Science.gov

Sample records for 3-d healthcare learning

  1. Versatile, Immersive, Creative and Dynamic Virtual 3-D Healthcare Learning Environments: A Review of the Literature

    PubMed Central

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and “serious gaming” that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger’s Diffusion of Innovations Theory and Siemens’ Connectivism Theory for today’s learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  2. Versatile, immersive, creative and dynamic virtual 3-D healthcare learning environments: a review of the literature.

    PubMed

    Hansen, Margaret M

    2008-01-01

    The author provides a critical overview of three-dimensional (3-D) virtual worlds and "serious gaming" that are currently being developed and used in healthcare professional education and medicine. The relevance of this e-learning innovation for teaching students and professionals is debatable and variables influencing adoption, such as increased knowledge, self-directed learning, and peer collaboration, by academics, healthcare professionals, and business executives are examined while looking at various Web 2.0/3.0 applications. There is a need for more empirical research in order to unearth the pedagogical outcomes and advantages associated with this e-learning technology. A brief description of Roger's Diffusion of Innovations Theory and Siemens' Connectivism Theory for today's learners is presented as potential underlying pedagogical tenets to support the use of virtual 3-D learning environments in higher education and healthcare. PMID:18762473

  3. 3D Medical Collaboration Technology to Enhance Emergency Healthcare

    PubMed Central

    Welch, Greg; Sonnenwald, Diane H; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Söderholm, Hanna M.; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Ampalam, Manoj; Krishnan, Srinivas; Noel, Vincent; Noland, Michael; Manning, James E.

    2009-01-01

    Two-dimensional (2D) videoconferencing has been explored widely in the past 15–20 years to support collaboration in healthcare. Two issues that arise in most evaluations of 2D videoconferencing in telemedicine are the difficulty obtaining optimal camera views and poor depth perception. To address these problems, we are exploring the use of a small array of cameras to reconstruct dynamic three-dimensional (3D) views of a remote environment and of events taking place within. The 3D views could be sent across wired or wireless networks to remote healthcare professionals equipped with fixed displays or with mobile devices such as personal digital assistants (PDAs). The remote professionals’ viewpoints could be specified manually or automatically (continuously) via user head or PDA tracking, giving the remote viewers head-slaved or hand-slaved virtual cameras for monoscopic or stereoscopic viewing of the dynamic reconstructions. We call this idea remote 3D medical collaboration. In this article we motivate and explain the vision for 3D medical collaboration technology; we describe the relevant computer vision, computer graphics, display, and networking research; we present a proof-of-concept prototype system; and we present evaluation results supporting the general hypothesis that 3D remote medical collaboration technology could offer benefits over conventional 2D videoconferencing in emergency healthcare. PMID:19521951

  4. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D…

  5. Virtual Representations in 3D Learning Environments

    ERIC Educational Resources Information Center

    Shonfeld, Miri; Kritz, Miki

    2013-01-01

    This research explores the extent to which virtual worlds can serve as online collaborative learning environments for students by increasing social presence and engagement. 3D environments enable learning, which simulates face-to-face encounters while retaining the advantages of online learning. Students in Education departments created avatars…

  6. Learning in 3-D Virtual Worlds: Rethinking Media Literacy

    ERIC Educational Resources Information Center

    Qian, Yufeng

    2008-01-01

    3-D virtual worlds, as a new form of learning environments in the 21st century, hold great potential in education. Learning in such environments, however, demands a broader spectrum of literacy skills. This article identifies a new set of media literacy skills required in 3-D virtual learning environments by reviewing exemplary 3-D virtual…

  7. Learning in 3D Virtual Environments: Collaboration and Knowledge Spirals

    ERIC Educational Resources Information Center

    Burton, Brian G.; Martin, Barbara N.

    2010-01-01

    The purpose of this case study was to determine if learning occurred within a 3D virtual learning environment by determining if elements of collaboration and Nonaka and Takeuchi's (1995) knowledge spiral were present. A key portion of this research was the creation of a Virtual Learning Environment. This 3D VLE utilized the Torque Game Engine…

  8. A 3D Geometry Model Search Engine to Support Learning

    ERIC Educational Resources Information Center

    Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin

    2009-01-01

    Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…

  9. What Are the Learning Affordances of 3-D Virtual Environments?

    ERIC Educational Resources Information Center

    Dalgarno, Barney; Lee, Mark J. W.

    2010-01-01

    This article explores the potential learning benefits of three-dimensional (3-D) virtual learning environments (VLEs). Drawing on published research spanning two decades, it identifies a set of unique characteristics of 3-D VLEs, which includes aspects of their representational fidelity and aspects of the learner-computer interactivity they…

  10. Enabling Team Learning in Healthcare

    ERIC Educational Resources Information Center

    Boak, George

    2016-01-01

    This paper is based on a study of learning processes within 35 healthcare therapy teams that took action to improve their services. The published research on team learning is introduced, and the paper suggests it is an activity that has similarities with action research and with those forms of action learning where teams address collective…

  11. Measuring Knowledge Acquisition in 3D Virtual Learning Environments.

    PubMed

    Nunes, Eunice P dos Santos; Roque, Licínio G; Nunes, Fatima de Lourdes dos Santos

    2016-01-01

    Virtual environments can contribute to the effective learning of various subjects for people of all ages. Consequently, they assist in reducing the cost of maintaining physical structures of teaching, such as laboratories and classrooms. However, the measurement of how learners acquire knowledge in such environments is still incipient in the literature. This article presents a method to evaluate the knowledge acquisition in 3D virtual learning environments (3D VLEs) by using the learner's interactions in the VLE. Three experiments were conducted that demonstrate the viability of using this method and its computational implementation. The results suggest that it is possible to automatically assess learning in predetermined contexts and that some types of user interactions in 3D VLEs are correlated with the user's learning differential. PMID:26915117

  12. 3D Visualization of Machine Learning Algorithms with Astronomical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2016-01-01

    We present innovative machine learning (ML) methods using unsupervised clustering with minimum spanning trees (MSTs) to study 3D astronomical catalogs. Utilizing Python code to build trees based on galaxy catalogs, we can render the results with the visualization suite Blender to produce interactive 360 degree panoramic videos. The catalogs and their ML results can be explored in a 3D space using mobile devices, tablets or desktop browsers. We compare the statistics of the MST results to a number of machine learning methods relating to optimization and efficiency.

  13. Targeted Learning in Healthcare Research.

    PubMed

    Gruber, Susan

    2015-12-01

    The increasing availability of Big Data in healthcare encourages investigators to seek answers to big questions. However, nonparametric approaches to analyzing these data can suffer from the curse of dimensionality, and traditional parametric modeling does not necessarily scale. Targeted learning (TL) combines semiparametric methodology with advanced machine learning techniques to provide a sound foundation for extracting information from data. Predictive models, variable importance measures, and treatment benefits and risks can all be addressed within this framework. TL has been applied in a broad range of healthcare settings, including genomics, precision medicine, health policy, and drug safety. This article provides an introduction to the two main components of TL, targeted minimum loss-based estimation and super learning, and gives examples of applications in predictive modeling, variable importance ranking, and comparative effectiveness research. PMID:27441404

  14. Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces

    ERIC Educational Resources Information Center

    Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed

    2012-01-01

    The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…

  15. Game-Like Language Learning in 3-D Virtual Environments

    ERIC Educational Resources Information Center

    Berns, Anke; Gonzalez-Pardo, Antonio; Camacho, David

    2013-01-01

    This paper presents our recent experiences with the design of game-like applications in 3-D virtual environments as well as its impact on student motivation and learning. Therefore our paper starts with a brief analysis of the motivational aspects of videogames and virtual worlds (VWs). We then go on to explore the possible benefits of both in the…

