibit a significant increase with better resolution; a factor of 1.2 between 750 and 950 km, and a factor of 1.1 in the total column-integrated production rate. These values are lower limits, as additional reactions involving C2H5 not included in the model may also contribute to the production rates. The clear effect on C2H6 (which is not a parent molecule, nor does it bear nitrogen) may have important implications for other molecules in Titan’s atmosphere as well. The possible non-negligible impact of an isotope of nitrogen may argue for the inclusion of isotopes in photochemical models. For future analysis, development of a more efficient and streamlined model called

  11. A practical way to synthesize chiral fluoro-containing polyhydro-2H-chromenes from monoterpenoids

    PubMed Central

    Mikhalchenko, Oksana S; Korchagina, Dina V; Salakhutdinov, Nariman F

    2016-01-01

    Summary Conditions enabling the single-step preparative synthesis of chiral 4-fluoropolyhydro-2H-chromenes in good yields through a reaction between monoterpenoid alcohols with para-menthane skeleton and aldehydes were developed for the first time. The BF3·Et2O/H2O system is used both as a catalyst and as a fluorine source. The reaction can involve aliphatic aldehydes as well as aromatic aldehydes containing various acceptor and donor substituents. 4-Hydroxyhexahydro-2H-chromenes were demonstrated to be capable of converting to 4-fluorohexahydro-2H-chromenes under the developed conditions, the reaction occurs with inversion of configuration. PMID:27340456

  12. Homotopy Algorithm for Fixed Order Mixed H2/H(infinity) Design

    NASA Technical Reports Server (NTRS)

    Whorton, Mark; Buschek, Harald; Calise, Anthony J.

    1996-01-01

    Recent developments in the field of robust multivariable control have merged the theories of H-infinity and H-2 control. This mixed H-2/H-infinity compensator formulation allows design for nominal performance by H-2 norm minimization while guaranteeing robust stability to unstructured uncertainties by constraining the H-infinity norm. A key difficulty associated with mixed H-2/H-infinity compensation is compensator synthesis. A homotopy algorithm is presented for synthesis of fixed order mixed H-2/H-infinity compensators. Numerical results are presented for a four disk flexible structure to evaluate the efficiency of the algorithm.

  13. Determination of the delta(2H/1H)of Water: RSIL Lab Code 1574

    USGS Publications Warehouse

    Revesz, Kinga; Coplen, Tyler B.

    2008-01-01

    Reston Stable Isotope Laboratory (RSIL) lab code 1574 describes a method used to determine the relative hydrogen isotope-ratio delta(2H,1H), abbreviated hereafter as d2H of water. The d2H measurement of water also is a component of the National Water Quality Laboratory (NWQL) schedules 1142 and 1172. The water is collected unfiltered in a 60-mL glass bottle and capped with a Polyseal cap. In the laboratory, the water sample is equilibrated with gaseous hydrogen using a platinum catalyst (Horita, 1988; Horita and others, 1989; Coplen and others, 1991). The reaction for the exchange of one hydrogen atom is shown in equation 1.

  14. Relative high-resolution absorption cross sections of C2H6 at low temperatures

    NASA Astrophysics Data System (ADS)

    Hargreaves, R. J.; Bernath, P. F.; Appadoo, D. R. T.

    2015-09-01

    Synchrotron radiation has been used to record absorption cross sections of ethane, C2H6, in the far-infrared with very high spectral resolution (up to 0.00096 cm-1). C2H6 is present in the atmospheres of the Gas Giant planets and Titan but the vapor pressure at relevant atmospheric temperatures (i.e., between 70 and 200 K) is low. This makes laboratory measurements difficult. We demonstrate the effectiveness of a unique "enclosive flow" cold cell, located at the Australian Synchrotron, that enables high-resolution absorption cross sections of gaseous C2H6 to be recorded at 90 K.

  15. Kinetic Resolution of 2H-Azirines by Asymmetric Imine Amidation.

    PubMed

    Hu, Haipeng; Liu, Yangbin; Lin, Lili; Zhang, Yuheng; Liu, Xiaohua; Feng, Xiaoming

    2016-08-16

    Highly efficient kinetic resolution of 2H-azirines by an asymmetric imine amidation was achieved in the presence of a chiral N,N'-dioxide/Sc(III) complex, thus providing a promising method to obtain the enantioenriched 2H-azirine derivatives and protecting-group free aziridines at the same time. It is rare to find an example of N1 of an oxindole participating in a reaction over C3. Moreover, chiral 2H-azirines were stereospecifically transformed into an unprotected aziridine and α-amino ketone. PMID:27384910

  16. High-resolution spectroscopy of Saturn at 3 microns: CH 4, CH 3D, C 2H 2, C 2H 6, PH 3, clouds, and haze

    NASA Astrophysics Data System (ADS)

    Kim, Joo Hyeon; Kim, Sang J.; Geballe, Thomas R.; Kim, Sungsoo S.; Brown, Linda R.

