NASA Astrophysics Data System (ADS)
Park, Jun-Hyub; Shin, Myung-Soo; Kang, Dong-Joong; Lim, Sung-Jo; Ha, Jong-Eun
In this study, a system for non-contact in-situ measurement of strain during tensile test of thin films by using CCD camera with marking surface of specimen by black pen was implemented as a sensing device. To improve accuracy of measurement when CCD camera is used, this paper proposed a new method for measuring strain during tensile test of specimen with micrometer size. The size of pixel of CCD camera determines resolution of measurement, but the size of pixel can not satisfy the resolution required in tensile test of thin film because the extension of the specimen is very small during the tensile test. To increase resolution of measurement, the suggested method performs an accurate subpixel matching by applying 2nd order polynomial interpolation method to the conventional template matching. The algorithm was developed to calculate location of subpixel providing the best matching value by performing single dimensional polynomial interpolation from the results of pixel-based matching at a local region of image. The measurement resolution was less than 0.01 times of original pixel size. To verify the reliability of the system, the tensile test for the BeNi thin film was performed, which is widely used as a material in micro-probe tip. Tensile tests were performed and strains were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can effectively describe a behavior of materials after yield during the tensile test of the specimen at microscale with easy setup and better accuracy.
Exogenous attention enhances 2nd-order contrast sensitivity.
Barbot, Antoine; Landy, Michael S; Carrasco, Marisa
2011-05-11
Natural scenes contain a rich variety of contours that the visual system extracts to segregate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention--the involuntary and transient capture of spatial attention--affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer's 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228
Exogenous attention enhances 2nd-order contrast sensitivity
Barbot, Antoine; Landy, Michael S.; Carrasco, Marisa
2011-01-01
Natural scenes contain a rich variety of contours that the visual system extracts to segregrate the retinal image into perceptually coherent regions. Covert spatial attention helps extract contours by enhancing contrast sensitivity for 1st-order, luminance-defined patterns at attended locations, while reducing sensitivity at unattended locations, relative to neutral attention allocation. However, humans are also sensitive to 2nd-order patterns such as spatial variations of texture, which are predominant in natural scenes and cannot be detected by linear mechanisms. We assess whether and how exogenous attention—the involuntary and transient capture of spatial attention—affects the contrast sensitivity of channels sensitive to 2nd-order, texture-defined patterns. Using 2nd-order, texture-defined stimuli, we demonstrate that exogenous attention increases 2nd-order contrast sensitivity at the attended location, while decreasing it at unattended locations, relative to a neutral condition. By manipulating both 1st- and 2nd-order spatial frequency, we find that the effects of attention depend both on 2nd-order spatial frequency of the stimulus and the observer’s 2nd-order spatial resolution at the target location. At parafoveal locations, attention enhances 2nd-order contrast sensitivity to high, but not to low 2nd-order spatial frequencies; at peripheral locations attention also enhances sensitivity to low 2nd-order spatial frequencies. Control experiments rule out the possibility that these effects might be due to an increase in contrast sensitivity at the 1st-order stage of visual processing. Thus, exogenous attention affects 2nd-order contrast sensitivity at both attended and unattended locations. PMID:21356228
The transient nature of 2nd-order stereopsis.
Hess, Robert F; Wilcox, Laurie M
2008-05-01
There are currently two competing dichotomies used to describe how local stereoscopic information is processed by the human visual system. The first is in terms of the type of the spatial filtering operations used to extract relevant image features prior to stereoscopic analysis (i.e. 1st- vs 2nd-order stereo; [Hess, R. F., & Wilcox, L. M. (1994). Linear and non-linear filtering in stereopsis. Vision Research, 34, 2431-2438]). The second is in terms of the temporal properties of the mechanisms used to process stereoscopic information (i.e. sustained vs transient stereo; [Schor, C. M., Edwards, M., & Pope, D. R. (1998). Spatial-frequency and contrast tuning of the transient-stereopsis system. Vision Research, 38(20), 3057-3068]). Here we compare the dynamics of 1st- and 2nd-order stereopsis using several types of stimuli and find a clear dissociation in which 1st-order stimuli exhibit sustained properties while 2nd-order patterns show more transient properties. Our results and analyses unify and simplify two complimentary bodies of work. PMID:18407312
1st- and 2nd-order motion and texture resolution in central and peripheral vision
NASA Technical Reports Server (NTRS)
Solomon, J. A.; Sperling, G.
1995-01-01
STIMULI. The 1st-order stimuli are moving sine gratings. The 2nd-order stimuli are fields of static visual texture, whose contrasts are modulated by moving sine gratings. Neither the spatial slant (orientation) nor the direction of motion of these 2nd-order (microbalanced) stimuli can be detected by a Fourier analysis; they are invisible to Reichardt and motion-energy detectors. METHOD. For these dynamic stimuli, when presented both centrally and in an annular window extending from 8 to 10 deg in eccentricity, we measured the highest spatial frequency for which discrimination between +/- 45 deg texture slants and discrimination between opposite directions of motion were each possible. RESULTS. For sufficiently low spatial frequencies, slant and direction can be discriminated in both central and peripheral vision, for both 1st- and for 2nd-order stimuli. For both 1st- and 2nd-order stimuli, at both retinal locations, slant discrimination is possible at higher spatial frequencies than direction discrimination. For both 1st- and 2nd-order stimuli, motion resolution decreases 2-3 times more rapidly with eccentricity than does texture resolution. CONCLUSIONS. (1) 1st- and 2nd-order motion scale similarly with eccentricity. (2) 1st- and 2nd-order texture scale similarly with eccentricity. (3) The central/peripheral resolution fall-off is 2-3 times greater for motion than for texture.
The 2nd-order Post-Newtonian Orbit Equation of Light
NASA Astrophysics Data System (ADS)
Xiao, Yu; Fei, Bao-Jun; Sun, Wei-Jin; Ji, Cheng-Xiang
2008-10-01
Based on the 2nd-order post-Newtonian approximation under the DSX frame of the general relativity theory, the 2nd-order post-Newtonian orbital equation of light in the axis-symmetrical stationary spacetime is derived, and from this, the angle of deflection of light propagating in the equatorial plane is derived. The obtained results are consistent with those of the Schwarzchild and Kerr metrics within the limits of measuring precision.
Four-dimensional investigation of the 2nd order volume autocorrelation technique
NASA Astrophysics Data System (ADS)
Faucher, O.; Tzallas, P.; Benis, E. P.; Kruse, J.; Peralta Conde, A.; Kalpouzos, C.; Charalambidis, D.
2009-10-01
The 2nd order volume autocorrelation technique, widely utilized in directly measuring ultra-short light pulses durations, is examined in detail via model calculations that include three-dimensional integration over a large ionization volume, temporal delay and spatial displacement of the two beams of the autocorrelator at the focus. The effects of the inherent displacement to the 2nd order autocorrelation technique are demonstrated for short and long pulses, elucidating the appropriate implementation of the technique in tight focusing conditions. Based on the above investigations, a high accuracy 2nd order volume autocorrelation measurement of the duration of the 5th harmonic of a 50 fs long laser pulse, including the measurement of the carrier wavelength oscillation, is presented.
2nd-Order CESE Results For C1.1: Transonic Ringleb Flow
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2015-01-01
The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d (an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available.) The CESE method is a time-accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist.
2nd-Order CESE Results For C1.4: Vortex Transport by Uniform Flow
NASA Technical Reports Server (NTRS)
Friedlander, David J.
2015-01-01
The Conservation Element and Solution Element (CESE) method was used as implemented in the NASA research code ez4d. The CESE method is a time accurate formulation with flux-conservation in both space and time. The method treats the discretized derivatives of space and time identically and while the 2nd-order accurate version was used, high-order versions exist, the 2nd-order accurate version was used. In regards to the ez4d code, it is an unstructured Navier-Stokes solver coded in C++ with serial and parallel versions available. As part of its architecture, ez4d has the capability to utilize multi-thread and Messaging Passage Interface (MPI) for parallel runs.
NASA Technical Reports Server (NTRS)
Kapania, Rakesh K.; Liu, Youhua
2000-01-01
At the preliminary design stage of a wing structure, an efficient simulation, one needing little computation but yielding adequately accurate results for various response quantities, is essential in the search of optimal design in a vast design space. In the present paper, methods of using sensitivities up to 2nd order, and direct application of neural networks are explored. The example problem is how to decide the natural frequencies of a wing given the shape variables of the structure. It is shown that when sensitivities cannot be obtained analytically, the finite difference approach is usually more reliable than a semi-analytical approach provided an appropriate step size is used. The use of second order sensitivities is proved of being able to yield much better results than the case where only the first order sensitivities are used. When neural networks are trained to relate the wing natural frequencies to the shape variables, a negligible computation effort is needed to accurately determine the natural frequencies of a new design.
Computer Generation of Subduction Frequencies for 2ND Order Phase Transitions in Two-Dimensions
NASA Astrophysics Data System (ADS)
Deonarine, Samaroo
The Landau theory of 2nd order phase transitions and Group theory Criteria are used to predict which subgroups G (L-HOOK EQ) G(,0) can occur in transitions for 2-D systems (plane-group to plane-group and diperiodic to diperiodic). Previous work 1 on the 17 plane space groups has been based on the tables of Coxeter & Moser 2 and the International Tables of X-ray Crystallography (ITXRC, 1965) 3 . These tables do not exhaust all the possible subgroups of a space group 4 . Since such explicit tables are non-existent for other families of space groups we have developed algorithms that make a systematic search of the parent unit cell of G(,0) to locate the origin and orientation of all its subgroups G, G (L-HOOK EQ) G(,0). We have written a RATFOR/FORTRAN program for the VAX 11-780 which will generate the subduction frequencies. (DIAGRAM, TABLE OR GRAPHIC OMITTED...PLEASE SEE DAI). for allowed second order phase transitions in 2-dimensional systems that are describable by the 80 diperiodic Groups G(,0) and G 5 . Our program gives a complete tabulation (Origin, new Translation Sublattice, Subduction Frequency, Subgroup and its Generators) of the allowed continuous or second order phase transitions from a parent diperiodic group G(,0) to another diperiodic subgroup G.
A convective divertor utilizing a 2nd-order magnetic field null
NASA Astrophysics Data System (ADS)
Rognlien, Thomas
2014-10-01
New results motivate a detailed study of a magnetic divertor concept characterized by strong plasma convection near a poloidal magnetic field (Bp) null region. The configuration is that of a near-2nd-order Bp null (Bp ~ Δ r2) , as in a snowflake divertor. The concept has 2 key features: (A) Convection spreads the heat flux between multiple divertor legs and further broadens the heat-flux profile within each leg, thereby greatly reducing target-plate heat loads. (B) The heat flux is further reduced by line radiation in each leg in detachment-like ionization zones. Theory indicates that convective turbulence arises when the poloidal plasma beta, βp = 2μ0nT/B p 2 >> 1 . Measurements in TCV now more fully quantify earlier NSTX and TCV observations of plasma mixing, and related modeling of TCV indicates that strongly enhanced null-region transport is present. Convective mixing provides a stabilizing mechanism to prevent the ionization fronts (hydrogenic and impurity) from collapsing to a highly radiating core MARFE. Also, the radiating zone maps to a very small region at the midplane owing to the very weak Bp in the convective region, thus minimizing its impact on the core plasma. Detailed calculations are reported that combine features A and B noted above. The plasma mixing mechanisms are described together with the corresponding transport model implemented in the 2D UEDGE edge transport code. UEDGE calculations are presented that quantify the roles of mixing, impurity radiation, and detachment stability for a realistic snowflake configuration. Work in collaboration with D.D. Ryutov, S.I. Krasheninnikov, and M.V. Umansky. Performed for the U.S. DoE by LLNS, LLC, LLNL, under Contract DE-AC52-07NA27344.
Modelling Trends in Ordered Correspondence Analysis Using Orthogonal Polynomials.
Lombardo, Rosaria; Beh, Eric J; Kroonenberg, Pieter M
2016-06-01
The core of the paper consists of the treatment of two special decompositions for correspondence analysis of two-way ordered contingency tables: the bivariate moment decomposition and the hybrid decomposition, both using orthogonal polynomials rather than the commonly used singular vectors. To this end, we will detail and explain the basic characteristics of a particular set of orthogonal polynomials, called Emerson polynomials. It is shown that such polynomials, when used as bases for the row and/or column spaces, can enhance the interpretations via linear, quadratic and higher-order moments of the ordered categories. To aid such interpretations, we propose a new type of graphical display-the polynomial biplot. PMID:25791164
Higher order derivatives of R-Jacobi polynomials
NASA Astrophysics Data System (ADS)
Das, Sourav; Swaminathan, A.
2016-06-01
In this work, the R-Jacobi polynomials defined on the nonnegative real axis related to F-distribution are considered. Using their Sturm-Liouville system higher order derivatives are constructed. Orthogonality property of these higher ordered R-Jacobi polynomials are obtained besides their normal form, self-adjoint form and hypergeometric representation. Interesting results on the Interpolation formula and Gaussian quadrature formulae are obtained with numerical examples.
Order and disorder in Ca 2ND 0.90H 0.10-A structural and thermal study
NASA Astrophysics Data System (ADS)
Verbraeken, Maarten C.; Suard, Emmanuelle; Irvine, John T. S.
2011-08-01
The structure of calcium nitride hydride and its deuterided form has been re-examined at room temperature and studied at high temperature using neutron powder diffraction and thermal analysis. When synthesised at 600 °C, a mixture of both ordered and disordered Ca 2ND 0.90H 0.10 phases results. The disordered phase is the minor component and has a primitive rocksalt structure (spacegroup Fm3 m) with no ordering of D/N on the anion sites and the ordered phase is best described using the rhombohedral spacegroup R-3 m with D and N arranged in alternate layers in (111) planes. This mixture of ordered and disordered phases exists up to 580 °C, at which the loss of deuterium yields Ca 2ND 0.85 with the disappearance of the disordered phase. In the new ordered phase there exists a similar content of vacancies on both anion sites; to achieve this balance, a little N transfers onto the D site, whereas there is no indication of D transferring onto the N-sites. These observations are thought to indicate that the D/N ordering is difficult to achieve with fully occupied anion sites. It has previously been reported that Ca 2ND has an ordered cubic cell with alternating D and N sites in the [100] directions [1]; however, for the samples studied herein, there were clearly two coexisting phases with apparent broadening/splitting of the primitive peaks but not for the ordered peaks. The rhombohedral phase was in fact metrically cubic; however, all the observed peaks were consistent with the rhombohedral unit cell with no peaks requiring the larger ordered cubic unit cell to be utilised. Furthermore this rhombohedral cell displays the same form of N-D ordering as the Sr and Ba analogues, which are metrically rhombohedral.
Brain order disorder 2nd group report of f-EEG
NASA Astrophysics Data System (ADS)
Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi
2014-05-01
Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (
Brain order disorder 2nd group report of f-EEG
NASA Astrophysics Data System (ADS)
Lalonde, Francois; Gogtay, Nitin; Giedd, Jay; Vydelingum, Nadarajen; Brown, David; Tran, Binh Q.; Hsu, Charles; Hsu, Ming-Kai; Cha, Jae; Jenkins, Jeffrey; Ma, Lien; Willey, Jefferson; Wu, Jerry; Oh, Kenneth; Landa, Joseph; Lin, C. T.; Jung, T. P.; Makeig, Scott; Morabito, Carlo Francesco; Moon, Qyu; Yamakawa, Takeshi; Lee, Soo-Young; Lee, Jong-Hwan; Szu, Harold H.; Kaur, Balvinder; Byrd, Kenneth; Dang, Karen; Krzywicki, Alan; Familoni, Babajide O.; Larson, Louis; Harkrider, Susan; Krapels, Keith A.; Dai, Liyi
2014-05-01
Since the Brain Order Disorder (BOD) group reported on a high density Electroencephalogram (EEG) to capture the neuronal information using EEG to wirelessly interface with a Smartphone [1,2], a larger BOD group has been assembled, including the Obama BRAIN program, CUA Brain Computer Interface Lab and the UCSD Swartz Computational Neuroscience Center. We can implement the pair-electrodes correlation functions in order to operate in a real time daily environment, which is of the computation complexity of O(N3) for N=102~3 known as functional f-EEG. The daily monitoring requires two areas of focus. Area #(1) to quantify the neuronal information flow under arbitrary daily stimuli-response sources. Approach to #1: (i) We have asserted that the sources contained in the EEG signals may be discovered by an unsupervised learning neural network called blind sources separation (BSS) of independent entropy components, based on the irreversible Boltzmann cellular thermodynamics(ΔS < 0), where the entropy is a degree of uniformity. What is the entropy? Loosely speaking, sand on the beach is more uniform at a higher entropy value than the rocks composing a mountain - the internal binding energy tells the paleontologists the existence of information. To a politician, landside voting results has only the winning information but more entropy, while a non-uniform voting distribution record has more information. For the human's effortless brain at constant temperature, we can solve the minimum of Helmholtz free energy (H = E - TS) by computing BSS, and then their pairwise-entropy source correlation function. (i) Although the entropy itself is not the information per se, but the concurrence of the entropy sources is the information flow as a functional-EEG, sketched in this 2nd BOD report. Area #(2) applying EEG bio-feedback will improve collective decision making (TBD). Approach to #2: We introduce a novel performance quality metrics, in terms of the throughput rate of faster (
Coherent orthogonal polynomials
Celeghini, E.; Olmo, M.A. del
2013-08-15
We discuss a fundamental characteristic of orthogonal polynomials, like the existence of a Lie algebra behind them, which can be added to their other relevant aspects. At the basis of the complete framework for orthogonal polynomials we include thus–in addition to differential equations, recurrence relations, Hilbert spaces and square integrable functions–Lie algebra theory. We start here from the square integrable functions on the open connected subset of the real line whose bases are related to orthogonal polynomials. All these one-dimensional continuous spaces allow, besides the standard uncountable basis (|x〉), for an alternative countable basis (|n〉). The matrix elements that relate these two bases are essentially the orthogonal polynomials: Hermite polynomials for the line and Laguerre and Legendre polynomials for the half-line and the line interval, respectively. Differential recurrence relations of orthogonal polynomials allow us to realize that they determine an infinite-dimensional irreducible representation of a non-compact Lie algebra, whose second order Casimir C gives rise to the second order differential equation that defines the corresponding family of orthogonal polynomials. Thus, the Weyl–Heisenberg algebra h(1) with C=0 for Hermite polynomials and su(1,1) with C=−1/4 for Laguerre and Legendre polynomials are obtained. Starting from the orthogonal polynomials the Lie algebra is extended both to the whole space of the L{sup 2} functions and to the corresponding Universal Enveloping Algebra and transformation group. Generalized coherent states from each vector in the space L{sup 2} and, in particular, generalized coherent polynomials are thus obtained. -- Highlights: •Fundamental characteristic of orthogonal polynomials (OP): existence of a Lie algebra. •Differential recurrence relations of OP determine a unitary representation of a non-compact Lie group. •2nd order Casimir originates a 2nd order differential equation that defines
NASA Astrophysics Data System (ADS)
Boyle, C.; Sigler, C.; Kirch, J. D.; Lindberg, D.; Earles, T.; Botez, D.; Mawst, L. J.
2016-03-01
Grating-coupled, surface-emitting (GCSE) quantum-cascade lasers (QCLs) are demonstrated with high-power, single-lobe surface emission. A 2nd-order Au-semiconductor distributed-feedback (DFB)/ distributed-Bragg-reflector (DBR) grating is used for feedback and out-coupling. The DFB and DBR grating regions are 2.55 mm- and 1.28 mm-long, respectively, for a total grating length of 5.1 mm. The lasers are designed to operate in a symmetric longitudinal mode by causing resonant coupling of the guided optical mode to the antisymmetric surface-plasmon modes of the 2nd-order metal/semiconductor grating. In turn, the antisymmetric longitudinal modes are strongly absorbed by the metal in the grating, causing the symmetric longitudinal mode to be favored to lase, which produces a single lobe beam over a grating duty-cycle range of 36-41 %. Simulations indicate that the symmetric mode is always favored to lase, independent of the random phase of residual reflections from the device's cleaved ends. Peak pulsed output powers of ~ 0.4 W were measured with single-lobe, single-mode operation near 4.75 μm.
Wang, C-X. )
2012-04-25
Optimization of nonlinear driving terms have become a useful tool for designing storage rings, especially modern light sources where the strong nonlinearity is dominated by the large chromatic effects of quadrupoles and strong sextupoles for chromaticity control. The Lie algebraic method is well known for computing such driving terms. However, it appears that there was a lack of explicit formulas in the public domain for such computation, resulting in uncertainty and/or inconsistency in widely used codes. This note presents explicit formulas for driving terms due to sextupoles and chromatic effects of quadrupoles, which can be considered as thin elements. The computation is accurate to the 4th-order Hamiltonian and 2nd-order in terms of magnet parameters. The results given here are the same as the APS internal note AOP-TN-2009-020. This internal nte has been revised and published here as a Light Source Note in order to get this information into the public domain, since both ELEGANT and OPA are using these formulas.
Global Monte Carlo Simulation with High Order Polynomial Expansions
William R. Martin; James Paul Holloway; Kaushik Banerjee; Jesse Cheatham; Jeremy Conlin
2007-12-13
The functional expansion technique (FET) was recently developed for Monte Carlo simulation. The basic idea of the FET is to expand a Monte Carlo tally in terms of a high order expansion, the coefficients of which can be estimated via the usual random walk process in a conventional Monte Carlo code. If the expansion basis is chosen carefully, the lowest order coefficient is simply the conventional histogram tally, corresponding to a flat mode. This research project studied the applicability of using the FET to estimate the fission source, from which fission sites can be sampled for the next generation. The idea is that individual fission sites contribute to expansion modes that may span the geometry being considered, possibly increasing the communication across a loosely coupled system and thereby improving convergence over the conventional fission bank approach used in most production Monte Carlo codes. The project examined a number of basis functions, including global Legendre polynomials as well as “local” piecewise polynomials such as finite element hat functions and higher order versions. The global FET showed an improvement in convergence over the conventional fission bank approach. The local FET methods showed some advantages versus global polynomials in handling geometries with discontinuous material properties. The conventional finite element hat functions had the disadvantage that the expansion coefficients could not be estimated directly but had to be obtained by solving a linear system whose matrix elements were estimated. An alternative fission matrix-based response matrix algorithm was formulated. Studies were made of two alternative applications of the FET, one based on the kernel density estimator and one based on Arnoldi’s method of minimized iterations. Preliminary results for both methods indicate improvements in fission source convergence. These developments indicate that the FET has promise for speeding up Monte Carlo fission source
NASA Astrophysics Data System (ADS)
de Lima, João L. M. P.; Canhoto, Cristina
2015-04-01
What will happen when water temperatures of streams increases, due to climate changes or in connection with rapidly changing human systems? Trying to answer to this question a whole-stream manipulative experiment was undertaken, where an increase in water temperature was artificially induced on a 2nd order stream reach. The main objective of this poster is to describe this experiment focusing on the design of the hydraulic system. The system maintained a steady flow while allowing natural variation in abiotic factors and was successfully used to evaluate the effects of warming on a stream ecosystem at several levels of biological organization. A constant flow of stream water was controlled by a hydraulic setup (~22m long; ~1.5m width) subdivided into two independent channels. One channel of the study reach received heated water (~3°C above the other), while the other received water at stream ambient temperature. The warming system maintained a steady gravity controlled flow making use of weirs and valves.
Polynomial Solutions of Nth Order Non-Homogeneous Differential Equations
ERIC Educational Resources Information Center
Levine, Lawrence E.; Maleh, Ray
2002-01-01
It was shown by Costa and Levine that the homogeneous differential equation (1-x[superscript N])y([superscript N]) + A[subscript N-1]x[superscript N-1)y([superscript N-1]) + A[subscript N-2]x[superscript N-2])y([superscript N-2]) + ... + A[subscript 1]xy[prime] + A[subscript 0]y = 0 has a finite polynomial solution if and only if [for…
Structural and magnetic study of order-disorder behavior in the double perovskites Ba2Nd1-xMnxMoO6.