  16. 2D/3D Image Registration using Regression Learning

    PubMed Central

    Chou, Chen-Rui; Frederick, Brandon; Mageras, Gig; Chang, Sha; Pizer, Stephen

    2013-01-01

    In computer vision and image analysis, image registration between 2D projections and a 3D image that achieves high accuracy and near real-time computation is challenging. In this paper, we propose a novel method that can rapidly detect an object’s 3D rigid motion or deformation from a 2D projection image or a small set thereof. The method is called CLARET (Correction via Limited-Angle Residues in External Beam Therapy) and consists of two stages: registration preceded by shape space and regression learning. In the registration stage, linear operators are used to iteratively estimate the motion/deformation parameters based on the current intensity residue between the target projec-tion(s) and the digitally reconstructed radiograph(s) (DRRs) of the estimated 3D image. The method determines the linear operators via a two-step learning process. First, it builds a low-order parametric model of the image region’s motion/deformation shape space from its prior 3D images. Second, using learning-time samples produced from the 3D images, it formulates the relationships between the model parameters and the co-varying 2D projection intensity residues by multi-scale linear regressions. The calculated multi-scale regression matrices yield the coarse-to-fine linear operators used in estimating the model parameters from the 2D projection intensity residues in the registration. The method’s application to Image-guided Radiation Therapy (IGRT) requires only a few seconds and yields good results in localizing a tumor under rigid motion in the head and neck and under respiratory deformation in the lung, using one treatment-time imaging 2D projection or a small set thereof. PMID:24058278

  17. Policy Capacity in the Learning Healthcare System

    PubMed Central

    Gardner, William

    2015-01-01

    Pierre-Gerlier Forest and his colleagues make a strong argument for the need to expand policy capacity among healthcare actors. In this commentary, I develop an additional argument in support of Forest et al view. Forest et al rightly point to the need to have embedded policy experts to successfully translate healthcare reform policy into healthcare change. Translation of externally generated innovation policy into local solutions is only one source of healthcare system change. We also need to build learning healthcare systems that can discover new health solutions at the frontline of care. Enhanced policy capacity staffing in those organizations will be key to building continuously learning health systems. PMID:26673470

  18. Organizational Learning Goes Virtual?: A Study of Employees' Learning Achievement in Stereoscopic 3D Virtual Reality

    ERIC Educational Resources Information Center

    Lau, Kung Wong

    2015-01-01

    Purpose: This study aims to deepen understanding of the use of stereoscopic 3D technology (stereo3D) in facilitating organizational learning. The emergence of advanced virtual technologies, in particular to the stereo3D virtual reality, has fundamentally changed the ways in which organizations train their employees. However, in academic or…

  19. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning…

  20. Literacy and Learning in Healthcare

    PubMed Central

    Wolf, Michael S.; Wilson, Elizabeth A.H.; Rapp, David N.; Waite, Katherine R.; Bocchini, Mary V.; Davis, Terry C.; Rudd, and Rima E.

    2014-01-01

    The relationship between literacy and health outcomes are well documented in adult medicine, yet specific causal pathways are not entirely clear. Despite an incomplete understanding of the problem, numerous interventions have already been implemented with variable success. Many of the earlier strategies assumed the problem to originate from reading difficulties only. Given the timely need for more effective interventions, it is of increasing importance to reconsider the meaning of health literacy in order to advance our conceptual understanding of the problem and how best to respond. One potentially effective approach might involve recognizing the known associations between a larger set of cognitive and psychosocial abilities with functional literacy skills. We review the current health literacy definition and literature and draw upon relevant research from the fields of education, cognitive science, and psychology. In this framework, a research agenda is proposed that considers an individual's health learning capacity, referring to the broad constellation of cognitive and psychosocial skills patients or family members must draw upon to effectively promote, protect, and manage their own or a child's health. This new, related concept will ideally lead to more effective ways of thinking about health literacy interventions, including the design of health education materials, instructional strategies, and the delivery of healthcare services to support patients and families across the lifespan. PMID:19861481

  1. Healthcare Learning Community and Student Retention

    ERIC Educational Resources Information Center

    Johnson, Sherryl W.

    2014-01-01

    Teaching, learning, and retention processes have evolved historically to include multifaceted techniques beyond the traditional lecture. This article presents related results of a study using a healthcare learning community in a southwest Georgia university. The value of novel techniques and tools in promoting student learning and retention…

  2. Design of Learning Spaces in 3D Virtual Worlds: An Empirical Investigation of "Second Life"

    ERIC Educational Resources Information Center

    Minocha, Shailey; Reeves, Ahmad John

    2010-01-01

    "Second Life" (SL) is a three-dimensional (3D) virtual world, and educational institutions are adopting SL to support their teaching and learning. Although the question of how 3D learning spaces should be designed to support student learning and engagement has been raised among SL educators and designers, there is hardly any guidance or research…

  3. Whole versus Part Presentations of the Interactive 3D Graphics Learning Objects

    ERIC Educational Resources Information Center

    Azmy, Nabil Gad; Ismaeel, Dina Ahmed

    2010-01-01

    The purpose of this study is to present an analysis of how the structure and design of the Interactive 3D Graphics Learning Objects can be effective and efficient in terms of Performance, Time on task, and Learning Efficiency. The study explored two treatments, namely whole versus Part Presentations of the Interactive 3D Graphics Learning Objects,…

  4. Learning the spherical harmonic features for 3-D face recognition.

    PubMed

    Liu, Peijiang; Wang, Yunhong; Huang, Di; Zhang, Zhaoxiang; Chen, Liming

    2013-03-01

    In this paper, a competitive method for 3-D face recognition (FR) using spherical harmonic features (SHF) is proposed. With this solution, 3-D face models are characterized by the energies contained in spherical harmonics with different frequencies, thereby enabling the capture of both gross shape and fine surface details of a 3-D facial surface. This is in clear contrast to most 3-D FR techniques which are either holistic or feature based, using local features extracted from distinctive points. First, 3-D face models are represented in a canonical representation, namely, spherical depth map, by which SHF can be calculated. Then, considering the predictive contribution of each SHF feature, especially in the presence of facial expression and occlusion, feature selection methods are used to improve the predictive performance and provide faster and more cost-effective predictors. Experiments have been carried out on three public 3-D face datasets, SHREC2007, FRGC v2.0, and Bosphorus, with increasing difficulties in terms of facial expression, pose, and occlusion, and which demonstrate the effectiveness of the proposed method. PMID:23060332

  5. Elderly Healthcare Monitoring Using an Avatar-Based 3D Virtual Environment

    PubMed Central

    Pouke, Matti; Häkkilä, Jonna

    2013-01-01

    Homecare systems for elderly people are becoming increasingly important due to both economic reasons as well as patients’ preferences. Sensor-based surveillance technologies are an expected future trend, but research so far has devoted little attention to the User Interface (UI) design of such systems and the user-centric design approach. In this paper, we explore the possibilities of an avatar-based 3D visualization system, which exploits wearable sensors and human activity simulations. We present a technical prototype and the evaluation of alternative concept designs for UIs based on a 3D virtual world. The evaluation was conducted with homecare providers through focus groups and an online survey. Our results show firstly that systems taking advantage of 3D virtual world visualization techniques have potential especially due to the privacy preserving and simplified information presentation style, and secondly that simple representations and glancability should be emphasized in the design. The identified key use cases highlight that avatar-based 3D presentations can be helpful if they provide an overview as well as details on demand. PMID:24351747

  6. Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques

    ERIC Educational Resources Information Center

    Wang, Yushun; Zhuang, Yueting

    2008-01-01

    Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…

  7. 3D affine registration using teaching-learning based optimization

    NASA Astrophysics Data System (ADS)

    Jani, Ashish; Savsani, Vimal; Pandya, Abhijit

    2013-09-01

    3D image registration is an emerging research field in the study of computer vision. In this paper, two effective global optimization methods are considered for the 3D registration of point clouds. Experiments were conducted by applying each algorithm and their performance was evaluated with respect to rigidity, similarity and affine transformations. Comparison of algorithms and its effectiveness was tested for the average performance to find the global solution for minimizing the error in the terms of distance between the model cloud and the data cloud. The parameters for the transformation matrix were considered as the design variables. Further comparisons of the considered methods were done for the computational effort, computational time and the convergence of the algorithm. The results reveal that the use of TLBO was outstanding for image processing application involving 3D registration. [Figure not available: see fulltext.