    2006-12-01

    We report observation and analysis of a high-resolution 2.87-3.54 μm spectrum of the southern temperate region of Saturn obtained with NIRSPEC at Keck II. The spectrum reveals absorption and emission lines of five molecular species as well as spectral features of haze particles. The ν+ν band of CH 3D is detected in absorption between 2.87 and 2.92 μm; and we derived from it a mixing ratio approximately consistent with the Infrared Space Observatory result. The ν band of C 2H 2 also is detected in absorption between 2.95 and 3.05 μm; analysis indicates a sudden drop in the C 2H 2 mixing ratio at 15 mbar (130 km above the 1 bar level), probably due to condensation in the low stratosphere. The presence of the ν+ν+ν band of C 2H 6 near 3.07 μm, first reported by Bjoraker et al. [Bjoraker, G.L., Larson, H.P., Fink, U., 1981. Astrophys. J. 248, 856-862], is confirmed, and a C 2H 6 condensation altitude of 10 mbar (140 km) in the low stratosphere is determined. We assign weak emission lines within the 3.3 μm band of CH 4 to the ν band of C 2H 6, and derive a mixing ratio of 9±4×10 for this species. Most of the C 2H 6 3.3 μm line emission arises in the altitude range 460-620 km (at ˜μbar pressure levels), much higher than the 160-370 km range where the 12 μm thermal molecular line emission of this species arises. At 2.87-2.90 μm the major absorber is tropospheric PH 3. The cloud level determined here and at 3.22-3.54 is 390-460 mbar (˜30 km), somewhat higher than found by Kim and Geballe [Kim, S.J., Geballe, T.R., 2005. Icarus 179, 449-458] from analysis of a low resolution spectrum. A broad absorption feature at 2.96 μm, which might be due to NH 3 ice particles in saturnian clouds, is also present. The effect of a haze layer at about 125 km (˜12 mbar level) on the 3.20-3.54 μm spectrum, which was not apparent in the low resolution spectrum, is clearly evident in the high resolution data, and the spectral properties of the haze particles suggest that

  17. Ecocatalysis for 2H-chromenes synthesis: an integrated approach for phytomanagement of polluted ecosystems.

    PubMed

    Escande, Vincent; Velati, Alicia; Grison, Claude

    2015-04-01

    A direct, general and efficient method to synthesize 2H-chromenes (2H-benzo[b]pyrans), identified as environmentally friendly pesticides, has been developed. This approach lays on the new concept of ecocatalysis, which involves the use of biomass from phytoextraction processes, as a valuable source of metallic elements for chemical synthesis. This methodology is similar or superior to known methods, affording 2H-chromenes with good to excellent yields (60-98%), including the preparation of precocene I, a natural insect growth regulator, with 91% yield. The approach is ideal for poor reactive substrates such as phenol or naphthol, classically transformed into 2H-chromenes by methodologies associated with environmental issues. These results illustrate the interest of combining phytoextraction and green synthesis of natural insecticides. PMID:25131683

  18. Oxydifluoromethylation of Alkenes by Photoredox Catalysis: Simple Synthesis of CF2H-Containing Alcohols.

    PubMed

    Arai, Yusuke; Tomita, Ren; Ando, Gaku; Koike, Takashi; Akita, Munetaka

    2016-01-22

    We have developed a novel and simple protocol for the direct incorporation of a difluoromethyl (CF2 H) group into alkenes by visible-light-driven photoredox catalysis. The use of fac-[Ir(ppy)3] (ppy=2-pyridylphenyl) photocatalyst and shelf-stable Hu's reagent, N-tosyl-S-difluoromethyl-S-phenylsulfoximine, as a CF2 H source is the key to success. The well-designed photoredox system achieves synthesis of not only β-CF2 H-substituted alcohols but also ethers and an ester from alkenes through solvolytic processes. The present method allows a single-step and regioselective formation of C(sp(3))-CF2 H and C(sp(3))-O bonds from C=C moiety in alkenes, such as hydroxydifluoromethylation, regardless of terminal or internal alkenes. Moreover, this methodology tolerates a variety of functional groups. PMID:26639021

  19. Alcohol binding to liposomes by 2H NMR and radiolabel binding assays: does partitioning describe binding?

    PubMed Central

    Dubey, A K; Eryomin, V A; Taraschi, T F; Janes, N

    1996-01-01

    Implicit within the concept of membrane-buffer partition coefficients of solutes is a nonspecific solvation mechanism of solute binding. However, (2)H NMR studies of the binding of (2)H(6)-ethanol and [1-(2)H(2)] n-hexanol to phosphatidylcholine vesicles have been interpreted as evidence for two distinct alcohol binding modes. One binding mode was reported to be at the membrane surface. The second mode was reported to be within the bilayer interior. An examination of the (2)H NMR binding studies, together with direct radiolabel binding assays, shows that other interpretations of the data are more plausible. The results are entirely consistent with partitioning (nonspecific binding) as the sole mode of alcohol binding to liposomes, in accord with our previous thermodynamic interpretation of alcohol action in phosphatidylcholine liposomes. PMID:9172754

  20. Review of 2H-tetraphenylporphyrins metalation in ultra-high vacuum on metal surfaces

    NASA Astrophysics Data System (ADS)

    Panighel, M.; Di Santo, G.; Caputo, M.; Lal, C.; Taleatu, B.; Goldoni, A.

    2013-12-01

    The formation and conformational adaptation of self-assembled monolayer of 2H-tetraphenylporphyrins (2H-TPPs) on metal surfaces, as well as their metalation processes in ultra-high vacuum (UHV), are reviewed. By means of XPS, NEXAFS and STM measurements we demonstrate that, after the annealing at 550 K, a temperature-induced chemical modification of 2H-TPP monolayer on Ag(111) occurs, resulting in the rotation of the phenyl rings parallel to the substrate plane. Moreover, independently of the conformation, we report three different methods to metalate 2H-TPP monolayers in UHV. Experimental evidence indicates that the presence of a metal atom in the TPP macrocycle influences both the conformation of the molecule and its adsorption distance.

  1. Indirect Approach To The {sup 2}H(d,p){sup 3}H Reaction Study

    SciTech Connect

    Sparta, R.; Pizzone, R. G.; Spitaleri, C.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Puglia, S. M. R.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.; Aliotta, M.; Burjan, V.; Hons, Z.; Kroha, V.; Mrazek, J.; Kiss, G.; McCleskey, M.; Trache, L.

