Science.gov

Sample records for 2nd generation biofuels

  1. 2nd Generation ELT Performance Specification Development

    NASA Technical Reports Server (NTRS)

    Stimson, Chad M.

    2015-01-01

    NASA Search And Rescue is supporting RTCA SC-229 with research and recommendations for performance specifications for the 2nd generation of emergency locator transmitters. Areas for improvement and methods for collecting data will be presented.

  2. 2nd & 3rd Generation Vehicle Subsystems

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).

  3. 2nd Generation RLV Risk Definition Program

    NASA Technical Reports Server (NTRS)

    Davis, Robert M.; Stucker, Mark (Technical Monitor)

    2000-01-01

    The 2nd Generation RLV Risk Reduction Mid-Term Report summarizes the status of Kelly Space & Technology's activities during the first two and one half months of the program. This report was presented to the cognoscente Contracting Officer's Technical Representative (COTR) and selected Marshall Space Flight Center staff members on 26 September 2000. The report has been approved and is distributed on CD-ROM (as a PowerPoint file) in accordance with the terms of the subject contract, and contains information and data addressing the following: (1) Launch services demand and requirements; (2) Architecture, alternatives, and requirements; (3) Costs, pricing, and business cases analysis; (4) Commercial financing requirements, plans, and strategy; (5) System engineering processes and derived requirements; and (6) RLV system trade studies and design analysis.

  4. 2nd Generation Reusable Launch Vehicle NASA Led Propulsion Tasks

    NASA Technical Reports Server (NTRS)

    Richards, Steve

    2000-01-01

    Design, development and test of a 2nd generation Reusable Launch Vehicle (RLV) is presented. This current paper discusses the following: 2nd Generation RLV Propulsion Project, Overview of NASA Led Tasks in Propulsion, Gen2 Turbo Machinery Technology Demonstrator, and Combustion Devices Test Bed, GRCop-84 Sheet For Combustion Chambers, Nozzles and Large Actively Cooled Structures

  5. 2nd Generation RLV: Program Goals and Acquisition Strategy

    NASA Technical Reports Server (NTRS)

    Graham, J. Bart; Dumbacher, D. L. (Technical Monitor)

    2001-01-01

    The risk to loss of life for Space Shuttle crewmembers is approximately one in 245 missions. U.S. launch service providers captured nearly 100%, of the commercial launch market revenues in the mid 1980s. Today, the U.S. captures less than 50% of that market. A launch system architecture is needed that will dramatically increase the safety of space flight while significantly reducing the cost. NASA's Space Launch Initiative, which is implemented by the 2nd Generation RLV Program Office at Marshall Space Flight Center, seeks to develop technology and reusable launch vehicle concepts which satisfy the commercial launch market needs and the unique needs of NASA. Presented in this paper are the five primary elements of NASA's Integrated Space Transportation Plan along with the highest level goals and the acquisition strategy of the 2nd Generation RLV Program. Approval of the Space Launch Initiative FY01 budget of $290M is seen as a major commitment by the Agency and the Nation to realize the commercial potential that space offers and to move forward in the exploration of space.

  6. Philips' 2nd generation Novallure LED candle lamp

    NASA Astrophysics Data System (ADS)

    Li, Yun; Pei, Zhigang; Yuan, Chuan; Jiang, Tan; Lu, Zhengsong; Wang, Yuqian; Duan, Xiaoqing; Xiong, Yan; Zhong, Hong; Liu, Ye

    2010-08-01

    Finding an energy efficient replacement of incandescent candle lamp has been a technical challenge. Compact fluorescent lamps, for example, can be miniaturized to fit the form factor of a candle lamp but they fail to reproduce its "sparkle" effect. Empowered by solid state lighting technology along with original optical design, Philips has successfully developed LED-powered candle lamps "Novallure" with great energy savings (2W power consumption with lumen output of 55 lumen) and the "butterfly" radiation pattern that mimics the sparkle effect from an incandescent candle lamp. With new high performance LED packages, novel under-cut prismatic optics and state-of-the-art electronic driver solution and thermal solution, we have developed a 2nd generation Novallure with breakthrough performance: a dimmable 2700K 136 lumen LED candle lamp with CRI 90.

  7. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  8. Aging Studies of 2nd Generation BaBar RPCs

    SciTech Connect

    Band, H.R.; /SLAC

    2007-09-25

    The BaBar detector, operating at the PEPII B factory of the Stanford Linear Accelerator Center (SLAC), installed over 200 2nd generation Resistive Plate Chambers (RPCs) in 2002. The streamer rates produced by backgrounds and signals from normal BaBar running vary considerably (0.1- >20 Hz/cm2) depending on the layer and position of the chambers, thus providing a broad spectrum test of RPC performance and aging. The lowest rate chambers have performed very well with stable efficiencies averaging 95%. Other chambers had rate-dependant inefficiencies due to Bakelite drying which were reversed by the introduction of humidified gases. RPC inefficiencies in the highest rate regions of the higher rate chambers have been observed and also found to be rate dependant. The inefficient regions grow with time and have not yet been reduced by operation with humidified input gas. Three of these chambers were converted to avalanche mode operation and display significantly improved efficiencies. The rate of production of HF in the RPC exhaust gases was measured in avalanche and streamer mode RPCs and found to be comparable despite the lower current of the avalanche mode RPCs.

  9. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Technical Reports Server (NTRS)

    Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle

    2009-01-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  10. The 2nd Generation Real Time Mission Monitor (RTMM) Development

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.

    2009-12-01

    The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more

  11. Coal-fired generation staging a comeback. 2nd ed.

    SciTech Connect

    2007-07-01

    The report is an overview of the renewed U.S. market interest in coal-fired power generation. It provides a concise look at what is driving interest in coal-fired generation, the challenges faced in implementing coal-fired generation projects, and the current and future state of coal-fired generation. Topics covered in the report include: An overview of coal-fired generation including its history, the current market environment, and its future prospects; An analysis of the key business factors that are driving renewed interest in coal-fired generation; An analysis of the challenges that are hindering the implementation of coal-fired generation projects; A description of coal-fired generation technologies; A review of the economic drivers of coal-fired generation project success; An evaluation of coal-fired generation versus other generation technologies; A discussion of the key government initiatives supporting new coal-fired generation; and A listing of planned coal-fired generation projects. 13 figs., 12 tabs., 1 app.

  12. 2nd Generation Reusable Launch Vehicle Potential Commercial Development Scenarios

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.; Rogacki, John R. (Technical Monitor)

    2001-01-01

    The presentation will discuss potential commercial development scenarios for a Second Generation Reusable Launch Vehicle. The analysis of potential scenarios will include commercial rates of return, government return on investment, and market considerations. The presentation will include policy considerations in addition to analysis of Second Generation Reusable Launch Vehicle economics. The data discussed is being developed as a part of NASA's Second Generation Reusable Launch Vehicle Program, for consideration as potential scenarios for enabling a next generation system. Material will include potential scenarios not previously considered by NASA or presented at other conferences. Candidate paper has not been presented at a previous meeting, and conference attendance of the author has been approved by NASA.

  13. Coal gasification for power generation. 2nd ed.

    SciTech Connect

    2006-10-15

    The report gives an overview of the opportunities for coal gasification in the power generation industry. It provides a concise look at the challenges faced by coal-fired generation, the ability of coal gasification to address these challenges, and the current state of IGCC power generation. Topics covered in the report include: An overview of coal generation including its history, the current market environment, and the status of coal gasification; A description of gasification technology including processes and systems; An analysis of the key business factors that are driving increased interest in coal gasification; An analysis of the barriers that are hindering the implementation of coal gasification projects; A discussion of Integrated Gasification Combined Cycle (IGCC) technology; An evaluation of IGCC versus other generation technologies; A discussion of IGCC project development options; A discussion of the key government initiatives supporting IGCC development; Profiles of the key gasification technology companies participating in the IGCC market; and A description of existing and planned coal IGCC projects.

  14. Support to 2nd Generation RLV Propulsion Project Office

    NASA Technical Reports Server (NTRS)

    Lee, Thomas J.

    2002-01-01

    In this final report regarding support to the second generation RLV (Reusable Launch Vehicle) propulsion project office, a list of tasks accomplished is presented. During this period, Lee & Associates, LLC participated in numerous Systems Requirements Reviews (SRR) related to the Cobra development program.

  15. Operations Analysis of the 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Noneman, Steven R.; Smith, C. A. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI) program is developing a second-generation reusable launch vehicle. The program goals include lowering the risk of loss of crew to 1 in 10,000 and reducing annual operations cost to one third of the cost of the Space Shuttle. The SLI missions include NASA, military and commercial satellite launches and crew and cargo launches to the space station. The SLI operations analyses provide an assessment of the operational support and infrastructure needed to operate candidate system architectures. Measures of the operability are estimated (i.e. system dependability, responsiveness, and efficiency). Operations analysis is used to determine the impact of specific technologies on operations. A conceptual path to reducing annual operations costs by two thirds is based on key design characteristics, such as reusability, and improved processes lowering labor costs. New operations risks can be expected to emerge. They can be mitigated with effective risk management with careful identification, assignment, tracking, and closure. SLI design characteristics such as nearly full reusability, high reliability, advanced automation, and lowered maintenance and servicing coupled with improved processes are contributors to operability and large operating cost reductions.

  16. First generation biofuels compete.

    PubMed

    Martin, Marshall A

    2010-11-30

    Rising petroleum prices during 2005-2008, and passage of the 2007 U.S. Energy Independence and Security Act with a renewable fuel standard of 36 billion gallons of biofuels by 2022, encouraged massive investments in U.S. ethanol plants. Consequently, corn demand increased dramatically and prices tripled. This created a strong positive correlation between petroleum, corn, and food prices resulting in an outcry from U.S. consumers and livestock producers, and food riots in several developing countries. Other factors contributed to higher grain and food prices. Economic growth, especially in Asia, and a weaker U.S. dollar encouraged U.S. grain exports. Investors shifted funds into the commodity's future markets. Higher fuel costs for food processing and transportation put upward pressure on retail food prices. From mid-2008 to mid-2009, petroleum prices fell, the U.S. dollar strengthened, and the world economy entered a serious recession with high unemployment, housing market foreclosures, collapse of the stock market, reduced global trade, and a decline in durable goods and food purchases. Agricultural commodity prices declined about 50%. Biotechnology has had modest impacts on the biofuel sector. Seed corn with traits that help control insects and weeds has been widely adopted by U.S. farmers. Genetically engineered enzymes have reduced ethanol production costs and increased conversion efficiency. PMID:20601265

  17. Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster

    NASA Technical Reports Server (NTRS)

    Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Michael J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejmil, Edward

    2003-01-01

    A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields.

  18. NASA 2nd Generation RLV Program Introduction, Status and Future Plans

    NASA Technical Reports Server (NTRS)

    Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)

    2002-01-01

    The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.

  19. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  20. Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and

  1. Systems Engineering Approach to Technology Integration for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl

    2002-01-01

    The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.

  2. Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities

    NASA Astrophysics Data System (ADS)

    Shornikov, A.; Wenander, F.

    2016-04-01

    In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.

  3. Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad

    2013-01-01

    The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.

  4. Emotional and Behavioral Disorders in 1.5th Generation, 2nd Generation Immigrant Children, and Foreign Adoptees.

    PubMed

    Tan, Tony Xing

    2016-10-01

    Existing theories (e.g., acculturative stress theory) cannot adequately explain why mental disorders in immigrants are less prevalent than in non-immigrants. In this paper, the culture-gene co-evolutionary theory of mental disorders was utilized to generate a novel hypothesis that connection to heritage culture reduces the risk for mental disorders in immigrant children. Four groups of children aged 2-17 years were identified from the 2007 United States National Survey of Children's Health: 1.5th generation immigrant children (n = 1378), 2nd generation immigrant children (n = 4194), foreign adoptees (n = 270), and non-immigrant children (n = 54,877). The 1.5th generation immigrant children's connection to their heritage culture is stronger than or similar to the 2nd generation immigrants, while the foreign adoptees have little connection to their birth culture. Controlling for age, sex, family type and SES, the odds for having ADD/ADHD, Conduct Disorder, Anxiety Disorder, and Depression diagnosis were the lowest for the 1.5th generation immigrant children, followed by the 2nd generation immigrant children and the foreign adoptees. The foreign adoptees and non-adopted children were similar in the odds of having these disorders. Connection to heritage culture might be the underlying mechanism that explained recent immigrants' lower rates of mental disorders. PMID:26972324

  5. The planar optics phase sensor: a study for the VLTI 2nd generation fringe tracker

    NASA Astrophysics Data System (ADS)

    Blind, Nicolas; Le Bouquin, Jean-Baptiste; Absil, Olivier; Alamir, Mazen; Berger, Jean-Philippe; Defrère, Denis; Feautrier, Philippe; Hénault, François; Jocou, Laurent; Kern, Pierre; Laurent, Thomas; Malbet, Fabien; Mourard, Denis; Rousselet-Perraut, Karine; Sarlette, Alain; Surdej, Jean; Tarmoul, Nassima; Tatulli, Eric; Vincent, Lionel

    2010-07-01

    In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2nd Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design.

  6. Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours

    NASA Astrophysics Data System (ADS)

    Barnhardt, D.; Garretson, P.; Will, P.

    Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.

  7. The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF

    SciTech Connect

    Reece, Charles E.; Reilly, Anthony V.

    2012-09-01

    The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.

  8. Third Generation Biofuels via Direct Cellulose Fermentation

    PubMed Central

    Carere, Carlo R.; Sparling, Richard; Cicek, Nazim; Levin, David B.

    2008-01-01

    Consolidated bioprocessing (CBP) is a system in which cellulase production, substrate hydrolysis, and fermentation are accomplished in a single process step by cellulolytic microorganisms. CBP offers the potential for lower biofuel production costs due to simpler feedstock processing, lower energy inputs, and higher conversion efficiencies than separate hydrolysis and fermentation processes, and is an economically attractive near-term goal for “third generation” biofuel production. In this review article, production of third generation biofuels from cellulosic feedstocks will be addressed in respect to the metabolism of cellulolytic bacteria and the development of strategies to increase biofuel yields through metabolic engineering. PMID:19325807

  9. Computer Generation of Subduction Frequencies for 2ND Order Phase Transitions in Two-Dimensions

    NASA Astrophysics Data System (ADS)

    Deonarine, Samaroo

    The Landau theory of 2nd order phase transitions and Group theory Criteria are used to predict which subgroups G (L-HOOK EQ) G(,0) can occur in transitions for 2-D systems (plane-group to plane-group and diperiodic to diperiodic). Previous work 1 on the 17 plane space groups has been based on the tables of Coxeter & Moser 2 and the International Tables of X-ray Crystallography (ITXRC, 1965) 3 . These tables do not exhaust all the possible subgroups of a space group 4 . Since such explicit tables are non-existent for other families of space groups we have developed algorithms that make a systematic search of the parent unit cell of G(,0) to locate the origin and orientation of all its subgroups G, G (L-HOOK EQ) G(,0). We have written a RATFOR/FORTRAN program for the VAX 11-780 which will generate the subduction frequencies. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). for allowed second order phase transitions in 2-dimensional systems that are describable by the 80 diperiodic Groups G(,0) and G 5 . Our program gives a complete tabulation (Origin, new Translation Sublattice, Subduction Frequency, Subgroup and its Generators) of the allowed continuous or second order phase transitions from a parent diperiodic group G(,0) to another diperiodic subgroup G.

  10. Scope of Algae as Third Generation Biofuels

    PubMed Central

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2015-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  11. Scope of algae as third generation biofuels.

    PubMed

    Behera, Shuvashish; Singh, Richa; Arora, Richa; Sharma, Nilesh Kumar; Shukla, Madhulika; Kumar, Sachin

    2014-01-01

    An initiative has been taken to develop different solid, liquid, and gaseous biofuels as the alternative energy resources. The current research and technology based on the third generation biofuels derived from algal biomass have been considered as the best alternative bioresource that avoids the disadvantages of first and second generation biofuels. Algal biomass has been investigated for the implementation of economic conversion processes producing different biofuels such as biodiesel, bioethanol, biogas, biohydrogen, and other valuable co-products. In the present review, the recent findings and advance developments in algal biomass for improved biofuel production have been explored. This review discusses about the importance of the algal cell contents, various strategies for product formation through various conversion technologies, and its future scope as an energy security. PMID:25717470

  12. Improved beam spot measurements in the 2nd generation proton beam writing system

    NASA Astrophysics Data System (ADS)

    Yao, Yong; van Mourik, Martin W.; Santhana Raman, P.; van Kan, Jeroen A.

    2013-07-01

    Nanosized ion beams (especially proton and helium) play a pivotal role in the field of ion beam lithography and ion beam analysis. Proton beam writing has shown lithographic details down to the 20 nm level, limited by the proton beam spot size. Introducing a smaller spot size will allow smaller lithographic features. Smaller probe sizes, will also drastically improve the spatial resolution for ion beam analysis techniques. Among many other requirements, having an ideal resolution standard, used for beam focusing and a reliable focusing method, is an important pre-requisite for sub-10 nm beam spot focusing. In this paper we present the fabrication processes of a free-standing resolution standard with reduced side-wall projection and high side-wall verticality. The resulting grid is orthogonal (90.0° ± 0.1), has smooth edges with better than 6 nm side-wall projection. The new resolution standard has been used in focusing a 2 MeV H2+ beam in the 2nd generation PBW system at Center for Ion Beam Applications, NUS. The beam size has been characterized using on- and off-axis scanning transmission ion microscopy (STIM) and ion induced secondary electron detection, carried out with a newly installed micro channel plate electron detector. The latter has been shown to be a realistic alternative to STIM measurements, as the drawback of PIN diode detector damage is alleviated. With these improvements we show reproducible beam focusing down to 14 nm.

  13. Biofuels

    NASA Video Gallery

    What’s green, slimy and packed full of energy? Algae, of course! This biofuel is just one of the many renewable energies NASA studies. Biofuels could generate and store energy for long-term human...

  14. Next generation biofuel engineering in prokaryotes

    PubMed Central

    Gronenberg, Luisa S.; Marcheschi, Ryan J.; Liao, James C.

    2014-01-01

    Next-generation biofuels must be compatible with current transportation infrastructure and be derived from environmentally sustainable resources that do not compete with food crops. Many bacterial species have unique properties advantageous to the production of such next-generation fuels. However, no single species possesses all characteristics necessary to make high quantities of fuels from plant waste or CO2. Species containing a subset of the desired characteristics are used as starting points for engineering organisms with all desired attributes. Metabolic engineering of model organisms has yielded high titer production of advanced fuels, including alcohols, isoprenoids and fatty acid derivatives. Technical developments now allow engineering of native fuel producers, as well as lignocellulolytic and autotrophic bacteria, for the production of biofuels. Continued research on multiple fronts is required to engineer organisms for truly sustainable and economical biofuel production. PMID:23623045

  15. BMI differences in 1st and 2nd generation immigrants of Asian and European origin to Australia.

    PubMed

    Hauck, Katharina; Hollingsworth, Bruce; Morgan, Lawrie

    2011-01-01

    We estimate assimilation of immigrants' body mass index (BMI) to the host population of Australia over one generation, conducting separate analyses for immigrants from 7 regions of Europe and Asia. We use quantile regressions to allow for differing impact of generational status across 19 quantiles of BMI from under-weight to morbidly obese individuals. We find that 1st generation South European immigrants have higher, and South and East Asian immigrants have lower BMI than Australians, but have assimilated to the BMI of their hosts in the 2nd generation. There are no or only small BMI differences between Australians and 1st and 2nd generation immigrants from East Europe, North-West Europe, Middle East and Pacific regions. We conclude that both upward and downward assimilation in some immigrant groups is most likely caused by factors which can change over one generation (such as acculturation), and not factors which would take longer to change (such as genetics). Our results suggest that public health policies targeting the lifestyles of well educated Asian immigrants may be effective in preventing BMI increase in this subgroup. PMID:20869292

  16. Time resolved 2nd harmonic generation at LaAlO3/SrTiO3 Interfaces

    NASA Astrophysics Data System (ADS)

    Adhikari, Sanjay; Eom, Chang-Beom; Ryu, Sangwoo; Cen, Cheng

    2014-03-01

    Ultrafast spectroscopy can produce information of carrier/lattice dynamics, which is especially valuable for understanding phase transitions at LaAlO3/SrTiO3 interfaces. LaAlO3 (LAO) and SrTiO3 (STO) are both associated with wide band gap, which allows deep penetration of commonly used laser wavelengths and therefore usually leads to overwhelming bulk signal background. Here we report a time resolved study of a 2nd harmonic generation (SHG) signal resulting from impulsive below-the-band-gap optical pumping. The nonlinear nature of the signal enables us to probe the interface directly. Output of a home built Ti:Sapphire laser and BBO crystal were used to generate 30fs pulses of two colors (405nm and 810nm). The 405nm pulse was used to pump the LAO/STO interfaces, while 2nd harmonics of the 810nm pulse generated at the interfaces was probed as a function of the time delay. Signals from samples with varying LAO thicknesses clearly correlates to the metal-insulator transition. Distinct time dependent signals were observed at LAO/STO interfaces grown on different substrates. Experiments performed at different optical polarization geometries, interface electric fields and temperatures allow us to paint a clearer picture of the novel oxide heterostructures under investigation.

  17. Impact of Insulin Resistance on Neointimal Tissue Proliferation after 2nd-Generation Drug-Eluting Stent Implantation

    PubMed Central

    Yaguchi, Isao; Komatsu, Sachiko; Nakahara, Shiro; Kobayashi, Sayuki; Sakai, Yoshihiko; Taguchi, Isao

    2015-01-01

    Percutaneous coronary intervention is established as an effective treatment for patients with ischemic heart disease; in particular, drug-eluting stent implantation is known to suppress in-stent restenosis. Diabetes mellitus is an independent risk factor for restenosis, so reducing insulin resistance is being studied as a new treatment approach. In this prospective study, we sought to clarify the factors associated with in-stent restenosis after percutaneous coronary intervention, and we evaluated the homeostasis model assessment of insulin resistance (HOMA-IR) index as a predictor of restenosis. We enrolled 136 consecutive patients who underwent elective percutaneous coronary intervention at our hospital from February 2010 through April 2013. All were implanted with a 2nd-generation drug-eluting stent. We distributed the patients in accordance with their HOMA-IR index values into insulin-resistant Group P (HOMA-IR, ≥2.5; n=77) and noninsulin-resistant Group N (HOMA-IR, <2.5; n=59). Before and immediately after stenting, we measured reference diameter, minimal lumen diameter, and percentage of stenosis, and after 8 months we measured the last 2 factors and late lumen loss, all by means of quantitative coronary angiography. After 8 months, the mean minimal lumen diameter was smaller in Group P than that in Group N (1.85 ± 1.02 vs 2.37 ± 0.66 mm; P=0.037), and the mean late lumen loss was larger (0.4 ± 0.48 vs 0.16 ± 0.21 mm; P=0.025). These results suggest that insulin resistance affects neointimal tissue proliferation after 2nd-generation drug-eluting stent implantation. PMID:26413014

  18. STARS 2.0: 2nd-generation open-source archiving and query software

    NASA Astrophysics Data System (ADS)

    Winegar, Tom

    2008-07-01

    The Subaru Telescope is in process of developing an open-source alternative to the 1st-generation software and databases (STARS 1) used for archiving and query. For STARS 2, we have chosen PHP and Python for scripting and MySQL as the database software. We have collected feedback from staff and observers, and used this feedback to significantly improve the design and functionality of our future archiving and query software. Archiving - We identified two weaknesses in 1st-generation STARS archiving software: a complex and inflexible table structure and uncoordinated system administration for our business model: taking pictures from the summit and archiving them in both Hawaii and Japan. We adopted a simplified and normalized table structure with passive keyword collection, and we are designing an archive-to-archive file transfer system that automatically reports real-time status and error conditions and permits error recovery. Query - We identified several weaknesses in 1st-generation STARS query software: inflexible query tools, poor sharing of calibration data, and no automatic file transfer mechanisms to observers. We are developing improved query tools and sharing of calibration data, and multi-protocol unassisted file transfer mechanisms for observers. In the process, we have redefined a 'query': from an invisible search result that can only transfer once in-house right now, with little status and error reporting and no error recovery - to a stored search result that can be monitored, transferred to different locations with multiple protocols, reporting status and error conditions and permitting recovery from errors.

  19. A Plan for Advanced Guidance and Control Technology for 2nd Generation Reusable Launch Vehicles

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Fogle, Frank (Technical Monitor)

    2002-01-01

    Advanced guidance and control (AG&C) technologies are critical for meeting safety/reliability and cost requirements for the next generation of reusable launch vehicle (RLV). This becomes clear upon examining the number of expendable launch vehicle failures in the recent past where AG&C technologies would have saved a RLV with the same failure mode, the additional vehicle problems where this technology applies, and the costs associated with mission design with or without all these failure issues. The state-of-the-art in guidance and control technology, as well as in computing technology, is at the point where we can took to the possibility of being able to safely return a RLV in any situation where it can physically be recovered. This paper outlines reasons for AG&C, current technology efforts, and the additional work needed for making this goal a reality.

  20. From first generation biofuels to advanced solar biofuels.

    PubMed

    Aro, Eva-Mari

    2016-01-01

    Roadmaps towards sustainable bioeconomy, including the production of biofuels, in many EU countries mostly rely on biomass use. However, although biomass is renewable, the efficiency of biomass production is too low to be able to fully replace the fossil fuels. The use of land for fuel production also introduces ethical problems in increasing the food price. Harvesting solar energy by the photosynthetic machinery of plants and autotrophic microorganisms is the basis for all biomass production. This paper describes current challenges and possibilities to sustainably increase the biomass production and highlights future technologies to further enhance biofuel production directly from sunlight. The biggest scientific breakthroughs are expected to rely on a new technology called "synthetic biology", which makes engineering of biological systems possible. It will enable direct conversion of solar energy to a fuel from inexhaustible raw materials: sun light, water and CO2. In the future, such solar biofuels are expected to be produced in engineered photosynthetic microorganisms or in completely synthetic living factories. PMID:26667057

  1. Outcome of Treatment of CML with 2nd Generation Tyrosine Kinase Inhibitors After Imatinib Failure

    PubMed Central

    Cornelison, A. Megan; Kantarjian, Hagop; Cortes, Jorge; Jabbour, Elias

    2015-01-01

    Although imatinib revolutionized the management of chronic myeloid leukemia (CML), recent data indicate a transformation in the treatment approach likely in the near future. For patients who fail with standard-dose imatinib therapy, imatinib dose escalation is a second-line option. However, high-dose imatinib is not an appropriate approach for patients experiencing drug toxicity, and there remain questions over the durability of responses achieved with this strategy. Alternative second-line options include the newer tyrosine kinase inhibitors (TKIs) like dasatinib and nilotinib. A substantial amount of long-term data for these agents is available. Although both are potent and specific BCR-ABL TKIs, dasatinib and nilotinib exhibit unique pharmacological profiles and response patterns relative to different patient characteristics, such as disease stage and BCR-ABL mutational status. The superiority of second generation TKIs over imatinib in newly diagnosed disease has been recognized as well. They induce high and rapid rates of cytogenetic and molecular response, with less progression to advanced forms of disease in comparison with imatinib. Several investigational agents specific for those patients with the T315I mutation remain under evaluation. The future of CML therapy may include early use of these potent agents to help more patients achieve molecular remission and potentially be a path to a CML cure. PMID:22035738

  2. InAs/GaSb type II superlattices for advanced 2nd and 3rd generation detectors

    NASA Astrophysics Data System (ADS)

    Walther, Martin; Rehm, Robert; Schmitz, Johannes; Fleissner, Joachim; Rutz, Frank; Kirste, Lutz; Scheibner, Ralf; Wendler, Joachim; Ziegler, Johann

    2010-01-01

    InAs/GaSb short-period superlattices (SL) based on GaSb, InAs and AlSb have proven their great potential for high performance infrared detectors. Lots of interest is currently focused on the development of short-period InAs/GaSb SLs for advanced 2nd and 3rd generation infrared detectors between 3 - 30 μm. For the fabrication of mono- and bispectral thermal imaging systems in the mid-wavelength infrared region (MWIR) a manufacturable technology for high responsivity thermal imaging systems has been developed. InAs/GaSb short-period superlattices can be fabricated with up to 1000 periods in the intrinsic region without revealing diffusion limited behavior. This enables the fabrication of InAs/GaSb SL camera systems with high responsivity comparable to state of the art CdHgTe and InSb detectors. The material system is also ideally suited for the fabrication of dual-color MWIR/MWIR InAs/GaSb SL camera systems with high quantum efficiency for missile approach warning systems with simultaneous and spatially coincident detection in both spectral channels.

  3. Engineering microbes for tolerance to next-generation biofuels

    PubMed Central

    2011-01-01

    A major challenge when using microorganisms to produce bulk chemicals such as biofuels is that the production targets are often toxic to cells. Many biofuels are known to reduce cell viability through damage to the cell membrane and interference with essential physiological processes. Therefore, cells must trade off biofuel production and survival, reducing potential yields. Recently, there have been several efforts towards engineering strains for biofuel tolerance. Promising methods include engineering biofuel export systems, heat shock proteins, membrane modifications, more general stress responses, and approaches that integrate multiple tolerance strategies. In addition, in situ recovery methods and media supplements can help to ease the burden of end-product toxicity and may be used in combination with genetic approaches. Recent advances in systems and synthetic biology provide a framework for tolerance engineering. This review highlights recent targeted approaches towards improving microbial tolerance to next-generation biofuels with a particular emphasis on strategies that will improve production. PMID:21936941

  4. Next-generation biomass feedstocks for biofuel production

    PubMed Central

    Simmons, Blake A; Loque, Dominique; Blanch, Harvey W

    2008-01-01

    The development of second-generation biofuels - those that do not rely on grain crops as inputs - will require a diverse set of feedstocks that can be grown sustainably and processed cost-effectively. Here we review the outlook and challenges for meeting hoped-for production targets for such biofuels in the United States. PMID:19133109

  5. Immobilized High Level Waste (HLW) Interim Storage Alternative Generation and analysis and Decision Report 2nd Generation Implementing Architecture

    SciTech Connect

    CALMUS, R.B.

    2000-09-14

    Two alternative approaches were previously identified to provide second-generation interim storage of Immobilized High-Level Waste (IHLW). One approach was retrofit modification of the Fuel and Materials Examination Facility (FMEF) to accommodate IHLW. The results of the evaluation of the FMEF as the second-generation IHLW interim storage facility and subsequent decision process are provided in this document.

  6. The impact of first-generation biofuels on the depletion of the global phosphorus reserve.

    PubMed

    Hein, Lars; Leemans, Rik

    2012-06-01

    The large majority of biofuels to date is "first-generation" biofuel made from agricultural commodities. All first-generation biofuel production systems require phosphorus (P) fertilization. P is an essential plant nutrient, yet global reserves are finite. We argue that committing scarce P to biofuel production involves a trade-off between climate change mitigation and future food production. We examine biofuel production from seven types of feedstock, and find that biofuels at present consume around 2% of the global inorganic P fertilizer production. For all examined biofuels, with the possible exception of sugarcane, the contribution to P depletion exceeds the contribution to mitigating climate change. The relative benefits of biofuels can be increased through enhanced recycling of P, but high increases in P efficiency are required to balance climate change mitigation and P depletion impacts. We conclude that, with the current production systems, the production of first-generation biofuels compromises food production in the future. PMID:22351599

  7. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  8. [Modalities of use of ceritinib (Zykadia™), a 2nd generation ALK inhibitor, in advanced stage non-small cell lung cancer].

    PubMed

    Giroux Leprieur, Etienne; Fallet, Vincent; Wislez, Marie

    2015-12-01

    Around 4% of advanced non-small cell lung cancers (NSCLC) harbor a ALK rearrangement, with high sensitivity to ALK inhibitor as crizotinib. However, the vast majority of these tumors end with a tumor progression after several months of treatment with crizotinib. Ceritinib is a 2nd generation ALK inhibitor, which showed high efficiency in NSCLC with ALK rearrangement. Results from phase I trial showed a response rate at 58% in these tumors, with a similar rate for previously crizotinib-treated patients or crizotinib-naïve patients. Moreover, cerebral responses were observed with ceritinib. Preliminary date from a phase 2 trial confirmed these results. These promising results allowed a European marketing authorization (autorisation de mise sur le marché [AMM]) since May 2015 for the treatment of advanced NSCLC with ALK rearrangement and resistance or intolerance to crizotinib. PMID:26597476

  9. Climate regulation enhances the value of second generation biofuel technology

    NASA Astrophysics Data System (ADS)

    Hertel, T. W.; Steinbuks, J.; Tyner, W.

    2014-12-01

    Commercial scale implementation of second generation (2G) biofuels has long been 'just over the horizon - perhaps a decade away'. However, with recent innovations, and higher oil prices, we appear to be on the verge of finally seeing commercial scale implementations of cellulosic to liquid fuel conversion technologies. Interest in this technology derives from many quarters. Environmentalists see this as a way of reducing our carbon footprint, however, absent a global market for carbon emissions, private firms will not factor this into their investment decisions. Those interested in poverty and nutrition see this as a channel for lessening the biofuels' impact on food prices. But what is 2G technology worth to society? How valuable are prospective improvements in this technology? And how are these valuations affected by future uncertainties, including climate regulation, climate change impacts, and energy prices? This paper addresses all of these questions. We employ FABLE, a dynamic optimization model for the world's land resources which characterizes the optimal long run path for protected natural lands, managed forests, crop and livestock land use, energy extraction and biofuels over the period 2005-2105. By running this model twice for each future state of the world - once with 2G biofuels technology available and once without - we measure the contribution of the technology to global welfare. Given the uncertainty in how these technologies are likely to evolve, we consider a range cost estimates - from optimistic to pessimistic. In addition to technological uncertainty, there is great uncertainty in the conditions characterizing our baseline for the 21st century. For each of the 2G technology scenarios, we therefore also consider a range of outcomes for key drivers of global land use, including: population, income, oil prices, climate change impacts and climate regulation. We find that the social valuation of 2G technologies depends critically on climate change

  10. Efficient 2(nd) and 4(th) harmonic generation of a single-frequency, continuous-wave fiber amplifier.

    PubMed

    Sudmeyer, Thomas; Imai, Yutaka; Masuda, Hisashi; Eguchi, Naoya; Saito, Masaki; Kubota, Shigeo

    2008-02-01

    We demonstrate efficient cavity-enhanced second and fourth harmonic generation of an air-cooled, continuous-wave (cw), single-frequency 1064 nm fiber-amplifier system. The second harmonic generator achieves up to 88% total external conversion efficiency, generating more than 20-W power at 532 nm wavelength in a diffraction-limited beam (M(2) < 1.05). The nonlinear medium is a critically phase-matched, 20-mm long, anti-reflection (AR) coated LBO crystal operated at 25 degrees C. The fourth harmonic generator is based on an AR-coated, Czochralski-grown beta-BaB(2)O(4) (BBO) crystal optimized for low loss and high damage threshold. Up to 12.2 W of 266-nm deep-UV (DUV) output is obtained using a 6-mm long critically phase-matched BBO operated at 40 degrees C. This power level is more than two times higher than previously reported for cw 266-nm generation. The total external conversion efficiency from the fundamental at 1064 nm to the fourth harmonic at 266 nm is >50%. PMID:18542230

  11. Performance Evaluation of Electrochem's PEM Fuel Cell Power Plant for NASA's 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Kimble, Michael C.; Hoberecht, Mark

    2003-01-01

    NASA's Next Generation Launch Technology (NGLT) program is being developed to meet national needs for civil and commercial space access with goals of reducing the launch costs, increasing the reliability, and reducing the maintenance and operating costs. To this end, NASA is considering an all- electric capability for NGLT vehicles requiring advanced electrical power generation technology at a nominal 20 kW level with peak power capabilities six times the nominal power. The proton exchange membrane (PEM) fuel cell has been identified as a viable candidate to supply this electrical power; however, several technology aspects need to be assessed. Electrochem, Inc., under contract to NASA, has developed a breadboard power generator to address these technical issues with the goal of maximizing the system reliability while minimizing the cost and system complexity. This breadboard generator operates with dry hydrogen and oxygen gas using eductors to recirculate the gases eliminating gas humidification and blowers from the system. Except for a coolant pump, the system design incorporates passive components allowing the fuel cell to readily follow a duty cycle profile and that may operate at high 6:1 peak power levels for 30 second durations. Performance data of the fuel cell stack along with system performance is presented to highlight the benefits of the fuel cell stack design and system design for NGLT vehicles.

  12. Tailoring next-generation biofuels and their combustion in next-generation engines.

    SciTech Connect

    Gladden, John Michael; Wu, Weihua; Taatjes, Craig A.; Scheer, Adam Michael; Turner, Kevin M.; Yu, Eizadora T.; O'Bryan, Greg; Powell, Amy Jo; Gao, Connie W.

    2013-11-01

    Increasing energy costs, the dependence on foreign oil supplies, and environmental concerns have emphasized the need to produce sustainable renewable fuels and chemicals. The strategy for producing next-generation biofuels must include efficient processes for biomass conversion to liquid fuels and the fuels must be compatible with current and future engines. Unfortunately, biofuel development generally takes place without any consideration of combustion characteristics, and combustion scientists typically measure biofuels properties without any feedback to the production design. We seek to optimize the fuel/engine system by bringing combustion performance, specifically for advanced next-generation engines, into the development of novel biosynthetic fuel pathways. Here we report an innovative coupling of combustion chemistry, from fundamentals to engine measurements, to the optimization of fuel production using metabolic engineering. We have established the necessary connections among the fundamental chemistry, engine science, and synthetic biology for fuel production, building a powerful framework for co-development of engines and biofuels.

  13. Advances with the new AIMS fab 193 2nd generation: a system for the 65 nm node including immersion

    NASA Astrophysics Data System (ADS)

    Zibold, Axel M.; Poortinga, E.; Doornmalen, H. v.; Schmid, R.; Scherubl, T.; Harnisch, W.

    2005-06-01

    The Aerial Image Measurement System, AIMS, for 193nm lithography emulation is established as a standard for the rapid prediction of wafer printability for critical structures including dense patterns and defects or repairs on masks. The main benefit of AIMS is to save expensive image qualification consisting of test wafer exposures followed by wafer CD-SEM resist or wafer analysis. By adjustment of numerical aperture (NA), illumination type and partial coherence (σ) to match any given stepper/ scanner, AIMS predicts the printability of 193nm reticles such as binary with, or without OPC and phase shifting. A new AIMS fab 193 second generation system with a maximum NA of 0.93 is now available. Improvements in field uniformity, stability over time, measurement automation and higher throughput meet the challenging requirements of the 65nm node. A new function, "Global CD Map" can be applied to automatically measure and analyse the global CD uniformity of repeating structures across a reticle. With the options of extended depth-of-focus (EDOF) software and the upcoming linear polarisation capability in the illumination the new AIMS fab 193 second generation system is able to cover both dry and immersion requirements for NA < 1. Rigorous simulations have been performed to study the effects of polarisation for imaging by comparing the aerial image of the AIMS to the resist image of the scanner.

  14. Autocommander: A Supervisory Controller for Integrated Guidance and Control for the 2nd Generation Reusable Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Fisher, J. E.; Lawrence, D. A.; Zhu, J. J.; Jackson, Scott (Technical Monitor)

    2002-01-01

    This paper presents a hierarchical architecture for integrated guidance and control that achieves risk and cost reduction for NASA's 2d generation reusable launch vehicle (RLV). Guidance, attitude control, and control allocation subsystems that heretofore operated independently will now work cooperatively under the coordination of a top-level autocommander. In addition to delivering improved performance from a flight mechanics perspective, the autocommander is intended to provide an autonomous supervisory control capability for traditional mission management under nominal conditions, G&C reconfiguration in response to effector saturation, and abort mode decision-making upon vehicle malfunction. This high-level functionality is to be implemented through the development of a relational database that is populated with the broad range of vehicle and mission specific data and translated into a discrete event system model for analysis, simulation, and onboard implementation. A Stateflow Autocoder software tool that translates the database into the Stateflow component of a Matlab/Simulink simulation is also presented.

  15. Contribution of ion beam analysis methods to the development of 2nd generation high temperature superconducting (HTS) wires

    SciTech Connect

    Usov, Igor O; Arendt, Paul N; Stan, Liliana; Holesinger, Terry G; Foltyn, Steven R; Depaula, Raymond F

    2009-01-01

    One of the crucial steps in the second generation high temperature superconducting wire program was development of the buffer layer architecture. The architecture designed at the Superconductivity Technology Center at Los Alamos National Laboratory consists of several oxide layers wherein each layer plays a specific role, namely: nucleation layer, diffusion barrier, biaxially textured template, and an intermediate layer with a good match to the lattice parameter of superconducting Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7} (YBCO) compound. This report demonstrates how a wide range of ion beam analysis techniques (SIMS, RBS, channeling, PIXE, PIGE, NRA, ERD) was employed for analysis of each buffer layer and the YBCO films. These results assisted in understanding of a variety of physical processes occurring during the buffet layer fabrication and helped to optimize the buffer layer architecture as a whole.

  16. Study of recovery characteristics of 2nd generation HTS tapes with different stabilizers for resistive type superconducting fault current limiters

    NASA Astrophysics Data System (ADS)

    Sheng, Jie; Zeng, Weina; Ma, Jun; Yao, Zhihao; Li, Zhuyong; Jin, Zhijian; Hong, Zhiyong

    2016-02-01

    The resistive type superconducting fault current limiter (SFCL) is one of the most important superconducting power applications nowadays. As known, this type of SFCL is settled directly in the power transmission line. When a short fault happens, the temperature of the superconductors in the SFCL will increase sharply due to the huge generated heat. This means the superconductors need time to recover the superconducting properties and be ready for the next short fault. So the recovery characteristics become one of the most crucial features of the resistive type SFCL. In this paper, several different kinds of measuring methods are presented to calculate the recovery time of the HTS tapes, and comparison of these methods is also carried out by a standard test. On basis of this, samples with different kinds of stabilizers are used to explore the influence of stabilizer on their recovery characteristics. In addition, the influence of the encapsulation technology is also discussed in this paper.

  17. Comparison of Five 2nd-Generation Supraglottic Airway Devices for Airway Management Performed by Novice Military Operators

    PubMed Central

    Henlin, Tomas; Sotak, Michal; Kovaricek, Petr; Tyll, Tomas; Balcarek, Lukas; Michalek, Pavel

    2015-01-01

    Objectives. Five different second-generation supraglottic airway devices, ProSeal LMA, Supreme LMA, i-gel, SLIPA, and Laryngeal Tube Suction-D, were studied. Operators were inexperienced users with a military background, combat lifesavers, nurses, and physicians. Methods. This was a prospective, randomized, single-blinded study. Devices were inserted in the operating room in low light conditions after induction of general anesthesia. Primary outcome was successful insertion on the first attempt while secondary aims were insertion time, number of attempts, oropharyngeal seal pressure, ease of insertion, fibre optic position of device, efficacy of ventilation, and intraoperative trauma or regurgitation of gastric contents. Results. In total, 505 patients were studied. First-attempt insertion success rate was higher in the Supreme LMA (96%), i-gel (87.9%), and ProSeal LMA (85.9%) groups than in the Laryngeal Tube Suction-D (80.6%) and SLIPA (69.4%) groups. Insertion time was shortest in the Supreme LMA (70.4 ± 32.5 s) and i-gel (74.4 ± 41.1 s) groups (p < 0.001). Oropharyngeal seal pressures were higher in the Laryngeal Tube Suction-D and ProSeal LMA groups than in other three devices. Conclusions. Most study parameters for the Supreme LMA and i-gel were found to be superior to the other three tested supraglottic airway devices when inserted by novice military operators. PMID:26495289

  18. New approaches for improving the production of the 1st and 2nd generation ethanol by yeast.

    PubMed

    Kurylenko, Olena; Semkiv, Marta; Ruchala, Justyna; Hryniv, Orest; Kshanovska, Barbara; Abbas, Charles; Dmytruk, Kostyantyn; Sibirny, Andriy

    2016-01-01

    Increase in the production of 1st generation ethanol from glucose is possible by the reduction in the production of ethanol co-products, especially biomass. We have developed a method to reduce biomass accumulation of Saccharomyces cerevisiae by the manipulation of the intracellular ATP level due to overexpression of genes of alkaline phosphatase, apyrase or enzymes involved in futile cycles. The strains constructed accumulated up to 10% more ethanol on a cornmeal hydrolysate medium. Similar increase in ethanol accumulation was observed in the mutants resistant to the toxic inhibitors of glycolysis like 3-bromopyruvate and others. Substantial increase in fuel ethanol production will be obtained by the development of new strains of yeasts that ferment sugars of the abundant lignocellulosic feedstocks, especially xylose, a pentose sugar. We have found that xylose can be fermented under elevated temperatures by the thermotolerant yeast, Hansenula polymorpha. We combined protein engineering of the gene coding for xylose reductase (XYL1) along with overexpression of the other two genes responsible for xylose metabolism in yeast (XYL2, XYL3) and the deletion of the global transcriptional activator CAT8, with the selection of mutants defective in utilizing ethanol as a carbon source using the anticancer drug, 3-bromopyruvate. Resulted strains accumulated 20-25 times more ethanol from xylose at the elevated temperature of 45°C with up to 12.5 g L(-1) produced. Increase in ethanol yield and productivity from xylose was also achieved by overexpression of genes coding for the peroxisomal enzymes: transketolase (DAS1) and transaldolase (TAL2), and deletion of the ATG13 gene. PMID:26619255

  19. Optical coherence tomography analysis of the stent strut and prediction of resolved strut malapposition at 3 months after 2nd-generation drug-eluting stent implantation.

    PubMed

    Izumi, Daisuke; Miyahara, Masatoshi; Fujimoto, Naoki; Fukuoka, Shusuke; Sakai, Masataka; Dohi, Kaoru; Ito, Masaaki

    2016-08-01

    Our objective was to clarify whether thrombogenic problems with stent struts are resolved at 3 months after 2nd-generation drug-eluting stent implantation. Twenty-one patients with stable angina pectoris having 28 (22 zotarolimus-eluting, 6 everolimus-eluting) stents with optical coherence tomography (OCT)-guided percutaneous coronary intervention (PCI) were evaluated. Stent strut coverage and malapposition were evaluated by OCT immediately after PCI and at 3-month follow-up. Acute strut malapposition was observed in 26 out of 28 analyzed stents (92.9 %). At 3-month follow-up, 7 (26.9 %) of those 26 stents with strut malapposition were completely resolved, and the mean percentages of uncovered struts and malapposed struts were 8.3 and 2.0 % when analyzed by each individual stent. When analyzing a total of 30,060 struts, 807 struts (2.7 %) demonstrated acute strut malapposition. Among these, 219 struts (27.1 %) demonstrated persistent strut malapposition. On the basis of receiver-operating characteristic curve analysis, a strut-to-vessel (S-V) distance ≤160 µm on post-stenting OCT images was the corresponding cutoff point for resolved malapposed struts (sensitivity 78.1 %, specificity 62.8 %, area under the curve 0.758). The S-V distance of persistent malapposed struts on post-stenting OCT images was longer than that of resolved malapposed struts (235 ± 112 vs. 176 ± 93 µm, p < 0.01). At 3 months after PCI, the prevalence rates of uncovered and malapposed struts were relatively low in 2nd-generation drug-eluting stent. Our results suggest that OCT-guide PCI with an S-V distance ≤160 µm may be recommended especially in patients with planed short-term DAPT. PMID:26334709

  20. Space Ops 2002: Bringing Space Operations into the 21st Century. Track 3: Operations, Mission Planning and Control. 2nd Generation Reusable Launch Vehicle-Concepts for Flight Operations

    NASA Technical Reports Server (NTRS)

    Hagopian, Jeff

    2002-01-01

    With the successful implementation of the International Space Station (ISS), the National Aeronautics and Space Administration (NASA) enters a new era of opportunity for scientific research. The ISS provides a working laboratory in space, with tremendous capabilities for scientific research. Utilization of these capabilities requires a launch system capable of routinely transporting crew and logistics to/from the ISS, as well as supporting ISS assembly and maintenance tasks. The Space Shuttle serves as NASA's launch system for performing these functions. The Space Shuttle also serves as NASA's launch system for supporting other science and servicing missions that require a human presence in space. The Space Shuttle provides proof that reusable launch vehicles are technically and physically implementable. However, a couple of problems faced by NASA are the prohibitive cost of operating and maintaining the Space Shuttle and its relative inability to support high launch rates. The 2nd Generation Reusable Launch Vehicle (2nd Gen RLV) is NASA's solution to this problem. The 2nd Gen RLV will provide a robust launch system with increased safety, improved reliability and performance, and less cost. The improved performance and reduced costs of the 2nd Gen RLV will free up resources currently spent on launch services. These resource savings can then be applied to scientific research, which in turn can be supported by the higher launch rate capability of the 2nd Gen RLV. The result is a win - win situation for science and NASA. While meeting NASA's needs, the 2nd Gen RLV also provides the United States aerospace industry with a commercially viable launch capability. One of the keys to achieving the goals of the 2nd Gen RLV is to develop and implement new technologies and processes in the area of flight operations. NASA's experience in operating the Space Shuttle and the ISS has brought to light several areas where automation can be used to augment or eliminate functions

  1. Uncertainty, irreversibility, and investment in second-generation biofuels

    NASA Astrophysics Data System (ADS)

    McCarty, Tanner Joseph

    The present study formalizes and quantifies the importance of uncertainty for investment in a corn-stover based cellulosic biofuel plant. Using a real options model we recover prices of gasoline that would trigger entry into the market and calculate the portion of that entry trigger price required to cover cost and the portion that corresponds to risk premium. We then discuss the effect of managerial flexibility on the entry risk premium and the prices of gasoline that would trigger mothballing, reactivation, and exit. Results show that the risk premium required by plants to enter the second-generation biofuel market is likely to be substantial. The analysis also reveals that a break-even approach (which ignores the portion of entry price composed of risk premium), and the traditional Marshallian approach (which ignores the portion of entry price composed of both the risk premium and the drift rate), would significantly underestimate the gasoline entry trigger price and the magnitude of that underestimation increases as both volatility and mean of gasoline prices increase. Results also uncover a great deal of hysteresis (i.e. a range of gasoline prices for which there is neither entry nor exit in the market) in entry/exit behavior by plants. Hysteresis increases as gasoline prices become more volatile. Hysteresis suggests that, at the industry level, positive (negative) demand shocks will have a significant impact on prices (production) and a limited impact on production (prices). In combination all of these results suggest that policies supporting second generation biofuels may have fallen short of their targets because of their failure to alleviate uncertainty.

  2. New efficient artemisinin derived agents against human leukemia cells, human cytomegalovirus and Plasmodium falciparum: 2nd generation 1,2,4-trioxane-ferrocene hybrids.

    PubMed

    Reiter, Christoph; Fröhlich, Tony; Zeino, Maen; Marschall, Manfred; Bahsi, Hanife; Leidenberger, Maria; Friedrich, Oliver; Kappes, Barbara; Hampel, Frank; Efferth, Thomas; Tsogoeva, Svetlana B

    2015-06-01

    In our ongoing search for highly active hybrid molecules exceeding their parent compounds in anticancer, antimalaria as well as antiviral activity and being an alternative to the standard drugs, we present the synthesis and biological investigations of 2nd generation 1,2,4-trioxane-ferrocene hybrids. In vitro tests against the CCRF-CEM leukemia cell line revealed di-1,2,4-trioxane-ferrocene hybrid 7 as the most active compound (IC50 of 0.01 μM). Regarding the activity against the multidrug resistant subline CEM/ADR5000, 1,2,4-trioxane-ferrocene hybrid 5 showed a remarkable activity (IC50 of 0.53 μM). Contrary to the antimalaria activity of hybrids 4-8 against Plasmodium falciparum 3D7 strain with slightly higher IC50 values (between 7.2 and 30.2 nM) than that of their parent compound DHA, hybrids 5-7 possessed very promising activity (IC50 values lower than 0.5 μM) against human cytomegalovirus (HCMV). The application of 1,2,4-trioxane-ferrocene hybrids against HCMV is unprecedented and demonstrated here for the first time. PMID:25965779

  3. Direct and non-destructive proof of authenticity for the 2nd generation of Brazilian real banknotes via easy ambient sonic spray ionization mass spectrometry.