  8. The 3D Heliosphere: What Can We Learn from STEREO?

    NASA Technical Reports Server (NTRS)

    Suess, S. T.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Many techniques have been used to study the 3D heliosphere, with the earliest probably being the analysis of comet tails. I will list most of these and mention a few, focusing on existing multi-point studies. The result, from more than 50 years of study, Is that a lot is known. This has led to a good picture of the quasi-steady heliosphere and its relation to the 3D Corona. But, there are also some large gaps and STEREO is designed to address one of these: the timing, size, geometry, mass, speed, direction, and 3D propagation of Corona[ mass ejections (CMEs). In spite of the statistical analysis of a large data archive, Imaginative use of in situ and remote measurements, and extensive modeling, these properties of CMES are poorly known. I will outline an example of how STEREO instruments might work together to develop a far better 30 description of CMEs In the 3D heliosphere and note that other examples are described in the Science Definition Team report and in the Science Objectives given by the four instrument teams. Since the two STEREO spacecraft are not intended to work in isolation, I will also outline how they might be used In combination With ground-based and other spacecraft observations.

  9. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. PMID:27384934

  10. Learning Projectile Motion with the Computer Game ``Scorched 3D``

    NASA Astrophysics Data System (ADS)

    Jurcevic, John S.

    2008-01-01

    For most of our students, video games are a normal part of their lives. We should take advantage of this medium to teach physics in a manner that is engrossing for our students. In particular, modern video games incorporate accurate physics in their game engines, and they allow us to visualize the physics through flashy and captivating graphics. I recently used the game "Scorched 3D" to help my students understand projectile motion.

  11. Contextual EFL Learning in a 3D Virtual Environment

    ERIC Educational Resources Information Center

    Lan, Yu-Ju

    2015-01-01

    The purposes of the current study are to develop virtually immersive EFL learning contexts for EFL learners in Taiwan to pre- and review English materials beyond the regular English class schedule. A 2-iteration action research lasting for one semester was conducted to evaluate the effects of virtual contexts on learners' EFL learning. 132…

  12. Learning from graphically integrated 2D and 3D representations improves retention of neuroanatomy

    NASA Astrophysics Data System (ADS)

    Naaz, Farah

    Visualizations in the form of computer-based learning environments are highly encouraged in science education, especially for teaching spatial material. Some spatial material, such as sectional neuroanatomy, is very challenging to learn. It involves learning the two dimensional (2D) representations that are sampled from the three dimensional (3D) object. In this study, a computer-based learning environment was used to explore the hypothesis that learning sectional neuroanatomy from a graphically integrated 2D and 3D representation will lead to better learning outcomes than learning from a sequential presentation. The integrated representation explicitly demonstrates the 2D-3D transformation and should lead to effective learning. This study was conducted using a computer graphical model of the human brain. There were two learning groups: Whole then Sections, and Integrated 2D3D. Both groups learned whole anatomy (3D neuroanatomy) before learning sectional anatomy (2D neuroanatomy). The Whole then Sections group then learned sectional anatomy using 2D representations only. The Integrated 2D3D group learned sectional anatomy from a graphically integrated 3D and 2D model. A set of tests for generalization of knowledge to interpreting biomedical images was conducted immediately after learning was completed. The order of presentation of the tests of generalization of knowledge was counterbalanced across participants to explore a secondary hypothesis of the study: preparation for future learning. If the computer-based instruction programs used in this study are effective tools for teaching anatomy, the participants should continue learning neuroanatomy with exposure to new representations. A test of long-term retention of sectional anatomy was conducted 4-8 weeks after learning was completed. The Integrated 2D3D group was better than the Whole then Sections

  13. Learn Street Skateboarding through 3D Simulations of Angle Rotations

    ERIC Educational Resources Information Center

    Adi, Erwin; Aditya, I Gde Made Krisna; Citrawati, Meriyana

    2010-01-01

    Learning physical activities such as sports and games is expensive and time-consuming. A common advice is "repetition makes perfection," which implies that wrong actions must soon be noticed and avoided. A knowledgeable tutor is often required to provide good feedback for that purpose. However, this facility is available only for those who can…

  14. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    ERIC Educational Resources Information Center

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  15. Use of Colour and Interactive Animation in Learning 3D Vectors

    ERIC Educational Resources Information Center

    Iskander, Wejdan; Curtis, Sharon

    2005-01-01

    This study investigated the effects of two computer-implemented techniques (colour and interactive animation) on learning 3D vectors. The participants were 43 female Saudi Arabian high school students. They were pre-tested on 3D vectors using a paper questionnaire that consisted of calculation and visualization types of questions. The students…

  16. Issues and Challenges of Teaching and Learning in 3D Virtual Worlds: Real Life Case Studies

    ERIC Educational Resources Information Center

    Pfeil, Ulrike; Ang, Chee Siang; Zaphiris, Panayiotis

    2009-01-01

    We aimed to study the characteristics and usage patterns of 3D virtual worlds in the context of teaching and learning. To achieve this, we organised a full-day workshop to explore, discuss and investigate the educational use of 3D virtual worlds. Thirty participants took part in the workshop. All conversations were recorded and transcribed for…

  17. Learning to Collaborate: Designing Collaboration in a 3-D Game Environment

    ERIC Educational Resources Information Center

    Hamalainen, Raija; Manninen, Tony; Jarvela, Sanna; Hakkinen, Paivi

    2006-01-01

    To respond to learning needs, Computer-Supported Collaborative Learning (CSCL) must provide instructional support. The particular focus of this paper is on designing collaboration in a 3-D virtual game environment intended to make learning more effective by promoting student opportunities for interaction. The empirical experiment eScape, which…

  18. Design and Implementation of a 3D Multi-User Virtual World for Language Learning

    ERIC Educational Resources Information Center

    Ibanez, Maria Blanca; Garcia, Jose Jesus; Galan, Sergio; Maroto, David; Morillo, Diego; Kloos, Carlos Delgado

    2011-01-01

    The best way to learn is by having a good teacher and the best language learning takes place when the learner is immersed in an environment where the language is natively spoken. 3D multi-user virtual worlds have been claimed to be useful for learning, and the field of exploiting them for education is becoming more and more active thanks to the…

  19. Transfer of Learning between 2D and 3D Sources during Infancy: Informing Theory and Practice

    ERIC Educational Resources Information Center

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a two-dimensional (2D) representation and a three-dimensional (3D) object. Understanding the conditions under which young children might accomplish this…

  20. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  1. Use of 3D Printed Models in Medical Education: A Randomized Control Trial Comparing 3D Prints versus Cadaveric Materials for Learning External Cardiac Anatomy

    ERIC Educational Resources Information Center

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.

    2016-01-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…

  2. Interaction Design and Usability of Learning Spaces in 3D Multi-user Virtual Worlds

    NASA Astrophysics Data System (ADS)

    Minocha, Shailey; Reeves, Ahmad John

    Three-dimensional virtual worlds are multimedia, simulated environments, often managed over the Web, which users can 'inhabit' and interact via their own graphical, self-representations known as 'avatars'. 3D virtual worlds are being used in many applications: education/training, gaming, social networking, marketing and commerce. Second Life is the most widely used 3D virtual world in education. However, problems associated with usability, navigation and way finding in 3D virtual worlds may impact on student learning and engagement. Based on empirical investigations of learning spaces in Second Life, this paper presents design guidelines to improve the usability and ease of navigation in 3D spaces. Methods of data collection include semi-structured interviews with Second Life students, educators and designers. The findings have revealed that design principles from the fields of urban planning, Human- Computer Interaction, Web usability, geography and psychology can influence the design of spaces in 3D multi-user virtual environments.