    2010-11-24

    In order to understand primordial and stellar nucleosynthesis, we have studied {sup 2}H(d,p){sup 3}H reaction at 0.4 MeV down to astrophysical energies. Knowledge of its S-factor is interesting also to plan reactions for fusion reactors to produce energy. The {sup 2}H(d,p)H reaction has been studied through the Trojan Horse Method applied to the three-body reaction {sup 2}H(He,pt)H, at beam energy of 17 MeV. Once selection of protons and tritons detected in coincidence and the selection of quasi-free events, the obtained S-factor is compared with direct measurements. Such data are in agreement with the direct ones and a pole invariance test has been obtained comparing the present results with another {sup 2}H(d,p){sup 3}H THM measurements, where a different spectator particle was employed.

  2. Infrared and Ultraviolet Spectra of Diborane(6): B2H6 and B2D6.

    PubMed

    Peng, Yu-Chain; Chou, Sheng-Lung; Lo, Jen-Iu; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming; Ogilvie, J F

    2016-07-21

    We recorded absorption spectra of diborane(6), B2H6 and B2D6, dispersed in solid neon near 4 K in both mid-infrared and ultraviolet regions. For gaseous B2H6 from 105 to 300 nm, we report quantitative absolute cross sections; for solid B2H6 and for B2H6 dispersed in solid neon, we measured ultraviolet absorbance with relative intensities over a wide range. To assign the mid-infrared spectra to specific isotopic variants, we applied the abundance of (11)B and (10)B in natural proportions; we undertook quantum-chemical calculations of wavenumbers associated with anharmonic vibrational modes and the intensities of the harmonic vibrational modes. To aid an interpretation of the ultraviolet spectra, we calculated the energies of electronically excited singlet and triplet states and oscillator strengths for electronic transitions from the electronic ground state. PMID:27351464

  3. Rings of C2H in the Molecular Disks Orbiting TW Hya and V4046 Sgr

    NASA Astrophysics Data System (ADS)

    Kastner, J. H.; Qi, C.; Gorti, U.; Hily-Blant, P.; Oberg, K.; Forveille, T.; Andrews, S.; Wilner, D.

    2016-01-01

    We have used the Submillimeter Array (SMA) to image, at ~1'' resolution, C2H(3-2) emission from the molecule-rich circumstellar disks orbiting the nearby, classical T Tauri star systems TW Hya and V4046 Sgr. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology within each disk; the radius of the inner hole of the C2H ring within the V4046 Sgr disk (~70 AU) is somewhat larger than than of its counterpart within the TW Hya disk (~45 AU). We suggest that, in each case, the C2H emission likely traces irradiation of the tenuous surface layers of the outer disks by high-energy photons from the central stars.

  4. Water interactions with varying molecular states of bovine casein: 2H NMR relaxation studies

    SciTech Connect

    Kumosinski, T.F.; Pessen, H.; Prestrelski, S.J.; Farrell, H.M. Jr.

    1987-09-01

    The caseins occur in milk as spherical colloidal complexes of protein and salts with an average diameter of 1200 A, the casein micelles. Removal of Ca2+ is thought to result in their dissociation into smaller protein complexes stabilized by hydrophobic interactions and called submicelles. Whether these submicelles actually occur within the micelles as discrete particles interconnected by calcium phosphate salt bridges has been the subject of much controversy. A variety of physical measurements have shown that casein micelles contain an inordinately high amount of trapped water (2 to 7 g H/sub 2/O/g protein). With this in mind it was of interest to determine if NMR relaxation measurements could detect the presence of this trapped water within the micelles, and to evaluate whether it is a continuum with picosecond correlation times or is associated in part with discrete submicellar structures with nanosecond motions. For this purpose the variations in /sup 2/H NMR longitudinal and transverse relaxation rates of water with protein concentration were determined for bovine casein at various temperatures, under both submicellar and micellar conditions. D/sub 2/O was used instead of H/sub 2/O to eliminate cross-relaxation effects. From the protein concentration dependence of the relaxation rates, the second virial coefficient of the protein was obtained by nonlinear regression analysis. Using either an isotropic tumbling or an intermediate asymmetry model, degrees of hydration, v, and correlation times, tau c, were calculated for the caseins; from the latter parameter the Stokes radius, r, was obtained. Next, estimates of molecular weights were obtained from r and the partial specific volume. Values were in the range of those published from other methodologies for the submicelles.

  5. Synthesis of 2H-Indazoles by the [3 + 2] Dipolar Cycloaddition of Sydnones with Arynes

    PubMed Central

    Fang, Yuesi; Wu, Chunrui; Larock, Richard C.; Shi, Feng

    2011-01-01

    A rapid and efficient synthesis of 2H-indazoles has been developed using a [3 + 2] dipolar cycloaddition of sydnones and arynes. A series of 2H-indazoles have been prepared in good to excellent yields using this protocol, and subsequent Pd-catalyzed coupling reactions can be applied to the halogenated products to generate a structurally diverse library of indazoles. PMID:21970468

  6. A Ring of C2H in the Molecular Disk Orbiting TW Hya

    NASA Astrophysics Data System (ADS)

    Kastner, Joel H.; Qi, Chunhua; Gorti, Uma; Hily-Blant, Pierre; Oberg, Karin; Forveille, Thierry; Andrews, Sean; Wilner, David

    2015-06-01

    We have used the Submillimeter Array to image, at ˜1.″5 resolution, C2H N=3\\to 2 emission from the circumstellar disk orbiting the nearby (D = 54 pc), ˜8 Myr-old, ˜0.8 {{M}⊙ } classical T Tauri star TW Hya. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology. Based on a model in which the C2H column density follows a truncated radial power-law distribution, we find that the inner edge of the ring lies at ˜45 AU, and that the ring extends to at least ˜120 AU. Comparison with previous (single-dish) observations of C2H N=4\\to 3 emission indicates that the C2H molecules are subthermally excited and, hence, that the emission arises from the relatively warm (T≳ 40 K), tenuous (n\\ll {{10}7} cm-3) upper atmosphere of the disk. Based on these results and comparisons of the SMA C2H map with previous submillimeter and scattered-light imaging, we propose that the C2H emission most likely traces particularly efficient photo-destruction of small grains and/or photodesorption and photodissociation of hydrocarbons derived from grain ice mantles in the surface layers of the outer disk. The presence of a C2H ring in the TW Hya disk hence likely serves as a marker of dust grain processing and radial and vertical grain size segregation within the disk.