Coomer, Fiona C; Cussen, Edmund J
2014-01-21
The synthesis and structural and magnetic characterization of the site-ordered double perovskites, Ba2Nd1-xMnxMoO6, 0 < x ≤ 1, are reported in order to show the effect of doping Jahn-Teller active, S = 1/2, Mo(5+) into the structure of Ba2MnMoO6, which exhibits anomalous long-range antiferromagnetic order. Rietveld refinements against room temperature neutron powder diffraction data indicate that the tetragonal distortion present in the Ba2NdMoO6 end member persists to x ≤ 0.3. This is predominantly manifested as a tilting of the MO6 octahedra, and there is no evidence of any structural phase transitions on cooling to 1.5 K. For x > 0.3, no deviation from the ideal cubic Fm3̅m symmetry is observed. Furthermore, dc-susceptibility measurements confirm that Mn(2+) is being doped onto the Nd(3+) site, and the associated oxidation of Mo(5+) to Mo(6+). For all compositions, the Curie-Weiss paramagnetic behavior above 150 K indicates negative Weiss constants that range from -24(2) and -85(2) K. This net antiferromagnetic interaction is weakest when x ≈ 0.5, where the disorder in cation site occupancy and competition with ferromagnetic interactions is the greatest. Despite these strong antiferromagnetic interactions, there is no evidence in the dc-susceptibility of a bulk cancellation of spins for x > 0.05. Low-temperature neutron diffraction measurements indicate that there is no long-range magnetic order for 0.1 ≤ x < 0.9. Ba2Nd0.10Mn0.90MoO6 exhibits additional Bragg scattering at 2 K, indicative of long-range antiferromagnetic ordering of the Mn(2+) cations, with a propagation vector k = (1/2, 1/2, 1/2). The scattering intensities can be modeled using a noncollinear magnetic structure with the Mn(2+) moments orientated antiferromagnetically along the four different ⟨111⟩ directions. PMID:24392887
DNS and LES of Turbulent Backward-Facing Step Flow Using 2ND-and 4TH-Order Discretization
NASA Astrophysics Data System (ADS)
Meri, Adnan; Wengle, Hans
Results are presented from a Direct Numerical Simulation (DNS) and Large-Eddy Simulations (LES) of turbulent flow over a backward-facing step (Reh=3300) with a fully developed channel flow (Rcτ=180) utilized asatime-dependent inflow condition. Numerical solutions using a fourth-order compact (Hermitian) scheme, which was formulated directly for anon-equidistant and staggered grid in [1] are compared with numerical solutions using the classical second-order central scheme. There sults from LES (using the dynamic subgrid scale model) are evaluated against a corresponding DNS reference data set (fourth-order solution).
NASA Astrophysics Data System (ADS)
Cacuci, Dan G.
2015-03-01
This work presents an illustrative application of the second-order adjoint sensitivity analysis methodology (2nd-ASAM) to a paradigm neutron diffusion problem, which is sufficiently simple to admit an exact solution, thereby making transparent the underlying mathematical derivations. The general theory underlying 2nd-ASAM indicates that, for a physical system comprising Nα parameters, the computation of all of the first- and second-order response sensitivities requires (per response) at most (2Nα + 1) "large-scale" computations using the first-level and, respectively, second-level adjoint sensitivity systems (1st-LASS and 2nd-LASS). Very importantly, however, the illustrative application presented in this work shows that the actual number of adjoint computations needed for computing all of the first- and second-order response sensitivities may be significantly less than (2Nα + 1) per response. For this illustrative problem, four "large-scale" adjoint computations sufficed for the complete and exact computations of all 4 first- and 10 distinct second-order derivatives. Furthermore, the construction and solution of the 2nd-LASS requires very little additional effort beyond the construction of the adjoint sensitivity system needed for computing the first-order sensitivities. Very significantly, only the sources on the right-sides of the diffusion (differential) operator needed to be modified; the left-side of the differential equations (and hence the "solver" in large-scale practical applications) remained unchanged. All of the first-order relative response sensitivities to the model parameters have significantly large values, of order unity. Also importantly, most of the second-order relative sensitivities are just as large, and some even up to twice as large as the first-order sensitivities. In the illustrative example presented in this work, the second-order sensitivities contribute little to the response variances and covariances. However, they have the
Special polynomials associated with the fourth order analogue to the Painlevé equations
NASA Astrophysics Data System (ADS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-04-01
Rational solutions of the fourth order analogue to the Painlevé equations are classified. Special polynomials associated with the rational solutions are introduced. The structure of the polynomials is found. Formulae for their coefficients and degrees are derived. It is shown that special solutions of the Fordy Gibbons, the Caudrey Dodd Gibbon and the Kaup Kupershmidt equations can be expressed through solutions of the equation studied.
NASA Astrophysics Data System (ADS)
Wang, Zhengzi
2015-08-01
The influence of ambient temperature is a big challenge to robust infrared face recognition. This paper proposes a new ambient temperature normalization algorithm to improve the performance of infrared face recognition under variable ambient temperatures. Based on statistical regression theory, a second order polynomial model is learned to describe the ambient temperature's impact on infrared face image. Then, infrared image was normalized to reference ambient temperature by the second order polynomial model. Finally, this normalization method is applied to infrared face recognition to verify its efficiency. The experiments demonstrate that the proposed temperature normalization method is feasible and can significantly improve the robustness of infrared face recognition.
On P -orderings, rings of integer-valued polynomials, and ultrametric analysis
NASA Astrophysics Data System (ADS)
Bhargava, Manjul
2009-10-01
We introduce two new notions of `` P -ordering'' and use them to define a three-parameter generalization of the usual factorial function. We then apply these notions of P -orderings and factorials to some classical problems in two distinct areas, namely: 1) the study of integer-valued polynomials and 2) P -adic analysis. Specifically, we first use these notions of P -orderings and factorials to construct explicit Polya-style regular bases for two natural families of rings of integer-valued polynomials defined on an arbitrary subset of a Dedekind domain. Second, we classify ``smooth'' functions on an arbitrary compact subset S of a local field, by constructing explicit interpolation series (i.e., orthonormal bases) for the Banach space of functions on S satisfying any desired conditions of continuous differentiability or local analyticity. Our constructions thus extend Mahler's Theorem (classifying the functions that are continuous on {Z}_p ) to a very general setting. In particular, our constructions prove that, for any epsilon>0 , the functions in any of the above Banach spaces can be epsilon -approximated by polynomials (with respect to their respective Banach norms). Thus we obtain the non-Archimedean analogues of the classical polynomial approximation theorems in real and complex analysis proven by Weierstrass, de la Vallee-Poussin, and Bernstein. Our proofs are effective.
Higher-order numerical methods derived from three-point polynomial interpolation
NASA Technical Reports Server (NTRS)
Rubin, S. G.; Khosla, P. K.
1976-01-01
Higher-order collocation procedures resulting in tridiagonal matrix systems are derived from polynomial spline interpolation and Hermitian finite-difference discretization. The equations generally apply for both uniform and variable meshes. Hybrid schemes resulting from different polynomial approximations for first and second derivatives lead to the nonuniform mesh extension of the so-called compact or Pade difference techniques. A variety of fourth-order methods are described and this concept is extended to sixth-order. Solutions with these procedures are presented for the similar and non-similar boundary layer equations with and without mass transfer, the Burgers equation, and the incompressible viscous flow in a driven cavity. Finally, the interpolation procedure is used to derive higher-order temporal integration schemes and results are shown for the diffusion equation.
A comparison of high-order polynomial and wave-based methods for Helmholtz problems
NASA Astrophysics Data System (ADS)
Lieu, Alice; Gabard, Gwénaël; Bériot, Hadrien
2016-09-01
The application of computational modelling to wave propagation problems is hindered by the dispersion error introduced by the discretisation. Two common strategies to address this issue are to use high-order polynomial shape functions (e.g. hp-FEM), or to use physics-based, or Trefftz, methods where the shape functions are local solutions of the problem (typically plane waves). Both strategies have been actively developed over the past decades and both have demonstrated their benefits compared to conventional finite-element methods, but they have yet to be compared. In this paper a high-order polynomial method (p-FEM with Lobatto polynomials) and the wave-based discontinuous Galerkin method are compared for two-dimensional Helmholtz problems. A number of different benchmark problems are used to perform a detailed and systematic assessment of the relative merits of these two methods in terms of interpolation properties, performance and conditioning. It is generally assumed that a wave-based method naturally provides better accuracy compared to polynomial methods since the plane waves or Bessel functions used in these methods are exact solutions of the Helmholtz equation. Results indicate that this expectation does not necessarily translate into a clear benefit, and that the differences in performance, accuracy and conditioning are more nuanced than generally assumed. The high-order polynomial method can in fact deliver comparable, and in some cases superior, performance compared to the wave-based DGM. In addition to benchmarking the intrinsic computational performance of these methods, a number of practical issues associated with realistic applications are also discussed.
Lattice Boltzmann method for bosons and fermions and the fourth-order Hermite polynomial expansion.
Coelho, Rodrigo C V; Ilha, Anderson; Doria, Mauro M; Pereira, R M; Aibe, Valter Yoshihiko
2014-04-01
The Boltzmann equation with the Bhatnagar-Gross-Krook collision operator is considered for the Bose-Einstein and Fermi-Dirac equilibrium distribution functions. We show that the expansion of the microscopic velocity in terms of Hermite polynomials must be carried to the fourth order to correctly describe the energy equation. The viscosity and thermal coefficients, previously obtained by Yang et al. [Shi and Yang, J. Comput. Phys. 227, 9389 (2008); Yang and Hung, Phys. Rev. E 79, 056708 (2009)] through the Uehling-Uhlenbeck approach, are also derived here. Thus the construction of a lattice Boltzmann method for the quantum fluid is possible provided that the Bose-Einstein and Fermi-Dirac equilibrium distribution functions are expanded to fourth order in the Hermite polynomials. PMID:24827360
Zaunders, John; Jing, Junmei; Leipold, Michael; Maecker, Holden; Kelleher, Anthony D; Koch, Inge
2016-01-01
Many methods have been described for automated clustering analysis of complex flow cytometry data, but so far the goal to efficiently estimate multivariate densities and their modes for a moderate number of dimensions and potentially millions of data points has not been attained. We have devised a novel approach to describing modes using second order polynomial histogram estimators (SOPHE). The method divides the data into multivariate bins and determines the shape of the data in each bin based on second order polynomials, which is an efficient computation. These calculations yield local maxima and allow joining of adjacent bins to identify clusters. The use of second order polynomials also optimally uses wide bins, such that in most cases each parameter (dimension) need only be divided into 4-8 bins, again reducing computational load. We have validated this method using defined mixtures of up to 17 fluorescent beads in 16 dimensions, correctly identifying all populations in data files of 100,000 beads in <10 s, on a standard laptop. The method also correctly clustered granulocytes, lymphocytes, including standard T, B, and NK cell subsets, and monocytes in 9-color stained peripheral blood, within seconds. SOPHE successfully clustered up to 36 subsets of memory CD4 T cells using differentiation and trafficking markers, in 14-color flow analysis, and up to 65 subpopulations of PBMC in 33-dimensional CyTOF data, showing its usefulness in discovery research. SOPHE has the potential to greatly increase efficiency of analysing complex mixtures of cells in higher dimensions. PMID:26097104
NASA Astrophysics Data System (ADS)
Liu, Shuxiao; Tang, Yougang; Li, Wei
2016-06-01
In this study, we consider first- and second-order random wave loads and the effects of time-varying displacement volume and transient wave elevation to establish motion equations of the Spar platform's coupled heave-pitch. We generated random wave loads based on frequency-domain wave load transfer functions and the Joint North Sea Wave Project (JONSWAP) wave spectrum, designed program codes to solve the motion equations, and then simulated the coupled heave-pitch motion responses of the platform in the time domain. We then calculated and compared the motion responses in different sea conditions and separately investigated the effects of second-order random wave loads and transient wave elevation. The results show that the coupled heave-pitch motion responses of the platform are primarily dominated by wave height and the characteristic wave period, the latter of which has a greater impact. Second-order mean wave loads mainly affect the average heave value. The platform's pitch increases after the second-order low frequency wave loads are taken into account. The platform's heave is underestimated if the transient wave elevation term in the motion equations is neglected.
Conformal Laplace superintegrable systems in 2D: polynomial invariant subspaces
NASA Astrophysics Data System (ADS)
Escobar-Ruiz, M. A.; Miller, Willard, Jr.
2016-07-01
2nd-order conformal superintegrable systems in n dimensions are Laplace equations on a manifold with an added scalar potential and 2n-1 independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stäckel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two-dimensions, n = 2, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible two-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stäckel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl 3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of one-dimensional (1D) and two-dimensional (2D) quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Collins, Oonagh M.; Cussen, Edmund J.
2013-04-15
The cation ordered perovskites Ba{sub 2}Nd{sub 1−x}Y{sub x}MoO{sub 6} (0.04≤x≤0.35) have been synthesised by solid-state techniques under reducing conditions at temperatures up to 1350 °C. Rietveld analyses of X-ray and neutron powder diffraction data show that these compounds adopt a tetragonally distorted perovskite structure. The tetragonal distortion is driven by the bonding requirements of the Ba{sup 2+} cation that occupies the central interstice of the perovskite; this cation would be underbonded if these compounds retained the cubic symmetry exhibited by the prototypical structure. The size and charge difference between the lanthanides and Mo{sup 5+} lead to complete ordering of the cations to give a rock-salt ordering of Nd{sup 3+}/Y{sup 3+}O{sub 6} and MoO{sub 6} octahedra. The I4/m space group symmetry is retained on cooling the x=0.1, 0.2 and 0.35 samples to low temperature ca. 2 K. Ba{sub 2}Nd{sub 0.90}Y{sub 0.10}MoO{sub 6} undergoes a gradual distortion of the MoO{sub 6} units on cooling from room temperature to give two long trans bonds (2.001(2) Å) along the z-direction and four shorter apical bonds (1.9563(13) Å) in the xy-plane. This distortion of the MoO{sub 6} units stabilises the 4d{sup 1} electron in the d{sub xz} and d{sub yz} orbitals whilst the d{sub xy} orbital is increased in energy due to the contraction of the Mo–O bonds in the xy-plane. This bond extension along z is propagated through the structure and gives a negative thermal expansion of −13×10{sup −6} K{sup −1} along c. The overall volumetric thermal expansion is positive due to conventional expansion along the other two crystallographic axes. With increasing Y{sup 3+} content this distortion is reduced in x=0.2 and eliminated in x=0.35 which contains largely regular MoO{sub 6} octahedra. The x=0.1 and x=0.2 show small peaks in the neutron diffraction profile due to long range antiferromagnetic order arising from ordered moments of ca. 2 μ{sub B}. - Graphical
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
NASA Astrophysics Data System (ADS)
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-03-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states.
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States.
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects' affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain's motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
Higher-order Multivariable Polynomial Regression to Estimate Human Affective States
Wei, Jie; Chen, Tong; Liu, Guangyuan; Yang, Jiemin
2016-01-01
From direct observations, facial, vocal, gestural, physiological, and central nervous signals, estimating human affective states through computational models such as multivariate linear-regression analysis, support vector regression, and artificial neural network, have been proposed in the past decade. In these models, linear models are generally lack of precision because of ignoring intrinsic nonlinearities of complex psychophysiological processes; and nonlinear models commonly adopt complicated algorithms. To improve accuracy and simplify model, we introduce a new computational modeling method named as higher-order multivariable polynomial regression to estimate human affective states. The study employs standardized pictures in the International Affective Picture System to induce thirty subjects’ affective states, and obtains pure affective patterns of skin conductance as input variables to the higher-order multivariable polynomial model for predicting affective valence and arousal. Experimental results show that our method is able to obtain efficient correlation coefficients of 0.98 and 0.96 for estimation of affective valence and arousal, respectively. Moreover, the method may provide certain indirect evidences that valence and arousal have their brain’s motivational circuit origins. Thus, the proposed method can serve as a novel one for efficiently estimating human affective states. PMID:26996254
NASA Astrophysics Data System (ADS)
Isah, Abdulnasir; Chang, Phang
2016-06-01
In this article we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of non-linear systems of fractional order differential equations (NSFDEs). The operational matrix of fractional derivative derived through wavelet-polynomial transformation are used together with the collocation method to turn the NSFDEs to a system of non-linear algebraic equations. Illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.
2nd Generation ELT Performance Specification Development
NASA Technical Reports Server (NTRS)
Stimson, Chad M.
2015-01-01
NASA Search And Rescue is supporting RTCA SC-229 with research and recommendations for performance specifications for the 2nd generation of emergency locator transmitters. Areas for improvement and methods for collecting data will be presented.
NASA Astrophysics Data System (ADS)
Chang, Phang; Isah, Abdulnasir
2016-02-01
In this paper we propose the wavelet operational method based on shifted Legendre polynomial to obtain the numerical solutions of nonlinear fractional-order chaotic system known by fractional-order Brusselator system. The operational matrices of fractional derivative and collocation method turn the nonlinear fractional-order Brusselator system to a system of algebraic equations. Two illustrative examples are given in order to demonstrate the accuracy and simplicity of the proposed techniques.
PIRLS 2016 Assessment Framework. 2nd Edition
ERIC Educational Resources Information Center
Mullis, Ina V. S., Ed.; Martin, Michael O., Ed.
2015-01-01
The "PIRLS 2016 Assessment Framework, 2nd Edition" provides the foundation for the three international assessments planned as part of the International Association for the Evaluation of Educational Achievement's Progress in International Reading Literacy Study (PIRLS) 2016: PIRLS, PIRLS Literacy, and ePIRLS. PIRLS represents the…
ERIC Educational Resources Information Center
Dobbs, David E.
2010-01-01
This note develops and implements the theory of polynomial asymptotes to (graphs of) rational functions, as a generalization of the classical topics of horizontal asymptotes and oblique/slant asymptotes. Applications are given to hyperbolic asymptotes. Prerequisites include the division algorithm for polynomials with coefficients in the field of…
2nd & 3rd Generation Vehicle Subsystems
NASA Technical Reports Server (NTRS)
2000-01-01
This paper contains viewgraph presentation on the "2nd & 3rd Generation Vehicle Subsystems" project. The objective behind this project is to design, develop and test advanced avionics, power systems, power control and distribution components and subsystems for insertion into a highly reliable and low-cost system for a Reusable Launch Vehicles (RLV). The project is divided into two sections: 3rd Generation Vehicle Subsystems and 2nd Generation Vehicle Subsystems. The following topics are discussed under the first section, 3rd Generation Vehicle Subsystems: supporting the NASA RLV program; high-performance guidance & control adaptation for future RLVs; Evolvable Hardware (EHW) for 3rd generation avionics description; Scaleable, Fault-tolerant Intelligent Network or X(trans)ducers (SFINIX); advance electric actuation devices and subsystem technology; hybrid power sources and regeneration technology for electric actuators; and intelligent internal thermal control. Topics discussed in the 2nd Generation Vehicle Subsystems program include: design, development and test of a robust, low-maintenance avionics with no active cooling requirements and autonomous rendezvous and docking systems; design and development of a low maintenance, high reliability, intelligent power systems (fuel cells and battery); and design of a low cost, low maintenance high horsepower actuation systems (actuators).
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2013-01-01
Some properties of a solvable N-body problem featuring several free parameters ("coupling constants") are investigated. Restrictions on its parameters are reported which guarantee that all its solutions are completely periodic with a fixed period independent of the initial data (isochrony). The restrictions on its parameters which guarantee the existence of equilibria are also identified. In this connection a remarkable second-order ODE—generally not of hypergeometric type, hence not reducible to those characterizing the classical polynomials—is studied: if its parameters satisfy a Diophantine condition, its general solution is a polynomial of degree N, the N zeros of which identify the equilibria of the N-body system.
2nd Generation RLV Risk Definition Program
NASA Technical Reports Server (NTRS)
Davis, Robert M.; Stucker, Mark (Technical Monitor)
2000-01-01
The 2nd Generation RLV Risk Reduction Mid-Term Report summarizes the status of Kelly Space & Technology's activities during the first two and one half months of the program. This report was presented to the cognoscente Contracting Officer's Technical Representative (COTR) and selected Marshall Space Flight Center staff members on 26 September 2000. The report has been approved and is distributed on CD-ROM (as a PowerPoint file) in accordance with the terms of the subject contract, and contains information and data addressing the following: (1) Launch services demand and requirements; (2) Architecture, alternatives, and requirements; (3) Costs, pricing, and business cases analysis; (4) Commercial financing requirements, plans, and strategy; (5) System engineering processes and derived requirements; and (6) RLV system trade studies and design analysis.
2nd International Planetary Probe Workshop
NASA Technical Reports Server (NTRS)
Venkatapathy, Ethiraj; Martinez, Ed; Arcadi, Marla
2005-01-01
Included are presentations from the 2nd International Planetary Probe Workshop. The purpose of the second workshop was to continue to unite the community of planetary scientists, spacecraft engineers and mission designers and planners; whose expertise, experience and interests are in the areas of entry probe trajectory and attitude determination, and the aerodynamics/aerothermodynamics of planetary entry vehicles. Mars lander missions and the first probe mission to Titan made 2004 an exciting year for planetary exploration. The Workshop addressed entry probe science, engineering challenges, mission design and instruments, along with the challenges of reconstruction of the entry, descent and landing or the aerocapture phases. Topics addressed included methods, technologies, and algorithms currently employed; techniques and results from the rich history of entry probe science such as PAET, Venera/Vega, Pioneer Venus, Viking, Galileo, Mars Pathfinder and Mars MER; upcoming missions such as the imminent entry of Huygens and future Mars entry probes; and new and novel instrumentation and methodologies.
Spreading lengths of Hermite polynomials
NASA Astrophysics Data System (ADS)
Sánchez-Moreno, P.; Dehesa, J. S.; Manzano, D.; Yáñez, R. J.
2010-03-01
The Renyi, Shannon and Fisher spreading lengths of the classical or hypergeometric orthogonal polynomials, which are quantifiers of their distribution all over the orthogonality interval, are defined and investigated. These information-theoretic measures of the associated Rakhmanov probability density, which are direct measures of the polynomial spreading in the sense of having the same units as the variable, share interesting properties: invariance under translations and reflections, linear scaling and vanishing in the limit that the variable tends towards a given definite value. The expressions of the Renyi and Fisher lengths for the Hermite polynomials are computed in terms of the polynomial degree. The combinatorial multivariable Bell polynomials, which are shown to characterize the finite power of an arbitrary polynomial, play a relevant role for the computation of these information-theoretic lengths. Indeed these polynomials allow us to design an error-free computing approach for the entropic moments (weighted Lq-norms) of Hermite polynomials and subsequently for the Renyi and Tsallis entropies, as well as for the Renyi spreading lengths. Sharp bounds for the Shannon length of these polynomials are also given by means of an information-theoretic-based optimization procedure. Moreover, the existence of a linear correlation between the Shannon length (as well as the second-order Renyi length) and the standard deviation is computationally proved. Finally, the application to the most popular quantum-mechanical prototype system, the harmonic oscillator, is discussed and some relevant asymptotical open issues related to the entropic moments, mentioned previously, are posed.
Hermite base Bernoulli type polynomials on the umbral algebra
NASA Astrophysics Data System (ADS)
Dere, R.; Simsek, Y.
2015-01-01
The aim of this paper is to construct new generating functions for Hermite base Bernoulli type polynomials, which generalize not only the Milne-Thomson polynomials but also the two-variable Hermite polynomials. We also modify the Milne-Thomson polynomials, which are related to the Bernoulli polynomials and the Hermite polynomials. Moreover, by applying the umbral algebra to these generating functions, we derive new identities for the Bernoulli polynomials of higher order, the Hermite polynomials and numbers of higher order, and the Stirling numbers of the second kind.