    PubMed

    Schmidt, Eduardo Morgado; Franco, Marcos Fernando; Regino, Karen Gomes; Lehmann, Eraldo Luiz; Arruda, Marco Aurélio Zezzi; de Carvalho Rocha, Werickson Fortunato; Borges, Rodrigo; de Souza, Wanderley; Eberlin, Marcos Nogueira; Correa, Deleon Nascimento

    2014-12-01

    Using a desorption/ionization technique, easy ambient sonic-spray ionization coupled to mass spectrometry (EASI-MS), documents related to the 2nd generation of Brazilian Real currency (R$) were screened in the positive ion mode for authenticity based on chemical profiles obtained directly from the banknote surface. Characteristic profiles were observed for authentic, seized suspect counterfeit and counterfeited homemade banknotes from inkjet and laserjet printers. The chemicals in the authentic banknotes' surface were detected via a few minor sets of ions, namely from the plasticizers bis(2-ethylhexyl)phthalate (DEHP) and dibutyl phthalate (DBP), most likely related to the official offset printing process, and other common quaternary ammonium cations, presenting a similar chemical profile to 1st-generation R$. The seized suspect counterfeit banknotes, however, displayed abundant diagnostic ions in the m/z 400-800 range due to the presence of oligomers. High-accuracy FT-ICR MS analysis enabled molecular formula assignment for each ion. The ions were separated by 44 m/z, which enabled their characterization as Surfynol® 4XX (S4XX, XX=40, 65, and 85), wherein increasing XX values indicate increasing amounts of ethoxylation on a backbone of 2,4,7,9-tetramethyl-5-decyne-4,7-diol (Surfynol® 104). Sodiated triethylene glycol monobutyl ether (TBG) of m/z 229 (C10H22O4Na) was also identified in the seized counterfeit banknotes via EASI(+) FT-ICR MS. Surfynol® and TBG are constituents of inks used for inkjet printing. PMID:25498934

  4. Early onset hypercholesterolemia induced by the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with chronic phase-chronic myeloid leukemia

    PubMed Central

    Rea, Delphine; Mirault, Tristan; Cluzeau, Thomas; Gautier, Jean-François; Guilhot, François; Dombret, Hervé; Messas, Emmanuel

    2014-01-01

    Despite a well-recognized clinical benefit of the 2nd-generation tyrosine kinase inhibitor nilotinib in patients with imatinib-resistant/-intolerant or newly diagnosed chronic myeloid leukemia, recent evidence suggests that nilotinib has a propensity to increase the risk of occlusive arterial events, especially in patients with pre-existing cardiovascular risk factors. Given the key role of lipids in cardiovascular diseases, we studied the plasma lipid profile and global cardiovascular risk prior to and during nilotinib therapy in a series of 27 patients in the setting of a prospective single center study. Data from a minimum 1-year follow up showed that nilotinib significantly increased total, low- and high-density lipoprotein cholesterol within three months. Consequently, the proportion of patients with non-optimal low-density lipoprotein cholesterol increased from 48.1% to 88.9% by 12 months, leading to cholesterol-lowering drug intervention in 22.2% of patients. The proportion of patients with low levels of high-density lipoprotein cholesterol decreased from 40.7% to 7.4% by 12 months. In contrast, a significant decrease in triglycerides was observed. Global cardiovascular risk worsened in 11.1% of patients due to diabetes or occlusive arterial events. Whether hypercholesterolemia was the main driver of occlusive arterial events was uncertain: a longer follow up is necessary to ask whether nilotinib-induced hypercholesterolemia increases long-term risk of atherosclerotic diseases. Nevertheless, given key atherogenic properties of low-density lipoprotein cholesterol, we conclude that when prescribing nilotinib, commitment to detect lipid disorders at baseline and during follow up is mandatory given their frequency, requirement for changes in lifestyle or drug intervention, and potential for long-term cardiovascular complications. PMID:24658819

  5. 77 FR 76160 - New Generation Biofuels Holdings, Inc.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-26

    ... From the Federal Register Online via the Government Publishing Office SECURITIES AND EXCHANGE COMMISSION New Generation Biofuels Holdings, Inc.; Order of Suspension of Trading December 21, 2012. It... concerning the securities of New Generation Biofuels Holdings, Inc. because it has not filed any...

  6. Lessons from first generation biofuels and implications for the sustainability appraisal of second generation biofuels☆

    PubMed Central

    Mohr, Alison; Raman, Sujatha

    2013-01-01

    Aims The emergence of second generation (2G) biofuels is widely seen as a sustainable response to the increasing controversy surrounding the first generation (1G). Yet, sustainability credentials of 2G biofuels are also being questioned. Drawing on work in Science and Technology Studies, we argue that controversies help focus attention on key, often value-related questions that need to be posed to address broader societal concerns. This paper examines lessons drawn from the 1G controversy to assess implications for the sustainability appraisal of 2G biofuels. Scope We present an overview of key 1G sustainability challenges, assess their relevance for 2G, and highlight the challenges for policy in managing the transition. We address limitations of existing sustainability assessments by exploring where challenges might emerge across the whole system of bioenergy and the wider context of the social system in which bioenergy research and policy are done. Conclusions Key lessons arising from 1G are potentially relevant to the sustainability appraisal of 2G biofuels depending on the particular circumstances or conditions under which 2G is introduced. We conclude that sustainability challenges commonly categorised as either economic, environmental or social are, in reality, more complexly interconnected (so that an artificial separation of these categories is problematic). PMID:24926117

  7. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    DOE PAGESBeta

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting themore » simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.« less

  8. An Energy-limited Model of Algal Biofuels Production: Towards the Next Generation of Advanced Biofuels

    SciTech Connect

    Dunlop, Eric

    2013-01-01

    Algal biofuels are increasingly important as a source of renewable energy. The absence of reliable thermodynamic and other property data, and the large amount of kinetic data that would normally be required have created a major barrier to simulation. Additionally, the absence of a generally accepted flowsheet for biofuel production means that detailed simulation of the wrong approach is a real possibility. This model of algal biofuel production estimates the necessary data and places it into a heuristic model using a commercial simulator that back-calculates the process structure required. Furthermore, complex kinetics can be obviated for now by putting the simulator into energy limitation and forcing it to solve for the missing design variables, such as bioreactor surface area, productivity, and oil content. The model does not attempt to prescribe a particular approach, but provides a guide towards a sound engineering approach to this challenging and important problem.

  9. Concentrating-solar biomass gasification process for a 3rd generation biofuel.

    PubMed

    Hertwich, Edgar G; Zhang, Xiangping

    2009-06-01

    A new concept of producing synfuel from biomass using concentrating solar energy as its main energy source is proposed in this paper. The aim of the concept is to obtain an easy to handle fuel with near-zero CO2 emission and reduced land-use requirements compared to first and second generation biofuels. The concept's key feature is the use of high-temperature heat from a solar concentrating tower to drive the chemical process of converting biomassto a biofuel, obtaining a near-complete utilization of carbon atoms in the biomass. H2 from water electrolysis with solar power is used for reverse water gas shift to avoid producing CO2 during the process. In a chemical process simulation, we compare the solar biofuel concept with two other advanced synfuel concepts: second generation biofuel and coal-to-liquid, both using gasification technology and capture and storage of CO2 generated in the fuel production. The solar-driventhird generation biofuel requires only 33% of the biomass input and 38% of total land as the second generation biofuel, while still exhibiting a CO2-neutral fuel cycle. With CO2 capture, second generation biofuel would lead to the removal of 50% of the carbon in the biomass from the atmosphere. There is a trade-off between reduced biomass feed costs and the increased capital requirements for the solar-driven process; it is attractive at intermediate biomass and CO2 prices. PMID:19569353

  10. Gasification. 2nd. ed.

    SciTech Connect

    Christopher Higman; Maarten van der Burgt

    2008-02-15

    This book covers gasification as a comprehensive topic, covering its many uses, from refining, to natural gas, to coal. It provides an overview of commercial processes and covers applications relevant to today's demands. The new edition is expanded and provides more detail on the integration issues for current generation, state-of-the-art Integrated Gasification Combined Cycles (IGCC); CO{sub 2} capture in the IGCC context addressing the issues of pre-investment and retrofitting as well as defining what the term 'CO{sub 2} capture ready' might mean in practice; issues of plant reliability, availability and maintainability (RAM) including as evaluation of feedback from existing plants; implementation of fuel cell technology in IGCC concepts. Contents are: Introduction; The Thermodynamics of Gasification; The Kinetics of Gasification and Reactor Theory; Feedstocks and Feedstock Characteristics; Gasification Processes; Practical Issues; Applications; Auxiliary Technologies; Economics, environmental, and Safety Issues; Gasification and the Future. 5 apps.

  11. Next-generation biofuels: a new challenge for yeast.

    PubMed

    Petrovič, Uroš

    2015-09-01

    Economic growth depends strongly on the availability and price of fuels. There are various reasons in different parts of the world for efforts to decrease the consumption of fossil fuels, but biofuels are one of the main solutions considered towards achieving this aim globally. As the major bioethanol producer, the yeast Saccharomyces cerevisiae has a central position among biofuel-producing organisms. However, unprecedented challenges for yeast biotechnology lie ahead, as future biofuels will have to be produced on a large scale from sustainable feedstocks that do not interfere with food production, and which are generally not the traditional carbon source for S. cerevisiae. Additionally, the current trend in the development of biofuels is to synthesize molecules that can be used as drop-in fuels for existing engines. Their properties should therefore be more similar to those of oil-derived fuels than those of ethanol. Recent developments and challenges lying ahead for cost-effective production of such designed biofuels, using S. cerevisiae-based cell factories, are presented in this review. PMID:26108577

  12. Next-generation biofuels: Survey of emerging technologies and sustainability issues.

    PubMed

    Zinoviev, Sergey; Müller-Langer, Franziska; Das, Piyali; Bertero, Nicolás; Fornasiero, Paolo; Kaltschmitt, Martin; Centi, Gabriele; Miertus, Stanislav

    2010-10-25

    Next-generation biofuels, such as cellulosic bioethanol, biomethane from waste, synthetic biofuels obtained via gasification of biomass, biohydrogen, and others, are currently at the center of the attention of technologists and policy makers in search of the more sustainable biofuel of tomorrow. To set realistic targets for future biofuel options, it is important to assess their sustainability according to technical, economical, and environmental measures. With this aim, the review presents a comprehensive overview of the chemistry basis and of the technology related aspects of next generation biofuel production, as well as it addresses related economic issues and environmental implications. Opportunities and limits are discussed in terms of technical applicability of existing and emerging technology options to bio-waste feedstock, and further development forecasts are made based on the existing social-economic and market situation, feedstock potentials, and other global aspects. As the latter ones are concerned, the emphasis is placed on the opportunities and challenges of developing countries in adoption of this new industry. PMID:20922754

  13. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema

    Khanna, Madhu

    2011-04-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  14. Breaking the Chemical and Engineering Barriers to Lignocellulosic Biofuels: Next Generation Hydroccarbon Biorefineries

    SciTech Connect

    none,

    2008-03-01

    This roadmap to “Next Generation Hydrocarbon Biorefineries” outlines a number of novel process pathways for biofuels production based on sound scientific and engineering proofs of concept demonstrated in laboratories around the world. This report was based on the workshop of the same name held June 25-26, 2007 in Washington, DC.

  15. Biofuels combustion*

    DOE PAGESBeta

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acidsmore » and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.« less

  16. Biofuels Combustion

    NASA Astrophysics Data System (ADS)

    Westbrook, Charles K.

    2013-04-01

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. Research efforts on so-called second- and third-generation biofuels are discussed briefly.

  17. Biofuels combustion*

    SciTech Connect

    Westbrook, Charles K.

    2013-01-04

    This review describes major features of current research in renewable fuels derived from plants and from fatty acids. Recent and ongoing fundamental studies of biofuel molecular structure, oxidation reactions, and biofuel chemical properties are reviewed, in addition to combustion applications of biofuels in the major types of engines in which biofuels are used. Biofuels and their combustion are compared with combustion features of conventional petroleum-based fuels. Two main classes of biofuels are described, those consisting of small, primarily alcohol, fuels (particularly ethanol, n-butanol, and iso-pentanol) that are used primarily to replace or supplement gasoline and those derived from fatty acids and used primarily to replace or supplement conventional diesel fuels. As a result, research efforts on so-called second- and third-generation biofuels are discussed briefly.

  18. Enhanced animal productivity and health with improved manure management in 2nd Generation Environmentally Superior Technology in North Carolina: II. Air quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to evaluate the effects of improved manure management on air quality and the beneficial effect of a cleaner environment on animal productivity and health using a second generation of Environmentally Superior Technology. The second generation system combines solid-liquid sep...

  19. Enhanced animal productivity and health with improved manure management in 2nd Generation Environmentally Superior Technology in North Carolina: I. Water quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New legislation in North Carolina promotes the replacement of old lagoon technology with new Environmentally Superior Technology. Scientists at ARS Florence Center and industry cooperators completed design and demonstration of a second generation treatment system for swine waste that can achieve hig...

  20. Mitigating secondary aerosol generation potentials from biofuel use in the energy sector.

    PubMed

    Tiwary, Abhishek; Colls, Jeremy

    2010-01-01

    This paper demonstrates secondary aerosol generation potential of biofuel use in the energy sector from the photochemical interactions of precursor gases on a life cycle basis. The paper is divided into two parts-first, employing life cycle analysis (LCA) to evaluate the extent of the problem for a typical biofuel based electricity production system using five baseline scenarios; second, proposing adequate mitigation options to minimise the secondary aerosol generation potential on a life cycle basis. The baseline scenarios cover representative technologies for 2010 utilising energy crop (miscanthus), short rotation coppiced chips and residual/waste wood in different proportions. The proposed mitigation options include three approaches-biomass gasification prior to combustion, delaying the harvest of biomass, and increasing the geographical distance between the biomass plant and the harvest site (by importing the biofuels). Preliminary results indicate that the baseline scenarios (assuming all the biomass is sourced locally) bear significant secondary aerosol formation potential on a life cycle basis from photochemical neutralisation of acidic emissions (hydrogen chloride and sulphur dioxide) with ammonia. Our results suggest that gasification of miscanthus biomass would provide the best option by minimising the acidic emissions from the combustion plant whereas the other two options of delaying the harvest or importing biofuels from elsewhere would only lead to marginal reduction in the life cycle aerosol loadings of the systems. PMID:19878969

  1. Integration of health management and support systems is key to achieving cost reduction and operational concept goals of the 2nd generation reusable launch vehicle

    NASA Astrophysics Data System (ADS)

    Koon, Phillip L.; Greene, Scott

    2002-07-01

    Our aerospace customers are demanding that we drastically reduce the cost of operating and supporting our products. Our space customer in particular is looking for the next generation of reusable launch vehicle systems to support more aircraft like operation. To achieve this goal requires more than an evolution in materials, processes and systems, what is required is a paradigm shift in the design of the launch vehicles and the processing systems that support the launch vehicles. This paper describes the Automated Informed Maintenance System (AIM) we are developing for NASA's Space Launch Initiative (SLI) Second Generation Reusable Launch Vehicle (RLV). Our system includes an Integrated Health Management (IHM) system for the launch vehicles and ground support systems, which features model based diagnostics and prognostics. Health Management data is used by our AIM decision support and process aids to automatically plan maintenance, generate work orders and schedule maintenance activities along with the resources required to execute these processes. Our system will automate the ground processing for a spaceport handling multiple RLVs executing multiple missions. To accomplish this task we are applying the latest web based distributed computing technologies and application development techniques.

  2. Control system for the 2nd generation Berkeley AutoMounters (BAM2) at GM/CA CAT macromolecular crystallography beamlines

    PubMed Central

    Makarov, O.; Hilgart, M.; Ogata, C.; Pothineni, S.; Cork, C.

    2011-01-01

    GM/CA CAT at Sector 23 of the Advanced Photon Source (APS) is an NIH funded facility for crystallographic structure determination of biological macromolecules by X-ray diffraction. A second generation Berkeley automounter is being integrated into the beamline control system at the 23-BM experimental station. This new device replaces the previous all-pneumatic gripper motions with a combination of pneumatics and XYZ motorized linear stages. The latter adds a higher degree of flexibility to the robot including auto-alignment capability, accommodation of a larger capacity sample Dewar of arbitrary shape, and support for advanced operations such as crystal washing, while preserving the overall simplicity and efficiency of the Berkeley automounter design. PMID:21822343

  3. Techno-economic evaluation of 2nd generation bioethanol production from sugar cane bagasse and leaves integrated with the sugar-based ethanol process

    PubMed Central

    2012-01-01

    Background Bioethanol produced from the lignocellulosic fractions of sugar cane (bagasse and leaves), i.e. second generation (2G) bioethanol, has a promising market potential as an automotive fuel; however, the process is still under investigation on pilot/demonstration scale. From a process perspective, improvements in plant design can lower the production cost, providing better profitability and competitiveness if the conversion of the whole sugar cane is considered. Simulations have been performed with AspenPlus to investigate how process integration can affect the minimum ethanol selling price of this 2G process (MESP-2G), as well as improve the plant energy efficiency. This is achieved by integrating the well-established sucrose-to-bioethanol process with the enzymatic process for lignocellulosic materials. Bagasse and leaves were steam pretreated using H3PO4 as catalyst and separately hydrolysed and fermented. Results The addition of a steam dryer, doubling of the enzyme dosage in enzymatic hydrolysis, including leaves as raw material in the 2G process, heat integration and the use of more energy-efficient equipment led to a 37 % reduction in MESP-2G compared to the Base case. Modelling showed that the MESP for 2G ethanol was 0.97 US$/L, while in the future it could be reduced to 0.78 US$/L. In this case the overall production cost of 1G + 2G ethanol would be about 0.40 US$/L with an output of 102 L/ton dry sugar cane including 50 % leaves. Sensitivity analysis of the future scenario showed that a 50 % decrease in the cost of enzymes, electricity or leaves would lower the MESP-2G by about 20%, 10% and 4.5%, respectively. Conclusions According to the simulations, the production of 2G bioethanol from sugar cane bagasse and leaves in Brazil is already competitive (without subsidies) with 1G starch-based bioethanol production in Europe. Moreover 2G bioethanol could be produced at a lower cost if subsidies were used to compensate for the opportunity cost from the

  4. [Implications of TCGA Network Data on 2nd Generation Immunotherapy Concepts Based on PD-L1 and PD-1 Target Structures].

    PubMed

    Peters, I; Tezval, H; Kramer, M W; Wolters, M; Grünwald, V; Kuczyk, M A; Serth, J

    2015-11-01

    The era of cytokines, given to patients with metastatic renal cell carcinoma (mRCC) as part of an unspecific immunomodulatory treatment concept, seems to have ended with the introduction of targeted therapies. However, preliminary data from studies on treatment with checkpoint inhibitors (e. g. anti-PD-1 and anti-PD-L1) may point the way to second-generation immunotherapy. The rationale of such immunomodulatory treatment is to stop or interrupt the tumour from "escaping" the body's immune defence. Thompson et al. report that increased protein expression of PD-L1 (CD274/ B7-H1) in tumour cells and tumour-infiltrating immune cells (TILs; lymphocytes and histiocytes) is associated with unfavourable clinical pathological parameters as well as poor survival. In small pilot groups of mRCC patients it was found that increased PD-L1 protein expression in tumours and TILs may be correlated with the objective response to anti-PD-1 treatment. Sometimes, however, a very wide variety of response rates was observed, which raises the question if this can be explained by individual expression levels of PD-L1 (CD 274) or PD-1 (PDCD1).Recently published data from the Cancer Genome Atlas (TCGA) Kidney Renal Clear Cell Carcinoma (KIRC) Network now provide a genome-wide data base that allows us to review or validate the molecular results obtained in clear cell renal cell carcinomas (ccRCC) to date.In this study, we analysed the TCGA KIRC mRNA expression data for PD-L1 and PD-1 for a possible association with clinical pathological parameters and the survival of 417 ccRCC patients.The mRNA expression of PD-L1 in primary nephrectomy specimens revealed no significant association with unfavourable clinical parameters. Interestingly, though, a positive correlation with patient survival was found (HR=0,59, p=0,006).These results, which partly contradict the concept applied to date, point out the necessity to ascertain the characteristics of PD-L1 and PD-1 expression at mRNA and protein

  5. 2nd Generation QUATARA Flight Computer Project

    NASA Technical Reports Server (NTRS)

    Falker, Jay; Keys, Andrew; Fraticelli, Jose Molina; Capo-Iugo, Pedro; Peeples, Steven

    2015-01-01

    Single core flight computer boards have been designed, developed, and tested (DD&T) to be flown in small satellites for the last few years. In this project, a prototype flight computer will be designed as a distributed multi-core system containing four microprocessors running code in parallel. This flight computer will be capable of performing multiple computationally intensive tasks such as processing digital and/or analog data, controlling actuator systems, managing cameras, operating robotic manipulators and transmitting/receiving from/to a ground station. In addition, this flight computer will be designed to be fault tolerant by creating both a robust physical hardware connection and by using a software voting scheme to determine the processor's performance. This voting scheme will leverage on the work done for the Space Launch System (SLS) flight software. The prototype flight computer will be constructed with Commercial Off-The-Shelf (COTS) components which are estimated to survive for two years in a low-Earth orbit.

  6. Local biofuels power plants with fuel cell generators

    SciTech Connect

    Lindstroem, O.

    1996-12-31

    The fuel cell should be a most important option for Asian countries now building up their electricity networks. The fuel cell is ideal for the schemes for distributed generation which are more reliable and efficient than the centralized schemes so far favoured by the industrialized countries in the West. Not yet developed small combined cycle power plants with advanced radial gas turbines and compact steam turbines will be the competition. Hot combustion is favoured today but cold combustion may win in the long run thanks to its environmental advantages. Emission standards are in general determined by what is feasible with available technology. The simple conclusion is that the fuel cell has to prove that it is competitive to the turbines in cost engineering terms. A second most important requirement is that the fuel cell option has to be superior with respect to electrical efficiency.

  7. Economic evaluation of technology for a new generation biofuel production using wastes.

    PubMed

    Koutinas, Athanasios; Kanellaki, Maria; Bekatorou, Argyro; Kandylis, Panagiotis; Pissaridi, Katerina; Dima, Agapi; Boura, Konstantina; Lappa, Katerina; Tsafrakidou, Panagiota; Stergiou, Panagiota-Yiolanda; Foukis, Athanasios; Gkini, Olga A; Papamichael, Emmanuel M

    2016-01-01

    An economic evaluation of an integrated technology for industrial scale new generation biofuel production using whey, vinasse, and lignocellulosic biomass as raw materials is reported. Anaerobic packed-bed bioreactors were used for organic acids production using initially synthetic media and then wastes. Butyric, lactic and acetic acid were predominately produced from vinasse, whey, and cellulose, respectively. Mass balance was calculated for a 16,000L daily production capacity. Liquid-liquid extraction was applied for recovery of the organic acids using butanol-1 as an effective extraction solvent which serves also as the alcohol for the subsequent enzyme-catalyzed esterification. The investment needed for the installation of the factory was estimated to about 1.7million€ with depreciation excepted at about 3months. For cellulosics, the installation investment was estimated to be about 7-fold higher with depreciation at about 1.5years. The proposed technology is an alternative trend in biofuel production. PMID:26492169

  8. Feasibility study on introduction of the bio-fuel power generation in tropical regions

    NASA Astrophysics Data System (ADS)

    1993-03-01

    Study is made on feasibility of introducing the bio-fuel power generation in tropical regions, especially in South East Asia including Okinawa and South America. Biomass promising as bio-fuel is bagasse and palm oil mill dregs; and bagasse is found to be advantageous to the use for large-scaled power generation. Prospective uses of bagasse are a combined use of gasification process and gas turbine power generation, an effective use of gas turbine exhaust heat at sugar cane factories, and a use of the system to be developed which totalizes these two. As to how to carry out the R and D project, since the gasification power generation process itself is a high technology and has partially unknown fields, it is desirable that research and development are conducted in such technologically developed countries as Japan (Okinawa). A developmental plan, therefore, is worked out as such that a pilot plant of approximately 3000kW is to be constructed in Okinawa because the period for bagasse production is at least 3 months there, and a commercial-scale plant is to be constructed and operated in such big bagasse-producing countries as Brazil.

  9. PIRLS 2016 Assessment Framework. 2nd Edition

    ERIC Educational Resources Information Center

    Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.

    2015-01-01

    The "PIRLS 2016 Assessment Framework, 2nd Edition" provides the foundation for the three international assessments planned as part of the International Association for the Evaluation of Educational Achievement's Progress in International Reading Literacy Study (PIRLS) 2016: PIRLS, PIRLS Literacy, and ePIRLS. PIRLS represents the…

  10. Microbial conversion of pyrolytic products to biofuels: a novel and sustainable approach toward second-generation biofuels.

    PubMed

    Islam, Zia Ul; Zhisheng, Yu; Hassan, El Barbary; Dongdong, Chang; Hongxun, Zhang

    2015-12-01

    This review highlights the potential of the pyrolysis-based biofuels production, bio-ethanol in particular, and lipid in general as an alternative and sustainable solution for the rising environmental concerns and rapidly depleting natural fuel resources. Levoglucosan (1,6-anhydrous-β-D-glucopyranose) is the major anhydrosugar compound resulting from the degradation of cellulose during the fast pyrolysis process of biomass and thus the most attractive fermentation substrate in the bio-oil. The challenges for pyrolysis-based biorefineries are the inefficient detoxification strategies, and the lack of naturally available efficient and suitable fermentation organisms that could ferment the levoglucosan directly into bio-ethanol. In case of indirect fermentation, acid hydrolysis is used to convert levoglucosan into glucose and subsequently to ethanol and lipids via fermentation biocatalysts, however the presence of fermentation inhibitors poses a big hurdle to successful fermentation relative to pure glucose. Among the detoxification strategies studied so far, over-liming, extraction with solvents like (n-butanol, ethyl acetate), and activated carbon seem very promising, but still further research is required for the optimization of existing detoxification strategies as well as developing new ones. In order to make the pyrolysis-based biofuel production a more efficient as well as cost-effective process, direct fermentation of pyrolysis oil-associated fermentable sugars, especially levoglucosan is highlly desirable. This can be achieved either by expanding the search to identify naturally available direct levoglusoan utilizers or modify the existing fermentation biocatalysts (yeasts and bacteria) with direct levoglucosan pathway coupled with tolerance engineering could significantly improve the overall performance of these microorganisms. PMID:26433384

  11. Time effects of climate change mitigation strategies for second generation biofuels and co-products with temporary carbon storage

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Second generation biofuels that are under development to address the climate change impacts of transportation offer different means of reducing greenhouse gas emissions and storing or delaying carbon emissions relative to petroleum-based fuels depending upon the strategy used to synthesize the biofu...

  12. Sustainable multipurpose biorefineries for third-generation biofuels and value-added co-products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern biorefinery facilities conduct many types of processes, including those producing advanced biofuels, commodity chemicals, biodiesel, and value-added co-products such as sweeteners and bioinsecticides, with many more co-products, chemicals and biofuels on the horizon. Most of these processes ...

  13. Biofuel feedstocks

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are many forms of feedstocks for biofuel production. Animal manures and municipal solid wastes have been used to generate methane for on-farm and municipality energy uses. Fuel ethanol has been produced commercially using plant-derived starch and sugar feedstocks. Technologies for productio...

  14. Trade-offs of water use for hydropower generation and biofuel production in the Zambezi basin in Mozambique

    NASA Astrophysics Data System (ADS)

    Stanzel, Philipp; Kling, Harald; Nicholson, Kit

    2014-05-01

    Hydropower is the most important energy source in Mozambique, as in many other southern African countries. In the Zambezi basin, it is one of the major economic resources, and substantial hydropower development is envisaged for the next decades. In Mozambique, the extension of the large Cahora Bassa hydropower plant and the construction of several new facilities downstream are planned. Irrigated agriculture currently plays a minor role, but has a large potential due to available land and water resources. Irrigation development, especially for the production of biofuels, is an important government policy goal in Mozambique. This contribution assesses interrelations and trade-offs between these two development options with high dependence on water availability. Potential water demand for large-scale irrigated agriculture is estimated for a mix of possible biofuel crops in three scenarios with different irrigated area sizes. Impacts on river discharge and hydropower production in the Lower Zambezi and its tributaries under two projected future climates are simulated with a hydrological model and a reservoir operation and hydropower model. Trade-offs of increasing biofuel production with decreasing hydropower generation due to diminished discharge in the Zambezi River are investigated based on potential energy production, from hydropower and biofuels, and resulting gross revenues and net benefits. Results show that the impact of irrigation withdrawal on hydropower production is rather low due to the generally high water availability in the Zambezi River. In simulations with substantial irrigated areas, hydropower generation decreases by -2% as compared to a scenario with only small irrigated areas. The economic analyses suggest that the use of water for cultivation of biofuel crops in the Zambezi basin can generate higher economic benefits than the use of water for hydroelectric power production. If world oil prices stay at more than about 80 USD/barrel, then the

  15. Toward hybrid proteo-polymeric vesicles generating a photoinduced proton gradient for biofuel cells

    NASA Astrophysics Data System (ADS)

    Choi, Hyo-Jick; Lee, Hyeseung; Montemagno, Carlo D.

    2005-09-01

    We describe our efforts towards constructing a hybrid protein-polymer vesicle device based on the photoactive protein, bacteriorhodopsin (BR), for applications in the area of biosensors and biofuel cells. Successful protein incorporation into biomimetic polymer vesicles is a prerequisite for developing hybrid 'nano-bio' integrated devices. We suggest a systematic procedure for creating energy transducing, protein-incorporating, functional vesicles, based on the morphological ternary diagram. First, we constructed the morphological ternary diagram of the water/ethanol/polymer system with a size distribution of vesicles. The polymer used was an ABA triblock copolymer, PEtOz-PDMS-PEtOz [poly(2-ethyl-2-oxazoline)-b-poly(dimethylsiloxane)-b-poly(2-ethyl-2-oxazoline)]. Second, we incorporated BR in the form of purple membrane (PM) into polymer vesicle membranes under several different conditions, based on the morphological ternary diagram. Generation of electrochemical energy by BR proton pumping was checked by monitoring the pH change in parallel with transmission electron microscope analysis. The morphology of the polymer vesicles changed very little with the addition of PM. This work shows that the morphological ternary diagram provides a systematic method for constructing successful hybrid BR-incorporating biomimetic polymer vesicles.

  16. The water-land-food nexus of first-generation biofuels

    NASA Astrophysics Data System (ADS)

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; de Carolis, Giulia; D'Odorico, Paolo

    2016-03-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

  17. The water-land-food nexus of first-generation biofuels.

    PubMed

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; De Carolis, Giulia; D'Odorico, Paolo

    2016-01-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed. PMID:26936679

  18. The water-land-food nexus of first-generation biofuels

    PubMed Central

    Rulli, Maria Cristina; Bellomi, Davide; Cazzoli, Andrea; De Carolis, Giulia; D’Odorico, Paolo

    2016-01-01

    Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed. PMID:26936679

  19. Environmental and sustainability factors associated with next-generation biofuels in the U.S.: what do we really know?

    PubMed

    Williams, Pamela R D; Inman, Daniel; Aden, Andy; Heath, Garvin A

    2009-07-01

    In this paper, we assess what is known or anticipated about environmental and sustainability factors associated with next-generation biofuels relative to the primary conventional biofuels (i.e., corn grain-based ethanol and soybean-based diesel) in the United States during feedstock production and conversion processes. Factors considered include greenhouse (GHG) emissions, air pollutant emissions, soil health and quality, water use and water quality, wastewater and solid waste streams, and biodiversity and land-use changes. Based on our review of the available literature, we find that the production of next-generation feedstocks in the U.S. (e.g., municipal solid waste, forest residues, dedicated energy crops, microalgae) are expected to fare better than corn-grain or soybean production on most of these factors, although the magnitude of these differences may vary significantly among feedstocks. Ethanol produced using a biochemical or thermochemical conversion platform is expected to result in fewer GHG and air pollutant emissions, but to have similar or potentially greater water demands and solid waste streams than conventional ethanol biorefineries in the U.S. However, these conversion-related differences are likely to be small, particularly relative to those associated with feedstock production. Modeling performed for illustrative purposes and to allow for standardized quantitative comparisons across feedstocks and conversion technologies generally confirms the findings from the literature. Despite current expectations, significant uncertainty remains regarding how well next-generation biofuels will fare on different environmental and sustainability factors when produced on a commercial scale in the U.S. Additional research is needed in several broad areas including quantifying impacts, designing standardized metrics and approaches, and developing decision-support tools to identify and quantify environmental trade-offs and ensure sustainable biofuels production

  20. 2nd International Planetary Probe Workshop

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla

    2005-01-01

    Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.

  1. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    EPA Science Inventory

    The results of a laboratory scale investigation on ozone pretreatment of primary treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0 % (w/w) oz...

  2. Exogenous attention enhances 2nd-order contrast sensitivity.

    PubMed

    Barbot, Antoine; Landy, Michael S; Carrasco, Marisa

    2011-05-11

    Natural scenes contain a rich variety of contours that the visual system extracts to segregate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention--the involuntary and transient capture of spatial attention--affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer's 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  3. Exogenous attention enhances 2nd-order contrast sensitivity

    PubMed Central

    Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa

    2011-01-01

    Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228

  4. Life cycle assessment of first-generation biofuels using a nitrogen crop model.

    PubMed

    Gallejones, P; Pardo, G; Aizpurua, A; del Prado, A

    2015-02-01

    This paper presents an alternative approach to assess the impacts of biofuel production using a method integrating the simulated values of a new semi-empirical model at the crop production stage within a life cycle assessment (LCA). This new approach enabled us to capture some of the effects that climatic conditions and crop management have on soil nitrous oxide (N₂O) emissions, crop yields and other nitrogen (N) losses. This analysis considered the whole system to produce 1 MJ of biofuel (bioethanol from wheat and biodiesel from rapeseed). Non-renewable energy use, global warming potential (GWP), acidification, eutrophication and land competition are considered as potential environmental impacts. Different co-products were handled by system expansion. The aim of this study was (i) to evaluate the variability due to site-specific conditions of climate and fertiliser management of the LCA of two different products: biodiesel from rapeseed and bioethanol from wheat produced in the Basque Country (Northern Spain), and (ii) to improve the estimations of the LCA impacts due to N losses (N₂O, NO₃, NH₃), normally estimated with unspecific emission factors (EFs), that contribute to the impact categories analysed in the LCA of biofuels at local scale. Using biodiesel and bioethanol derived from rapeseed and wheat instead of conventional diesel and gasoline, respectively, would reduce non-renewable energy dependence (-55%) and GWP (-40%), on average, but would increase eutrophication (42 times more potential). An uncertainty analysis for GWP impact showed that the variability associated with the prediction of the major contributor to global warming potential (soil N₂O) can significantly affect the results from the LCA. Therefore the use of a model to account for local factors will improve the precision of the assessment and reduce the uncertainty associated with the convenience of the use of biofuels. PMID:25461117

  5. Algal Biofuels Fact Sheet

    SciTech Connect

    2009-10-27

    This fact sheet provides information on algal biofuels, which are generating considerable interest around the world. They may represent a sustainable pathway for helping to meet the U.S. biofuel production targets set by the Energy Independence and Security Act of 2007.

  6. Preozonation of primary-treated municipal wastewater for reuse in biofuel feedstock generation

    SciTech Connect

    Mondala, Andro H.; Hernandez, Rafael; French, W. Todd; Estévez, L. Antonio; Meckes, Mark; Trillo, Marlene; Hall, Jacqueline

    2010-11-09

    The results of a laboratory scale investigation on ozone pretreatment of primary-treated municipal wastewater for potential reuse in fermentation processes for the production of biofuels and bio-based feedstock chemicals were presented. Semi-batch preozonation with 3.0% (w/w) ozone at 1 L min -1 resulted into a considerable inactivation of the indigenous heterotrophic bacteria in the wastewater with less than 0.0002% comprising the ozone-resistant fraction of the microbial population. The disinfection process was modeled using first-order inactivation kinetics with a rate constant of 4.39 10 -3 s -1. Chemical oxygen demand (COD) levels were reduced by 30% in 1-h experiments. COD depletion was also modeled using a pseudo-first-order kinetics at a rate constant of 9.50 10 -5 s -1. Biological oxygen demand (BOD 5) values were reduced by 60% up to 20 min of ozonation followed by a plateau and some slight increases attributed to partial oxidation of recalcitrant materials. Ozone also had no substantial effect on the concentration of ammonium and phosphate ions, which are essential for microbial growth and metabolism. Preliminary tests indicated that oleaginous microorganisms could be cultivated in the ozonated wastewater, resulting in relatively higher cell densities than in raw wastewater and comparable results with autoclave-sterilized wastewater. This process could potentially produce significant quantities of oil for biofuel production from municipal wastewater streams.

  7. Elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education aligned with STEM designed projects created by Kindergarten, 1st and 2nd grade students in a Reggio Emilio project approach setting

    NASA Astrophysics Data System (ADS)

    Facchini, Nicole

    This paper examines how elements of the Next Generation Science Standards' (NGSS) New Framework for K-12 Science Education standards (National Research Council 2011)---specifically the cross-cutting concept "cause and effect" are aligned with early childhood students' creation of projects of their choice. The study took place in a Reggio Emilio-inspired, K-12 school, in a multi-aged kindergarten, first and second grade classroom with 14 students. Students worked on their projects independently with the assistance of their peers and teachers. The students' projects and the alignment with the Next Generation Science Standards' New Framework were analyzed by using pre and post assessments, student interviews, and discourse analysis. Results indicate that elements of the New Framework for K-12 Science Education emerged through students' project presentation, particularly regarding the notion of "cause and effect". More specifically, results show that initially students perceived the relationship between "cause and effect" to be negative.

  8. Sandia's Biofuels Program

    SciTech Connect

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-22

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  9. Sandia's Biofuels Program

    ScienceCinema

    Simmons, Blake; Singh, Seema; Lane, Todd; Reichardt, Tom; Davis, Ryan

    2014-07-24

    Sandia's biofuels program is focused on developing next-generation, renewable fuel solutions derived from biomass. In this video, various Sandia researchers discuss the program and the tools they employ to tackle the technical challenges they face.

  10. Florida Investigates 2nd Possible Local Transmission of Zika Virus

    MedlinePlus

    ... html Florida Investigates 2nd Possible Local Transmission of Zika Virus If confirmed, cases would be first instances ... investigating a second possible case of locally transmitted Zika infection. On Tuesday, the first possible case of ...

  11. Screening of natural yeast isolates under the effects of stresses associated with second-generation biofuel production.

    PubMed

    Dubey, Rajni; Jakeer, Shaik; Gaur, Naseem A

    2016-05-01

    Robust microorganisms are required for sustainable second-generation biofuel production. We evaluated the growth and fermentation performance of six natural isolates that were derived from grape wine and medicinal herbs using a wide range of carbon sources, rice and wheat straw hydrolysates as well as stress conditions associated with second-generation ethanol production. Sequence analysis of the 5.8S internal transcribed spacer (ITS) and species-specific PCR amplification of the HO gene region assigned the natural isolates to Saccharomyces cerevisiae. Restriction fragment length polymorphism (RFLP) analysis of the mitochondrial DNA revealed that natural yeast isolates are genetically closer to the laboratory strain BY4741 than to the CEN.PK strains. Dextrose fermentation by a natural isolate, MTCC4780, under semi-anaerobic conditions produced maximum ethanol yields of 0.44 g/g and 0.39 g/g, respectively, with and without the stresses encountered during lignocellulosic ethanol fermentation. However, MTCC4780 produced ethanol yields of 0.48 g/g, 0.42 g/g and 0.45 g/g, respectively, with glucose, rice and wheat straw enzymatic hydrolysate fermentation in a bioreactor. The isolates MTCC4781 and MTCC4796 showed higher growth and fermentation performance than did MTCC4780 in the presence of elevated temperature and pre-treatment inhibitors. Taken together, the MTCC4780, MTCC4781 and MTCC4796 strains have the potential to serve as a platform for lignocellulosic ethanol production under stresses associated with second-generation biofuel production. PMID:26481160

  12. γ-Alumina as a process advancing tool for a new generation biofuel.

    PubMed

    Syngiridis, Kostas; Bekatorou, Argyro; Kallis, Mihalis; Kandylis, Panagiotis; Kanellaki, Maria; Koutinas, Athanasios A

    2013-03-01

    The production of volatile fatty acids (VFAs) in a continuous process using a synthetic glucose medium as model substrate in the presence of γ-alumina as promoter is described. The results showed formation of acetic, propionic, isobutyric, butyric, isovaleric and valeric acids, with acetic acid being more than 90% of the total VFAs produced. It is also highlighted that γ-alumina enhanced the simultaneous production of acetic acid and ethanol, which in some cases was formed at concentrations able to esterify about 85% of the produced VFAs. Since most agro-industrial effluents can be treated by anaerobic acidogenic digestion, while lignocellulosic biomass can be converted to VFAs after hydrolysis, this contribution can lead to a breakthrough in the research of biofuel production from renewable waste sources. PMID:23399494

  13. Biofuel Database

    National Institute of Standards and Technology Data Gateway

    Biofuel Database (Web, free access)   This database brings together structural, biological, and thermodynamic data for enzymes that are either in current use or are being considered for use in the production of biofuels.

  14. Molecular motors and the 2nd law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Wang, Zhisong

    2014-03-01

    Molecular motors from biology and nanotechnology often operate on chemical energy of fuel molecules in an isothermal environment, unlike macroscopic heat engines that draw energy from a heat flow between two temperatures. Nevertheless, isothermal molecular motors are still subject to the 2nd law of thermodynamics in a fundamental way: their directional motion must cost a finite amount of energy other than the environmental heat even though no work is done; otherwise the 2nd law would be violated. Hence the 2nd law requires a finite energy price for pure direction of molecular motors. But what is the lowest price of direction allowed by the 2nd law? And how does the 2nd law-decreed price of direction limit performance of molecular motors? In the talk, I shall present our theoretical study of the 2nd law-molecular motor link on basis of the accumulated biomotor phenomenology, and also introduce our experimental effort to develop biomimetic DNA bipedal nanomotors following the mechanistic guidelines out of the theoretical study. [Main contents of this talk are from references:] This work is partially supported by FRC grants R-144-000-259-112, R-144-000-290-112 and R-144-000-320-112.

  15. 2nd PEGS Annual Symposium on Antibodies for Cancer Therapy

    PubMed Central

    Ho, Mitchell; Royston, Ivor; Beck, Alain

    2012-01-01

    The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market.  The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors.  Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery. PMID:22864478

  16. The Use of Biofuel for Sustainable Growth in Developing Countries

    NASA Astrophysics Data System (ADS)

    Tsang, J.

    2014-12-01

    The biofuel industry is divided into four categories comprising of feedstocks used in 1st and 2nd generation bioethanol and biodiesel. In order to identify and quantify each biofuel feedstock's potential for sustainable growth, each were evaluated according to self-developed social, financial, and environmental criteria. From the investigation and analysis carried out, 1st generation biodiesel and bioethanol were determined to be feedstocks not capable of facilitating sustainable growth. Results showed low earnings before interest, taxes, depreciation and amortization (EBITDA) of -0.5 to 1 USD per gallon for biodiesel and 0.25 to 0.5 USD per gallon for bioethanol. Results also showed a poor return on asset (ROA). The energy required to produce one MJ of 1st generation biofuel fuel was at least 0.4 MJ, showing poor energy balance. Furthermore, high land, water, pesticide, and fertilizer requirements strained surrounding ecosystems by affecting the food web, thus reducing biodiversity. Over 55% of land used by the biodiesel industry in Indonesia and Malaysia involved the deforestation of local rainforests. This not only displaced indigenous organisms from their habitat and decreased their scope of nutrition, but also contributed to soil erosion and increased the probability of flooding. If left unregulated, imbalances in the ecosystem due to unsustainable growth will result in a permanent reshaping of tropical rainforest ecosystems in Southeast Asia. Algae, an example of 2nd generation biodiesel feedstock, was concluded to be the biofuel feedstock most capable of supporting sustainable growth. This is due to its low production costs of $1-1.5/gal, high biological productivity of 5000 gallons of biodiesel per acre per year, and high ROA of 25-35%. Additionally, algae's adaptability to varying environmental conditions also makes it an appealing candidate for businesses in developing countries, where access to resource supplies is unstable. Additionally, its reduced net

  17. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode.

    PubMed

    Das, Madhuri; Barbora, Lepakshi; Das, Priyanki; Goswami, Pranab

    2014-09-15

    We report here an alcohol oxidase (AOx) based third generation bioanode for generating power from methanol substrate in a fuel cell setup using air breathed laccase biocathode. A composite three dimensional microporous matrix containing multiwalled carbon nanotubes, carbon paste and nafion was used as electroactive support for immobilization of the enzymes on toray carbon paper as supporting electrode in the fabrication of the bioelectrodes. Polyethylenimine was used to electrostatically stabilize the AOx (pI 4.3) on the anode operating on direct electrochemistry principle. Osmium tetroxide on poly (4-vinylpyridine) was used to wire the laccase for electron transfer in the biocathode. The enzymatic biofuel cell (EFC) generated an open circuit potential of 0.61 (±0.02) V with a maximum power density of 46 (±0.002) µW cm(-2) at an optimum of 1M methanol, 25 °C and an internal resistance of 0.024 µΩ. The operation and storage half life (t1/2) of the EFC were 17.22 h and 52 days, respectively at a fixed load of 1.85 Ω. The findings have demonstrated the feasibility of developing EFC using AOx based bioanode and laccase based biocathode without applying any toxic free mediator and metal electrode supports for generating electricity. PMID:24727604

  18. 2nd Generation Reusable Launch Vehicle (2G RLV). Revised

    NASA Technical Reports Server (NTRS)

    Matlock, Steve; Sides, Steve; Kmiec, Tom; Arbogast, Tim; Mayers, Tom; Doehnert, Bill

    2001-01-01

    This is a revised final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.

  19. 2nd Quarter Transportation Report FY 2014

    SciTech Connect

    Gregory, L.

    2014-07-30

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.

  20. Test Review: The Profile of Mood States 2nd Edition

    ERIC Educational Resources Information Center

    Lin, Shuqiong; Hsiao, Yu-Yu; Wang, Miao

    2014-01-01

    The "Profile of Mood States 2nd Edition" (POMS 2) was published in 2012 by Multi-Health Systems (MHS) to assess transient feelings and mood among individuals aged 13 years and above. Evolving from the original POMS (McNair, Lorr, & Droppleman, 1971, 1992), the POMS 2 was designed for youth (13-17 years old) and adults (18 years old…

  1. Book Review: Bioassays with Arthropods: 2nd Edition

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...

  2. A Handbook for Classroom Instruction That Works, 2nd Edition

    ERIC Educational Resources Information Center

    Association for Supervision and Curriculum Development, 2012

    2012-01-01

    Perfect for self-help and professional learning communities, this handbook makes it much easier to apply the teaching practices from the ASCD-McREL best-seller "Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement, 2nd Edition." The authors take you through the refined Instructional Planning Guide, so you…

  3. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels

    PubMed Central

    2013-01-01

    Background The isopentenols, including isoprenol and prenol, are excellent alternative fuels. However, they are not compounds largely accumulated in natural organism. The need for the next generation of biofuels with better physical and chemical properties impels us to develop biosynthetic routes for the production of isoprenol and prenol from renewable sugar. In this study, we use the heterogenous mevalonate-dependent (MVA) isoprenoid pathway for the synthesis of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) intermediates, and then convert IPP and DMAPP to isoprenol and prenol, respectively. Results A mevalonate titer of 1.7 g/L was obtained by constructing an efficient MVA upper pathway in engineered E. coli. Different phosphatases and pyrophosphatases were investigated for their abilities in hydrolyzing the IPP and DMAPP. Consequently, ADP-ribose pyrophosphatase was found to be an efficient IPP and DMAPP hydrolase. Moreover, ADP-ribose pyrophosphatase from Bacillus subtilis (BsNudF) exhibited a equivalent substrate specificity towards IPP and DMAPP, while ADP-ribose pyrophosphatase from E. coli (EcNudF) presented a high substrate preference for DMAPP. Without the expression of any phosphatases or pyrophosphatases, a background level of isopentenols was synthesized. When the endogenous pyrophosphatase genes (EcNudF and yggV) that were capable of enhancing the hydrolyzation of the IPP and DMAPP were knocked out, the background level of isopentenols was still obtained. Maybe the synthesized IPP and DMAPP were hydrolyzed by some unknown hydrolases of E. coli. Finally, 1.3 g/L single isoprenol was obtained by blocking the conversion of IPP to DMAPP and employing the BsNudF, and 0.2 g/L ~80% prenol was produced by employing the EcNudF. A maximal yield of 12% was achieved in both isoprenol and prenol producing strains. Conclusions To the best of our knowledge, this is the first successful report on high-specificity production of isoprenol

  4. Agricultural Bio-Fueled Generation of Electricity and Development of Durable and Efficent NOx Reduction

    SciTech Connect

    Boyd, Rodney

    2007-08-08

    The objective of this project was to define the scope and cost of a technology research and development program that will demonstrate the feasibility of using an off-the-shelf, unmodified, large bore diesel powered generator in a grid-connected application, utilizing various blends of BioDiesel as fuel. Furthermore, the objective of project was to develop an emissions control device that uses a catalytic process and BioDiesel (without the presence of Ammonia or Urea)to reduce NOx and other pollutants present in a reciprocating engine exhaust stream with the goal of redefining the highest emission reduction efficiencies possible for a diesel reciprocating generator. Process: Caterpillar Power Generation adapted an off-the-shelf Diesel Generator to run on BioDiesel and various Petroleum Diesel/BioDiesel blends. EmeraChem developed and installed an exhaust gas cleanup system to reduce NOx, SOx, volatile organics, and particulates. The system design and function was optimized for emissions reduction with results in the 90-95% range;

  5. Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07

    SciTech Connect

    Steven R. Sherman

    2007-03-01

    This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07.

  6. Generating Phenotypic Diversity in a Fungal Biocatalyst to Investigate Alcohol Stress Tolerance Encountered during Microbial Cellulosic Biofuel Production

    PubMed Central

    Hennessy, Rosanna C.; Doohan, Fiona; Mullins, Ewen

    2013-01-01

    Consolidated bioprocessing (CBP) of lignocellulosic biomass offers an alternative route to renewable energy. The crop pathogen Fusarium oxysporum is a promising fungal biocatalyst because of its broad host range and innate ability to co-saccharify and ferment lignocellulose to bioethanol. A major challenge for cellulolytic CBP-enabling microbes is alcohol inhibition. This research tested the hypothesis that Agrobacterium tumefaciens - mediated transformation (ATMT) could be exploited as a tool to generate phenotypic diversity in F. oxysporum to investigate alcohol stress tolerance encountered during CBP. A random mutagenesis library of gene disruption transformants (n=1,563) was constructed and screened for alcohol tolerance in order to isolate alcohol sensitive or tolerant phenotypes. Following three rounds of screening, exposure of select transformants to 6% ethanol and 0.75% n-butanol resulted respectively in increased (≥11.74%) and decreased (≤43.01%) growth compared to the wild –type (WT). Principal component analysis (PCA) quantified the level of phenotypic diversity across the population of genetically transformed individuals and isolated candidate strains for analysis. Characterisation of one strain, Tr. 259, ascertained a reduced growth phenotype under alcohol stress relative to WT and indicated the disruption of a coding region homologous to a putative sugar transporter (FOXG_09625). Quantitative PCR (RT-PCR) showed FOXG_09625 was differentially expressed in Tr. 259 compared to WT during alcohol-induced stress (P<0.05). Phylogenetic analysis of putative sugar transporters suggests diverse functional roles in F. oxysporum and other filamentous fungi compared to yeast for which sugar transporters form part of a relatively conserved family. This study has confirmed the potential of ATMT coupled with a phenotypic screening program to select for genetic variation induced in response to alcohol stress. This research represents a first step in the

  7. The transient nature of 2nd-order stereopsis.

    PubMed

    Hess, Robert F; Wilcox, Laurie M

    2008-05-01

    There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work. PMID:18407312

  8. Next generation biofuels

    NASA Astrophysics Data System (ADS)

    Somerville, Chris

    2015-03-01

    The concern over climate change has motivated a search for low-carbon transportation fuels. One approach to low-carbon fuels is to exploit photosynthesis, which stores solar energy in plant biomass. I review here some aspects of the potential for making liquid fuels from biomasss. There appear to be significant amounts of currently un- or underutilized land available to raise biomass for liquid fuels. Rather than compete with feed crops, we have explored the potential of energy crops such as perennial grasses. Processes have been developed for efficient production of fuels from biomass. Lots of progress has been made but lessons are still being learned.

  9. Biofuels and Biotechnology

    SciTech Connect

    Mielenz, Jonathan R

    2009-01-01

    research and resulting development activities using the latest biological research tools and techniques. Among the most recently evolving research tools is what is collectively known as "omics" techniques such as genomics, transcriptomics, proteomics, metabolomics, and fluxomics, plus an ever growing omics word generation . These and other similar methodologies are central to understanding the interactive functioning of gene expression, resulting protein/enzyme production, which impacts the cellular metabolism, and carbon and metabolite flow. These system biology "omics" tools are beginning to be applied to understand and improve the biological processes involved in conversion of renewable plant and animal material to biofuels which will be discussed in this chapter.