  7. Infrared spectrum of the disilane cation (Si2H6+) from Ar-tagging spectroscopy.

    PubMed

    Savoca, Marco; George, Martin Andreas Robert; Langer, Judith; Dopfer, Otto

    2013-02-28

    The infrared spectrum of the disilane cation, Si(2)H(6)(+), in its (2)A(1g) ground state is inferred from photodissociation of cold Si(2)H(6)(+)-Ar(n) complexes (n = 1, 2). Vibrational analysis is consistent with a D(3d) symmetric structure of H(3)SiSiH(3)(+) generated by ionization from the bonding σ(SiSi) orbital. Structural, vibrational, and electronic properties of Si(2)H(6)((+)) and Si(2)H(6)(+)-Ar(1,2) are determined at the MP2/aug-cc-pVTZ and B3LYP/aug-cc-pVTZ levels. Ar ligands bind weakly at the C(3) axis on opposite sides to Si(2)H(6)(+) with only a minor impact on the Si(2)H(6)(+) properties. The calculations reveal a low-energy H(2)SiHSiH(3)(+) isomer with C(s) symmetry and a Si-H-Si bridge, which is only ~15 kJ mol(-1) above the D(3d) structure. PMID:23325390

  8. C2H4 adsorption on Cu(210), revisited: bonding nature and coverage effects.

    PubMed

    Amino, Shuichi; Arguelles, Elvis; Agerico Diño, Wilson; Okada, Michio; Kasai, Hideaki

    2016-08-24

    With the aid of density functional theory (DFT)-based calculations, we investigate the adsorption of C2H4 on Cu(210). We found two C2H4 adsorption sites, viz., the top of the step-edge atom (S) and the long bridge between two step-edge atoms (SS) of Cu(210). The step-edge atoms on Cu(210) block the otherwise active terrace sites found on copper surfaces with longer step sizes. This results in the preference for π-bonded over di-σ-bonded C2H4. We also found two stable C2H4 adsorption orientations on the S- and SS-sites, viz., with the C2H4 C[double bond, length as m-dash]C bond parallel (fit) and perpendicular (cross) to [001]. Furthermore, we found that the three peaks observed in previous temperature programmed desorption (TPD) experiment [Surf. Sci., 2011, 605, 934-940] could be attributed to C2H4 in the S-fit or S-cross, S-fit and S-cross-fit (S-cross and S-fit configurations that both exist in the same unit cell) configurations on Cu(210). PMID:27506302

  9. Investigation on the Interactions of NiCR and NiCR-2H with DNA

    PubMed Central

    Chitranshi, Priyanka; Chen, Chang-Nan; Jones, Patrick R.; Faridi, Jesika S.; Xue, Liang

    2010-01-01

    We report here a biophysical and biochemical approach to determine the differences in interactions of NiCR and NiCR-2H with DNA. Our goal is to determine whether such interactions are responsible for the recently observed differences in their cytotoxicity toward MCF-7 cancer cells. Viscosity measurement and fluorescence displacement titration indicated that both NiCR and NiCR-2H bind weakly to duplex DNA in the grooves. The coordination of NiCR-2H with the N-7 of 2′-deoxyguanosine 5′-monophosphate (5′-dGMP) is stronger than that of NiCR as determined by 1H NMR. NiCR-2H, like NiCR, can selectively oxidize guanines present in distinctive DNA structures (e.g., bulges), and notably, NiCR-2H oxidizes guanines more efficiently than NiCR. In addition, UV and 1H NMR studies revealed that NiCR is oxidized into NiCR-2H in the presence of KHSO5 at low molar ratios with respect to NiCR (≤4). PMID:20671951

  10. Broad N2H+ Emission toward the Protostellar Shock L1157-B1

    NASA Astrophysics Data System (ADS)

    Codella, C.; Viti, S.; Ceccarelli, C.; Lefloch, B.; Benedettini, M.; Busquet, G.; Caselli, P.; Fontani, F.; Gómez-Ruiz, A.; Podio, L.; Vasta, M.

    2013-10-01

    We present the first detection of N2H+ toward a low-mass protostellar outflow, namely, the L1157-B1 shock, at ~0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30 m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. Analysis of this emission coupled with HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originated from the dense (>=105 cm-3) gas associated with the large (20''-25'') cavities opened by the protostellar wind. We find an N2H+ column density of a few 1012 cm-2 corresponding to an abundance of (2-8) × 10-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 104 yr, i.e., for more than the shock kinematical age (sime2000 yr). Modeling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 104 cm-3, and then further compressed and accelerated by the shock.