NASA Astrophysics Data System (ADS)
Li, He; Gao, Yi-Tian; Liu, Li-Cai
2015-12-01
The Korteweg-de Vries (KdV)-type equations have been seen in fluid mechanics, plasma physics and lattice dynamics, etc. This paper will address the bilinearization problem for some higher-order KdV equations. Based on the relationship between the bilinear method and Bell-polynomial scheme, with introducing an auxiliary independent variable, we will present the general bilinear forms. By virtue of the symbolic computation, one- and two-soliton solutions are derived. Supported by the National Natural Science Foundation of China under Grant No. 11272023, the Open Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), and by the Fundamental Research Funds for the Central Universities of China under Grant No. 2011BUPTYB02
2nd Generation Reusable Launch Vehicle NASA Led Propulsion Tasks
NASA Technical Reports Server (NTRS)
Richards, Steve
2000-01-01
Design, development and test of a 2nd generation Reusable Launch Vehicle (RLV) is presented. This current paper discusses the following: 2nd Generation RLV Propulsion Project, Overview of NASA Led Tasks in Propulsion, Gen2 Turbo Machinery Technology Demonstrator, and Combustion Devices Test Bed, GRCop-84 Sheet For Combustion Chambers, Nozzles and Large Actively Cooled Structures
NASA Astrophysics Data System (ADS)
Withers, Christopher S.; Nadarajah, Saralees
2016-07-01
A new class of polynomials pn(x) known as β-reciprocal polynomials is defined. Given a parameter ? that is not a root of -1, we show that the only β-reciprocal polynomials are pn(x) ≡ xn. When β is a root of -1, other polynomials are possible. For example, the Hermite polynomials are i-reciprocal, ?.
NASA Astrophysics Data System (ADS)
Triki, Houria; Porsezian, K.; Grelu, Philippe
2016-07-01
A generalized nonlinear Schrödinger equation with polynomial Kerr nonlinearity and non-Kerr terms of an arbitrarily higher order is investigated. This model can be applied to the femtosecond pulse propagation in highly-nonlinear optical media. We introduce a new chirping ansatz given as an expansion in powers of intensity of the light pulse and obtain both linear and nonlinear chirp contributions associated with propagating optical pulses. By taking the cubic-quintic-septic-nonic nonlinear Schrödinger (NLS) equation with seventh-order non-Kerr terms as an example for the generalized equation with Kerr and non-Kerr nonlinearity of arbitrary order, we derive families of chirped soliton solutions under certain parametric conditions. The solutions comprise bright, kink, anti-kink, and fractional-transform soliton solutions. In addition, we found the exact soliton solution for the model under consideration using a new ansatz. The parametric conditions for the existence of chirped solitons are also reported.
Florida Investigates 2nd Possible Local Transmission of Zika Virus
... html Florida Investigates 2nd Possible Local Transmission of Zika Virus If confirmed, cases would be first instances ... investigating a second possible case of locally transmitted Zika infection. On Tuesday, the first possible case of ...
Stirling engine design manual, 2nd edition
NASA Technical Reports Server (NTRS)
Martini, W. R.
1983-01-01
This manual is intended to serve as an introduction to Stirling cycle heat engines, as a key to the available literature on Stirling engines and to identify nonproprietary Stirling engine design methodologies. Two different fully described Stirling engines are discussed. Engine design methods are categorized as first order, second order, and third order with increased order number indicating increased complexity. FORTRAN programs are listed for both an isothermal second order design program and an adiabatic second order design program. Third order methods are explained and enumerated. In this second edition of the manual the references are updated. A revised personal and corporate author index is given and an expanded directory lists over 80 individuals and companies active in Stirling engines.
Molecular motors and the 2nd law of thermodynamics
NASA Astrophysics Data System (ADS)
Wang, Zhisong
2014-03-01
Molecular motors from biology and nanotechnology often operate on chemical energy of fuel molecules in an isothermal environment, unlike macroscopic heat engines that draw energy from a heat flow between two temperatures. Nevertheless, isothermal molecular motors are still subject to the 2nd law of thermodynamics in a fundamental way: their directional motion must cost a finite amount of energy other than the environmental heat even though no work is done; otherwise the 2nd law would be violated. Hence the 2nd law requires a finite energy price for pure direction of molecular motors. But what is the lowest price of direction allowed by the 2nd law? And how does the 2nd law-decreed price of direction limit performance of molecular motors? In the talk, I shall present our theoretical study of the 2nd law-molecular motor link on basis of the accumulated biomotor phenomenology, and also introduce our experimental effort to develop biomimetic DNA bipedal nanomotors following the mechanistic guidelines out of the theoretical study. [Main contents of this talk are from references:] This work is partially supported by FRC grants R-144-000-259-112, R-144-000-290-112 and R-144-000-320-112.
The q-Laguerre matrix polynomials.
Salem, Ahmed
2016-01-01
The Laguerre polynomials have been extended to Laguerre matrix polynomials by means of studying certain second-order matrix differential equation. In this paper, certain second-order matrix q-difference equation is investigated and solved. Its solution gives a generalized of the q-Laguerre polynomials in matrix variable. Four generating functions of this matrix polynomials are investigated. Two slightly different explicit forms are introduced. Three-term recurrence relation, Rodrigues-type formula and the q-orthogonality property are given. PMID:27190749
Ladybugs of South Dakota, 2nd edition
Technology Transfer Automated Retrieval System (TEKTRAN)
Images of the 80 species of Coccinellidae, commonly known as lady beetles, that occur in South Dakota are presented in taxonomic order. The second edition updates information, including the addition of a species new to South Dakota. Information on each species includes genus-species name, sub-fami...
NASA Astrophysics Data System (ADS)
Taghavi-Shahri, F.; Khanpour, Hamzeh; Atashbar Tehrani, S.; Alizadeh Yazdi, Z.
2016-06-01
We present a first QCD analysis of next-to-next-leading-order (NNLO) contributions of the spin-dependent parton distribution functions (PPDFs) in the nucleon and their uncertainties using the Jacobi polynomial approach. Having the NNLO contributions of the quark-quark and gluon-quark splitting functions in perturbative QCD [Nucl. Phys. B889, 351 (2014)], one can obtain the evolution of longitudinally polarized parton densities of hadrons up to NNLO accuracy of QCD. Very large sets of recent and up-to-date experimental data of spin structure functions of the proton g1p, neutron g1n, and deuteron g1d have been used in this analysis. The predictions for the NNLO calculations of the polarized parton distribution functions as well as the proton, neutron and deuteron polarized structure functions are compared with the corresponding results of the NLO approximation. We form a mutually consistent set of polarized PDFs due to the inclusion of the most available experimental data including the recently high-precision measurements from COMPASS16 experiments [Phys. Lett. B 753, 18 (2016)]. We have performed a careful estimation of the uncertainties using the most common and practical method, the Hessian method, for the polarized PDFs originating from the experimental errors. The proton, neutron and deuteron structure functions and also their first moments, Γp ,n ,d , are in good agreement with the experimental data at small and large momentum fractions of x . We will discuss how our knowledge of spin-dependence structure functions can improve at small and large values of x by the recent COMPASS16 measurements at CERN, the PHENIX and STAR measurements at RHIC, and at the future proposed colliders such as the Electron-Ion Collider.
NASA Astrophysics Data System (ADS)
Mongeon, Michael C.
1996-03-01
This paper investigates the development of printer device profiles used in color document printing system environments when devices with intrinsically different gamut capabilities communicate with one another in a common (CIELAB) color space. While the main thrust of this activity focuses on the output printer, namely the Xerox 5760 printer, and its rendition of some device independent image description, characterizations are provided which investigate relative areas of photographic, monitor, and printer gamuts using a visual hue leaf comparison between devices. The printer is modeled using 4th-order polynomial regression which maps the device independent CIELAB image representation into device dependent printer CMYK. This technique results in 1.89 AEEavg over the training data set. Some key properties of the proposed calibration method are as follows: (1) Linearized CMYK tone reproduction curves with respect to AEEpaper to improve the distribution of calibration data in color space. (2) Application of GCR strategy and linearization to the calibration target prior to the regression on the measured CIELAB and original CMY values. Each strategy employs a K addition/No CMY removal method which maximizes printer gamut and relies on the regression to determine the appropriate CMY removal. The following GCR strategies are explored: CMY only (0% K addition), 50% K addition, 100% K addition, and non-linear K addition. A library of image processing algorithms is included, using LabView object oriented programming, which provides a modular approach for key color processing tasks. In the user interface, an image is selected with appropriate GCR strategy, and the program operates on the image. In general, the pictorial image quality is excellent for each GCR strategy with subtle differences between GCR approaches. Quantitative analysis of Q60 color matching performance is included.
Gastrointestinal imaging in pediatrics, 2nd ed
Franken, E.A. Jr.; Smith, W.L.
1982-01-01
Gastrointestinal imaging in pediatrics is very different from its predecessor, gastrointestinal radiology in pediatrics, which was written eight years ago. The second edition is organized by anatomic area with supplemental chapters on special procedures (i.e., angiography, nuclear medicine, computerized axial tomography and ultrasonography). This volume contains 635 pages in contrast to the first edition which consisted of 323 pages. The arrangement of this volume is by anatomic area and not be clinical problem, therefore, the reader should have some background in pediatric radiology in order to find answers to specific questions.
Idaho National Laboratory Quarterly Performance Analysis for the 2nd Quarter FY 2015
Mitchell, Lisbeth A.
2015-04-01
This report is published quarterly by the Idaho National Laboratory (INL) Quality and Performance Management Organization. The Department of Energy (DOE) Occurrence Reporting and Processing System (ORPS), as prescribed in DOE Order 232.2, “Occurrence Reporting and Processing of Operations Information,” requires a quarterly analysis of events, both reportable and not reportable, for the previous 12 months. This report is the analysis of events for the 2nd Qtr FY-15.
Factoring Polynomials and Fibonacci.
ERIC Educational Resources Information Center
Schwartzman, Steven
1986-01-01
Discusses the factoring of polynomials and Fibonacci numbers, offering several challenges teachers can give students. For example, they can give students a polynomial containing large numbers and challenge them to factor it. (JN)
Chaos, Fractals, and Polynomials.
ERIC Educational Resources Information Center
Tylee, J. Louis; Tylee, Thomas B.
1996-01-01
Discusses chaos theory; linear algebraic equations and the numerical solution of polynomials, including the use of the Newton-Raphson technique to find polynomial roots; fractals; search region and coordinate systems; convergence; and generating color fractals on a computer. (LRW)
The 2nd Generation Real Time Mission Monitor (RTMM) Development
NASA Technical Reports Server (NTRS)
Blakeslee, Richard; Goodman, Michael; Meyer, Paul; Hardin, Danny; Hall, John; He, Yubin; Regner, Kathryn; Conover, Helen; Smith, Tammy; Lu, Jessica; Garrett, Michelle
2009-01-01
The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decisionmaking for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more
Test Review: The Profile of Mood States 2nd Edition
ERIC Educational Resources Information Center
Lin, Shuqiong; Hsiao, Yu-Yu; Wang, Miao
2014-01-01
The "Profile of Mood States 2nd Edition" (POMS 2) was published in 2012 by Multi-Health Systems (MHS) to assess transient feelings and mood among individuals aged 13 years and above. Evolving from the original POMS (McNair, Lorr, & Droppleman, 1971, 1992), the POMS 2 was designed for youth (13-17 years old) and adults (18 years old…
Book Review: Bioassays with Arthropods: 2nd Edition
Technology Transfer Automated Retrieval System (TEKTRAN)
The technical book "Bioassays with Arthropods: 2nd Edition" (2007. Jacqueline L. Robertson, Robert M. Russell, Haiganoush K, Preisler and N. E. Nevin, Eds. CRC Press, Boca Raton, FL, 224 pp.) was reviewed for the scientific readership of the peer-reviewed publication Journal of Economic Entomology. ...
A Handbook for Classroom Instruction That Works, 2nd Edition
ERIC Educational Resources Information Center
Association for Supervision and Curriculum Development, 2012
2012-01-01
Perfect for self-help and professional learning communities, this handbook makes it much easier to apply the teaching practices from the ASCD-McREL best-seller "Classroom Instruction That Works: Research-Based Strategies for Increasing Student Achievement, 2nd Edition." The authors take you through the refined Instructional Planning Guide, so you…
Damon, Bruce M.; Heemskerk, Anneriet M.; Ding, Zhaohua
2012-01-01
Fiber curvature is a functionally significant muscle structural property, but its estimation from diffusion-tensor MRI fiber tracking data may be confounded by noise. The purpose of this study was to investigate the use of polynomial fitting of fiber tracts for improving the accuracy and precision of fiber curvature (κ) measurements. Simulated image datasets were created in order to provide data with known values for κ and pennation angle (θ). Simulations were designed to test the effects of increasing inherent fiber curvature (3.8, 7.9, 11.8, and 15.3 m−1), signal-to-noise ratio (50, 75, 100, and 150), and voxel geometry (13.8 and 27.0 mm3 voxel volume with isotropic resolution; 13.5 mm3 volume with an aspect ratio of 4.0) on κ and θ measurements. In the originally reconstructed tracts, θ was estimated accurately under most curvature and all imaging conditions studied; however, the estimates of κ were imprecise and inaccurate. Fitting the tracts to 2nd order polynomial functions provided accurate and precise estimates of κ for all conditions except very high curvature (κ=15.3 m−1), while preserving the accuracy of the θ estimates. Similarly, polynomial fitting of in vivo fiber tracking data reduced the κ values of fitted tracts from those of unfitted tracts and did not change the θ values. Polynomial fitting of fiber tracts allows accurate estimation of physiologically reasonable values of κ, while preserving the accuracy of θ estimation. PMID:22503094
Interval polynomial positivity
NASA Technical Reports Server (NTRS)
Bose, N. K.; Kim, K. D.
1989-01-01
It is shown that a univariate interval polynomial is globally positive if and only if two extreme polynomials are globally positive. It is shown that the global positivity property of a bivariate interval polynomial is completely determined by four extreme bivariate polynomials. The cardinality of the determining set for k-variate interval polynomials is 2k. One of many possible generalizations, where vertex implication for global positivity holds, is made by considering the parameter space to be the set dual of a boxed domain.
Bispectrality of the Complementary Bannai-Ito Polynomials
NASA Astrophysics Data System (ADS)
Genest, Vincent X.; Vinet, Luc; Zhedanov, Alexei
2013-03-01
A one-parameter family of operators that have the complementary Bannai-Ito (CBI) polynomials as eigenfunctions is obtained. The CBI polynomials are the kernel partners of the Bannai-Ito polynomials and also correspond to a q→"1 limit of the Askey-Wilson polynomials. The eigenvalue equations for the CBI polynomials are found to involve second order Dunkl shift operators with reflections and exhibit quadratic spectra. The algebra associated to the CBI polynomials is given and seen to be a deformation of the Askey-Wilson algebra with an involution. The relation between the CBI polynomials and the recently discovered dual "1 Hahn and para-Krawtchouk polynomials, as well as their relation with the symmetric Hahn polynomials, is also discussed.
[Employment and education in the 2nd economic and social development plan of Togo].
Dovi-sodemekou, F B
1985-01-01
Togo is a developing country whose population is increasing at the rapid rate of 2.7%/year. Economic development is therefore a necessity to ensure at least an average standard of living. Plans of development include objectives of structural societal changes, including improvements in education and employment. This study analyzes the evolution of population activities. It identifies obstacles to the improvement of education and employment. The investigation examines the employment and education situation before adoption of the 2nd plan of Togo and predicts the probable evolution of the situation. Despite the priority accorded to agriculture, the 2nd plan appears to give greater importance to industry. The industrial and commercial sector has witnessed a 65.2% investment increase, whereas the rural sector had an investment increase of 11.8%. The 2nd plan, in view of its relation to the evolution of economic activities, took into account the demand for manual labor. In the private sector, industries should occupy an important position. The dualism of a modern and a traditional sector is considered a cause of underdevelopment. The modern sector should be developed in order to suppress the traditional sector and allow progress in society. As a result of this approach, agriculture is given a 2ndary role. PMID:12267415
NASA Technical Reports Server (NTRS)
Wood, C. A.
1974-01-01
For polynomials of higher degree, iterative numerical methods must be used. Four iterative methods are presented for approximating the zeros of a polynomial using a digital computer. Newton's method and Muller's method are two well known iterative methods which are presented. They extract the zeros of a polynomial by generating a sequence of approximations converging to each zero. However, both of these methods are very unstable when used on a polynomial which has multiple zeros. That is, either they fail to converge to some or all of the zeros, or they converge to very bad approximations of the polynomial's zeros. This material introduces two new methods, the greatest common divisor (G.C.D.) method and the repeated greatest common divisor (repeated G.C.D.) method, which are superior methods for numerically approximating the zeros of a polynomial having multiple zeros. These methods were programmed in FORTRAN 4 and comparisons in time and accuracy are given.
The 2nd Generation Real Time Mission Monitor (RTMM) Development
NASA Astrophysics Data System (ADS)
Blakeslee, R. J.; Goodman, M.; Hardin, D. M.; Hall, J.; Yubin He, M.; Regner, K.; Conover, H.; Smith, T.; Meyer, P.; Lu, J.; Garrett, M.
2009-12-01
The NASA Real Time Mission Monitor (RTMM) is a visualization and information system that fuses multiple Earth science data sources, to enable real time decision-making for airborne and ground validation experiments. Developed at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, RTMM is a situational awareness, decision-support system that integrates satellite imagery and orbit data, radar and other surface observations (e.g., lightning location network data), airborne navigation and instrument data sets, model output parameters, and other applicable Earth science data sets. The integration and delivery of this information is made possible using data acquisition systems, network communication links, network server resources, and visualizations through the Google Earth virtual globe application. In order to improve the usefulness and efficiency of the RTMM system, capabilities are being developed to allow the end-user to easily configure RTMM applications based on their mission-specific requirements and objectives. This second generation RTMM is being redesigned to take advantage of the Google plug-in capabilities to run multiple applications in a web browser rather than the original single application Google Earth approach. Currently RTMM employs a limited Service Oriented Architecture approach to enable discovery of mission specific resources. We are expanding the RTMM architecture such that it will more effectively utilize the Open Geospatial Consortium Sensor Web Enablement services and other new technology software tools and components. These modifications and extensions will result in a robust, versatile RTMM system that will greatly increase flexibility of the user to choose which science data sets and support applications to view and/or use. The improvements brought about by RTMM 2nd generation system will provide mission planners and airborne scientists with enhanced decision-making tools and capabilities to more
Heisenberg algebra, umbral calculus and orthogonal polynomials
Dattoli, G.; Levi, D.; Winternitz, P.
2008-05-15
Umbral calculus can be viewed as an abstract theory of the Heisenberg commutation relation [P,M]=1. In ordinary quantum mechanics, P is the derivative and M the coordinate operator. Here, we shall realize P as a second order differential operator and M as a first order integral one. We show that this makes it possible to solve large classes of differential and integrodifferential equations and to introduce new classes of orthogonal polynomials, related to Laguerre polynomials. These polynomials are particularly well suited for describing the so-called flatenned beams in laser theory.
NASA Astrophysics Data System (ADS)
Bogner, Christian; Weinzierl, Stefan
The integrand of any multiloop integral is characterized after Feynman parametrization by two polynomials. In this review we summarize the properties of these polynomials. Topics covered in this paper include among others: spanning trees and spanning forests, the all-minors matrix-tree theorem, recursion relations due to contraction and deletion of edges, Dodgson's identity and matroids.
Polynomial Graphs and Symmetry
ERIC Educational Resources Information Center
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
Effects of Thermal Cycling on Control and Irradiated EPC 2nd Generation GaN FETs
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Scheick, Leif; Lauenstein, Jean-Marie; Casey, Megan; Hammoud, Ahmad
2013-01-01
The power systems for use in NASA space missions must work reliably under harsh conditions including radiation, thermal cycling, and exposure to extreme temperatures. Gallium nitride semiconductors show great promise, but information pertaining to their performance is scarce. Gallium nitride N-channel enhancement-mode field effect transistors made by EPC Corporation in a 2nd generation of manufacturing were exposed to radiation followed by long-term thermal cycling in order to address their reliability for use in space missions. Results of the experimental work are presented and discussed.
Two 2nd Circuit decisions represent mixed bag on insurance.
2000-01-21
The 2nd U.S. Circuit Court of Appeals in New York issued two important rulings within a week on the extent to which the Americans with Disabilities Act (ADA) regulates insurance practices. [Name removed] v. Allstate Life Insurance Co. was a plaintiff-friendly decision, finding that the insurance company illegally refused to sell life insurance to a married couple because of their mental disability, major depression. [Name removed]. v. Israel Discount Bank of New York was more defendant friendly and tackled the issue of whether the ADA permits different benefit caps for mental and physical disabilities. PMID:11367226
More on rotations as spin matrix polynomials
Curtright, Thomas L.
2015-09-15
Any nonsingular function of spin j matrices always reduces to a matrix polynomial of order 2j. The challenge is to find a convenient form for the coefficients of the matrix polynomial. The theory of biorthogonal systems is a useful framework to meet this challenge. Central factorial numbers play a key role in the theoretical development. Explicit polynomial coefficients for rotations expressed either as exponentials or as rational Cayley transforms are considered here. Structural features of the results are discussed and compared, and large j limits of the coefficients are examined.
The crystal structure of ^7Li2ND
NASA Astrophysics Data System (ADS)
Tsubota, Masami; Sorby, Magnus H.; Hino, Satoshi; Ichikawa, Takayuki; Hauback, Bjorn C.; Kojima, Yoshitsugu
2008-03-01
Recently much attention has been given to reversible hydrogen storage materials possessing high gravimetric capacity. Lithium amide/imide systems are promising candidates. Chen et al.[1] found that a mixture of lithium amide and lithium hydride can reversibly store hydrogen up to 6.5 mass% forming lithium imide (Li2NH). Among them, the crystal structure of Li2NH is still controversial. Balogh et al.[2] have reported a cubic structure model. However, this model differs significantly from theoretical structure models. In this work, the crystal structure of the isotopically substituted ^7Li2ND has been investigated by powder neutron and synchrotron X-ray diffraction experiments. In our data some peaks, which should be a single peak for cubic symmetry, were obviously split indicating a lower symmetry than cubic for lithium imide. The structure of ^7Li2ND will be described. [1] P. Chen et al., J. Phys. Chem. B 107 (2003) 10967. [2] M.P. Balogh et al., J. Alloys Compd. 420 (2006) 326.
2nd Generation RLV: Program Goals and Acquisition Strategy
NASA Technical Reports Server (NTRS)
Graham, J. Bart; Dumbacher, D. L. (Technical Monitor)
2001-01-01
The risk to loss of life for Space Shuttle crewmembers is approximately one in 245 missions. U.S. launch service providers captured nearly 100%, of the commercial launch market revenues in the mid 1980s. Today, the U.S. captures less than 50% of that market. A launch system architecture is needed that will dramatically increase the safety of space flight while significantly reducing the cost. NASA's Space Launch Initiative, which is implemented by the 2nd Generation RLV Program Office at Marshall Space Flight Center, seeks to develop technology and reusable launch vehicle concepts which satisfy the commercial launch market needs and the unique needs of NASA. Presented in this paper are the five primary elements of NASA's Integrated Space Transportation Plan along with the highest level goals and the acquisition strategy of the 2nd Generation RLV Program. Approval of the Space Launch Initiative FY01 budget of $290M is seen as a major commitment by the Agency and the Nation to realize the commercial potential that space offers and to move forward in the exploration of space.