  10. Two 2nd Circuit decisions represent mixed bag on insurance.

    PubMed

    2000-01-21

    The 2nd U.S. Circuit Court of Appeals in New York issued two important rulings within a week on the extent to which the Americans with Disabilities Act (ADA) regulates insurance practices. [Name removed] v. Allstate Life Insurance Co. was a plaintiff-friendly decision, finding that the insurance company illegally refused to sell life insurance to a married couple because of their mental disability, major depression. [Name removed]. v. Israel Discount Bank of New York was more defendant friendly and tackled the issue of whether the ADA permits different benefit caps for mental and physical disabilities. PMID:11367226

  11. The crystal structure of ^7Li2ND

    NASA Astrophysics Data System (ADS)

    Tsubota, Masami; Sorby, Magnus H.; Hino, Satoshi; Ichikawa, Takayuki; Hauback, Bjorn C.; Kojima, Yoshitsugu

    2008-03-01

    Recently much attention has been given to reversible hydrogen storage materials possessing high gravimetric capacity. Lithium amide/imide systems are promising candidates. Chen et al.[1] found that a mixture of lithium amide and lithium hydride can reversibly store hydrogen up to 6.5 mass% forming lithium imide (Li2NH). Among them, the crystal structure of Li2NH is still controversial. Balogh et al.[2] have reported a cubic structure model. However, this model differs significantly from theoretical structure models. In this work, the crystal structure of the isotopically substituted ^7Li2ND has been investigated by powder neutron and synchrotron X-ray diffraction experiments. In our data some peaks, which should be a single peak for cubic symmetry, were obviously split indicating a lower symmetry than cubic for lithium imide. The structure of ^7Li2ND will be described. [1] P. Chen et al., J. Phys. Chem. B 107 (2003) 10967. [2] M.P. Balogh et al., J. Alloys Compd. 420 (2006) 326.

  12. Investigation of the Potential for Biofuel Blends in Residual Oil-Fired Power Generation Units as an Emissions Reduction Strategy for New York State

    SciTech Connect

    Krishna, C.R.; McDonald, R.

    2009-05-01

    There is a significant amount of oil, about 12.6 million barrels per year, used for power generation in New York State. The majority of it is residual oil. The primary reason for using residual oil probably is economic, as these fuels are cheaper than distillates. However, the stack emissions from the use of such fuels, especially in densely populated urban areas, can be a cause for concern. The emissions of concern include sulfur and nitrogen oxides and particulates, particularly PM 2.5. Blending with distillate (ASTM No.2) fuels may not reduce some or all of these emissions. Hence, a case can be made for blending with biofuels, such as biodiesel, as they tend to have very little fuel bound sulfur and nitrogen and have been shown in prior work at Brookhaven National Laboratory (BNL) to reduce NOx emissions as well in small boilers. Some of the research carried out at CANMET in Canada has shown potential reductions in PM with blending of biodiesel in distillate oil. There is also the benefit obtaining from the renewable nature of biofuels in reducing the net carbon dioxide emitted thus contributing to the reduction of green house gases that would otherwise be emitted to the atmosphere. The present project was conceived to examine the potential for such benefits of blending biofuels with residual oil. A collaboration was developed with personnel at the New York City Poletti Power Plant of the New York Power Authority. Their interest arose from an 800 MW power plant that was using residual oil and which was mandated to be shut down in 2010 because of environmental concerns. A blend of 20% biodiesel in residual oil had also been tested for a short period of about two days in that boiler a couple of years back. In this project, emission measurements including particulate measurements of PM2.5 were made in the commercial boiler test facility at BNL described below. Baseline tests were done using biodiesel as the blending biofuel. Biodiesel is currently and probably in

  13. Scoping analysis of the Advanced Test Reactor using SN2ND

    SciTech Connect

    Wolters, E.; Smith, M.

    2012-07-26

    A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of the SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature

  14. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  15. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector

    NASA Astrophysics Data System (ADS)

    Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.

  16. Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.

    PubMed

    Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S

    2014-02-01

    The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593

  17. The Second Stellar Spectrum and the non-LTE Problem of the 2nd Kind

    NASA Astrophysics Data System (ADS)

    Trujillo Bueno, Javier

    2009-09-01

    This paper presents an overview of the radiative transfer problem of calculating the spectral line intensity and polarization that emerges from a (generally magnetized) astrophysical plasma composed of atoms and molecules whose excitation state is significantly influenced by radiative transitions produced by an anisotropic radiation field. The numerical solution of this non-LTE problem of the 2nd kind is facilitating the physical understanding of the second solar spectrum and the exploration of the complex magnetism of the extended solar atmosphere, but much more could be learned if high-sensitivity polarimeters were developed also for the present generation of night-time telescopes. Interestingly, I find that the population ratio between the levels of some resonance line transitions can be efficiently modulated by the inclination of a weak magnetic field when the anisotropy of the incident radiation is significant, something that could provide a new diagnostic tool in astrophysics.

  18. [Microsurgical 2nd toe transfer for catastrophic hand reconstruction].

    PubMed

    Placer, A; Lozano, Ja

    2007-01-01

    The correct reconstruction of the catastrophic hand requires complex surgical techniques. The microsurgical transference of a toe is indicated when all other reconstructive options are shown to be useless for the reconstruction of the required clamp function. In this clinical note we set out the case of a 32 year old man, who came to our accident and emergency department after suffering a traffic accident. After exploration the diagnosis was that of catastrophic left hand, among other policontusions. Urgent surgery was carried out, saving the maximum possible viable structures. The immediate result of this surgery was a hand with 1st, 4th and 5th functional fingers. As the essential clamp function between the 1st and 4th or 5th fingers was not totally satisfactory, we decided to reconstruct the 3rd finger of his hand with his ipsilateral 2nd toe. All pertinent studies to determine vascularisation of the flap were carried out in planning the surgery, and the microsurgical transfer was then realized, which was successful. Today, after a suitable rehabilitation, the patient has recovered a satisfactory function of heavy and fine clamp in the operated hand. Toe to hand transfer is a good option for finger reconstruction and its function. Rehabilitation is the key to functional recovery. PMID:18227902

  19. PREFACE: 2nd International Symposium "Optics and its Applications"

    NASA Astrophysics Data System (ADS)

    Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav

    2016-01-01

    The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.

  20. APTWG: 2nd Asia-Pacific Transport Working Group Meeting

    NASA Astrophysics Data System (ADS)

    Dong, J. Q.; Shi, Y. J.; Tamura, N.; Jhang, Hogun; Watanabe, T.-H.; Ding, X. T.

    2013-02-01

    This conference report summarizes the contributions to and discussions at the 2nd Asia-Pacific Transport Working Group Meeting held in Chengdu, China, from 15 to 18 May 2012. The topics of the meeting were organized under five main headings: momentum transport, non-locality in transport, edge turbulence and L-H transition, three-dimensional effects on transport physics, and particle, momentum and heat pinches. It is found that lower hybrid wave and ion cyclotron wave induce co-current rotation while electron cyclotron wave induces counter-current rotation. A four-stage imaging for low (L) to high (H) confinement transition gradually emerges and a more detailed verification is urgently expected. The new edge-localized modes mitigation technique with supersonic molecular beam injection was approved to be effective to some extent on HL-2A and KSTAR. It is also found that low collisionality, trapped electron mode to ion temperature gradient transition (or transition of higher to lower density and temperature gradients), fuelling and lithium coating are in favour of inward pinch of particles in tokamak plasmas.

  1. Towards Sustainable Production of Biofuels from Microalgae

    PubMed Central

    Patil, Vishwanath; Tran, Khanh-Quang; Giselrød, Hans Ragnar

    2008-01-01

    Renewable and carbon neutral biofuels are necessary for environmental and economic sustainability. The viability of the first generation biofuels production is however questionable because of the conflict with food supply. Microalgal biofuels are a viable alternative. The oil productivity of many microalgae exceeds the best producing oil crops. This paper aims to analyze and promote integration approaches for sustainable microalgal biofuel production to meet the energy and environmental needs of the society. The emphasis is on hydrothermal liquefaction technology for direct conversion of algal biomass to liquid fuel. PMID:19325798

  2. Highlights of the 2 nd Bioinformatics Student Symposium by ISCB RSG-UK

    PubMed Central

    White, Benjamen; Fatima, Vayani; Fatima, Nazeefa; Das, Sayoni; Rahman, Farzana; Hassan, Mehedi

    2016-01-01

    Following the success of the 1 st Student Symposium by ISCB RSG-UK, a 2 nd Student Symposium took place on 7 th October 2015 at The Genome Analysis Centre, Norwich, UK. This short report summarizes the main highlights from the 2 nd Bioinformatics Student Symposium. PMID:27239284

  3. Examples to Accompany "Descriptive Cataloging of Rare Books, 2nd Edition."

    ERIC Educational Resources Information Center

    Association of Coll. and Research Libraries, Chicago, IL.

    This book is intended to be used with "Descriptive Cataloging of Rare Books," 2nd edition (DCRB) as an illustrative aid to catalogers and others interested in or needing to interpret rare book cataloging. As such, it is to be used in conjunction with the rules it illustrates, both in DCRB and in "Anglo-American Cataloging Rules," 2nd edition…

  4. Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika; Peterson, John; Conrad, Mark; Cook, Paul; Tiemi, Onishi

    2011-03-31

    This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.

  5. PREFACE: 2nd National Conference on Nanotechnology 'NANO 2008'

    NASA Astrophysics Data System (ADS)

    Czuba, P.; Kolodziej, J. J.; Konior, J.; Szymonski, M.

    2009-03-01

    This issue of Journal of Physics: Conference Series contains selected papers presented at the 2nd National Conference on Nanotechnology 'NANO2008', that was held in Kraków, Poland, 25-28 June 2008. It was organized jointly by the Polish Chemical Society, Polish Physical Society, Polish Vacuum Society, and the Centre for Nanometer-scale Science and Advanced Materials (NANOSAM) of the Jagiellonian University. The meeting presentations were categorized into the following topics: 1. Nanomechanics and nanotribology 2. Characterization and manipulation in nanoscale 3. Quantum effects in nanostructures 4. Nanostructures on surfaces 5. Applications of nanotechnology in biology and medicine 6. Nanotechnology in education 7. Industrial applications of nanotechnology, presentations of the companies 8. Nanoengineering and nanomaterials (international sessions shared with the fellows of Maria-Curie Host Fellowships within the 6th FP of the European Community Project 'Nano-Engineering for Expertise and Development, NEED') 9. Nanopowders 10. Carbon nanostructures and nanosystems 11. Nanoelectronics and nanophotonics 12. Nanomaterials in catalysis 13. Nanospintronics 14. Ethical, social, and environmental aspects of nanotechnology The Conference was attended by 334 participants. The presentations were delivered as 7 invited plenary lectures, 25 invited topical lectures, 78 oral and 108 poster contributions. Only 1/6 of the contributions presented during the Conference were submitted for publication in this Proceedings volume. From the submitted material, this volume of Journal of Physics: Conference Series contains 37 articles that were positively evaluated by independent referees. The Organizing Committee gratefully acknowledges all these contributions. We also thank all the referees of the papers submitted for the Proceedings for their timely and thorough work. We would like to thank all members of the National Program Committee for their work in the selection process of

  6. Green chemistry, biofuels, and biorefinery.

    PubMed

    Clark, James H; Luque, Rafael; Matharu, Avtar S

    2012-01-01

    In the current climate of several interrelated impending global crises, namely, climate change, chemicals, energy, and oil, the impact of green chemistry with respect to chemicals and biofuels generated from within a holistic concept of a biorefinery is discussed. Green chemistry provides unique opportunities for innovation via product substitution, new feedstock generation, catalysis in aqueous media, utilization of microwaves, and scope for alternative or natural solvents. The potential of utilizing waste as a new resource and the development of integrated facilities producing multiple products from biomass is discussed under the guise of biorefineries. Biofuels are discussed in depth, as they not only provide fuel (energy) but are also a source of feedstock chemicals. In the future, the commercial success of biofuels commensurate with consumer demand will depend on the availability of new green (bio)chemical technologies capable of converting waste biomass to fuel in a context of a biorefinery. PMID:22468603

  7. 2nd interface between ecology and land development in California

    USGS Publications Warehouse

    Keeley, Jon E.; Baer-Keeley, Melanie; Fortheringham, C.J.

    2000-01-01

    The 2nd Interface Between Ecology and Land Development Conference was held in association with Earth Day 1997, five years after the first Interface Conference. Rapid population growth in California has intensified the inevitable conflict between land development and preservation of natural ecosystems. Sustainable development requires wise use of diminishing natural resources and, where possible, restoration of damaged landscapes. These Earth Week Celebrations brought together resource managers, scientists, politicians, environmental consultants, and concerned citizens in an effort to improve the communication necessary to maintain our natural biodiversity, ecosystem processes and general quality of life. As discussed by our keynote speaker, Michael Soule, the best predictor of habitat loss is population growth and nowhere is this better illustrated than in California. As urban perimeters expand, the interface between wildlands and urban areas increases. Few problems are more vexing than how to manage the fire prone ecosystems indigenous to California at this urban interface. Today resource managers face increasing challenges of dealing with this problem and the lead-off section of the proceedings considers both the theoretical basis for making decisions related to prescribed burning and the practical application. Habitat fragmentation is an inevitable consequence of development patterns with significant impacts on animal and plant populations. Managers must be increasingly resourceful in dealing with problems of fragmentation and the often inevitable consequences, including susceptibility to invasive oganisms. One approach to dealing with fragmentation problems is through careful landplanning. California is the national leader in the integration of conservation and economics. On Earth Day 1991, Governor Pete Wilson presented an environmental agenda that promised to create between land owners and environmentalists, agreements that would guarantee the protection of

  8. 1st- and 2nd-order motion and texture resolution in central and peripheral vision

    NASA Technical Reports Server (NTRS)

    Solomon, J. A.; Sperling, G.

    1995-01-01

    STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.

  9. PREFACE: 2nd Workshop on Germanium Detectors and Technologies

    NASA Astrophysics Data System (ADS)

    Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.

    2015-05-01

    The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge

  10. Biofuels from food processing wastes.

    PubMed

    Zhang, Zhanying; O'Hara, Ian M; Mundree, Sagadevan; Gao, Baoyu; Ball, Andrew S; Zhu, Nanwen; Bai, Zhihui; Jin, Bo

    2016-04-01

    Food processing industry generates substantial high organic wastes along with high energy uses. The recovery of food processing wastes as renewable energy sources represents a sustainable option for the substitution of fossil energy, contributing to the transition of food sector towards a low-carbon economy. This article reviews the latest research progress on biofuel production using food processing wastes. While extensive work on laboratory and pilot-scale biosystems for energy production has been reported, this work presents a review of advances in metabolic pathways, key technical issues and bioengineering outcomes in biofuel production from food processing wastes. Research challenges and further prospects associated with the knowledge advances and technology development of biofuel production are discussed. PMID:26874262

  11. NASA Now: Biology: Extreme Green Biofuels

    NASA Video Gallery

    Learn what makes something a “green” technology, how scientists are using climactic adaptation in their research and what aspects of plants NASA is most interested in for generating biofuel.

  12. VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA

  13. MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI

  14. 22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING MACHINE. LIGHT TABLE USED TO CHECK FOR CLOTH DEFECTS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  15. 12. Bldg #13, 2nd floor, interior stone walls w/windows and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Bldg #13, 2nd floor, interior stone walls w/windows and bent pipe thru wall L and light bulbs in ceiling, to NE - Lawrence Machine Shop, Building No. 13, Union & Canal Streets, Lawrence, Essex County, MA

  16. 4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI

  17. 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic

    MedlinePlus

    ... news/fullstory_159807.html 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic Scientists concerned it ... the United States who was infected with a bacteria that is resistant to an antibiotic of last ...

  18. Front elevation of Rostrum with 2nd Division American Expeditionary Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Front elevation of Rostrum with 2nd Division American Expeditionary Force Monument in foreground, view to northwest - Cypress Hills National Cemetery, Jamaica Avenue Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY

  19. 37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 CREEL MACHINES, WHICH FEED YARN INTO KNITTING MACHINES. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL

  20. 73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, SHOWING STEPPED PLATFORM, BENCHES, AND LIGHT STANDARDS - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  1. 21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH HOLLOW STEEL SASH AND POLISHED PLATE WIRE GLASS. THIS WINDOW IS AT THE FRONT OF THE BUILDING. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA

  2. The 2nd-order Post-Newtonian Orbit Equation of Light

    NASA Astrophysics Data System (ADS)

    Xiao, Yu; Fei, Bao-Jun; Sun, Wei-Jin; Ji, Cheng-Xiang

    2008-10-01

    Based on the 2nd-order post-Newtonian approximation under the DSX frame of the general relativity theory, the 2nd-order post-Newtonian orbital equation of light in the axis-symmetrical stationary spacetime is derived, and from this, the angle of deflection of light propagating in the equatorial plane is derived. The obtained results are consistent with those of the Schwarzchild and Kerr metrics within the limits of measuring precision.

  3. Biofuels Issues and Trends

    EIA Publications

    2012-01-01

    This report presents data on biofuels consumption, production, imports and exports, including data collected by others than the U.S. Energy Information Administration. It also discusses important developments in biofuels markets.

  4. COMPUTATIONAL RESOURCES FOR BIOFUEL FEEDSTOCK SPECIES

    SciTech Connect

    Buell, Carol Robin; Childs, Kevin L

    2013-05-07

    While current production of ethanol as a biofuel relies on starch and sugar inputs, it is anticipated that sustainable production of ethanol for biofuel use will utilize lignocellulosic feedstocks. Candidate plant species to be used for lignocellulosic ethanol production include a large number of species within the Grass, Pine and Birch plant families. For these biofuel feedstock species, there are variable amounts of genome sequence resources available, ranging from complete genome sequences (e.g. sorghum, poplar) to transcriptome data sets (e.g. switchgrass, pine). These data sets are not only dispersed in location but also disparate in content. It will be essential to leverage and improve these genomic data sets for the improvement of biofuel feedstock production. The objectives of this project were to provide computational tools and resources for data-mining genome sequence/annotation and large-scale functional genomic datasets available for biofuel feedstock species. We have created a Bioenergy Feedstock Genomics Resource that provides a web-based portal or clearing house for genomic data for plant species relevant to biofuel feedstock production. Sequence data from a total of 54 plant species are included in the Bioenergy Feedstock Genomics Resource including model plant species that permit leveraging of knowledge across taxa to biofuel feedstock species.We have generated additional computational analyses of these data, including uniform annotation, to facilitate genomic approaches to improved biofuel feedstock production. These data have been centralized in the publicly available Bioenergy Feedstock Genomics Resource (http://bfgr.plantbiology.msu.edu/).

  5. The benefits of biofuels

    SciTech Connect

    Hinman, N.D.

    1997-07-01

    This article discusses the economic, environmental, and national security advantages of using biofuels instead of petroleum products in vehicles. Smog and carbon monoxide, two of the most trouble-some urban air pollutants, are largely caused by combustion of conventional petroleum based fuels. Topics include sustainable transportation fuels, emphasis on ethanol, the process of producing biofuels, and the growing market for biofuels. 1 tab.

  6. Instant power generation from an air-breathing paper and pencil based bacterial bio-fuel cell.

    PubMed

    Veerubhotla, Ramya; Bandopadhyay, Aditya; Das, Debabrata; Chakraborty, Suman

    2015-06-21

    We present a low-cost, disposable microbial fuel cell fabricated on a paper based platform, having a start-up time of 10 s. The platform deploys ordinary pencil strokes for graphite electrode deposition. The device uses a membrane-less design in a one-time injection (OTI) mode or a continuous capillary driven flow mode (CPF), where oxygen from the atmosphere is used up at the cathode for water formation, leading to the generation of bioelectricity. The performance of the fuel cell is evaluated using two bacterial strains, namely, Pseudomonas aeruginosa IIT BT SS1 and Shewanella putrefaciens. This flexible device is shown to retain bacteria for a period of at least one hour, resulting in the generation of almost 0.4 V using P. aeruginosa and a maximum current of 18 μA using S. putrefaciens without the use of any additional catalysts. PMID:25998260

  7. Severe weather phenomena: SQUALL LINES The case of July 2nd 2009

    NASA Astrophysics Data System (ADS)

    Paraschivescu, Mihnea; Tanase, Adrian

    2010-05-01

    The wind intensity plays an important role, among the dangerous meteorological phenomena, to produce negative effects on the economy and the social activities, particularly when the wind is about to turn into a storm. During the past years one can notice an increase of wind frequency and intensity due to climate changes and, consequently, as a result of the extreme meteorological phenomena not only on a planetary level but also on a regional one. Although dangerous meteorological phenomena cannot be avoided, since they are natural, nevertheless they can be anticipated and decision making institutions and mass media can be informed. This is the reason why, in this paper, we set out to identify the synoptic conditions that led to the occurrence of the severe storm case in Bucharest on July 2nd, 2009, as well as the matrices that generate such cases. At the same time we sought to identify some indications evidence especially from radar data so as to lead to the improvement of the time interval between the nowcasting warning and the actual occurrence of the phenomenon.

  8. Contrasts and synergies in different biofuel reports.

    PubMed

    Michalopoulos, A; Landeweerd, L; Van der Werf-Kulichova, Z; Puylaert, P G B; Osseweijer, P

    2011-04-01

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  9. Contrasts and synergies in different biofuel reports

    PubMed Central

    Michalopoulos, A.; Landeweerd, L.; Van der Werf-Kulichova, Z.; Puylaert, P. G. B.; Osseweijer, P.

    2011-01-01

    The societal debate on biofuels is characterised by increased complexity. This can hinder the effective governance of the field. This paper attempts a quantitative bird's eye meta-analysis of this complexity by mapping different stakeholder perspectives and expected outcomes as seen in the secondary literature on biofuels, along the lines of the People-Planet-Profit framework. Our analysis illustrates the tension between stated and actual drivers of large scale biofuel development, especially for first generation biofuels. Although environmental (Planet) aspects have dominated the biofuel debate, their overall assessment is mostly negative with regard to first generation biofuels. By contrast, economic (Profit) aspects are the only ones that are assessed positively with regard to first generation biofuels. Furthermore, positive and negative assessments of biofuel development are strongly influenced by the differences in focus between different stakeholder clusters. Stakeholders who appear generally supportive to biofuel development (industry) focus relatively more on aspects that are generally assessed as positive (Profit). By contrast, non-supportive stakeholders (NGO's) tend to focus mainly on aspects that are generally assessed as negative (Planet). Moreover, our analysis of reference lists revealed few citations of primary scientific data, and also that intergovernmental organizations produce the most influential publications in the debate. The surprising lack of listed references to scientific (primary) data reveals a need to assess in which arena the transition of scientific data towards secondary publications takes place, and how one can measure its quality. This work should be understood as a first effort to take some control over a complex and contradictory number of publications, and to allow the effective governance of the field through the identification of areas of overlapping consensus and persisting controversy, without reverting to claims on

  10. Biofuel from "humified" biomass

    NASA Astrophysics Data System (ADS)

    Kpogbemabou, D.; Lemée, L.; Amblès, A.

    2009-04-01

    In France, 26% of the emissions of greenhouse effect gas originate from transportation which depends for 87% on fossil fuels. Nevertheless biofuels can contribute to the fight against climate change while reducing energetic dependence. Indeed biomass potentially represents in France 30 Mtoe a year that is to say 15% national consumption. But 80% of these resources are made of lignocellulosic materials which are hardly exploitable. First-generation biofuels are made from sugar, starch, vegetable oil, or animal fats. Due to their competition with human food chain, first-generation biofuels could lead to food shortages and price rises. At the contrary second-generation biofuel production can use a variety of non food crops while using the lignocellulosic part of biomass [1]. Gasification, fermentation and direct pyrolysis are the most used processes. However weak yields and high hydrogen need are limiting factors. In France, the National Program for Research on Biofuels (PNRB) aims to increase mobilizable biomass resource and to develop lignocellulosic biomass conversion. In this context, the LIGNOCARB project studies the liquefaction of biodegraded biomass in order to lower hydrogen consumption. Our aim was to develop and optimize the biodegradation of the biomass. Once the reactor was achieved, the influence of different parameters (starting material, aeration, moisture content) on the biotransformation process was studied. The monitored parameters were temperature, pH and carbon /nitrogen ratio. Chemical (IHSS protocol) and biochemical (van Soest) fractionations were used to follow the maturity ("humic acid"/"fulvic acid" ratio) and the biological stability (soluble, hemicelluloses, celluloses, lignin) of the organic matter (OM). In example, the increase in lignin can be related to the stabilization since the OM becomes refractory to biodegradation whereas the increase in the AH/AF ratio traduces "humification". However, contrarily to the composting process, we do

  11. Biosensors and Biofuel Cells based on Vertically Aligned Carbon Nanotubes for Integrated Energy Sensing, Generation, and Storage (SGS) Systems

    NASA Astrophysics Data System (ADS)

    Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2010-03-01

    Diabetes is a growing health issue in the nation. Thus in-situ glucose sensors that can monitor the glucose level in our body are in high demand. Furthermore, it will be exciting if the excessive blood sugar can be converted into usable energy, and be stored in miniature batteries for applications. This will be the basis for an integrated energy sensing, generation, and storage (SGS) system in the future. Here we report the use of functionalized carbon nanotubes arrays as the glucose sensors as well as fuel cells that can convert glucose into energy. In principle, these devices can be integrated to detect excessive blood glucose and then convert the glucose into energy. They are also inline with our efforts on miniature 3D microbatteries using CNTs [1]. All these devices will be the basis for future SGS systems. Details of these results will be discussed in the meeting. [1] Wang et al., in 206^th Meeting of the Electrochemical Society, October 3-8, Honolulu, Hawaii (2004), Symposium Q1, abstract 1492. Y. K. Yap acknowledges supports from DARPA (DAAD17-03-C-0115), USDA (2007-35603-17740), and the Multi-Scale Technologies Institute (MuSTI) at MTU.

  12. Limits to biofuels

    NASA Astrophysics Data System (ADS)

    Johansson, S.

    2013-06-01

    Biofuel production is dependent upon agriculture and forestry systems, and the expectations of future biofuel potential are high. A study of the global food production and biofuel production from edible crops implies that biofuel produced from edible parts of crops lead to a global deficit of food. This is rather well known, which is why there is a strong urge to develop biofuel systems that make use of residues or products from forest to eliminate competition with food production. However, biofuel from agro-residues still depend upon the crop production system, and there are many parameters to deal with in order to investigate the sustainability of biofuel production. There is a theoretical limit to how much biofuel can be achieved globally from agro-residues and this amounts to approximately one third of todays' use of fossil fuels in the transport sector. In reality this theoretical potential may be eliminated by the energy use in the biomass-conversion technologies and production systems, depending on what type of assessment method is used. By surveying existing studies on biofuel conversion the theoretical limit of biofuels from 2010 years' agricultural production was found to be either non-existent due to energy consumption in the conversion process, or up to 2-6000TWh (biogas from residues and waste and ethanol from woody biomass) in the more optimistic cases.

  13. 11 Years of Cloud Characteristics from SEVIRI: 2nd Edition of the CLAAS Dataset by CMSAF

    NASA Astrophysics Data System (ADS)

    Finkensieper, Stephan; Stengel, Martin; Fokke Meirink, Jan; van Zadelhoff, Gerd-Jan; Kniffka, Anke

    2016-04-01

    Spatiotemporal variability of clouds is an important aspect of the climate system. Therefore climate data records of cloud properties are valuable to many researchers in the climate community. The passive SEVIRI imager onboard the geostationary Meteosat Second Generation satellites is well suited for the needs of cloud retrievals as it provides measurements in 12 spectral channels every 15 minutes and thus allows for capturing both the spatial and the temporal variability of clouds. However, requirements on climate data records are high in terms of record length and homogeneity, so that intercalibration and homogenization among the available SEVIRI instruments becomes a crucial factor. We present the 2nd edition of the CLoud Property DAtAset using SEVIRI (CLAAS-2) generated within the EUMETSAT Satellite Application Facility on Climate Monitoring (CMSAF), that is temporally extended and qualitatively improved compared to the 1st edition. CLAAS-2 covers the time period 2004-2014 and features cloud mask, cloud top properties, cloud phase, cloud type, and microphysical cloud properties on the complete SEVIRI disc in 15-minute temporal resolution. Temporally and spatially averaged quantities, mean diurnal cycles and monthly histograms are included as well. CLAAS-2 was derived from a homogenized data basis, obtained by intercalibrating visible and infrared SEVIRI radiances (of Meteosat 8, 9 and 10) with MODIS, using state-of-the-art retrieval schemes. In addition to the dataset characteristics, we will present validation results using CALIPSO as reference observations. The CLAAS-2 dataset will allow for a large variety of applications of which some will be indicated in our presentation, with focus on determining diurnal to seasonal cycles, spatially resolved frequencies of cloud properties as well as showing the potential for using CLAAS-2 data for model process studies.

  14. Physics design of the DARHT 2nd axis accelerator cell

    SciTech Connect

    Chen, Y J; Houck, T L; Reginato, L J; Shang, C C; Yu, S S

    1999-08-19

    The next generation of radiographic machines based on induction accelerators require very high brightness electron beams to realize the desired x-ray spot size and intensity. This high brightness must be maintained throughout the beam transport, from source to x-ray converter target. The accelerator for the second-axis of the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility is being designed to accelerate a 4-kA, 2-{micro}s pulse of electrons to 20 MeV. After acceleration, the 2-{micro}s pulse will be chopped into a train of four 50-ns pulses with variable temporal spacing by rapidly deflecting the beam between a beam stop and the final transport section. The short beam pulses will be focused onto an x-ray converter target generating four radiographic pulses within the 2-{micro}s window. Beam instability due to interaction with the accelerator cells can very adversely effect the beam brightness and radiographic pulse quality. This paper describes the various issues considered in the design of the accelerator cell with emphasis on transverse impedance and minimizing beam instabilities.

  15. Handbook of industrial and hazardous wastes treatment. 2nd ed.

    SciTech Connect

    Lawrence Wang; Yung-Tse Hung; Howard Lo; Constantine Yapijakis

    2004-06-15

    This expanded Second Edition offers 32 chapters of industry- and waste-specific analyses and treatment methods for industrial and hazardous waste materials - from explosive wastes to landfill leachate to wastes produced by the pharmaceutical and food industries. Key additional chapters cover means of monitoring waste on site, pollution prevention, and site remediation. Including a timely evaluation of the role of biotechnology in contemporary industrial waste management, the Handbook reveals sound approaches and sophisticated technologies for treating: textile, rubber, and timber wastes; dairy, meat, and seafood industry wastes; bakery and soft drink wastes; palm and olive oil wastes; pesticide and livestock wastes; pulp and paper wastes; phosphate wastes; detergent wastes; photographic wastes; refinery and metal plating wastes; and power industry wastes. This final chapter, entitled 'Treatment of power industry wastes' by Lawrence K. Wang, analyses the stream electric power generation industry, where combustion of fossil fuels coal, oil, gas, supplies heat to produce stream, used then to generate mechanical energy in turbines, subsequently converted to electricity. Wastes include waste waters from cooling water systems, ash handling systems, wet-scrubber air pollution control systems, and boiler blowdown. Wastewaters are characterized and waste treatment by physical and chemical systems to remove pollutants is presented. Plant-specific examples are provided.

  16. Four-dimensional investigation of the 2nd order volume autocorrelation technique

    NASA Astrophysics Data System (ADS)

    Faucher, O.; Tzallas, P.; Benis, E. P.; Kruse, J.; Peralta Conde, A.; Kalpouzos, C.; Charalambidis, D.

    2009-10-01

    The 2nd order volume autocorrelation technique, widely utilized in directly measuring ultra-short light pulses durations, is examined in detail via model calculations that include three-dimensional integration over a large ionization volume, temporal delay and spatial displacement of the two beams of the autocorrelator at the focus. The effects of the inherent displacement to the 2nd order autocorrelation technique are demonstrated for short and long pulses, elucidating the appropriate implementation of the technique in tight focusing conditions. Based on the above investigations, a high accuracy 2nd order volume autocorrelation measurement of the duration of the 5th harmonic of a 50 fs long laser pulse, including the measurement of the carrier wavelength oscillation, is presented.

  17. Biofuels production on abandoned and marginal agriculture lands in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Campbell, J. E.; Lobell, D. B.; Field, C. B.

    2008-12-01

    The location of biofuels agriculture land is a critical parameter for predicting biomass feedstock yields, land use emissions, and optimal plant varieties. Using abandoned and marginal agriculture lands to grow feedstocks for second-generation biofuels could provide a sustainable alternative to conventional biofuels production. These marginal areas are in a state of flux in the Midwestern U.S. where a 2007 surge in biofuels has contributed to competing land use demands including conventional biofuels crops, food agriculture, and conservation. Here we apply land use and agriculture data to consider the extent and productivity of abandoned and marginal lands in the Midwestern U.S. for production of second-generation biofuels.

  18. Limitation of Biofuel Production in Europe from the Forest Market

    NASA Astrophysics Data System (ADS)

    Leduc, Sylvain; Wetterlund, Elisabeth; Dotzauer, Erik; Kindermann, Georg

    2013-04-01

    The European Union has set a 10% target for the share of biofuel in the transportation sector to be met by 2020. To reach this target, second generation biofuel is expected to replace 3 to 5% of the transport fossil fuel consumption. But the competition on the feedstock is an issue and makes the planning for the second generation biofuel plant a challenge. Moreover, no commercial second generation biofuel production plant is under operation, but if reaching commercial status, this type of production plants are expected to become very large. In order to minimize the tranportation costs and to takle the competetion for the feedstock against the existing woody based industries, the geographical location of biofuel production plants becomes an issue. This study investigates the potential of second generation biofuel economically feasible in Europe by 2020 in regards with the competition for the feedsstock with the existing woody biomass based industries (CHP, pulp and paper mills, sawmills...). To assess the biofuel potential in Europe, a techno-economic, geographically explicit model, BeWhere, is used. It determines the optimal locations of bio-energy production plants by minimizing the costs and CO2 emissions of the entire supply chain. The existing woody based industries have to first meet their wood demand, and if the amount of wood that remains is suficiant, new bio-energy production plants if any can be set up. Preliminary results show that CHP plants are preferably chosen over biofuel production plants. Strong biofuel policy support is needed in order to consequently increase the biofuel production in Europe. The carbon tax influences the emission reduction to a higher degree than the biofuel support. And the potential of second generation biofuel would at most reach 3% of the European transport fuel if the wood demand does not increase from 2010.

  19. Regional Observations of North Korea Explosions: 1st and 2nd Tests

    NASA Astrophysics Data System (ADS)

    Chi, Heon Cheol; Shin, Jin Soo; Lee, Hee-Il; Park, Jung Ho; Sheen, Dong-Hoon; Kim, Geunyoung; Kim, Tea Sung; Che, Il-Young; Lim, In-Seub

    2010-05-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthally full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of the 1st and the 2nd test data showed that the 2nd test site was moved approximately 2 Km westward from 1st site. The Pn/Lg spectral ratio clearly discriminate these events from two nearby natural earthquakes above 4 Hz. Full moment tensor inversion also indicate the 2nd test had a very large isotropic component. But mb-Ms discrimination, which has been considered one of the most reliable discriminants for separating explosions and earthquakes, did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of the 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of both 1st and 2nd tests, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. These variations are mainly due to lateral variation of crustal structures surrounding the test site. Remarkably mb(Lg) showed very linear relationship with mb(Pn). By considering attenuation characteristics according to the propagation path, the variations could be effectively reduced. The cut-off frequencies of P wave of both tests showed no or negligible difference even though the estimated yield of the 2nd test were much larger than that of the 1st one. The ratio of P-wave amplitudes of two tests showed from 2 to 3.1 times. Correspondingly the

  20. Monitoring North Korea Explosions: Status and Result of 1st and 2nd Tests (Invited)

    NASA Astrophysics Data System (ADS)

    Chi, H.; Lee, H.; Shin, J.; Park, J.; Sheen, D.; Kim, G.; Che, I.; Lim, I.; Kim, T.

    2009-12-01

    Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthal full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries, and only stations with the distance of 200 to 550 Km from the test site were considered. Irrespective of azimuthal directions of stations from the test site, the conventional discrimination, Pn/Lg spectral ratio clearly showed that both tests were explosion. But mb-Ms discrimination did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of 1st test, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of 1st and 2nd test data showed that 2nd test site was moved approximately 2 Km westward from 1st site. The cut-off frequencies of P wave of 1st and 2nd tests showed no or negligible difference even though the estimated yield of 2nd test were much larger than that of 1st one. The ratio of 1st and 2nd P-wave amplitudes showed from 2 to 3.1 times. Correspondingly the estimated energy or yield were ranged from 4 to roughly 10 times. KIGAM evaluated the yield of 2nd test were 8 times in the average larger than that of 1st one.

  1. Biofuels in China

    NASA Astrophysics Data System (ADS)

    Tan, Tianwei; Yu, Jianliang; Lu, Jike; Zhang, Tao

    The Chinese government is stimulating the biofuels development to replace partially fossil fuels in the transport sector, which can enhance energy security, reduce greenhouse gas emissions, and stimulate rural development. Bioethanol, biodiesel, biobutanol, biogas, and biohydrogen are the main biofuels developed in China. In this chapter, we mainly present the current status of biofuel development in China, and illustrate the issues of feedstocks, food security and conversion processes.

  2. Algal Biofuels Factsheet: Long-Term Energy Benefits Drive U.S. Research

    SciTech Connect

    2013-03-04

    Algal biofuels are generating considerable interest around the world. In the United States, they represent promising pathways for helping to meet the biofuel production targets set by the Energy Independence and Security Act of 2007.

  3. DOE performance indicators for 2nd quarter CY 1993

    SciTech Connect

    Not Available

    1993-11-01

    The Department of Energy (DOE) has established a Department-wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment, safety, and health (ES&H) performance of the DOE at the Secretary and other management levels. This is the tenth in a series of quarterly reports generated for the Department of Energy Idaho Operations Office (DOE-ID) by EG&G Idaho, Inc. to meet the requirements of the PI Program as directed by the DOE Standard (DOE-STD-1048-92). The information in this tenth quarterly report, while contributing to a historical database for supporting future trending analysis, does not at this time provide a sound basis for developing trend-related conclusions. In the future, it is expected that trending and analysis of operational data will enhance the safety culture in both DOE and contractor organizations by providing an early warning of deteriorating environment, safety, and health conditions. DOE-STD-1048-92 identifies four general areas of PIs. They are: Personnel Safety, Operational Incidents, Environment, and Management. These four areas have been subdivided into 26 performance indicators. Approximately 115 performance indicator control and distribution charts comprise the body of this report. A brief summary of PIs contained in each of these general areas is provided. The four EG&G facilities whose performance is charted herein are as follows: (1) The Advanced Test Reactor (ATR), (2) The Radioactive Waste Management Complex (RWMC), (3) The Waste Experimental Reduction Facility (WERF), and (4) The Test Reactor Area (TRA) Hot Cells.

  4. NREL biofuels program overview

    SciTech Connect

    Mielenz, J.R.

    1996-09-01

    The NREL Biofuels Program has been developing technology for conversion of biomass to transportation fuels with support from DOE Office of Transportation Technologies Biofuels System Program. This support has gone to both the National Renewable Energy Laboratory, and over 100 subcontractors in universities and industry. This overview will outline the value of the Biofuels development program to the Nation, the current status of the technology development, and what research areas still need further support and progress for the development of a biofuels industry in the US.

  5. Proceedings of the 2nd symposium on valves for coal conversion and utilization

    SciTech Connect

    Maxfield, D.A.

    1981-01-01

    The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)

  6. Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition

    EPA Science Inventory

    This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...

  7. 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Entomological Society of China (ESC) and Beijing Institute of Microbiology and Epidemiology (BIME) hosted the 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases in Beijing, China, May 23-27, 2011. The theme of the Forum was “Impact of global climate ch...

  8. Technical Adequacy of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report

    ERIC Educational Resources Information Center

    Erford, Bradley T.; Miller, Emily M.; Isbister, Katherine

    2015-01-01

    This study provides preliminary analysis of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report, which was designed to screen individuals aged 10 years and older for anxiety and behavior symptoms. Score reliability and internal and external facets of validity were good for a screening-level test.

  9. Stem cells and cancer immunotherapy: Arrowhead’s 2nd annual cancer immunotherapy conference

    PubMed Central

    2014-01-01

    Investigators from academia and industry gathered on April 4 and 5, 2013, in Washington DC at the Arrowhead’s 2nd Annual Cancer Immunotherapy Conference. Two complementary concepts were discussed: cancer “stem cells” as targets and therapeutic platforms based on stem cells.

  10. Evaluation of a Hand Washing Program for 2nd-Graders

    ERIC Educational Resources Information Center

    Tousman, Stuart; Arnold, Dani; Helland, Wealtha; Roth, Ruth; Heshelman, Nannatte; Castaneda, Oralia; Fischer, Emily; O'Neil, Kristen; Bileto, Stephanie

    2007-01-01

    The purpose of this project was to determine if a multiple-week learner-centered hand washing program could improve hand hygiene behaviors of 2nd-graders in a northern Illinois public school system. Volunteers from the Rockford Hand Washing Coalition went into 19 different classrooms for 4 consecutive weeks and taught a learner-centered program.…

  11. The Effect of Using Computer Edutainment on Developing 2nd Primary Graders' Writing Skills

    ERIC Educational Resources Information Center

    Mohammed Abdel Raheem, Azza Ashraf

    2011-01-01

    The present study attempted to examine the effect of using computer edutainment on developing 2nd graders' writing skills. The study comprised thirty-second year primary stage enrolled in Bani Hamad primary governmental school, Minia governorate. The study adopted the quasi-experimental design. Thirty participants were randomly assigned to one…

  12. 70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND TEE (LEFT) AND NORTHWEST SIDE OF TEE (RIGHT), WITH VIEW OF PILINGS, LOOKING SOUTH-SOUTHWEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  13. 71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING VIEW OF PILINGS, LIFEGURD TOWER ON SOUTHEAST SIDE OF TEE (RIGHT), LOOKING EAST-NORTHEAST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA

  14. Thermochemical conversion of microalgal biomass into biofuels: a review.

    PubMed

    Chen, Wei-Hsin; Lin, Bo-Jhih; Huang, Ming-Yueh; Chang, Jo-Shu

    2015-05-01

    Following first-generation and second-generation biofuels produced from food and non-food crops, respectively, algal biomass has become an important feedstock for the production of third-generation biofuels. Microalgal biomass is characterized by rapid growth and high carbon fixing efficiency when they grow. On account of potential of mass production and greenhouse gas uptake, microalgae are promising feedstocks for biofuels development. Thermochemical conversion is an effective process for biofuel production from biomass. The technology mainly includes torrefaction, liquefaction, pyrolysis, and gasification. Through these conversion technologies, solid, liquid, and gaseous biofuels are produced from microalgae for heat and power generation. The liquid bio-oils can further be upgraded for chemicals, while the synthesis gas can be synthesized into liquid fuels. This paper aims to provide a state-of-the-art review of the thermochemical conversion technologies of microalgal biomass into fuels. Detailed conversion processes and their outcome are also addressed. PMID:25479688

  15. Algal biofuels: challenges and opportunities.

    PubMed

    Leite, Gustavo B; Abdelaziz, Ahmed E M; Hallenbeck, Patrick C

    2013-10-01

    Biodiesel production using microalgae is attractive in a number of respects. Here a number of pros and cons to using microalgae for biofuels production are reviewed. Algal cultivation can be carried out using non-arable land and non-potable water with simple nutrient supply. In addition, algal biomass productivities are much higher than those of vascular plants and the extractable content of lipids that can be usefully converted to biodiesel, triacylglycerols (TAGs) can be much higher than that of the oil seeds now used for first generation biodiesel. On the other hand, practical, cost-effective production of biofuels from microalgae requires that a number of obstacles be overcome. These include the development of low-cost, effective growth systems, efficient and energy saving harvesting techniques, and methods for oil extraction and conversion that are environmentally benign and cost-effective. Promising recent advances in these areas are highlighted. PMID:23499181

  16. Biofuels Research at EPA

    EPA Science Inventory

    The development of sustainable and clean biofuels is a national priority. To do so requires a life-cycle approach that includes consideration of feedstock production and logistics, and biofuel production, distribution, and end use. The US Environmental Protection Agency is suppor...

  17. Individual Differences In The School Performance of 2nd-Grade Children Born to Low-Income Adolescent Mothers

    ERIC Educational Resources Information Center

    Apiwattanalunggarn, Kunlakarn Lekskul; Luster, Tom

    2005-01-01

    The purpose of this study was to investigate factors that contribute to individual differences in the school performance of 2nd-grade children born to adolescent mothers. The sample of this study was 90 low-income adolescent mothers and their children. Data were collected from the adolescent mothers and their first-born children, now in 2nd grade,…

  18. Biofuels and sustainability.

    PubMed

    Solomon, Barry D

    2010-01-01

    Interest in liquid biofuels production and use has increased worldwide as part of government policies to address the growing scarcity and riskiness of petroleum use, and, at least in theory, to help mitigate adverse global climate change. The existing biofuels markets are dominated by U.S. ethanol production based on cornstarch, Brazilian ethanol production based on sugarcane, and European biodiesel production based on rapeseed oil. Other promising efforts have included programs to shift toward the production and use of biofuels based on residues and waste materials from the agricultural and forestry sectors, and perennial grasses, such as switchgrass and miscanthus--so-called cellulosic ethanol. This article reviews these efforts and the recent literature in the context of ecological economics and sustainability science. Several common dimensions for sustainable biofuels are discussed: scale (resource assessment, land availability, and land use practices); efficiency (economic and energy); equity (geographic distribution of resources and the "food versus fuel" debate); socio-economic issues; and environmental effects and emissions. Recent proposals have been made for the development of sustainable biofuels criteria, culminating in standards released in Sweden in 2008 and a draft report from the international Roundtable on Sustainable Biofuels. These criteria hold promise for accelerating a shift away from unsustainable biofuels based on grain, such as corn, and toward possible sustainable feedstock and production practices that may be able to meet a variety of social, economic, and environmental sustainability criteria. PMID:20146765

  19. Liquid biofuels - can they meet our expectations?

    NASA Astrophysics Data System (ADS)

    Glatzel, G.

    2012-04-01

    Liquid biofuels are one of the options for reducing the emission of greenhouse gases and the dependence on fossil fuels. This is reflected in the DIRECTIVE 2003/30/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of biofuels or other renewable fuels for transport. The promotion of E10, an automotive fuel containing 10 percent bioethanol, is based on this directive. At present almost all bioethanol is produced from agricultural crops such as maize, corn or sugar beet and sugar cane in suitable climates. In view of shortages and rising prices of food, in particular in developing countries, the use of food and feed crops for biofuel production is increasingly criticized. Alternative sources of biomass are perennial grasses and wood, whose cellulose fraction can be converted to alcohol by the so called "second generation" processes, which seem to be close to commercial deployment. The use of the total plant biomass increases the biofuel yield per hectare as compared to conventional crops. Of special interest for biofuel production is woody biomass from forests as this avoids competition with food production on arable land. Historically woody biomass was for millennia the predominant source of thermal energy. Before fossil fuels came into use, up to 80 percent of a forest was used for fuel wood, charcoal and raw materials such as potash for trade and industry. Now forests are managed to yield up to 80 percent of high grade timber for the wood industry. Replacing sophisticatedly managed forests by fast growing biofuel plantations could make economic sense for land owners when a protected market is guaranteed by politics, because biofuel plantations would be highly mechanized and cheap to operate, even if costs for certified planting material and fertilizer are added. For forest owners the decision to clear existing long rotation forests for biofuel plantations would still be weighty because of the extended time of decades required to rebuild a

  20. Assessing extension and outreach education levels for biofuel feedstock production in the Western United States

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A growing biofuels industry requires the development of effective methods to educate farmers, government, and agribusiness about biofuel feedstock production if the market is going to significantly expand beyond first generation biofuels. Extension and outreach education provides a conduit for impor...

  1. Performance of 2nd Generation BaBar Resistive Plate Chambers

    SciTech Connect

    Anulli, F.; Baldini, R.; Calcaterra, A.; de Sangro, R.; Finocchiaro, G.; Patteri, P.; Piccolo, M.; Zallo, A.; Cheng, C.H.; Lange, D.J.; Wright, D.M.; Messner, R.; Wisniewski, William J.; Pappagallo, M.; Andreotti, M.; Bettoni, D.; Calabrese, R.; Cibinetto, G.; Luppi, E.; Negrini, M.; Capra, R.; /Genoa U. /INFN, Genoa /Naples U. /INFN, Naples /Perugia U. /INFN, Perugia /Pisa U. /INFN, Pisa /Rome U. /INFN, Rome /Oregon U. /UC, Riverside /Wisconsin U., Madison

    2005-07-12

    The BaBar detector has operated nearly 200 Resistive Plate Chambers (RPCs), constructed as part of an upgrade of the forward endcap muon detector, for the past two years. The RPCs experience widely different background and luminosity-driven singles rates (0.01-10 Hz/cm{sup 2}) depending on position within the endcap. Some regions have integrated over 0.3 C/cm{sup 2}. RPC efficiency measured with cosmic rays is high and stable. The average efficiency measured with beam is also high. However, a few of the highest rate RPCs have suffered efficiency losses of 5-15%. Although constructed with improved techniques and minimal use of linseed oil, many of the RPCs, which are operated in streamer mode, have shown increased dark currents and noise rates that are correlated with the direction of the gas flow and the integrated current. Studies of the above aging effects are presented and correlated with detector operating conditions.

  2. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis.

    PubMed

    Semren, Nora; Habel-Ungewitter, Nunja C; Fernandez, Isis E; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  3. The new 2nd-generation laser station at Santiago de Cuba

    NASA Astrophysics Data System (ADS)

    Masevich, A. G.; Chepurnov, B. D.; Fundora, M.; del Pino, J.; Kautzleben, H.

    The new laser-radar station at Santiago de Cuba was equipped in cooperation between the Academies of Sciences of the USSR, Cuba and the G.D.R. The system is based on a modified satellite-tracking camera (SBG). Its basic concept and the technical performance are similar to the laser-radar station of the Central Institute for Physics of the Earth, Potsdam. During a first 6-weeks-observation campaign (Dec. 1985 - Jan. 1986), 70 satellite passes (including 40 passes of the geodynamical satellite LAGEOS) were obtained.

  4. Utilisation of 2nd Generation Web Technologies in Master Level Vocational Teacher Training

    ERIC Educational Resources Information Center

    Tóth, Péter

    2009-01-01

    The Masters level Opportunities and Technological Innovation in Vocational Teacher Education project (project site: http://motivate.tmpk.bmf.hu/) aims to develop the use and management of virtual learning environments in the area of vocational teacher training, drawing on a well established international partnership of institutions providing both…

  5. Reed canary grass as a feedstock for 2nd generation bioethanol production.

    PubMed

    Kallioinen, Anne; Uusitalo, Jaana; Pahkala, Katri; Kontturi, Markku; Viikari, Liisa; Weymarn, Niklas von; Siika-Aho, Matti

    2012-11-01

    The enzymatic hydrolysis and fermentation of reed canary grass, harvested in the spring or autumn, and barley straw were studied. Steam pretreated materials were efficiently hydrolysed by commercial enzymes with a dosage of 10-20FPU/g d.m. Reed canary grass harvested in the spring was hydrolysed more efficiently than the autumn-harvested reed canary grass. Additional β-glucosidase improved the release of glucose and xylose during the hydrolysis reaction. The hydrolysis rate and level of reed canary grass with a commercial Trichoderma reesei cellulase could be improved by supplementation of purified enzymes. The addition of CBH II improved the hydrolysis level by 10% in 48hours' hydrolysis. Efficient mixing was shown to be important for hydrolysis already at 10% dry matter consistency. The highest ethanol concentration (20g/l) and yield (82%) was obtained with reed canary grass at 10% d.m. consistency. PMID:22939601

  6. Validation of the 2nd Generation Proteasome Inhibitor Oprozomib for Local Therapy of Pulmonary Fibrosis

    PubMed Central

    Semren, Nora; Habel-Ungewitter, Nunja C.; Fernandez, Isis E.; Königshoff, Melanie; Eickelberg, Oliver; Stöger, Tobias; Meiners, Silke

    2015-01-01

    Proteasome inhibition has been shown to prevent development of fibrosis in several organs including the lung. However, effects of proteasome inhibitors on lung fibrosis are controversial and cytotoxic side effects of the overall inhibition of proteasomal protein degradation cannot be excluded. Therefore, we hypothesized that local lung-specific application of a novel, selective proteasome inhibitor, oprozomib (OZ), provides antifibrotic effects without systemic toxicity in a mouse model of lung fibrosis. Oprozomib was first tested on the human alveolar epithelial cancer cell line A549 and in primary mouse alveolar epithelial type II cells regarding its cytotoxic effects on alveolar epithelial cells and compared to the FDA approved proteasome inhibitor bortezomib (BZ). OZ was less toxic than BZ and provided high selectivity for the chymotrypsin-like active site of the proteasome. In primary mouse lung fibroblasts, OZ showed significant anti-fibrotic effects, i.e. reduction of collagen I and α smooth muscle actin expression, in the absence of cytotoxicity. When applied locally into the lungs of healthy mice via instillation, OZ was well tolerated and effectively reduced proteasome activity in the lungs. In bleomycin challenged mice, however, locally applied OZ resulted in accelerated weight loss and increased mortality of treated mice. Further, OZ failed to reduce fibrosis in these mice. While upon systemic application OZ was well tolerated in healthy mice, it rather augmented instead of attenuated fibrotic remodelling of the lung in bleomycin challenged mice. To conclude, low toxicity and antifibrotic effects of OZ in pulmonary fibroblasts could not be confirmed for pulmonary fibrosis of bleomycin-treated mice. In light of these data, the use of proteasome inhibitors as therapeutic agents for the treatment of fibrotic lung diseases should thus be considered with caution. PMID:26340365

  7. Integrated vehicle test bed for IVHM systems on 2nd generation RLV

    NASA Technical Reports Server (NTRS)

    James, M. L.; Baroth, E.; Mellinger, L.; Park, H.; Stough, T.; Brown, S. A.; Meyer, C. M.