  3. M3D (Media 3D): a new programming language for web-based virtual reality in E-Learning and Edutainment

    NASA Astrophysics Data System (ADS)

    Chakaveh, Sepideh; Skaley, Detlef; Laine, Patricia; Haeger, Ralf; Maad, Soha

    2003-01-01

    Today, interactive multimedia educational systems are well established, as they prove useful instruments to enhance one's learning capabilities. Hitherto, the main difficulty with almost all E-Learning systems was latent in the rich media implementation techniques. This meant that each and every system should be created individually as reapplying the media, be it only a part, or the whole content was not directly possible, as everything must be applied mechanically i.e. by hand. Consequently making E-learning systems exceedingly expensive to generate, both in time and money terms. Media-3D or M3D is a new platform independent programming language, developed at the Fraunhofer Institute Media Communication to enable visualisation and simulation of E-Learning multimedia content. M3D is an XML-based language, which is capable of distinguishing between the3D models from that of the 3D scenes, as well as handling provisions for animations, within the programme. Here we give a technical account of M3D programming language and briefly describe two specific application scenarios where M3D is applied to create virtual reality E-Learning content for training of technical personnel.

  4. How Spatial Abilities and Dynamic Visualizations Interplay When Learning Functional Anatomy with 3D Anatomical Models

    ERIC Educational Resources Information Center

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material…

  5. Web-Based Interactive 3D Visualization as a Tool for Improved Anatomy Learning

    ERIC Educational Resources Information Center

    Petersson, Helge; Sinkvist, David; Wang, Chunliang; Smedby, Orjan

    2009-01-01

    Despite a long tradition, conventional anatomy education based on dissection is declining. This study tested a new virtual reality (VR) technique for anatomy learning based on virtual contrast injection. The aim was to assess whether students value this new three-dimensional (3D) visualization method as a learning tool and what value they gain…

  6. A Collaborative Virtual Environment for Situated Language Learning Using VEC3D

    ERIC Educational Resources Information Center

    Shih, Ya-Chun; Yang, Mau-Tsuen

    2008-01-01

    A 3D virtually synchronous communication architecture for situated language learning has been designed to foster communicative competence among undergraduate students who have studied English as a foreign language (EFL). We present an innovative approach that offers better e-learning than the previous virtual reality educational applications. The…

  7. Best Practices for Designing Online Learning Environments for 3D Modeling Curricula: A Delphi Study

    ERIC Educational Resources Information Center

    Mapson, Kathleen Harrell

    2011-01-01

    The purpose of this study was to develop an inventory of best practices for designing online learning environments for 3D modeling curricula. Due to the instructional complexity of three-dimensional modeling, few have sought to develop this type of course for online teaching and learning. Considering this, the study aimed to collectively aggregate…

  8. Web-Based 3D and Haptic Interactive Environments for e-Learning, Simulation, and Training

    NASA Astrophysics Data System (ADS)

    Hamza-Lup, Felix G.; Sopin, Ivan

    Knowledge creation occurs in the process of social interaction. As our service-based society is evolving into a knowledge-based society, there is an acute need for more effective collaboration and knowledge-sharing systems to be used by geographically scattered people. We present the use of 3D components and standards, such as Web3D, in combination with the haptic paradigm, for e-Learning and simulation.

  9. Making Web3D Less Scary: Toward Easy-to-Use Web3D e-Learning Content Development Tools for Educators

    ERIC Educational Resources Information Center

    de Byl, Penny

    2009-01-01

    Penny de Byl argues that one of the biggest challenges facing educators today is the integration of rich and immersive three-dimensional environments with existing teaching and learning materials. To empower educators with the ability to embrace emerging Web3D technologies, the Advanced Learning and Immersive Virtual Environment (ALIVE) research…

  10. Use of 3D printed models in medical education: A randomized control trial comparing 3D prints versus cadaveric materials for learning external cardiac anatomy.

    PubMed

    Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J; Adams, Justin W; McMenamin, Paul G

    2016-05-01

    Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized controlled trial was undertaken on undergraduate medical students without prior formal cardiac anatomy teaching. Following a pre-test examining baseline external cardiac anatomy knowledge, participants were randomly assigned to three groups who underwent self-directed learning sessions using either cadaveric materials, 3D prints, or a combination of cadaveric materials/3D prints (combined materials). Participants were then subjected to a post-test written by a third party. Fifty-two participants completed the trial; 18 using cadaveric materials, 16 using 3D models, and 18 using combined materials. Age and time since completion of high school were equally distributed between groups. Pre-test scores were not significantly different (P = 0.231), however, post-test scores were significantly higher for 3D prints group compared to the cadaveric materials or combined materials groups (mean of 60.83% vs. 44.81% and 44.62%, P = 0.010, adjusted P = 0.012). A significant improvement in test scores was detected for the 3D prints group (P = 0.003) but not for the other two groups. The finding of this pilot study suggests that use of 3D prints do not disadvantage students relative to cadaveric materials; maximally, results suggest that 3D may confer certain benefits to anatomy learning and supports their use and ongoing evaluation as supplements to cadaver-based curriculums. Anat Sci Educ 9: 213-221. © 2015 American Association of Anatomists. PMID:26468636

  11. Facilitating role of 3D multimodal visualization and learning rehearsal in memory recall.

    PubMed

    Do, Phuong T; Moreland, John R

    2014-04-01

    The present study investigated the influence of 3D multimodal visualization and learning rehearsal on memory recall. Participants (N = 175 college students ranging from 21 to 25 years) were assigned to different training conditions and rehearsal processes to learn a list of 14 terms associated with construction of a wood-frame house. They then completed a memory test determining their cognitive ability to free recall the definitions of the 14 studied terms immediately after training and rehearsal. The audiovisual modality training condition was associated with the highest accuracy, and the visual- and auditory-modality conditions with lower accuracy rates. The no-training condition indicated little learning acquisition. A statistically significant increase in performance accuracy for the audiovisual condition as a function of rehearsal suggested the relative importance of rehearsal strategies in 3D observational learning. Findings revealed the potential application of integrating virtual reality and cognitive sciences to enhance learning and teaching effectiveness. PMID:24897906

  12. Adverse events in healthcare: learning from mistakes.

    PubMed

    Rafter, N; Hickey, A; Condell, S; Conroy, R; O'Connor, P; Vaughan, D; Williams, D

    2015-04-01

    Large national reviews of patient charts estimate that approximately 10% of hospital admissions are associated with an adverse event (defined as an injury resulting in prolonged hospitalization, disability or death, caused by healthcare management). Apart from having a significant impact on patient morbidity and mortality, adverse events also result in increased healthcare costs due to longer hospital stays. Furthermore, a substantial proportion of adverse events are preventable. Through identifying the nature and rate of adverse events, initiatives to improve care can be developed. A variety of methods exist to gather adverse event data both retrospectively and prospectively but these do not necessarily capture the same events and there is variability in the definition of an adverse event. For example, hospital incident reporting collects only a very small fraction of the adverse events found in retrospective chart reviews. Until there are systematic methods to identify adverse events, progress in patient safety cannot be reliably measured. This review aims to discuss the need for a safety culture that can learn from adverse events, describe ways to measure adverse events, and comment on why current adverse event monitoring is unable to demonstrate trends in patient safety. PMID:25078411

  13. 3D web based learning of medical equipment employed in intensive care units.