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
Life Cycle Systems Engineering Approach to NASA's 2nd Generation Reusable Launch Vehicle
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Safie, Fayssal; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd- generation system by 2 orders of magnitude - equivalent to a crew risk of 1 -in- 10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. Given a candidate architecture that possesses credible physical processes and realistic technology assumptions, the next set of analyses address the system's functionality across the spread of operational scenarios characterized by the design reference missions. The safety/reliability and cost/economics associated with operating the system will also be modeled and analyzed to answer the questions "How safe is it?" and "How much will it cost to acquire and operate?" The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and
NASA Technical Reports Server (NTRS)
Thomas, Dale; Smith, Charles; Thomas, Leann; Kittredge, Sheryl
2002-01-01
The overall goal of the 2nd Generation RLV Program is to substantially reduce technical and business risks associated with developing a new class of reusable launch vehicles. NASA's specific goals are to improve the safety of a 2nd-generation system by 2 orders of magnitude - equivalent to a crew risk of 1-in-10,000 missions - and decrease the cost tenfold, to approximately $1,000 per pound of payload launched. Architecture definition is being conducted in parallel with the maturating of key technologies specifically identified to improve safety and reliability, while reducing operational costs. An architecture broadly includes an Earth-to-orbit reusable launch vehicle, on-orbit transfer vehicles and upper stages, mission planning, ground and flight operations, and support infrastructure, both on the ground and in orbit. The systems engineering approach ensures that the technologies developed - such as lightweight structures, long-life rocket engines, reliable crew escape, and robust thermal protection systems - will synergistically integrate into the optimum vehicle. To best direct technology development decisions, analytical models are employed to accurately predict the benefits of each technology toward potential space transportation architectures as well as the risks associated with each technology. Rigorous systems analysis provides the foundation for assessing progress toward safety and cost goals. The systems engineering review process factors in comprehensive budget estimates, detailed project schedules, and business and performance plans, against the goals of safety, reliability, and cost, in addition to overall technical feasibility. This approach forms the basis for investment decisions in the 2nd Generation RLV Program's risk-reduction activities. Through this process, NASA will continually refine its specialized needs and identify where Defense and commercial requirements overlap those of civil missions.
NASA Astrophysics Data System (ADS)
Mironov, A.; Mkrtchyan, R.; Morozov, A.
2016-02-01
We present a universal knot polynomials for 2- and 3-strand torus knots in adjoint representation, by universalization of appropriate Rosso-Jones formula. According to universality, these polynomials coincide with adjoined colored HOMFLY and Kauffman polynomials at SL and SO/Sp lines on Vogel's plane, respectively and give their exceptional group's counterparts on exceptional line. We demonstrate that [m,n]=[n,m] topological invariance, when applicable, take place on the entire Vogel's plane. We also suggest the universal form of invariant of figure eight knot in adjoint representation, and suggest existence of such universalization for any knot in adjoint and its descendant representations. Properties of universal polynomials and applications of these results are discussed.
PREFACE: 2nd International Meeting for Researchers in Materials and Plasma Technology
NASA Astrophysics Data System (ADS)
Niño, Ely Dannier V.
2013-11-01
These proceedings present the written contributions of the participants of the 2nd International Meeting for Researchers in Materials and Plasma Technology, 2nd IMRMPT, which was held from February 27 to March 2, 2013 at the Pontificia Bolivariana Bucaramanga-UPB and Santander and Industrial - UIS Universities, Bucaramanga, Colombia, organized by research groups from GINTEP-UPB, FITEK-UIS. The IMRMPT, was the second version of biennial meetings that began in 2011. The three-day scientific program of the 2nd IMRMPT consisted in 14 Magisterial Conferences, 42 Oral Presentations and 48 Poster Presentations, with the participation of undergraduate and graduate students, professors, researchers and entrepreneurs from Colombia, Russia, France, Venezuela, Brazil, Uruguay, Argentina, Peru, Mexico, United States, among others. Moreover, the objective of IMRMPT was to bring together national and international researchers in order to establish scientific cooperation in the field of materials science and plasma technology; introduce new techniques of surface treatment of materials to improve properties of metals in terms of the deterioration due to corrosion, hydrogen embrittlement, abrasion, hardness, among others; and establish cooperation agreements between universities and industry. The topics covered in the 2nd IMRMPT include New Materials, Surface Physics, Laser and Hybrid Processes, Characterization of Materials, Thin Films and Nanomaterials, Surface Hardening Processes, Wear and Corrosion / Oxidation, Modeling, Simulation and Diagnostics, Plasma Applications and Technologies, Biomedical Coatings and Surface Treatments, Non Destructive Evaluation and Online Process Control, Surface Modification (Ion Implantation, Ion Nitriding, PVD, CVD). The editors hope that those interested in the are of materials science and plasma technology, enjoy the reading that reflect a wide range of topics. It is a pleasure to thank the sponsors and all the participants and contributors for
Philips' 2nd generation Novallure LED candle lamp
NASA Astrophysics Data System (ADS)
Li, Yun; Pei, Zhigang; Yuan, Chuan; Jiang, Tan; Lu, Zhengsong; Wang, Yuqian; Duan, Xiaoqing; Xiong, Yan; Zhong, Hong; Liu, Ye
2010-08-01
Finding an energy efficient replacement of incandescent candle lamp has been a technical challenge. Compact fluorescent lamps, for example, can be miniaturized to fit the form factor of a candle lamp but they fail to reproduce its "sparkle" effect. Empowered by solid state lighting technology along with original optical design, Philips has successfully developed LED-powered candle lamps "Novallure" with great energy savings (2W power consumption with lumen output of 55 lumen) and the "butterfly" radiation pattern that mimics the sparkle effect from an incandescent candle lamp. With new high performance LED packages, novel under-cut prismatic optics and state-of-the-art electronic driver solution and thermal solution, we have developed a 2nd generation Novallure with breakthrough performance: a dimmable 2700K 136 lumen LED candle lamp with CRI 90.
Super Boiler 2nd Generation Technology for Watertube Boilers
Mr. David Cygan; Dr. Joseph Rabovitser
2012-03-31
This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.
On the cardinality of twelfth degree polynomial
NASA Astrophysics Data System (ADS)
Lasaraiya, S.; Sapar, S. H.; Johari, M. A. Mohamat
2016-06-01
Let p be a prime and f (x, y) be a polynomial in Zp[x, y]. It is defined that the exponential sums associated with f modulo a prime pα is S (f :q )= ∑ e2/π i f (x ) q for α >1 , where f (x) is in Z[x] and the sum is taken over a complete set of residues x modulo positive integer q. Previous studies has shown that estimation of S (f; pα) is depends on the cardinality of the set of solutions to congruence equation associated with the polynomial. In order to estimate the cardinality, we need to have the value of p-adic sizes of common zeros of partial derivative polynomials associated with polynomial. Hence, p-adic method and newton polyhedron technique will be applied to this approach. After that, indicator diagram will be constructed and analyzed. The cardinality will in turn be used to estimate the exponential sums of the polynomials. This paper concentrates on the cardinality of the set of solutions to congruence equation associated with polynomial in the form of f (x, y) = ax12 + bx11y + cx10y2 + sx + ty + k.
Physical properties of double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6}
Wakeshima, Makoto; Hinatsu, Yukio; Ohoyama, Kenji
2013-01-15
The crystal, magnetic structures and physical properties of the double perovskite-type barium neodymium osmate Ba{sub 2}NdOsO{sub 6} are investigated through powder X-ray and neutron diffraction, electrical conductivity, magnetic susceptibility, and specific heat measurements. The Rietveld analysis reveals that the Nd and Os ions are arranged with regularity over the six-coordinate B sites in a distorted perovskite ABO{sub 3} framework. The monoclinic crystal structure described by space group P2{sub 1}/n (tilt system a{sup -}a{sup -}c{sup +}) becomes more distorted with decreasing temperature from 300 K down to 2.5 K. This compound shows a long-range antiferromagnetic ordering of Os{sup 5+} below 65 K. An antiferromagnetic ordering of Nd{sup 3+} also occurs at lower temperatures ({approx}20 K). The magnetic structure is of Type I and the magnetic moments of Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. - Graphical Abstract: The Magnetic structure of Ba{sub 2}NdOsO{sub 6} is of Type I, and the magnetic moments of the Nd{sup 3+} and Os{sup 5+} ions are in the same direction in the ab-plane. Highlights: Black-Right-Pointing-Pointer Crystal structures of Ba{sub 2}NdOsO{sub 6} are determined to be monoclinic below 300 K. Black-Right-Pointing-Pointer Its electrical resistivity shows a Mott variable-range hopping behavior with localized carriers. Black-Right-Pointing-Pointer An antiferromagnetic ordering of the Os{sup 5+}moment occurs at 65 K. Black-Right-Pointing-Pointer The magnetic structure of Ba{sub 2}NdOsO{sub 6} is determined to be of Type I.
Polynomials with small Mahler measure
NASA Astrophysics Data System (ADS)
Mossinghoff, M. J.
1998-10-01
We describe several searches for polynomials with integer coefficients and small Mahler measure. We describe the algorithm used to test Mahler measures. We determine all polynomials with degree at most 24 and Mahler measure less than 1.3, test all reciprocal and antireciprocal polynomials with height 1 and degree at most 40, and check certain sparse polynomials with height 1 and degree as large as 181. We find a new limit point of Mahler measures near 1.309, four new Salem numbers less than 1.3, and many new polynomials with small Mahler measure. None has measure smaller than that of Lehmer's degree 10 polynomial.
[Microsurgical 2nd toe transfer for catastrophic hand reconstruction].
Placer, A; Lozano, Ja
2007-01-01
The correct reconstruction of the catastrophic hand requires complex surgical techniques. The microsurgical transference of a toe is indicated when all other reconstructive options are shown to be useless for the reconstruction of the required clamp function. In this clinical note we set out the case of a 32 year old man, who came to our accident and emergency department after suffering a traffic accident. After exploration the diagnosis was that of catastrophic left hand, among other policontusions. Urgent surgery was carried out, saving the maximum possible viable structures. The immediate result of this surgery was a hand with 1st, 4th and 5th functional fingers. As the essential clamp function between the 1st and 4th or 5th fingers was not totally satisfactory, we decided to reconstruct the 3rd finger of his hand with his ipsilateral 2nd toe. All pertinent studies to determine vascularisation of the flap were carried out in planning the surgery, and the microsurgical transfer was then realized, which was successful. Today, after a suitable rehabilitation, the patient has recovered a satisfactory function of heavy and fine clamp in the operated hand. Toe to hand transfer is a good option for finger reconstruction and its function. Rehabilitation is the key to functional recovery. PMID:18227902
2nd PEGS Annual Symposium on Antibodies for Cancer Therapy
Ho, Mitchell; Royston, Ivor; Beck, Alain
2012-01-01
The 2nd Annual Antibodies for Cancer Therapy symposium, organized again by Cambridge Healthtech Institute as part of the Protein Engineering Summit, was held in Boston, USA from April 30th to May 1st, 2012. Since the approval of the first cancer antibody therapeutic, rituximab, fifteen years ago, eleven have been approved for cancer therapy, although one, gemtuzumab ozogamicin, was withdrawn from the market. The first day of the symposium started with a historical review of early work for lymphomas and leukemias and the evolution from murine to human antibodies. The symposium discussed the current status and future perspectives of therapeutic antibodies in the biology of immunoglobulin, emerging research on biosimilars and biobetters, and engineering bispecific antibodies and antibody-drug conjugates. The tumor penetration session was focused on the understanding of antibody therapy using ex vivo tumor spheroids and the development of novel agents targeting epithelial junctions in solid tumors. The second day of the symposium discussed the development of new generation recombinant immunotoxins with low immunogenicity, construction of chimeric antigen receptors, and the proof-of-concept of ‘photoimmunotherapy’. The preclinical and clinical session presented antibodies targeting Notch signaling and chemokine receptors. Finally, the symposium discussed emerging technologies and platforms for therapeutic antibody discovery. PMID:22864478
Aging Studies of 2nd Generation BaBar RPCs
Band, H.R.; /SLAC
2007-09-25
The BaBar detector, operating at the PEPII B factory of the Stanford Linear Accelerator Center (SLAC), installed over 200 2nd generation Resistive Plate Chambers (RPCs) in 2002. The streamer rates produced by backgrounds and signals from normal BaBar running vary considerably (0.1- >20 Hz/cm2) depending on the layer and position of the chambers, thus providing a broad spectrum test of RPC performance and aging. The lowest rate chambers have performed very well with stable efficiencies averaging 95%. Other chambers had rate-dependant inefficiencies due to Bakelite drying which were reversed by the introduction of humidified gases. RPC inefficiencies in the highest rate regions of the higher rate chambers have been observed and also found to be rate dependant. The inefficient regions grow with time and have not yet been reduced by operation with humidified input gas. Three of these chambers were converted to avalanche mode operation and display significantly improved efficiencies. The rate of production of HF in the RPC exhaust gases was measured in avalanche and streamer mode RPCs and found to be comparable despite the lower current of the avalanche mode RPCs.
PREFACE: 2nd International Symposium "Optics and its Applications"
NASA Astrophysics Data System (ADS)
Calvo, Maria L.; Dolganova, Irina N.; Gevorgyan, Narine; Guzman, Angela; Papoyan, Aram; Sarkisyan, Hayk; Yurchenko, Stanislav
2016-01-01
The ICTP smr2633: 2nd International Symposium "Optics and its Applications" (OPTICS-2014) http://indico.ictp.it/event/a13253/ was held in Yerevan and Ashtarak, Armenia, on 1-5 September 2014. The Symposium was organized by the Abdus Salam International Center for Theoretical Physics (ICTP) with the collaboration of the SPIE Armenian Student Chapter, the Armenian TC of ICO, the Russian-Armenian University (RAU), the Institute for Physical Research of the National Academy of Sciences of Armenia (IPR of NAS), the Greek-Armenian industrial company LT-Pyrkal, and the Yerevan State University (YSU). The Symposium was co-organized by the BMSTU SPIE & OSA student chapters. The International Symposium OPTICS-2014 was dedicated to the 50th anniversary of the Abdus Salam International Center for Theoretical Physics. This symposium "Optics and its Applications" was the First Official ICTP Scientific Event in Armenia. The presentations at OPTICS-2014 were centered on these topics: optical properties of nanostructures; quantum optics & information; singular optics and its applications; laser spectroscopy; strong field optics; nonlinear & ultrafast optics; photonics & fiber optics; optics of liquid crystals; and mathematical methods in optics.
APTWG: 2nd Asia-Pacific Transport Working Group Meeting
NASA Astrophysics Data System (ADS)
Dong, J. Q.; Shi, Y. J.; Tamura, N.; Jhang, Hogun; Watanabe, T.-H.; Ding, X. T.
2013-02-01
This conference report summarizes the contributions to and discussions at the 2nd Asia-Pacific Transport Working Group Meeting held in Chengdu, China, from 15 to 18 May 2012. The topics of the meeting were organized under five main headings: momentum transport, non-locality in transport, edge turbulence and L-H transition, three-dimensional effects on transport physics, and particle, momentum and heat pinches. It is found that lower hybrid wave and ion cyclotron wave induce co-current rotation while electron cyclotron wave induces counter-current rotation. A four-stage imaging for low (L) to high (H) confinement transition gradually emerges and a more detailed verification is urgently expected. The new edge-localized modes mitigation technique with supersonic molecular beam injection was approved to be effective to some extent on HL-2A and KSTAR. It is also found that low collisionality, trapped electron mode to ion temperature gradient transition (or transition of higher to lower density and temperature gradients), fuelling and lithium coating are in favour of inward pinch of particles in tokamak plasmas.
ERIC Educational Resources Information Center
Gordon, Sheldon P.
1992-01-01
Demonstrates how the uniqueness and anonymity of a student's Social Security number can be utilized to create individualized polynomial equations that students can investigate using computers or graphing calculators. Students write reports of their efforts to find and classify all real roots of their equation. (MDH)
Calculators and Polynomial Evaluation.
ERIC Educational Resources Information Center
Weaver, J. F.
The intent of this paper is to suggest and illustrate how electronic hand-held calculators, especially non-programmable ones with limited data-storage capacity, can be used to advantage by students in one particular aspect of work with polynomial functions. The basic mathematical background upon which calculator application is built is summarized.…
Interpolation and Polynomial Curve Fitting
ERIC Educational Resources Information Center
Yang, Yajun; Gordon, Sheldon P.
2014-01-01
Two points determine a line. Three noncollinear points determine a quadratic function. Four points that do not lie on a lower-degree polynomial curve determine a cubic function. In general, n + 1 points uniquely determine a polynomial of degree n, presuming that they do not fall onto a polynomial of lower degree. The process of finding such a…
Determinants and Polynomial Root Structure
ERIC Educational Resources Information Center
De Pillis, L. G.
2005-01-01
A little known property of determinants is developed in a manner accessible to beginning undergraduates in linear algebra. Using the language of matrix theory, a classical result by Sylvester that describes when two polynomials have a common root is recaptured. Among results concerning the structure of polynomial roots, polynomials with pairs of…
Highlights of the 2 nd Bioinformatics Student Symposium by ISCB RSG-UK
White, Benjamen; Fatima, Vayani; Fatima, Nazeefa; Das, Sayoni; Rahman, Farzana; Hassan, Mehedi
2016-01-01
Following the success of the 1 st Student Symposium by ISCB RSG-UK, a 2 nd Student Symposium took place on 7 th October 2015 at The Genome Analysis Centre, Norwich, UK. This short report summarizes the main highlights from the 2 nd Bioinformatics Student Symposium. PMID:27239284
Examples to Accompany "Descriptive Cataloging of Rare Books, 2nd Edition."
ERIC Educational Resources Information Center
Association of Coll. and Research Libraries, Chicago, IL.
This book is intended to be used with "Descriptive Cataloging of Rare Books," 2nd edition (DCRB) as an illustrative aid to catalogers and others interested in or needing to interpret rare book cataloging. As such, it is to be used in conjunction with the rules it illustrates, both in DCRB and in "Anglo-American Cataloging Rules," 2nd edition…
Development of a Hydrologic Characterization Technology for Fault Zones Phase II 2nd Report
Karasaki, Kenzi; Doughty, Christine; Gasperikova, Erika; Peterson, John; Conrad, Mark; Cook, Paul; Tiemi, Onishi
2011-03-31
This is the 2nd report on the three-year program of the 2nd phase of the NUMO-LBNL collaborative project: Development of Hydrologic Characterization Technology for Fault Zones under NUMO-DOE/LBNL collaboration agreement. As such, this report is a compendium of the results by Kiho et al. (2011) and those by LBNL.
PREFACE: 2nd National Conference on Nanotechnology 'NANO 2008'
NASA Astrophysics Data System (ADS)
Czuba, P.; Kolodziej, J. J.; Konior, J.; Szymonski, M.
2009-03-01
This issue of Journal of Physics: Conference Series contains selected papers presented at the 2nd National Conference on Nanotechnology 'NANO2008', that was held in Kraków, Poland, 25-28 June 2008. It was organized jointly by the Polish Chemical Society, Polish Physical Society, Polish Vacuum Society, and the Centre for Nanometer-scale Science and Advanced Materials (NANOSAM) of the Jagiellonian University. The meeting presentations were categorized into the following topics: 1. Nanomechanics and nanotribology 2. Characterization and manipulation in nanoscale 3. Quantum effects in nanostructures 4. Nanostructures on surfaces 5. Applications of nanotechnology in biology and medicine 6. Nanotechnology in education 7. Industrial applications of nanotechnology, presentations of the companies 8. Nanoengineering and nanomaterials (international sessions shared with the fellows of Maria-Curie Host Fellowships within the 6th FP of the European Community Project 'Nano-Engineering for Expertise and Development, NEED') 9. Nanopowders 10. Carbon nanostructures and nanosystems 11. Nanoelectronics and nanophotonics 12. Nanomaterials in catalysis 13. Nanospintronics 14. Ethical, social, and environmental aspects of nanotechnology The Conference was attended by 334 participants. The presentations were delivered as 7 invited plenary lectures, 25 invited topical lectures, 78 oral and 108 poster contributions. Only 1/6 of the contributions presented during the Conference were submitted for publication in this Proceedings volume. From the submitted material, this volume of Journal of Physics: Conference Series contains 37 articles that were positively evaluated by independent referees. The Organizing Committee gratefully acknowledges all these contributions. We also thank all the referees of the papers submitted for the Proceedings for their timely and thorough work. We would like to thank all members of the National Program Committee for their work in the selection process of
Time-dependent generalized polynomial chaos
Gerritsma, Marc; Steen, Jan-Bart van der; Vos, Peter; Karniadakis, George
2010-11-01
Generalized polynomial chaos (gPC) has non-uniform convergence and tends to break down for long-time integration. The reason is that the probability density distribution (PDF) of the solution evolves as a function of time. The set of orthogonal polynomials associated with the initial distribution will therefore not be optimal at later times, thus causing the reduced efficiency of the method for long-time integration. Adaptation of the set of orthogonal polynomials with respect to the changing PDF removes the error with respect to long-time integration. In this method new stochastic variables and orthogonal polynomials are constructed as time progresses. In the new stochastic variable the solution can be represented exactly by linear functions. This allows the method to use only low order polynomial approximations with high accuracy. The method is illustrated with a simple decay model for which an analytic solution is available and subsequently applied to the three mode Kraichnan-Orszag problem with favorable results.
High degree interpolation polynomial in Newton form
NASA Technical Reports Server (NTRS)
Tal-Ezer, Hillel
1988-01-01
Polynomial interpolation is an essential subject in numerical analysis. Dealing with a real interval, it is well known that even if f(x) is an analytic function, interpolating at equally spaced points can diverge. On the other hand, interpolating at the zeroes of the corresponding Chebyshev polynomial will converge. Using the Newton formula, this result of convergence is true only on the theoretical level. It is shown that the algorithm which computes the divided differences is numerically stable only if: (1) the interpolating points are arranged in a different order, and (2) the size of the interval is 4.
Two-variable orthogonal polynomials of big q-Jacobi type
NASA Astrophysics Data System (ADS)
Lewanowicz, Stanislaw; Wozny, Pawel
2010-01-01
A four-parameter family of orthogonal polynomials in two discrete variables is defined for a weight function of basic hypergeometric type. The polynomials, which are expressed in terms of univariate big q-Jacobi polynomials, form an extension of Dunkl's bivariate (little) q-Jacobi polynomials [C.F. Dunkl, Orthogonal polynomials in two variables of q-Hahn and q-Jacobi type, SIAM J. Algebr. Discrete Methods 1 (1980) 137-151]. We prove orthogonality property of the new polynomials, and show that they satisfy a three-term relation in a vector-matrix notation, as well as a second-order partial q-difference equation.
2nd interface between ecology and land development in California
Keeley, Jon E.; Baer-Keeley, Melanie; Fortheringham, C.J.
2000-01-01
The 2nd Interface Between Ecology and Land Development Conference was held in association with Earth Day 1997, five years after the first Interface Conference. Rapid population growth in California has intensified the inevitable conflict between land development and preservation of natural ecosystems. Sustainable development requires wise use of diminishing natural resources and, where possible, restoration of damaged landscapes. These Earth Week Celebrations brought together resource managers, scientists, politicians, environmental consultants, and concerned citizens in an effort to improve the communication necessary to maintain our natural biodiversity, ecosystem processes and general quality of life. As discussed by our keynote speaker, Michael Soule, the best predictor of habitat loss is population growth and nowhere is this better illustrated than in California. As urban perimeters expand, the interface between wildlands and urban areas increases. Few problems are more vexing than how to manage the fire prone ecosystems indigenous to California at this urban interface. Today resource managers face increasing challenges of dealing with this problem and the lead-off section of the proceedings considers both the theoretical basis for making decisions related to prescribed burning and the practical application. Habitat fragmentation is an inevitable consequence of development patterns with significant impacts on animal and plant populations. Managers must be increasingly resourceful in dealing with problems of fragmentation and the often inevitable consequences, including susceptibility to invasive oganisms. One approach to dealing with fragmentation problems is through careful landplanning. California is the national leader in the integration of conservation and economics. On Earth Day 1991, Governor Pete Wilson presented an environmental agenda that promised to create between land owners and environmentalists, agreements that would guarantee the protection of
Approximating smooth functions using algebraic-trigonometric polynomials
NASA Astrophysics Data System (ADS)
Sharapudinov, Idris I.