  11. Variations in the Nature of Triple Bonds: The N2, HCN, and HC2H Series.

    PubMed

    Xu, Lu T; Dunning, Thom H

    2016-07-01

    The inertness of molecular nitrogen and the reactivity of acetylene suggest there are significant variations in the nature of triple bonds. To understand these differences, we performed generalized valence bond as well as more accurate electronic structure calculations on three molecules with putative triple bonds: N2, HCN, and HC2H. The calculations predict that the triple bond in HC2H is quite different from the triple bond in N2, with HCN being an intermediate case but closer to N2 than HC2H. The triple bond in N2 is a traditional triple bond with the spins of the electrons in the bonding orbital pairs predominantly singlet coupled in the GVB wave function (92%). In HC2H, however, there is a substantial amount of residual CH(a(4)Σ(-)) fragment coupling in the triple bond at its equilibrium geometry with the contribution of the perfect pairing spin function dropping to 82% (77% in a full valence GVB calculation). This difference in the nature of the triple bond in N2 and HC2H may well be responsible for the differences in the reactivities of N2 and HC2H. PMID:27299373

  12. Direct ab initio study of the C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 reactions

    NASA Astrophysics Data System (ADS)

    Mai, Tam V.-T.; Ratkiewicz, Artur; Duong, Minh v.; Huynh, Lam K.

    2016-02-01

    A kinetic study of the reactions C6H6 + CH3/C2H5 = C6H5 + CH4/C2H6 was carried out in the temperature range of 300-2500 K using high levels of electronic structure theory, namely, CCSD(T)/CBS//BH&HLYP/cc-pVDZ, and canonical variational transition state theory (CVT) with corrections for small curvature tunneling (SCT) and hindered internal rotation (HIR) treatments. It is found that variational effect is not important and both SCT and HIR corrections noticeably affect the rate constants. Being in good agreement with literature data, the calculated results provide solid basis information for the investigation of the polyaromatic hydrocarbon (PAH) + alkyl radical reaction, an important class in combustion and soot formation.

  13. Laboratory studies of 2H evaporator scale dissolution in dilute nitric acid

    SciTech Connect

    Oji, L.

    2014-09-23

    The rate of 2H evaporator scale solids dissolution in dilute nitric acid has been experimentally evaluated under laboratory conditions in the SRNL shielded cells. The 2H scale sample used for the dissolution study came from the bottom of the evaporator cone section and the wall section of the evaporator cone. The accumulation rate of aluminum and silicon, assumed to be the two principal elemental constituents of the 2H evaporator scale aluminosilicate mineral, were monitored in solution. Aluminum and silicon concentration changes, with heating time at a constant oven temperature of 90 deg C, were used to ascertain the extent of dissolution of the 2H evaporator scale mineral. The 2H evaporator scale solids, assumed to be composed of mostly aluminosilicate mineral, readily dissolves in 1.5 and 1.25 M dilute nitric acid solutions yielding principal elemental components of aluminum and silicon in solution. The 2H scale dissolution rate constant, based on aluminum accumulation in 1.5 and 1.25 M dilute nitric acid solution are, respectively, 9.21E-04 ± 6.39E-04 min{sup -1} and 1.07E-03 ± 7.51E-05 min{sup -1}. Silicon accumulation rate in solution does track the aluminum accumulation profile during the first few minutes of scale dissolution. It however diverges towards the end of the scale dissolution. This divergence therefore means the aluminum-to-silicon ratio in the first phase of the scale dissolution (non-steady state conditions) is different from the ratio towards the end of the scale dissolution. Possible causes of this change in silicon accumulation in solution as the scale dissolution progresses may include silicon precipitation from solution or the 2H evaporator scale is a heterogeneous mixture of aluminosilicate minerals with several impurities. The average half-life for the decomposition of the 2H evaporator scale mineral in 1.5 M nitric acid is 12.5 hours, while the half-life for the decomposition of the 2H evaporator scale in 1.25 M nitric acid is 10

  14. {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions at sub-coulomb energies

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Mukhamedzhanov, A. M.; Typel, S.; Sparta, R.; Aliotta, M.; Kroha, V.; Hons, Z.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Mrazek, J.; Pizzone, R. G.; Rapisarda, G. G.; Romano, S.; Sergi, M. L.

    2012-11-20

    The {sup 2}H({sup 3}He,p{sup 3}H){sup 1}H and {sup 2}H({sup 3}He,n{sup 3}He){sup 1}H processes have been measured in quasi free kinematics to investigate for the first time the {sup 2}H(d,p){sup 3}H and {sup 2}H(d,n){sup 3}He reactions by means of the Trojan Horse Method. The {sup 3}He+d experiment was performed at 18 MeV, corresponding the a d-d energy range from 1.5 MeV down to 2 keV. This range overlaps with the relevant region for Standard Big Bang Nucleosynthesis as well as with the thermal energies of future fusion reactors and deuterium burning in the Pre Main Sequence phase of stellar evolution. This is the first pioneering experiment in quasi free regime where the charged spectator is detected. Both the energy dependence and the absolute value of the bare nucleus S(E) factors have been extracted for the first time. They deviate by more than 15% from available direct data with new S(0) values of 57.4{+-}1.8 MeVb for {sup 3}H+p and 60.1{+-}1.9 MeVb for {sup 3}He+n. None of the existing fitting curves is able to provide the correct slope of the new data in the full range, thus calling for a revision of the theoretical description. This has consequences in the calculation of the reaction rates with more than a 25% increase at the temperatures of future fusion reactors.

  15. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed Central

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-01-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  16. Models of stratum corneum intercellular membranes: 2H NMR of macroscopically oriented multilayers.