    PubMed

    Cetin, Aydın

    2012-02-01

    In this paper, both synchronous and asynchronous web based learning of 3D medical equipment models used in hospital intensive care unit have been described over the moodle course management system. 3D medical equipment models were designed with 3ds Max 2008, then converted to ASE format and added interactivity displayed with Viewpoint-Enliven. 3D models embedded in a web page in html format with dynamic interactivity-rotating, panning and zooming by dragging a mouse over images-and descriptive information is embedded to 3D model by using xml format. A pilot test course having 15 h was applied to technicians who is responsible for intensive care unit at Medical Devices Repairing and Maintenance Center (TABOM) of Turkish High Specialized Hospital. PMID:20703738

  14. Designing stereoscopic information visualization for 3D-TV: What can we can learn from S3D gaming?

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Masuch, Maic

    2012-03-01

    This paper explores graphical design and spatial alignment of visual information and graphical elements into stereoscopically filmed content, e.g. captions, subtitles, and especially more complex elements in 3D-TV productions. The method used is a descriptive analysis of existing computer- and video games that have been adapted for stereoscopic display using semi-automatic rendering techniques (e.g. Nvidia 3D Vision) or games which have been specifically designed for stereoscopic vision. Digital games often feature compelling visual interfaces that combine high usability with creative visual design. We explore selected examples of game interfaces in stereoscopic vision regarding their stereoscopic characteristics, how they draw attention, how we judge effect and comfort and where the interfaces fail. As a result, we propose a list of five aspects which should be considered when designing stereoscopic visual information: explicit information, implicit information, spatial reference, drawing attention, and vertical alignment. We discuss possible consequences, opportunities and challenges for integrating visual information elements into 3D-TV content. This work shall further help to improve current editing systems and identifies a need for future editing systems for 3DTV, e.g., live editing and real-time alignment of visual information into 3D footage.

  15. Structuring Narrative in 3D Digital Game-Based Learning Environments to Support Second Language Acquisition

    ERIC Educational Resources Information Center

    Neville, David O.

    2010-01-01

    The essay is a conceptual analysis from an instructional design perspective exploring the feasibility of using three-dimensional digital game-based learning (3D-DGBL) environments to assist in second language acquisition (SLA). It examines the shared characteristics of narrative within theories of situated cognition, context-based approaches to…

  16. Three Primary School Students' Cognition about 3D Rotation in a Virtual Reality Learning Environment

    ERIC Educational Resources Information Center

    Yeh, Andy

    2010-01-01

    This paper reports on three primary school students' explorations of 3D rotation in a virtual reality learning environment (VRLE) named VRMath. When asked to investigate if you would face the same direction when you turn right 45 degrees first then roll up 45 degrees, or when you roll up 45 degrees first then turn right 45 degrees, the students…

  17. Who Benefits from Learning with 3D Models?: The Case of Spatial Ability

    ERIC Educational Resources Information Center

    Huk, T.

    2006-01-01

    Empirical studies that focus on the impact of three-dimensional (3D) visualizations on learning are to date rare and inconsistent. According to the ability-as-enhancer hypothesis, high spatial ability learners should benefit particularly as they have enough cognitive capacity left for mental model construction. In contrast, the…

  18. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation. PMID:24465721

  19. Estimating the complexity of 3D structural models using machine learning methods

    NASA Astrophysics Data System (ADS)

    Mejía-Herrera, Pablo; Kakurina, Maria; Royer, Jean-Jacques

    2016-04-01

    Quantifying the complexity of 3D geological structural models can play a major role in natural resources exploration surveys, for predicting environmental hazards or for forecasting fossil resources. This paper proposes a structural complexity index which can be used to help in defining the degree of effort necessary to build a 3D model for a given degree of confidence, and also to identify locations where addition efforts are required to meet a given acceptable risk of uncertainty. In this work, it is considered that the structural complexity index can be estimated using machine learning methods on raw geo-data. More precisely, the metrics for measuring the complexity can be approximated as the difficulty degree associated to the prediction of the geological objects distribution calculated based on partial information on the actual structural distribution of materials. The proposed methodology is tested on a set of 3D synthetic structural models for which the degree of effort during their building is assessed using various parameters (such as number of faults, number of part in a surface object, number of borders, ...), the rank of geological elements contained in each model, and, finally, their level of deformation (folding and faulting). The results show how the estimated complexity in a 3D model can be approximated by the quantity of partial data necessaries to simulated at a given precision the actual 3D model without error using machine learning algorithms.

  20. 3-D System-on-System (SoS) Biomedical-Imaging Architecture for Health-Care Applications.

    PubMed

    Sang-Jin Lee; Kavehei, O; Yoon-Ki Hong; Tae Won Cho; Younggap You; Kyoungrok Cho; Eshraghian, K

    2010-12-01

    This paper presents the implementation of a 3-D architecture for a biomedical-imaging system based on a multilayered system-on-system structure. The architecture consists of a complementary metal-oxide semiconductor image sensor layer, memory, 3-D discrete wavelet transform (3D-DWT), 3-D Advanced Encryption Standard (3D-AES), and an RF transmitter as an add-on layer. Multilayer silicon (Si) stacking permits fabrication and optimization of individual layers by different processing technology to achieve optimal performance. Utilization of through silicon via scheme can address required low-power operation as well as high-speed performance. Potential benefits of 3-D vertical integration include an improved form factor as well as a reduction in the total wiring length, multifunctionality, power efficiency, and flexible heterogeneous integration. The proposed imaging architecture was simulated by using Cadence Spectre and Synopsys HSPICE while implementation was carried out by Cadence Virtuoso and Mentor Graphic Calibre. PMID:23853380

  1. Learning the 3-D structure of objects from 2-D views depends on shape, not format

    PubMed Central

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-01-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  2. Learning the 3-D structure of objects from 2-D views depends on shape, not format.

    PubMed

    Tian, Moqian; Yamins, Daniel; Grill-Spector, Kalanit

    2016-05-01

    Humans can learn to recognize new objects just from observing example views. However, it is unknown what structural information enables this learning. To address this question, we manipulated the amount of structural information given to subjects during unsupervised learning by varying the format of the trained views. We then tested how format affected participants' ability to discriminate similar objects across views that were rotated 90° apart. We found that, after training, participants' performance increased and generalized to new views in the same format. Surprisingly, the improvement was similar across line drawings, shape from shading, and shape from shading + stereo even though the latter two formats provide richer depth information compared to line drawings. In contrast, participants' improvement was significantly lower when training used silhouettes, suggesting that silhouettes do not have enough information to generate a robust 3-D structure. To test whether the learned object representations were format-specific or format-invariant, we examined if learning novel objects from example views transfers across formats. We found that learning objects from example line drawings transferred to shape from shading and vice versa. These results have important implications for theories of object recognition because they suggest that (a) learning the 3-D structure of objects does not require rich structural cues during training as long as shape information of internal and external features is provided and (b) learning generates shape-based object representations independent of the training format. PMID:27153196

  3. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  4. Transfer of learning between 2D and 3D sources during infancy: Informing theory and practice

    PubMed Central

    Barr, Rachel

    2010-01-01

    The ability to transfer learning across contexts is an adaptive skill that develops rapidly during early childhood. Learning from television is a specific instance of transfer of learning between a 2-Dimensional (2D) representation and a 3-Dimensional (3D) object. Understanding the conditions under which young children might accomplish this particular kind of transfer is important because by 2 years of age 90% of US children are viewing television on a daily basis. Recent research shows that children can imitate actions presented on television using the corresponding real-world objects, but this same research also shows that children learn less from television than they do from live demonstrations until they are at least 3 years old; termed the video deficit effect. At present, there is no coherent theory to account for the video deficit effect; how learning is disrupted by this change in context is poorly understood. The aims of the present review are (1) to review the conditions under which children transfer learning between 2D images and 3D objects during early childhood, and (2) to integrate developmental theories of memory processing into the transfer of learning from media literature using Hayne’s (2004) developmental representational flexibility account. The review will conclude that studies on the transfer of learning between 2D and 3D sources have important theoretical implications for general developmental theories of cognitive development, and in particular the development of a flexible representational system, as well as policy implications for early education regarding the potential use and limitations of media as effective teaching tools during early childhood. PMID:20563302

  5. Applying a 3D Situational Virtual Learning Environment to the Real World Business--An Extended Research in Marketing

    ERIC Educational Resources Information Center

    Wang, Shwu-huey

    2012-01-01

    In order to understand (1) what kind of students can be facilitated through the help of three-dimensional virtual learning environment (3D VLE), and (2) the relationship between a conventional test (ie, paper and pencil test) and the 3D VLE used in this study, the study designs a 3D virtual supermarket (3DVS) to help students transform their role…

  6. 3D Visualization Types in Multimedia Applications for Science Learning: A Case Study for 8th Grade Students in Greece

    ERIC Educational Resources Information Center

    Korakakis, G.; Pavlatou, E. A.; Palyvos, J. A.; Spyrellis, N.