2011-01-01
The problem under consideration is that of approximating classes of smooth functions by algebraic-trigonometric polynomials of the form p_n(t)+\\tau_m(t), where p_n(t) is an algebraic polynomial of degree n and \\tau_m(t)=a_0+\\sum_{k=1}^ma_k\\cos k\\pi t+b_k\\sin k\\pi t is a trigonometric polynomial of order m. The precise order of approximation by such polynomials in the classes W^r_\\infty(M) and an upper bound for similar approximations in the class W^r_p(M) with \\frac43 are found. The proof of these estimates uses mixed series in Legendre polynomials which the author has introduced and investigated previously. Bibliography: 13 titles.
Polynomial harmonic GMDH learning networks for time series modeling.
Nikolaev, Nikolay Y; Iba, Hitoshi
2003-12-01
This paper presents a constructive approach to neural network modeling of polynomial harmonic functions. This is an approach to growing higher-order networks like these build by the multilayer GMDH algorithm using activation polynomials. Two contributions for enhancement of the neural network learning are offered: (1) extending the expressive power of the network representation with another compositional scheme for combining polynomial terms and harmonics obtained analytically from the data; (2) space improving the higher-order network performance with a backpropagation algorithm for further gradient descent learning of the weights, initialized by least squares fitting during the growing phase. Empirical results show that the polynomial harmonic version phGMDH outperforms the previous GMDH, a Neurofuzzy GMDH and traditional MLP neural networks on time series modeling tasks. Applying next backpropagation training helps to achieve superior polynomial network performances. PMID:14622880
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
Orthogonal polynomials and tolerancing
NASA Astrophysics Data System (ADS)
Rogers, John R.
2011-10-01
Previous papers have established the inadvisability of applying tolerances directly to power-series aspheric coefficients. The basic reason is that the individual terms are far from orthogonal. Zernike surfaces and the new Forbes surface types have certain orthogonality properties over the circle described by the "normalization radius." However, at surfaces away from the stop, the optical beam is smaller than the surface, and the polynomials are not orthogonal over the area sampled by the beam. In this paper, we investigate the breakdown of orthogonality as the surface moves away from the aperture stop, and the implications of this to tolerancing.
PREFACE: 2nd Workshop on Germanium Detectors and Technologies
NASA Astrophysics Data System (ADS)
Abt, I.; Majorovits, B.; Keller, C.; Mei, D.; Wang, G.; Wei, W.
2015-05-01
The 2nd workshop on Germanium (Ge) detectors and technology was held at the University of South Dakota on September 14-17th 2014, with more than 113 participants from 8 countries, 22 institutions, 15 national laboratories, and 8 companies. The participants represented the following big projects: (1) GERDA and Majorana for the search of neutrinoless double-beta decay (0νββ) (2) SuperCDMS, EDELWEISS, CDEX, and CoGeNT for search of dark matter; (3) TEXONO for sub-keV neutrino physics; (4) AGATA and GRETINA for gamma tracking; (5) AARM and others for low background radiation counting; (5) as well as PNNL and LBNL for applications of Ge detectors in homeland security. All participants have expressed a strong desire on having better understanding of Ge detector performance and advancing Ge technology for large-scale applications. The purpose of this workshop was to leverage the unique aspects of the underground laboratories in the world and the germanium (Ge) crystal growing infrastructure at the University of South Dakota (USD) by brining researchers from several institutions taking part in the Experimental Program to Stimulate Competitive Research (EPSCoR) together with key leaders from international laboratories and prestigious universities, working on the forefront of the intensity to advance underground physics focusing on the searches for dark matter, neutrinoless double-beta decay (0νββ), and neutrino properties. The goal of the workshop was to develop opportunities for EPSCoR institutions to play key roles in the planned world-class research experiments. The workshop was to integrate individual talents and existing research capabilities, from multiple disciplines and multiple institutions, to develop research collaborations, which includes EPSCor institutions from South Dakota, North Dakota, Alabama, Iowa, and South Carolina to support multi-ton scale experiments for future. The topic areas covered in the workshop were: 1) science related to Ge
NASA Astrophysics Data System (ADS)
Laksâ, Arne
2015-11-01
B-splines are the de facto industrial standard for surface modelling in Computer Aided design. It is comparable to bend flexible rods of wood or metal. A flexible rod minimize the energy when bending, a third degree polynomial spline curve minimize the second derivatives. B-spline is a nice way of representing polynomial splines, it connect polynomial splines to corner cutting techniques, which induces many nice and useful properties. However, the B-spline representation can be expanded to something we can call general B-splines, i.e. both polynomial and non-polynomial splines. We will show how this expansion can be done, and the properties it induces, and examples of non-polynomial B-spline.
A recursive algorithm for Zernike polynomials
NASA Technical Reports Server (NTRS)
Davenport, J. W.
1982-01-01
The analysis of a function defined on a rotationally symmetric system, with either a circular or annular pupil is discussed. In order to numerically analyze such systems it is typical to expand the given function in terms of a class of orthogonal polynomials. Because of their particular properties, the Zernike polynomials are especially suited for numerical calculations. Developed is a recursive algorithm that can be used to generate the Zernike polynomials up to a given order. The algorithm is recursively defined over J where R(J,N) is the Zernike polynomial of degree N obtained by orthogonalizing the sequence R(J), R(J+2), ..., R(J+2N) over (epsilon, 1). The terms in the preceding row - the (J-1) row - up to the N+1 term is needed for generating the (J,N)th term. Thus, the algorith generates an upper left-triangular table. This algorithm was placed in the computer with the necessary support program also included.
Polynomial approximation of functions in Sobolev spaces
NASA Technical Reports Server (NTRS)
Dupont, T.; Scott, R.
1980-01-01
Constructive proofs and several generalizations of approximation results of J. H. Bramble and S. R. Hilbert are presented. Using an averaged Taylor series, we represent a function as a polynomial plus a remainder. The remainder can be manipulated in many ways to give different types of bounds. Approximation of functions in fractional order Sobolev spaces is treated as well as the usual integer order spaces and several nonstandard Sobolev-like spaces.
NASA Astrophysics Data System (ADS)
Chaves, Rafael
2016-01-01
It is a recent realization that many of the concepts and tools of causal discovery in machine learning are highly relevant to problems in quantum information, in particular quantum nonlocality. The crucial ingredient in the connection between both fields is the mathematical theory of causality, allowing for the representation of arbitrary causal structures and providing a rigorous tool to reason about probabilistic causation. Indeed, Bell's theorem concerns a very particular kind of causal structure and Bell inequalities are a special case of linear constraints following from such models. It is thus natural to look for generalizations involving more complex Bell scenarios. The problem, however, relies on the fact that such generalized scenarios are characterized by polynomial Bell inequalities and no current method is available to derive them beyond very simple cases. In this work, we make a significant step in that direction, providing a new, general, and conceptually clear method for the derivation of polynomial Bell inequalities in a wide class of scenarios. We also show how our construction can be used to allow for relaxations of causal constraints and naturally gives rise to a notion of nonsignaling in generalized Bell networks.
NASA Astrophysics Data System (ADS)
Zhang, Xu
This paper introduces a class of polynomial maps in Euclidean spaces, investigates the conditions under which there exist Smale horseshoes and uniformly hyperbolic invariant sets, studies the chaotic dynamical behavior and strange attractors, and shows that some maps are chaotic in the sense of Li-Yorke or Devaney. This type of maps includes both the Logistic map and the Hénon map. For some diffeomorphisms with the expansion dimension equal to one or two in three-dimensional spaces, the conditions under which there exist Smale horseshoes and uniformly hyperbolic invariant sets on which the systems are topologically conjugate to the two-sided fullshift on finite alphabet are obtained; for some expanding maps, the chaotic region is analyzed by using the coupled-expansion theory and the Brouwer degree theory. For three types of higher-dimensional polynomial maps with degree two, the conditions under which there are Smale horseshoes and uniformly hyperbolic invariant sets are given, and the topological conjugacy between the maps on the invariant sets and the two-sided fullshift on finite alphabet is obtained. Some interesting maps with chaotic attractors and positive Lyapunov exponents in three-dimensional spaces are found by using computer simulations. In the end, two examples are provided to illustrate the theoretical results.
VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT ...
VIEW SOUTH/SOUTHEAST LOOKING DOWN ON 2ND AQUEDUCT AND 1ST AQUEDUCT CASCADES TOWARDS FILTRATION PLANT AND LOS ANGELES RESERVOIR - Los Angeles Aqueduct, Cascades Structures, Los Angeles, Los Angeles County, CA
MAGAZINE E30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL ...
MAGAZINE E-30. VIEW FROM BETWEEN 1ST AND 2ND BLAST WALL LOOKING TO THE REAR OF THE MAGAZINE. - Naval Magazine Lualualei, Waikele Branch, Tunnel Magazine Type, Waikakalaua & Kipapa Gulches, Pearl City, Honolulu County, HI
22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING ...
22. MILL NO. 1, 2nd FLOOR, LIGHT TABLES AND KNITTING MACHINE. LIGHT TABLE USED TO CHECK FOR CLOTH DEFECTS. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
12. Bldg #13, 2nd floor, interior stone walls w/windows and ...
12. Bldg #13, 2nd floor, interior stone walls w/windows and bent pipe thru wall L and light bulbs in ceiling, to NE - Lawrence Machine Shop, Building No. 13, Union & Canal Streets, Lawrence, Essex County, MA
4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND ...
4. VIEW WEST, WEST SIDE, SHOWING CHANNELS 1ST AND 2ND VERTICAL BRACED DOUBLE ANGLES, DIAGONAL BRACING AND CROSS BRACED RAILING - Thirty-Sixth Street Bridge, Spanning Rabbit River, Hamilton, Allegan County, MI
2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic
... news/fullstory_159807.html 2nd U.S. Case of Bacteria Resistant to Last-Resort Antibiotic Scientists concerned it ... the United States who was infected with a bacteria that is resistant to an antibiotic of last ...
Front elevation of Rostrum with 2nd Division American Expeditionary Force ...
Front elevation of Rostrum with 2nd Division American Expeditionary Force Monument in foreground, view to northwest - Cypress Hills National Cemetery, Jamaica Avenue Unit, 625 Jamaica Avenue, Brooklyn, Kings County, NY
37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 ...
37. MILL NO. 2, 2nd FLOOR, CLOSE SHOT OF 2 CREEL MACHINES, WHICH FEED YARN INTO KNITTING MACHINES. - Prattville Manufacturing Company, Number One, 242 South Court Street, Prattville, Autauga County, AL
73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, ...
73. VIEW OF NORTHWEST SIDE OF 2ND TEE, LOOKING NORTHWEST, SHOWING STEPPED PLATFORM, BENCHES, AND LIGHT STANDARDS - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH ...
21. VIEW FROM INTERIOR OF 2ND FLOOR ARCHED WINDOW WITH HOLLOW STEEL SASH AND POLISHED PLATE WIRE GLASS. THIS WINDOW IS AT THE FRONT OF THE BUILDING. - Pacific Telephone & Telegraph Company Building, 1519 Franklin Street, Oakland, Alameda County, CA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-04
... Countervailing Duty Orders; Policy Bulletin, 63 FR 18871 (April 16, 1998). The Notice of Initiation of Five-Year...) Dana Mermelstein (202) (2nd Review). 482-1391 Silicomanganese from Venezuela (A-307-820) (2nd...
Thermodynamic characterization of networks using graph polynomials
NASA Astrophysics Data System (ADS)
Ye, Cheng; Comin, César H.; Peron, Thomas K. DM.; Silva, Filipi N.; Rodrigues, Francisco A.; Costa, Luciano da F.; Torsello, Andrea; Hancock, Edwin R.
2015-09-01
In this paper, we present a method for characterizing the evolution of time-varying complex networks by adopting a thermodynamic representation of network structure computed from a polynomial (or algebraic) characterization of graph structure. Commencing from a representation of graph structure based on a characteristic polynomial computed from the normalized Laplacian matrix, we show how the polynomial is linked to the Boltzmann partition function of a network. This allows us to compute a number of thermodynamic quantities for the network, including the average energy and entropy. Assuming that the system does not change volume, we can also compute the temperature, defined as the rate of change of entropy with energy. All three thermodynamic variables can be approximated using low-order Taylor series that can be computed using the traces of powers of the Laplacian matrix, avoiding explicit computation of the normalized Laplacian spectrum. These polynomial approximations allow a smoothed representation of the evolution of networks to be constructed in the thermodynamic space spanned by entropy, energy, and temperature. We show how these thermodynamic variables can be computed in terms of simple network characteristics, e.g., the total number of nodes and node degree statistics for nodes connected by edges. We apply the resulting thermodynamic characterization to real-world time-varying networks representing complex systems in the financial and biological domains. The study demonstrates that the method provides an efficient tool for detecting abrupt changes and characterizing different stages in network evolution.
Piecewise Polynomial Representations of Genomic Tracks
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/. PMID:23166601
Polynomials Generated by the Fibonacci Sequence
NASA Astrophysics Data System (ADS)
Garth, David; Mills, Donald; Mitchell, Patrick
2007-06-01
The Fibonacci sequence's initial terms are F_0=0 and F_1=1, with F_n=F_{n-1}+F_{n-2} for n>=2. We define the polynomial sequence p by setting p_0(x)=1 and p_{n}(x)=x*p_{n-1}(x)+F_{n+1} for n>=1, with p_{n}(x)= sum_{k=0}^{n} F_{k+1}x^{n-k}. We call p_n(x) the Fibonacci-coefficient polynomial (FCP) of order n. The FCP sequence is distinct from the well-known Fibonacci polynomial sequence. We answer several questions regarding these polynomials. Specifically, we show that each even-degree FCP has no real zeros, while each odd-degree FCP has a unique, and (for degree at least 3) irrational, real zero. Further, we show that this sequence of unique real zeros converges monotonically to the negative of the golden ratio. Using Rouche's theorem, we prove that the zeros of the FCP's approach the golden ratio in modulus. We also prove a general result that gives the Mahler measures of an infinite subsequence of the FCP sequence whose coefficients are reduced modulo an integer m>=2. We then apply this to the case that m=L_n, the nth Lucas number, showing that the Mahler measure of the subsequence is phi^{n-1}, where phi=(1+sqrt 5)/2.
Piecewise polynomial representations of genomic tracks.
Tarabichi, Maxime; Detours, Vincent; Konopka, Tomasz
2012-01-01
Genomic data from micro-array and sequencing projects consist of associations of measured values to chromosomal coordinates. These associations can be thought of as functions in one dimension and can thus be stored, analyzed, and interpreted as piecewise-polynomial curves. We present a general framework for building piecewise polynomial representations of genome-scale signals and illustrate some of its applications via examples. We show that piecewise constant segmentation, a typical step in copy-number analyses, can be carried out within this framework for both array and (DNA) sequencing data offering advantages over existing methods in each case. Higher-order polynomial curves can be used, for example, to detect trends and/or discontinuities in transcription levels from RNA-seq data. We give a concrete application of piecewise linear functions to diagnose and quantify alignment quality at exon borders (splice sites). Our software (source and object code) for building piecewise polynomial models is available at http://sourceforge.net/projects/locsmoc/. PMID:23166601
On a Perplexing Polynomial Puzzle
ERIC Educational Resources Information Center
Richmond, Bettina
2010-01-01
It seems rather surprising that any given polynomial p(x) with nonnegative integer coefficients can be determined by just the two values p(1) and p(a), where a is any integer greater than p(1). This result has become known as the "perplexing polynomial puzzle." Here, we address the natural question of what might be required to determine a…
Graphical Solution of Polynomial Equations
ERIC Educational Resources Information Center
Grishin, Anatole
2009-01-01
Graphing utilities, such as the ubiquitous graphing calculator, are often used in finding the approximate real roots of polynomial equations. In this paper the author offers a simple graphing technique that allows one to find all solutions of a polynomial equation (1) of arbitrary degree; (2) with real or complex coefficients; and (3) possessing…
Transient 2(nd) Degree Av Block Mobitz Type II: A Rare Finding in Dengue Haemorrhagic Fever.
Nigam, Ashwini Kumar; Singh, Omkar; Agarwal, Ayush; Singh, Amit K; Yadav, Subhash
2015-05-01
Dengue has been a major problem as endemic occurs almost every year and causes a state of panic due to lack of proper diagnostic methods and facilities for proper management. Patients presenting with classical symptoms are easy to diagnose, however as a large number of cases occur every year, a number of cases diagnosed with dengue fever on occasion presents with atypical manifestations, which cause extensive evaluation of the patients, unnecessary referral to higher centre irrespective of the severity and therefore a rough idea of these manifestations must be present in the backdrop in order to prevent these problems. Involvement of cardiovascular system in dengue has been reported in previous studies, and they are usually benign and self-limited. The importance of study of conduction abnormalities is important as sometimes conduction blocks are the first sign of acute myocarditis in patients of Dengue Hemorrhagic Fever in shock. We present here a case of 2(nd) Degree Mobitz Type II atrioventricular AV block in a case of Dengue Hemorrhagic fever reverting to the normal rhythm in recovery phase and no signs thereafter on follow up. PMID:26155512
The basic function scheme of polynomial type
WU, Wang-yi; Lin, Guang
2009-12-01
A new numerical method---Basic Function Method is proposed. This method can directly discrete differential operator on unstructured grids. By using the expansion of basic function to approach the exact function, the central and upwind schemes of derivative are constructed. By using the second-order polynomial as basic function and applying the technique of flux splitting method and the combination of central and upwind schemes to suppress the non-physical fluctuation near the shock wave, the second-order basic function scheme of polynomial type for solving inviscid compressible flow numerically is constructed in this paper. Several numerical results of many typical examples for two dimensional inviscid compressible transonic and supersonic steady flow illustrate that it is a new scheme with high accuracy and high resolution for shock wave. Especially, combining with the adaptive remeshing technique, the satisfactory results can be obtained by these schemes.
Generalized Freud's equation and level densities with polynomial potential
NASA Astrophysics Data System (ADS)
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Acid soil and acid rain, 2nd edition
Kennedy, I.R.
1992-01-01
This book examines the basic chemical processes involved in acidification in order to better assess their long-term effects on the status of soils, the health of plants and other living species that depend on them. It also discusses acidity, pH and protons their significance in bioenergetics and the consequent role of autotrophic organisms in acidifying ecosystems. This edition incorporates and integrates recent findings that render more explanations of the causes of the environmental impacts of acidity, especially in forests and lakes. Also explores current research into acid rain and soil in order to devise appropriate measures for their amelioration.
Writing II for 2nd Year EFL Student Teachers
ERIC Educational Resources Information Center
Abdallah, Mahmoud M. S.
2015-01-01
Writing is a very important skill that should be mastered properly by university students, especially pre-service language teachers (e.g. EFL student teachers). In order to present their ideas efficiently in the context of their academic study, they have to be trained well on how to write meaningful pieces (e.g. essays, academic reports,…
Hadamard Factorization of Stable Polynomials
NASA Astrophysics Data System (ADS)
Loredo-Villalobos, Carlos Arturo; Aguirre-Hernández, Baltazar
2011-11-01
The stable (Hurwitz) polynomials are important in the study of differential equations systems and control theory (see [7] and [19]). A property of these polynomials is related to Hadamard product. Consider two polynomials p,q ∈ R[x]:p(x) = anxn+an-1xn-1+...+a1x+a0q(x) = bmx m+bm-1xm-1+...+b1x+b0the Hadamard product (p × q) is defined as (p×q)(x) = akbkxk+ak-1bk-1xk-1+...+a1b1x+a0b0where k = min(m,n). Some results (see [16]) shows that if p,q ∈R[x] are stable polynomials then (p×q) is stable, also, i.e. the Hadamard product is closed; however, the reciprocal is not always true, that is, not all stable polynomial has a factorization into two stable polynomials the same degree n, if n> 4 (see [15]).In this work we will give some conditions to Hadamard factorization existence for stable polynomials.
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. PMID:26547244
Roots of polynomials by ratio of successive derivatives
NASA Technical Reports Server (NTRS)
Crouse, J. E.; Putt, C. W.
1972-01-01
An order of magnitude study of the ratios of successive polynomial derivatives yields information about the number of roots at an approached root point and the approximate location of a root point from a nearby point. The location approximation improves as a root is approached, so a powerful convergence procedure becomes available. These principles are developed into a computer program which finds the roots of polynomials with real number coefficients.
Radionuclide and radiation protection data handbook 2nd edition (2002).
Delacroix, D; Guerre, J P; Leblanc, P; Hickman, C
2002-01-01
This handbook is a reference source of radionuclide and radiation protection information. Its purpose is to provide users of radionuclides in medicine, research and industry with consolidated and appropriate information and data to handle and transport radioactive substances safely. It is mainly intended for users in low and intermediate activity laboratories. Individual data sheets are provided for a wide range of commonly used radionuclides (144 in total). These radionuclides are classified into five different groups as a function of risk level, represented by colours red, orange, yellow, green and blue, in descending order of risk. PMID:11916063
The Beta Pictoris Circumstellar Disk (5202; 2ND Visit)
NASA Astrophysics Data System (ADS)
Trauger, John
1994-01-01
We propose new methods to examine the circumstellar disk around Beta Pictoris in order to determine its radial profile, and hence (in combination with IRAS data) to fix its albedo and temperature profile. These observations will extend previous extensive ground based coronagraphic observations, and models by members of the science team. The data will enable us to understand better the central clearing in the disk and whether it is caused by sublimation or possible planet formation. They will also constrain the geometric propertie of the disk including its inclination angle, vertical thickness and radial profile. Such observations limit models for the dynamics of the disk, includin its velocity dispersion and hence mass distribution, and radial mass transport mechanisms. If density waves or clear zones are observed, they will give indirect evidence for the presence of massive bodies (planets) in the disk. Th observations involve a combination of roll deconvolution, polarizers and PSF modelling in order to allow the central stellar image and associated scattered light to be subtracted. Ultraviolet observations will constrain the particle size distribution and the composition of the disk. The observations require the new capabilities in WFPC2 provided by the absence of bleeding across columns, as well as its UV capabilities.
Polynomial Operators on Classes of Regular Languages
NASA Astrophysics Data System (ADS)
Klíma, Ondřej; Polák, Libor
We assign to each positive variety mathcal V and each natural number k the class of all (positive) Boolean combinations of the restricted polynomials, i.e. the languages of the form L_0a_1 L_1a_2dots a_ell L_ell, text{ where } ell≤ k, a 1,...,a ℓ are letters and L 0,...,L ℓ are languages from the variety mathcal V. For this polynomial operator we give a certain algebraic counterpart which works with identities satisfied by syntactic (ordered) monoids of languages considered. We also characterize the property that a variety of languages is generated by a finite number of languages. We apply our constructions to particular examples of varieties of languages which are crucial for a certain famous open problem concerning concatenation hierarchies.
Orthogonal polynomials and deformed oscillators
NASA Astrophysics Data System (ADS)
Borzov, V. V.; Damaskinsky, E. V.
2015-10-01
In the example of the Fibonacci oscillator, we discuss the construction of oscillator-like systems associated with orthogonal polynomials. We also consider the question of the dimensions of the corresponding Lie algebras.
A compendium of fossil marine animal families, 2nd edition
NASA Technical Reports Server (NTRS)
Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)
1992-01-01
A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.
A compendium of fossil marine animal families, 2nd edition.
Sepkoski, J J
1992-03-01
A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification. PMID:11542296
Regional Observations of North Korea Explosions: 1st and 2nd Tests
NASA Astrophysics Data System (ADS)
Chi, Heon Cheol; Shin, Jin Soo; Lee, Hee-Il; Park, Jung Ho; Sheen, Dong-Hoon; Kim, Geunyoung; Kim, Tea Sung; Che, Il-Young; Lim, In-Seub
2010-05-01
Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthally full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of the 1st and the 2nd test data showed that the 2nd test site was moved approximately 2 Km westward from 1st site. The Pn/Lg spectral ratio clearly discriminate these events from two nearby natural earthquakes above 4 Hz. Full moment tensor inversion also indicate the 2nd test had a very large isotropic component. But mb-Ms discrimination, which has been considered one of the most reliable discriminants for separating explosions and earthquakes, did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of the 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of both 1st and 2nd tests, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. These variations are mainly due to lateral variation of crustal structures surrounding the test site. Remarkably mb(Lg) showed very linear relationship with mb(Pn). By considering attenuation characteristics according to the propagation path, the variations could be effectively reduced. The cut-off frequencies of P wave of both tests showed no or negligible difference even though the estimated yield of the 2nd test were much larger than that of the 1st one. The ratio of P-wave amplitudes of two tests showed from 2 to 3.1 times. Correspondingly the
Monitoring North Korea Explosions: Status and Result of 1st and 2nd Tests (Invited)
NASA Astrophysics Data System (ADS)
Chi, H.; Lee, H.; Shin, J.; Park, J.; Sheen, D.; Kim, G.; Che, I.; Lim, I.; Kim, T.