    2003-01-01

    The IVTB concept is to validate spacecraft system designs and evaluate new technologies; its focus is to identify and resolve problems at the early stages of development and facilitate new technology transfer.

  8. 2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.

  9. 2nd-Order CESE Results For C1.1: Transonic Ringleb Flow

    NASA Technical Reports Server (NTRS)

    Friedlander, David J.

    2015-01-01

    The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d (an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available.) The CESE method is a time-accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist.

  10. Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015

    SciTech Connect

    Mitchell, Lisbeth A.

    2015-04-01

    This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.

  11. [Employment and education in the 2nd economic and social development plan of Togo].

    PubMed

    Dovi-sodemekou, F B

    1985-01-01

    Togo is a developing country whose population is increasing at the rapid rate of 2.7%/year. Economic development is therefore a necessity to ensure at least an average standard of living. Plans of development include objectives of structural societal changes, including improvements in education and employment. This study analyzes the evolution of population activities. It identifies obstacles to the improvement of education and employment. The investigation examines the employment and education situation before adoption of the 2nd plan of Togo and predicts the probable evolution of the situation. Despite the priority accorded to agriculture, the 2nd plan appears to give greater importance to industry. The industrial and commercial sector has witnessed a 65.2% investment increase, whereas the rural sector had an investment increase of 11.8%. The 2nd plan, in view of its relation to the evolution of economic activities, took into account the demand for manual labor. In the private sector, industries should occupy an important position. The dualism of a modern and a traditional sector is considered a cause of underdevelopment. The modern sector should be developed in order to suppress the traditional sector and allow progress in society. As a result of this approach, agriculture is given a 2ndary role. PMID:12267415

  12. Very large millimeter/submillimeter array toward search for 2nd Earth

    NASA Astrophysics Data System (ADS)

    Iguchi, Satoru; Saito, Masao

    2012-09-01

    ALMA (Atacama Large Millimeter/submillimeter Array) is a revolutionary radio telescope and its early scientific operation has just started. It is expected that ALMA will resolve several cosmic questions and will give us a new cosmic view. Our passion for astronomy naturally goes beyond ALMA because we believe that the 21st-century astronomy should pursue the new scientific frontier. In this conference, we propose a project of the future radio telescope to search for habitable planets and finally detect 2nd Earth as a migratable planet. Detection of 2nd Earth is one of the ultimate dreams not only for astronomers but also for every human being. To directly detect 2nd Earth, we have to carefully design the sensitivity and angular resolution of the telescope by conducting trade-off analysis between the confusion limit and the minimum detectable temperature. The result of the sensitivity analysis is derived assuming an array that has sixty-four (64) 50-m antennas with 25-μm surface accuracy mainly located within the area of 300 km (up to 3000 km), dual-polarization SSB receivers with the best noise temperature performance achieved by ALMA or better, and IF bandwidth of 128 or 256 GHz.. We temporarily name this telescope "Very Large Millimeter/Submillimeter Array (VLMSA)". Since this sensitivity is extremely high, we can have a lot of chances to study the galaxy, star formation, cosmology and of course the new scientific frontier.

  13. Application research on enhancing near-infrared micro-imaging quality by 2nd derivative

    NASA Astrophysics Data System (ADS)

    Wang, Dong; Ma, Zhi-hong; Zhao, Liu; Wang, Bei-hong; Han, Ping; Pan, Li-gang; Wang, Ji-hua

    2013-08-01

    Near-infrared micro-imaging will not only provide the sample's spatial distribution information, but also the spectroscopic information of each pixel. In this thesis, it took the artificial sample of wheat flour and formaldehyde sodium sulfoxylate distribution given for example to research the data processing method for enhancing the quality of near-infrared micro-imaging. Near-infrared spectroscopic feature of wheat flour and formaldehyde sodium sulfoxylate being studied on, compare correlation imaging and 2nd derivative imaging were applied in the imaging processing of the near-infrared micro-image of the artificial sample. Furthermore, the two methods were combined, i.e. 2nd derivative compare correlation imaging was acquired. The result indicated that the difference of the correlation coefficients between the two substances, i.e. wheat flour and formaldehyde sodium sulfoxylate, and the reference spectrum has been increased from 0.001 in compare correlation image to 0.796 in 2nd derivative compare correlation image respectively, which enhances the imaging quality efficiently. This study will, to some extent, be of important reference significance to near-infrared micro-imaging method research of agricultural products and foods.

  14. Biofuel Ethanol Transport Risk

    EPA Science Inventory

    Ethanol production has increased rapidly over the last 10 years and many communities lack awareness of the increased and growing extent of biofuel transportation through their jurisdictions. These communities and their emergency responders may not have the information and resour...

  15. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2015-10-01

    This review includes works published in the general scientific literature during 2014 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. Anothersection of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae are also discussed. PMID:26420094

  16. Bioenergy from Biofuel Residues and Wastes.

    PubMed

    Choudri, B S; Baawain, Mahad

    2016-10-01

    This review includes works published in the general scientific literature during 2015 on the production of bioenergy and biofuel from waste residues generated during bioethanol and biodiesel production with a brief overview of current and emerging feedstocks. A section of this review summarizes literature on culturing algae for biofuels including bioreactors and open pond cultivation systems with the utilization of inorganic and organic sources of nutrients. New methods applicable to the mass culture of algae are highlighted. Algal cell harvesting and oil extraction techniques tested and developed for algae discussed alongwith policies and economics are also provided. PMID:27620098

  17. Biofuels and biodiversity.

    PubMed

    Wiens, John; Fargione, Joseph; Hill, Jason

    2011-06-01

    The recent increase in liquid biofuel production has stemmed from a desire to reduce dependence on foreign oil, mitigate rising energy prices, promote rural economic development, and reduce greenhouse gas emissions. The growth of this industry has important implications for biodiversity, the effects of which depend largely on which biofuel feedstocks are being grown and the spatial extent and landscape pattern of land requirements for growing these feedstocks. Current biofuel production occurs largely on croplands that have long been in agricultural production. The additional land area required for future biofuels production can be met in part by reclaiming reserve or abandoned croplands and by extending cropping into lands formerly deemed marginal for agriculture. In the United States, many such marginal lands have been enrolled in the Conservation Reserve Program (CRP), providing important habitat for grassland species. The demand for corn ethanOl has changed agricultural commodity economics dramatically, already contributing to loss of CRP lands as contracts expire and lands are returned to agricultural production. Nevertheless, there are ways in which biofuels can be developed to enhance their coexistence with biodiversity. Landscape heterogeneity can be improved by interspersion of land uses, which is easier around facilities with smaller or more varied feedstock demands. The development of biofuel feedstocks that yield high net energy returns with minimal carbon debts or that do not require additional land for production, such as residues and wastes, should be encouraged. Competing land uses, including both biofuel production and biodiversity protection, should be subjected to comprehensive cost-benefit analysis, so that incentives can be directed where they will do the most good. PMID:21774415

  18. Biofuel combustion chemistry: from ethanol to biodiesel.

    PubMed

    Kohse-Höinghaus, Katharina; Osswald, Patrick; Cool, Terrill A; Kasper, Tina; Hansen, Nils; Qi, Fei; Westbrook, Charles K; Westmoreland, Phillip R

    2010-05-10

    Biofuels, such as bio-ethanol, bio-butanol, and biodiesel, are of increasing interest as alternatives to petroleum-based transportation fuels because they offer the long-term promise of fuel-source regenerability and reduced climatic impact. Current discussions emphasize the processes to make such alternative fuels and fuel additives, the compatibility of these substances with current fuel-delivery infrastructure and engine performance, and the competition between biofuel and food production. However, the combustion chemistry of the compounds that constitute typical biofuels, including alcohols, ethers, and esters, has not received similar public attention. Herein we highlight some characteristic aspects of the chemical pathways in the combustion of prototypical representatives of potential biofuels. The discussion focuses on the decomposition and oxidation mechanisms and the formation of undesired, harmful, or toxic emissions, with an emphasis on transportation fuels. New insights into the vastly diverse and complex chemical reaction networks of biofuel combustion are enabled by recent experimental investigations and complementary combustion modeling. Understanding key elements of this chemistry is an important step towards the intelligent selection of next-generation alternative fuels. PMID:20446278

  19. Economics of Current and Future Biofuels

    SciTech Connect

    Tao, L.; Aden, A.

    2009-06-01

    This work presents detailed comparative analysis on the production economics of both current and future biofuels, including ethanol, biodiesel, and butanol. Our objectives include demonstrating the impact of key parameters on the overall process economics (e.g., plant capacity, raw material pricing, and yield) and comparing how next-generation technologies and fuels will differ from today's technologies. The commercialized processes and corresponding economics presented here include corn-based ethanol, sugarcane-based ethanol, and soy-based biodiesel. While actual full-scale economic data are available for these processes, they have also been modeled using detailed process simulation. For future biofuel technologies, detailed techno-economic data exist for cellulosic ethanol from both biochemical and thermochemical conversion. In addition, similar techno-economic models have been created for n-butanol production based on publicly available literature data. Key technical and economic challenges facing all of these biofuels are discussed.

  20. World Biofuels Study

    SciTech Connect

    Alfstad,T.

    2008-10-01

    This report forms part of a project entitled 'World Biofuels Study'. The objective is to study world biofuel markets and to examine the possible contribution that biofuel imports could make to help meet the Renewable Fuel Standard (RFS) of the Energy Independence and Security Act of 2007 (EISA). The study was sponsored by the Biomass Program of the Assistant Secretary for Energy Efficiency and Renewable Energy (EERE), U.S. Department of Energy. It is a collaborative effort among the Office of Policy and International Affairs (PI), Department of Energy and Oak Ridge National Laboratory (ORNL), National Renewable Energy Laboratory (NREL) and Brookhaven National Laboratory (BNL). The project consisted of three main components: (1) Assessment of the resource potential for biofuel feedstocks such as sugarcane, grains, soybean, palm oil and lignocellulosic crops and development of supply curves (ORNL). (2) Assessment of the cost and performance of biofuel production technologies (NREL). (3) Scenario-based analysis of world biofuel markets using the ETP global energy model with data developed in the first parts of the study (BNL). This report covers the modeling and analysis part of the project conducted by BNL in cooperation with PI. The Energy Technology Perspectives (ETP) energy system model was used as the analytical tool for this study. ETP is a 15 region global model designed using the MARKAL framework. MARKAL-based models are partial equilibrium models that incorporate a description of the physical energy system and provide a bottom-up approach to study the entire energy system. ETP was updated for this study with biomass resource data and biofuel production technology cost and performance data developed by ORNL and NREL under Tasks 1 and 2 of this project. Many countries around the world are embarking on ambitious biofuel policies through renewable fuel standards and economic incentives. As a result, the global biofuel demand is expected to grow very rapidly over

  1. Carbon dioxide emissions and the overshoot ratio change resulting from the implementation of 2nd Energy Master Plan in South Korea

    NASA Astrophysics Data System (ADS)

    Yeo, M. J.; Kim, Y. P.

    2015-12-01

    The direction of the energy policies of the country is important in the projection of environmental impacts of the country. The greenhouse gases (GHGs) emission of the energy sector in South Korea is very huge, about 600 MtCO2e in 2011. Also the carbon footprint due to the energy consumption contributes to the ecological footprint is also large, more than 60%. Based on the official plans (the national greenhouse gases emission reduction target for 2030 (GHG target for 2030) and the 2nd Energy Master Plan (2nd EMP)), several scenarios were proposed and the sensitivity of the GHG emission amount and 'overshoot ratio' which is the ratio of ecological footprint to biocapacity were estimated. It was found that to meet the GHG target for 2030 the ratio of non-emission energy for power generation should be over 71% which would be very difficult. We also found that the overshoot ratio would increase from 5.9 in 2009 to 7.6 in 2035. Thus, additional efforts are required to reduce the environmental burdens in addition to optimize the power mix configuration. One example is the conversion efficiency in power generation. If the conversion efficiency in power generation rises up 50% from the current level, 40%, the energy demand and resultant carbon dioxide emissions would decrease about 10%. Also the influence on the environment through changes in consumption behavior, for example, the diet choice is expected to be meaningful.

  2. PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies

    NASA Astrophysics Data System (ADS)

    Ručevskis, Sandris

    2015-11-01

    The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana

  3. An agent-based model of farmer decision-making and water quality impacts at the watershed scale under markets for carbon allowances and a second-generation biofuel crop

    NASA Astrophysics Data System (ADS)

    Ng, Tze Ling; Eheart, J. Wayland; Cai, Ximing; Braden, John B.

    2011-09-01

    An agent-based model of farmers' crop and best management practice (BMP) decisions is developed and linked to a hydrologic-agronomic model of a watershed, to examine farmer behavior, and the attendant effects on stream nitrate load, under the influence of markets for conventional crops, carbon allowances, and a second-generation biofuel crop. The agent-based approach introduces interactions among farmers about new technologies and market opportunities, and includes the updating of forecast expectations and uncertainties using Bayesian inference. The model is applied to a semi-hypothetical example case of farmers in the Salt Creek Watershed in Central Illinois, and a sensitivity analysis is performed to effect a first-order assessment of the plausibility of the results. The results show that the most influential factors affecting farmers' decisions are crop prices, production costs, and yields. The results also show that different farmer behavioral profiles can lead to different predictions of farmer decisions. The farmers who are predicted to be more likely to adopt new practices are those who interact more with other farmers, are less risk averse, quick to adjust their expectations, and slow to reduce their forecast confidence. The decisions of farmers have direct water quality consequences, especially those pertaining to the adoption of the second-generation biofuel crop, which are estimated to lead to reductions in stream nitrate load. The results, though empirically untested, appear plausible and consistent with general farmer behavior. The results demonstrate the usefulness of the coupled agent-based and hydrologic-agronomic models for normative research on watershed management on the water-energy nexus.

  4. BioFuels Atlas (Presentation)

    SciTech Connect

    Moriarty, K.

    2011-02-01

    Presentation for biennial merit review of Biofuels Atlas, a first-pass visualization tool that allows users to explore the potential of biomass-to-biofuels conversions at various locations and scales.

  5. PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology

    NASA Astrophysics Data System (ADS)

    Niño, Ely Dannier V.

    2013-11-01

    These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for

  6. [Model and enlightenment from rescue of August 2nd Kunshan explosion casualty].

    PubMed

    Tan, Q; Qiu, H B; Sun, B W; Shen, Y M; Nie, L J; Zhang, H W

    2016-01-01

    On August 2nd, 2014, a massive dust explosion occurred in a factory of Kunshan, resulting in a mass casualty involving 185 burn patients. They were transported to 20 medical institutions in Jiangsu province and Shanghai. More than one thousand of medical personnel of our country participated in this emergency rescue, and satisfactory results were achieved. In this paper, the characteristics of this accident were analyzed, the positive effects of interdisciplinary cooperation were affirmed, and the contingency plan, rescue process and pattern, and reserve, organization and management of talents during this rescue process were reviewed retrospectively. PMID:27426066

  7. Easy Glide in a Coarse-Grained Mg-2Zn-2Nd Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Jonas, John J.; Yue, Stephen

    2016-08-01

    Compression tests were performed at 673 K (400 °C) on a Mg-2Zn-2Nd alloy at the strain rates of 0.1, 0.01, and 0.001/s. The 0.1 and 0.01/s flow curves displayed work hardening to a peak stress at around 0.2 true strain. However, testing at 0.001/s led to steady-state flow at about 22 MPa from 0.03 true strain onwards. Such a steady-state flow is attributed to the predominance of basal slip under these conditions.

  8. The ratio of 2nd to 4th digit length: a new predictor of disease predisposition?

    PubMed

    Manning, J T; Bundred, P E

    2000-05-01

    The ratio between the length of the 2nd and 4th digits is: (a) fixed in utero; (b) lower in men than in women; (c) negatively related to testosterone and sperm counts; and (d) positively related to oestrogen concentrations. Prenatal levels of testosterone and oestrogen have been implicated in infertility, autism, dyslexia, migraine, stammering, immune dysfunction, myocardial infarction and breast cancer. We suggest that 2D:4D ratio is predictive of these diseases and may be used in diagnosis, prognosis and in early life-style interventions which may delay the onset of disease or facilitate its early detection. PMID:10859702

  9. [Infected chorionic hematoma as a cause of infection in the 2nd trimester].

    PubMed

    Weigel, M; Friese, K; Schmitt, W; Strittmatter, H J; Melchert, F

    1992-12-01

    Superinfected subchorionic haematomas are a rare septic focus in the 2nd trimenon. Symptoms being unspecific, the diagnosis has to be made by exclusion, in most cases. As the changes of a successful treatment of the manifest infection is poor, antibiotic prophylaxis as well as close laboratory controls and early antibiotic therapy should be discussed after sonographic diagnosis of an intrauterine haematoma. Two of our three patients reported on having suffered a miscarriage; only one pregnancy could be maintained after spontaneous depletion of the infected haemorrhage. PMID:1490559

  10. Environmental assessment of biofuel chains based on ecosystem modelling, including land-use change effects

    NASA Astrophysics Data System (ADS)

    Gabrielle, B.; Gagnaire, N.; Massad, R.; Prieur, V.; Python, Y.

    2012-04-01

    The potential greenhouse gas (GHG) savings resulting from the displacement of fossil energy sources by bioenergy mostly hinges on the uncertainty on the magnitude of nitrous oxide (N2O) emissions from arable soils occuring during feedstock production. These emissions are broadly related to fertilizer nitrogen input rates, but largely controlled by soil and climate factors which makes their estimation highly uncertain. Here, we set out to improve estimates of N2O emissions from bioenergy feedstocks by using ecosystem models and measurements and modeling of atmospheric N2O in the greater Paris (France) area. Ground fluxes were measured in two locations to assess the effect of soil type and management, crop type (including lignocellulosics such as triticale, switchgrass and miscanthus), and climate on N2O emission rates and dynamics. High-resolution maps of N2O emissions were generated over the Ile-de-France region (around Paris) with two ecosystem models using geographical databases on soils, weather data, land-use and crop management. The models were tested against ground flux measurements and the emission maps were fed into the atmospheric chemistry-transport model CHIMERE. The maps were tested by comparing the CHIMERE simulations with time series of N2O concentrations measured at various heights above the ground in two locations in 2007. The emissions of N2O, as integrated over the region, were used in a life-cycle assessment of representative biofuel pathways: bioethanol from wheat and sugar-beet (1st generation), and miscanthus (2nd generation chain); bio-diesel from oilseed rape. Effects related to direct and indirect land-use changes (in particular on soil carbon stocks) were also included in the assessment based on various land-use scenarios and literature references. The potential deployment of miscanthus was simulated by assuming it would be grown on the current sugar-beet growing area in Ile-de-France, or by converting land currently under permanent fallow

  11. Cyanobacterial biofuel production.

    PubMed

    Machado, Iara M P; Atsumi, Shota

    2012-11-30

    The development of new technologies for production of alternative fuel became necessary to circumvent finite petroleum resources, associate rising costs, and environmental concerns due to rising fossil fuel CO₂ emissions. Several alternatives have been proposed to develop a sustainable industrial society and reduce greenhouse emissions. The idea of biological conversion of CO₂ to fuel and chemicals is receiving increased attention. In particular, the direct conversion of CO₂ with solar energy to biofuel by photosynthetic microorganisms such as microalgae and cyanobacteria has several advantages compared to traditional biofuel production from plant biomass. Photosynthetic microorganisms have higher growth rates compared with plants, and the production systems can be based on non-arable land. The advancement of synthetic biology and genetic manipulation has permitted engineering of cyanobacteria to produce non-natural chemicals typically not produced by these organisms in nature. This review addresses recent publications that utilize different approaches involving engineering cyanobacteria for production of high value chemicals including biofuels. PMID:22446641

  12. Microalgae biofuel potentials (review).

    PubMed

    Ghasemi, Y; Rasoul-Amini, S; Naseri, A T; Montazeri-Najafabady, N; Mobasher, M A; Dabbagh, F

    2012-01-01

    With the decrease of fossil based fuels and the environmental impact of them over the planet, it seems necessary to seek the sustainable sources of clean energy. Biofuels, is becoming a worldwide leader in the development of renewable energy resources. It is worthwhile to say that algal biofuel production is thought to help stabilize the concentration of carbon dioxide in the atmosphere and decrease global warming impacts. Also, among algal fuels' attractive characteristics, algal biodiesel is non toxic, with no sulfur, highly biodegradable and relatively harmless to the environment if spilled. Algae are capable of producing in excess of 30 times more oil per acre than corn and soybean crops. Currently, algal biofuel production has not been commercialized due to high costs associated with production, harvesting and oil extraction but the technology is progressing. Extensive research was conducted to determine the utilization of microalgae as an energy source and make algae oil production commercially viable. PMID:22586908

  13. Center for Advanced Biofuel Systems (CABS) Final Report

    SciTech Connect

    Kutchan, Toni M.

    2015-12-02

    One of the great challenges facing current and future generations is how to meet growing energy demands in an environmentally sustainable manner. Renewable energy sources, including wind, geothermal, solar, hydroelectric, and biofuel energy systems, are rapidly being developed as sustainable alternatives to fossil fuels. Biofuels are particularly attractive to the U.S., given its vast agricultural resources. The first generation of biofuel systems was based on fermentation of sugars to produce ethanol, typically from food crops. Subsequent generations of biofuel systems, including those included in the CABS project, will build upon the experiences learned from those early research results and will have improved production efficiencies, reduced environmental impacts and decreased reliance on food crops. Thermodynamic models predict that the next generations of biofuel systems will yield three- to five-fold more recoverable energy products. To address the technological challenges necessary to develop enhanced biofuel systems, greater understanding of the non-equilibrium processes involved in solar energy conversion and the channeling of reduced carbon into biofuel products must be developed. The objective of the proposed Center for Advanced Biofuel Systems (CABS) was to increase the thermodynamic and kinetic efficiency of select plant- and algal-based fuel production systems using rational metabolic engineering approaches grounded in modern systems biology. The overall strategy was to increase the efficiency of solar energy conversion into oils and other specialty biofuel components by channeling metabolic flux toward products using advanced catalysts and sensible design:1) employing novel protein catalysts that increase the thermodynamic and kinetic efficiencies of photosynthesis and oil biosynthesis; 2) engineering metabolic networks to enhance acetyl-CoA production and its channeling towards lipid synthesis; and 3) engineering new metabolic networks for the

  14. The Brazilian biofuels industry

    PubMed Central

    Goldemberg, José

    2008-01-01

    Ethanol is a biofuel that is used as a replacement for approximately 3% of the fossil-based gasoline consumed in the world today. Most of this biofuel is produced from sugarcane in Brazil and corn in the United States. We present here the rationale for the ethanol program in Brazil, its present 'status' and its perspectives. The environmental benefits of the program, particularly the contribution of ethanol to reducing the emission of greenhouse gases, are discussed, as well as the limitations to its expansion. PMID:18471272

  15. Editorial: 2nd Special Issue on behavior change, health, and health disparities.

    PubMed

    Higgins, Stephen T

    2015-11-01

    This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policy makers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372

  16. Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.

    PubMed

    Wan, Xing; Pei, Han; Zhao, Min-Jian; Yang, Shuo; Hu, Wei-Kun; He, Heng; Ma, Si-Qi; Zhang, Ge; Dong, Xiao-Yan; Chen, Chen; Wang, Dao-Wen; Li, Bin

    2016-01-01

    Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  17. The relation between 1st grade grey matter volume and 2nd grade math competence.

    PubMed

    Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E

    2016-01-01

    Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946

  18. Editorial: 2nd Special Issue on behavior change, health, and health disparities

    PubMed Central

    Higgins, Stephen T.

    2016-01-01

    This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372

  19. Current challenges in commercially producing biofuels from lignocellulosic biomass.

    PubMed

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  20. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    DOE PAGESBeta

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be producedmore » in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected.« less

  1. Current Challenges in Commercially Producing Biofuels from Lignocellulosic Biomass

    PubMed Central

    Balan, Venkatesh

    2014-01-01

    Biofuels that are produced from biobased materials are a good alternative to petroleum based fuels. They offer several benefits to society and the environment. Producing second generation biofuels is even more challenging than producing first generation biofuels due the complexity of the biomass and issues related to producing, harvesting, and transporting less dense biomass to centralized biorefineries. In addition to this logistic challenge, other challenges with respect to processing steps in converting biomass to liquid transportation fuel like pretreatment, hydrolysis, microbial fermentation, and fuel separation still exist and are discussed in this review. The possible coproducts that could be produced in the biorefinery and their importance to reduce the processing cost of biofuel are discussed. About $1 billion was spent in the year 2012 by the government agencies in US to meet the mandate to replace 30% existing liquid transportation fuels by 2022 which is 36 billion gallons/year. Other countries in the world have set their own targets to replace petroleum fuel by biofuels. Because of the challenges listed in this review and lack of government policies to create the demand for biofuels, it may take more time for the lignocellulosic biofuels to hit the market place than previously projected. PMID:25937989

  2. Sustainable Biofuels Redux

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown, and thus need to be explicitly considered using a framework that allows the outcomes of alternative systems to be consistently eva...

  3. PNNL Aviation Biofuels

    SciTech Connect

    Plaza, John; Holladay, John; Hallen, Rich

    2014-10-23

    Commercial airplanes really don’t have the option to move away from liquid fuels. Because of this, biofuels present an opportunity to create new clean energy jobs by developing technologies that deliver stable, long term fuel options. The Department of Energy’s Pacific Northwest National Laboratory is working with industrial partners on processes to convert biomass to aviation fuels.

  4. Agriculture - Sustainable biofuels Redux

    SciTech Connect

    Robertson, G. Phillip; Dale, Virginia H; Doering, Otto C.; Hamburg, Steven P; Melillo, Jerry M; Wander, Michele M; Parton, William

    2008-10-01

    Last May's passage of the 2008 Farm Bill raises the stakes for biofuel sustainability: A substantial subsidy for the production of cellulosic ethanol starts the United States again down a path with uncertain environmental consequences. This time, however, the subsidy is for both the refiners ($1.01 per gallon) and the growers ($45 per ton of biomass), which will rapidly accelerate adoption and place hard-to-manage pressures on efforts to design and implement sustainable production practices - as will a 2007 legislative mandate for 16 billion gallons of cellulosic ethanol per year by 2022. Similar directives elsewhere, e.g., the European Union's mandate that 10% of all transport fuel in Europe be from renewable sources by 2020, make this a global issue. The European Union's current reconsideration of this target places even more emphasis on cellulosic feedstocks (1). The need for knowledge- and science-based policy is urgent. Biofuel sustainability has environmental, economic, and social facets that all interconnect. Tradeoffs among them vary widely by types of fuels and where they are grown and, thus, need to be explicitly considered by using a framework that allows the outcomes of alternative systems to be consistently evaluated and compared. A cellulosic biofuels industry could have many positive social and environmental attributes, but it could also suffer from many of the sustainability issues that hobble grain-based biofuels, if not implemented the right way.

  5. Biofuels from urban landscapes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biomass from urban landscapes is an untapped resource. Lawn thatch and clippings, fallen leaves and tree limbs are all potential sources of biofuels. Most cities already collect and transport these materials to disposal sites; but, alternatively could collect and transport these materials to a loc...

  6. Beetles, Biofuel, and Coffee

    SciTech Connect

    Ceja-Navarro, Javier

    2015-05-06

    Berkeley Lab scientist Javier Ceja-Navarro discusses his research on the microbial populations found the guts of insects, specifically the coffee berry borer, which may lead to better pest management and the passalid beetle, which could lead to improved biofuel production.

  7. Biofuel impacts on water.

    SciTech Connect

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  8. Biofuels: Report to Congress

    EPA Science Inventory

    Section 204 of the Energy Independence and Security Act of 2007 (EISA 2007) requires EPA to assess and report to Congress on the impacts to date and likely future impacts of the increased use of biofuels as required by the Clean Air Act, section 211(0). Environmental issues (...

  9. Biofuel on contaminated land

    NASA Astrophysics Data System (ADS)

    Suer, Pascal; Andersson-Sköld, Yvonne; Blom, Sonja; Bardos, Paul; Polland, Marcel; Track, Thomas

    2010-05-01

    Desktop studies of two Swedish contaminated sites has indicated that growing biofuel crops on these sites may be more environmentally beneficial than alternative risk management approaches such as excavation / removal or containment The demand for biofuel increases pressure on the cultivatable soil of the world. While contaminated land is not very suitable for food production, cultivation of low and medium contaminated soil may remove some pressure from agricultural soils. For larger sites, biofuel cultivation may be economically viable without a remediation bonus. Suitable sites have topographic conditions that allow agricultural machinery, are not in urgent need of remediation, and contamination levels are not plant toxic. Life cycle assessment (LCA) was done for two cases. The (desk top) case studies were - Case K, a 5000 m2 site where salix (willow) was cultivated with hand-held machinery and the biofuel harvest was left on site, and - Case F, a 12 ha site were on site ensuring was being considered, and were salix might have rented an economic profit if the remediation had not been urgent due to exploitation pressure. Some selected results for biofuel K; biofuel F; excavation K; and on site ensuring F respectively: Energy: 0,05; 1,4; 3,5; 19 TJ Waste: 1; 9; 1200; 340 ton Land use off-site: 190; 3 500; 200 000; 1 400 000 m² a Global warming: 3; 86; 230; 1 200 ton CO2 eq Acidification: 25; 1 000; 2 600; 14 000 kg SO2 eq Photochemical smog: 10; 180; 410; 2 300 kg ethene eq Human health: 2; 51; 150; 620 index The environmental impact of the traditional remediation methods of excavation and on-site ensuring was mainly due to the transport of contaminated soil and replacement soil, and landfilling of the contaminated soil. Biofuel cultivation avoids these impacts, while fertiliser production and agricultural machinery would have a lower environmental impact than moving large volumes of soil around. Journeys of a controller to check on the groundwater quality also

  10. EPA Biofuels Research: Biofuel Vapor Generation and Monitoring Methods

    EPA Science Inventory

    The interest in renewable fuels and alternative energy sources has stimulated development of alternatives to traditional petroleum-based fuels. The EPA's Office of Transportation Air Quality (OTAQ) requires information regarding the potential health hazards ofthese fuels regardin...

  11. Energy crops for biofuel feedstocks: facts and recent patents on genetic manipulation to improve biofuel crops.

    PubMed

    Kumar, Suresh

    2013-12-01

    Burning fossil-fuels to meet the global energy requirements by human being has intensified the concerns of increasing concentrations of greenhouse gases. Therefore, serious efforts are required to develop nonfossil-based renewable energy sources. Plants are more efficient in utilizing solar energy to convert it into biomass which can be used as feedstocks for biofuel production. Hence with the increasing demands of energy and the needs of cost-effective, sustainable production of fuels, it has become necessary to switch over to plant biomass as a renewable source of energy. Biofuels derived from more sustainable biological materials such as lignocellulosic plant residues, considered as second generation biofuels, are more dependable. However, there are technical challenges such as pretreatment and hydrolysis of lignocellulosic biomass to convert it into fermentable sugars. Plant genetic engineering has already proven its potential in modifying cell wall composition of plants for enhancing the efficiency of biofuel production. Interest and potential in the area are very much evident from the growing number of patents in the recent years on the subject. In this review, recent trends in genetic engineering of energy crops for biofuel production have been introduced, and strategies for the future developments have been discussed. PMID:24456235

  12. Role of Escherichia coli in Biofuel Production.

    PubMed

    Koppolu, Veerendra; Vasigala, Veneela Kr

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  13. Role of Escherichia coli in Biofuel Production

    PubMed Central

    Koppolu, Veerendra; Vasigala, Veneela KR

    2016-01-01

    Increased energy consumption coupled with depleting petroleum reserves and increased greenhouse gas emissions have renewed our interest in generating fuels from renewable energy sources via microbial fermentation. Central to this problem is the choice of microorganism that catalyzes the production of fuels at high volumetric productivity and yield from cheap and abundantly available renewable energy sources. Microorganisms that are metabolically engineered to redirect renewable carbon sources into desired fuel products are contemplated as best choices to obtain high volumetric productivity and yield. Considering the availability of vast knowledge in genomic and metabolic fronts, Escherichia coli is regarded as a primary choice for the production of biofuels. Here, we reviewed the microbial production of liquid biofuels that have the potential to be used either alone or in combination with the present-day fuels. We specifically highlighted the metabolic engineering and synthetic biology approaches used to improve the production of biofuels from E. coli over the past few years. We also discussed the challenges that still exist for the biofuel production from E. coli and their possible solutions. PMID:27441002

  14. Tetragonal ZrO2:Nd3+ nanosphere: Combustion synthesis, luminescence and photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Gupta, Santosh K.; Chandrasekhar, D.; Kadam, R. M.

    2015-12-01

    Nanocrystalline ZrO2:Nd3+ was synthesised using gel-combustion method and characterized systematically using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Through this route we can stabilize metastable tetragonal phase at 500 °C through addition of 1 mol % Nd3+ which is technologically more important. Optical characterization of the sample was done using photoluminescence (PL) and photoacoustic spectroscopy (PAS). PL studies shows an intense and optimum stimulated emission cross section of 1065 nm peak corresponding to 4F3/2 → 4I11/2 which and thus it can be a probable laser material. PAS is used to investigate electronic absorption of Nd3 in zirconia. Various covalency parameters like nephelauxetic ratio (β), covalency factor (b1/2) and Sinha parameter (δ) were evaluated for pure oxide powder and as well as for Nd3+ doped zirconia.

  15. International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting

    PubMed Central

    2010-01-01

    The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775

  16. International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting.

    PubMed

    Turgut, Mehmet; Geuna, Stefano

    2010-01-01

    The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775

  17. A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster

    SciTech Connect

    Tan, C. Y.; Dey, J.; Madrak, R. L.; Pellico, W.; Romanov, G.; Sun, D.; Terechkine, I.

    2015-07-13

    A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.

  18. Glass fiber laser at 1. 36. mu. m from SiO sub 2 :Nd

    SciTech Connect

    Hakimi, F.; Po, H.; Tumminelli, R.; McCollum, B.C.; Zenteno, L.; Cho, N.M.; Snitzer, E. )

    1989-10-01

    By adding 14 mol % P{sub 2}O{sub 5} to the core of a SiO{sub 2}:Nd fiber, laser emission was obtained at 1.36 {mu}m. From the fluorescent spectra and laser thresholds for the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 11/2} and {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 3/2} transitions, the net gain at 1.36 {mu}m is 0.024 dB/mW, and the ratio of excited-state absorption (the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital G}{sub 1/2} transition) to stimulated emission is estimated to be 0.78.

  19. Preliminary GPS orbit combination results of the IGS 2nd reprocessing campaign

    NASA Astrophysics Data System (ADS)

    Choi, Kevin

    2015-04-01

    International GNSS Service (IGS) has contributed to the International Terrestrial Reference Frame by reprocessing historic GPS network data and submitting Terrestrial Reference Frame solutions and Earth Rotation Parameters. For the 2nd reprocessing campaign, Analysis Centers (ACs) used up to 21 years of GPS observation data with daily integrations. IERS2010 conventions are applied to model the physical effects of the Earth. Total eight ACs have participated (7 Global solutions, and 2 Tide Gauge solutions) by reprocessing entire time series in a consistent way using the latest models and methodology. IGS combined daily SINEX TRF and EOP combinations have already been submitted to the IERS for ITRF2013. This presentation mainly focuses on the preliminary quality assessment of the reprocessed AC orbits. Quality of the orbit products are examined by examining the repeatability between daily AC satellite ephemeris. Power spectral analysis shows the background noise characteristics of each AC products, and its periodic behaviors.

  20. Arid Lands Biofuel

    NASA Astrophysics Data System (ADS)

    Neupane, B. P.

    2013-05-01

    Dependence on imported petroleum, as well as consequences from burning fossil fuels, has increased the demand for biofuel sources in the United States. Competition between food crops and biofuel crops has been an increasing concern, however, since it has the potential to raise prices for US beef and grain products due to land and resource competition. Biofuel crops that can be grown on land not suitable for food crops are thus attractive, but also need to produce biofuels in a financially sustainable manner. In the intermountain west of Nevada, biofuel crops need to survive on low-organic soils with limited precipitation when grown in areas that are not competing with food and feed. The plants must also yield an oil content sufficiently high to allow economically viable fuel production, including growing and harvesting the crop as well as converting the hydrocarbons into a liquid fuel. Gumweed (Grindelia squarrosa) currently appears to satisfy all of these requirements and is commonly observed throughout the west. The plant favors dry, sandy soils and is most commonly found on roadsides and other freshly disturbed land. A warm season biennial, the gumweed plant is part of the sunflower family and normally grows 2-4 feet high with numerous yellow flowers and curly leaves. The gumweed plant contains a large store of diterpene resins—most abundantly grindelic acid— similar to the saps found on pine trees that are used to make inks and adhesives. The dry weight harvest on the experimental field is 5130 lbs/acre. Whole plant biomass yields between 11-15% (average 13%) biocrude when subjected to acetone extraction whereas the buds alone contains up to a maximum of 35% biocrude when harvested in 'white milky' stage. The extract is then converted to basic form (sodium grindelate) followed by extraction of nonpolar constituents (mostly terpenes) with hexane and extracted back to ethyl acetate in acidified condition. Ethyl acetate is removed under vacuum to leave a dark

  1. Engineering microbial biofuel tolerance and export using efflux pumps

    PubMed Central

    Dunlop, Mary J; Dossani, Zain Y; Szmidt, Heather L; Chu, Hou Cheng; Lee, Taek Soon; Keasling, Jay D; Hadi, Masood Z; Mukhopadhyay, Aindrila

    2011-01-01

    Many compounds being considered as candidates for advanced biofuels are toxic to microorganisms. This introduces an undesirable trade-off when engineering metabolic pathways for biofuel production because the engineered microbes must balance production against survival. Cellular export systems, such as efflux pumps, provide a direct mechanism for reducing biofuel toxicity. To identify novel biofuel pumps, we used bioinformatics to generate a list of all efflux pumps from sequenced bacterial genomes and prioritized a subset of targets for cloning. The resulting library of 43 pumps was heterologously expressed in Escherichia coli, where we tested it against seven representative biofuels. By using a competitive growth assay, we efficiently distinguished pumps that improved survival. For two of the fuels (n-butanol and isopentanol), none of the pumps improved tolerance. For all other fuels, we identified pumps that restored growth in the presence of biofuel. We then tested a beneficial pump directly in a production strain and demonstrated that it improved biofuel yields. Our findings introduce new tools for engineering production strains and utilize the increasingly large database of sequenced genomes. PMID:21556065

  2. Cyanobacteria and microalgae: a positive prospect for biofuels.

    PubMed

    Parmar, Asha; Singh, Niraj Kumar; Pandey, Ashok; Gnansounou, Edgard; Madamwar, Datta

    2011-11-01

    Biofuel-bioenergy production has generated intensive interest due to increased concern regarding limited petroleum-based fuel supplies and their contribution to atmospheric CO2 levels. Biofuel research is not just a matter of finding the right type of biomass and converting it to fuel, but it must also be economically sustainable on large-scale. Several aspects of cyanobacteria and microalgae such as oxygenic photosynthesis, high per-acre productivity, non-food based feedstock, growth on non-productive and non-arable land, utilization of wide variety of water sources (fresh, brackish, seawater and wastewater) and production of valuable co-products along with biofuels have combined to capture the interest of researchers and entrepreneurs. Currently, worldwide biofuels mainly in focus include biohydrogen, bioethanol, biodiesel and biogas. This review focuses on cultivation and harvesting of cyanobacteria and microalgae, possible biofuels and co-products, challenges for cyanobacterial and microalgal biofuels and the approaches of genetic engineering and modifications to increase biofuel production. PMID:21924898

  3. [Measurement report on the horizontal position relationship between the umbilicus and the 2nd lum- bar spinal process in adults].

    PubMed

    Zhao, Jingyi; Fu, Liyuan; Wang, Yueqi; Qiu, Wenqi; Yao, Miaojie; Zhao, Baixiao; Guo, Changqing

    2016-04-01

    The impact factors were explored to determine the horizontal positional relationship between the umbilicus and the 2nd lumbar spinal process in adults and to verify the accuracy of the localization of Shenshu (BL 23) via the umbilicus. The position of the umbilicus and the 2nd lumbar spinal process was measured in 100 participants and the data were analyzed through SPSS 20.0 software. It was found that the umbilicus and the 2nd lumbar process were not positioned horizontally. The positional relationship of these two sites was not apparently correlated with gender, age, body weight, body height, BMI, waistline and discomfort of lumbar region. The umbilicus was commonly and posteriorly projected on the site between the 4th and 5th lumbar vertebra. It is explained that the localization of Shenshu (BL23) via the umbilicus is not accurate. PMID:27352498

  4. Plant-based biofuels

    PubMed Central

    Hood, Elizabeth E.

    2016-01-01

    This review is a short synopsis of some of the latest breakthroughs in the areas of lignocellulosic conversion to fuels and utilization of oils for biodiesel. Although four lignocellulosic ethanol factories have opened in the USA and hundreds of biodiesel installations are active worldwide, technological improvements are being discovered that will rapidly evolve the biofuels industry into a new paradigm. These discoveries involve the feedstocks as well as the technologies to process them. PMID:26949525

  5. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  6. Biofuels from microbes.

    PubMed

    Antoni, Dominik; Zverlov, Vladimir V; Schwarz, Wolfgang H

    2007-11-01

    Today, biomass covers about 10% of the world's primary energy demand. Against a backdrop of rising crude oil prices, depletion of resources, political instability in producing countries and environmental challenges, besides efficiency and intelligent use, only biomass has the potential to replace the supply of an energy hungry civilisation. Plant biomass is an abundant and renewable source of energy-rich carbohydrates which can be efficiently converted by microbes into biofuels, of which, only bioethanol is produced on an industrial scale today. Biomethane is produced on a large scale, but is not yet utilised for transportation. Biobutanol is on the agenda of several companies and may be used in the near future as a supplement for gasoline, diesel and kerosene, as well as contributing to the partially biological production of butyl-t-butylether, BTBE as does bioethanol today with ETBE. Biohydrogen, biomethanol and microbially made biodiesel still require further development. This paper reviews microbially made biofuels which have potential to replace our present day fuels, either alone, by blending, or by chemical conversion. It also summarises the history of biofuels and provides insight into the actual production in various countries, reviewing their policies and adaptivity to the energy challenges of foreseeable future. PMID:17891391

  7. Novel biofuel formulations for enhanced vehicle performance

    SciTech Connect

    Miller, Dennis; Narayan, Ramani; Berglund, Kris; Lira, Carl; Schock, Harold; Jaberi, Farhad; Lee, Tonghun; Anderson, James; Wallington, Timothy; Kurtz, Eric; Ruona, Will; Hass, Heinz

    2013-08-30

    engine under highly instrumented conditions. Simulation of and experimentation on combustion in single and multicylinder engines was carried out in detail throughout the project. The combustion behavior of biofuel blends neat and in petroleum were characterized in the MSU optical engine, in part to validate results obtained in the RCM and to provide data for comparison with simulations. Simulation of in- cylinder, low-temperature combustion included development of an extensive fuel injection model that included fuel spray breakup, evaporation, and ignition, along with prediction of cylinder temperature, pressure, and work produced. Single cylinder and multicylinder engine tests under advanced low-temperature combustion conditions conducted at Ford Motor Company validated experimental and simulation results obtained in the MSU engine and in MSU simulations. Single cylinder engine tests of an advanced biofuel containing biodiesel and dibutyl succinate, carried out under low-temperature combustion conditions, showed similar power generation and gas-phase emissions (CO, HC, NOx), but a reduction in particulates of as much as 60% relative to neat biodiesel and 95% relative to petroleum diesel at the same operating conditions. This remarkable finding suggests that biofuels may be able to play a role in eliminating the need for particulate removal systems in diesel vehicles. The multicylinder engine tests at Ford, carried out using butyl nonanoate as an advanced biofuel, also gave promising results, showing a strong decline in particulate emissions and simultaneously a modest decrease in NOx emissions relative to standard petroleum diesel at the same conditions. In summary, this project has shown that advanced biofuels and their blends are capable of maintaining performance while reducing emissions, particularly particulates (soot), in 3 compression ignition engines. The interdisciplinary nature of biofuel production and testing has identified fuel properties that are capable

  8. Progress on implantable biofuel cell: Nano-carbon functionalization for enzyme immobilization enhancement.

    PubMed

    Babadi, Arman Amani; Bagheri, Samira; Hamid, Sharifah Bee Abdul

    2016-05-15

    Biofuel cells are bio-electrochemical devices, which are suitable for the environmentally friendly generation of energy. Enzymatic biofuel cell (EBFC) operates at ambient temperature and pH. Biofuel cells utilize vegetable and animal fluids (e.g. glucose) as a biofuel to produce energy. Fundamental part of each Glucose biofuel cell (GBFC) is two bioelectrodes which their surface utilizes as an enzyme immobilized site. Glucose oxidase (GOx) or glucose dehydrogenase (GDH) were immobilized on bioanode and oxidize glucose while oxygen reduced in biocathode using immobilized laccase or bilirubin oxidase in order to generate sufficient power. Glucose biofuel cells are capable to generate sufficient power for implanted devices. The key step of manufacturing a bioelectrode is the effective enzyme immobilization on the electrode surface. Due to the thin diameter of carbon nanomaterials, which make them accessible to the enzyme active sites, they are applicable materials to establish electronic communication with redox enzymes. Carbon nanomaterials regenerate the biocatalysts either by direct electron transfer or redox mediators which serve as intermediated for the electron transfer. Nano-carbon functionalization is perfectly compatible with other chemical or biological approaches to enhance the enzyme functions in implantable biofuel cells. Efficient immobilization of enzyme using the functionalized nano-carbon materials is the key point that greatly increases the possibilities of success. Current review highlights the progress on implantable biofuel cell, with focus on the nano-carbon functionalization for enzyme immobilization enhancement in glucose/O2 biofuel cells. PMID:26785309

  9. The Hyphen as a Syllabification Cue in Reading Bisyllabic and Multisyllabic Words among Finnish 1st and 2nd Graders

    ERIC Educational Resources Information Center

    Häikiö, Tuomo; Bertram, Raymond; Hyönä, Jukka

    2016-01-01

    Finnish ABC books present words with hyphens inserted at syllable boundaries. Syllabification by hyphens is abandoned in the 2nd grade for bisyllabic words, but continues for words with three or more syllables. The current eye movement study investigated how and to what extent syllable hyphens in bisyllabic ("kah-vi" "cof-fee")…

  10. Give It a Shot! Toolkit for Nurses and Other Immunization Champions Working with Secondary Schools. 2nd Edition

    ERIC Educational Resources Information Center

    Boyer-Chu, Lynda; Wooley, Susan F.

    2008-01-01

    Adolescent immunization saves lives--but promoting immunization takes time and thought, and today's nurses and other health advocates are faced with a host of ever-expanding responsibilities in a time of reduced budgets and staff. This toolkit is thus structured as an easy and reliable resource. This 2nd edition contains: (1) a 64-page manual;…

  11. Conference Proceedings: 2nd European Conference of Rehabilitation International; Disability in the Family. (Brighton, England, September 18-21, 1978)

    ERIC Educational Resources Information Center

    Royal Association for Disability and Rehabilitation, London (England).

    The conference proceedings of the 2nd European Conference of Rehabilitation International (1978) on the theme disability in the family contains the agenda and approximately 80 papers. National presentations consider the theme in papers by representatives of Finland, Hungary, Belgium, The Netherlands, Portugal, Hong Kong, India, The German…

  12. The Influence of Neighborhood Density and Word Frequency on Phoneme Awareness in 2nd and 4th Grades

    ERIC Educational Resources Information Center

    Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.

    2011-01-01

    Purpose: The purpose of this study was to test the hypothesis that two lexical characteristics--neighborhood density and word frequency--interact to influence performance on phoneme awareness tasks. Methods: Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation…

  13. Observation in a School without Walls: Peer Observation of Teaching in a 2nd-12th Grade Independent School

    ERIC Educational Resources Information Center

    Salvador, Josephine

    2012-01-01

    What happens when teachers start to observe each other's classes? How do teachers make meaning of observing and being observed? What effects, if any, does requiring peer observation have on the teaching community? This research explores these questions in a qualitative study of peer observation of teaching (POT) in the 2nd-12th grades of an…

  14. Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...

  15. Curriculum on the Edge of Survival: How Schools Fail to Prepare Students for Membership in a Democracy. 2nd Edition

    ERIC Educational Resources Information Center

    Heller, Daniel

    2012-01-01

    Typically, school curriculum has been viewed through the lens of preparation for the workplace or higher education, both worthy objectives. However, this is not the only lens, and perhaps not even the most powerful one to use, if the goal is to optimize the educational system. "Curriculum on the Edge of Survival, 2nd Edition," attempts to define…

  16. Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling

    NASA Astrophysics Data System (ADS)

    Le, Thu Hoai; Malfliet, Annelies; Blanpain, Bart; Guo, Muxing

    2016-03-01

    CaO-SiO2-Nd2O3 slags were equilibrated at 1773 K and 1873 K (1500 °C and 1600 °C) for 24 hours in Ar, and quenched in water to determine the operative phase relations. The composition and crystallinity of the phases in equilibrium were determined by EPMA-WDS and EBSD, respectively. Based on these analyses, the liquid stability region was accurately determined, and a large part of the isothermal section of the phase diagram was constructed. Data resulting from this work can be used to generate a thermodynamic database for rare-earth oxide-containing systems and to support further investigation on separation of rare earths from metallurgical slags or other residues through high-temperature processing.

  17. Phase Relations of the CaO-SiO2-Nd2O3 System and the Implication for Rare Earths Recycling

    NASA Astrophysics Data System (ADS)

    Le, Thu Hoai; Malfliet, Annelies; Blanpain, Bart; Guo, Muxing

    2016-06-01

    CaO-SiO2-Nd2O3 slags were equilibrated at 1773 K and 1873 K (1500 °C and 1600 °C) for 24 hours in Ar, and quenched in water to determine the operative phase relations. The composition and crystallinity of the phases in equilibrium were determined by EPMA-WDS and EBSD, respectively. Based on these analyses, the liquid stability region was accurately determined, and a large part of the isothermal section of the phase diagram was constructed. Data resulting from this work can be used to generate a thermodynamic database for rare-earth oxide-containing systems and to support further investigation on separation of rare earths from metallurgical slags or other residues through high-temperature processing.

  18. Growing duckweed for biofuel production: a review.

    PubMed

    Cui, W; Cheng, J J

    2015-01-01

    Duckweed can be utilised to produce ethanol, butanol and biogas, which are promising alternative energy sources to minimise dependence on limited crude oil and natural gas. The advantages of this aquatic plant include high rate of nutrient (nitrogen and phosphorus) uptake, high biomass yield and great potential as an alternative feedstock for the production of fuel ethanol, butanol and biogas. The objective of this article is to review the published research on growing duckweed for the production of the biofuels, especially starch enrichment in duckweed plants. There are mainly two processes affecting the accumulation of starch in duckweed biomass: photosynthesis for starch generation and metabolism-related starch consumption. The cost of stimulating photosynthesis is relatively high based on current technologies. Considerable research efforts have been made to inhibit starch degradation. Future research need in this area includes duckweed selection, optimisation of duckweed biomass production, enhancement of starch accumulation in duckweeds and use of duckweeds for production of various biofuels. PMID:24985498

  19. Biofuels: Project summaries

    SciTech Connect

    Not Available

    1994-07-01

    The US DOE, through the Biofuels Systems Division (BSD) is addressing the issues surrounding US vulnerability to petroleum supply. The BSD goal is to develop technologies that are competitive with fossil fuels, in both cost and environmental performance, by the end of the decade. This document contains summaries of ongoing research sponsored by the DOE BSD. A summary sheet is presented for each project funded or in existence during FY 1993. Each summary sheet contains and account of project funding, objectives, accomplishments and current status, and significant publications.