    PubMed

    Fenske, D B; Thewalt, J L; Bloom, M; Kitson, N

    1994-10-01

    Deuterium NMR was used to characterize model membrane systems approximating the composition of the intercellular lipid lamellae of mammalian stratum corneum (SC). The SC models, equimolar mixtures of ceramide:cholesterol:palmitic acid (CER:CHOL:PA) at pH 5.2, were contrasted with the sphingomyelin:CHOL:PA (SPM:CHOL:PA) system, where the SPM differs from the CER only in the presence of a phosphocholine headgroup. The lipids were prepared both as oriented samples and as multilamellar dispersions, and contained either perdeuterated palmitic acid (PA-d31) or [2,2,3,4,6-2H5]CHOL (CHOL-d5). SPM:CHOL:PA-d31 formed liquid-ordered membranes over a wide range of temperatures, with a maximum order parameter of approximately 0.4 at 50 degrees C for positions C3-C10 (the plateau region). The quadrupolar splitting at C2 was significantly smaller, suggesting an orientational change at this position, possibly because of hydrogen bonding with water and/or other surface components. A comparison of the longitudinal relaxation times obtained at theta = 0 degrees and 90 degrees (where theta is the angle between the normal to the glass plates and the magnetic field) revealed a significant T1Z anisotropy for all positions. In contrast to the behavior observed with the SPM system, lipid mixtures containing CER exhibited a complex polymorphism. Between 20 and 50 degrees C, a significant portion of the entire membrane (as monitored by both PA-d31 and CHOL-d5) was found to exist as a solid phase, with the remainder either a gel or liquid-ordered phase. The proportion of solid decreased as the temperature was increased and disappeared entirely above 50 degrees C. Between 50 and 70 degrees C, the membrane underwent a liquid-ordered to isotropic phase transition. These transitions were reversible but displayed considerable hysteresis, especially the conversion from a fluid phase to solid. The order profiles, relaxation behavior, and angular dependence of these parameters suggest strongly that

  17. Structural, vibrational and DFT studies on 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione.

    PubMed

    Arjunan, V; Saravanan, I; Ravindran, P; Mohan, S

    2009-10-15

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione have been measured in the range of 4000-400 and 4000-100 cm(-1), respectively. Complete vibrational assignment and analysis of the fundamental modes of the compounds were performed using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constraints using the DFT/B3LYP method with 6-31G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies determined experimentally are compared with those obtained theoretically from DFT gradient calculations employing the B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) methods for the optimised geometry of the compounds. The structural parameters and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The force fields obtained from DFT method were utilised and the potential energy distributions of all the fundamental vibrations of the compounds were calculated. PMID:19660980

  18. Structural, vibrational and DFT studies on 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Saravanan, I.; Ravindran, P.; Mohan, S.

    2009-10-01

    The Fourier transform infrared (FTIR) and FT-Raman spectra of 2-chloro-1H-isoindole-1,3(2H)-dione and 2-methyl-1H-isoindole-1,3(2H)-dione have been measured in the range of 4000-400 and 4000-100 cm -1, respectively. Complete vibrational assignment and analysis of the fundamental modes of the compounds were performed using the observed FTIR and FT-Raman data. The geometry was optimised without any symmetry constraints using the DFT/B3LYP method with 6-31G(d,p) and 6-311++G(d,p) basis sets. The vibrational frequencies determined experimentally are compared with those obtained theoretically from DFT gradient calculations employing the B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) methods for the optimised geometry of the compounds. The structural parameters and normal modes of vibration obtained from DFT method are in good agreement with the experimental data. The force fields obtained from DFT method were utilised and the potential energy distributions of all the fundamental vibrations of the compounds were calculated.

  19. Potential energy surface for C2H4I2+ dissociation including spin-orbit effects

    SciTech Connect

    Siebert, Matthew R.; Aquino, Adelia J.; De Jong, Wibe A.; Granucci, Giovanni; Hase, William L.

    2012-10-24

    Previous experiments [Baer, et al. J. Phys. Chem. A 116, 2833 (2012)] have studied the dissociation of 1,2-diiodoethane radical cation (C2H4I2+•) and found a one-dimensional distribution of translational energy; an odd finding considering most product relative translational energy distributions are two-dimensional. The goal of this study is to obtain an accurate understanding of the potential energy surface (PES) topology for the unimolecular decomposition reaction C2H4I2+• - C2H4I+ + I•. This is done through comparison of many single-reference electronic structure methods, coupled-cluster single point (energy) calculations, and multi-reference calculations used to quantify spin-orbit (SO) coupling effects. We find that the structure of the C2H4I2+• reactant has a substantial effect on the role of SO coupling on the reaction energy. Both the BHandH and MP2 theories with an ECP/6-31++G** basis set, and without SO coupling corrections, provide accurate models for the reaction energetics. MP2 theory gives an unsymmetric structure with different C-I bond lengths, resulting in a SO energy for C2H4I2+• similar to that for the product I-atom and a negligible SO correction to the reaction energy. In contrast, DFT gives a symmetric structure for C2H4I2+•, similar to that of the neutral C2H4I2 parent, resulting in a substantial SO correction and increasing the reaction energy by 6.0-6.5 kcal/mol. Also, we find that for this system single point energy calculations are inaccurate, since a small change in geometry can lead to a large change in energy.

  20. Quantitative C2H2 measurements in sooty flames using mid-infrared polarization spectroscopy

    NASA Astrophysics Data System (ADS)

    Sun, Z. W.; Li, Z. S.; Li, B.; Alwahabi, Z. T.; Aldén, M.

    2010-10-01

    Quantitative measurements of acetylene (C2H2) molecules as a combustion intermediate species in a series of rich premixed C2H4/air flames were non-intrusively performed, spatially resolved, using mid-infrared polarization spectroscopy (IRPS), by probing its fundamental ro-vibrational transitions. The flat sooty C2H4/air premixed flames with different equivalence ratios varying from 1.25 to 2.50 were produced on a 6 cm diameter porous-plug McKenna type burner at atmospheric pressure, and all measurements were performed at a height of 8.5 mm above the burner surface. IRPS excitation scans in different flame conditions were performed and rotational line-resolved spectra were recorded. Spectral features of acetylene molecules were readily recognized in the spectral ranges selected, with special attention to avoid the spectral interference from the large amount of coexisting hot water and other hydrocarbon molecules. On-line calibration of the optical system was performed in a laminar C2H2/N2 gas flow at ambient conditions. Using the flame temperatures measured by coherent anti-Stokes Raman spectroscopy in a previous work, C2H2 mole fractions in different flames were evaluated with collision effects and spectral overlap between molecular line and laser source being analyzed and taken into account. C2H2 IRPS signals in two different buffering gases, N2 and CO2, had been investigated in a tube furnace in order to estimate the spectral overlap coefficients and collision effects at different temperatures. The soot-volume fractions (SVF) in the studied flames were measured using a He-Ne laser-extinction method, and no obvious degrading of the IRPS technique due to the sooty environment has been observed in the flame with SVF up to ˜2×10-7. With the increase of flame equivalence ratios not only the SVF but also the C2H2 mole fractions increased.