2009-12-01
Through data exchanging with China, Russia and Japan, KIGAM could monitor North Korea explosion tests in near real time with azimuthal full coverage from the test site. Except for the East Sea (Japan Sea) side, the seismic stations are distributed uniformly along the boundaries of North Korea and adjacent countries, and only stations with the distance of 200 to 550 Km from the test site were considered. Irrespective of azimuthal directions of stations from the test site, the conventional discrimination, Pn/Lg spectral ratio clearly showed that both tests were explosion. But mb-Ms discrimination did not show apparently the known pattern of explosion for both tests. Body wave magnitude, mb(Pn) of 2nd test, which was evaluated as 4.5 by KIGAM, varies with directional location of stations widely from 4.1 to 5.2. The magnitude obtained from Lg, mb(Lg), showed narrow variation between 4.3 to 4.7 with the average of 4.5. In the case of 1st test, both mb(Pn) and mb(Lg) showed equivalently large variation with directional station location. The error ellipses of epicentral determination of test site for 1st and 2nd tests showed almost identical pattern if they were separately calculated with the same configuration of stations. But the combined use of 1st and 2nd test data showed that 2nd test site was moved approximately 2 Km westward from 1st site. The cut-off frequencies of P wave of 1st and 2nd tests showed no or negligible difference even though the estimated yield of 2nd test were much larger than that of 1st one. The ratio of 1st and 2nd P-wave amplitudes showed from 2 to 3.1 times. Correspondingly the estimated energy or yield were ranged from 4 to roughly 10 times. KIGAM evaluated the yield of 2nd test were 8 times in the average larger than that of 1st one.
An Introduction to Thermodynamics and Statistical Mechanics - 2nd Edition
NASA Astrophysics Data System (ADS)
Stowe, Keith
2003-03-01
This introductory textbook for standard undergraduate courses in thermodynamics has been completely rewritten. Starting with an overview of important quantum behaviours, the book teaches students how to calculate probabilities, in order to provide a firm foundation for later chapters. It introduces the ideas of classical thermodynamics and explores them both in general and as they are applied to specific processes and interactions. The remainder of the book deals with statistical mechanics - the study of small systems interacting with huge reservoirs. The changes to this second edition have been made after more than 10 years classroom testing and student feedback. Each topic ends with a boxed summary of ideas and results, and every chapter contains numerous homework problems, covering a broad range of difficulties. Answers are given to odd numbered problems, and solutions to even problems are available to instructors at www.cambridge.org/9780521865579. The entire book has been re-written and now covers more topics It has a greater number of homework problems which range in difficulty from warm-ups to challenges It is concise and has an easy reading style
Organic Chemistry, 2nd Edition (by Paula Y. Bruice)
NASA Astrophysics Data System (ADS)
Katz, Marlene G.
1998-11-01
Prentice Hall: Englewood Cliffs, NJ, 1998, xxx +1256 pp, 6 appendices. ISBN 0-13-841925-6. $99. The author has made some constructive changes to the second edition of this visually pleasing book. The chapter order has been rearranged so that all of spectroscopy is covered in two adjoining chapters (new problems combining NMR and IR have been added), all of the chapters on bioorganic chemistry are grouped together (information on reducing sugars has been added), and the last section now covers heterocycles, pericyclic reactions, polymer synthesis, multistep synthetic strategies, and drug design. The publisher offers additional material at its Web site and a paperback for students assisting them in using the Internet. The ChemCentral Organic Web site has problem sets to supplement each chapter (including hints for struggling students) and animations of molecules undergoing reactions. In addition the Web site provides syllabus construction software for instructors. The accompanying study guide/solutions manual, written by the textbook author, contains a glossary, answers to chapter problems, and a practice test (for the first twenty chapters). There are sections called "special topics" which offer in-depth treatment of pH, pKa, buffers, and the electron-pushing formalism.
Discrete-time ℋ∞ control for nonlinear polynomial systems
NASA Astrophysics Data System (ADS)
Hernandez-Gonzalez, M.; Basin, M. V.
2015-02-01
This paper presents a solution of the suboptimal ? regulator problem for a class of discrete-time nonlinear polynomial systems. The solution is obtained by reducing the ? control problem to the corresponding ? one. A general solution has been obtained for a polynomial of an arbitrary order; then, finite-dimensional regulator equations are derived explicitly for a second-order polynomial. Numerical simulations have been carried out to show effectiveness of the proposed method.
DOE performance indicators for 2nd quarter CY 1993
Not Available
1993-11-01
The Department of Energy (DOE) has established a Department-wide Performance Indicator (PI) Program for trending and analysis of operational data as directed by DOE Order 5480.26. The PI Program was established to provide a means for monitoring the environment, safety, and health (ES&H) performance of the DOE at the Secretary and other management levels. This is the tenth in a series of quarterly reports generated for the Department of Energy Idaho Operations Office (DOE-ID) by EG&G Idaho, Inc. to meet the requirements of the PI Program as directed by the DOE Standard (DOE-STD-1048-92). The information in this tenth quarterly report, while contributing to a historical database for supporting future trending analysis, does not at this time provide a sound basis for developing trend-related conclusions. In the future, it is expected that trending and analysis of operational data will enhance the safety culture in both DOE and contractor organizations by providing an early warning of deteriorating environment, safety, and health conditions. DOE-STD-1048-92 identifies four general areas of PIs. They are: Personnel Safety, Operational Incidents, Environment, and Management. These four areas have been subdivided into 26 performance indicators. Approximately 115 performance indicator control and distribution charts comprise the body of this report. A brief summary of PIs contained in each of these general areas is provided. The four EG&G facilities whose performance is charted herein are as follows: (1) The Advanced Test Reactor (ATR), (2) The Radioactive Waste Management Complex (RWMC), (3) The Waste Experimental Reduction Facility (WERF), and (4) The Test Reactor Area (TRA) Hot Cells.
Symmetric polynomials in information theory: Entropy and subentropy
Jozsa, Richard; Mitchison, Graeme
2015-06-15
Entropy and other fundamental quantities of information theory are customarily expressed and manipulated as functions of probabilities. Here we study the entropy H and subentropy Q as functions of the elementary symmetric polynomials in the probabilities and reveal a series of remarkable properties. Derivatives of all orders are shown to satisfy a complete monotonicity property. H and Q themselves become multivariate Bernstein functions and we derive the density functions of their Levy-Khintchine representations. We also show that H and Q are Pick functions in each symmetric polynomial variable separately. Furthermore, we see that H and the intrinsically quantum informational quantity Q become surprisingly closely related in functional form, suggesting a special significance for the symmetric polynomials in quantum information theory. Using the symmetric polynomials, we also derive a series of further properties of H and Q.
Polynomial Extensions of the Weyl C*-Algebra
NASA Astrophysics Data System (ADS)
Accardi, Luigi; Dhahri, Ameur
2015-09-01
We introduce higher order (polynomial) extensions of the unique (up to isomorphisms) nontrivial central extension of the Heisenberg algebra, which can be concretely realized as sub-Lie algebras of the polynomial algebra generated by the creation and annihilation operators in the Schrödinger representation. The simplest nontrivial of these extensions (the quadratic one) is isomorphic to the Galilei algebra, widely studied in quantum physics. By exponentiation of this representation we construct the corresponding polynomial analogue of the Weyl C*-algebra and compute the polynomial Weyl relations. From this we deduce the explicit form of the composition law of the associated nonlinear extensions of the 1-dimensional Heisenberg group. The above results are used to calculate a simple explicit form of the vacuum characteristic functions of the nonlinear field operators of the Galilei algebra, as well as of their moments. The corresponding measures turn out to be an interpolation family between Gaussian and Meixner, in particular Gamma.
Using Tutte polynomials to analyze the structure of the benzodiazepines
NASA Astrophysics Data System (ADS)
Cadavid Muñoz, Juan José
2014-05-01
Graph theory in general and Tutte polynomials in particular, are implemented for analyzing the chemical structure of the benzodiazepines. Similarity analysis are used with the Tutte polynomials for finding other molecules that are similar to the benzodiazepines and therefore that might show similar psycho-active actions for medical purpose, in order to evade the drawbacks associated to the benzodiazepines based medicine. For each type of benzodiazepines, Tutte polynomials are computed and some numeric characteristics are obtained, such as the number of spanning trees and the number of spanning forests. Computations are done using the computer algebra Maple's GraphTheory package. The obtained analytical results are of great importance in pharmaceutical engineering. As a future research line, the usage of the chemistry computational program named Spartan, will be used to extent and compare it with the obtained results from the Tutte polynomials of benzodiazepines.
Solving fuzzy polynomial equation and the dual fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-06-01
Fuzzy polynomials with trapezoidal and triangular fuzzy numbers have attracted interest among some researchers. Many studies have been done by researchers to obtain real roots of fuzzy polynomials. As a result, there are many numerical methods involved in obtaining the real roots of fuzzy polynomials. In this study, we will present the solution to the fuzzy polynomial equation and dual fuzzy polynomial equation using the ranking method of fuzzy numbers and subsequently transforming fuzzy polynomials to crisp polynomials. This transformation is performed using the ranking method based on three parameters, namely Value, Ambiguity and Fuzziness. Finally, we illustrate our approach with two numerical examples for fuzzy polynomial equation and dual fuzzy polynomial equation.
Proceedings of the 2nd symposium on valves for coal conversion and utilization
Maxfield, D.A.
1981-01-01
The 2nd symposium on valves for coal conversion and utilization was held October 15 to 17, 1980. It was sponsored by the US Department of Energy, Morgantown Energy Technology Center, in cooperation with the Valve Manufacturers Association. Seventeen papers have been entered individually into EDB and ERA. (LTN)
This NERL-Cincinnati publication, “Methods for the Determination of Chemical Substances in Marine and Estuarine Environmental Matrices - 2nd Edition” was prepared as the continuation of an initiative to gather together under a single cover a compendium of standardized laborato...
2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases
Technology Transfer Automated Retrieval System (TEKTRAN)
The Entomological Society of China (ESC) and Beijing Institute of Microbiology and Epidemiology (BIME) hosted the 2nd International Forum for Surveillance and Control of Mosquitoes and Mosquito-borne Diseases in Beijing, China, May 23-27, 2011. The theme of the Forum was “Impact of global climate ch...
Technical Adequacy of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report
ERIC Educational Resources Information Center
Erford, Bradley T.; Miller, Emily M.; Isbister, Katherine
2015-01-01
This study provides preliminary analysis of the Disruptive Behavior Rating Scale-2nd Edition--Self-Report, which was designed to screen individuals aged 10 years and older for anxiety and behavior symptoms. Score reliability and internal and external facets of validity were good for a screening-level test.
Stem cells and cancer immunotherapy: Arrowhead’s 2nd annual cancer immunotherapy conference
2014-01-01
Investigators from academia and industry gathered on April 4 and 5, 2013, in Washington DC at the Arrowhead’s 2nd Annual Cancer Immunotherapy Conference. Two complementary concepts were discussed: cancer “stem cells” as targets and therapeutic platforms based on stem cells.
Evaluation of a Hand Washing Program for 2nd-Graders
ERIC Educational Resources Information Center
Tousman, Stuart; Arnold, Dani; Helland, Wealtha; Roth, Ruth; Heshelman, Nannatte; Castaneda, Oralia; Fischer, Emily; O'Neil, Kristen; Bileto, Stephanie
2007-01-01
The purpose of this project was to determine if a multiple-week learner-centered hand washing program could improve hand hygiene behaviors of 2nd-graders in a northern Illinois public school system. Volunteers from the Rockford Hand Washing Coalition went into 19 different classrooms for 4 consecutive weeks and taught a learner-centered program.…
The Effect of Using Computer Edutainment on Developing 2nd Primary Graders' Writing Skills
ERIC Educational Resources Information Center
Mohammed Abdel Raheem, Azza Ashraf
2011-01-01
The present study attempted to examine the effect of using computer edutainment on developing 2nd graders' writing skills. The study comprised thirty-second year primary stage enrolled in Bani Hamad primary governmental school, Minia governorate. The study adopted the quasi-experimental design. Thirty participants were randomly assigned to one…
70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND ...
70. VIEW OF LIFEGUARD TOWER ON SOUTHEAST SIDE OF 2ND TEE (LEFT) AND NORTHWEST SIDE OF TEE (RIGHT), WITH VIEW OF PILINGS, LOOKING SOUTH-SOUTHWEST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING ...
71. VIEW OF NORTHWEST SIDE OF 2ND TEE (LEFT), SHOWING VIEW OF PILINGS, LIFEGURD TOWER ON SOUTHEAST SIDE OF TEE (RIGHT), LOOKING EAST-NORTHEAST - Huntington Beach Municipal Pier, Pacific Coast Highway at Main Street, Huntington Beach, Orange County, CA
Scalar Field Theories with Polynomial Shift Symmetries
NASA Astrophysics Data System (ADS)
Griffin, Tom; Grosvenor, Kevin T.; Hořava, Petr; Yan, Ziqi
2015-12-01
We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes associated with spontaneous symmetry breaking. Such systems allow for an extension of the constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These "polynomial shift symmetries" in turn protect the technical naturalness of modes with a higher-order dispersion relation, and lead to a refinement of the proposed classification of infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories. Generic interactions in such theories break the polynomial shift symmetry explicitly to the constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial shift symmetry of degree P, what are the lowest-dimension operators that preserve this symmetry, and deform the theory into a self-interacting scalar field theory with the shift symmetry of degree P? To answer this (essentially cohomological) question, we develop a new graph-theoretical technique, and use it to prove several classification theorems. First, in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known Galileon N-point invariants, and find their novel interpretation in terms of graph theory, as an equal-weight sum over all labeled trees with N vertices. Then we extend the classification to P > 1 and find a whole host of new invariants, including those that represent the most relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and we study their uniqueness.
NASA Astrophysics Data System (ADS)
Keat, Yap Hong; Atan, Kamel Ariffin Mohd; Sapar, Siti Hasana; Said, Mohamad Rushdan Md
2014-07-01
In this paper we apply Newton polyhedron technique in estimating the p-adic sizes of common zeros of partial derivative polynomial associated with a quartic polynomial. It is found that the p-adic sizes of a common zeros can be determined explicitly in terms of the p-adic orders of coefficients of dominant terms of polynomial.
NASA Astrophysics Data System (ADS)
Mazur, Michal; Wojcieszak, Damian; Kaczmarek, Danuta; Domaradzki, Jaroslaw; Zatryb, Grzegorz; Misiewicz, Jan; Morgiel, Jerzy
2015-04-01
Titanium dioxide thin films, each doped with the same amount of neodymium (1 at.%) were deposited by Low Pressure Hot Target Reactive Sputtering and High Energy Reactive Magnetron Sputtering processes in order to obtain anatase and rutile thin film structures respectively. The microstructure and phase composition were analyzed using the transmission electron microscopy method including high resolution electron microscopy imaging. The measurements of the optical properties showed, that both prepared thin films were transparent in the visible light range and had a low extinction coefficient of ca. 3 ṡ 10-3. The thin film with the anatase structure had a lower cut-off wavelength and refractive index and a higher value of optical energy band gap as-compared to the TiO2:Nd coating with the rutile structure. Simultaneously, more efficient photoluminescence emission was observed for the rutile thin films.
The efficiency of second order orientation coherence detection.
Baldwin, Alex S; Husk, Jesse S; Edwards, Lauren; Hess, Robert F
2015-04-01
Neurons in early visual cortex respond to both luminance- (1st order) and contrast-modulated (2nd order) local features in the visual field. In later extra-striate areas neurons with larger receptive fields integrate information across the visual field. For example, local luminance-defined features can be integrated into contours and shapes. Evidence for the global integration of features defined by contrast-modulation is less well established. While good performance in some shape tasks has been demonstrated with 2nd order stimuli, the integration of contours fails with 2nd order elements. Recently we developed a global orientation coherence task that is more basic than contour integration, bearing similarity to the well-established global motion coherence task. Similar to our previous 1st order result for this task, we find 2nd order coherence detection to be scale-invariant. There was a small but significant threshold elevation for 2nd order relative to 1st order. We used a noise masking approach to compare the efficiency of orientation integration for the 1st and 2nd order. We find a significant deficit for 2nd order detection at both the local and global level, however the small size of this effect stands in stark contrast against previous results from contour-integration experiments, which are almost impossible with 2nd order stimuli. PMID:25749675
ERIC Educational Resources Information Center
Apiwattanalunggarn, Kunlakarn Lekskul; Luster, Tom
2005-01-01
The purpose of this study was to investigate factors that contribute to individual differences in the school performance of 2nd-grade children born to adolescent mothers. The sample of this study was 90 low-income adolescent mothers and their children. Data were collected from the adolescent mothers and their first-born children, now in 2nd grade,…
General complex polynomial root solver
NASA Astrophysics Data System (ADS)
Skowron, J.; Gould, A.
2012-12-01
This general complex polynomial root solver, implemented in Fortran and further optimized for binary microlenses, uses a new algorithm to solve polynomial equations and is 1.6-3 times faster than the ZROOTS subroutine that is commercially available from Numerical Recipes, depending on application. The largest improvement, when compared to naive solvers, comes from a fail-safe procedure that permits skipping the majority of the calculations in the great majority of cases, without risking catastrophic failure in the few cases that these are actually required.
On the minimum polynomial of supermatrices
NASA Astrophysics Data System (ADS)
Fellouris, Anargyros G.; Matiadou, Lina K.
2002-11-01
In this paper, a new selection of factors for the construction of the minimum polynomial of a supermatrix M is proposed, leading to null polynomials of M of lower degree than the degree of the corresponding polynomial obtained by using the method proposed in the work of Urrutia and Morales [1]. The case of (1 + 1) × (1 + 1) supermatrices has been completely discussed. Moreover, the main theorem concerning the construction of the minimum polynomial as a product of factors from the characteristic polynomial in the general case of (m + n) × (m + n) supermatrices is given. Finally, we prove that the minimum polynomial of a supermatrix M, in general, is not unique.
Momentum space orthogonal polynomial projection quantization
NASA Astrophysics Data System (ADS)
Handy, C. R.; Vrinceanu, D.; Marth, C. B.; Gupta, R.
2016-04-01
The orthogonal polynomial projection quantization (OPPQ) is an algebraic method for solving Schrödinger’s equation by representing the wave function as an expansion {{\\Psi }}(x)={\\displaystyle \\sum }n{{{Ω }}}n{P}n(x)R(x) in terms of polynomials {P}n(x) orthogonal with respect to a suitable reference function R(x), which decays asymptotically not faster than the bound state wave function. The expansion coefficients {{{Ω }}}n are obtained as linear combinations of power moments {μ }{{p}}=\\int {x}p{{\\Psi }}(x) {{d}}x. In turn, the {μ }{{p}}'s are generated by a linear recursion relation derived from Schrödinger’s equation from an initial set of low order moments. It can be readily argued that for square integrable wave functions representing physical states {{lim}}n\\to ∞ {{{Ω }}}n=0. Rapidly converging discrete energies are obtained by setting Ω coefficients to zero at arbitrarily high order. This paper introduces an extention of OPPQ in momentum space by using the representation {{Φ }}(k)={\\displaystyle \\sum }n{{{\\Xi }}}n{Q}n(k)T(k), where Q n (k) are polynomials orthogonal with respect to a suitable reference function T(k). The advantage of this new representation is that it can help solving problems for which there is no coordinate space moment equation. This is because the power moments in momentum space are the Taylor expansion coefficients, which are recursively calculated via Schrödinger’s equation. We show the convergence of this new method for the sextic anharmonic oscillator and an algebraic treatment of Gross-Pitaevskii nonlinear equation.
Entanglement conditions and polynomial identities
Shchukin, E.
2011-11-15
We develop a rather general approach to entanglement characterization based on convexity properties and polynomial identities. This approach is applied to obtain simple and efficient entanglement conditions that work equally well in both discrete as well as continuous-variable environments. Examples of violations of our conditions are presented.
Polynomial Algorithms for Item Matching.
ERIC Educational Resources Information Center
Armstrong, Ronald D.; Jones, Douglas H.
1992-01-01
Polynomial algorithms are presented that are used to solve selected problems in test theory, and computational results from sample problems with several hundred decision variables are provided that demonstrate the benefits of these algorithms. The algorithms are based on optimization theory in networks (graphs). (SLD)
Polynomial Beam Element Analysis Module
Energy Science and Technology Software Center (ESTSC)
2013-05-01
pBEAM (Polynomial Beam Element Analysis Module) is a finite element code for beam-like structures. The methodology uses Euler? Bernoulli beam elements with 12 degrees of freedom (3 translation and 3 rotational at each end of the element).
Very large millimeter/submillimeter array toward search for 2nd Earth
NASA Astrophysics Data System (ADS)
Iguchi, Satoru; Saito, Masao
2012-09-01
ALMA (Atacama Large Millimeter/submillimeter Array) is a revolutionary radio telescope and its early scientific operation has just started. It is expected that ALMA will resolve several cosmic questions and will give us a new cosmic view. Our passion for astronomy naturally goes beyond ALMA because we believe that the 21st-century astronomy should pursue the new scientific frontier. In this conference, we propose a project of the future radio telescope to search for habitable planets and finally detect 2nd Earth as a migratable planet. Detection of 2nd Earth is one of the ultimate dreams not only for astronomers but also for every human being. To directly detect 2nd Earth, we have to carefully design the sensitivity and angular resolution of the telescope by conducting trade-off analysis between the confusion limit and the minimum detectable temperature. The result of the sensitivity analysis is derived assuming an array that has sixty-four (64) 50-m antennas with 25-μm surface accuracy mainly located within the area of 300 km (up to 3000 km), dual-polarization SSB receivers with the best noise temperature performance achieved by ALMA or better, and IF bandwidth of 128 or 256 GHz.. We temporarily name this telescope "Very Large Millimeter/Submillimeter Array (VLMSA)". Since this sensitivity is extremely high, we can have a lot of chances to study the galaxy, star formation, cosmology and of course the new scientific frontier.
NASA 2nd Generation RLV Program Introduction, Status and Future Plans
NASA Technical Reports Server (NTRS)
Dumbacher, Dan L.; Smith, Dennis E. (Technical Monitor)
2002-01-01
The Space Launch Initiative (SLI), managed by the Second Generation Reusable Launch Vehicle (2ndGen RLV) Program, was established to examine the possibility of revolutionizing space launch capabilities, define conceptual architectures, and concurrently identify the advanced technologies required to support a next-generation system. Initial Program funds have been allocated to design, evaluate, and formulate realistic plans leading to a 2nd Gen RLV full-scale development (FSD) decision by 2006. Program goals are to reduce both risk and cost for accessing the limitless opportunities afforded outside Earth's atmosphere fo civil, defense, and commercial enterprises. A 2nd Gen RLV architecture includes a reusable Earth-to-orbit launch vehicle, an on-orbit transport and return vehicle, ground and flight operations, mission planning, and both on-orbit and on-the-ground support infrastructures All segments of the architecture must advance in step with development of the RLV if a next-generation system is to be fully operational early next decade. However, experience shows that propulsion is the single largest contributor to unreliability during ascent, requires the largest expenditure of time for maintenance, and takes a long time to develop; therefore, propulsion is the key to meeting safety, reliability, and cost goals. For these reasons, propulsion is SLI's top technology investment area.