  20. Transporter-mediated biofuel secretion.

    PubMed

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-05-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as "plug-and-play" biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  1. Transporter-mediated biofuel secretion

    PubMed Central

    Doshi, Rupak; Nguyen, Tuan; Chang, Geoffrey

    2013-01-01

    Engineering microorganisms to produce biofuels is currently among the most promising strategies in renewable energy. However, harvesting these organisms for extracting biofuels is energy- and cost-intensive, limiting the commercial feasibility of large-scale production. Here, we demonstrate the use of a class of transport proteins of pharmacological interest to circumvent the need to harvest biomass during biofuel production. We show that membrane-embedded transporters, better known to efflux lipids and drugs, can be used to mediate the secretion of intracellularly synthesized model isoprenoid biofuel compounds to the extracellular milieu. Transporter-mediated biofuel secretion sustainably maintained an approximate three- to fivefold boost in biofuel production in our Escherichia coli test system. Because the transporters used in this study belong to the ubiquitous ATP-binding cassette protein family, we propose their use as “plug-and-play” biofuel-secreting systems in a variety of bacteria, cyanobacteria, diatoms, yeast, and algae used for biofuel production. This investigation showcases the potential of expressing desired membrane transport proteins in cell factories to achieve the export or import of substances of economic, environmental, or therapeutic importance. PMID:23613592

  2. Minimal Clinically Important Difference on Parkinson's Disease Sleep Scale 2nd Version

    PubMed Central

    Horváth, Krisztina; Aschermann, Zsuzsanna; Ács, Péter; Deli, Gabriella; Janszky, József; Komoly, Sámuel; Karádi, Kázmér; Kovács, Márton; Makkos, Attila; Faludi, Béla; Kovács, Norbert

    2015-01-01

    Background and Aims. The aim of the present study was to determine the estimates of minimal clinically important difference for Parkinson's Disease Sleep Scale 2nd version (PDSS-2) total score and dimensions. Methods. The subject population consisted of 413 PD patients. At baseline, MDS-UPDRS, Hoehn-Yahr Scale, Mattis Dementia Rating Scale, and PDSS-2 were assessed. Nine months later the PDSS-2 was reevaluated with the Patient-Reported Global Impression Improvement Scale. Both anchor-based techniques (within patients' score change method and sensitivity- and specificity-based method by receiver operating characteristic analysis) and distribution-based approaches (effect size calculations) were utilized to determine the magnitude of minimal clinically important difference. Results. According to our results, any improvements larger than −3.44 points or worsening larger than 2.07 points can represent clinically important changes for the patients. These thresholds have the effect size of 0.21 and −0.21, respectively. Conclusions. Minimal clinically important differences are the smallest change of scores that are subjectively meaningful to patients. Studies using the PDSS-2 as outcome measure should utilize the threshold of −3.44 points for detecting improvement or the threshold of 2.07 points for observing worsening. PMID:26539303

  3. Efficient Simulation of Wing Modal Response: Application of 2nd Order Shape Sensitivities and Neural Networks

    NASA Technical Reports Server (NTRS)

    Kapania, Rakesh K.; Liu, Youhua

    2000-01-01

    At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.

  4. Wind-US Results for the AIAA 2nd Propulsion Aerodynamics Workshop

    NASA Technical Reports Server (NTRS)

    Dippold, Vance III; Foster, Lancert; Mankbadi, Mina

    2014-01-01

    This presentation contains Wind-US results presented at the 2nd Propulsion Aerodynamics Workshop. The workshop was organized by the American Institute of Aeronautics and Astronautics, Air Breathing Propulsion Systems Integration Technical Committee with the purpose of assessing the accuracy of computational fluid dynamics for air breathing propulsion applications. Attendees included representatives from government, industry, academia, and commercial software companies. Participants were encouraged to explore and discuss all aspects of the simulation process including the effects of mesh type and refinement, solver numerical schemes, and turbulence modeling. The first set of challenge cases involved computing the thrust and discharge coefficients for a 25deg conical nozzle for a range of nozzle pressure ratios between 1.4 and 7.0. Participants were also asked to simulate two cases in which the 25deg conical nozzle was bifurcated by a solid plate, resulting in vortex shedding (NPR=1.6) and shifted plume shock (NPR=4.0). A second set of nozzle cases involved computing the discharge and thrust coefficients for a convergent dual stream nozzle for a range of subsonic nozzle pressure ratios. The workshop committee also compared the plume mixing of these cases across various codes and models. The final test case was a serpentine inlet diffuser with an outlet to inlet area ratio of 1.52 and an offset of 1.34 times the inlet diameter. Boundary layer profiles, wall static pressure, and total pressure at downstream rake locations were examined.

  5. Introduction of the 2nd Phase of the Integrated Hydrologic Model Intercomparison Project

    NASA Astrophysics Data System (ADS)

    Kollet, Stefan; Maxwell, Reed; Dages, Cecile; Mouche, Emmanuel; Mugler, Claude; Paniconi, Claudio; Park, Young-Jin; Putti, Mario; Shen, Chaopeng; Stisen, Simon; Sudicky, Edward; Sulis, Mauro; Ji, Xinye

    2015-04-01

    The 2nd Phase of the Integrated Hydrologic Model Intercomparison Project commenced in June 2013 with a workshop at Bonn University funded by the German Science Foundation and US National Science Foundation. Three test cases were defined and compared that are available online at www.hpsc-terrsys.de including a tilted v-catchment case; a case called superslab based on multiple slab-heterogeneities in the hydraulic conductivity along a hillslope; and the Borden site case, based on a published field experiment. The goal of this phase is to further interrogate the coupling of surface-subsurface flow implemented in various integrated hydrologic models; and to understand and quantify the impact of differences in the conceptual and technical implementations on the simulation results, which may constitute an additional source of uncertainty. The focus has been broadened considerably including e.g. saturated and unsaturated subsurface storages, saturated surface area, ponded surface storage in addition to discharge, and pressure/saturation profiles and cross-sections. Here, first results are presented and discussed demonstrating the conceptual and technical challenges in implementing essentially the same governing equations describing highly non-linear moisture redistribution processes and surface-groundwater interactions.

  6. Transient 2(nd) Degree Av Block Mobitz Type II: A Rare Finding in Dengue Haemorrhagic Fever.

    PubMed

    Nigam, Ashwini Kumar; Singh, Omkar; Agarwal, Ayush; Singh, Amit K; Yadav, Subhash

    2015-05-01

    Dengue has been a major problem as endemic occurs almost every year and causes a state of panic due to lack of proper diagnostic methods and facilities for proper management. Patients presenting with classical symptoms are easy to diagnose, however as a large number of cases occur every year, a number of cases diagnosed with dengue fever on occasion presents with atypical manifestations, which cause extensive evaluation of the patients, unnecessary referral to higher centre irrespective of the severity and therefore a rough idea of these manifestations must be present in the backdrop in order to prevent these problems. Involvement of cardiovascular system in dengue has been reported in previous studies, and they are usually benign and self-limited. The importance of study of conduction abnormalities is important as sometimes conduction blocks are the first sign of acute myocarditis in patients of Dengue Hemorrhagic Fever in shock. We present here a case of 2(nd) Degree Mobitz Type II atrioventricular AV block in a case of Dengue Hemorrhagic fever reverting to the normal rhythm in recovery phase and no signs thereafter on follow up. PMID:26155512

  7. National Algal Biofuels Technology Roadmap

    SciTech Connect

    Ferrell, John; Sarisky-Reed, Valerie

    2010-05-01

    The framework for National Algal Biofuels Technology Roadmap was constructed at the Algal Biofuels Technology Roadmap Workshop, held December 9-10, 2008, at the University of Maryland-College Park. The Workshop was organized by the Biomass Program to discuss and identify the critical challenges currently hindering the development of a domestic, commercial-scale algal biofuels industry. This Roadmap presents information from a scientific, economic, and policy perspectives that can support and guide RD&D investment in algal biofuels. While addressing the potential economic and environmental benefits of using algal biomass for the production of liquid transportation fuels, the Roadmap describes the current status of algae RD&D. In doing so, it lays the groundwork for identifying challenges that likely need to be overcome for algal biomass to be used in the production of economically viable biofuels.

  8. Comparing life cycle assessments of different biofuel options.

    PubMed

    Kendall, Alissa; Yuan, Juhong

    2013-06-01

    Life cycle assessment (LCA) has shown that first generation biofuels provide a little to no benefit for greenhouse gas (GHG) reductions compared to petroleum fuels, particularly when indirect effects are considered. Second generation fuels are intended to achieve greater GHG reductions and avoid other sustainability issues. LCAs of second generation biofuels exhibit great variability and uncertainty, leading to inconclusive results for the performance of particular pathways (combinations of feedstocks and fuels). Variability arises in part because of the prospective nature of LCAs for future fuels; however, a review of recent articles on biofuel LCA methodology indicates two additional sources of variability: real sources such as spatiotemporal heterogeneity, and methodological sources such as choices for co-product allocation methods and system boundary definition. PMID:23490811

  9. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns

    NASA Astrophysics Data System (ADS)

    Kwon, Cheong Hoon; Lee, Sung-Ho; Choi, Young-Bong; Lee, Jae Ah; Kim, Shi Hyeong; Kim, Hyug-Han; Spinks, Geoffrey M.; Wallace, Gordon G.; Lima, Márcio D.; Kozlov, Mikhail E.; Baughman, Ray H.; Kim, Seon Jeong

    2014-06-01

    Biofuel cells that generate electricity from glucose in blood are promising for powering implantable biomedical devices. Immobilizing interconnected enzyme and redox mediator in a highly conducting, porous electrode maximizes their interaction with the electrolyte and minimizes diffusion distances for fuel and oxidant, thereby enhancing power density. Here we report that our separator-free carbon nanotube yarn biofuel cells provide an open-circuit voltage of 0.70 V, and a maximum areal power density of 2.18 mW cm-2 that is three times higher than for previous carbon nanotube yarn biofuel cells. Biofuel cell operation in human serum provides high areal power output, as well as markedly increased lifetime (83% remained after 24 h), compared with previous unprotected biofuel cells. Our biscrolled yarn biofuel cells are woven into textiles having the mechanical robustness needed for implantation for glucose energy harvesting.

  10. Analysis of advanced biofuels.

    SciTech Connect

    Dec, John E.; Taatjes, Craig A.; Welz, Oliver; Yang, Yi

    2010-09-01

    Long chain alcohols possess major advantages over ethanol as bio-components for gasoline, including higher energy content, better engine compatibility, and less water solubility. Rapid developments in biofuel technology have made it possible to produce C{sub 4}-C{sub 5} alcohols efficiently. These higher alcohols could significantly expand the biofuel content and potentially replace ethanol in future gasoline mixtures. This study characterizes some fundamental properties of a C{sub 5} alcohol, isopentanol, as a fuel for homogeneous-charge compression-ignition (HCCI) engines. Wide ranges of engine speed, intake temperature, intake pressure, and equivalence ratio are investigated. The elementary autoignition reactions of isopentanol is investigated by analyzing product formation from laser-photolytic Cl-initiated isopentanol oxidation. Carbon-carbon bond-scission reactions in the low-temperature oxidation chemistry may provide an explanation for the intermediate-temperature heat release observed in the engine experiments. Overall, the results indicate that isopentanol has a good potential as a HCCI fuel, either in neat form or in blend with gasoline.

  11. Biofuels: 1995 project summaries

    SciTech Connect

    1996-01-01

    Domestic transportation fuels are derived primarily from petroleum and account for about two-thirds of the petroleum consumption in the United States. In 1994, more than 40% of our petroleum was imported. That percentage is likely to increase, as the Middle East has about 75% of the world`s oil reserves, but the United States has only about 5%. Because we rely so heavily on oil (and because we currently have no suitable substitutes for petroleum-based transportation fuels), we are strategically and economically vulnerable to disruptions in the fuel supply. Additionally, we must consider the effects of petroleum use on the environment. The Biofuels Systems Division (BSD) is part of the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EE). The day-to-day research activities, which address these issues, are managed by the National Renewable Energy Laboratory in Golden, Colorado, and Oak Ridge National Laboratory in Oak Ridge, Tennessee. BSD focuses its research on biofuels-liquid and gaseous fuels made from renewable domestic crops-and aggressively pursues new methods for domestically producing, recovering, and converting the feedstocks to produce the fuels economically. The biomass resources include forage grasses, oil seeds, short-rotation woody crops, agricultural and forestry residues, algae, and certain industrial and municipal waste streams. The resulting fuels include ethanol, methanol, biodiesel, and ethers.

  12. Toward the design of sustainable biofuel landscapes: A modeling approach

    NASA Astrophysics Data System (ADS)

    Izaurralde, R. C.; Zhang, X.; Manowitz, D. H.; Sahajpal, R.

    2011-12-01

    Biofuel crops have emerged as promising feedstocks for advanced bioenergy production in the form of cellulosic ethanol and biodiesel. However, large-scale deployment of biofuel crops for energy production has the potential to conflict with food production and generate a myriad of environmental outcomes related to land and water resources (e.g., decreases in soil carbon storage, increased erosion, altered runoff, deterioration in water quality). In order to anticipate the possible impacts of biofuel crop production on food production systems and the environment and contribute to the design of sustainable biofuel landscapes, we developed a spatially-explicit integrated modeling framework (SEIMF) aimed at understanding, among other objectives, the complex interactions among land, water, and energy. The framework is a research effort of the DOE Great Lakes Bioenergy Research Center. The SEIMF has three components: (1) a GIS-based data analysis system, (2) the biogeochemical model EPIC (Environmental Policy Integrated Climate), and (3) an evolutionary multi-objective optimization algorithm for examining trade-offs between biofuel energy production and ecosystem responses. The SEIMF was applied at biorefinery scale to simulate biofuel production scenarios and the yield and environmental results were used to develop trade-offs, economic and life-cycle analyses. The SEIMF approach was also applied to test the hypothesis that growing perennial herbaceous species on marginal lands can satisfy a significant fraction of targeted demands while avoiding competition with food systems and maintaining ecosystem services.

  13. Challenge of biofuel: filling the tank without emptying the stomach?

    NASA Astrophysics Data System (ADS)

    Rajagopal, D.; Sexton, S. E.; Roland-Holst, D.; Zilberman, D.

    2007-10-01

    Biofuels have become a leading alternative to fossil fuel because they can be produced domestically by many countries, require only minimal changes to retail distribution and end-use technologies, are a partial response to global climate change, and because they have the potential to spur rural development. Production of biofuel has increased most rapidly for corn ethanol, in part because of government subsidies; yet, corn ethanol offers at most a modest contribution to society's climate change goals and only a marginally positive net energy balance. Current biofuels pose long-run consequences for the provision of food and environmental amenities. In the short run, however, when gasoline supply and demand are inelastic, they serve as a buffer supply of energy, helping to reduce prices. Employing a conceptual model and with back-of-the-envelope estimates of wealth transfers resulting from biofuel production, we find that ethanol subsidies pay for themselves. Adoption of second-generation technologies may make biofuels more beneficial to society. The large-scale production of new types of crops dedicated to energy is likely to induce structural change in agriculture and change the sources, levels, and variability of farm incomes. The socio-economic impact of biofuel production will largely depend on how well the process of technology adoption by farmers and processors is understood and managed. The confluence of agricultural policy with environmental and energy policies is expected.

  14. The Influence of Instructional Climates on Time Spent in Management Tasks and Physical Activity of 2nd-Grade Students during Physical Education

    ERIC Educational Resources Information Center

    Logan, Samuel W.; Robinson, Leah E.; Webster, E. Kipling; Rudisill, Mary E.

    2015-01-01

    The purpose of this study is to determine the effect of two physical education (PE) instructional climates (mastery, performance) on the percentage of time students spent in a) moderate-to-vigorous physical activity (MVPA) and b) management tasks during PE in 2nd-grade students. Forty-eight 2nd graders (mastery, n = 23; performance, n = 25)…

  15. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  16. 7 CFR 4288.111 - Biofuel eligibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Biofuel eligibility. 4288.111 Section 4288.111... RURAL UTILITIES SERVICE, DEPARTMENT OF AGRICULTURE PAYMENT PROGRAMS Advanced Biofuel Payment Program General Provisions § 4288.111 Biofuel eligibility. To be eligible for this Program, a biofuel must...

  17. Madeira Extreme Floods: 2009/2010 Winter. Case study - 2nd and 20th of February

    NASA Astrophysics Data System (ADS)

    Pires, V.; Marques, J.; Silva, A.

    2010-09-01

    Floods are at world scale the natural disaster that affects a larger fraction of the population. It is a phenomenon that extends it's effects to the surrounding areas of the hydrographic network (basins, rivers, dams) and the coast line. Accordingly to USA FEMA (Federal Emergency Management Agency) flood can be defined as:"A general and temporary condition of partial or complete inundation of two or more acres of normally dry land area or of two or more properties from: Overflow of inland or tidal waters; Unusual and rapid accumulation or runoff of surface waters from any source; Mudflow; Collapse or subsidence of land along the shore of a lake or similar body of water as a result of erosion or undermining caused by waves or currents of water exceeding anticipated cyclical levels that result in a flood as defined above." A flash flood is the result of intense and long duration of continuous precipitation and can result in dead casualties (i.e. floods in mainland Portugal in 1967, 1983 and 1997). The speed and strength of the floods either localized or over large areas, results in enormous social impacts either by the loss of human lives and or the devastating damage to the landscape and human infrastructures. The winter of 2009/2010 in Madeira Island was characterized by several episodes of very intense precipitation (specially in December 2009 and February 2010) adding to a new record of accumulated precipitation since there are records in the island. In February two days are especially rainy with absolute records for the month of February (daily records since 1949): 111mm and 97mm on the 2nd and 20th respectively. The accumulated precipitation ended up with the terrible floods on the 20th of February causing the lost of dozens of human lives and hundreds of millions of Euros of losses The large precipitation occurrences either more intense precipitation in a short period or less intense precipitation during a larger period are sometimes the precursor of

  18. The Ratio of 2nd to 4th Digit Length in Korean Alcohol-dependent Patients

    PubMed Central

    Han, Changwoo; Bae, Hwallip; Lee, Yu-Sang; Won, Sung-Doo; Kim, Dai Jin

    2016-01-01

    Objective The ratio of 2nd to 4th digit length (2D:4D) is a sexually dimorphic trait. Men have a relatively shorter second digit than fourth digit. This ratio is thought to be influenced by higher prenatal testosterone level or greater sensitivity to androgen. The purpose of this study is to investigate the relationship between alcohol dependence and 2D:4D in a Korean sample and whether 2D:4D can be a biologic marker in alcohol dependence. Methods In this study, we recruited 87 male patients with alcohol dependence from the alcohol center of one psychiatric hospital and 52 healthy male volunteers who were all employees in the same hospital as controls. We captured images of the right and left hands of patients and controls using a scanner and extracted data with a graphics program. We measured the 2D:4D of each hand and compared the alcohol dependence group with the control group. We analyzed these ratios using an independent-samples t-test. Results The mean 2D:4D of patients was 0.934 (right hand) and 0.942 (left hand), while the mean 2D:4D of controls was 0.956 (right hand) and 0.958 (left hand). Values for both hands were significantly lower for patients than controls (p<0.001, right hand; p=0.004, left hand). Conclusion Patients who are alcohol dependent have a significantly lower 2D:4D than controls, similar to the results of previous studies, which suggest that a higher prenatal testosterone level in the gonadal period is related to alcoholism. Furthermore, 2D:4D is a possible predictive marker of alcohol dependence. PMID:27121425

  19. A convective divertor utilizing a 2nd-order magnetic field null

    NASA Astrophysics Data System (ADS)

    Rognlien, Thomas

    2014-10-01

    New results motivate a detailed study of a magnetic divertor concept characterized by strong plasma convection near a poloidal magnetic field (Bp) null region. The configuration is that of a near-2nd-order Bp null (Bp ~ Δ r2) , as in a snowflake divertor. The concept has 2 key features: (A) Convection spreads the heat flux between multiple divertor legs and further broadens the heat-flux profile within each leg, thereby greatly reducing target-plate heat loads. (B) The heat flux is further reduced by line radiation in each leg in detachment-like ionization zones. Theory indicates that convective turbulence arises when the poloidal plasma beta, βp = 2μ0nT/B p 2 >> 1 . Measurements in TCV now more fully quantify earlier NSTX and TCV observations of plasma mixing, and related modeling of TCV indicates that strongly enhanced null-region transport is present. Convective mixing provides a stabilizing mechanism to prevent the ionization fronts (hydrogenic and impurity) from collapsing to a highly radiating core MARFE. Also, the radiating zone maps to a very small region at the midplane owing to the very weak Bp in the convective region, thus minimizing its impact on the core plasma. Detailed calculations are reported that combine features A and B noted above. The plasma mixing mechanisms are described together with the corresponding transport model implemented in the 2D UEDGE edge transport code. UEDGE calculations are presented that quantify the roles of mixing, impurity radiation, and detachment stability for a realistic snowflake configuration. Work in collaboration with D.D. Ryutov, S.I. Krasheninnikov, and M.V. Umansky. Performed for the U.S. DoE by LLNS, LLC, LLNL, under Contract DE-AC52-07NA27344.

  20. Mechanosensitivity of the 2nd Kind: TGF-β Mechanism of Cell Sensing the Substrate Stiffness

    PubMed Central

    Cockerill, Max; Rigozzi, Michelle K.; Terentjev, Eugene M.

    2015-01-01

    Cells can sense forces applied to them, but also the stiffness of their environment. These are two different phenomena, and here we investigate the mechanosensitivity of the 2nd kind: how the cell can measure an elastic modulus at a single point of adhesion—and how the cell can receive and interpret the chemical signal released from the sensor. Our model uses the example of large latent complex of TGF-β as a sensor. Stochastic theory gives the rate of breaking of latent complex, which initiates the signaling feedback loop after the active TGF-β release and leads to a change of cell phenotype driven by the α-smooth muscle actin. We investigate the dynamic and steady-state behaviors of the model, comparing them with experiments. In particular, we analyse the timescale of approach to the steady state, the stability of the non-linear dynamical system, and how the steady-state concentrations of the key markers vary depending on the elasticity of the substrate. We discover a crossover region for values of substrate elasticity closely corresponding to that of the fibroblast to myofibroblast transition. We suggest that the cell could actively vary the parameters of its dynamic feedback loop to ‘choose’ the position of the transition region and the range of substrate elasticity that it can detect. In this way, the theory offers the unifying mechanism for a variety of phenomena, such as the myofibroblast conversion in fibrosis of wounds and lungs and smooth muscle cell dysfunction in cardiac disease. PMID:26448620

  1. PREFACE: 2nd International Conference on Competitive Materials and Technological Processes (IC-CMTP2)

    NASA Astrophysics Data System (ADS)

    László, Gömze A.

    2013-12-01

    Competitiveness is one of the most important factors in our life and it plays a key role in the efficiency both of organizations and societies. The more scientifically supported and prepared organizations develop more competitive materials with better physical, chemical and biological properties and the leading companies apply more competitive equipment and technology processes. The aims of the 2nd International Conference on Competitive Materials and Technology Processes (ic-cmtp2) are the following: Promote new methods and results of scientific research in the fields of material, biological, environmental and technology sciences; Change information between the theoretical and applied sciences as well as technical and technological implantations. Promote the communication between the scientist of different nations, countries and continents. Among the major fields of interest are materials with extreme physical, chemical, biological, medical, thermal, mechanical properties and dynamic strength; including their crystalline and nano-structures, phase transformations as well as methods of their technological processes, tests and measurements. Multidisciplinary applications of materials science and technological problems encountered in sectors like ceramics, glasses, thin films, aerospace, automotive and marine industry, electronics, energy, construction materials, medicine, biosciences and environmental sciences are of particular interest. In accordance to the program of the conference ic-cmtp2, more than 250 inquiries and registrations from different organizations were received. Researchers from 36 countries in Asia, Europe, Africa, North and South America arrived at the venue of conference. Including co-authors, the research work of more than 500 scientists are presented in this volume. Professor Dr Gömze A László Chair, ic-cmtp2 The PDF also contains lists of the boards, session chairs and sponsors.

  2. Rapidly evolving microorganisms with high biofuel tolerance

    NASA Astrophysics Data System (ADS)

    Vyawahare, Saurabh; Zhang, Qiucen; Lang, Wendy; Austin, Robert

    2012-02-01

    Replacing non-renewable energy sources is one of the biggest and most exciting challenges of our generation. Algae and bacteria are poised to become major renewable biofuels if strains can be developed that provide a high,consistent and robust yield of oil. One major stumbling block towards this goal is the lack of tolerance to high concentrations of biofuels like isobutanol. Using traditional bioengineering techniques to remedy this face the hurdle of identifying the correct pathway or gene to modify. But the multiplicity of interactions inside a cell makes it very hard to determine what to modify a priori. Instead, we propose a technology that does not require prior knowledge of the genes or pathways to modify. In our approach that marries microfabrication and ecology, spatial heterogeneity is used as a knob to speed up evolution in the desired direction. Recently, we have successfully used this approach to demonstrate the rapid emergence of bacterial antibiotic resistance in as little as ten hours. Here, we describe our experimental results in developing new strains of micro-organisms with high oil tolerance. Besides biofuel production, our work is also relevant to oil spill clean-ups.

  3. International Trade of Biofuels (Brochure)

    SciTech Connect

    Not Available

    2013-05-01

    In recent years, the production and trade of biofuels has increased to meet global demand for renewable fuels. Ethanol and biodiesel contribute much of this trade because they are the most established biofuels. Their growth has been aided through a variety of policies, especially in the European Union, Brazil, and the United States, but ethanol trade and production have faced more targeted policies and tariffs than biodiesel. This fact sheet contains a summary of the trade of biofuels among nations, including historical data on production, consumption, and trade.

  4. Algal Biofuels; Algal Biofuels R&D at NREL (Brochure)

    SciTech Connect

    Not Available

    2010-09-01

    An overview of NREL's algal biofuels projects, including U.S. Department of Energy-funded work, projects with U.S. and international partners, and Laboratory Directed Research and Development projects.

  5. Differential contribution of specific working memory components to mathematics achievement in 2nd and 3rd graders.

    PubMed

    Meyer, M L; Salimpoor, V N; Wu, S S; Geary, D C; Menon, V

    2010-04-01

    The contribution of the three core components of working memory (WM) to the development of mathematical skills in young children is poorly understood. The relation between specific WM components and Numerical Operations, which emphasize computation and fact retrieval, and Mathematical Reasoning, which emphasizes verbal problem solving abilities in 48 2nd and 50 3rd graders was assessed using standardized WM and mathematical achievement measures. For 2nd graders, the central executive and phonological components predicted Mathematical Reasoning skills; whereas the visuo-spatial component predicted both Mathematical Reasoning and Numerical Operations skills in 3rd graders. This pattern suggests that the central executive and phonological loop facilitate performance during early stages of mathematical learning whereas visuo-spatial representations play an increasingly important role during later stages. We propose that these changes reflect a shift from prefrontal to parietal cortical functions during mathematical skill acquisition. Implications for learning and individual differences are discussed. PMID:21660238

  6. Neurobehavioral Evaluation System (NES): comparative performance of 2nd-, 4th-, and 8th-grade Czech children.

    PubMed

    Otto, D A; Skalik, I; House, D E; Hudnell, H K

    1996-01-01

    The Neurobehavioral Evaluation System was designed for field studies of workers, but many NES tests can be performed satisfactorily by children as young as 7 or 8 years old and a few tests, such as simple reaction time, can be performed by preschool children. However, little comparative data from children of different ages or grade levels are available. Studies of school children in the Czech Republic indicate that 2nd-grade children could perform the following NES tests satisfactorily: Finger Tapping, Visual Digit Span. Continuous Performance, Symbol-Digit Substitution, Pattern Comparison, and simpler conditions of Switching Attention. Comparative scores of boys and girls from the 2nd, 4th, and 8th grades and power analyses to estimate appropriate sample size were presented. Performance varied systematically with grade level and gender. Larger samples were needed with younger children to achieve comparable levels of statistical power. Gender comparisons indicated that boys responded faster, but made more errors than girls. PMID:8866533

  7. Physical properties of double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6}

    SciTech Connect

    Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji

    2013-01-15

    The crystal, magnetic structures and physical properties of the double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6} are investigated through powder X-ray and neutron diffraction, electrical conductivity, magnetic susceptibility, and specific heat measurements. The Rietveld analysis reveals that the Nd and Os ions are arranged with regularity over the six-coordinate B sites in a distorted perovskite ABO{sub 3} framework. The monoclinic crystal structure described by space group P2{sub 1}/n (tilt system a{sup -}a{sup -}c{sup +}) becomes more distorted with decreasing temperature from 300 K down to 2.5 K. This compound shows a long-range antiferromagnetic ordering of Os{sup 5+} below 65 K. An antiferromagnetic ordering of Nd{sup 3+} also occurs at lower temperatures ({approx}20 K). The magnetic structure is of Type I and the magnetic moments of Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. - Graphical Abstract: The Magnetic structure of Ba{sub 2}NdOsO{sub 6} is of Type I, and the magnetic moments of the Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. Highlights: Black-Right-Pointing-Pointer Crystal structures of Ba{sub 2}NdOsO{sub 6} are determined to be monoclinic below 300 K. Black-Right-Pointing-Pointer Its electrical resistivity shows a Mott variable-range hopping behavior with localized carriers. Black-Right-Pointing-Pointer An antiferromagnetic ordering of the Os{sup 5+}moment occurs at 65 K. Black-Right-Pointing-Pointer The magnetic structure of Ba{sub 2}NdOsO{sub 6} is determined to be of Type I.

  8. Teachers' Spatial Anxiety Relates to 1st-and 2nd-Graders' Spatial Learning

    ERIC Educational Resources Information Center

    Gunderson, Elizabeth A.; Ramirez, Gerardo; Beilock, Sian L.; Levine, Susan C.

    2013-01-01

    Teachers' anxiety about an academic domain, such as math, can impact students' learning in that domain. We asked whether this relation held in the domain of spatial skill, given the importance of spatial skill for success in math and science and its malleability at a young age. We measured 1st-and 2nd-grade teachers' spatial anxiety…

  9. Engineering microbes to produce biofuels

    SciTech Connect

    Wackett, LP

    2011-06-01

    The current biofuels landscape is chaotic. It is controlled by the rules imposed by economic forces and driven by the necessity of finding new sources of energy, particularly motor fuels. The need is bringing forth great creativity in uncovering new candidate fuel molecules that can be made via metabolic engineering. These next generation fuels include long-chain alcohols, terpenoid hydrocarbons, and diesel-length alkanes. Renewable fuels contain carbon derived from carbon dioxide. The carbon dioxide is derived directly by a photosynthetic fuel-producing organism(s) or via intermediary biomass polymers that were previously derived from carbon dioxide. To use the latter economically, biomass depolymerization processes must improve and this is a very active area of research. There are competitive approaches with some groups using enzyme based methods and others using chemical catalysts. With the former, feedstock and end-product toxicity loom as major problems. Advances chiefly rest on the ability to manipulate biological systems. Computational and modular construction approaches are key. For example, novel metabolic networks have been constructed to make long-chain alcohols and hydrocarbons that have superior fuel properties over ethanol. A particularly exciting approach is to implement a direct utilization of solar energy to make a usable fuel. A number of approaches use the components of current biological systems, but re-engineer them for more direct, efficient production of fuels.

  10. Innovation in biological production and upgrading of methane and hydrogen for use as gaseous transport biofuel.

    PubMed

    Xia, Ao; Cheng, Jun; Murphy, Jerry D

    2016-01-01

    Biofuels derived from biomass will play a major role in future renewable energy supplies in transport. Gaseous biofuels have superior energy balances, offer greater greenhouse gas emission reductions and produce lower pollutant emissions than liquid biofuels. Biogas derived through fermentation of wet organic substrates will play a major role in future transport systems. Biogas (which is composed of approximately 60% methane/hydrogen and 40% carbon dioxide) requires an upgrading process to reduce the carbon dioxide content to less than 3% before it is used as compressed gas in transport. This paper reviews recent developments in fermentative biogas production and upgrading as a transport fuel. Third generation gaseous biofuels may be generated using marine-based algae via two-stage fermentation, cogenerating hydrogen and methane. Alternative biological upgrading techniques, such as biological methanation and microalgal biogas upgrading, have the potential to simultaneously upgrade biogas, increase gaseous biofuel yield and reduce carbon dioxide emission. PMID:26724182

  11. PREFACE: 1st-2nd Young Researchers Meetings in Rome - Proceedings

    NASA Astrophysics Data System (ADS)

    YRMR Organizing Committee; Cannuccia, E.; Mazzaferro, L.; Migliaccio, M.; Pietrobon, D.; Stellato, F.; Veneziani, M.

    2011-03-01

    Students in science, particularly in physics, face a fascinating and challenging future. Scientists have proposed very interesting theories, which describe the microscopic and macroscopic world fairly well, trying to match the quantum regime with cosmological scales. Between the extremes of this scenario, biological phenomena in all their complexity take place, challenging the laws we observe in the atomic and sub-atomic world. More and more accurate and complex experiments have been devised and these are now going to test the paradigms of physics. Notable experiments include: the Large Hadronic Collider (LHC), which is going to shed light on the physics of the Standard Model of Particles and its extensions; the Planck-Herschel satellites, which target a very precise measurement of the properties of our Universe; and the Free Electron Lasers facilities, which produce high-brilliance, ultrafast X-ray pulses, allowing the investigation of the fundamental processes of solid state physics, chemistry, and biology. These projects are the result of huge collaborations spread across the world, involving scientists belonging to different and complementary research fields: physicists, chemists, biologists and others, keen to make the best of these extraordinary laboratories. Even though each branch of science is experiencing a process of growing specialization, it is very important to keep an eye on the global picture, remaining aware of the deep interconnections between inherent fields. This is even more crucial for students who are beginning their research careers. These considerations motivated PhD students and young post-docs connected to the Roman scientific research area to organize a conference, to establish the background and the network for interactions and collaborations. This resulted in the 1st and 2nd Young Researchers Meetings in Rome (http://ryrm.roma2.infn.it), one day conferences aimed primarily at graduate students and post-docs, working in physics in Italy

  12. White Paper Summary of 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding

    SciTech Connect

    Sindelar, R.; Louthan, M.; PNNL, B.

    2015-05-29

    This white paper recommends that ASTM International develop standards to address the potential impact of hydrides on the long term performance of irradiated zirconium alloys. The need for such standards was apparent during the 2nd ASTM International Workshop on Hydrides in Zirconium Alloy Cladding and Assembly Components, sponsored by ASTM International Committee C26.13 and held on June 10-12, 2014, in Jackson, Wyoming. The potentially adverse impacts of hydrogen and hydrides on the long term performance of irradiated zirconium-alloy cladding on used fuel were shown to depend on multiple factors such as alloy chemistry and processing, irradiation and post irradiation history, residual and applied stresses and stress states, and the service environment. These factors determine the hydrogen content and hydride morphology in the alloy, which, in turn, influence the response of the alloy to the thermo-mechanical conditions imposed (and anticipated) during storage, transport and disposal of used nuclear fuel. Workshop presentations and discussions showed that although hydrogen/hydride induced degradation of zirconium alloys may be of concern, the potential for occurrence and the extent of anticipated degradation vary throughout the nuclear industry because of the variations in hydrogen content, hydride morphology, alloy chemistry and irradiation conditions. The tools and techniques used to characterize hydrides and hydride morphologies and their impacts on material performance also vary. Such variations make site-to-site comparisons of test results and observations difficult. There is no consensus that a single material or system characteristic (e.g., reactor type, burnup, hydrogen content, end-of life stress, alloy type, drying temperature, etc.) is an effective predictor of material response during long term storage or of performance after long term storage. Multi-variable correlations made for one alloy may not represent the behavior of another alloy exposed to

  13. Biofuels in the long-run global energy supply mix for transportation.

    PubMed

    Timilsina, Govinda R

    2014-01-13

    Various policy instruments along with increasing oil prices have contributed to a sixfold increase in global biofuels production over the last decade (2000-2010). This rapid growth has proved controversial, however, and has raised concerns over potential conflicts with global food security and climate change mitigation. To address these concerns, policy support is now focused on advanced or second-generation biofuels instead of crop-based first-generation biofuels. This policy shift, together with the global financial crisis, has slowed the growth of biofuels production, which has remained stagnant since 2010. Based upon a review of the literature, this paper examines the potential long-run contribution of biofuels to the global energy mix, particularly for transportation. We find that the contribution of biofuels to global transportation fuel demand is likely to be limited to around 5% over the next 10-15 years. However, a number of studies suggest that biofuels could contribute up to a quarter of global transportation fuel demand by 2050, provided technological breakthroughs reduce the costs of sustainably produced advanced biofuels to a level where they can compete with petroleum fuels. PMID:24298077

  14. Soil Quality as an Indicator of Sustainable Biofuel Feedstock Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustainable production of cellulosic feedstocks for second-generation biofuels must not degrade soil, water, or air resources. Critical functions such as (i) sustaining biological productivity, (ii) regulating and portioning soil water, (iii) storing and cycling nutrients, and (iv) filtering and buf...

  15. Production of Liquid Biofuels from Biomass: Emerging Technologies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This is an overview of the emerging technologies that have been developed recently or are in the process of development for ethanol (biofuel) production from agricultural residues. In this direction numerous advances have been made. Problems associated with inhibitor generation and detoxification,...

  16. Engineering industrial yeast for renewable advanced biofuels applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The industrial yeast Saccharomyces cerevisiae is a candidate for the next-generation biocatalyst development due to its unique genomic background and robust performance in fermentation-based production. In order to meet challenges of renewable and sustainable advanced biofuels conversion including ...

  17. Sustainable Biofuels Development Center

    SciTech Connect

    Reardon, Kenneth F.

    2015-03-01

    The mission of the Sustainable Bioenergy Development Center (SBDC) is to enhance the capability of America’s bioenergy industry to produce transportation fuels and chemical feedstocks on a large scale, with significant energy yields, at competitive cost, through sustainable production techniques. Research within the SBDC is organized in five areas: (1) Development of Sustainable Crops and Agricultural Strategies, (2) Improvement of Biomass Processing Technologies, (3) Biofuel Characterization and Engine Adaptation, (4) Production of Byproducts for Sustainable Biorefining, and (5) Sustainability Assessment, including evaluation of the ecosystem/climate change implication of center research and evaluation of the policy implications of widespread production and utilization of bioenergy. The overall goal of this project is to develop new sustainable bioenergy-related technologies. To achieve that goal, three specific activities were supported with DOE funds: bioenergy-related research initiation projects, bioenergy research and education via support of undergraduate and graduate students, and Research Support Activities (equipment purchases, travel to attend bioenergy conferences, and seminars). Numerous research findings in diverse fields related to bioenergy were produced from these activities and are summarized in this report.

  18. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J. L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-12-02

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has gener-ated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel mar-ket, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  19. Biofuel alternatives to ethanol: pumping the microbial well

    SciTech Connect

    Fortman, J.L.; Chhabra, Swapnil; Mukhopadhyay, Aindrila; Chou, Howard; Lee, Taek Soon; Steen, Eric; Keasling, Jay D.

    2009-08-19

    Engineered microorganisms are currently used for the production of food products, pharmaceuticals, ethanol fuel and more. Even so, the enormous potential of this technology has yet to be fully exploited. The need for sustainable sources of transportation fuels has generated a tremendous interest in technologies that enable biofuel production. Decades of work have produced a considerable knowledge-base for the physiology and pathway engineering of microbes, making microbial engineering an ideal strategy for producing biofuel. Although ethanol currently dominates the biofuel market, some of its inherent physical properties make it a less than ideal product. To highlight additional options, we review advances in microbial engineering for the production of other potential fuel molecules, using a variety of biosynthetic pathways.

  20. Development of Hydrologic Characterization Technology of Fault Zones -- Phase I, 2nd Report

    SciTech Connect

    Karasaki, Kenzi; Onishi, Tiemi; Black, Bill; Biraud, Sebastien

    2009-03-31

    This is the year-end report of the 2nd year of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology of Fault Zones under NUMO-DOE/LBNL collaboration agreement, the task description of which can be found in the Appendix 3. Literature survey of published information on the relationship between geologic and hydrologic characteristics of faults was conducted. The survey concluded that it may be possible to classify faults by indicators based on various geometric and geologic attributes that may indirectly relate to the hydrologic property of faults. Analysis of existing information on the Wildcat Fault and its surrounding geology was performed. The Wildcat Fault is thought to be a strike-slip fault with a thrust component that runs along the eastern boundary of the Lawrence Berkeley National Laboratory. It is believed to be part of the Hayward Fault system but is considered inactive. Three trenches were excavated at carefully selected locations mainly based on the information from the past investigative work inside the LBNL property. At least one fault was encountered in all three trenches. Detailed trench mapping was conducted by CRIEPI (Central Research Institute for Electric Power Industries) and LBNL scientists. Some intriguing and puzzling discoveries were made that may contradict with the published work in the past. Predictions are made regarding the hydrologic property of the Wildcat Fault based on the analysis of fault structure. Preliminary conceptual models of the Wildcat Fault were proposed. The Wildcat Fault appears to have multiple splays and some low angled faults may be part of the flower structure. In parallel, surface geophysical investigations were conducted using electrical resistivity survey and seismic reflection profiling along three lines on the north and south of the LBNL site. Because of the steep terrain, it was difficult to find optimum locations for survey lines as it is desirable for them to be as

  1. 2nd Radio and Antenna Days of the Indian Ocean (RADIO 2014)

    NASA Astrophysics Data System (ADS)

    2014-10-01

    It was an honor and a great pleasure for all those involved in its organization to welcome the participants to the ''Radio and Antenna Days of the Indian Ocean'' (RADIO 2014) international conference that was held from 7th to 10th April 2014 at the Sugar Beach Resort, Wolmar, Flic-en-Flac, Mauritius. RADIO 2014 is the second of a series of conferences organized in the Indian Ocean region. The aim of the conference is to discuss recent developments, theories and practical applications covering the whole scope of radio-frequency engineering, including radio waves, antennas, propagation, and electromagnetic compatibility. The RADIO international conference emerged following discussions with engineers and scientists from the countries of the Indian Ocean as well as from other parts of the world and a need was felt for the organization of such an event in this region. Following numerous requests, the Island of Mauritius, worldwide known for its white sandy beaches and pleasant tropical atmosphere, was again chosen for the organization of the 2nd RADIO international conference. The conference was organized by the Radio Society, Mauritius and the Local Organizing Committee consisted of scientists from SUPELEC, France, the University of Mauritius, and the University of Technology, Mauritius. We would like to take the opportunity to thank all people, institutions and companies that made the event such a success. We are grateful to our gold sponsors CST and FEKO as well as URSI for their generous support which enabled us to partially support one PhD student and two scientists to attend the conference. We would also like to thank IEEE-APS and URSI for providing technical co-sponsorship. More than hundred and thirty abstracts were submitted to the conference. They were peer-reviewed by an international scientific committee and, based on the reviews, either accepted, eventually after revision, or rejected. RADIO 2014 brought together participants from twenty countries spanning

  2. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  3. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Second generation feedstock, especially nonfood lignocellulosic biomass, has been seen as a potential source for biofuel production. Cost intensive pretreatment operations, including physical, chemical, biological, and slow enzymatic hydrolysis, make the overall process of lignocellulosic conversio...

  4. Research at the CEA in the field of safety in 2nd and 3rd generation light water reactors

    NASA Astrophysics Data System (ADS)

    Billot, Philippe

    2012-05-01

    The research programs at the CEA in the field of safety in nuclear reactors are carried out in a framework of international partnerships. Their purpose is to develop studies on: The methods allowing for the determination of earthquake hazards and their consequences; The behaviour of fuel in an accident situation; The comprehension of deflagration and detonation phenomena of hydrogen and the search for effective prevention methods involving an explosion risk; The cooling of corium in order to stop its progression in and outside the vessel thereby reducing the risk of perforating the basemat; The behaviour of the different fission product families according to their volatility for the UO2 and MOX fuels.

  5. Development of a 2nd Generation Decision Support Tool to Optimize Resource and Energy Recovery for Municipal Solid Waste

    EPA Science Inventory

    In 2012, EPA’s Office of Research and Development released the MSW decision support tool (MSW-DST) to help identify strategies for more sustainable MSW management. Depending upon local infrastructure, energy grid mix, population density, and waste composition and quantity,...

  6. 2nd Generation RLV Risk Reduction Definition Program: Pratt & Whitney Propulsion Risk Reduction Requirements Program (TA-3 & TA-4)

    NASA Technical Reports Server (NTRS)

    Matlock, Steve

    2001-01-01

    This is the final report and addresses all of the work performed on this program. Specifically, it covers vehicle architecture background, definition of six baseline engine cycles, reliability baseline (space shuttle main engine QRAS), and component level reliability/performance/cost for the six baseline cycles, and selection of 3 cycles for further study. This report further addresses technology improvement selection and component level reliability/performance/cost for the three cycles selected for further study, as well as risk reduction plans, and recommendation for future studies.

  7. Explaining the Success of High-Achieving 2nd-Generation Latino Students at Elite Colleges and Universities

    ERIC Educational Resources Information Center

    Kula, Stacy M.

    2013-01-01

    Latinos represent the largest minority population in the US, yet are one of the most underserved groups in the educational system. As such, they have been the focus of much attention by educational researchers. However, there is little work enabling researchers to understand how many factors might interactively support achievement. Moreover, the…

  8. Cost goals for biofuels technologies

    SciTech Connect

    Gaines, L.L.; Flaim, S.J.

    1987-01-01

    Federally funded energy research seeks to demonstrate that alternative fuels can be produced and then to induce private sector involvement by showing that they can be produced profitably. Prices for fossil fuels may be used as cost goals for biofuels to determine when profitability may be achieved. Achieving equality with fossil fuel prices drives out the highest-cost sources of supply and enables initial market penetration; as costs decrease, biofuels can potentially gain a greater market share. However, achieving competitive costs is not a sufficient condition for success unless prices of conventional substitutes are expected to rise. Cost goals are used for research planning purposes, as a common denominator to allow comparisons among many biofuels options. Application of standard investment criteria to biofuels R and D would require that benefits from their use pay back research costs. These benefits must be discounted because they are realized in the future. Furthermore, realization of future savings is uncertain, so risks must be accounted for. Research may be justified if the expected value of the discounted benefits is greater than the discounted cost of the research. Cost goals satisfying this condition might be substantially lower than projected fuel prices. This paper examines recent fossil fuel price projections and discusses the challenges biofuels research faces just to produce competitive products. In light of the difficult goals, researchers should adopt a strategy targeting major technological breakthroughs rather than incremental improvements. Production of ethanol from wood is used as an example of this strategy. 35 refs., 8 figs., 7 tabs.

  9. Order and disorder in Ca 2ND 0.90H 0.10-A structural and thermal study

    NASA Astrophysics Data System (ADS)

    Verbraeken, Maarten C.; Suard, Emmanuelle; Irvine, John T. S.

    2011-08-01

    The structure of calcium nitride hydride and its deuterided form has been re-examined at room temperature and studied at high temperature using neutron powder diffraction and thermal analysis. When synthesised at 600 °C, a mixture of both ordered and disordered Ca 2ND 0.90H 0.10 phases results. The disordered phase is the minor component and has a primitive rocksalt structure (spacegroup Fm3 m) with no ordering of D/N on the anion sites and the ordered phase is best described using the rhombohedral spacegroup R-3 m with D and N arranged in alternate layers in (111) planes. This mixture of ordered and disordered phases exists up to 580 °C, at which the loss of deuterium yields Ca 2ND 0.85 with the disappearance of the disordered phase. In the new ordered phase there exists a similar content of vacancies on both anion sites; to achieve this balance, a little N transfers onto the D site, whereas there is no indication of D transferring onto the N-sites. These observations are thought to indicate that the D/N ordering is difficult to achieve with fully occupied anion sites. It has previously been reported that Ca 2ND has an ordered cubic cell with alternating D and N sites in the [100] directions [1]; however, for the samples studied herein, there were clearly two coexisting phases with apparent broadening/splitting of the primitive peaks but not for the ordered peaks. The rhombohedral phase was in fact metrically cubic; however, all the observed peaks were consistent with the rhombohedral unit cell with no peaks requiring the larger ordered cubic unit cell to be utilised. Furthermore this rhombohedral cell displays the same form of N-D ordering as the Sr and Ba analogues, which are metrically rhombohedral.

  10. 2nd International Salzburg Conference on Neurorecovery (ISCN 2013) Salzburg/ Austria | November 28th - 29th, 2013

    PubMed Central

    Brainin, M; Muresanu, D; Slavoaca, D

    2014-01-01

    The 2nd International Salzburg Conference on Neurorecovery was held on the 28th and 29th of November, 2013, in Salzburg, one of the most beautiful cities in Austria, which is well known for its rich cultural heritage, world-famous music and beautiful surrounding landscapes. The aim of the conference was to discuss the progress in the field of neurorecovery. The conference brought together internationally renowned scientists and clinicians, who described the clinical and therapeutic relevance of translational research and its applications in neurorehabilitation. PMID:25713602

  11. [Combined Anterior and Posterior Surgical Approaches for Resection of a 2nd-rib Chondrosarcoma Occupying the Superior Sulcus].

    PubMed

    Shinohara, Yoshikazu; Anraku, Masaki; Saito, Noriyuki; Fukumoto, Kento; Kobayashi, Hiroshi; Shinoda, Yusuke; Chikuda, Hirotaka; Nakajima, Jun

    2016-06-01

    A 77-year-old man with right chest wall chondrosarcoma invading vertebral bodies underwent resection. Computed tomography (CT) showed that the tumor occupied the right superior sulcus, and was close to mediastinal organs including the trachea and esophagus. We adopted a combined anterior and posterior approaches that made safe and curative resection possible. In the anterior approach, we dissected and mobilized the neurovascular structures and neighboring organs from the tumor. A-4 cm gutter on the ventral side of the 1st, 2nd, and 3rd thoracic vertebral bodies was created for safe resection. By the subsequent posterior approach, successful resection was achieved without violating tumor margins. PMID:27246126

  12. THE 2nd SCHIZOPHRENIA INTERNATIONAL RESEARCH SOCIETY CONFERENCE, 10–14 APRIL 2010, FLORENCE, ITALY: SUMMARIES OF ORAL SESSIONS

    PubMed Central

    Baharnoori, Moogeh; Bartholomeusz, Cali; Boucher, Aurelie A.; Buchy, Lisa; Chaddock, Christopher; Chiliza, Bonga; Föcking, Melanie; Fornito, Alex; Gallego, Juan A.; Hori, Hiroaki; Huf, Gisele; Jabbar, Gul A.; Kang, Shi Hyun; El Kissi, Yousri; Merchán-Naranjo, Jessica; Modinos, Gemma; Abdel-Fadeel, Nashaat A.M.; Neubeck, Anna-Karin; Ng, Hsiao Piau; Novak, Gabriela; Owolabi, Olasunmbo.O.; Prata, Diana P.; Rao, Naren P.; Riecansky, Igor; Smith, Darryl C.; Souza, Renan P.; Thienel, Renate; Trotman, Hanan D.; Uchida, Hiroyuki; Woodberry, Kristen A.; O'Shea, Anne; DeLisi, Lynn E.

    2014-01-01

    The 2nd Schizophrenia International Research Society Conference, was held in Florence, Italy, April 10–15, 2010. Student travel awardees served as rapporteurs of each oral session and focused their summaries on the most significant findings that emerged from each session and the discussions that followed. The following report is a composite of these reviews. It is hoped that it will provide an overview for those who were present, but could not participate in all sessions, and those who did not have the opportunity to attend, but who would be interested in an update on current investigations ongoing in the field of schizophrenia research. PMID:20934307

  13. Quantitative metabolic profiles of 2nd and 3rd trimester human amniotic fluid using 1H HR-MAS spectroscopy

    PubMed Central

    Cohn, Brad R.; Zhao, Shoujun; Kornak, John; Zhang, Vickie Y.; Iman, Rahwa; Kurhanewicz, John; Vahidi, Kiarash; Yu, Jingwei; Caughey, Aaron B.; Swanson, Mark G.

    2016-01-01

    Object To establish and compare normative metabolite concentrations in 2nd and 3rd trimester human amniotic fluid samples in an effort to reveal metabolic biomarkers of fetal health and development. Materials and methods Twenty-one metabolite concentrations were compared between 2nd (15–27 weeks gestation, N = 23) and 3rd (29–39 weeks gestation, N = 27) trimester amniotic fluid samples using 1H high resolution magic angle spinning (HR-MAS) spectroscopy. Data were acquired using the electronic reference to access in vivo concentrations method and quantified using a modified semi-parametric quantum estimation algorithm modified for high-resolution ex vivo data. Results Sixteen of 21 metabolite concentrations differed significantly between 2nd and 3rd trimester groups. Betaine (0.00846±0.00206 mmol/kg vs. 0.0133±0.0058 mmol/kg, P <0.002) and creatinine (0.0124±0.0058 mmol/kg vs. 0.247±0.011 mmol/kg, P <0.001) concentrations increased significantly, while glucose (5.96±1.66 mmol/kg vs. 2.41±1.69 mmol/kg, P <0.001), citrate (0.740±0.217 mmol/kg vs. 0.399±0.137 mmol/kg, P <0.001), pyruvate (0.0659±0.0103 mmol/kg vs. 0.0299±0.286 mmol/kg, P <0.001), and numerous amino acid (e.g. alanine, glutamate, isoleucine, leucine, lysine, and valine) concentrations decreased significantly with advancing gestation. A stepwise multiple linear regression model applied to 50 samples showed that gestational age can be accurately predicted using combinations of alanine, glucose and creatinine concentrations. Conclusion These results provide key normative data for 2nd and 3rd trimester amniotic fluid metabolite concentrations and provide the foundation for future development of magnetic resonance spectroscopy (MRS) biomarkers to evaluate fetal health and development. PMID:19779747

  14. A New Biofuels Technology Blooms in Iowa

    SciTech Connect

    Mathisen, Todd; Bruch, Don

    2010-01-01

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  15. A New Biofuels Technology Blooms in Iowa

    ScienceCinema

    Mathisen, Todd; Bruch, Don;

    2013-05-29

    Cellulosic biofuels made from agricultural waste have caught the attention of many farmers and could be the next revolution in renewable biofuels production. This video shows how an innovative technology that converts waste products from the corn harvest into renewable biofuels will help the U.S. produce billions of gallons of cellulosic biofuels over the coming decade. It will also stimulate local economies and reduce U.S. dependence on foreign oil.