  1. Rototranslational collision-induced absorption by H2-H2 pairs at temperatures from 600 to 7000 K

    NASA Technical Reports Server (NTRS)

    Zheng, Chunguang; Borysow, Aleksandra

    1995-01-01

    The computation of the far-infrared, rototranslational (RT) collision-induced absorption (CIA) spectra of H2-H2 pairs is presented at temperatures from 600 to 7000 K for the first time. Theoretical results are based on the quantum mechanical and semiclassical, three lowest translational spectral moments obtained for H2 pairs. The effective, isotropic H2-H2 interaction potential, suitable for the high-temperature computations, and the ab initio induced dipoles, have been used as input. Special effort has been made to account for the rotational and vibrational states dependence of the dipoles, since it was found to be relevant at the high temperatures employed. The computations of the entire RT band account for all populated vibrational states of hydrogen molecule and include vibrational transitions v tends towards v-prime = v, with v = 0, 1, 2 and 3. The described method makes use of the adequately selected model line shapes with the temperature-dependent parameters. The presented model is useful for the 'model atmospheres' of zero- and low-metallicity, cool and dense stellar atmospheres, where CIA is known to be imporatnt.

  2. The condensation and vaporization behavior of ices containing SO2, H2S, and CO2: Implications for Io

    NASA Technical Reports Server (NTRS)

    Sandford, Scott A.; Allamandola, Louis J.

    1993-01-01

    In an extension of previously reported work on ices containing CO, CO2, H2O, CH3OH, NH3, and H2, measurements of the physical and infrared spectral properties of ices containing molecules relevant to Jupiter's moon Io are presented. These include studies on ice systems containing SO2, H2S, and CO2. The condensation and sublimation behaviors of each ice system and surface binding energies of their components are discussed. The surface binding energies can be used to calculate the residence times of the molecules on a surface as a function of temperature and thus represent important parameters for any calculation that attempts to model the transport of these molecules on Io's surface. The derived values indicate that SO2 frosts on Io are likely to anneal rapidly, resulting in less fluffy, 'glassy' ices and that H2S can be trapped in the SO2 ices of Io during night-time hours provided that SO2 deposition rates are on the order of 5 micrometers/hr or larger.

  3. Estimated critical conditions for UO{sub 2}F{sub 2}--H{sub 2}O systems in fully water-reflected spherical geometry

    SciTech Connect

    Jordan, W.C.; Turner, J.C.

    1992-12-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  4. Estimated Critical Conditions for UO(Sub 2)F(Sub 2)-H(Sub 2)O Systems in Fully Water-Reflected Spherical Geometry

    SciTech Connect

    Jordan, W.C.

    1992-01-01

    The purpose of this report is to document reference calculations performed using the SCALE-4.0 code system to determine the critical parameters of UO{sub 2}F{sub 2}-H{sub 2}O spheres. The calculations are an extension of those documented in ORNL/CSD/TM-284. Specifically, the data for low-enriched UO{sub 2}F{sub 2}-H{sub 2}O spheres have been extended to highly enriched uranium. These calculations, together with those reported in ORNL/CSD/TM-284, provide a consistent set of critical parameters (k{sub {infinity}}, volume, mass, mass of water) for UO{sub 2}F{sub 2} and water over the full range of enrichment and moderation ratio.

  5. The phase diagrams and Pitzer model representations for the system KCl + MgCl2 + H2O at 50 and 75°C

    NASA Astrophysics Data System (ADS)

    Yang, Ji-min; Peng, Jing; Duan, Yu-xia; Tian, Chong; Ping, Mei

    2012-12-01

    The solubilities in the KCl-MgCl2-H2O system were determined at 50 and 75°C and the phase diagrams and the diagram of refractive index vs composition were plotted. Two invariant point, three univariant curves, and three crystallization zones, corresponding to potassium chloride, hexahydrate (MgCl2 · 6H2O) and double salt (KCl · MgCl2 · 6H2O) showed up in the phase diagrams of the ternary system, The mixing parameters θK, Ca and ΨK, Ca, Cl and equilibrium constant K sp were evaluated in KCl-MgCl2-H2O system by least-squares optimization procedure, in which the single-salt Pitzer parameters of KCl and MgCl2 β(0), β(1), β(2), and C ϕ were directly calculated from the literature. The results obtained were in good agreement with the experimental data.

  6. Drivers of δ2H variations in an idealized extratropical cyclone

    NASA Astrophysics Data System (ADS)

    Dütsch, Marina; Pfahl, Stephan; Wernli, Heini

    2016-05-01

    Numerical model simulations of stable water isotopes help to improve our understanding of the complex processes driving isotopic variability in atmospheric moisture. We use the isotope-enabled Consortium for Small-Scale Modelling (COSMO) model to study the governing mechanisms of δ2H variations in an idealized extratropical cyclone. A set of experiments with differing initial conditions of δ2H in vapor and partly deactivated isotopic fractionation allows us to quantify the relative roles of cloud fractionation and vertical and horizontal advection for the simulated δ2H signals associated with the cyclone and fronts. Horizontal transport determines the large-scale pattern of δ2H in both vapor and precipitation, while fractionation and vertical transport are more important on a smaller scale, near the fronts. During the passage of the cold front fractionation leads to a V-shaped trend of δ2H in precipitation and vapor, which is, for vapor, superimposed on a gradual decrease caused by the arrival of colder air masses.