Application research on enhancing near-infrared micro-imaging quality by 2nd derivative
NASA Astrophysics Data System (ADS)
Wang, Dong; Ma, Zhi-hong; Zhao, Liu; Wang, Bei-hong; Han, Ping; Pan, Li-gang; Wang, Ji-hua
2013-08-01
Near-infrared micro-imaging will not only provide the sample's spatial distribution information, but also the spectroscopic information of each pixel. In this thesis, it took the artificial sample of wheat flour and formaldehyde sodium sulfoxylate distribution given for example to research the data processing method for enhancing the quality of near-infrared micro-imaging. Near-infrared spectroscopic feature of wheat flour and formaldehyde sodium sulfoxylate being studied on, compare correlation imaging and 2nd derivative imaging were applied in the imaging processing of the near-infrared micro-image of the artificial sample. Furthermore, the two methods were combined, i.e. 2nd derivative compare correlation imaging was acquired. The result indicated that the difference of the correlation coefficients between the two substances, i.e. wheat flour and formaldehyde sodium sulfoxylate, and the reference spectrum has been increased from 0.001 in compare correlation image to 0.796 in 2nd derivative compare correlation image respectively, which enhances the imaging quality efficiently. This study will, to some extent, be of important reference significance to near-infrared micro-imaging method research of agricultural products and foods.
Solving the interval type-2 fuzzy polynomial equation using the ranking method
NASA Astrophysics Data System (ADS)
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
A Summation Formula for Macdonald Polynomials
NASA Astrophysics Data System (ADS)
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
Nodal Statistics for the Van Vleck Polynomials
NASA Astrophysics Data System (ADS)
Bourget, Alain
The Van Vleck polynomials naturally arise from the generalized Lamé equation
Bifurcation of Kovalevskaya polynomial
El-Sabaa, F.M.
1995-10-01
The rotation of a rigid body about a fixed point in the Kovalevskaya case, where A = B = 2C, y{sub 0} = z{sub 0} = O (A, B, C are the principal moments of inertia; x{sub 0}, y{sub 0}, z{sub 0} represent the center of mass), has been reduced to quadrature, and the system can be integrated to a Riemann 0-function of two variables. The qualitative investigation of the motion of Kovalevskaya tops has been undertaken by many authors, starting with Applort and continuing with Kozlov. Kolossoff transformed the Kovalevskaya problem into plane motion under a certain potential force. By using elliptic coordinates, Kolossoff proved the inverse problem, i.e., he converted the plane motion system into a Kovalevskaya system. The qualitative investigation of the motion in the two-dimensional tori is given in order to obtain the bifurcation and the phase portrait of the problem.
Restricted Schur polynomials and finite N counting
Collins, Storm
2009-01-15
Restricted Schur polynomials have been posited as orthonormal operators for the change of basis from N=4 SYM to type IIB string theory. In this paper we briefly expound the relationship between the restricted Schur polynomials and the operators forwarded by Brown, Heslop, and Ramgoolam. We then briefly examine the finite N counting of the restricted Schur polynomials.
Quadratic-Like Dynamics of Cubic Polynomials
NASA Astrophysics Data System (ADS)
Blokh, Alexander; Oversteegen, Lex; Ptacek, Ross; Timorin, Vladlen
2016-02-01
A small perturbation of a quadratic polynomial f with a non-repelling fixed point gives a polynomial g with an attracting fixed point and a Jordan curve Julia set, on which g acts like angle doubling. However, there are cubic polynomials with a non-repelling fixed point, for which no perturbation results into a polynomial with Jordan curve Julia set. Motivated by the study of the closure of the Cubic Principal Hyperbolic Domain, we describe such polynomials in terms of their quadratic-like restrictions.
NASA Astrophysics Data System (ADS)
Leont'ev, V. K.
2015-11-01
A pseudo-Boolean function is an arbitrary mapping of the set of binary n-tuples to the real line. Such functions are a natural generalization of classical Boolean functions and find numerous applications in various applied studies. Specifically, the Fourier transform of a Boolean function is a pseudo-Boolean function. A number of facts associated with pseudo-Boolean polynomials are presented, and their applications to well-known discrete optimization problems are described.
Properties of convergence for [omega],q-Bernstein polynomials
NASA Astrophysics Data System (ADS)
Wang, Heping
2008-04-01
In this paper, we discuss properties of the [omega],q-Bernstein polynomials introduced by S. Lewanowicz and P. Wozny in [S. Lewanowicz, P. Wozny, Generalized Bernstein polynomials, BIT 44 (1) (2004) 63-78], where f[set membership, variant]C[0,1], [omega],q>0, [omega][not equal to]1,q-1,...,q-n+1. When [omega]=0, we recover the q-Bernstein polynomials introduced by [G.M. Phillips, Bernstein polynomials based on the q-integers, Ann. Numer. Math. 4 (1997) 511-518]; when q=1, we recover the classical Bernstein polynomials. We compute the second moment of , and demonstrate that if f is convex and [omega],q[set membership, variant](0,1) or (1,[infinity]), then are monotonically decreasing in n for all x[set membership, variant][0,1]. We prove that for [omega][set membership, variant](0,1), qn[set membership, variant](0,1], the sequence converges to f uniformly on [0,1] for each f[set membership, variant]C[0,1] if and only if limn-->[infinity]qn=1. For fixed [omega],q[set membership, variant](0,1), we prove that the sequence converges for each f[set membership, variant]C[0,1] and obtain the estimates for the rate of convergence of by the modulus of continuity of f, and the estimates are sharp in the sense of order for Lipschitz continuous functions.
Point estimation of simultaneous methods for solving polynomial equations
NASA Astrophysics Data System (ADS)
Petkovic, Miodrag S.; Petkovic, Ljiljana D.; Rancic, Lidija Z.
2007-08-01
The construction of computationally verifiable initial conditions which provide both the guaranteed and fast convergence of the numerical root-finding algorithm is one of the most important problems in solving nonlinear equations. Smale's "point estimation theory" from 1981 was a great advance in this topic; it treats convergence conditions and the domain of convergence in solving an equation f(z)=0 using only the information of f at the initial point z0. The study of a general problem of the construction of initial conditions of practical interest providing guaranteed convergence is very difficult, even in the case of algebraic polynomials. In the light of Smale's point estimation theory, an efficient approach based on some results concerning localization of polynomial zeros and convergent sequences is applied in this paper to iterative methods for the simultaneous determination of simple zeros of polynomials. We state new, improved initial conditions which provide the guaranteed convergence of frequently used simultaneous methods for solving algebraic equations: Ehrlich-Aberth's method, Ehrlich-Aberth's method with Newton's correction, Borsch-Supan's method with Weierstrass' correction and Halley-like (or Wang-Zheng) method. The introduced concept offers not only a clear insight into the convergence analysis of sequences generated by the considered methods, but also explicitly gives their order of convergence. The stated initial conditions are of significant practical importance since they are computationally verifiable; they depend only on the coefficients of a given polynomial, its degree n and initial approximations to polynomial zeros.
An error embedded method based on generalized Chebyshev polynomials
NASA Astrophysics Data System (ADS)
Kim, Philsu; Kim, Junghan; Jung, WonKyu; Bu, Sunyoung
2016-02-01
In this paper, we develop an error embedded method based on generalized Chebyshev polynomials for solving stiff initial value problems. The solution and the error at each integration step are calculated by generalized Chebyshev polynomials of two consecutive degrees having overlapping zeros, which enables us to minimize overall computational costs. Further the errors at each integration step are embedded in the algorithm itself. In terms of concrete convergence and stability analysis, the constructed algorithm turns out to have the 6th order convergence and an almost L-stability. We assess the proposed method with several numerical results, showing that it uses larger time step sizes and is numerically more efficient.
On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Freund, Roland W.
1992-01-01
The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
Prades, Marta; Masó, Nahum; Beltrán, Héctor; Cordoncillo, Eloisa; West, Anthony R
2013-02-18
Oxygen-deficient tetragonal tungsten bronzes ceramics with general formula Ba(2)NdTi(2+x)Nb(3-x)O(15-x/2) (0 ≤ x ≤ 1) have been prepared by low temperature solvothermal synthesis with final firing of ceramics at 1100-1300 °C in air. Rietveld refinement of X-ray powder diffraction (XRD) and neutron powder diffraction (ND) data at room temperature of Ba(2)NdTi(3)Nb(2)O(14.5) shows that Ba and Nd are ordered on the 15-coordinate and 12-coordinate sites, respectively, Ti and Nb are disordered nonrandomly over the two octahedral sites, and oxygen vacancies locate preferentially in the coordination sphere of Nd and Ti/Nb(2) atoms. Variable frequency impedance measurements show that samples are poor electronic conductors with activation energies ∼0.8-1.7 eV, conductivities ∼1 × 10(-5) S cm(-1) at ∼725 °C and with some evidence of oxide ion conduction at high x values. Composition dependence of the dielectric properties shows a transition from classic ferroelectric behavior with Ba(2)NdTi(2)Nb(3)O(15) to a relaxor-like behavior with Ba(2)NdTi(3)Nb(2)O(14.5). At intermediate compositions, both a first-order phase transition and relaxor-like behavior are observed. PMID:23360368
PREFACE: 2nd International Conference on Innovative Materials, Structures and Technologies
NASA Astrophysics Data System (ADS)
Ručevskis, Sandris
2015-11-01
The 2nd International Conference on Innovative Materials, Structures and Technologies (IMST 2015) took place in Riga, Latvia from 30th September - 2nd October, 2015. The first event of the conference series, dedicated to the 150th anniversary of the Faculty of Civil Engineering of Riga Technical University, was held in 2013. Following the established tradition, the aim of the conference was to promote and discuss the latest results of industrial and academic research carried out in the following engineering fields: analysis and design of advanced structures and buildings; innovative, ecological and energy efficient building materials; maintenance, inspection and monitoring methods; construction technologies; structural management; sustainable and safe transport infrastructure; and geomatics and geotechnics. The conference provided an excellent opportunity for leading researchers, representatives of the industrial community, engineers, managers and students to share the latest achievements, discuss recent advances and highlight the current challenges. IMST 2015 attracted over 120 scientists from 24 countries. After rigorous reviewing, over 80 technical papers were accepted for publication in the conference proceedings. On behalf of the organizing committee I would like to thank all the speakers, authors, session chairs and reviewers for their efficient and timely effort. The 2nd International Conference on Innovative Materials, Structures and Technologies was organized by the Faculty of Civil Engineering of Riga Technical University with the support of the Latvia State Research Programme under the grant agreement "INNOVATIVE MATERIALS AND SMART TECHNOLOGIES FOR ENVIRONMENTAL SAFETY, IMATEH". I would like to express sincere gratitude to Juris Smirnovs, Dean of the Faculty of Civil Engineering, and Andris Chate, manager of the Latvia State Research Programme. Finally, I would like to thank all those who helped to make this event happen. Special thanks go to Diana
NASA Astrophysics Data System (ADS)
Trigub, R. M.
2009-08-01
We prove a general direct theorem on the simultaneous pointwise approximation of smooth periodic functions and their derivatives by trigonometric polynomials and their derivatives with Hermitian interpolation. We study the order of approximation by polynomials whose graphs lie above or below the graph of the function on certain intervals. We prove several inequalities for Hermitian interpolation with absolute constants (for any system of nodes). For the first time we get a theorem on the best-order approximation of functions by polynomials with interpolation at a given system of nodes. We also provide a construction of Hermitian interpolating trigonometric polynomials for periodic functions (in the case of one node, these are trigonometric Taylor polynomials).
[Model and enlightenment from rescue of August 2nd Kunshan explosion casualty].
Tan, Q; Qiu, H B; Sun, B W; Shen, Y M; Nie, L J; Zhang, H W
2016-01-01
On August 2nd, 2014, a massive dust explosion occurred in a factory of Kunshan, resulting in a mass casualty involving 185 burn patients. They were transported to 20 medical institutions in Jiangsu province and Shanghai. More than one thousand of medical personnel of our country participated in this emergency rescue, and satisfactory results were achieved. In this paper, the characteristics of this accident were analyzed, the positive effects of interdisciplinary cooperation were affirmed, and the contingency plan, rescue process and pattern, and reserve, organization and management of talents during this rescue process were reviewed retrospectively. PMID:27426066
Advanced Electron Beam Ion Sources (EBIS) for 2-nd generation carbon radiotherapy facilities
NASA Astrophysics Data System (ADS)
Shornikov, A.; Wenander, F.
2016-04-01
In this work we analyze how advanced Electron Beam Ion Sources (EBIS) can facilitate the progress of carbon therapy facilities. We will demonstrate that advanced ion sources enable operation of 2-nd generation ion beam therapy (IBT) accelerators. These new accelerator concepts with designs dedicated to IBT provide beams better suited for therapy and, are more cost efficient than contemporary IBT facilities. We will give a sort overview of the existing new IBT concepts and focus on those where ion source technology is the limiting factor. We will analyse whether this limitation can be overcome in the near future thanks to ongoing EBIS development.
Easy Glide in a Coarse-Grained Mg-2Zn-2Nd Alloy
NASA Astrophysics Data System (ADS)
Wang, Tong; Jonas, John J.; Yue, Stephen
2016-08-01
Compression tests were performed at 673 K (400 °C) on a Mg-2Zn-2Nd alloy at the strain rates of 0.1, 0.01, and 0.001/s. The 0.1 and 0.01/s flow curves displayed work hardening to a peak stress at around 0.2 true strain. However, testing at 0.001/s led to steady-state flow at about 22 MPa from 0.03 true strain onwards. Such a steady-state flow is attributed to the predominance of basal slip under these conditions.
The ratio of 2nd to 4th digit length: a new predictor of disease predisposition?
Manning, J T; Bundred, P E
2000-05-01
The ratio between the length of the 2nd and 4th digits is: (a) fixed in utero; (b) lower in men than in women; (c) negatively related to testosterone and sperm counts; and (d) positively related to oestrogen concentrations. Prenatal levels of testosterone and oestrogen have been implicated in infertility, autism, dyslexia, migraine, stammering, immune dysfunction, myocardial infarction and breast cancer. We suggest that 2D:4D ratio is predictive of these diseases and may be used in diagnosis, prognosis and in early life-style interventions which may delay the onset of disease or facilitate its early detection. PMID:10859702
[Infected chorionic hematoma as a cause of infection in the 2nd trimester].
Weigel, M; Friese, K; Schmitt, W; Strittmatter, H J; Melchert, F
1992-12-01
Superinfected subchorionic haematomas are a rare septic focus in the 2nd trimenon. Symptoms being unspecific, the diagnosis has to be made by exclusion, in most cases. As the changes of a successful treatment of the manifest infection is poor, antibiotic prophylaxis as well as close laboratory controls and early antibiotic therapy should be discussed after sonographic diagnosis of an intrauterine haematoma. Two of our three patients reported on having suffered a miscarriage; only one pregnancy could be maintained after spontaneous depletion of the infected haemorrhage. PMID:1490559
Editorial: 2nd Special Issue on behavior change, health, and health disparities.
Higgins, Stephen T
2015-11-01
This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policy makers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372
Efficacy and Safety of rAAV2-ND4 Treatment for Leber's Hereditary Optic Neuropathy.
Wan, Xing; Pei, Han; Zhao, Min-Jian; Yang, Shuo; Hu, Wei-Kun; He, Heng; Ma, Si-Qi; Zhang, Ge; Dong, Xiao-Yan; Chen, Chen; Wang, Dao-Wen; Li, Bin
2016-01-01
Leber's hereditary optic neuropathy (LHON) is a mitochondrially inherited disease leading to blindness. A mitochondrial DNA point mutation at the 11778 nucleotide site of the NADH dehydrogenase subunit 4 (ND4) gene is the most common cause. The aim of this study was to evaluate the efficacy and safety of a recombinant adeno-associated virus 2 (AAV2) carrying ND4 (rAAV2-ND4) in LHON patients carrying the G11778A mutation. Nine patients were administered rAAV2-ND4 by intravitreal injection to one eye and then followed for 9 months. Ophthalmologic examinations of visual acuity, visual field, and optical coherence tomography were performed. Physical examinations included routine blood and urine. The visual acuity of the injected eyes of six patients improved by at least 0.3 log MAR after 9 months of follow-up. In these six patients, the visual field was enlarged but the retinal nerve fibre layer remained relatively stable. No other outcome measure was significantly changed. None of the nine patients had local or systemic adverse events related to the vector during the 9-month follow-up period. These findings support the feasible use of gene therapy for LHON. PMID:26892229
The relation between 1st grade grey matter volume and 2nd grade math competence.
Price, Gavin R; Wilkey, Eric D; Yeo, Darren J; Cutting, Laurie E
2016-01-01
Mathematical and numerical competence is a critical foundation for individual success in modern society yet the neurobiological sources of individual differences in math competence are poorly understood. Neuroimaging research over the last decade suggests that neural mechanisms in the parietal lobe, particularly the intraparietal sulcus (IPS) are structurally aberrant in individuals with mathematical learning disabilities. However, whether those same brain regions underlie individual differences in math performance across the full range of math abilities is unknown. Furthermore, previous studies have been exclusively cross-sectional, making it unclear whether variations in the structure of the IPS are caused by or consequences of the development of math skills. The present study investigates the relation between grey matter volume across the whole brain and math competence longitudinally in a representative sample of 50 elementary school children. Results show that grey matter volume in the left IPS at the end of 1st grade relates to math competence a year later at the end of 2nd grade. Grey matter volume in this region did not change over that year, and was still correlated with math competence at the end of 2nd grade. These findings support the hypothesis that the IPS and its associated functions represent a critical foundation for the acquisition of mathematical competence. PMID:26334946
Editorial: 2nd Special Issue on behavior change, health, and health disparities
Higgins, Stephen T.
2016-01-01
This Special Issue of Preventive Medicine (PM) is the 2nd that we have organized on behavior change, health, and health disparities. This is a topic of fundamental importance to improving population health in the U.S. and other industrialized countries that are trying to more effectively manage chronic health conditions. There is broad scientific consensus that personal behavior patterns such as cigarette smoking, other substance abuse, and physical inactivity/obesity are among the most important modifiable causes of chronic disease and its adverse impacts on population health. As such behavior change needs to be a key component of improving population health. There is also broad agreement that while these problems extend across socioeconomic strata, they are overrepresented among more economically disadvantaged populations and contribute directly to the growing problem of health disparities. Hence, behavior change represents an essential step in curtailing that unsettling problem as well. In this 2nd Special Issue, we devote considerable space to the current U.S. prescription opioid addiction epidemic, a crisis that was not addressed in the prior Special Issue. We also continue to devote attention to the two largest contributors to preventable disease and premature death, cigarette smoking and physical inactivity/obesity as well as risks of co-occurrence of these unhealthy behavior patterns. Across each of these topics we included contributions from highly accomplished policymakers and scientists to acquaint readers with recent accomplishments as well as remaining knowledge gaps and challenges to effectively managing these important chronic health problems. PMID:26257372
Scoping analysis of the Advanced Test Reactor using SN2ND
Wolters, E.; Smith, M.
2012-07-26
A detailed set of calculations was carried out for the Advanced Test Reactor (ATR) using the SN2ND solver of the UNIC code which is part of the SHARP multi-physics code being developed under the Nuclear Energy Advanced Modeling and Simulation (NEAMS) program in DOE-NE. The primary motivation of this work is to assess whether high fidelity deterministic transport codes can tackle coupled dynamics simulations of the ATR. The successful use of such codes in a coupled dynamics simulation can impact what experiments are performed and what power levels are permitted during those experiments at the ATR. The advantages of the SN2ND solver over comparable neutronics tools are its superior parallel performance and demonstrated accuracy on large scale homogeneous and heterogeneous reactor geometries. However, it should be noted that virtually no effort from this project was spent constructing a proper cross section generation methodology for the ATR usable in the SN2ND solver. While attempts were made to use cross section data derived from SCALE, the minimal number of compositional cross section sets were generated to be consistent with the reference Monte Carlo input specification. The accuracy of any deterministic transport solver is impacted by such an approach and clearly it causes substantial errors in this work. The reasoning behind this decision is justified given the overall funding dedicated to the task (two months) and the real focus of the work: can modern deterministic tools actually treat complex facilities like the ATR with heterogeneous geometry modeling. SN2ND has been demonstrated to solve problems with upwards of one trillion degrees of freedom which translates to tens of millions of finite elements, hundreds of angles, and hundreds of energy groups, resulting in a very high-fidelity model of the system unachievable by most deterministic transport codes today. A space-angle convergence study was conducted to determine the meshing and angular cubature
A new Arnoldi approach for polynomial eigenproblems
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
From Jack polynomials to minimal model spectra
NASA Astrophysics Data System (ADS)
Ridout, David; Wood, Simon
2015-01-01
In this note, a deep connection between free field realizations of conformal field theories and symmetric polynomials is presented. We give a brief introduction into the necessary prerequisites of both free field realizations and symmetric polynomials, in particular Jack symmetric polynomials. Then we combine these two fields to classify the irreducible representations of the minimal model vertex operator algebras as an illuminating example of the power of these methods. While these results on the representation theory of the minimal models are all known, this note exploits the full power of Jack polynomials to present significant simplifications of the original proofs in the literature.
Spatial image polynomial decomposition with application to video classification
NASA Astrophysics Data System (ADS)
El Moubtahij, Redouane; Augereau, Bertrand; Tairi, Hamid; Fernandez-Maloigne, Christine
2015-11-01
This paper addresses the use of orthogonal polynomial basis transform in video classification due to its multiple advantages, especially for multiscale and multiresolution analysis similar to the wavelet transform. In our approach, we benefit from these advantages to reduce the resolution of the video by using a multiscale/multiresolution decomposition to define a new algorithm that decomposes a color image into geometry and texture component by projecting the image on a bivariate polynomial basis and considering the geometry component as the partial reconstruction and the texture component as the remaining part, and finally to model the features (like motion and texture) extracted from reduced image sequences by projecting them into a bivariate polynomial basis in order to construct a hybrid polynomial motion texture video descriptor. To evaluate our approach, we consider two visual recognition tasks, namely the classification of dynamic textures and recognition of human actions. The experimental section shows that the proposed approach achieves a perfect recognition rate in the Weizmann database and highest accuracy in the Dyntex++ database compared to existing methods.
Network meta-analysis of survival data with fractional polynomials
2011-01-01
Background Pairwise meta-analysis, indirect treatment comparisons and network meta-analysis for aggregate level survival data are often based on the reported hazard ratio, which relies on the proportional hazards assumption. This assumption is implausible when hazard functions intersect, and can have a huge impact on decisions based on comparisons of expected survival, such as cost-effectiveness analysis. Methods As an alternative to network meta-analysis of survival data in which the treatment effect is represented by the constant hazard ratio, a multi-dimensional treatment effect approach is presented. With fractional polynomials the hazard functions of interventions compared in a randomized controlled trial are modeled, and the difference between the parameters of these fractional polynomials within a trial are synthesized (and indirectly compared) across studies. Results The proposed models are illustrated with an analysis of survival data in non-small-cell lung cancer. Fixed and random effects first and second order fractional polynomials were evaluated. Conclusion (Network) meta-analysis of survival data with models where the treatment effect is represented with several parameters using fractional polynomials can be more closely fitted to the available data than meta-analysis based on the constant hazard ratio. PMID:21548941
The complexity of class polynomial computation via floating point approximations
NASA Astrophysics Data System (ADS)
Enge, Andreas
2009-06-01
We analyse the complexity of computing class polynomials, that are an important ingredient for CM constructions of elliptic curves, via complex floating point approximations of their roots. The heart of the algorithm is the evaluation of modular functions in several arguments. The fastest one of the presented approaches uses a technique devised by Dupont to evaluate modular functions by Newton iterations on an expression involving the arithmetic-geometric mean. Under the heuristic assumption, justified by experiments, that the correctness of the result is not perturbed by rounding errors, the algorithm runs in time O left( sqrt {\\vert D\\vert} log^3 \\vert D\\vert M left( sq... ...arepsilon} \\vert D\\vert right) subseteq O left( h^{2 + \\varepsilon} right) for any \\varepsilon > 0 , where D is the CM discriminant, h is the degree of the class polynomial and M (n) is the time needed to multiply two n -bit numbers. Up to logarithmic factors, this running time matches the size of the constructed polynomials. The estimate also relies on a new result concerning the complexity of enumerating the class group of an imaginary quadratic order and on a rigorously proven upper bound for the height of class polynomials.