  16. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels.

    PubMed

    Hoang, Nam V; Furtado, Agnelo; Botha, Frederik C; Simmons, Blake A; Henry, Robert J

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  17. Biofuels and Their Co-Products as Livestock Feed: Global Economic and Environmental Implications.

    PubMed

    Popp, József; Harangi-Rákos, Mónika; Gabnai, Zoltán; Balogh, Péter; Antal, Gabriella; Bai, Attila

    2016-01-01

    This review studies biofuel expansion in terms of competition between conventional and advanced biofuels based on bioenergy potential. Production of advanced biofuels is generally more expensive than current biofuels because products are not yet cost competitive. What is overlooked in the discussion about biofuel is the contribution the industry makes to the global animal feed supply and land use for cultivation of feedstocks. The global ethanol industry produces 44 million metric tonnes of high-quality feed, however, the co-products of biodiesel production have a moderate impact on the feed market contributing to just 8-9 million tonnes of protein meal output a year. By economically displacing traditional feed ingredients co-products from biofuel production are an important and valuable component of the biofuels sector and the global feed market. The return of co-products to the feed market has agricultural land use (and GHG emissions) implications as well. The use of co-products generated from grains and oilseeds can reduce net land use by 11% to 40%. The proportion of global cropland used for biofuels is currently some 2% (30-35 million hectares). By adding co-products substituted for grains and oilseeds the land required for cultivation of feedstocks declines to 1.5% of the global crop area. PMID:26938514

  18. Potential for Genetic Improvement of Sugarcane as a Source of Biomass for Biofuels

    PubMed Central

    Hoang, Nam V.; Furtado, Agnelo; Botha, Frederik C.; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    Sugarcane (Saccharum spp. hybrids) has great potential as a major feedstock for biofuel production worldwide. It is considered among the best options for producing biofuels today due to an exceptional biomass production capacity, high carbohydrate (sugar + fiber) content, and a favorable energy input/output ratio. To maximize the conversion of sugarcane biomass into biofuels, it is imperative to generate improved sugarcane varieties with better biomass degradability. However, unlike many diploid plants, where genetic tools are well developed, biotechnological improvement is hindered in sugarcane by our current limited understanding of the large and complex genome. Therefore, understanding the genetics of the key biofuel traits in sugarcane and optimization of sugarcane biomass composition will advance efficient conversion of sugarcane biomass into fermentable sugars for biofuel production. The large existing phenotypic variation in Saccharum germplasm and the availability of the current genomics technologies will allow biofuel traits to be characterized, the genetic basis of critical differences in biomass composition to be determined, and targets for improvement of sugarcane for biofuels to be established. Emerging options for genetic improvement of sugarcane for the use as a bioenergy crop are reviewed. This will better define the targets for potential genetic manipulation of sugarcane biomass composition for biofuels. PMID:26636072

  19. Biofuels from Microalgae and Seaweeds

    SciTech Connect

    Huesemann, Michael H.; Roesijadi, Guritno; Benemann, John; Metting, F. Blaine

    2010-03-01

    8.1 Introduction: Seaweeds and microalgae have a long history of cultivation as sources of commercial products (McHugh 2003; Pulz and Gross 2004). They also have been the subject of extensive investigations related to their potential as fuel source since the 1970s (Chynoweth 2002). As energy costs rise, these photosynthetic organisms are again a focus of interest as potential sources of biofuels, particularly liquid transportation fuels. There have been many recent private sector investments to develop biofuels from microalgae, in part building on a U.S. Department of Energy (DOE) program from 1976 to 1996 which focused on microalgal oil production (Sheehan et al. 1998). Seaweed cultivation has received relatively little attention as a biofuel source in the US, but was the subject of a major research effort by the DOE from 1978 to 1983 (Bird and Benson 1987), and is now the focus of significant interest in Japan, Europe and Korea...

  20. Overview on Biofuels from a European Perspective

    ERIC Educational Resources Information Center

    Ponti, Luigi; Gutierrez, Andrew Paul

    2009-01-01

    In light of the recently developed European Union (EU) Biofuels Strategy, the literature is reviewed to examine (a) the coherency of biofuel production with the EU nonindustrial vision of agriculture, and (b) given its insufficient land base, the implications of a proposed bioenergy pact to grow biofuel crops in the developing world to meet EU…

  1. Assessing the environmental sustainability of biofuels.

    PubMed

    Kazamia, Elena; Smith, Alison G

    2014-10-01

    Biofuels vary in their potential to reduce greenhouse gas emissions when displacing fossil fuels. Savings depend primarily on the crop used for biofuel production, and on the effect that expanding its cultivation has on land use. Evidence-based policies should be used to ensure that maximal sustainability benefits result from the development of biofuels. PMID:25281367

  2. Nutrient management studies in biofuel cropping systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on biofuel crop production, and to evaluate long term effects of biofuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on biofuel crop production were esta...

  3. FOREWORD: 2nd International Workshop on New Computational Methods for Inverse Problems (NCMIP 2012)

    NASA Astrophysics Data System (ADS)

    Blanc-Féraud, Laure; Joubert, Pierre-Yves

    2012-09-01

    Conference logo This volume of Journal of Physics: Conference Series is dedicated to the scientific contributions presented during the 2nd International Workshop on New Computational Methods for Inverse Problems, (NCMIP 2012). This workshop took place at Ecole Normale Supérieure de Cachan, in Cachan, France, on 15 May 2012, at the initiative of Institut Farman. The first edition of NCMIP also took place in Cachan, France, within the scope of the ValueTools Conference, in May 2011 (http://www.ncmip.org/2011/). The NCMIP Workshop focused on recent advances in the resolution of inverse problems. Indeed inverse problems appear in numerous scientific areas such as geophysics, biological and medical imaging, material and structure characterization, electrical, mechanical and civil engineering, and finance. The resolution of inverse problems consists of estimating the parameters of the observed system or structure from data collected by an instrumental sensing or imaging device. Its success firstly requires the collection of relevant observation data. It also requires accurate models describing the physical interactions between the instrumental device and the observed system, as well as the intrinsic properties of the solution itself. Finally, it requires the design of robust, accurate and efficient inversion algorithms. Advanced sensor arrays and imaging devices provide high rate and high volume data; in this context, the efficient resolution of the inverse problem requires the joint development of new models and inversion methods, taking computational and implementation aspects into account. During this one-day workshop, researchers had the opportunity to bring to light and share new techniques and results in the field of inverse problems. The topics of the workshop were: algorithms and computational aspects of inversion, Bayesian estimation, kernel methods, learning methods, convex optimization, free discontinuity problems, metamodels, proper orthogonal decomposition

  4. Brain order disorder 2nd group report of f-EEG

    NASA Astrophysics Data System (ADS)

    Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi

    2014-05-01

    Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (

  5. Biofuel supply chain, market, and policy analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Leilei

    Renewable fuel is receiving an increasing attention as a substitute for fossil based energy. The US Department of Energy (DOE) has employed increasing effort on promoting the advanced biofuel productions. Although the advanced biofuel remains at its early stage, it is expected to play an important role in climate policy in the future in the transportation sector. This dissertation studies the emerging biofuel supply chain and markets by analyzing the production cost, and the outcomes of the biofuel market, including blended fuel market price and quantity, biofuel contract price and quantity, profitability of each stakeholder (farmers, biofuel producers, biofuel blenders) in the market. I also address government policy impacts on the emerging biofuel market. The dissertation is composed with three parts, each in a paper format. The first part studies the supply chain of emerging biofuel industry. Two optimization-based models are built to determine the number of facilities to deploy, facility locations, facility capacities, and operational planning within facilities. Cost analyses have been conducted under a variety of biofuel demand scenarios. It is my intention that this model will shed light on biofuel supply chain design considering operational planning under uncertain demand situations. The second part of the dissertation work focuses on analyzing the interaction between the key stakeholders along the supply chain. A bottom-up equilibrium model is built for the emerging biofuel market to study the competition in the advanced biofuel market, explicitly formulating the interactions between farmers, biofuel producers, blenders, and consumers. The model simulates the profit maximization of multiple market entities by incorporating their competitive decisions in farmers' land allocation, biomass transportation, biofuel production, and biofuel blending. As such, the equilibrium model is capable of and appropriate for policy analysis, especially for those policies

  6. Long-rotation sugarcane in Hawaii sustains high carbon accumulation and radiation use efficiency in 2nd year of growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane has been a major agronomic crop in Hawaii with an unique, high-yield, two-year production system. However,parameters relevant to advanced, cellulosic biofuel production, such as net ecosystem productivity (NEP) and radiation use efficiency (RUE), have not been evaluated in Hawaii under com...

  7. Density functional theory calculations on the active site of biotin synthase: mechanism of S transfer from the Fe(2)S(2) cluster and the role of 1st and 2nd sphere residues.

    PubMed

    Rana, Atanu; Dey, Subal; Agrawal, Amita; Dey, Abhishek

    2015-10-01

    Density functional theory (DFT) calculations are performed on the active site of biotin synthase (BS) to investigate the sulfur transfer from the Fe(2)S(2) cluster to dethiobiotin (DTB). The active site is modeled to include both the 1st and 2nd sphere residues. Molecular orbital theory considerations and calculation on smaller models indicate that only an S atom (not S²⁻) transfer from an oxidized Fe(2)S(2) cluster leads to the formation of biotin from the DTB using two adenosyl radicals generated from S-adenosyl-L-methionine. The calculations on larger protein active site model indicate that a 9-monothiobiotin bound reduced cluster should be an intermediate during the S atom insertion from the Fe(2)S(2) cluster consistent with experimental data. The Arg260 bound to Fe1, being a weaker donor than cysteine bound to Fe(2), determines the geometry and the electronic structure of this intermediate. The formation of this intermediate containing the C9-S bond is estimated to have a ΔG(≠) of 17.1 kcal/mol while its decay by the formation of the 2nd C6-S bond is calculated to have a ΔG(≠) of 29.8 kcal/mol, i.e. the 2nd C-S bond formation is calculated to be the rate determining step in the cycle and it leads to the decay of the Fe(2)S(2) cluster. Significant configuration interaction (CI), present in these transition states, helps lower the barrier of these reactions by ~30-25 kcal/mol relative to a hypothetical outer-sphere reaction. The conserved Phe285 residue near the Fe(2)S(2) active site determines the stereo selectivity at the C6 center of this radical coupling reaction. Reaction mechanism of BS investigated using DFT calculations. Strong CI and the Phe285 residue control the kinetic rate and stereochemistry of the product. PMID:26369537

  8. Efficacy and Safety of rAAV2-ND4 Treatment for Leber’s Hereditary Optic Neuropathy

    PubMed Central

    Wan, Xing; Pei, Han; Zhao, Min-jian; Yang, Shuo; Hu, Wei-kun; He, Heng; Ma, Si-qi; Zhang, Ge; Dong, Xiao-yan; Chen, Chen; Wang, Dao-wen; Li, Bin

    2016-01-01

    Leber’s hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229

  9. Influence of Nd dopant amount on microstructure and photoluminescence of TiO2:Nd thin films

    NASA Astrophysics Data System (ADS)

    Wojcieszak, Damian; Mazur, Michal; Kaczmarek, Danuta; Morgiel, Jerzy; Zatryb, Grzegorz; Domaradzki, Jaroslaw; Misiewicz, Jan

    2015-10-01

    TiO2 and TiO2:Nd thin films were deposited using reactive magnetron sputtering process from mosaic Ti-Nd targets with various Nd concentration. The thin films were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM) and spectroscopic techniques. Photoluminescence (PL) in the near infrared obtained upon 514.5 nm excitation was also examined. The relationship between the Nd concentration, structural, optical and photoluminescence properties of prepared thin films was investigated and discussed. XRD and TEM measurements showed that an increase in the Nd concentration in the thin films hinders the crystal growth in the deposited coatings. Depending on the Nd amount in the thin films, TiO2 with the rutile, mixed rutile-amorphous or amorphous phase was obtained. Transmittance measurements revealed that addition of Nd dopant to titania matrix did not deteriorate optical transparency of the coatings, however it influenced on the position of the fundamental absorption edge and therefore on the width of optical band gap energy. All TiO2:Nd thin films exhibited PL emission that occurred at ca. 0.91, 1.09 and 1.38 μm. Finally, results obtained for deposited coatings showed that titania with the rutile structure and 1.0 at.% of Nd was the most efficient in VIS to NIR photon conversion.

  10. Surface-emitting quantum cascade laser with 2nd-order metal-semiconductor gratings for single-lobe emission

    NASA Astrophysics Data System (ADS)

    Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D.; Earles, T.; Botez, D.; Mawst, L. J.

    2016-03-01

    Grating-coupled, surface-emitting (GCSE) quantum-cascade lasers (QCLs) are demonstrated with high-power, single-lobe surface emission. A 2nd-order Au-semiconductor distributed-feedback (DFB)/ distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric longitudinal mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. In turn, the antisymmetric longitudinal modes are strongly absorbed by the metal in the grating, causing the symmetric longitudinal mode to be favored to lase, which produces a single lobe beam over a grating duty-cycle range of 36-41 %. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of residual reflections from the device's cleaved ends. Peak pulsed output powers of ~ 0.4 W were measured with single-lobe, single-mode operation near 4.75 μm.

  11. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  12. Estimates of US biofuels consumption, 1990

    SciTech Connect

    Not Available

    1991-10-01

    This report is the sixth in the series of publications developed by the Energy Information Administration to quantify the amount of biofuel-derived primary energy used by the US economy. It provides preliminary estimates of 1990 US biofuels energy consumption by sector and by biofuels energy resource type. The objective of this report is to provide updated annual estimates of biofuels energy consumption for use by congress, federal and state agencies, and other groups involved in activities related to the use of biofuels. 5 figs., 10 tabs.

  13. Advancing Biofuels: Balancing for Sustainability

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most technologies, use of biofuels has both benefits and risks, which vary by feedstock. Expected benefits include increased energy independence, reduced consumption of fossil fuels, reduced emission of greenhouse gases and invigorated rural economies. Anticipated risks include potential com...

  14. Literacy: The Key to Success. A Literacy Handbook, 2nd Edition.

    ERIC Educational Resources Information Center

    Mid-York Library System, Utica, NY.

    Designed to provide a comprehensive literacy reference for public libraries, this handbook presents a glossary of terms, background information on functional literacy, and brief reviews of 14 additional topics: (1) literacy statistics; (2) adult performance levels; (3) the problem of adult education; (4) illiteracy generates itself; (5) about…

  15. Conceptual design and optimization of a 1-1/2 generation PFBC plant task 14. Topical report

    SciTech Connect

    White, J.S.; Witman, P.M.; Harbaugh, L.; Rubow, L.N.; Horazak, D.A.

    1994-12-01

    The economics and performance of advanced pressurized fluidized bed (PFBC) cycles developed for utility applications during the last 10 years (especially the 2nd-Generation PFBC cycle) are projected to be favorable compared to conventional pulverized coal power plants. However, the improved economics of 2nd-Generation PFBC cycles are accompanied by the perception of increased technological risk related to the pressurized carbonizer and its associated gas cleanup systems. A PFBC cycle that removed the uncertainties of the carbonizer while retaining the high efficiency and low cost of a 2nd-Generation PFBC cycle could improve the prospects for early commercialization and pave the way for the introduction of the complete 2nd-Generation PFBC cycle at some later date. One such arrangement is a PFBC cycle with natural gas topping combustion, referred to as the 1.5-Generation PFBC cycle. This cycle combines the advantages of the 2nd-Generation PFBC plant with the reduced risk associated with a gas turbine burning natural gas, and can potentially be part of a phased approach leading to the commercialization of utility 2nd-Generation PFBC cycles. The 1.5-Generation PFBC may also introduce other advantages over the more complicated 2nd-Generation PFBC system. This report describes the technical and economic evaluation of 1.5-Generation PFBC cycles for utility or industrial power generation.

  16. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    NASA Astrophysics Data System (ADS)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  17. Project DEEP STEAM 2nd and 3rd quarter reports, April 1-September 30, 1981

    SciTech Connect

    Moreno, J.B.; Aeschliman, D.P.; Clay, R.G.; Lee, D.O.; Marshall, B.W.; Muir, J.F.

    1982-03-01

    The objective of Project DEEP STEAM is to develop the technology required to economically produce heavy oil from deep reservoirs. The tasks included in this project are development of thermally efficient delivery systems and downhole steam-generation systems. During the period April 1-September 30, 1981, activity was completed on the development of a low-pressure-combustion, indirect-contact downhole generator (Rocketdyne), and effort continued on two high-pressure, direct-contact designs (Foster-Miller Associates, Sandia National Laboratories). Field testing of the Sandia design began in the Wilmington Field at Long Beach, California. This was the first test of a high-pressure, direct-contact downhole steam generator in a deep well. Development of a second Sandia design, using pure oxygen as the oxidizer, was initiated. Progress continued on the Min-Stress II packer concept at L'Garde, Inc., and on the extruded metal packer at Foster-Miller. A new insulant test series was begun at the Tacoma test tower. The instrumented bare-string steam injection test in Canada, initiated in cooperation with Husky Oil in the last report period, was successfully completed in early May. A redesigned test program to allow simultaneous testing of several different insulated tubulars is scheduled for October 1981.

  18. Post-flight BET products for the 2nd discovery entry, STS-19 (51-A)

    NASA Technical Reports Server (NTRS)

    Kelly, G. M.; Mcconnell, J. G.; Heck, M. L.; Troutman, P. A.; Waters, L. A.; Findlay, J. T.

    1985-01-01

    The post-flight products for the second Discovery flight, STS-19 (51-A), are summarized. The inertial best estimate trajectory (BET), BT19D19/UN=169750N, was developed using spacecraft dynamic measurements from Inertial Measurement Unit 2 (IMU2) in conjunction with the best tracking coverage available for any of the earlier Shuttle entries. As a consequence of the latter, an anchor epoch was selected which conforms to an initial altitude of greater than a million feet. The Extended BET, ST19BET/UN=274885C, incorporated the previously mentioned inertial reconstructed state information and the Langley Atmospheric Information Retrieval System (LAIRS) atmosphere, ST19MET/UN=712662N, with some minor exceptions. Primary and back-up AEROBET reels are NK0165 and NK0201, respectively. This product was only developed over the lowermost 360 kft altitude range due to atmosphere problems but this relates to altitudes well above meaningful signal in the IMUs. Summary results generated from the AEROBET for this flight are presented with meaningful configuration and statistical comparisons from the previous thirteen flights. Modified maximum likelihood estimation (MMLE) files were generated based on IMU2 and the Rate Gyro Assembly/Accelerometer Assembly (RGA/AA), respectively. Appendices attached define spacecraft and physical constants utilized, show plots of the final tracking data residuals from the post-flight fit, list relevant parameters from the BET at a two second spacing, and retain for archival purpose all relevant input and output tapes and files generated.

  19. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges.

    PubMed

    Banerjee, Chiranjib; Dubey, Kashyap K; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering. PMID:27065986

  20. Improving the feasibility of producing biofuels from microalgae using wastewater.

    PubMed

    Rawat, I; Bhola, V; Kumar, R Ranjith; Bux, F

    2013-01-01

    Biofuels have received much attention recently owing to energy consumption and environmental concerns. Despite many of the technologies being technically feasible, the processes are often too costly to be commercially viable. The major stumbling block to full-scale production of algal biofuels is the cost of upstream and downstream processes and environmental impacts such as water footprint and indirect greenhouse gas emissions from chemical nutrient production. The technoeconomics of biofuels production from microalgae is currently unfeasible due to the cost of inputs and productivities achieved. The use of a biorefinery approach sees the production costs reduced greatly due to utilization of waste streams for cultivation and the generation of several potential energy sources and value-added products while offering environmental protection. The use of wastewater as a production media, coupled with CO2 sequestration from flue gas greatly reduces the microalgal cultivation costs. Conversion of residual biomass and by-products, such as glycerol, for fuel production using an integrated approach potentially holds the key to near future commercial implementation of biofuels production. PMID:24350433

  1. Metabolic Engineering of Microalgal Based Biofuel Production: Prospects and Challenges

    PubMed Central

    Banerjee, Chiranjib; Dubey, Kashyap K.; Shukla, Pratyoosh

    2016-01-01

    The current scenario in renewable energy is focused on development of alternate and sustainable energy sources, amongst which microalgae stands as one of the promising feedstock for biofuel production. It is well known that microalgae generate much larger amounts of biofuels in a shorter time than other sources based on plant seeds. However, the greatest challenge in a transition to algae-based biofuel production is the various other complications involved in microalgal cultivation, its harvesting, concentration, drying and lipid extraction. Several green microalgae accumulate lipids, especially triacylglycerols (TAGs), which are main precursors in the production of lipid. The various aspects on metabolic pathway analysis of an oleaginous microalgae i.e., Chlamydomonas reinhardtii have elucidated some novel metabolically important genes and this enhances the lipid production in this microalgae. Adding to it, various other aspects in metabolic engineering using OptFlux and effectual bioprocess design also gives an interactive snapshot of enhancing lipid production which ultimately improvises the oil yield. This article reviews the current status of microalgal based technologies for biofuel production, bioreactor process design, flux analysis and it also provides various strategies to increase lipids accumulation via metabolic engineering. PMID:27065986

  2. Effect of the nanocrystalline structure type on the optical properties of TiO2:Nd (1 at.%) thin films

    NASA Astrophysics Data System (ADS)

    Mazur, Michal; Wojcieszak, Damian; Kaczmarek, Danuta; Domaradzki, Jaroslaw; Zatryb, Grzegorz; Misiewicz, Jan; Morgiel, Jerzy

    2015-04-01

    Titanium dioxide thin films, each doped with the same amount of neodymium (1 at.%) were deposited by Low Pressure Hot Target Reactive Sputtering and High Energy Reactive Magnetron Sputtering processes in order to obtain anatase and rutile thin film structures respectively. The microstructure and phase composition were analyzed using the transmission electron microscopy method including high resolution electron microscopy imaging. The measurements of the optical properties showed, that both prepared thin films were transparent in the visible light range and had a low extinction coefficient of ca. 3 ṡ 10-3. The thin film with the anatase structure had a lower cut-off wavelength and refractive index and a higher value of optical energy band gap as-compared to the TiO2:Nd coating with the rutile structure. Simultaneously, more efficient photoluminescence emission was observed for the rutile thin films.

  3. Morgenröthe or business as usual: a personal account of the 2nd Annual EULAR Congress, Prague

    PubMed Central

    Wollheim, Frank A

    2001-01-01

    The 2nd Annual European League Against Rheumatism (EULAR) Congress, held in Prague, 13–16 June 2001, was an impressive event with a record turnout of 8300 delegates. It offered a large variety of first-class state of the art lectures by some 180 invited worldwide speakers. Several new and ongoing therapeutic developments were discussed. The aim to attract the young scientific community was only partly achieved, and the dependence on industry posed some problems. The organization, however, was a big improvement compared with the previous congress in this series. The number of submitted abstracts was relatively low (1200) compared with the number of delegates. Accommodation of satellite symposia and organization of poster sessions remain problem areas of this meeting. The Annual EULAR Congress emerges as one of the two most important annual congresses of rheumatology, the other being the American College of Rheumatology meeting.

  4. Use of 2nd and 3rd Level Correlation Analysis for Studying Degradation in Polycrystalline Thin-Film Solar Cells

    SciTech Connect

    Albin, D. S.; del Cueto, J. A.; Demtsu, S. H.; Bansal, S.

    2011-03-01

    The correlation of stress-induced changes in the performance of laboratory-made CdTe solar cells with various 2nd and 3rd level metrics is discussed. The overall behavior of aggregated data showing how cell efficiency changes as a function of open-circuit voltage (Voc), short-circuit current density (Jsc), and fill factor (FF) is explained using a two-diode, PSpice model in which degradation is simulated by systematically changing model parameters. FF shows the highest correlation with performance during stress, and is subsequently shown to be most affected by shunt resistance, recombination and in some cases voltage-dependent collection. Large decreases in Jsc as well as increasing rates of Voc degradation are related to voltage-dependent collection effects and catastrophic shunting respectively. Large decreases in Voc in the absence of catastrophic shunting are attributed to increased recombination. The relevance of capacitance-derived data correlated with both Voc and FF is discussed.

  5. CRACking ion channel targets: 2nd annual Ion Channel Targets Conference. 12-13 September 2006, Boston, MA, USA.

    PubMed

    Mathes, Chris

    2007-01-01

    The 2nd Annual Ion Channel Targets (ICT) Conference (by Select Bioscience LLC) was held in Boston on 12-13 September 2006. A healthy mixture of scientists from pharma, biotech and academic sectors attended the meeting. The speaker list reflected this mixture. In general, the conference focused on new ion channel targets and the methods for studying them in detail. Keynote lectures from Professors David Clapham (Harvard Medical School, USA) and Reinhold Penner (University of Hawaii, USA) set the tone by highlighting recent findings with a voltage-gated proton channel (Clapham), cation channel in sperm (Clapham) and the calcium-release-activated calcium channel (Penner). Also described at ICT were voltage-gated sodium, potassium, transmembrane-receptor-potential channels, as well as ligand-gated nicotinic acetylcholine (nAChR) and GABA type A receptors. PMID:17150038

  6. The influence of neighborhood density and word frequency on phoneme awareness in 2nd and 4th grades

    PubMed Central

    Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.

    2010-01-01

    Purpose The purpose of this study was to test the hypothesis that two lexical characteristics – neighborhood density and word frequency – interact to influence performance on phoneme awareness tasks. Methods Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation between words' neighborhood density, word frequency, and phoneme awareness performance was examined across grades while covarying type and place of deletion. Results A predicted interaction was revealed: words from dense neighborhoods or those with high frequency were more likely to yield correct phoneme awareness responses across grades. Conclusions Findings support an expansion to the lexical restructuring model to include interactions between neighborhood density and word frequency to account for phoneme awareness. PMID:20691979

  7. International collaborative study for establishment of the 2nd WHO International Standard for Haemophilus influenzae type b polysaccharide.

    PubMed

    Mawas, Fatme; Burkin, Karena; Dougall, Thomas; Saydam, Manolya; Rigsby, Peter; Bolgiano, Barbara

    2015-11-01

    In this report we present the results of a collaborative study for the preparation and calibration of a replacement International Standard (IS) for Haemophilus influenzae type b polysaccharide (polyribosyl ribitol phosphate; 5-d-ribitol-(1 → 1)-β-d-ribose-3-phosphate; PRP). Two candidate preparations were evaluated. Thirteen laboratories from 9 different countries participated in the collaborative study to assess the suitability and determine the PRP content of two candidate standards. On the basis of the results from this study, Candidate 2 (NIBSC code 12/306) has been established as the 2nd WHO IS for PRP by the Expert Committee of Biological Standards of the World Health Organisation with a content of 4.904 ± 0.185mg/ampoule, as determined by the ribose assays carried out by 11 of the participating laboratories. PMID:26298195

  8. Numerical Simulation of the Francis Turbine and CAD used to Optimized the Runner Design (2nd).

    NASA Astrophysics Data System (ADS)

    Sutikno, Priyono

    2010-06-01

    Hydro Power is the most important renewable energy source on earth. The water is free of charge and with the generation of electric energy in a Hydroelectric Power station the production of green house gases (mainly CO2) is negligible. Hydro Power Generation Stations are long term installations and can be used for 50 years and more, care must be taken to guarantee a smooth and safe operation over the years. Maintenance is necessary and critical parts of the machines have to be replaced if necessary. Within modern engineering the numerical flow simulation plays an important role in order to optimize the hydraulic turbine in conjunction with connected components of the plant. Especially for rehabilitation and upgrading existing Power Plants important point of concern are to predict the power output of turbine, to achieve maximum hydraulic efficiency, to avoid or to minimize cavitations, to avoid or to minimized vibrations in whole range operation. Flow simulation can help to solve operational problems and to optimize the turbo machinery for hydro electric generating stations or their component through, intuitive optimization, mathematical optimization, parametric design, the reduction of cavitations through design, prediction of draft tube vortex, trouble shooting by using the simulation. The classic design through graphic-analytical method is cumbersome and can't give in evidence the positive or negative aspects of the designing options. So it was obvious to have imposed as necessity the classical design methods to an adequate design method using the CAD software. There are many option chose during design calculus in a specific step of designing may be verified in ensemble and detail form a point of view. The final graphic post processing would be realized only for the optimal solution, through a 3 D representation of the runner as a whole for the final approval geometric shape. In this article it was investigated the redesign of the hydraulic turbine's runner

  9. Laparoscopic hepatectomy is theoretically better than open hepatectomy: preparing for the 2nd International Consensus Conference on Laparoscopic Liver Resection.

    PubMed

    Wakabayashi, Go; Cherqui, Daniel; Geller, David A; Han, Ho-Seong; Kaneko, Hironori; Buell, Joseph F

    2014-10-01

    Six years have passed since the first International Consensus Conference on Laparoscopic Liver Resection was held. This comparatively new surgical technique has evolved since then and is rapidly being adopted worldwide. We compared the theoretical differences between open and laparoscopic liver resection, using right hepatectomy as an example. We also searched the Cochrane Library using the keyword "laparoscopic liver resection." The papers retrieved through the search were reviewed, categorized, and applied to the clinical questions that will be discussed at the 2nd Consensus Conference. The laparoscopic hepatectomy procedure is more difficult to master than the open hepatectomy procedure because of the movement restrictions imposed upon us when we operate from outside the body cavity. However, good visibility of the operative field around the liver, which is located beneath the costal arch, and the magnifying provide for neat transection of the hepatic parenchyma. Another theoretical advantage is that pneumoperitoneum pressure reduces hemorrhage from the hepatic vein. The literature search turned up 67 papers, 23 of which we excluded, leaving only 44. Two randomized controlled trials (RCTs) are underway, but their results are yet to be published. Most of the studies (n = 15) concerned short-term results, with some addressing long-term results (n = 7), cost (n = 6), energy devices (n = 4), and so on. Laparoscopic hepatectomy is theoretically superior to open hepatectomy in terms of good visibility of the operative field due to the magnifying effect and reduced hemorrhage from the hepatic vein due to pneumoperitoneum pressure. However, there is as yet no evidence from previous studies to back this up in terms of short-term and long-term results. The 2nd International Consensus Conference on Laparoscopic Liver Resection will arrive at a consensus on the basis of the best available evidence, with video presentations focusing on surgical techniques and the publication

  10. Biofuel production: an odyssey from metabolic engineering to fermentation scale-up

    PubMed Central

    Hollinshead, Whitney; He, Lian; Tang, Yinjie J.

    2014-01-01

    Metabolic engineering has developed microbial cell factories that can convert renewable carbon sources into biofuels. Current molecular biology tools can efficiently alter enzyme levels to redirect carbon fluxes toward biofuel production, but low product yield and titer in large bioreactors prevent the fulfillment of cheap biofuels. There are three major roadblocks preventing economical biofuel production. First, carbon fluxes from the substrate dissipate into a complex metabolic network. Besides the desired product, microbial hosts direct carbon flux to synthesize biomass, overflow metabolites, and heterologous enzymes. Second, microbial hosts need to oxidize a large portion of the substrate to generate both ATP and NAD(P)H to power biofuel synthesis. High cell maintenance, triggered by the metabolic burdens from genetic modifications, can significantly affect the ATP supply. Thereby, fermentation of advanced biofuels (such as biodiesel and hydrocarbons) often requires aerobic respiration to resolve the ATP shortage. Third, mass transfer limitations in large bioreactors create heterogeneous growth conditions and micro-environmental fluctuations (such as suboptimal O2 level and pH) that induce metabolic stresses and genetic instability. To overcome these limitations, fermentation engineering should merge with systems metabolic engineering. Modern fermentation engineers need to adopt new metabolic flux analysis tools that integrate kinetics, hydrodynamics, and 13C-proteomics, to reveal the dynamic physiologies of the microbial host under large bioreactor conditions. Based on metabolic analyses, fermentation engineers may employ rational pathway modifications, synthetic biology circuits, and bioreactor control algorithms to optimize large-scale biofuel production. PMID:25071754

  11. Toward nitrogen neutral biofuel production.

    PubMed

    Huo, Yi-Xin; Wernick, David G; Liao, James C

    2012-06-01

    Environmental concerns and an increasing global energy demand have spurred scientific research and political action to deliver large-scale production of liquid biofuels. Current biofuel processes and developing approaches have focused on closing the carbon cycle by biological fixation of atmospheric carbon dioxide and conversion of biomass to fuels. To date, these processes have relied on fertilizer produced by the energy-intensive Haber-Bosch process, and have not addressed the global nitrogen cycle and its environmental implications. Recent developments to convert protein to fuel and ammonia may begin to address these problems. In this scheme, recycling ammonia to either plant or algal feedstocks reduces the demand for synthetic fertilizer supplementation. Further development of this technology will realize its advantages of high carbon fixation rates, inexpensive and simple feedstock processing, in addition to reduced fertilizer requirements. PMID:22054644

  12. Land clearing and the biofuel carbon debt.

    PubMed

    Fargione, Joseph; Hill, Jason; Tilman, David; Polasky, Stephen; Hawthorne, Peter

    2008-02-29

    Increasing energy use, climate change, and carbon dioxide (CO2) emissions from fossil fuels make switching to low-carbon fuels a high priority. Biofuels are a potential low-carbon energy source, but whether biofuels offer carbon savings depends on how they are produced. Converting rainforests, peatlands, savannas, or grasslands to produce food crop-based biofuels in Brazil, Southeast Asia, and the United States creates a "biofuel carbon debt" by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. In contrast, biofuels made from waste biomass or from biomass grown on degraded and abandoned agricultural lands planted with perennials incur little or no carbon debt and can offer immediate and sustained GHG advantages. PMID:18258862

  13. Microalgae as a raw material for biofuels production.

    PubMed

    Gouveia, Luisa; Oliveira, Ana Cristina

    2009-02-01

    Biofuels demand is unquestionable in order to reduce gaseous emissions (fossil CO(2), nitrogen and sulfur oxides) and their purported greenhouse, climatic changes and global warming effects, to face the frequent oil supply crises, as a way to help non-fossil fuel producer countries to reduce energy dependence, contributing to security of supply, promoting environmental sustainability and meeting the EU target of at least of 10% biofuels in the transport sector by 2020. Biodiesel is usually produced from oleaginous crops, such as rapeseed, soybean, sunflower and palm. However, the use of microalgae can be a suitable alternative feedstock for next generation biofuels because certain species contain high amounts of oil, which could be extracted, processed and refined into transportation fuels, using currently available technology; they have fast growth rate, permit the use of non-arable land and non-potable water, use far less water and do not displace food crops cultures; their production is not seasonal and they can be harvested daily. The screening of microalgae (Chlorella vulgaris, Spirulina maxima, Nannochloropsis sp., Neochloris oleabundans, Scenedesmus obliquus and Dunaliella tertiolecta) was done in order to choose the best one(s), in terms of quantity and quality as oil source for biofuel production. Neochloris oleabundans (fresh water microalga) and Nannochloropsis sp. (marine microalga) proved to be suitable as raw materials for biofuel production, due to their high oil content (29.0 and 28.7%, respectively). Both microalgae, when grown under nitrogen shortage, show a great increase (approximately 50%) in oil quantity. If the purpose is to produce biodiesel only from one species, Scenedesmus obliquus presents the most adequate fatty acid profile, namely in terms of linolenic and other polyunsaturated fatty acids. However, the microalgae Neochloris oleabundans, Nannochloropsis sp. and Dunaliella tertiolecta can also be used if associated with other

  14. Rocketdyne - J-2 Saturn V 2nd and 3rd Stage Engine. Chapter 2, Appendix D

    NASA Technical Reports Server (NTRS)

    Coffman, Paul

    2009-01-01

    The J-2 engine was unique in many respects. Technology was not nearly as well-developed in oxygen/hydrogen engines at the start of the J-2 project. As a result, it experienced a number of "teething" problems. It was used in two stages on the Saturn V vehicle in the Apollo Program, as well as on the later Skylab and Apollo/Soyuz programs. In the Apollo Program, it was used on the S-II stage, which was the second stage of the Saturn V vehicle. There were five J-2 engines at the back end of the S-II Stage. In the S-IV-B stage, it was a single engine, but that single engine had to restart. The Apollo mission called for the entire vehicle to reach orbital velocity in low Earth orbit after the first firing of the Saturn-IV-B stage and, subsequently, to fire a second time to go on to the moon. The engine had to be man-rated (worthy of transporting humans). It had to have a high thrust rate and performance associated with oxygen/hydrogen engines, although there were some compromises there. It had to gimbal for thrust vector control. It was an open-cycle gas generator engine delivering up to 230,000 pounds of thrust.

  15. [Biofuels, food security and transgenic crops].

    PubMed

    Acosta, Orlando; Chaparro-Giraldo, Alejandro

    2009-01-01

    Soaring global food prices are threatening to push more poor people back below the poverty line; this will probably become aggravated by the serious challenge that increasing population and climate changes are posing for food security. There is growing evidence that human activities involving fossil fuel consumption and land use are contributing to greenhouse gas emissions and consequently changing the climate worldwide. The finite nature of fossil fuel reserves is causing concern about energy security and there is a growing interest in the use of renewable energy sources such as biofuels. There is growing concern regarding the fact that biofuels are currently produced from food crops, thereby leading to an undesirable competition for their use as food and feed. Nevertheless, biofuels can be produced from other feedstocks such as lingo-cellulose from perennial grasses, forestry and vegetable waste. Biofuel energy content should not be exceeded by that of the fossil fuel invested in its production to ensure that it is energetically sustainable; however, biofuels must also be economically competitive and environmentally acceptable. Climate change and biofuels are challenging FAO efforts aimed at eradicating hunger worldwide by the next decade. Given that current crops used in biofuel production have not been domesticated for this purpose, transgenic technology can offer an enormous contribution towards improving biofuel crops' environmental and economic performance. The present paper critically presents some relevant relationships between biofuels, food security and transgenic plant technology. PMID:19722000

  16. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    SciTech Connect

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  17. Application of metagenomic techniques in mining enzymes from microbial communities for biofuel synthesis.

    PubMed

    Xing, Mei-Ning; Zhang, Xue-Zhu; Huang, He

    2012-01-01

    Feedstock for biofuel synthesis is transitioning to lignocelluosic biomass to address criticism over competition between first generation biofuels and food production. As microbial catalysis is increasingly applied for the conversion of biomass to biofuels, increased import has been placed on the development of novel enzymes. With revolutionary advances in sequencer technology and metagenomic sequencing, mining enzymes from microbial communities for biofuel synthesis is becoming more and more practical. The present article highlights the latest research progress on the special characteristics of metagenomic sequencing, which has been a powerful tool for new enzyme discovery and gene functional analysis in the biomass energy field. Critical enzymes recently developed for the pretreatment and conversion of lignocellulosic materials are evaluated with respect to their activity and stability, with additional explorations into xylanase, laccase, amylase, chitinase, and lipolytic biocatalysts for other biomass feedstocks. PMID:22306331

  18. Metal organic frameworks for enzyme immobilization in biofuel cells

    NASA Astrophysics Data System (ADS)

    Bodell, JaDee

    Interest in biofuel cells has been rapidly expanding as an ever-growing segment of the population gains access to electronic devices. The largest areas of growth for new populations using electronic devices are often in communities without electrical infrastructure. This lack of infrastructure in remote environments is one of the key driving factors behind the development of biofuel cells. Biofuel cells employ biological catalysts such as enzymes to catalyze oxidation and reduction reactions of select fuels to generate power. There are several benefits to using enzymes to catalyze reactions as compared to traditional fuel cells which use metal catalysts. First, enzymes are able to catalyze reactions at or near room temperature, whereas traditional metal catalysts are only efficient at very high temperatures. Second, biofuel cells can operate under mild pH conditions which is important for the eventual design of safe, commercially viable devices. Also, biofuel cells allow for implantable and flexible technologies. Finally, enzymes exhibit high selectivity and can be combined to fully oxidize or reduce the fuel which can generate several electrons from a single molecule of fuel, increasing the overall device efficiency. One of the main challenges which persist in biofuel cells is the instability of enzymes over time which tend to denature after hours or days. For a viable commercial biofuel cell to be produced, the stability of enzymes must be extended to months or years. Enzymes have been shown to have improved stability after being immobilized. The focus of this research was to find a metal organic framework (MOF) structure which could successfully immobilize enzymes while still allowing for electron transport to occur between the catalytic center of the enzyme and the electrode surface within a biofuel cell for power generation. Four MOF structures were successfully synthesized and were subsequently tested to determine the MOF's ability to immobilize the following

  19. Recent advances on enzymatic glucose/oxygen and hydrogen/oxygen biofuel cells: Achievements and limitations

    NASA Astrophysics Data System (ADS)

    Cosnier, Serge; J. Gross, Andrew; Le Goff, Alan; Holzinger, Michael

    2016-09-01

    The possibility of producing electrical power from chemical energy with biological catalysts has induced the development of biofuel cells as viable energy sources for powering portable and implanted electronic devices. These power sources employ biocatalysts, called enzymes, which are highly specific and catalytic towards the oxidation of a biofuel and the reduction of oxygen or hydrogen peroxide. Enzymes, on one hand, are promising candidates to replace expensive noble metal-based catalysts in fuel cell research. On the other hand, they offer the exciting prospect of a new generation of fuel cells which harvest energy from body fluids. Biofuel cells which use glucose as a fuel are particularly interesting for generating electricity to power electronic devices inside a living body. Hydrogen consuming biofuel cells represent an emerging alternative to platinum catalysts due to comparable efficiencies and the capability to operate at lower temperatures. Currently, these technologies are not competitive with existing commercialised fuel cell devices due to limitations including insufficient power outputs and lifetimes. The advantages and challenges facing glucose biofuel cells for implantation and hydrogen biofuel cells will be summarised along with recent promising advances and the future prospects of these exotic energy-harvesting devices.

  20. Global evaluation of biofuel potential from microalgae

    PubMed Central

    Moody, Jeffrey W.; McGinty, Christopher M.; Quinn, Jason C.

    2014-01-01

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m3·ha−1·y−1, corresponding to biomass yields of 13 to 15 g·m−2·d−1, are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176

  1. Global evaluation of biofuel potential from microalgae.

    PubMed

    Moody, Jeffrey W; McGinty, Christopher M; Quinn, Jason C

    2014-06-10

    In the current literature, the life cycle, technoeconomic, and resource assessments of microalgae-based biofuel production systems have relied on growth models extrapolated from laboratory-scale data, leading to a large uncertainty in results. This type of simplistic growth modeling overestimates productivity potential and fails to incorporate biological effects, geographical location, or cultivation architecture. This study uses a large-scale, validated, outdoor photobioreactor microalgae growth model based on 21 reactor- and species-specific inputs to model the growth of Nannochloropsis. This model accurately accounts for biological effects such as nutrient uptake, respiration, and temperature and uses hourly historical meteorological data to determine the current global productivity potential. Global maps of the current near-term microalgae lipid and biomass productivity were generated based on the results of annual simulations at 4,388 global locations. Maximum annual average lipid yields between 24 and 27 m(3)·ha(-1)·y(-1), corresponding to biomass yields of 13 to 15 g·m(-2)·d(-1), are possible in Australia, Brazil, Colombia, Egypt, Ethiopia, India, Kenya, and Saudi Arabia. The microalgae lipid productivity results of this study were integrated with geography-specific fuel consumption and land availability data to perform a scalability assessment. Results highlight the promising potential of microalgae-based biofuels compared with traditional terrestrial feedstocks. When water, nutrients, and CO2 are not limiting, many regions can potentially meet significant fractions of their transportation fuel requirements through microalgae production, without land resource restriction. Discussion focuses on sensitivity of monthly variability in lipid production compared with annual average yields, effects of temperature on productivity, and a comparison of results with previous published modeling assumptions. PMID:24912176

  2. Biofuels and biodiversity: principles for creating better policies for biofuel production.

    PubMed

    Groom, Martha J; Gray, Elizabeth M; Townsend, Patricia A

    2008-06-01

    Biofuels are a new priority in efforts to reduce dependence on fossil fuels; nevertheless, the rapid increase in production of biofuel feedstock may threaten biodiversity. There are general principles that should be used in developing guidelines for certifying biodiversity-friendly biofuels. First, biofuel feedstocks should be grown with environmentally safe and biodiversity-friendly agricultural practices. The sustainability of any biofuel feedstock depends on good growing practices and sound environmental practices throughout the fuel-production life cycle. Second, the ecological footprint of a biofuel, in terms of the land area needed to grow sufficient quantities of the feedstock, should be minimized. The best alternatives appear to be fuels of the future, especially fuels derived from microalgae. Third, biofuels that can sequester carbon or that have a negative or zero carbon balance when viewed over the entire production life cycle should be given high priority. Corn-based ethanol is the worst among the alternatives that are available at present, although this is the biofuel that is most advanced for commercial production in the United States. We urge aggressive pursuit of alternatives to corn as a biofuel feedstock. Conservation biologists can significantly broaden and deepen efforts to develop sustainable fuels by playing active roles in pursuing research on biodiversity-friendly biofuel production practices and by helping define biodiversity-friendly biofuel certification standards. PMID:18261147

  3. Workshop report on the 2nd Joint ENCCA/EuroSARC European bone sarcoma network meeting: integration of clinical trials with tumour biology

    PubMed Central

    2014-01-01

    This is the report of the 2nd Joint ENCCA/EuroSARC European Bone Sarcoma Network Meeting held in Leiden, The Netherlands, on 26-27 September 2013, bringing together preclinical and clinical investigators on bone sarcoma. The purpose of this workshop was to present the achievements of biological research and clinical trials in bone sarcomas and to stimulate crosstalk.

  4. Research and Prediction of the Application of Multimedia Teaching Aid in Teaching Technical Education on the 2nd Level of Primary Schools

    ERIC Educational Resources Information Center

    Stebila, Ján

    2011-01-01

    The purpose and the main aim of the pedagogic experiment were to practically verify the success of Multimedia Teaching Aid (MTA) in conditions of primary schools. We assumed that the use of our multimedia teaching aid in teaching technical education on the 2nd level of primary schools would significantly affect the level of knowledge of pupils…

  5. Dynamics of the properties of steppe paleosols of the Sarmatian time (2nd century BC-4th century AD) in relation to secular variations in climatic humidity

    NASA Astrophysics Data System (ADS)

    Demkin, V. A.; Zolotareva, B. N.; Demkina, T. S.; Khomutova, T. E.; Kashirskaya, N. N.; El'Tsov, M. V.; Udal'Tsov, S. N.

    2012-02-01

    Paleosols buried under kurgans of the Early (2nd-1st centuries BC), Middle (1st-2nd centuries AD) and Late (2nd-IV centuries AD) Sarmatian epochs were studied in dry steppes and desert steppes of the Lower Volga region (the Privolzhskaya and Ergeni Uplands and the Caspian Lowland). It was found that temporal variations in the morphological, chemical, microbiological, and magnetic properties of the paleosols in the interval of 2200-1600 BP were characterized by the cyclic pattern related to secular dynamics of climatic humidity with changes in the mean annual precipitation of ±30-50 mm. These climate changes did not transform chestnut paleosols and paleosolonetzes at the type or subtype taxonomic levels. However, they led to certain changes in the humus, carbonate, and salt profiles of the soils; in the character of solonetzic horizon B1; and in the state of microbial communities. According to these data, the Sarmatian time was characterized by alternation of micropluvial and microarid stages lasting fro about 100-200 years. In particular, the stages of humidization were observed in the 1st century BC-1st century AD and in the 4th century AD; the most arid conditions were observed in the second half of the 2nd and the first half of the 3rd century AD.

  6. Growth, structure, and optical properties of a self-activated crystal: Na2Nd2O(BO3)2

    NASA Astrophysics Data System (ADS)

    Shan, Faxian; Zhang, Guochun; Yao, Jiyong; Xu, Tianxiang; Zhang, Xinyuan; Fu, Ying; Wu, Yicheng

    2015-08-01

    A self-activated crystal Na2Nd2O(BO3)2 has been grown from the Na2O-Nd2O3-B2O3-NaF system. Its structure was determined by single crystal X-ray diffraction, and verified by infrared spectrum and inductively coupled plasma optical emission spectrometry. Na2Nd2O(BO3)2 crystallizes in the monoclinic crystal system, space group P21/c with unit-cell parameters a = 10.804 Å, b = 6.421 Å, c = 10.450 Å, β = 117.95°, Z = 4, and V = 640.4 Å3. Its absorption and emission spectra were measured at room temperature. Based on the absorption spectrum, the spontaneous transition probabilities, fluorescence branch ratio, and the radiation lifetime of 4F3/2 state were calculated. The emission properties under the 355 nm excitation were also evaluated. The electronic structure of Na2Nd2O(BO3)2 was calculated by the first-principles method. The obtained results show that Na2Nd2O(BO3)2 may be a promising microchip laser material.

  7. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells.

    PubMed

    Desmet, Cloé; Marquette, Christophe A; Blum, Loïc J; Doumèche, Bastien

    2016-02-15

    Paper-based analytical devices (PAD) emerge in the scientific community since 2007 as low-cost, wearable and disposable devices for point-of-care diagnostic due to the widespread availability, long-time knowledge and easy manufacturing of cellulose. Rapidly, electrodes were introduced in PAD for electrochemical measurements. Together with biological components, a new generation of electrochemical biosensors was born. This review aims to take an inventory of existing electrochemical paper-based biosensors and biofuel cells and to identify, at the light of newly acquired data, suitable methodologies and crucial parameters in this field. Paper selection, electrode material, hydrophobization of cellulose, dedicated electrochemical devices and electrode configuration in biosensors and biofuel cells will be discussed. PMID:26163746

  8. Producing biofuels using polyketide synthases

    DOEpatents

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-04-16

    The present invention provides for a non-naturally occurring polyketide synthase (PKS) capable of synthesizing a carboxylic acid or a lactone, and a composition such that a carboxylic acid or lactone is included. The carboxylic acid or lactone, or derivative thereof, is useful as a biofuel. The present invention also provides for a recombinant nucleic acid or vector that encodes such a PKS, and host cells which also have such a recombinant nucleic acid or vector. The present invention also provides for a method of producing such carboxylic acids or lactones using such a PKS.

  9. Energy Primer: Solar, Water, Wind, and Biofuels.

    ERIC Educational Resources Information Center

    Portola Inst., Inc., Menlo Park, CA.

    This is a comprehensive, fairly technical book about renewable forms of energy--solar, water, wind, and biofuels. The biofuels section covers biomass energy, agriculture, aquaculture, alcohol, methane, and wood. The focus is on small-scale systems which can be applied to the needs of the individual, small group, or community. More than one-fourth…

  10. Fibre optic grating sensors for biofuels

    NASA Astrophysics Data System (ADS)

    Muller, M.; Fabris, J. L.; Kalinowski, H. J.

    2010-09-01

    Biofuels will have more intense impact on the energetic grid of the planet, because known fossil fuels reserves are being exhausted. The biofuel production relies on the transformation process of some organic material in the desired hydrocarbon product. Because of the natural characteristics of the related processes, fibre optic sensors appear to be adequate candidates to be used.

  11. Sustainable production of grain crops for biofuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grain crops of the Gramineae are grown for their edible, starchy seeds. Their grain is used directly for human food, livestock feed, and as raw material for many industries, including biofuels. Using grain crops for non-food uses affects the amount of food available to the world. Grain-based biofuel...

  12. Biofuels and Fisheries: Risks and Opportunities .

    EPA Science Inventory

    A rapidly developing biofuels industry in the U.S. and around the globe poses novel environmental challenges and opportunities, with implications for teh health and sustainability of fisheries. Changes in land uses and agricultural practices for production of biofuel feedstocks ...

  13. Microbial Stress Tolerance for Biofuels: Systems Biology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book provides comprehensive up-to-date understanding and frontier research addressing mechanisms of microbial stress tolerance involved in biofuels using a systems biology approach. It ties closely with the cutting edge technology with a focus on the challenging subject of biofuels. The develo...