    2009-01-01

    This research aims to determine whether the use of specific types of visualization (3D illustration, 3D animation, and interactive 3D animation) combined with narration and text, contributes to the learning process of 13- and 14- years-old students in science courses. The study was carried out with 212 8th grade students in Greece. This…

  7. Interprofessional practice in healthcare: Experiences of a faculty learning community.

    PubMed

    Robinson-Dooley, Vanessa; Nichols, Quienton

    2016-07-01

    Healthcare reform has had its impact on many health professionals as well as clinical settings, particularly with the enactment of the Affordable Care Act. In healthcare settings, healthcare teams are challenged with new systems of care and changing philosophies of management. However, healthcare providers retain a distinctive sense that they cannot always provide care without some form of collaboration. This article presents the results of a pilot study, which measured the effectiveness of a model of practice utilised at a faculty-practitioner operated university community clinic. The purpose of the study was to measure the perceived effectiveness of a practice model, client satisfaction, and students' perceptions of learning. Implications of this pilot study include providing an interprofessional practice model, which can be replicated in any healthcare setting. This study also provides an opportunity to improve student learning in degree programmes where practice is a significant aspect of the learning process. PMID:27191474

  8. How spatial abilities and dynamic visualizations interplay when learning functional anatomy with 3D anatomical models.

    PubMed

    Berney, Sandra; Bétrancourt, Mireille; Molinari, Gaëlle; Hoyek, Nady

    2015-01-01

    The emergence of dynamic visualizations of three-dimensional (3D) models in anatomy curricula may be an adequate solution for spatial difficulties encountered with traditional static learning, as they provide direct visualization of change throughout the viewpoints. However, little research has explored the interplay between learning material presentation formats, spatial abilities, and anatomical tasks. First, to understand the cognitive challenges a novice learner would be faced with when first exposed to 3D anatomical content, a six-step cognitive task analysis was developed. Following this, an experimental study was conducted to explore how presentation formats (dynamic vs. static visualizations) support learning of functional anatomy, and affect subsequent anatomical tasks derived from the cognitive task analysis. A second aim was to investigate the interplay between spatial abilities (spatial visualization and spatial relation) and presentation formats when the functional anatomy of a 3D scapula and the associated shoulder flexion movement are learned. Findings showed no main effect of the presentation formats on performances, but revealed the predictive influence of spatial visualization and spatial relation abilities on performance. However, an interesting interaction between presentation formats and spatial relation ability for a specific anatomical task was found. This result highlighted the influence of presentation formats when spatial abilities are involved as well as the differentiated influence of spatial abilities on anatomical tasks. PMID:25689057

  9. An Interactive 3D Virtual Anatomy Puzzle for Learning and Simulation - Initial Demonstration and Evaluation.

    PubMed

    Messier, Erik; Wilcox, Jascha; Dawson-Elli, Alexander; Diaz, Gabriel; Linte, Cristian A

    2016-01-01

    To inspire young students (grades 6-12) to become medical practitioners and biomedical engineers, it is necessary to expose them to key concepts of the field in a way that is both exciting and informative. Recent advances in medical image acquisition, manipulation, processing, visualization, and display have revolutionized the approach in which the human body and internal anatomy can be seen and studied. It is now possible to collect 3D, 4D, and 5D medical images of patient specific data, and display that data to the end user using consumer level 3D stereoscopic display technology. Despite such advancements, traditional 2D modes of content presentation such as textbooks and slides are still the standard didactic equipment used to teach young students anatomy. More sophisticated methods of display can help to elucidate the complex 3D relationships between structures that are so often missed when viewing only 2D media, and can instill in students an appreciation for the interconnection between medicine and technology. Here we describe the design, implementation, and preliminary evaluation of a 3D virtual anatomy puzzle dedicated to helping users learn the anatomy of various organs and systems by manipulating 3D virtual data. The puzzle currently comprises several components of the human anatomy and can be easily extended to include additional organs and systems. The 3D virtual anatomy puzzle game was implemented and piloted using three display paradigms - a traditional 2D monitor, a 3D TV with active shutter glass, and the DK2 version Oculus Rift, as well as two different user interaction devices - a space mouse and traditional keyboard controls. PMID:27046584

  10. Team Learning for Healthcare Quality Improvement

    PubMed Central

    Eppstein, Margaret J.; Horbar, Jeffrey D.

    2014-01-01

    In organized healthcare quality improvement collaboratives (QICs), teams of practitioners from different hospitals exchange information on clinical practices with the aim of improving health outcomes at their own institutions. However, what works in one hospital may not work in others with different local contexts because of nonlinear interactions among various demographics, treatments, and practices. In previous studies of collaborations where the goal is a collective problem solving, teams of diverse individuals have been shown to outperform teams of similar individuals. However, when the purpose of collaboration is knowledge diffusion in complex environments, it is not clear whether team diversity will help or hinder effective learning. In this paper, we first use an agent-based model of QICs to show that teams comprising similar individuals outperform those with more diverse individuals under nearly all conditions, and that this advantage increases with the complexity of the landscape and level of noise in assessing performance. Examination of data from a network of real hospitals provides encouraging evidence of a high degree of similarity in clinical practices, especially within teams of hospitals engaging in QIC teams. However, our model also suggests that groups of similar hospitals could benefit from larger teams and more open sharing of details on clinical outcomes than is currently the norm. To facilitate this, we propose a secure virtual collaboration system that would allow hospitals to efficiently identify potentially better practices in use at other institutions similar to theirs without any institutions having to sacrifice the privacy of their own data. Our results may also have implications for other types of data-driven diffusive learning such as in personalized medicine and evolutionary search in noisy, complex combinatorial optimization problems. PMID:25360395

  11. Developing Healthcare Practice through Action Learning: Individual and Group Journeys

    ERIC Educational Resources Information Center

    Wilson, Valerie; McCormack, Brendan; Ives, Glenice

    2008-01-01

    Action Learning is now a well established strategy for reflective inquiry in healthcare. Whilst a great deal is know about action learning there has been inadequate research on the process of learning that takes place, and the impact that this holds for individuals, groups or organisations. This article reports on the findings of 15-month action…

  12. Effects of Verbal Components in 3D Talking-Head on Pronunciation Learning among Non-Native Speakers

    ERIC Educational Resources Information Center

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah; Hoe, Tan Wee

    2015-01-01

    This study was designed to investigate the benefit of inclusion of various verbal elements in 3D talking-head on pronunciation learning among non-native speakers. In particular, the study examines the effects of three different multimedia presentation strategies in 3D talking-head Mobile-Assisted-Language-Learning (MALL) on the learning…

  13. Machine Learning of Hierarchical Clustering to Segment 2D and 3D Images

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Parag, Toufiq; Shi, Jianbo; Chklovskii, Dmitri B.