  7. Blood brain barrier breakdown was found in non-infarcted area after 2-h MCAO.

    PubMed

    Wang, Xiaona; Liu, Yushan; Sun, Yanyun; Liu, Wenlan; Jin, Xinchun

    2016-04-15

    The blood brain barrier (BBB) could be damaged within the thrombolytic time window and is considered to be a precursor to hemorrhagic transformation during reperfusion. Although we have recently reported the association between BBB damage and tissue injury within the thrombolytic time window, our knowledge about this early BBB damage is limited. In this study, rats were subjected to 2-h middle cerebral artery occlusion (MCAO) followed by 10 min reperfusion with Evan's blue as a tracer to detect BBB damage. Rat brain was sliced into 10 consecutive sections and with TTC staining, a macro and full view of the spatial distribution of BBB damage and tissue injury could be clearly seen in the same group of animals. After 2-h MCAO, tissue injury started from 2nd slice and the BBB leakage started from the 5th slice, of note, there is no colocalization between BBB damage and tissue injury. Fluoro Jade B was employed to explore the localization of neuronal degeneration, and our results showed that 2-h MCAO produced greater number of positive cells in ischemic cortex and dorsal striatum than other areas. More important, 2-h MCAO induced occludin but not claudin-5 degradation in the ischemic hemisphere and pretreatment with MMP inhibitor GM6001 significantly reduced occludin degradation as well as BBB damage detected by IgG leakage. Taken together, our findings demonstrated a "mismatch" between ischemic tissue injury and BBB leakage and a differential degradation of occludin and claudin-5 by MMP-2 after 2-h MCAO. PMID:27000223

  8. Synthesis, spectral characterization and larvicidal activity of acridin-1(2H)-one analogues

    NASA Astrophysics Data System (ADS)

    Subashini, R.; Bharathi, A.; Roopan, Selvaraj Mohana; Rajakumar, G.; Abdul Rahuman, A.; Gullanki, Pavan Kumar

    Acridin-1(2H)-one analogue of 7-chloro-3,4-dihydro-9-phenyl-2-[(pyridine-2yl) methylene] acridin-1(2H)-one, 5 was prepared by using 7-chloro-3,4-dihydro-9-phenylacridin-1(2H)-one, 3 and picolinaldehyde, 4 in the presence of KOH at room temperature. These compounds were characterized by analytical and spectral analyses. The purpose of the present study was to assess the efficacy of larvicidal and repellent activity of synthesized 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues such as compounds 3 and 5 against the early fourth instar larvae of filariasis vector, Culex quinquefasciatus and Japanese encephalitis vector, Culex gelidus (Diptera: Culicidae). The compound exhibited high larvicidal effects at 50 mg/L against both the mosquitoes with LC50 values of 25.02 mg/L (r2 = 0.998) and 26.40 mg/L (r2 = 0.988) against C. quinquefasciatus and C. gelidus, respectively. The 7-chloro-3,4-dihydro-9-phenyl-acridin-1(2H)-one analogues that are reported for the first time to our best of knowledge can be better explored for the control of mosquito population. This is an ideal ecofriendly approach for the control of Japanese encephalitis vectors, C. quinquefasciatus and C. gelidus.

  9. Prediction of the existence of the N2H- molecular anion

    NASA Astrophysics Data System (ADS)

    Lique, François; Halvick, Philippe; Stoecklin, Thierry; Hochlaf, Majdi

    2012-06-01

    We predict the existence of the N2H- anion from first principle calculations. We present the three-dimensional potential energy surface and the bound states of the N2H-/D- van der Waals anion. The electronic calculations were performed using state-of-the-art ab initio methods and the nuclear motions were solved using a quantum close-coupling scattering theory. A T-shaped equilibrium structure was found, with a well depth of 349.1 cm-1, where 18 bound states have been located for N2H- and 25 for N2D- for total angular momentum J = 0. We also present the absorption spectra of the N2H- complex. This anion could be formed after low energy collisions between N2 and H- through radiative association. The importance of this prediction in astrophysics and the possible use of N2H- as a tracer of N2 and H- in the interstellar medium is discussed.

  10. Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.

    PubMed

    Mizuno, Motohiro; Suzuki, You; Endo, Kazunaka; Murakami, Miwa; Tansho, Masataka; Shimizu, Tadashi

    2007-12-20

    A magic-angle spinning (MAS) 2H NMR experiment was applied to study the molecular motion in paramagnetic compounds. The temperature dependences of 2H MAS NMR spectra were measured for paramagnetic [M(H2O)6][SiF6] (M=Ni2+, Mn2+, Co2+) and diamagnetic [Zn(H2O)6][SiF6]. The paramagnetic compounds exhibited an asymmetric line shape in 2H MAS NMR spectra because of the electron-nuclear dipolar coupling. The drastic changes in the shape of spinning sideband patterns and in the line width of spinning sidebands due to the 180 degrees flip of water molecules and the reorientation of [M(H2O)6]2+ about its C3 axis were observed. In the paramagnetic compounds, paramagnetic spin-spin relaxation and anisotropic g-factor result in additional linebroadening of each of the spinning sidebands. The spectral simulation of MAS 2H NMR, including the effects of paramagnetic shift and anisotropic spin-spin relaxation due to electron-nuclear dipolar coupling and anisotropic g-factor, was performed for several molecular motions. Information about molecular motions in the dynamic range of 10(2) s(-1)2H MAS NMR spectra when these paramagnetic effects are taken into account. PMID:18027914