  14. Summary of the 2nd International Symposium on Arthrogryposis, St. Petersburg, Russia, September 17-19, 2014.

    PubMed

    Hall, Judith G; Agranovich, Olga; Ogranovich, Alga; Pontén, Eva; Pontén, Ava; van Bosse, Harold J P

    2015-06-01

    Enormous progress has been made in understanding the etiology and therapies for arthrogryposis (multiple congenital contractures). A 2nd International Symposium on Arthrogryposis was sponsored by the Turner Institute in St. Petersburg, Russia. Olga Agranovich, Head of the Arthrogryposis Department of the Turner Institute, organized this special meeting. Care providers from multiple disciplines from all over the world representing 18 nations attended. Participants included: Pediatric orthopedic specialists, rehabilitation physicians, occupational therapists, physical therapists, medical geneticists, neurologists, craniofacial physicians, psychologists, developmental biologists, as well as representatives from parent support groups. The 1st symposium established the need for a collaborative and interdisciplinary approach to the treatment of arthrogryposis, engagement of parent support organizations, and the aim for more research. The Second Symposium highlighted the continuing need for more research on various therapies, identification of different types of arthrogryposis, standardized descriptions of severity, development of new orthotics, improved prenatal diagnosis, and studying adult outcome. Major progress has been made on both upper and lower limb treatments. PMID:25847824

  15. Long-term monitoring of the human intestinal microbiota from the 2nd week to 13 years of age.

    PubMed

    Endo, Akihito; Pӓrtty, Anna; Kalliomӓki, Marko; Isolauri, Erika; Salminen, Seppo

    2014-08-01

    Microbial contact begins prior to birth and continues rapidly thereafter. Few long term follow-up studies have been reported and we therefore characterized the development of intestinal microbiota of ten subjects from the 2nd week of life to 13 years of age. PCR-denaturing gradient gel electrophoresis combined with several bacterial group-specific primer sets demonstrated the colonization steps of defined bacterial groups in the microbiota. Bifidobacterium species were seen throughout the test period in all subjects. Bacteroides fragilis group and Blautia coccoides-Eubacterium rectale group species were not detected in several subjects during the first 6 months of life but were commonly seen after 12 months of life. Streptococcus group appeared during early life but was not seen in several subjects at the age of 13 years. Although a few species were linked with the increasing age, major bacterial species in the groups did not change dramatically. Rather considerable changes were found in the relative abundances of each bacterial species. Clustering analysis of total bacterial flora indicated that the microbiota changed considerably between 6 months and 12 months of life, and, at the age of 12 months, the intestinal microbiota was already converted toward a profile characteristic of an adult microbiota. Probiotic supplementation in the beginning of life did not have major impacts on later microbiota development. PMID:24933584

  16. Study on microstructure and properties of extruded Mg-2Nd-0.2Zn alloy as potential biodegradable implant material.

    PubMed

    Li, Junlei; Tan, Lili; Wan, Peng; Yu, Xiaoming; Yang, Ke

    2015-04-01

    Mg-2Nd-0.2Zn (NZ20) alloy was prepared for the application as biodegradable implant material in this study. The effects of the extrusion process on microstructure, mechanical and corrosion properties of the alloy were investigated. The as-cast alloy was composed of α-Mg matrix and Mg12Nd eutectic compound. The solution treatment could lead to the Mg12Nd phase dissolution and the grain coarsening. The alloy (E1) preheated at 380°C for 1h and extruded at 390°C presents fine grains with amounts of tiny Mg12Nd particles uniformly dispersed throughout the boundaries and the interior of the grains. The alloy (E2) preheated at 480°C for 1h and extruded at 500°C exhibits relatively larger grains with few nano-scale Mg12Nd phase particles dispersed. The alloy of E1, compared with E2, showed relatively lower corrosion rate, higher yield strength and slightly lower elongation. PMID:25686968

  17. [JAN JĘDRZEJEWICZ AND EUROPEAN ASTRONOMY OF THE 2ND HALF OF THE 19TH CENTURY].

    PubMed

    Siuda-Bochenek, Magda

    2015-01-01

    Jan Jędrzejewicz was an amateur astronomer who in the 2nd half of the 19th century created an observation centre, which considering the level of research was comparable to the European ones. Jędrzejewicz settled down in Plonsk in 1862 and worked as a doctor ever since but his greatest passion was astronomy, to which he dedicated all his free time. In 1875 Jędrzejewicz finished the construction of his observatory. He equipped it with basic astronomical and meteorological instruments, then began his observations and with time he became quite skilled in it. Jędrzejewicz focused mainly on binary stars but he also pointed his telescopes at the planets of the solar system, the comets, the Sun, as well as all the phenomena appearing in the sky at that time. Thanks to the variety of the objects observed and the number of observations he stood out from other observers in Poland and took a very good position in the mainstream of the 19th-century astronomy in Europe. Micrometer observations of binary stars made in Płońsk gained recognition in the West and were included in the catalogues of binary stars. Interest in Jędrzejewicz and his observatory was confirmed by numerous references in the English "Nature" magazine. PMID:26455002

  18. Explicit formulas for 2nd-order driving terms due to sextupoles and chromatic effects of quadrupoles.

    SciTech Connect

    Wang, C-X. )

    2012-04-25

    Optimization of nonlinear driving terms have become a useful tool for designing storage rings, especially modern light sources where the strong nonlinearity is dominated by the large chromatic effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is well known for computing such driving terms. However, it appears that there was a lack of explicit formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and chromatic effects of quadrupoles, which can be considered as thin elements. The computation is accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results given here are the same as the APS internal note AOP-TN-2009-020. This internal nte has been revised and published here as a Light Source Note in order to get this information into the public domain, since both ELEGANT and OPA are using these formulas.

  19. Increasing the water temperature of a 2nd order stream reach: Hydraulic aspects of a whole-stream manipulative experiment

    NASA Astrophysics Data System (ADS)

    de Lima, João L. M. P.; Canhoto, Cristina

    2015-04-01

    What will happen when water temperatures of streams increases, due to climate changes or in connection with rapidly changing human systems? Trying to answer to this question a whole-stream manipulative experiment was undertaken, where an increase in water temperature was artificially induced on a 2nd order stream reach. The main objective of this poster is to describe this experiment focusing on the design of the hydraulic system. The system maintained a steady flow while allowing natural variation in abiotic factors and was successfully used to evaluate the effects of warming on a stream ecosystem at several levels of biological organization. A constant flow of stream water was controlled by a hydraulic setup (~22m long; ~1.5m width) subdivided into two independent channels. One channel of the study reach received heated water (~3°C above the other), while the other received water at stream ambient temperature. The warming system maintained a steady gravity controlled flow making use of weirs and valves.

  20. Enhanced Deficits in Long-Term Potentiation in the Adult Dentate Gyrus with 2nd Trimester Ethanol Consumption

    PubMed Central

    Helfer, Jennifer L.; White, Emily R.; Christie, Brian R.

    2012-01-01

    Ethanol exposure during pregnancy can cause structural and functional changes in the brain that can impair cognitive capacity. The hippocampal formation, an area of the brain strongly linked with learning and memory, is particularly vulnerable to the teratogenic effects of ethanol. In the present experiments we sought to determine if the functional effects of developmental ethanol exposure could be linked to ethanol exposure during any single trimester-equivalent. Ethanol exposure during the 1st or 3rd trimester-equivalent produced only minor changes in synaptic plasticity in adult offspring. In contrast, ethanol exposure during the 2nd trimester equivalent resulted in a pronounced decrease in long-term potentiation, indicating that the timing of exposure influences the severity of the deficit. Together, the results from these experiments demonstrate long-lasting alterations in synaptic plasticity as the result of developmental ethanol exposure and dependent on the timing of exposure. Furthermore, these results allude to neural circuit malfunction within the hippocampal formation, perhaps relating to the learning and memory deficits observed in individuals with fetal alcohol spectrum disorders. PMID:23227262

  1. A neutron powder diffraction study of ND 3 intercalated titanium disulfide, 3 R-TiS 2ND 3

    NASA Astrophysics Data System (ADS)

    Bouwmeester, H. J. M.; Wiegers, G. A.

    1988-10-01

    Neutron powder diffraction of rhombohedral 3 R-TiS 2ND 3 ( a = 3.419 Å, c = 27.03 Å at 300 K, space group R overline3m ) has shown that ND 3 molecules and ND +4 ions, present in a ratio of about 5 to 1 from chemical and physical evidence, occupy statistically the trigonal-prismatic holes between TiS 2 sandwiches. One cannot distinguish between ND 3 and ND +4. Powder intensities calculated for a model with spherically symmetric ND 3 molecules (corresponding to isotropically rotating ND 3 and ND +4) in the trigonal-prismatic holes were in reasonable agreement with the observed intensities. Attempts to obtain information on the precise orientation of ND 3 and ND +4 in the TiS 2 lattice using refinements with structure factors were not successful; the reliability R factor was 0.093 for spherical symmetric ND 3 molecules with nitrogen in the center of the trigonal-prismatic holes.

  2. Near infrared emission and energy transfer in Eu2+ - Nd3+ co-doped Ca2BO3Cl

    NASA Astrophysics Data System (ADS)

    Talewar, R. A.; Joshi, C. P.; Moharil, S. V.

    2016-05-01

    Novel near infrared (NIR) emitting phosphor, Ca2BO3Cl:Eu2+, Nd3+ was synthesized by conventional solid-state reaction and characterized with X-ray diffraction, photoluminescence emission, photoluminescence excitation spectra and fluorescence decay measurements. When excited with 400 nm, the phosphor gives broadband emission at 560 nm, which corresponds to the allowed 5d → 4f transition of Eu2+ and an intense NIR emissions in the range 800-1400 nm, which are assigned to the characteristic 4I9/2,11/2,13/2 transitions of Nd3+ ions. The dependence of visible and NIR emissions, decay lifetime and the energy transfer efficiency (ηETE) were investigated in detail. The luminescence spectra, both in visible (VIS) and NIR regions, and decay lifetime curves of Eu2+ have been measured to prove energy transfer (ET) from Eu2+ to Nd3+. These results demonstrate the possibility for enhancing the photovoltaic conversion efficiency of silicon solar cell by modifying the absorption and utilizing the UV to blue part of the solar spectrum where the efficiency of c-Silicon solar cell is low.

  3. Coupling of Algal Biofuel Production with Wastewater

    PubMed Central

    Panwar, Amit; Bisht, Tara Singh; Tamta, Sushma

    2014-01-01

    Microalgae have gained enormous consideration from scientific community worldwide emerging as a viable feedstock for a renewable energy source virtually being carbon neutral, high lipid content, and comparatively more advantageous to other sources of biofuels. Although microalgae are seen as a valuable source in majority part of the world for production of biofuels and bioproducts, still they are unable to accomplish sustainable large-scale algal biofuel production. Wastewater has organic and inorganic supplements required for algal growth. The coupling of microalgae with wastewater is an effective way of waste remediation and a cost-effective microalgal biofuel production. In this review article, we will primarily discuss the possibilities and current scenario regarding coupling of microalgal cultivation with biofuel production emphasizing recent progress in this area. PMID:24982930

  4. Biofuels and the conundrum of sustainability.

    PubMed

    Sheehan, John J

    2009-06-01

    Sustainable energy is the problem of the 21st century. If biofuels want to be part of the solution they must accept a degree of scrutiny unprecedented in the development of a new industry. That is because sustainability deals explicitly with the role of biofuels in ensuring the well-being of our planet, our economy, and our society both today and in the future. Life cycle assessment (LCA) has been the standard framework for assessing sustainability of biofuels. These assessments show that corn ethanol has a marginally lower fossil energy and greenhouse gas footprint compared to petroleum fuel. Sugarcane ethanol and some forms of biodiesel offer substantially lower footprints. New biofuels may offer low footprints. The science of LCA is being stretched to its limits as policy makers consider direct and indirect effects of biofuels on global land and water resources, global ecosystems, air quality, public health, and social justice. PMID:19553101

  5. Integrated Biorefineries with Engineered Microbes and High-value Co-products for Profitable Biofuels Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First-generation (ie., corn-based) fuel ethanol production processes provide several advantages which could be synergistically applied to overcome limitations of second-generation biofuel processes from lignocellulose. These include resources such as equipment, manpower, nutrients, water, and heat....

  6. Universe (2nd edition)

    SciTech Connect

    Kaufmann, W.J. III

    1988-01-01

    A general text on astronomy is presented. The foundations of the science are reviewed, including descriptions of naked-eye observatons of eclipses and planetary motions and such basic tools as Kepler's laws, the fundamental properties of light, and the optics of telescopes. The formation of the solar system is addressed, and the planets and their satellites are discussed individually. Solar science is treated in detail. Stellar evolution is described chronologically from birth to death. Molecular clouds, star clusters, nebulae, neutron stars, black holes, and various other phenomena that occur in the life of a star are examined in the sequence in which they naturally occur. A survey of the Milky Way introduces galactic astronomy. Quasars and cosmology are addressed, including the most recent developments in research. 156 references.

  7. Stability of carbon nanotube yarn biofuel cell in human body fluid

    NASA Astrophysics Data System (ADS)

    Kwon, Cheong Hoon; Lee, Jae Ah; Choi, Young-Bong; Kim, Hyug-Han; Spinks, Geoffrey M.; Lima, Márcio D.; Baughman, Ray H.; Kim, Seon Jeong

    2015-07-01

    High performance with stability, easy-handling electrodes, and biofluid-flow controllable system with mechanical strength of the biofuel cell can be considered as the critical issues for future human body implant. These three challenges are sufficiently considered by using the effective platform regarding the high surface area from multi-walled carbon nanotube-conducting polymer with poly(3,4-ethylenedioxythiophene), and size/shape dependent flexible yarn electrodes for the implantation of biofuel cell. High power biofuel cell of mW cm-2 range in physiological condition (low glucose-containing phosphate buffered saline solution and human blood serum) controlling the stirring degree is also first demonstrated for future implantation in this study. Biofuel cells for future implantation in human body vitally require long-term stability and high power outputs. We have demonstrated that a high-surface area yarn-based biofuel cell retained over 70% of its initial power output after an extended 20 days period of continuous operation in human blood serum, while delivering a power density of ∼1.0 mW cm-2. Subsequently, our enhanced enzymatic biofuel cell system would be potentially used as an innovative power source for the next generation implantable electronics.

  8. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2013-02-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  9. Thermodynamic analysis of biofuels as fuels for high temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Milewski, Jarosław; Bujalski, Wojciech; Lewandowski, Janusz

    2011-11-01

    Based on mathematical modeling and numerical simulations, applicativity of various biofuels on high temperature fuel cell performance are presented. Governing equations of high temperature fuel cell modeling are given. Adequate simulators of both solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) have been done and described. Performance of these fuel cells with different biofuels is shown. Some characteristics are given and described. Advantages and disadvantages of various biofuels from the system performance point of view are pointed out. An analysis of various biofuels as potential fuels for SOFC and MCFC is presented. The results are compared with both methane and hydrogen as the reference fuels. The biofuels are characterized by both lower efficiency and lower fuel utilization factors compared with methane. The presented results are based on a 0D mathematical model in the design point calculation. The governing equations of the model are also presented. Technical and financial analysis of high temperature fuel cells (SOFC and MCFC) are shown. High temperature fuel cells can be fed by biofuels like: biogas, bioethanol, and biomethanol. Operational costs and possible incomes of those installation types were estimated and analyzed. A comparison against classic power generation units is shown. A basic indicator net present value (NPV) for projects was estimated and commented.

  10. Agave: a biofuel feedstock for arid and semi-arid environments

    SciTech Connect

    Gross, Stephen; Martin, Jeffrey; Simpson, June; Wang, Zhong; Visel, Axel

    2011-05-31

    Efficient production of plant-based, lignocellulosic biofuels relies upon continued improvement of existing biofuel feedstock species, as well as the introduction of newfeedstocks capable of growing on marginal lands to avoid conflicts with existing food production and minimize use of water and nitrogen resources. To this end, specieswithin the plant genus Agave have recently been proposed as new biofuel feedstocks. Many Agave species are adapted to hot and arid environments generally unsuitable forfood production, yet have biomass productivity rates comparable to other second-generation biofuel feedstocks such as switchgrass and Miscanthus. Agavesachieve remarkable heat tolerance and water use efficiency in part through a Crassulacean Acid Metabolism (CAM) mode of photosynthesis, but the genes andregulatory pathways enabling CAM and thermotolerance in agaves remain poorly understood. We seek to accelerate the development of agave as a new biofuelfeedstock through genomic approaches using massively-parallel sequencing technologies. First, we plan to sequence the transcriptome of A. tequilana to provide adatabase of protein-coding genes to the agave research community. Second, we will compare transcriptome-wide gene expression of agaves under different environmentalconditions in order to understand genetic pathways controlling CAM, water use efficiency, and thermotolerance. Finally, we aim to compare the transcriptome of A.tequilana with that of other Agave species to gain further insight into molecular mechanisms underlying traits desirable for biofuel feedstocks. These genomicapproaches will provide sequence and gene expression information critical to the breeding and domestication of Agave species suitable for biofuel production.

  11. Assessing county-level water footprints of different cellulosic-biofuel feedstock pathways.

    PubMed

    Chiu, Yi-Wen; Wu, May

    2012-08-21

    While agricultural residue is considered as a near-term feedstock option for cellulosic biofuels, its sustainability must be evaluated by taking water into account. This study aims to analyze the county-level water footprint for four biofuel pathways in the United States, including bioethanol generated from corn grain, stover, wheat straw, and biodiesel from soybean. The county-level blue water footprint of ethanol from corn grain, stover, and wheat straw shows extremely wide variances with a national average of 31, 132, and 139 L of water per liter biofuel (L(w)/L(bf)), and standard deviation of 133, 323, and 297 L(w)/L(bf), respectively. Soybean biodiesel production results in a blue water footprint of 313 L(w)/L(bf) on the national average with standard deviation of 894 L(w)/L(bf). All biofuels show a greater green water footprint than the blue one. This work elucidates how diverse spatial resolutions affect biofuel water footprints, which can provide detailed insights into biofuels' implications on local water sustainability. PMID:22816524

  12. Fuel-mix, fuel efficiency, and transport demand affect prospects for biofuels in northern Europe.

    PubMed

    Bright, Ryan M; Strømman, Anders Hammer

    2010-04-01

    Rising greenhouse gas (GHG) emissions in the road transport sector represents a difficult mitigation challenge due to a multitude of intricate factors, namely the dependency on liquid energy carriers and infrastructure lock-in. For this reason, low-carbon renewable energy carriers, particularly second generation biofuels, are often seen as a prominent candidate for realizing reduced emissions and lowered oil dependency over the medium- and long-term horizons. However, the overarching question is whether advanced biofuels can be an environmentally effective mitigation strategy in the face of increasing consumption and resource constraints. Here we develop both biofuel production and road transport consumption scenarios for northern Europe-a region with a vast surplus of forest bioenergy resources-to assess the potential role that forest-based biofuels may play over the medium- and long-term time horizons using an environmentally extended, multiregion input-output model. Through scenarios, we explore how evolving vehicle technologies and consumption patterns will affect the mitigation opportunities afforded by any future supply of forest biofuels. We find that in a scenario involving ambitious biofuel targets, the size of the GHG mitigation wedge attributed to the market supply of biofuels is severely reduced under business-as-usual growth in consumption in the road transport sector. Our results indicate that climate policies targeting the road transport sector which give high emphases to reducing demand (volume), accelerating the deployment of more fuel-efficient vehicles, and promoting altered consumption patterns (structure) can be significantly more effective than those with single emphasis on expanded biofuel supply. PMID:20163088

  13. PERSPECTIVE: Learning from the Brazilian biofuel experience

    NASA Astrophysics Data System (ADS)

    Wang, Michael

    2006-11-01

    In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids

  14. Global Biofuel Use, 1850-2000.

    SciTech Connect

    Fernandes, S. D.; Trautmann, N. M.; Streets, D. G.; Roden, C. A.; Bond, T. C.; Decision and Information Sciences; Univ. of Illinois

    2007-05-30

    This paper presents annual, country-level estimates of biofuel use for the period 1850-2000. We estimate that global biofuel consumption rose from about 1000 Tg in 1850 to 2460 Tg in 2000, an increase of 140%. In the late 19th century, biofuel consumption in North America was very high, {approx}220-250 Tg/yr, because widespread land clearing supplied plentiful fuelwood. At that time biofuel use in Western Europe was lower, {approx}180-200 Tg/yr. As fossil fuels became available, biofuel use in the developed world fell. Compensating changes in other parts of the world, however, caused global consumption to remain remarkably stable between 1850 and 1950 at {approx}1200 {+-} 200 Tg/yr. It was only after World War II that biofuel use began to increase more rapidly in response to population growth in the developing world. Between 1950 and 2000, biofuel use in Africa, South Asia, and Southeast Asia grew by 170%, 160%, and 130%, respectively.

  15. Europe report discloses biofuels' embarrassing secret

    SciTech Connect

    2010-06-15

    According to a recently released European Union (EU) internal document, biofuels can produce up to four times more greenhouse gas emissions than the conventional diesel or gasoline they are intended to replace. Conventional gasoline and diesel emit around 85 kilograms of CO2-equivalent per gigajoule of energy. For biofuels to make any sense, they have to beat this by a margin, or else why bother given all the negative externalities associated with growing biofuels? The EU study suggests that the carbon footprint of typical European biofuels is in the range of 100--150 and North American soybeans score around 340 -- at least four times higher than conventional transportation fuels. By contrast, Latin American sugar cane and bioethanol from palm oil from Southeast Asia, is relatively better at 82 and 74 kilograms per gigajoule, respectively. But even in these cases, it is far from clear if biofuels are superior to conventional fuels due to the many externalities associated with biofuels, including clearing of virgin forests and loss of habitat and biodiversity. Moreover, biofuel production in many regions competes directly with food production, resulting in higher food costs.

  16. Indirect land use change and biofuel policy

    NASA Astrophysics Data System (ADS)

    Kocoloski, Matthew; Griffin, W. Michael; Matthews, H. Scott

    2009-09-01

    Biofuel debates often focus heavily on carbon emissions, with parties arguing for (or against) biofuels solely on the basis of whether the greenhouse gas emissions of biofuels are less than (or greater than) those of gasoline. Recent studies argue that land use change leads to significant greenhouse gas emissions, making some biofuels more carbon intensive than gasoline. We argue that evaluating the suitability and utility of biofuels or any alternative energy source within the limited framework of plus and minus carbon emissions is too narrow an approach. Biofuels have numerous impacts, and policy makers should seek compromises rather than relying solely on carbon emissions to determine policy. Here, we estimate that cellulosic ethanol, despite having potentially higher life cycle CO2 emissions (including from land use) than gasoline, would still be cost-effective at a CO2 price of 80 per ton or less, well above estimated CO2 mitigation costs for many alternatives. As an example of the broader approach to biofuel policy, we suggest the possibility of using the potential cost reductions of cellulosic ethanol relative to gasoline to balance out additional carbon emissions resulting from indirect land use change as an example of ways in which policies could be used to arrive at workable solutions.

  17. The Third Pacific Basin Biofuels Workshop: Proceedings

    NASA Astrophysics Data System (ADS)

    Among the many compelling reasons for the development of biofuels on remote Pacific islands, several of the most important include: (1) a lack of indigenous fossil fuels necessitates their import at great economic loss to local island economics, (2) ideal conditions for plant growth exist on many Pacific islands to produce yields of biomass feedstocks, (3) gaseous and liquid fuels such as methane, methanol and ethanol manufactured locally from biomass feedstocks are the most viable alternatives to gasoline and diesel fuels for transportation, and (4) the combustion of biofuels is cleaner than burning petroleum products and contributes no net atmospheric CO2 to aggravate the greenhouse effect and the subsequent threat of sea level rise to low islands. Dr. Vic Phillips, HNEI Program Manager of the Hawaii Integrated Biofuels Research Program welcomed 60 participants to the Third Pacific Basin Biofuels Workshop at the Sheraton Makaha Hotel, Waianae, Oahu, on March 27 and 28, 1989. The objectives of the workshop were to update progress since the Second Pacific Basin Biofuels Workshop in April 1987 and to develop a plan for action for biofuels R and D, technology transfer, and commercialization now (immediate attention), in the near-term (less than two years), in the mid-term (three to five years), and in the long-term (more than six years). An emerging theme of the workshop was how the production, conversion, and utilization of biofuels can help increase environmental and economic security locally and globally. Individual papers are processed separately for the data base.

  18. Computational approaches for microalgal biofuel optimization: a review.

    PubMed

    Koussa, Joseph; Chaiboonchoe, Amphun; Salehi-Ashtiani, Kourosh

    2014-01-01

    The increased demand and consumption of fossil fuels have raised interest in finding renewable energy sources throughout the globe. Much focus has been placed on optimizing microorganisms and primarily microalgae, to efficiently produce compounds that can substitute for fossil fuels. However, the path to achieving economic feasibility is likely to require strain optimization through using available tools and technologies in the fields of systems and synthetic biology. Such approaches invoke a deep understanding of the metabolic networks of the organisms and their genomic and proteomic profiles. The advent of next generation sequencing and other high throughput methods has led to a major increase in availability of biological data. Integration of such disparate data can help define the emergent metabolic system properties, which is of crucial importance in addressing biofuel production optimization. Herein, we review major computational tools and approaches developed and used in order to potentially identify target genes, pathways, and reactions of particular interest to biofuel production in algae. As the use of these tools and approaches has not been fully implemented in algal biofuel research, the aim of this review is to highlight the potential utility of these resources toward their future implementation in algal research. PMID:25309916

  19. The Need for Governance by Experimentation: The Case of Biofuels.

    PubMed

    Asveld, Lotte

    2016-06-01

    The policies of the European Union concerning the development of biofuels can be termed a lock-in. Biofuels were initially hailed as a green, sustainability technology. However evidence to the contrary quickly emerged. The European Commission proposed to alter its policies to accommodate for these effects but met with fierce resistance from a considerable number of member states who have an economic interest in these first generation biofuels. In this paper I argue that such a lock-in might have been avoided if an experimental approach to governance had been adopted. Existing approaches such as anticipation and niche management either do not reduce uncertainty sufficiently or fail to explicitly address conflicts between values motivating political and economic support for new technologies. In this paper, I suggest to apply an experimental framework to the development of sustainable biobased technologies. Such an approach builds on insights from adaptive management and transition management in that it has the stimulation of learning effects at its core. I argue that these learning effects should occur on the actual impacts of new technologies, on the institutionalisation of new technologies and most specifically on the norms and values that underly policies supporting new technologies. This approach can be relevant for other emerging technologies. PMID:26943654

  20. Electrocradiographic Qrs Axis, Q Wave and T-wave Changes in 2nd and 3rd Trimester of Normal Pregnancy

    PubMed Central

    S., Chandrasekharappa; Brid, S.V

    2014-01-01

    Background: Pregnancy although a physiological phenomena affects all the functions of the maternal body and brings about remarkable changes in the cardiovascular system. The cardiovascular changes and many of the physiological adaptations of normal pregnancy alter the physical findings thus, sometimes misleading the diagnosis of heart disease. Pregnancy also brings about various changes in the electrocardiogram, further confusing with that of heart disease. This study is undertaken to highlight the effect of normal pregnancy on the QRS axis, Q wave and T-wave of the Electrocardiogram and thereby helps us to distinguish it from that of pathological changes. Objectives: To study the effect of normal pregnancy on the QRS axis, Q wave and T-wave in the electrocardiogram and to compare with that of normal non pregnant women. Materials and Methods: Fifty normal pregnant women in 2nd and 3rd trimester each between 20– 35 y of age and 50 normal non pregnant women of the same age group were selected for the study. A 12 lead ECG was recorded by using ECG machine with special emphasis on QRS axis, Q wave and T-wave changes and all the parameters were analysed. Results: The ECG changes observed in our study include, deviation of QRS axis towards left as pregnancy advanced, significant increased incidence of occurrence of prominent Q waves in lead II, III and avF in pregnant group (p < 0.05 ) and, T-wave abnormalities like flat and inverted T-waves in lead III, V1 – V3 were more frequent in pregnant group ( p<0.05 ) than in non pregnant group. Conclusion:Normal pregnancy brings about various changes in ECG. These changes during pregnancy should be interpretated with caution by the physicians. It is necessary to understand the normal physiological changes which in turn help us in better management of those with cardiac disease. PMID:25386425

  1. ENABLE -- A systolic 2nd level trigger processor for track finding and e/[pi] discrimination for ATLAS/LHC

    SciTech Connect

    Klefenz, F.; Noffz, K.H.; Zoz, R. . Lehrstuhl fuer Informatik V); Maenner, R. . Interdisziplinaeres Zentrum fuer Wissenschaftliches Rechnen)

    1994-08-01

    The Enable Machine is a systolic 2nd level trigger processor for the transition radiation detector (TRD) of ATLAS/LHC. It is developed within the EAST/RD-11 collaboration at CERN. The task of the processor is to find electron tracks and to reject pion tracks according to the EAST benchmark algorithm in less than 10[mu]s. Track are identified by template matching in a ([psi],z) region of interest (RoI) selected by a 1st level trigger. In the ([psi],z) plane tracks of constant curvature are straight lines. The relevant lines form mask templates. Track identification is done by histogramming the coincidences of the templates and the RoI data for each possible track. The Enable Machine is an array processor that handles tracks of the same slope in parallel, and tracks of different slope in a pipeline. It is composed of two units, the Enable histogrammer unit and the Enable z/[psi]-board. The interface daughter board is equipped with a HIPPI-interface developed at JINR/-Dubna, and Xilinx 'corner turning' data converter chips. Enable uses programmable gate arrays (XILINX) for histogramming and synchronous SRAMs for pattern storage. With a clock rate of 40 MHz the trigger decision time is 6.5 [mu]s and the latency 7.0 [mu]s. The Enable machine is scalable in the RoI size as well as in the number of tracks processed. It can be adapted to different recognition tasks and detector setups. The prototype of the Enable Machine has been tested in a beam time of the RD6 collaboration at CERN in October 1993.

  2. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  3. Global Economic Effects of USA Biofuel Policy and the Potential Contribution from Advanced Biofuels

    SciTech Connect

    Gbadebo Oladosu; Keith Kline; Paul Leiby; Rocio Uria-Martinez; Maggie Davis; Mark Downing; Laurence Eaton

    2012-01-01

    This study evaluates the global economic effects of the USA renewable fuel standards (RFS2), and the potential contribution from advanced biofuels. Our simulation results imply that these mandates lead to an increase of 0.21 percent in the global gross domestic product (GDP) in 2022, including an increase of 0.8 percent in the USA and 0.02 percent in the rest of the world (ROW); relative to our baseline, no-RFS scenario. The incremental contributions to GDP from advanced biofuels in 2022 are estimated at 0.41 percent and 0.04 percent in the USA and ROW, respectively. Although production costs of advanced biofuels are higher than for conventional biofuels in our model, their economic benefits result from reductions in oil use, and their smaller impacts on food markets compared with conventional biofuels. Thus, the USA advanced biofuels targets are expected to have positive economic benefits.

  4. Biofuels: A Solution for Climate Change

    SciTech Connect

    Woodward, S.

    1999-10-04

    Our lives are linked to weather and climate, and to energy use. Since the late 1970s, the U.S. Department of Energy (DOE) has invested in research and technology related to global climate change. DOE's Office Fuels Development (OFD) manages the National Biofuels Program and is the lead technical advisor on the development of biofuels technologies in the United States. Together with industry and other stakeholders, the program seeks to establish a major biofuels industry. Its goals are to develop and commercialize technologies for producing sustainable, domestic, environmentally beneficial, and economically viable fuels from dedicated biomass feedstocks.

  5. A mini review on renewable sources for biofuel.

    PubMed

    Ho, Dang P; Ngo, Huu Hao; Guo, Wenshan

    2014-10-01

    Rapid growth in both global energy demand and carbon dioxide emissions associated with the use of fossil fuels has driven the search for alternative sources which are renewable and have a lower environmental impact. This paper reviews the availability and bioenergy potentials of the current biomass feedstocks. These include (i) food crops such as sugarcane, corn and vegetable oils, classified as the first generation feedstocks, and (ii) lignocellulosic biomass derived from agricultural and forestry residues and municipal waste, as second generation feedstocks. The environmental and socioeconomic limitations of the first generation feedstocks have placed greater emphasis on the lignocellulosic biomass, of which the conversion technologies still faces major constraints to full commercial deployment. Key technical challenges and opportunities of the lignocellulosic biomass-to-bioenergy production are discussed in comparison with the first generation technologies. The potential of the emerging third generation biofuel from algal biomass is also reviewed. PMID:25115598

  6. Fuelling the future: microbial engineering for the production of sustainable biofuels.

    PubMed

    Liao, James C; Mi, Luo; Pontrelli, Sammy; Luo, Shanshan

    2016-04-01

    Global climate change linked to the accumulation of greenhouse gases has caused concerns regarding the use of fossil fuels as the major energy source. To mitigate climate change while keeping energy supply sustainable, one solution is to rely on the ability of microorganisms to use renewable resources for biofuel synthesis. In this Review, we discuss how microorganisms can be explored for the production of next-generation biofuels, based on the ability of bacteria and fungi to use lignocellulose; through direct CO2 conversion by microalgae; using lithoautotrophs driven by solar electricity; or through the capacity of microorganisms to use methane generated from landfill. Furthermore, we discuss how to direct these substrates to the biosynthetic pathways of various fuel compounds and how to optimize biofuel production by engineering fuel pathways and central metabolism. PMID:27026253

  7. Biofuel production system with operation flexibility: Evaluation of economic and environmental performance under external disturbance

    NASA Astrophysics Data System (ADS)

    Kou, Nannan

    Biomass derived liquid hydrocarbon fuel (biofuel) has been accepted as an effective way to mitigate the reliance on petroleum and reduce the greenhouse gas emissions. An increasing demand for second generation biofuels, produced from ligno-cellulosic feedstock and compatible with current infrastructure and vehicle technologies, addresses two major challenges faced by the current US transportation sector: energy security and global warming. However, biofuel production is subject to internal disturbances (feedstock supply and commodity market) and external factors (energy market). The biofuel industry has also heavily relied on government subsidy during the early development stages. In this dissertation, I investigate how to improve the economic and environmental performance of biorefineries (and biofuel plant), as well as enhance its survivability under the external disturbances. Three types of disturbance are considered: (1) energy market fluctuation, (2) subsidy policy uncertainty, and (3) extreme weather conditions. All three factors are basically volatile, dynamic, and even unpredictable, which makes them difficult to model and have been largely ignored to date. Instead, biofuel industry and biofuel research are intensively focused on improving feedstock conversion efficiency and capital cost efficiency while assuming these advancements alone will successfully generate higher profit and thus foster the biofuel industry. The collapse of the largest corn ethanol biofuel company, Verasun Energy, in 2008 calls into question this efficiency-driven approach. A detailed analysis has revealed that although the corn ethanol plants operated by Verasun adopted the more efficient (i.e. higher ethanol yield per bushel of corn and lower capital cost) dry-mill technology, they could not maintain a fair profit margin under fluctuating market condition which made ethanol production unprofitable. This is because dry-mill plant converts a single type of biomass feedstock (corn

  8. Mannan biotechnology: from biofuels to health.

    PubMed

    Yamabhai, Montarop; Sak-Ubol, Suttipong; Srila, Witsanu; Haltrich, Dietmar

    2016-01-01

    Mannans of different structure and composition are renewable bioresources that can be widely found as components of lignocellulosic biomass in softwood and agricultural wastes, as non-starch reserve polysaccharides in endosperms and vacuoles of a wide variety of plants, as well as a major component of yeast cell walls. Enzymatic hydrolysis of mannans using mannanases is essential in the pre-treatment step during the production of second-generation biofuels and for the production of potentially health-promoting manno-oligosaccharides (MOS). In addition, mannan-degrading enzymes can be employed in various biotechnological applications, such as cleansing and food industries. In this review, fundamental knowledge of mannan structures, sources and functions will be summarized. An update on various aspects of mannan-degrading enzymes as well as the current status of their production, and a critical analysis of the potential application of MOS in food and feed industries will be given. Finally, emerging areas of research on mannan biotechnology will be highlighted. PMID:25025271

  9. Future of Liquid Biofuels for APEC Economies

    SciTech Connect

    Milbrandt, A.; Overend, R. P.

    2008-05-01

    This project was initiated by APEC Energy Working Group (EWG) to maximize the energy sector's contribution to the region's economic and social well-being through activities in five areas of strategic importance including liquid biofuels production and development.

  10. Graphene based enzymatic bioelectrodes and biofuel cells

    NASA Astrophysics Data System (ADS)

    Karimi, Anahita; Othman, Ali; Uzunoglu, Aytekin; Stanciu, Lia; Andreescu, Silvana

    2015-04-01

    The excellent electrical conductivity and ease of functionalization make graphene a promising material for use in enzymatic bioelectrodes and biofuel cells. Enzyme based biofuel cells have attracted substantial interest due to their potential to harvest energy from organic materials. This review provides an overview of the functional properties and applications of graphene in the construction of biofuel cells as alternative power sources. The review covers the current state-of-the-art research in graphene based nanomaterials (physicochemical properties and surface functionalities), the role of these parameters in enhancing electron transfer, the stability and activity of immobilized enzymes, and how enhanced power density can be achieved. Specific examples of enzyme immobilization methods, enzyme loading, stability and function on graphene, functionalized graphene and graphene based nanocomposite materials are discussed along with their advantages and limitations. Finally, a critical evaluation of the performance of graphene based enzymatic biofuel cells, the current status, challenges and future research needs are provided.

  11. Biofuels from algae: challenges and potential

    PubMed Central

    Hannon, Michael; Gimpel, Javier; Tran, Miller; Rasala, Beth; Mayfield, Stephen

    2011-01-01

    Algae biofuels may provide a viable alternative to fossil fuels; however, this technology must overcome a number of hurdles before it can compete in the fuel market and be broadly deployed. These challenges include strain identification and improvement, both in terms of oil productivity and crop protection, nutrient and resource allocation and use, and the production of co-products to improve the economics of the entire system. Although there is much excitement about the potential of algae biofuels, much work is still required in the field. In this article, we attempt to elucidate the major challenges to economic algal biofuels at scale, and improve the focus of the scientific community to address these challenges and move algal biofuels from promise to reality. PMID:21833344

  12. Studies of Nondefective Adenovirus 2-Simian Virus 40 Hybrid Viruses III. Base Composition, Molecular Weight, and Conformation of the Ad2+ND1 Genome

    PubMed Central

    Crumpacker, Clyde S.; Henry, Patrick H.; Kakefuda, Tuyoski; Rowe, Wallace P.; Levin, Myron J.; Lewis, Andrew M.

    1971-01-01

    The nondefective adenovirus 2 (Ad2)-simian virus 40 (SV40) hybrid virus, Ad2+ND1, differs from the defective Ad-SV40 hybrid populations previously described, in that this hybrid virus can replicate without the aid of nonhybrid adenovirus helper. Consequently, the deoxyribonucleic acid (DNA) from this virus, which can be obtained free of nonhybrid adenovirus DNA, is well suited for biophysical studies on Ad-SV40 hybrid DNA. Such studies have been performed and demonstrate Ad2+ND1 DNA to have a buoyant density (1.715 g/cm3) and thermal denaturation profile (Tm = 75.1 C) almost identical with nonhybrid Ad2 DNA. Furthermore, its molecular weight, as determined by analytical zone sedimentation and electron microscopy, was 22 × 106 to 25 × 106 daltons, which is also very similar to that determined for Ad2. Electron micrographs showed all of the hybrid molecules to be double-stranded and linear. By using this determination of the molecular weight of Ad2+ND1 DNA and assuming that 1% of this molecule consists of covalently linked SV40 DNA (see companion paper), we calculate that the hybrid DNA molecule contains 220 × 103 to 250 × 103 daltons of SV40 DNA, or the equivalent of one-tenth of the SV40 genome. PMID:4323710

  13. Generations.

    PubMed

    Chambers, David W

    2005-01-01

    Groups naturally promote their strengths and prefer values and rules that give them an identity and an advantage. This shows up as generational tensions across cohorts who share common experiences, including common elders. Dramatic cultural events in America since 1925 can help create an understanding of the differing value structures of the Silents, the Boomers, Gen Xers, and the Millennials. Differences in how these generations see motivation and values, fundamental reality, relations with others, and work are presented, as are some applications of these differences to the dental profession. PMID:16623137

  14. EDITORIAL: Selected Papers from OMS'07, the 2nd Topical Meeting of the European Optical Society on Optical Microsystems (OMS)

    NASA Astrophysics Data System (ADS)

    Rendina, Ivo; Fazio, Eugenio; Ferraro, Pietro

    2008-06-01

    OMS'07 was the 2nd Topical Meeting of the European Optical Society (EOS) on Optical Microsystems (OMS). It was organized by the EOS in the frame of its international topical meeting activity, and after the success of the inaugural meeting was once again held in Italy, 30 September to 3 October 2007, amidst the wonderful scenery of the Island of Capri. The local organizing committee was composed of researchers from `La Sapienza' University in Rome and the National Council of Research (CNR) in Naples, Italy. A selected group of leading scientists in the field formed the international scientific committee. The conference was fully dedicated to the most recent advancements carried out in the field of optical microsystems. More then 150 scientists coming from five continents attended the conference and more than 100 papers were presented, organized into the following sessions: Photonic cystals and metamaterials Optofluidic microsystems and devices Optical microsystems and devices New characterization methods for materials and devices Application of optical systems Optical sources and photodetectors Optical resonators Nonlinear optic devices Micro-optical devices. Four keynote lecturers were invited for the Plenary sessions: Federico Capasso, Harvard University, USA; Bahram Javidi, University of Connecticut, USA (Distinguished Lecturer, Emeritus of LEOS--IEEE Society); Demetri Psaltis, EPFL, Lausanne, Switzerland; Ammon Yariv, California Institute of Technology, USA. Furthermore, 21 invited speakers opened each session of the conference with their talks. In addition a special session was organized to celebrate eighty years of the Isituto Nazionale di Ottica Applicata (INOA) of CNR. The special invited speaker for this session was Professor Theodor W Hänsch (Nobel Prize in Physics, 2005), who gave a lecture entitled `What can we do with optical frequency combs?' In this special issue of Journal of Optics A: Pure and Applied Optics, a selection of the most interesting

  15. PREFACE: The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014)

    NASA Astrophysics Data System (ADS)

    Lumban Gaol, Ford; Soewito, Benfano

    2015-01-01

    The 2nd International Conference on Geological, Geographical, Aerospace and Earth Sciences 2014 (AeroEarth 2014), was held at Discovery Kartika Plaza Hotel, Kuta, Bali, Indonesia during 11 - 12 October 2014. The AeroEarth 2014 conference aims to bring together researchers and engineers from around the world. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. Earth provides resources and the exact conditions to make life possible. However, with the advent of technology and industrialization, the Earth's resources are being pushed to the brink of depletion. Non-sustainable industrial practices are not only endangering the supply of the Earth's natural resources, but are also putting burden on life itself by bringing about pollution and climate change. A major role of earth science scholars is to examine the delicate balance between the Earth's resources and the growing demands of industrialization. Through research and development, earth scientists have the power to preserve the planet's different resource domains by providing expert opinion and information about the forces which make life possible on Earth. We would like to express our sincere gratitude to all in the Technical Program Committee who have reviewed the papers and developed a very interesting Conference Program as well as the invited and plenary speakers. This year, we received 98 papers and after rigorous review, 17 papers were accepted. The participants come from eight countries. There are four Parallel Sessions and two invited Speakers. It is an honour to present this volume of IOP Conference Series: Earth and Environmental Science (EES) and we deeply thank the authors for their enthusiastic and high-grade contributions. Finally, we would like to thank the conference chairmen, the members of the steering committee, the organizing committee

  16. Thermochemistry of glasses along the 2NdAlO3 3SiO2 join

    NASA Astrophysics Data System (ADS)

    Zhang, Yahong; Navrotsky, Alexandra; Tangeman, Jean A.; Weber, J. K. Richard

    2003-08-01

    Five Nd-aluminosilicate glasses along the 2NdAlO3-3SiO2 join were synthesized using conventional drop-quench techniques. A sixth glass, with the end-member NdAlO3 composition, required synthesis by containerless liquid-phase processing methods to avoid crystallization. Enthalpies of drop solution (DeltaHds) and formation (DeltaHf) for the Nd-aluminosilicate glasses and the NdAlO3-composition end-member glass were measured in molten 2PbO-B2O3 at 1078 K in a twin Calvet type calorimeter. Values for DeltaHds for the Nd-aluminosilicate glasses increase with decreasing silica content from 130.7 +/- 1.5 to 149.6 +/- 0.6 kJ mol-1. Similarly, values of DeltaHf increase with decreasing silica content from 41.0 +/- 2.0 to 59.0 +/- 1.6 kJ mol-1. Values of DeltaHds and DeltaHf for NdAlO3-composition glass were measured as 99.3 +/- 0.9 and 139.2 +/- 2.1 kJ mol-1, respectively. Using transposed temperature drop calorimetry, the enthalpy of vitrification for NdAlO3-composition glass was measured as 69.5 +/- 0.9 kJ mol-1 relative to the stable crystalline neodymium aluminium perovskite (NdAlO3) phase. Enthalpies of mixing were calculated based on amorphous end members; the strongly negative values support the absence of immiscibility in this system. Differential scanning calorimetry was used to determine glass transition (Tg) and crystallization (Tx) temperatures, as well as values for the configurational heat capacity (DeltaCP(Tg)) and the temperature range of the supercooled liquid interval (DeltaT(SCL)). The NdAlO3-composition glass showed no evidence of a glass transition prior to crystallization; only a single exotherm was observed, the onset of which occurred at 1045 K. For the Nd-aluminosilicates, values of Tg and DeltaT(SCL) increase with increasing silica content, from 1128 to 1139 K and from ~95 to ~175 K, respectively. Values of (DeltaCP(Tg)) increase with decreasing silica content, from ~27 to ~75 J/g fw lowastK, reflecting the increasing fragility and decreasing

  17. Constructed wetlands as biofuel production systems

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wu, Xu; Chang, Jie; Gu, Baojing; Min, Yong; Ge, Ying; Shi, Yan; Xue, Hui; Peng, Changhui; Wu, Jianguo

    2012-03-01

    Clean biofuel production is an effective way to mitigate global climate change and energy crisis. Progress has been made in reducing greenhouse-gas (GHG) emissions and nitrogen fertilizer consumption through biofuel production. Here we advocate an alternative approach that efficiently produces cellulosic biofuel and greatly reduces GHG emissions using waste nitrogen through wastewater treatment with constructed wetlands in China. Our combined experimental and literature data demonstrate that the net life-cycle energy output of constructed wetlands is higher than that of corn, soybean, switchgrass, low-input high-diversity grassland and algae systems. Energy output from existing constructed wetlands is ~237% of the input for biofuel production and can be enhanced through optimizing the nitrogen supply, hydrologic flow patterns and plant species selection. Assuming that all waste nitrogen in China could be used by constructed wetlands, biofuel production can account for 6.7% of national gasoline consumption. We also find that constructed wetlands have a greater GHG reduction than the existing biofuel production systems in a full life-cycle analysis. This alternative approach is worth pursuing because of its great potential for straightforward operation, its economic competitiveness and many ecological benefits.

  18. Assessing Biofuel Crop Invasiveness: A Case Study

    PubMed Central

    Buddenhagen, Christopher Evan; Chimera, Charles; Clifford, Patti

    2009-01-01

    Background There is widespread interest in biofuel crops as a solution to the world's energy needs, particularly in light of concerns over greenhouse-gas emissions. Despite reservations about their adverse environmental impacts, no attempt has been made to quantify actual, relative or potential invasiveness of terrestrial biofuel crops at an appropriate regional or international scale, and their planting continues to be largely unregulated. Methodology/Principal Findings Using a widely accepted weed risk assessment system, we analyzed a comprehensive list of regionally suitable biofuel crops to show that seventy percent have a high risk of becoming invasive versus one-quarter of non-biofuel plant species and are two to four times more likely to establish wild populations locally or be invasive in Hawaii or in other locations with a similar climate. Conclusions/Significance Because of climatic and ecological similarities, predictions of biofuel crop invasiveness in Hawaii are applicable to other vulnerable island and subtropical ecosystems worldwide. We demonstrate the utility of an accessible and scientifically proven risk assessment protocol that allows users to predict if introduced species will become invasive in their region of interest. Other evidence supports the contention that propagule pressure created by extensive plantings will exacerbate invasions, a scenario expected with large-scale biofuel crop cultivation. Proactive measures, such as risk assessments, should be employed to predict invasion risks, which could then be mitigated via implementation of appropriate planting policies and adoption of the “polluter-pays” principle. PMID:19384412

  19. Economic Viability of Brewery Spent Grain as a Biofuel

    SciTech Connect

    Morrow, Charles

    2016-01-01

    This report summarizes an investigation into the technical feasibility and economic viability of use grain wastes from the beer brewing process as fuel to generate the heat needed in subsequent brewing process. The study finds that while use of spent grain as a biofuel is technically feasible, the economics are not attractive. Economic viability is limited by the underuse of capital equipment. The investment in heating equipment requires a higher utilization that the client brewer currently anticipates. It may be possible in the future that changing factors may swing the decision to a more positive one.

  20. A glucose biofuel cell implanted in rats.

    PubMed

    Cinquin, Philippe; Gondran, Chantal; Giroud, Fabien; Mazabrard, Simon; Pellissier, Aymeric; Boucher, François; Alcaraz, Jean-Pierre; Gorgy, Karine; Lenouvel, François; Mathé, Stéphane; Porcu, Paolo; Cosnier, Serge

    2010-01-01

    Powering future generations of implanted medical devices will require cumbersome transcutaneous energy transfer or harvesting energy from the human body. No functional solution that harvests power from the body is currently available, despite attempts to use the Seebeck thermoelectric effect, vibrations or body movements. Glucose fuel cells appear more promising, since they produce electrical energy from glucose and dioxygen, two substrates present in physiological fluids. The most powerful ones, Glucose BioFuel Cells (GBFCs), are based on enzymes electrically wired by redox mediators. However, GBFCs cannot be implanted in animals, mainly because the enzymes they rely on either require low pH or are inhibited by chloride or urate anions, present in the Extra Cellular Fluid (ECF). Here we present the first functional implantable GBFC, working in the retroperitoneal space of freely moving rats. The breakthrough relies on the design of a new family of GBFCs, characterized by an innovative and simple mechanical confinement of various enzymes and redox mediators: enzymes are no longer covalently bound to the surface of the electron collectors, which enables use of a wide variety of enzymes and redox mediators, augments the quantity of active enzymes, and simplifies GBFC construction. Our most efficient GBFC was based on composite graphite discs containing glucose oxidase and ubiquinone at the anode, polyphenol oxidase (PPO) and quinone at the cathode. PPO reduces dioxygen into water, at pH 7 and in the presence of chloride ions and urates at physiological concentrations. This GBFC, with electrodes of 0.133 mL, produced a peak specific power of 24.4 microW mL(-1), which is better than pacemakers' requirements and paves the way for the development of a new generation of implantable artificial organs, covering a wide range of medical applications. PMID:20454563

  1. Essays concerning the cellulosic biofuel industry

    NASA Astrophysics Data System (ADS)

    Rosburg, Alicia Sue

    Despite market-based incentives and mandated production, the U.S. cellulosic biofuel industry has been slow to develop. This dissertation explores the economic factors that have limited industry development along with important economic tradeoffs that will be encountered with commercial-scale production. The first essay provides an overview of the policies, potential, and challenges of the biofuel industry, with a focus on cellulosic biofuel. The second essay considers the economics of cellulosic biofuel production. Breakeven models of the local feedstock supply system and biofuel refining process are constructed to develop the Biofuel Breakeven (BioBreak) program, a stochastic, Excel-based program that evaluates the feasibility of local biofuel and biomass markets under various policy and market scenarios. An application of the BioBreak program is presented using expected market conditions for 14 local cellulosic biofuel markets that vary by feedstock and location. The economic costs of biofuel production identified from the BioBreak application are higher than frequently anticipated and raise questions about the potential of cellulosic ethanol as a sustainable and economical substitute for conventional fuels. Program results also are extended using life-cycle analysis to evaluate the cost of reducing GHG emissions by substituting cellulosic ethanol for conventional fuel. The third essay takes a closer look at the economic trade-offs within the biorefinery industry and feedstock production processes. A long-run biomass production through bioenergy conversion cost model is developed that incorporates heterogeneity of biomass suppliers within and between local markets. The model builds on previous literature by treating biomass as a non-commoditized feedstock and relaxes the common assumption of fixed biomass density and price within local markets. An empirical application is provided for switchgrass-based ethanol production within U.S. crop reporting districts

  2. Privileged Biofuels, Marginalized Indigenous Peoples: The Coevolution of Biofuels Development in the Tropics

    ERIC Educational Resources Information Center

    Montefrio, Marvin Joseph F.