    2013-01-01

    We aim to improve segmentation through the use of machine learning tools during region agglomeration. We propose an active learning approach for performing hierarchical agglomerative segmentation from superpixels. Our method combines multiple features at all scales of the agglomerative process, works for data with an arbitrary number of dimensions, and scales to very large datasets. We advocate the use of variation of information to measure segmentation accuracy, particularly in 3D electron microscopy (EM) images of neural tissue, and using this metric demonstrate an improvement over competing algorithms in EM and natural images. PMID:23977123

  14. Visuomotor learning in immersive 3D virtual reality in Parkinson's disease and in aging.

    PubMed

    Messier, Julie; Adamovich, Sergei; Jack, David; Hening, Wayne; Sage, Jacob; Poizner, Howard

    2007-05-01

    Successful adaptation to novel sensorimotor contexts critically depends on efficient sensory processing and integration mechanisms, particularly those required to combine visual and proprioceptive inputs. If the basal ganglia are a critical part of specialized circuits that adapt motor behavior to new sensorimotor contexts, then patients who are suffering from basal ganglia dysfunction, as in Parkinson's disease should show sensorimotor learning impairments. However, this issue has been under-explored. We tested the ability of 8 patients with Parkinson's disease (PD), off medication, ten healthy elderly subjects and ten healthy young adults to reach to a remembered 3D location presented in an immersive virtual environment. A multi-phase learning paradigm was used having four conditions: baseline, initial learning, reversal learning and aftereffect. In initial learning, the computer altered the position of a simulated arm endpoint used for movement feedback by shifting its apparent location diagonally, requiring thereby both horizontal and vertical compensations. This visual distortion forced subjects to learn new coordinations between what they saw in the virtual environment and the actual position of their limbs, which they had to derive from proprioceptive information (or efference copy). In reversal learning, the sign of the distortion was reversed. Both elderly subjects and PD patients showed learning phase-dependent difficulties. First, elderly controls were slower than young subjects when learning both dimensions of the initial biaxial discordance. However, their performance improved during reversal learning and as a result elderly and young controls showed similar adaptation rates during reversal learning. Second, in striking contrast to healthy elderly subjects, PD patients were more profoundly impaired during the reversal phase of learning. PD patients were able to learn the initial biaxial discordance but were on average slower than age-matched controls

  15. Learning deformation model for expression-robust 3D face recognition

    NASA Astrophysics Data System (ADS)

    Guo, Zhe; Liu, Shu; Wang, Yi; Lei, Tao

    2015-12-01

    Expression change is the major cause of local plastic deformation of the facial surface. The intra-class differences with large expression change somehow are larger than the inter-class differences as it's difficult to distinguish the same individual with facial expression change. In this paper, an expression-robust 3D face recognition method is proposed by learning expression deformation model. The expression of the individuals on the training set is modeled by principal component analysis, the main components are retained to construct the facial deformation model. For the test 3D face, the shape difference between the test and the neutral face in training set is used for reconstructing the expression change by the constructed deformation model. The reconstruction residual error is used for face recognition. The average recognition rate on GavabDB and self-built database reaches 85.1% and 83%, respectively, which shows strong robustness for expression changes.

  16. Demographic diversity, communication and learning behaviour in healthcare groups.

    PubMed

    Curşeu, Petru Lucian

    2013-01-01

    An integrative model of group learning was tested in a sample of 40 healthcare groups (434 respondents), and the results show that age diversity reduces the frequency of face-to-face communication whereas educational diversity reduces the frequency of virtual communication in healthcare groups. Frequency of communication (both face-to-face and virtual), in turn, positively impacts on the emergence of trust and psychological safety, which are essential drivers of learning behaviours in healthcare groups. Additional results show that average educational achievement within groups is conducive for communication frequency (both face-to-face and virtual), whereas mean age within groups has a negative association with the use of virtual communication in healthcare groups. PMID:22847617

  17. Local Metric Learning in 2D/3D Deformable Registration With Application in the Abdomen

    PubMed Central

    Chou, Chen-Rui; Mageras, Gig; Pizer, Stephen

    2015-01-01

    In image-guided radiotherapy (IGRT) of disease sites subject to respiratory motion, soft tissue deformations can affect localization accuracy. We describe the application of a method of 2D/3D deformable registration to soft tissue localization in abdomen. The method, called registration efficiency and accuracy through learning a metric on shape (REALMS), is designed to support real-time IGRT. In a previously developed version of REALMS, the method interpolated 3D deformation parameters for any credible deformation in a deformation space using a single globally-trained Riemannian metric for each parameter. We propose a refinement of the method in which the metric is trained over a particular region of the deformation space, such that interpolation accuracy within that region is improved. We report on the application of the proposed algorithm to IGRT in abdominal disease sites, which is more challenging than in lung because of low intensity contrast and nonrespiratory deformation. We introduce a rigid translation vector to compensate for nonrespiratory deformation, and design a special region-of-interest around fiducial markers implanted near the tumor to produce a more reliable registration. Both synthetic data and actual data tests on abdominal datasets show that the localized approach achieves more accurate 2D/3D deformable registration than the global approach. PMID:24771575

  18. The Influence of Design Strategy of Peer Learning on 3-D Software Learning

    ERIC Educational Resources Information Center

    Tu, Jui-Che; Chiang, Yu-Hsien

    2016-01-01

    The research is now an instructor in the department of animation in a college, discovering that students can not pay attention to their study and lack of motivation to learn. Therefore, the research motivation is how to restore students' learning motivation and have them plunge into course learning. The study aimed to develop "design strategy…

  19. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  20. 3D transrectal ultrasound (TRUS) prostate segmentation based on optimal feature learning framework

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Rossi, Peter J.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2016-03-01

    We propose a 3D prostate segmentation method for transrectal ultrasound (TRUS) images, which is based on patch-based feature learning framework. Patient-specific anatomical features are extracted from aligned training images and adopted as signatures for each voxel. The most robust and informative features are identified by the feature selection process to train the kernel support vector machine (KSVM). The well-trained SVM was used to localize the prostate of the new patient. Our segmentation technique was validated with a clinical study of 10 patients. The accuracy of our approach was assessed using the manual segmentations (gold standard). The mean volume Dice overlap coefficient was 89.7%. In this study, we have developed a new prostate segmentation approach based on the optimal feature learning framework, demonstrated its clinical feasibility, and validated its accuracy with manual segmentations.

  1. Active learning in the lecture theatre using 3D printed objects.

    PubMed

    Smith, David P

    2016-01-01

    The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme's active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student. PMID:27366318

  2. Compressed Sensing Reconstruction of 3D Ultrasound Data Using Dictionary Learning and Line-Wise Subsampling.

    PubMed

    Lorintiu, Oana; Liebgott, Hervé; Alessandrini, Martino; Bernard, Olivier; Friboulet, Denis

    2015-12-01

    In this paper we present a compressed sensing (CS) method adapted to 3D ultrasound imaging (US). In contrast to previous work, we propose a new approach based on the use of learned overcomplete dictionaries that allow for much sparser representations of the signals since they are optimized for a particular class of images such as US images. In this study, the dictionary was learned using the K-SVD algorithm and CS reconstruction was performed on the non-log envelope data by removing 20% to 80% of the original data. Using numerically simulated images, we evaluate the influence of the training parameters and of the sampling strategy. The latter is done by comparing the two most common sampling patterns, i.e., point-wise and line-wise random patterns. The results show in particular that line-wise sampling yields an accuracy comparable to the conventional point-wise sampling. This indicates that CS acquisition of 3D data is feasible in a relatively simple setting, and thus offers the perspective of increasing the frame rate by skipping the acquisition of RF lines. Next, we evaluated this approach on US volumes of several ex vivo and in vivo organs. We first show that the learned dictionary approach yields better performances than conventional fixed transforms such as Fourier or discrete cosine. Finally, we investigate the generality of the learned dictionary approach and show that it is possible to build a general dictionary allowing to reliably reconstruct different volumes of different ex vivo or in vivo organs. PMID:26057610

  3. Active learning in the lecture theatre using 3D printed objects

    PubMed Central

    Smith, David P.