Tetragonal ZrO2:Nd3+ nanosphere: Combustion synthesis, luminescence and photoacoustic spectroscopy
NASA Astrophysics Data System (ADS)
Gupta, Santosh K.; Chandrasekhar, D.; Kadam, R. M.
2015-12-01
Nanocrystalline ZrO2:Nd3+ was synthesised using gel-combustion method and characterized systematically using X-ray diffraction (XRD) and transmission electron microscopy (TEM). Through this route we can stabilize metastable tetragonal phase at 500 °C through addition of 1 mol % Nd3+ which is technologically more important. Optical characterization of the sample was done using photoluminescence (PL) and photoacoustic spectroscopy (PAS). PL studies shows an intense and optimum stimulated emission cross section of 1065 nm peak corresponding to 4F3/2 → 4I11/2 which and thus it can be a probable laser material. PAS is used to investigate electronic absorption of Nd3 in zirconia. Various covalency parameters like nephelauxetic ratio (β), covalency factor (b1/2) and Sinha parameter (δ) were evaluated for pure oxide powder and as well as for Nd3+ doped zirconia.
International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting
2010-01-01
The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775
International symposium on peripheral nerve repair and regeneration and 2nd club Brunelli meeting.
Turgut, Mehmet; Geuna, Stefano
2010-01-01
The International Symposium "Peripheral Nerve Repair and Regeneration and 2nd Club Brunelli Meeting" was held on December 4-5, 2009 in Turin, Italy (Organizers: Bruno Battiston, Stefano Geuna, Isabelle Perroteau, Pierluigi Tos). Interest in the study of peripheral nerve regeneration is very much alive because complete recovery of nerve function almost never occurs after nerve reconstruction and, often, the clinical outcome is rather poor. Therefore, there is a need for defining innovative strategies for improving the success of recovery after nerve lesion and repair and this meeting was intended to discuss, from a multidisciplinary point of view, some of today's most important issues in this scientific field, arising from both basic and clinical neurosciences. PMID:20214775
A Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster
Tan, C. Y.; Dey, J.; Madrak, R. L.; Pellico, W.; Romanov, G.; Sun, D.; Terechkine, I.
2015-07-13
A perpendicular biased 2nd harmonic cavity is currently being designed for the Fermilab Booster. Its purpose cavity is to flatten the bucket at injection and thus change the longitudinal beam distribution so that space charge effects are decreased. It can also with transition crossing. The reason for the choice of perpendicular biasing over parallel biasing is that the Q of the cavity is much higher and thus allows the accelerating voltage to be a factor of two higher than a similar parallel biased cavity. This cavity will also provide a higher accelerating voltage per meter than the present folded transmission line cavity. However, this type of cavity presents technical challenges that need to be addressed. The two major issues are cooling of the garnet material from the effects of the RF and the cavity itself from eddy current heating because of the 15 Hz bias field ramp. This paper will address the technical challenge of preventing the garnet from overheating.
Automated CFD Database Generation for a 2nd Generation Glide-Back-Booster
NASA Technical Reports Server (NTRS)
Chaderjian, Neal M.; Rogers, Stuart E.; Aftosmis, Michael J.; Pandya, Shishir A.; Ahmad, Jasim U.; Tejmil, Edward
2003-01-01
A new software tool, AeroDB, is used to compute thousands of Euler and Navier-Stokes solutions for a 2nd generation glide-back booster in one week. The solution process exploits a common job-submission grid environment using 13 computers located at 4 different geographical sites. Process automation and web-based access to the database greatly reduces the user workload, removing much of the tedium and tendency for user input errors. The database consists of forces, moments, and solution files obtained by varying the Mach number, angle of attack, and sideslip angle. The forces and moments compare well with experimental data. Stability derivatives are also computed using a monotone cubic spline procedure. Flow visualization and three-dimensional surface plots are used to interpret and characterize the nature of computed flow fields.
Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector
NASA Astrophysics Data System (ADS)
Jeong, S. H.; Kim, T. S.; Lee, K. W.; Chang, D. H.; In, S. R.; Bae, Y. S.
2014-02-01
The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source.
Glass fiber laser at 1. 36. mu. m from SiO sub 2 :Nd
Hakimi, F.; Po, H.; Tumminelli, R.; McCollum, B.C.; Zenteno, L.; Cho, N.M.; Snitzer, E. )
1989-10-01
By adding 14 mol % P{sub 2}O{sub 5} to the core of a SiO{sub 2}:Nd fiber, laser emission was obtained at 1.36 {mu}m. From the fluorescent spectra and laser thresholds for the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 11/2} and {sup 4}{ital F}{sub 3/2} to {sup 4}{ital I}{sub 3/2} transitions, the net gain at 1.36 {mu}m is 0.024 dB/mW, and the ratio of excited-state absorption (the {sup 4}{ital F}{sub 3/2} to {sup 4}{ital G}{sub 1/2} transition) to stimulated emission is estimated to be 0.78.
The New 2nd-Generation SRF R&D Facility at Jefferson Lab: TEDF
Reece, Charles E.; Reilly, Anthony V.
2012-09-01
The US Department of Energy has funded a near-complete renovation of the SRF-based accelerator research and development facilities at Jefferson Lab. The project to accomplish this, the Technical and Engineering Development Facility (TEDF) Project has completed the first of two phases. An entirely new 3,100 m{sup 2} purpose-built SRF technical work facility has been constructed and was occupied in summer of 2012. All SRF work processes with the exception of cryogenic testing have been relocated into the new building. All cavity fabrication, processing, thermal treatment, chemistry, cleaning, and assembly work is collected conveniently into a new LEED-certified building. An innovatively designed 800 m2 cleanroom/chemroom suite provides long-term flexibility for support of multiple R&D and construction projects as well as continued process evolution. The characteristics of this first 2nd-generation SRF facility are described.
Improvement of a plasma uniformity of the 2nd ion source of KSTAR neutral beam injector.
Jeong, S H; Kim, T S; Lee, K W; Chang, D H; In, S R; Bae, Y S
2014-02-01
The 2nd ion source of KSTAR (Korea Superconducting Tokamak Advanced Research) NBI (Neutral Beam Injector) had been developed and operated since last year. A calorimetric analysis revealed that the heat load of the back plate of the ion source is relatively higher than that of the 1st ion source of KSTAR NBI. The spatial plasma uniformity of the ion source is not good. Therefore, we intended to identify factors affecting the uniformity of a plasma density and improve it. We estimated the effects of a direction of filament current and a magnetic field configuration of the plasma generator on the plasma uniformity. We also verified that the operation conditions of an ion source could change a uniformity of the plasma density of an ion source. PMID:24593593
Preliminary GPS orbit combination results of the IGS 2nd reprocessing campaign
NASA Astrophysics Data System (ADS)
Choi, Kevin
2015-04-01
International GNSS Service (IGS) has contributed to the International Terrestrial Reference Frame by reprocessing historic GPS network data and submitting Terrestrial Reference Frame solutions and Earth Rotation Parameters. For the 2nd reprocessing campaign, Analysis Centers (ACs) used up to 21 years of GPS observation data with daily integrations. IERS2010 conventions are applied to model the physical effects of the Earth. Total eight ACs have participated (7 Global solutions, and 2 Tide Gauge solutions) by reprocessing entire time series in a consistent way using the latest models and methodology. IGS combined daily SINEX TRF and EOP combinations have already been submitted to the IERS for ITRF2013. This presentation mainly focuses on the preliminary quality assessment of the reprocessed AC orbits. Quality of the orbit products are examined by examining the repeatability between daily AC satellite ephemeris. Power spectral analysis shows the background noise characteristics of each AC products, and its periodic behaviors.
The Second Stellar Spectrum and the non-LTE Problem of the 2nd Kind
NASA Astrophysics Data System (ADS)
Trujillo Bueno, Javier
2009-09-01
This paper presents an overview of the radiative transfer problem of calculating the spectral line intensity and polarization that emerges from a (generally magnetized) astrophysical plasma composed of atoms and molecules whose excitation state is significantly influenced by radiative transitions produced by an anisotropic radiation field. The numerical solution of this non-LTE problem of the 2nd kind is facilitating the physical understanding of the second solar spectrum and the exploration of the complex magnetism of the extended solar atmosphere, but much more could be learned if high-sensitivity polarimeters were developed also for the present generation of night-time telescopes. Interestingly, I find that the population ratio between the levels of some resonance line transitions can be efficiently modulated by the inclination of a weak magnetic field when the anisotropy of the incident radiation is significant, something that could provide a new diagnostic tool in astrophysics.
The planar optics phase sensor: a study for the VLTI 2nd generation fringe tracker
NASA Astrophysics Data System (ADS)
Blind, Nicolas; Le Bouquin, Jean-Baptiste; Absil, Olivier; Alamir, Mazen; Berger, Jean-Philippe; Defrère, Denis; Feautrier, Philippe; Hénault, François; Jocou, Laurent; Kern, Pierre; Laurent, Thomas; Malbet, Fabien; Mourard, Denis; Rousselet-Perraut, Karine; Sarlette, Alain; Surdej, Jean; Tarmoul, Nassima; Tatulli, Eric; Vincent, Lionel
2010-07-01
In a few years, the second generation instruments of the Very Large Telescope Interferometer (VLTI) will routinely provide observations with 4 to 6 telescopes simultaneously. To reach their ultimate performance, they will need a fringe sensor capable to measure in real time the randomly varying optical paths differences. A collaboration between LAOG (PI institute), IAGL, OCA and GIPSA-Lab has proposed the Planar Optics Phase Sensor concept to ESO for the 2nd Generation Fringe Tracker. This concept is based on the integrated optics technologies, enabling the conception of extremely compact interferometric instruments naturally providing single-mode spatial filtering. It allows operations with 4 and 6 telescopes by measuring the fringes position thanks to a spectrally dispersed ABCD method. We present here the main analysis which led to the current concept as well as the expected on-sky performance and the proposed design.
Enabling the 2nd Generation in Space: Building Blocks for Large Scale Space Endeavours
NASA Astrophysics Data System (ADS)
Barnhardt, D.; Garretson, P.; Will, P.
Today the world operates within a "first generation" space industrial enterprise, i.e. all industry is on Earth, all value from space is from bits (data essentially), and the focus is Earth-centric, with very limited parts of our population and industry participating in space. We are limited in access, manoeuvring, on-orbit servicing, in-space power, in-space manufacturing and assembly. The transition to a "Starship culture" requires the Earth to progress to a "second generation" space industrial base, which implies the need to expand the economic sphere of activity of mankind outside of an Earth-centric zone and into CIS-lunar space and beyond, with an equal ability to tap the indigenous resources in space (energy, location, materials) that will contribute to an expanding space economy. Right now, there is no comfortable place for space applications that are not discovery science, exploration, military, or established earth bound services. For the most part, space applications leave out -- or at least leave nebulous, unconsolidated, and without a critical mass -- programs and development efforts for infrastructure, industrialization, space resources (survey and process maturation), non-traditional and persistent security situational awareness, and global utilities -- all of which, to a far greater extent than a discovery and exploration program, may help determine the elements of a 2nd generation space capability. We propose a focus to seed the pre-competitive research that will enable global industry to develop the necessary competencies that we currently lack to build large scale space structures on-orbit, that in turn would lay the foundation for long duration spacecraft travel (i.e. key technologies in access, manoeuvrability, etc.). This paper will posit a vision-to-reality for a step wise approach to the types of activities the US and global space providers could embark upon to lay the foundation for the 2nd generation of Earth in space.
Polynomial chaotic inflation in supergravity
Nakayama, Kazunori; Takahashi, Fuminobu; Yanagida, Tsutomu T. E-mail: fumi@tuhep.phys.tohoku.ac.jp
2013-08-01
We present a general polynomial chaotic inflation model in supergravity, for which the predicted spectral index and tensor-to-scalar ratio can lie within the 1σ region allowed by the Planck results. Most importantly, the predicted tensor-to-scalar ratio is large enough to be probed in the on-going and future B-mode experiments. We study the inflaton dynamics and the subsequent reheating process in a couple of specific examples. The non-thermal gravitino production from the inflaton decay can be suppressed in a case with a discrete Z{sub 2} symmetry. We find that the reheating temperature can be naturally as high as O(10{sup 9−10}) GeV, sufficient for baryon asymmetry generation through (non-)thermal leptogenesis.
On the Waring problem for polynomial rings
Fröberg, Ralf; Ottaviani, Giorgio; Shapiro, Boris
2012-01-01
In this note we discuss an analog of the classical Waring problem for . Namely, we show that a general homogeneous polynomial of degree divisible by k≥2 can be represented as a sum of at most kn k-th powers of homogeneous polynomials in . Noticeably, kn coincides with the number obtained by naive dimension count. PMID:22460787
Fractal Trigonometric Polynomials for Restricted Range Approximation
NASA Astrophysics Data System (ADS)
Chand, A. K. B.; Navascués, M. A.; Viswanathan, P.; Katiyar, S. K.
2016-05-01
One-sided approximation tackles the problem of approximation of a prescribed function by simple traditional functions such as polynomials or trigonometric functions that lie completely above or below it. In this paper, we use the concept of fractal interpolation function (FIF), precisely of fractal trigonometric polynomials, to construct one-sided uniform approximants for some classes of continuous functions.
Point vortex equilibria related to Bessel polynomials
NASA Astrophysics Data System (ADS)
O'Neil, Kevin A.
2016-05-01
The method of polynomials is used to construct two families of stationary point vortex configurations. The vortices are placed at the reciprocals of the zeroes of Bessel polynomials. Configurations that translate uniformly, and configurations that are completely stationary, are obtained in this way.
Matrix product formula for Macdonald polynomials
NASA Astrophysics Data System (ADS)
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
Tutte polynomial in functional magnetic resonance imaging
NASA Astrophysics Data System (ADS)
García-Castillón, Marlly V.
2015-09-01
Methods of graph theory are applied to the processing of functional magnetic resonance images. Specifically the Tutte polynomial is used to analyze such kind of images. Functional Magnetic Resonance Imaging provide us connectivity networks in the brain which are represented by graphs and the Tutte polynomial will be applied. The problem of computing the Tutte polynomial for a given graph is #P-hard even for planar graphs. For a practical application the maple packages "GraphTheory" and "SpecialGraphs" will be used. We will consider certain diagram which is depicting functional connectivity, specifically between frontal and posterior areas, in autism during an inferential text comprehension task. The Tutte polynomial for the resulting neural networks will be computed and some numerical invariants for such network will be obtained. Our results show that the Tutte polynomial is a powerful tool to analyze and characterize the networks obtained from functional magnetic resonance imaging.
Zhao, Jingyi; Fu, Liyuan; Wang, Yueqi; Qiu, Wenqi; Yao, Miaojie; Zhao, Baixiao; Guo, Changqing
2016-04-01
The impact factors were explored to determine the horizontal positional relationship between the umbilicus and the 2nd lumbar spinal process in adults and to verify the accuracy of the localization of Shenshu (BL 23) via the umbilicus. The position of the umbilicus and the 2nd lumbar spinal process was measured in 100 participants and the data were analyzed through SPSS 20.0 software. It was found that the umbilicus and the 2nd lumbar process were not positioned horizontally. The positional relationship of these two sites was not apparently correlated with gender, age, body weight, body height, BMI, waistline and discomfort of lumbar region. The umbilicus was commonly and posteriorly projected on the site between the 4th and 5th lumbar vertebra. It is explained that the localization of Shenshu (BL23) via the umbilicus is not accurate. PMID:27352498
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
NASA Astrophysics Data System (ADS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials
Marquette, Ian; Quesne, Christiane
2013-04-15
In recent years, many exceptional orthogonal polynomials (EOP) were introduced and used to construct new families of 1D exactly solvable quantum potentials, some of which are shape invariant. In this paper, we construct from Hermite and Laguerre EOP and their related quantum systems new 2D superintegrable Hamiltonians with higher-order integrals of motion and the polynomial algebras generated by their integrals of motion. We obtain the finite-dimensional unitary representations of the polynomial algebras and the corresponding energy spectrum. We also point out a new type of degeneracies of the energy levels of these systems that is associated with holes in sequences of EOP.
The Translated Dowling Polynomials and Numbers
Mangontarum, Mahid M.; Macodi-Ringia, Amila P.; Abdulcarim, Normalah S.
2014-01-01
More properties for the translated Whitney numbers of the second kind such as horizontal generating function, explicit formula, and exponential generating function are proposed. Using the translated Whitney numbers of the second kind, we will define the translated Dowling polynomials and numbers. Basic properties such as exponential generating functions and explicit formula for the translated Dowling polynomials and numbers are obtained. Convexity, integral representation, and other interesting identities are also investigated and presented. We show that the properties obtained are generalizations of some of the known results involving the classical Bell polynomials and numbers. Lastly, we established the Hankel transform of the translated Dowling numbers.
Efficient Multiplication of Polynomials on Graphics Hardware
NASA Astrophysics Data System (ADS)
Emeliyanenko, Pavel
We present the algorithm to multiply univariate polynomials with integer coefficients efficiently using the Number Theoretic transform (NTT) on Graphics Processing Units (GPU). The same approach can be used to multiply large integers encoded as polynomials. Our algorithm exploits fused multiply-add capabilities of the graphics hardware. NTT multiplications are executed in parallel for a set of distinct primes followed by reconstruction using the Chinese Remainder theorem (CRT) on the GPU. Our benchmarking experiences show the NTT multiplication performance up to 77 GMul/s. We compared our approach with CPU-based implementations of polynomial and large integer multiplication provided by NTL and GMP libraries.
Lensing Signals in the Hubble Ultra-deep Field using all 2nd-order Shape Deformations
Irwin, John; Shmakova, Marina; Anderson, Jay; /Rice U.
2006-07-17
The long exposure times of the HST Ultra-Deep Field plus the use of an empirically derived position-dependent PSF, have enabled us to measure a cardioid/displacement distortion map coefficient as well as improving upon the sextupole map coefficient. We confirmed that curved background galaxies are clumped on the same angular scale as found in the HST Deep Field North. The new cardioid/displacement map coefficient is strongly correlated to a product of the sextupole and quadrupole coefficients. One would expect to see such a correlation from fits to background galaxies with quadrupole and sextupole moments. Events that depart from this correlation are expected to arise from map coefficient changes due to lensing, and several galaxy subsets selected using this criteria are indeed clumped.
Planells, Miquel; Pizzotti, Maddalena; Nichol, Gary S; Tessore, Francesca; Robertson, Neil
2014-11-14
Tricyanofuran (TCF) derivatives attached to both anthracene and pyrene moieties were synthesised and characterised by optical, electrochemical and computational techniques. Both compounds exhibited similar absorption profile as well as electrochemical behaviour, however the pyrene derivative showed 20-fold higher non-linear optical activity measured by the EFISH technique. This huge difference has been assigned to (i) a lower molar absorption and (ii) a higher torsion angle for the anthracene derivative, confirmed by both experimental X-ray diffraction and DFT calculations. Furthermore, we note that the μβ1.907 value of -1700 × 10(-48) esu recorded for the pyrene derivative in CHCl3/pyridine is remarkable for a NLO chromophore lacking a classical push-pull structure. PMID:25264846
Technical Issues Map for the NHI System Interface and Support Systems Area: 2nd Quarter FY07
Steven R. Sherman
2007-03-01
This document provides a mapping of technical issues associated with development of the Next Generation Nuclear Plant (NGNP) intermediate heat transport loop and nuclear hydrogen plant support systems to the work that has been accomplished or is currently underway in the 2nd quarter of FY07.
ERIC Educational Resources Information Center
Häikiö, Tuomo; Bertram, Raymond; Hyönä, Jukka
2016-01-01
Finnish ABC books present words with hyphens inserted at syllable boundaries. Syllabification by hyphens is abandoned in the 2nd grade for bisyllabic words, but continues for words with three or more syllables. The current eye movement study investigated how and to what extent syllable hyphens in bisyllabic ("kah-vi" "cof-fee")…
ERIC Educational Resources Information Center
Boyer-Chu, Lynda; Wooley, Susan F.
2008-01-01
Adolescent immunization saves lives--but promoting immunization takes time and thought, and today's nurses and other health advocates are faced with a host of ever-expanding responsibilities in a time of reduced budgets and staff. This toolkit is thus structured as an easy and reliable resource. This 2nd edition contains: (1) a 64-page manual;…
ERIC Educational Resources Information Center
Royal Association for Disability and Rehabilitation, London (England).
The conference proceedings of the 2nd European Conference of Rehabilitation International (1978) on the theme disability in the family contains the agenda and approximately 80 papers. National presentations consider the theme in papers by representatives of Finland, Hungary, Belgium, The Netherlands, Portugal, Hong Kong, India, The German…
The Influence of Neighborhood Density and Word Frequency on Phoneme Awareness in 2nd and 4th Grades
ERIC Educational Resources Information Center
Hogan, Tiffany P.; Bowles, Ryan P.; Catts, Hugh W.; Storkel, Holly L.
2011-01-01
Purpose: The purpose of this study was to test the hypothesis that two lexical characteristics--neighborhood density and word frequency--interact to influence performance on phoneme awareness tasks. Methods: Phoneme awareness was examined in a large, longitudinal dataset of 2nd and 4th grade children. Using linear logistic test model, the relation…
ERIC Educational Resources Information Center
Salvador, Josephine
2012-01-01
What happens when teachers start to observe each other's classes? How do teachers make meaning of observing and being observed? What effects, if any, does requiring peer observation have on the teaching community? This research explores these questions in a qualitative study of peer observation of teaching (POT) in the 2nd-12th grades of an…
Iron metabolism in African American women during the 2nd and 3rd trimester of a high-risk pregnancy
Technology Transfer Automated Retrieval System (TEKTRAN)
Objective: To examine iron metabolism during the 2nd and 3rd trimester in African American women classified as a high-risk pregnancy. Design: Longitudinal. Setting: Large, university-based, urban Midwestern medical center. Participants: Convenience sample of 47 African American women classified a...
ERIC Educational Resources Information Center
Heller, Daniel
2012-01-01
Typically, school curriculum has been viewed through the lens of preparation for the workplace or higher education, both worthy objectives. However, this is not the only lens, and perhaps not even the most powerful one to use, if the goal is to optimize the educational system. "Curriculum on the Edge of Survival, 2nd Edition," attempts to define…
NASA Technical Reports Server (NTRS)
Pototzky, Anthony S.
2008-01-01
A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.
Minimal Clinically Important Difference on Parkinson's Disease Sleep Scale 2nd Version
Horváth, Krisztina; Aschermann, Zsuzsanna; Ács, Péter; Deli, Gabriella; Janszky, József; Komoly, Sámuel; Karádi, Kázmér; Kovács, Márton; Makkos, Attila; Faludi, Béla; Kovács, Norbert
2015-01-01
Background and Aims. The aim of the present study was to determine the estimates of minimal clinically important difference for Parkinson's Disease Sleep Scale 2nd version (PDSS-2) total score and dimensions. Methods. The subject population consisted of 413 PD patients. At baseline, MDS-UPDRS, Hoehn-Yahr Scale, Mattis Dementia Rating Scale, and PDSS-2 were assessed. Nine months later the PDSS-2 was reevaluated with the Patient-Reported Global Impression Improvement Scale. Both anchor-based techniques (within patients' score change method and sensitivity- and specificity-based method by receiver operating characteristic analysis) and distribution-based approaches (effect size calculations) were utilized to determine the magnitude of minimal clinically important difference. Results. According to our results, any improvements larger than −3.44 points or worsening larger than 2.07 points can represent clinically important changes for the patients. These thresholds have the effect size of 0.21 and −0.21, respectively. Conclusions. Minimal clinically important differences are the smallest change of scores that are subjectively meaningful to patients. Studies using the PDSS-2 as outcome measure should utilize the threshold of −3.44 points for detecting improvement or the threshold of 2.07 points for observing worsening. PMID:26539303