    2012-01-01

    Biofuels development has assumed an important role in integrating Indigenous peoples and other marginalized populations in the production of biofuels for global consumption. By combining the theories of commoditization and the environmental sociology of networks and flows, the author analyzed emerging trends and possible changes in institutions…

  3. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    SciTech Connect

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  4. Conventional and molecular breeding for improvement of biofuel crops: past, present and future

    Technology Transfer Automated Retrieval System (TEKTRAN)

    First-generation biofuels are derived from food and feed crops rich in sugar, starch, or oil, such as sugarcane (Saccharum hyb.), maize (Zea mays), or soybean (Glycine max), as these are easily converted into liquid fuels. However, these crops alone cannot meet the projected demand for fuel, so sec...

  5. Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis

    PubMed Central

    Barlow, Aaron M.; Slepkov, Aaron D.; Ridsdale, Andrew; McGinn, Patrick J.; Stolow, Albert

    2014-01-01

    We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus pluvialis. We show that hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy generates non-invasive, quantitative real-time concentrations maps of intracellular carotenoid distributions in live algae. PMID:25360358

  6. Cob biomass supply for combined heat and power and biofuel in the north central USA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corn (Zea mays L) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) usin...

  7. Label-free hyperspectral nonlinear optical microscopy of the biofuel micro-algae Haematococcus Pluvialis.

    PubMed

    Barlow, Aaron M; Slepkov, Aaron D; Ridsdale, Andrew; McGinn, Patrick J; Stolow, Albert

    2014-10-01

    We consider multi-modal four-wave mixing microscopies to be ideal tools for the in vivo study of carotenoid distributions within the important biofuel microalgae Haematococcus pluvialis. We show that hyperspectral coherent anti-Stokes Raman scattering (CARS) microscopy generates non-invasive, quantitative real-time concentrations maps of intracellular carotenoid distributions in live algae. PMID:25360358

  8. Reduced nitrogen losses following conversion of row crop agriculture to perennial biofuel crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current biofuel feedstock crops such as corn lead to large environmental losses of N through nitrate leaching and N2O emissions, and require large inputs of N fertilizer. Second generation cellulosic crops have the potential to reduce these N losses, and provide even greater biomass for conversion t...

  9. Biofuels from Pyrolysis: Catalytic Biocrude Production in a Novel, Short-Contact Time Reactor

    SciTech Connect

    2010-01-01

    Broad Funding Opportunity Announcement Project: RTI is developing a new pyrolysis process to convert second-generation biomass into biofuels in one simple step. Pyrolysis is the decomposition of substances by heating—the same process used to render wood into charcoal, caramelize sugar, and dry roast coffee and beans. RTI’s catalytic biomass pyrolysis differs from conventional flash pyrolysis in that its end product contains less oxygen, metals, and nitrogen—all of which contribute to corrosion, instability, and inefficiency in the fuel-production process. This technology is expected to easily integrate into the existing domestic petroleum refining infrastructure, making it an economically attractive option for biofuels production.

  10. Plant sciences and biofuels production

    SciTech Connect

    Ranney, J.W.; Cushman, J.H.

    1987-04-01

    Integrating the production of lignocellulosic energy crops with conversion into efficient biofuel pathways requires the identification and prioritization of plant qualities that affect the conversion processes. When desirable or undesirable characteristics have been identified, potential crop species must be evaluated to determine how much genetic improvement is possible while maintaining a thriving fast-growing plant. Lignin, as an example, can be important in both thermochemical and biochemical conversion systems. Lignin's chemical composition is complex and varies among species. Lignin is energetically expensive for plants to produce, and it plays an important role in plant viability. To improve biomass feedstocks, lignin may be desired in increased or decreased amounts depending on the fuel pathway involved. Changes in chemical composition may also be desirable. The lignin component of biomass feedstocks can be significantly affected, both in amount and in chemical composition, by species selection. Changing lignin content or chemical composition of a species is possible but will be more difficult, more expensive, and may affect plant growth and survival. Other biomass components are similar. Such considerations will strongly affect the choice and efficiency of breeding and bioengineering strategies. The selection of traits for improvement in energy crops is an important decision which must be made by plant scientists and investigators developing conversion technologies working as a team. 5 figs.

  11. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  12. National microalgae biofuel production potential and resource demand

    NASA Astrophysics Data System (ADS)

    Wigmosta, Mark S.; Coleman, André M.; Skaggs, Richard J.; Huesemann, Michael H.; Lane, Leonard J.

    2011-03-01

    Microalgae are receiving increased global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution spatiotemporal assessment that brings to bear fundamental questions of where production can occur, how many land and water resources are required, and how much energy is produced. Our study suggests that under current technology, microalgae have the potential to generate 220 × 109 L yr-1 of oil, equivalent to 48% of current U.S. petroleum imports for transportation. However, this level of production requires 5.5% of the land area in the conterminous United States and nearly three times the water currently used for irrigated agriculture, averaging 1421 L water per liter of oil. Optimizing the locations for microalgae production on the basis of water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, southeastern seaboard, and Great Lakes shows a 75% reduction in consumptive freshwater use to 350 L per liter of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target and utilizing some 25% of the current irrigation demand. With proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  13. Impact of Various Biofuel Feedstock Production Scenarios on Water Quality in the Upper Mississippi River Basin

    NASA Astrophysics Data System (ADS)

    Wu, M.; Demissie, Y.; Yan, E.

    2010-12-01

    The impact of increased biofuel feedstock production on regional water quality was examined. This study focused on the Upper Mississippi River Basin, from which a majority of U.S. biofuel is currently produced. The production of biofuel from both conventional feedstock and cellulosic feedstock will potentially increase in the near future. Historically, this water basin generates the largest nitrogen loading to the waterway in the United States and is often cited as a main contributor to the anoxic zone in the Gulf of Mexico. To obtain a quantitative and spatial estimate of nutrient burdens at the river basin, a SWAT (Soil and Water Assessment Tool) model application was developed. The model was equipped with an updated nutrient cycle feature and modified model parameters to represent current crop and perennial grass yield as a result of advancements in breeding and biotechnology. Various biofuel feedstock production scenarios were developed to assess the potential environmental implications of increased biofuel production through corn, agriculture residue, and perennial cellulosic feedstock (such as Switchgrass). Major factors were analyzed, including land use changes, feedstock types, fertilizer inputs, soil property, and yield. This tool can be used to identify specific regional factors affecting water quality and examine options to meet the requirement for environmental sustainability, thereby mitigating undesirable environmental consequences while strengthening energy security.

  14. Catalytic oxidation of biorefinery lignin to value-added chemicals to support sustainable biofuel production.

    PubMed

    Ma, Ruoshui; Xu, Yan; Zhang, Xiao

    2015-01-01

    Transforming plant biomass to biofuel is one of the few solutions that can truly sustain mankind's long-term needs for liquid transportation fuel with minimized environmental impact. However, despite decades of effort, commercial development of biomass-to-biofuel conversion processes is still not an economically viable proposition. Identifying value-added co-products along with the production of biofuel provides a key solution to overcoming this economic barrier. Lignin is the second most abundant component next to cellulose in almost all plant biomass; the emerging biomass refinery industry will inevitably generate an enormous amount of lignin. Development of selective biorefinery lignin-to-bioproducts conversion processes will play a pivotal role in significantly improving the economic feasibility and sustainability of biofuel production from renewable biomass. The urgency and importance of this endeavor has been increasingly recognized in the last few years. This paper reviews state-of-the-art oxidative lignin depolymerization chemistries employed in the papermaking process and oxidative catalysts that can be applied to biorefinery lignin to produce platform chemicals including phenolic compounds, dicarboxylic acids, and quinones in high selectivity and yield. The potential synergies of integrating new catalysts with commercial delignification chemistries are discussed. We hope the information will build on the existing body of knowledge to provide new insights towards developing practical and commercially viable lignin conversion technologies, enabling sustainable biofuel production from lignocellulosic biomass to be competitive with fossil fuel. PMID:25272962

  15. Design principle and prototyping of a direct photosynthetic/metabolic biofuel cell (DPMFC)

    NASA Astrophysics Data System (ADS)

    Furukawa, Yuji; Moriuchi, Takeyuki; Morishima, Keisuke

    2006-09-01

    A novel design of a photosynthetic/metabolic-based biofuel cell and its fabrication process have been explored and developed. Novel nanostructure and modified polyaniline have been used to enhance the performance of the new biofuel cell. The mechanism of the electron transfer process and the electro-catalysis of polyaniline have been investigated. The developed direct photosynthetic/metabolic biofuel cells (DPMFC) succeeded in generating a peak current density of more than 150 µA cm-2 with a 100 Ω load, 5.3 µW cm-2 of maximum power density (using prototype fuel cell). The benefits of DPMFC are that it can produce power in dark/light, is unharmful to living things and does not need a fuel supply.

  16. Near-zero emissions combustor system for syngas and biofuels

    SciTech Connect

    Yongho, Kim; Rosocha, Louis

    2010-01-01

    A multi-institutional plasma combustion team was awarded a research project from the DOE/NNSA GIPP (Global Initiative for Prolifereation Prevention) office. The Institute of High Current Electronics (Tomsk, Russia); Leonardo Technologies, Inc. (an American-based industrial partner), in conjunction with the Los Alamos National Laboratory are participating in the project to develop novel plasma assisted combustion technologies. The purpose of this project is to develop prototypes of marketable systems for more stable and cleaner combustion of syngas/biofuels and to demonstrate that this technology can be used for a variety of combustion applications - with a major focus on contemporary gas turbines. In this paper, an overview of the project, along with descriptions of the plasma-based combustors and associated power supplies will be presented. Worldwide, it is recognized that a variety of combustion fuels will be required to meet the needs for supplying gas-turbine engines (electricity generation, propulsion), internal combustion engines (propulsion, transportation), and burners (heat and electricity generation) in the 21st Century. Biofuels and biofuel blends have already been applied to these needs, but experience difficulties in modifications to combustion processes and combustor design and the need for flame stabilization techniques to address current and future environmental and energy-efficiency challenges. In addition, municipal solid waste (MSW) has shown promise as a feedstock for heat and/or electricity-generating plants. However, current combustion techniques that use such fuels have problems with achieving environmentally-acceptable air/exhaust emissions and can also benefit from increased combustion efficiency. This project involves a novel technology (a form of plasma-assisted combustion) that can address the above issues. Plasma-assisted combustion (PAC) is a growing field that is receiving worldwide attention at present. The project is focused on

  17. Biofuels: A win-win strategy

    SciTech Connect

    1997-12-31

    This article looks at the overall goal of stabilizing global climate change while achieving a sustainable energy future. On Earth Day 1993, President Clinton announced that the U.S. would comply with the Rio accord and bring U.S. greenhouse gas emissions back to 1990 levels by the year 2000. Since the transportation sector accounts for over 30 percent of domestic CO{sub 2} emissions, the large-scale use and deployment of biofuels would be a useful tool in achieving the Administration`s goals of limiting greenhouse gases. Biofuels such as ethanol, methanol, and biodiesel are expected to have lower emissions of greenhouse gases than those derived from petroleum or other fossil fuels. This marked difference is due to the {open_quotes}CO{sub 2} recycling effect{close_quotes} associated with the growth process of biomass renewable resources such as trees and grasses. This article covers the following topics: global climate change an future energy consumption, reducing greenhouse transportation sector emissions: improving fuel economy and switching to low-carbon emission fuel sources; integration of fuel economy and alternative fuels; biofuels as a transportation strategy for mitigating global climate change; a win-win strategy: biofuels reduce carbon dioxide while promoting sustainable economic growth; increasing biofuels utilization through government and industry cooperation. 5 figs.

  18. A resilience perspective on biofuel production.

    PubMed

    Mu, Dongyan; Seager, Thomas P; Rao, P Suresh C; Park, Jeryang; Zhao, Fu

    2011-07-01

    The recent investment boom and collapse of the corn ethanol industry calls into question the long-term sustainability of traditional approaches to biofuel technologies. Compared with petroleum-based transportation fuels, biofuel production systems are more closely connected to complex and variable natural systems. Especially as biofeedstock production itself becomes more independent of fossil fuel-based supports, stochasticity will become an increasingly important, inherent feature of biofuel feedstock production systems. Accordingly, a fundamental change in design philosophy is necessary to ensure the long-term viability of the biofuels industry. To respond effectively to unexpected disruptions, the new approach will require systems to be designed for resilience (indicated by diversity, efficiency, cohesion, and adaptability) rather than more narrowly defined measures of efficiency. This paper addresses important concepts in the design of coupled engineering-ecological systems (resistance, resilience, adaptability, and transformability) and examines biofuel conversion technologies from a resilience perspective. Conversion technologies that can accommodate multiple feedstocks and final products are suggested to enhance the diversity and flexibility of the entire industry. PMID:21309075

  19. Integrated systems optimization model for biofuel development: The influence of environmental constraints

    NASA Astrophysics Data System (ADS)

    Housh, M.; Ng, T.; Cai, X.

    2012-12-01

    -systems. Additional scenarios are analyzed to show the synergies of crop pattern choice (first versus second generation of biofuel crops), refinery technology adaptation (particularly on water use), refinery plant distribution, and economic incentives in terms of balanced environmental protection and bioenergy development objectives.

  20. Sustainable liquid biofuels from biomass: the writing's on the walls.

    PubMed

    Gomez, Leonardo D; Steele-King, Clare G; McQueen-Mason, Simon J

    2008-01-01

    Domination of the global biosphere by human beings is unprecedented in the history of the planet, and our impact is such that substantive changes in ecosystems, and the global environment as a whole, are now becoming apparent. Our activity drives the steady increase in global temperature observed in recent decades. The realization of the adverse effects of greenhouse gas emissions on the environment, together with declining petroleum reserves, has ensured that the quest for sustainable and environmentally benign sources of energy for our industrial economies and consumer societies has become urgent in recent years. Consequently, there is renewed interest in the production and use of fuels from plants. The 'first-generation' biofuels made from starch and sugar appear unsustainable because of the potential stress that their production places on food commodities. Second-generation biofuels, produced from cheap and abundant plant biomass, are seen as the most attractive solution to this problem, but a number of technical hurdles must be overcome before their potential is realized. This review will focus on the underpinning research necessary to enable the cost-effective production of liquid fuels from plant biomass, with a particular focus on aspects related to plant cell walls and their bioconversion. PMID:18373653

  1. Downgrading recent estimates of land available for biofuel production.

    PubMed

    Fritz, Steffen; See, Linda; van der Velde, Marijn; Nalepa, Rachel A; Perger, Christoph; Schill, Christian; McCallum, Ian; Schepaschenko, Dmitry; Kraxner, Florian; Cai, Ximing; Zhang, Xiao; Ortner, Simone; Hazarika, Rubul; Cipriani, Anna; Di Bella, Carlos; Rabia, Ahmed H; Garcia, Alfredo; Vakolyuk, Mar'yana; Singha, Kuleswar; Beget, Maria E; Erasmi, Stefan; Albrecht, Franziska; Shaw, Brian; Obersteiner, Michael

    2013-02-01

    Recent estimates of additional land available for bioenergy production range from 320 to 1411 million ha. These estimates were generated from four scenarios regarding the types of land suitable for bioenergy production using coarse-resolution inputs of soil productivity, slope, climate, and land cover. In this paper, these maps of land availability were assessed using high-resolution satellite imagery. Samples from these maps were selected and crowdsourcing of Google Earth images was used to determine the type of land cover and the degree of human impact. Based on this sample, a set of rules was formulated to downward adjust the original estimates for each of the four scenarios that were previously used to generate the maps of land availability for bioenergy production. The adjusted land availability estimates range from 56 to 1035 million ha depending upon the scenario and the ruleset used when the sample is corrected for bias. Large forest areas not intended for biofuel production purposes were present in all scenarios. However, these numbers should not be considered as definitive estimates but should be used to highlight the uncertainty in attempting to quantify land availability for biofuel production when using coarse-resolution inputs with implications for further policy development. PMID:23308357

  2. The impact of extreme drought on the biofuel feedstock production

    NASA Astrophysics Data System (ADS)

    hussain, M.; Zeri, M.; Bernacchi, C.

    2013-12-01

    Miscanthus (Miscanthus x giganteus) and Switchgrass (Panicum virgatum) have been identified as the primary targets for second-generation cellulosic biofuel crops. Prairie managed for biomass is also considered as one of the alternative to conventional biofuel and promised to provide ecosystem services, including carbon sequestration. These perennial grasses possess a number of traits that make them desirable biofuel crops and can be cultivated on marginal lands or interspersed with maize and soybean in the Corn Belt region. The U.S. Corn Belt region is the world's most productive and expansive maize-growing region, approximately 20% of the world's harvested corn hectares are found in 12 Corn Belt states. The introduction of a second generation cellulosic biofuels for biomass production in a landscape dominated by a grain crop (maize) has potential implications on the carbon and water cycles of the region. This issue is further intensified by the uncertainty in the response of the vegetation to the climate change induced drought periods, as was seen during the extreme droughts of 2011 and 2012 in the Midwest. The 2011 and 2012 growing seasons were considered driest since the 1932 dust bowl period; temperatures exceeded 3.0 °C above the 50- year mean and precipitation deficit reached 50 %. The major objective of this study was to evaluate the drought responses (2011 and 2012) of corn and perennial species at large scale, and to determine the seasonability of carbon and water fluxes in the response of controlling factors. We measured net CO2 ecosystem exchange (NEE) and water fluxes of maize-maize-soybean, and perennial species such as miscanthus, switchgrass and mixture of prairie grasses, using eddy covariance in the University of Illinois energy farm at Urbana, IL. The data presented here were for 5 years (2008- 2012). In the first two years, higher NEE in maize led to large CO2 sequestration. NEE however, decreased in dry years, particularly in 2012. On the other

  3. Biofuel Production Initiative at Claflin University Final Report

    SciTech Connect

    Chowdhury, Kamal

    2011-07-20

    For US transportation fuel independence or reduced dependence on foreign oil, the Federal Government has mandated that the country produce 36 billion gallons (bg) of renewable transportation fuel per year for its transportation fuel supply by 2022. This can be achieved only if development of efficient technology for second generation biofuel from ligno-cellulosic sources is feasible. To be successful in this area, development of a widely available, renewable, cost-effective ligno-cellulosic biomass feedstock that can be easily and efficiently converted biochemically by bacteria or other fast-growing organisms is required. Moreover, if the biofuel type is butanol, then the existing infrastructure to deliver fuel to the customer can be used without additional costs and retrofits. The Claflin Biofuel Initiative project is focused on helping the US meet the above-mentioned targets. With support from this grant, Claflin University (CU) scientists have created over 50 new strains of microorganisms that are producing butanol from complex carbohydrates and cellulosic compounds. Laboratory analysis shows that a number of these strains are producing higher percentages of butanol than other methods currently in use. All of these recombinant bacterial strains are producing relatively high concentrations of acetone and numerous other byproducts as well. Therefore, we are carrying out intense mutations in the selected strains to reduce undesirable byproducts and increase the desired butanol production to further maximize the yield of butanol. We are testing the proof of concept of producing pre-industrial large scale biobutanol production by utilizing modifications of currently commercially available fermentation technology and instrumentation. We have already developed an initial process flow diagram (PFD) and selected a site for a biobutanol pilot scale facility in Orangeburg, SC. With the recent success in engineering new strains of various biofuel producing bacteria at CU

  4. Impacts of Climate Change on Biofuels Production

    SciTech Connect

    Melillo, Jerry M.

    2014-04-30

    The overall goal of this research project was to improve and use our biogeochemistry model, TEM, to simulate the effects of climate change and other environmental changes on the production of biofuel feedstocks. We used the improved version of TEM that is coupled with the economic model, EPPA, a part of MIT’s Earth System Model, to explore how alternative uses of land, including land for biofuels production, can help society meet proposed climate targets. During the course of this project, we have made refinements to TEM that include development of a more mechanistic plant module, with improved ecohydrology and consideration of plant-water relations, and a more detailed treatment of soil nitrogen dynamics, especially processes that add or remove nitrogen from ecosystems. We have documented our changes to TEM and used the model to explore the effects on production in land ecosystems, including changes in biofuels production.

  5. Omics in Chlamydomonas for Biofuel Production.

    PubMed

    Aucoin, Hanna R; Gardner, Joseph; Boyle, Nanette R

    2016-01-01

    In response to demands for sustainable domestic fuel sources, research into biofuels has become increasingly important. Many challenges face biofuels in their effort to replace petroleum fuels, but rational strain engineering of algae and photosynthetic organisms offers a great deal of promise. For decades, mutations and stress responses in photosynthetic microbiota were seen to result in production of exciting high-energy fuel molecules, giving hope but minor capability for design. However, '-omics' techniques for visualizing entire cell processing has clarified biosynthesis and regulatory networks. Investigation into the promising production behaviors of the model organism C. reinhardtii and its mutants with these powerful techniques has improved predictability and understanding of the diverse, complex interactions within photosynthetic organisms. This new equipment has created an exciting new frontier for high-throughput, predictable engineering of photosynthetically produced carbon-neutral biofuels. PMID:27023246

  6. In Defense of Biofuels, Done Right

    SciTech Connect

    Kline, Keith L; Dale, Virginia H; Lee, Russell; Leiby, Paul Newsome

    2009-01-01

    Recent claims attibuting rising fuel costs and deforestation to biofuels are examined. Given a priority to protect biodiversity and ecosystem services, it is important to further explore the drivers for conversion of land at the frontier and to consider the effects, positive and negative, that U.S. biofuel policies could have in these areas. This means it is critical to distinguish between valid concerns calling for caution and alarmist criticisms that attribute complex problems solely to biofuels. This article discusses how plant-based fuels developed in economically and environmentally sensible ways can contribute significantly to the nation s indeed, the world s energy security while providing other benefits and reducing pressures on native ecosystems.

  7. [Influence of hypocaloric diet with addition of a vitamin-mineral complex on status of patients with obesity 1st and 2nd degrees].

    PubMed

    Sharafetdinov, Kh Kh; Plotnikova, O A; Zykina, V V; Mal'tsev, G Iu; Sokol'nikov, A A; Kaganov, B S

    2011-01-01

    Addition of a vitamin-mineral complex (VMC) to a standard hypocaloric diet leads to a positive dynamics of antropometric characteristics in patients with obesity 1st and 2nd degrees which is comparable to effectiveness of standard dietotherapy (dietary treatment) traditionally used in complex treatment of obesity. Addition of 1,8 mg of vitamin B2 as part of VMC to a hypocaloric diet is shown to be inadequate in eradication of marginal provision of riboflavin when using diets reduced in calories. PMID:22232885

  8. Water Consumption for Biofuel Feedstock Cultivation

    NASA Astrophysics Data System (ADS)

    Fingerman, K. R.; Torn, M. S.

    2008-12-01

    Water use may prove to be a central issue in the global and local development of the biofuel industry. While most literature on biofuel water use only considers the biorefinery phase, we studied water consumption for biofuel feedstock cultivation in major feedstock-producing regions of the United States. Using a spatially explicit Penman-Monteith model informed by field-level eddy covariance measurements, distributed climate data, and land use figures, we estimated water consumption and net water use for a number of scenarios of feedstock, location, and refining processes for biofuel development. We find that in California, for example, average water consumption for biofuels from different feedstocks ranges from about 900 to over 1500 gallons per gallon of fuel produced. Cellulosic feedstocks are found to be less water-intensive on average. Furthermore, we find feedstock cultivation to account for more than 99% of the life-cycle embedded water for fuels in California. In some regions and for some feedstock options, a shift to biofuel feedstock cultivation would reduce the strain on water resources, while in others we project it would greatly increase water demand. We are expanding this analysis to better capture both base-line ET from natural systems and ET of some of the less-studied cellulosic feedstocks, as well as to incorporate other regions in the U.S. and internationally. Thus far, we conclude that while water demand for processing is important for plant location and pollution, water consumption for feedstock growth may be (along with land resources) the limiting factor for bioenergy production in many regions.

  9. Biofuel Feedstock Assessment for Selected Countries

    SciTech Connect

    Kline, K.L.; Oladosu, G.A.; Wolfe, A.K.; Perlack, R.D.; Dale, V.H.

    2008-02-18

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as ‘available’ for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64

  10. Biofuel Feedstock Assessment For Selected Countries

    SciTech Connect

    Kline, Keith L; Oladosu, Gbadebo A; Wolfe, Amy K; Perlack, Robert D; Dale, Virginia H

    2008-02-01

    Findings from biofuel feedstock production assessments and projections of future supply are presented and discussed. The report aims to improve capabilities to assess the degree to which imported biofuel could contribute to meeting future U.S. targets to reduce dependence on imported oil. The study scope was focused to meet time and resource requirements. A screening process identified Argentina, Brazil, Canada, China, Colombia, India, Mexico, and the Caribbean Basin Initiative (CBI) region for initial analysis, given their likely role in future feedstock supply relevant to U.S. markets. Supply curves for selected feedstocks in these countries are projected for 2012, 2017 and 2027. The supply functions, along with calculations to reflect estimated supplies available for export and/or biofuel production, were provided to DOE for use in a broader energy market allocation study. Potential cellulosic supplies from crop and forestry residues and perennials were also estimated for 2017 and 2027. The analysis identified capacity to potentially double or triple feedstock production by 2017 in some cases. A majority of supply growth is derived from increasing the area cultivated (especially sugarcane in Brazil). This is supplemented by improving yields and farming practices. Most future supplies of corn and wheat are projected to be allocated to food and feed. Larger shares of future supplies of sugarcane, soybean and palm oil production will be available for export or biofuel. National policies are catalyzing investments in biofuel industries to meet targets for fuel blending that generally fall in the 5-10% range. Social and environmental concerns associated with rapid expansion of feedstock production are considered. If the 2017 projected feedstock supply calculated as 'available' for export or biofuel were converted to fuel, it would represent the equivalent of about 38 billion gallons of gasoline. Sugarcane and bagasse dominate the available supply, representing 64% of

  11. Expanding xylose metabolism in yeast for plant cell wall conversion to biofuels.

    PubMed

    Li, Xin; Yu, Vivian Yaci; Lin, Yuping; Chomvong, Kulika; Estrela, Raíssa; Park, Annsea; Liang, Julie M; Znameroski, Elizabeth A; Feehan, Joanna; Kim, Soo Rin; Jin, Yong-Su; Glass, N Louise; Cate, Jamie H D

    2015-01-01

    Sustainable biofuel production from renewable biomass will require the efficient and complete use of all abundant sugars in the plant cell wall. Using the cellulolytic fungus Neurospora crassa as a model, we identified a xylodextrin transport and consumption pathway required for its growth on hemicellulose. Reconstitution of this xylodextrin utilization pathway in Saccharomyces cerevisiae revealed that fungal xylose reductases act as xylodextrin reductases, producing xylosyl-xylitol oligomers as metabolic intermediates. These xylosyl-xylitol intermediates are generated by diverse fungi and bacteria, indicating that xylodextrin reduction is widespread in nature. Xylodextrins and xylosyl-xylitol oligomers are then hydrolyzed by two hydrolases to generate intracellular xylose and xylitol. Xylodextrin consumption using a xylodextrin transporter, xylodextrin reductases and tandem intracellular hydrolases in cofermentations with sucrose and glucose greatly expands the capacity of yeast to use plant cell wall-derived sugars and has the potential to increase the efficiency of both first-generation and next-generation biofuel production. PMID:25647728

  12. Improving Sugarcane for Biofuel: Engineering for an even better feedstock

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sugarcane is a proven biofuel feedstock and accounts for about half the biofuel production worldwide. It has a more favorable energy input/output ratio than that of corn, the other major biofuel feedstock. The rich resource of genetic diversity and the plasticity of autopolyploid genomes offer a wea...

  13. 76 FR 24343 - Advanced Biofuel Payment Program; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-02

    ... Service Rural Utilities Service 7 CFR Part 4288 RIN 0570-AA75 Advanced Biofuel Payment Program; Correction... Advanced Biofuel Payment Program authorized under the Food, Conservation, and Energy Act of 2008. This... contracts with advanced biofuel producers to pay such producers for the production of eligible...

  14. Improving Biofuels Recovery Processes for Energy Efficiency and Sustainability

    EPA Science Inventory

    Biofuels are made from living or recently living organisms. For example, ethanol can be made from fermented plant materials. Biofuels have a number of important benefits when compared to fossil fuels. Biofuels are produced from renewable energy sources such as agricultural resou...

  15. Bio-fuel Cropping Systems Effects on Soil Quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted to determine the effect of nutrient management practices on bio-fuel crop production, and to evaluate long term effects of bio-fuel crop production on selected chemical, physical and microbiological properties. Experimental plots for research on bio-fuel crops production were ...

  16. Water use implications of biofuel scenarios

    NASA Astrophysics Data System (ADS)

    Teter, J.; Mishra, G. S.; Yeh, S.

    2012-12-01

    Existing studies rely upon attributional lifecycle analysis (LCA) approaches to estimate water intensity of biofuels in liters of irrigated/evapotranspiration water consumed for biofuel production. Such approaches can be misleading. From a policy perspective, a better approach is to compare differential water impacts among scenarios on a landscape scale. We address the shortcomings of existing studies by using consequential LCA, and incorporate direct and indirect land use (changes) of biofuel scenarios, marginal vs. average biofuel water use estimates, future climate, and geographic heterogeneity. We use the outputs of a partial equilibrium economic model, climate and soil data, and a process-based crop-soil-climate-water model to estimate differences in green water (GW - directly from precipitation to soil) and blue water (BW - supplied by irrigation) use among three scenarios: (1) business-as-usual (BAU), (2) Renewable Fuels Standard (RFS) mandates, and (3) a national Low Carbon Fuel Standard (LCFS) plus the RFS scenario. We use spatial statistical methods to interpolate key climatic variables using daily climate observations for the contiguous USA. Finally, we use FAO's crop model AquaCrop to estimate the domestic GW and BW impacts of biofuel policies from 2007-2035. We assess the differences among scenarios along the following metrics: (1) crop area expansion at the county level, including prime and marginal lands, (2) crop-specific and overall annual/seasonal water balances including (a) water inflows (irrigation & precipitation), (b) crop-atmosphere interactions: (evaporation & transpiration) and (d) soil-water flows (runoff & soil infiltration), in mm 3 /acre over the relevant time period. The functional unit of analysis is the BW and GW requirements of biofuels (mm3 per Btu biofuel) at the county level. Differential water use impacts among scenarios are a primarily a function of (1) land use conversion, in particular that of formerly uncropped land classes

  17. PREFACE: 2nd International Conference on Particle Physics in memoriam Engin Arık and her Colleagues

    NASA Astrophysics Data System (ADS)

    Çetin, Serkant Ali; Jenni, Peter; Erkcan Özcan, Veysi; Nefer Şenoğuz, Vedat

    2012-02-01

    The 2nd International Conference on Particle Physics in memoriam Engin Arık and her Colleagues: Fatma Şenel Boydağ, İskender Hikmet, Mustafa Fidan, Berkol Doğan and Engin Abat was held at Doğuş University, İstanbul, Turkey on 20-25 June 2011. The conference was organized jointly by the Doğuş and Boğaziçi Universities, with support from CERN and the Turkish Academy of Sciences. This was the second International Conference on Particle Physics (ICPP) organized in memory of Engin Arık and her Colleagues who lost their lives in the tragic plane accident on November 30 2007, on their way to the workshop of the Turkish Accelerator Center (TAC) Project. The first of this conference series was held on 27-31 October 2008 at Boğaziçi University, İstanbul, Turkey. The conference is intended to be repeated every two years in Istanbul as a Conference Series under the name 'ICPP-Istanbul'. Professor Engin Arık had a pioneering role in experimental particle physics in Turkey, and was an inspiring teacher to many colleagues. She led the Turkish participation in experiments at CERN such as CHARMII, SMC, CHORUS, ATLAS and CAST. One of her latest involvements was in the national project to design the Turkish Accelerator Center with the collaboration of 10 Turkish universities including Doğuş and Boğaziçi. Our dear colleagues not only participated in the TAC project but also collaborated on the ATLAS (E Arık, E Abat and B Doğan) and CAST (E Arık, F Şenel Boydağ, İ Hikmet and B Doğan) experiments. We believe that the ICPP-Istanbul conference series has been, and will always be, a way to commemorate them in a most appropriate context. The topics covered in ICPP-Istanbul-II were 'LHC Physics and Tevatron Results', 'Neutrinos and Dark Matter', 'Particle Factories' and 'Accelerator Physics and Future TeV Scale Colliders'. The main emphasis was on the recent experimental results in high-energy physics with discussions on expectations from existing or future

  18. PERSPECTIVE: Learning from the Brazilian biofuel experience

    NASA Astrophysics Data System (ADS)

    Wang, Michael

    2006-11-01

    In the article `The ethanol program in Brazil' [1] José Goldemberg summarizes the key features of Brazil's sugarcane ethanol program—the most successful biofuel program in the world so far. In fact, as of 2005, Brazil was the world's largest producer of fuel ethanol. In addition to providing 40% of its gasoline market with ethanol, Brazil exports a significant amount of ethanol to Europe, Japan, and the United States. The success of the program is attributed to a variety of factors, including supportive governmental policies and favorable natural conditions (such as a tropical climate with abundant rainfall and high temperatures). As the article points out, in the early stages of the Brazilian ethanol program, the Brazilian government provided loans to sugarcane growers and ethanol producers (in most cases, they are the same people) to encourage sugarcane and ethanol production. Thereafter, ethanol prices were regulated to ensure that producers can economically sustain production and consumers can benefit from using ethanol. Over time, Brazil was able to achieve a price for ethanol that is lower than that for gasoline, on the basis of energy content. This lower cost is largely driving the widespread use of ethanol instead of gasoline by consumers in Brazil. In the United States, if owners of E85 flexible-fuel vehicles (FFVs) are expected to use E85 instead of gasoline in their FFVs, E85 will have to be priced competitively against gasoline on an energy-content basis. Compared with corn-based or sugar beet-based ethanol, Brazil's sugarcane-based ethanol yields considerably more favorable results in terms of energy balance and reductions in greenhouse gas emissions. These results are primarily due to (i) the dramatic increase of sugarcane yield in Brazil in the past 25 years and (ii) the use of bagasse instead of fossil fuels in ethanol plants to provide the heat needed for ethanol plant operations and to generate electricity for export to electric grids

  19. Modeling Regional Groundwater Implications of Biofuel Crop Production in the Great Lakes Region

    NASA Astrophysics Data System (ADS)

    Parish, A.; Kendall, A. D.; Basso, B.; Hyndman, D. W.

    2013-12-01

    In response to a growing call for renewable sources of energy that do not compete directly with food resources, the use of second-generation 'cellulosic' biofuel feedstocks has gained much attention in recent years. The push to advance the technologies that would make such a transformation possible is motivated by the United States Renewable Fuel Standard mandate to produce 36 billion gallons of biofuels by 2022, an increase of 334 percent from 2009. Many different crops, including maize, miscanthus, switchgrass, and poplar have shown promise as cellulosic feedstocks, and in an attempt to supply the needed biomass to meet the 2022 mandate, production of these crops have been on the rise. Yet little is known about the sustainability of large-scale conversion of land to cellulosic biofuel crop production; more research is needed to understand the effects that these crops will have on the quality and quantity of groundwater. This study presents a model scale-up approach to address three questions: What are the hydrologic and nutrient demands of the primary biofuel crops? Which biofuel crops are more water efficient in terms of demand verses energy produced? What are the types and availabilities of land to expand production of these biofuel crops? To answer these questions, we apply a point-based crop dynamics model in combination with a regional-scale hydrologic model, parameterized using stream discharge and chemistry data collected from two representative watersheds in Wisconsin. Approximately 17 stream sites in each watershed are selected for data collection for model parameterization, including stream discharge, nutrient concentrations, and basic chemical characteristics. We then use the System Approach to Land Use Sustainability (SALUS) model, which predicts crop growth under varying soil and climate conditions, to drive vegetation dynamics and groundwater transport of nutrients within the Integrated Landscape Hydrology Model (ILHM). ILHM predictions of stream

  20. Process modeling and supply chain design for advanced biofuel production based on bio-oil gasification

    NASA Astrophysics Data System (ADS)

    Li, Qi

    As a potential substitute for petroleum-based fuel, second generation biofuels are playing an increasingly important role due to their economic, environmental, and social benefits. With the rapid development of biofuel industry, there has been an increasing literature on the techno-economic analysis and supply chain design for biofuel production based on a variety of production pathways. A recently proposed production pathway of advanced biofuel is to convert biomass to bio-oil at widely distributed small-scale fast pyrolysis plants, then gasify the bio-oil to syngas and upgrade the syngas to transportation fuels in centralized biorefinery. This thesis aims to investigate two types of assessments on this bio-oil gasification pathway: techno-economic analysis based on process modeling and literature data; supply chain design with a focus on optimal decisions for number of facilities to build, facility capacities and logistic decisions considering uncertainties. A detailed process modeling with corn stover as feedstock and liquid fuels as the final products is presented. Techno-economic analysis of the bio-oil gasification pathway is also discussed to assess the economic feasibility. Some preliminary results show a capital investment of 438 million dollar and minimum fuel selling price (MSP) of $5.6 per gallon of gasoline equivalent. The sensitivity analysis finds that MSP is most sensitive to internal rate of return (IRR), biomass feedstock cost, and fixed capital cost. A two-stage stochastic programming is formulated to solve the supply chain design problem considering uncertainties in biomass availability, technology advancement, and biofuel price. The first-stage makes the capital investment decisions including the locations and capacities of the decentralized fast pyrolysis plants and the centralized biorefinery while the second-stage determines the biomass and biofuel flows. The numerical results and case study illustrate that considering uncertainties can be

  1. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels

    PubMed Central

    Healey, Adam L.; Lee, David J.; Furtado, Agnelo; Simmons, Blake A.; Henry, Robert J.

    2015-01-01

    In order to meet the world’s growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  2. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels.

    PubMed

    Healey, Adam L; Lee, David J; Furtado, Agnelo; Simmons, Blake A; Henry, Robert J

    2015-01-01

    In order to meet the world's growing energy demand and reduce the impact of greenhouse gas emissions resulting from fossil fuel combustion, renewable plant-based feedstocks for biofuel production must be considered. The first-generation biofuels, derived from starches of edible feedstocks, such as corn, create competition between food and fuel resources, both for the crop itself and the land on which it is grown. As such, biofuel synthesized from non-edible plant biomass (lignocellulose) generated on marginal agricultural land will help to alleviate this competition. Eucalypts, the broadly defined taxa encompassing over 900 species of Eucalyptus, Corymbia, and Angophora are the most widely planted hardwood tree in the world, harvested mainly for timber, pulp and paper, and biomaterial products. More recently, due to their exceptional growth rate and amenability to grow under a wide range of environmental conditions, eucalypts are a leading option for the development of a sustainable lignocellulosic biofuels. However, efficient conversion of woody biomass into fermentable monomeric sugars is largely dependent on pretreatment of the cell wall, whose formation and complexity lend itself toward natural recalcitrance against its efficient deconstruction. A greater understanding of this complexity within the context of various pretreatments will allow the design of new and effective deconstruction processes for bioenergy production. In this review, we present the various pretreatment options for eucalypts, including research into understanding structure and formation of the eucalypt cell wall. PMID:26636077

  3. Tradeoffs and synergies between biofuel production and large-scale solar infrastructure in deserts

    NASA Astrophysics Data System (ADS)

    Ravi, S.; Lobell, D. B.; Field, C. B.

    2012-12-01

    Solar energy installations in deserts are on the rise, fueled by technological advances and policy changes. Deserts, with a combination of high solar radiation and availability of large areas unusable for crop production are ideal locations for large scale solar installations. For efficient power generation, solar infrastructures require large amounts of water for operation (mostly for cleaning panels and dust suppression), leading to significant moisture additions to desert soil. A pertinent question is how to use the moisture inputs for sustainable agriculture/biofuel production. We investigated the water requirements for large solar infrastructures in North American deserts and explored the possibilities for integrating biofuel production with solar infrastructure. In co-located systems the possible decline in yields due to shading by solar panels may be offsetted by the benefits of periodic water addition to biofuel crops, simpler dust management and more efficient power generation in solar installations, and decreased impacts on natural habitats and scarce resources in deserts. In particular, we evaluated the potential to integrate solar infrastructure with biomass feedstocks that grow in arid and semi-arid lands (Agave Spp), which are found to produce high yields with minimal water inputs. To this end, we conducted detailed life cycle analysis for these coupled agave biofuel - solar energy systems to explore the tradeoffs and synergies, in the context of energy input-output, water use and carbon emissions.

  4. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    NASA Astrophysics Data System (ADS)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  5. Optimal Distribution of Biofuel Feedstocks within Marginal Land in the USA

    NASA Astrophysics Data System (ADS)

    Jaiswal, D.

    2015-12-01

    The United States can have 43 to 123 Mha of marginal land to grow second generation biofuel feedstocks. A physiological and biophysical model (BioCro) was run using 30 yr climate data (NARR) and SSURGO soil data for the conterminous United Stated to simulate growth of miscanthus, switchgrass, sugarcane, and short rotation coppice. Overlay analyses of the regional maps of predicted yields and marginal land suggest maximum availability of 0.33, 1.15, 1.13, and 1.89 PG year-1 of biomass from sugarcane, willow, switchgrass, and miscanthus, respectively. Optimal distribution of these four biofuel feedstocks within the marginal land in the USA can provide up to 2 PG year-1 of biomass for the production of second generation of biofuel without competing for crop land used for food production. This approach can potentially meet a significant fraction of liquid fuel demand in the USA and reduce greenhouse gas emission while ensuring that current crop land under food production is not used for growing biofuel feedstocks.

  6. National Advanced Biofuels Consortium (NABC), Biofuels for Advancing America (Fact Sheet)

    SciTech Connect

    Not Available

    2010-06-01

    Introduction to the National Advanced Biofuels Consortium, a collaboration between 17 national laboratory, university, and industry partners that is conducting cutting-edge research to develop infrastructure-compatible, sustainable, biomass-based hydrocarbon fuels.

  7. Hyperfine structure and lifetime measurements in the 4s2nd 2D3/2 Rydberg sequence of Ga I by time-resolved laser spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chunqing; Tian, Yanshan; Yu, Qi; Bai, Wanshuang; Wang, Xinghao; Wang, Chong; Dai, Zhenwen

    2016-05-01

    The hyperfine structure (HFS) constants of the 4s2nd 2D3/2 (n=6-18) Rydberg sequence and the 4s26p 2P3/2 level for two isotopes of 69Ga and 71Ga atoms were measured by means of the time-resolved laser-induced fluorescence (TR-LIF) technique and the quantum beat method. The observed hyperfine quantum beat spectra were analyzed and the magnetic-dipole HFS constants A as well as the electric-quadrupole HFS constants B of these levels were obtained by Fourier transform and a program for multiple regression analysis. Also using TR-LIF method radiative lifetimes of the above sequence states were determined at room temperature. The measured lifetime values range from 69 to 2279 ns with uncertainties no more than 10%. To our knowledge, the HFS constants of this Rydberg sequence and the lifetimes of the 4s2nd 2D3/2 (n=10-18) levels are reported for the first time. Good agreement between our results and the previous is achieved.

  8. A Survey of Biofuel Production potentials in Russia

    NASA Astrophysics Data System (ADS)

    Lykova, Natalya; Gustafsson, Jan-Erik

    2010-01-01

    Due to the abundance of fossil fuel resources in Russia, the development of the renewable energy market there was delayed. Recent technological advancement has led to an increasing interest in biofuel production. The aim of research was to evaluate how biofuels are introduced into the current energy scheme of the country. The potential production of biofuels was estimated based on sustainable approaches which provide solution for carbon emission reduction and environmental benefits. Russia still requires biofuel policy to make biofuels compatible with traditional fossil fuels.

  9. Chromatin landscaping in algae reveals novel regulation pathway for biofuels production

    SciTech Connect

    Ngan, Chew Yee; Wong, Chee-Hong; Choi, Cindy; Pratap, Abhishek; Han, James; Wei, Chia-Lin

    2013-02-19

    The diminishing reserve of fossil fuels calls for the development of biofuels. Biofuels are produced from renewable resources, including photosynthetic organisms, generating clean energy. Microalgae is one of the potential feedstock for biofuels production. It grows easily even in waste water, and poses no competition to agricultural crops for arable land. However, little is known about the algae lipid biosynthetic regulatory mechanisms. Most studies relied on the homology to other plant model organisms, in particular Arabidopsis or through low coverage expression analysis to identify key enzymes. This limits the discovery of new components in the biosynthetic pathways, particularly the genetic regulators and effort to maximize the production efficiency of algal biofuels. Here we report an unprecedented and de novo approach to dissect the algal lipid pathways through disclosing the temporal regulations of chromatin states during lipid biosynthesis. We have generated genome wide chromatin maps in chlamydomonas genome using ChIP-seq targeting 7 histone modifications and RNA polymerase II in a time-series manner throughout conditions activating lipid biosynthesis. To our surprise, the combinatory profiles of histone codes uncovered new regulatory mechanism in gene expression in algae. Coupled with matched RNA-seq data, chromatin changes revealed potential novel regulators and candidate genes involved in the activation of lipid accumulations. Genetic perturbation on these candidate regulators further demonstrated the potential to manipulate the regulatory cascade for lipid synthesis efficiency. Exploring epigenetic landscape in microalgae shown here provides powerful tools needed in improving biofuel production and new technology platform for renewable energy generation, global carbon management, and environmental survey.

  10. Comparative mutagenicity assessment of aerosols in emissions from biofuel combustion

    NASA Astrophysics Data System (ADS)

    Mukherji, Suparna; Swain, Abhay Kumar; Venkataraman, Chandra

    This study was designed to determine the mutagenicity in extracts of aerosols generated from biofuel combustion in household cooking devices commonly used in India. Wood, dung cake and biofuel briquette were used as fuel in various stoves, including both traditional and improved stoves made of mud, fired clay and metal. The combustion aerosols of particle diameter less than 2.5 μm (PM2.5) were collected, and their organic extracts were tested for mutagenicity using the Ames Assay test with TA98 and TA100 strains of Salmonella typhimurium and studies were performed both with and without metabolic activation to account for direct and indirect acting mutagens. The measured mutagenicity emission factors, i.e., number of revertants per kg of fuel burnt, indicate that wood demonstrates significantly lower mutagenicity compared to dung cake and briquette. No significant stove effect was observed across all the fuels studied. The contribution of direct-acting mutagens was found to be greater than 70% in all cases. Such a high relative contribution of direct-acting mutagenicity has not been previously reported for biomass combustion aerosols.

  11. An overview of algae biofuel production and potential environmental impact.

    PubMed

    Menetrez, Marc Y

    2012-07-01

    Algae are among the most potentially significant sources of sustainable biofuels in the future of renewable energy. A feedstock with virtually unlimited applicability, algae can metabolize various waste streams (e.g., municipal wastewater, carbon dioxide from industrial flue gas) and produce products with a wide variety of compositions and uses. These products include lipids, which can be processed into biodiesel; carbohydrates, which can be processed into ethanol; and proteins, which can be used for human and animal consumption. Algae are commonly genetically engineered to allow for advantageous process modification or optimization. However, issues remain regarding human exposure to algae-derived toxins, allergens, and carcinogens from both existing and genetically modified organisms (GMOs), as well as the overall environmental impact of GMOs. A literature review was performed to highlight issues related to the growth and use of algal products for generating biofuels. Human exposure and environmental impact issues are identified and discussed, as well as current research and development activities of academic, commercial, and governmental groups. It is hoped that the ideas contained in this paper will increase environmental awareness of issues surrounding the production of algae and will help the algae industry develop to its full potential. PMID:22681590

  12. AN OVERVIEW OF BIOFUELS PROCESS DEVELOPMENT IN SOUTH CAROLINA

    SciTech Connect

    Sherman, S.; French, T.

    2010-02-03

    The South Carolina Bio-Energy Research Collaborative is working together on the development and demonstration of technology options for the production of bio-fuels using renewable non-food crops and biomass resources that are available or could be made available in abundance in the southeastern United States. This collaboration consists of Arborgen LLC, Clemson University, Savannah River National Laboratory, and South Carolina State University, with support from Dyadic, Fagen Engineering, Renewed World Energies, and Spinx. Thus far, most work has centered on development of a fermentation-based process to convert switchgrass into ethanol, with the concomitant generation of a purified lignin stream. The process is not feed-specific, and the work scope has recently expanded to include sweet sorghum and wood. In parallel, the Collaborative is also working on developing an economical path to produce oils and fuels from algae. The Collaborative envisions an integrated bio-fuels process that can accept multiple feedstocks, shares common equipment, and that produces multiple product streams. The Collaborative is not the only group working on bio-energy in South Carolina, and other companies are involved in producing biomass derived energy products at an industrial scale.

  13. The second Pacific basin biofuels workshop: Volume 1, Report

    SciTech Connect

    Not Available

    1987-01-01

    Biomass is the most flexible renewable energy resource in Hawaii. Today it provides the state with cost-effective fuel for electrical generation and for thermal energy used in sugarcane processing; tomorrow it will provide feedstock to produce liquid and gaseous fuels, which will help meet Hawaii's transportation energy needs. With optimal growing conditions year round and a strong economy based in part on sugarcane and pineapple cultivation, Hawaii is an ideal place to develop fuels from biomass. In November 1984, the Hawaii Natural Energy Institute (HNEI) held the First Pacific Basin BioFuels Workshop. The Plan for Action resulting from this workshop led to significant new program efforts that addressed the advancement of biomass research, development, and use. The Second Pacific Basin BioFuels Workshop was held at the Kauai Resort Hotel in Kapaa, Kauai, April 22-24, 1987. Before and after the workshop, HNEI conducted field visits to biomass energy facilities and test sites on Hawaii, Maui, Oahu, and Kauai. The workshop consisted of presentations, discussion groups, and plenary sessions on growth and yield, conversion, end use, institutional issues, and other topics. The final session focused on recommendations for a Plan for Action update.

  14. Global and Regional Potential for Biofuels From Residue and Waste

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Smith, S. J.

    2007-12-01

    As co-products, agricultural and forestry residues as well as municipal solid waste (MSW) represent potential low cost lignocellulosic biomass feedstocks for the production of second generation biofuels. For agriculture, the maximum supply is a function of crop-specific attributes (harvest index and energy content of residue) and total crop production (yield and total harvested area). For forestry, two potential residue streams are considered: residue left from timber harvesting (tree tops and branches), and residue from mills (wood scraps and sawdust). The harvest index, milling efficiencies, and energy content of wood are used to estimate the total potential supply of forestry residues. MSW is predicted as a function of GDP and the proportional waste composition indicative of various regions. Limiting factors for supply of biomass feedstock from these sources include agricultural and forest productivity, residue required to prevent soil erosion and maintain soil nutrients, and cost of aggregation and transport. Using the ObjECTS MiniCAM Integrated Assessment Model, the global role of residue biomass as a feedstock for biofuels is modeled for the next century under different climate policy scenarios.

  15. Designing Sustainable Supply Chains for Biofuels

    EPA Science Inventory

    Driven by the Energy and Independence Act of 2007 mandate to increase production of alternative fuels and to ensure that this increase causes minimal environmental impact, a project to design sustainable biofuel supply chains has been developed. This effort uses life cycle asses...

  16. Characterizing Emissions from the Combustion of Biofuels

    EPA Science Inventory

    Emissions from two biofuels, a soy-based biodiesel and an animal-based biodiesel, were measured and compared to emissions from a distillate petroleum fuel oil. The three fuels were burned in a small fire tube boiler designed for use in institutional, commercial, and light industr...

  17. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  18. Environmental impacts of biofuel production and use

    EPA Science Inventory

    The 2007 Energy Independence and Security Act (EISA) required a significant increase in the production and use of renewable fuels. Given the current state of technology and infrastructure, nearly all of the projected volume of biofuel consumption over the foreseeable future is ex...

  19. Policy options to support biofuel production.

    PubMed

    Mabee, W E

    2007-01-01

    Biofuels for use in the transportation sector have been produced on a significant scale since the 1970s, using a variety of technologies. The biofuels widely available today are predominantly sugar- and starch-based bioethanol, and oilseed- and waste oil-based biodiesel, although new technologies under development may allow the use of lignocellulosic feedstocks. Measures to promote the use of biofuels include renewable fuel mandates, tax incentives, and direct funding for capital projects or fleet upgrades. This paper provides a review of the policies behind the successful establishment of the biofuel industry in countries around the world. The impact of direct funding programs and excise tax exemptions are examined using the United States as a case study. It is found that the success of five major bioethanol producing states (Illinois, Iowa, Nebraska, South Dakota, and Minnesota) is closely related to the presence of funding designed to support the industry in its start-up phase, while tax exemptions on bioethanol use do not influence the development of production capacity. The study concludes that successful policy interventions can take many forms, but that success is equally dependent upon external factors, which include biomass availability, an active industry, and competitive energy prices. PMID:17846726

  20. Biofuels and the Greenhouse Gas Factor

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Biofuels have been scrutinized for their potential to be used as a fuel substitute to offset a portion of the greenhouse gas (GHG) emissions produced by fossil fuel combustion. But quantifying that offset is complex. Bioenergy crops offset their greenhouse-gas contributions in three key ways: by rem...