    2016-01-01

    The ability to conceptualize 3D shapes is central to understanding biological processes. The concept that the structure of a biological molecule leads to function is a core principle of the biochemical field. Visualisation of biological molecules often involves vocal explanations or the use of two dimensional slides and video presentations. A deeper understanding of these molecules can however be obtained by the handling of objects. 3D printed biological molecules can be used as active learning tools to stimulate engagement in large group lectures. These models can be used to build upon initial core knowledge which can be delivered in either a flipped form or a more didactic manner. Within the teaching session the students are able to learn by handling, rotating and viewing the objects to gain an appreciation, for example, of an enzyme’s active site or the difference between the major and minor groove of DNA. Models and other artefacts can be handled in small groups within a lecture theatre and act as a focal point to generate conversation. Through the approach presented here core knowledge is first established and then supplemented with high level problem solving through a "Think-Pair-Share" cooperative learning strategy. The teaching delivery was adjusted based around experiential learning activities by moving the object from mental cognition and into the physical environment. This approach led to students being able to better visualise biological molecules and a positive engagement in the lecture. The use of objects in teaching allows the lecturer to create interactive sessions that both challenge and enable the student. PMID:27366318

  4. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning. PMID:23349117

  5. Secure Healthcare Internet Employee Learning Drill

    SciTech Connect

    2005-08-01

    SHIELD solves the problem of rapidly training large numbers of healthcare or other facility personnel who work around the clock - especially the non-professional semi-skilled employees who usually have "first contact" with patients and visitors - about how to limit or prevent exposure of facilities to infectious illness or other disease threats. This tool provides a very brief, realistic training experience that shows a range of facility personnel how to identify and respond to possible acute infectious respiratory illness outbreaks.

  6. 3D Immersive Patient Simulators and Their Impact on Learning Success: A Thematic Review

    PubMed Central

    Wahba, Roger; Chang, De-Hua; Plum, Patrick; Hölscher, Arnulf H; Stippel, Dirk L

    2015-01-01

    Background Immersive patient simulators (IPSs) combine the simulation of virtual patients with a three-dimensional (3D) environment and, thus, allow an illusionary immersion into a synthetic world, similar to computer games. Playful learning in a 3D environment is motivating and allows repetitive training and internalization of medical workflows (ie, procedural knowledge) without compromising real patients. The impact of this innovative educational concept on learning success requires review of feasibility and validity. Objective It was the aim of this paper to conduct a survey of all immersive patient simulators currently available. In addition, we address the question of whether the use of these simulators has an impact on knowledge gain by summarizing the existing validation studies. Methods A systematic literature search via PubMed was performed using predefined inclusion criteria (ie, virtual worlds, focus on education of medical students, validation testing) to identify all available simulators. Validation testing was defined as the primary end point. Results There are currently 13 immersive patient simulators available. Of these, 9 are Web-based simulators and represent feasibility studies. None of these simulators are used routinely for student education. The workstation-based simulators are commercially driven and show a higher quality in terms of graphical quality and/or data content. Out of the studies, 1 showed a positive correlation between simulated content and real content (ie, content validity). There was a positive correlation between the outcome of simulator training and alternative training methods (ie, concordance validity), and a positive coherence between measured outcome and future professional attitude and performance (ie, predictive validity). Conclusions IPSs can promote learning and consolidation of procedural knowledge. The use of immersive patient simulators is still marginal, and technical and educational approaches are heterogeneous

  7. 3D Technology Selection for a Virtual Learning Environment by Blending ISO 9126 Standard and AHP

    ERIC Educational Resources Information Center

    Cetin, Aydin; Guler, Inan

    2011-01-01

    Web3D presents many opportunities for learners in a virtual world or virtual environment over the web. This is a great opportunity for open-distance education institutions to benefit from web3d technologies to create courses with interactive 3d materials. There are many open source and commercial products offering 3d technologies over the web…

  8. Learning structured models for segmentation of 2-D and 3-D imagery.

    PubMed

    Lucchi, Aurelien; Marquez-Neila, Pablo; Becker, Carlos; Li, Yunpeng; Smith, Kevin; Knott, Graham; Fua, Pascal

    2015-05-01

    Efficient and accurate segmentation of cellular structures in microscopic data is an essential task in medical imaging. Many state-of-the-art approaches to image segmentation use structured models whose parameters must be carefully chosen for optimal performance. A popular choice is to learn them using a large-margin framework and more specifically structured support vector machines (SSVM). Although SSVMs are appealing, they suffer from certain limitations. First, they are restricted in practice to linear kernels because the more powerful nonlinear kernels cause the learning to become prohibitively expensive. Second, they require iteratively finding the most violated constraints, which is often intractable for the loopy graphical models used in image segmentation. This requires approximation that can lead to reduced quality of learning. In this paper, we propose three novel techniques to overcome these limitations. We first introduce a method to "kernelize" the features so that a linear SSVM framework can leverage the power of nonlinear kernels without incurring much additional computational cost. Moreover, we employ a working set of constraints to increase the reliability of approximate subgradient methods and introduce a new way to select a suitable step size at each iteration. We demonstrate the strength of our approach on both 2-D and 3-D electron microscopic (EM) image data and show consistent performance improvement over state-of-the-art approaches. PMID:25438309

  9. Secure Healthcare Internet Employee Learning Drill

    Energy Science and Technology Software Center (ESTSC)

    2005-08-01

    SHIELD solves the problem of rapidly training large numbers of healthcare or other facility personnel who work around the clock - especially the non-professional semi-skilled employees who usually have "first contact" with patients and visitors - about how to limit or prevent exposure of facilities to infectious illness or other disease threats. This tool provides a very brief, realistic training experience that shows a range of facility personnel how to identify and respond to possiblemore » acute infectious respiratory illness outbreaks.« less

  10. 3D prostate segmentation of ultrasound images combining longitudinal image registration and machine learning

    NASA Astrophysics Data System (ADS)

    Yang, Xiaofeng; Fei, Baowei

    2012-02-01

    We developed a three-dimensional (3D) segmentation method for transrectal ultrasound (TRUS) images, which is based on longitudinal image registration and machine learning. Using longitudinal images of each individual patient, we register previously acquired images to the new images of the same subject. Three orthogonal Gabor filter banks were used to extract texture features from each registered image. Patient-specific Gabor features from the registered images are used to train kernel support vector machines (KSVMs) and then to segment the newly acquired prostate image. The segmentation method was tested in TRUS data from five patients. The average surface distance between our and manual segmentation is 1.18 +/- 0.31 mm, indicating that our automatic segmentation method based on longitudinal image registration is feasible for segmenting the prostate in TRUS images.

  11. Robust autonomous model learning from 2D and 3D data sets.

    PubMed

    Langs, Georg; Donner, René; Peloschek, Philipp; Bischof, Horst

    2007-01-01

    In this paper we propose a weakly supervised learning algorithm for appearance models based on the minimum description length (MDL) principle. From a set of training images or volumes depicting examples of an anatomical structure, correspondences for a set of landmarks are established by group-wise registration. The approach does not require any annotation. In contrast to existing methods no assumptions about the topology of the data are made, and the topology can change throughout the data set. Instead of a continuous representation of the volumes or images, only sparse finite sets of interest points are used to represent the examples during optimization. This enables the algorithm to efficiently use distinctive points, and to handle texture variations robustly. In contrast to standard elasticity based deformation constraints the MDL criterion accounts for systematic deformations typical for training sets stemming from medical image data. Experimental results are reported for five different 2D and 3D data sets. PMID:18051152

  12. Comprehensive Healthcare module: medical and pharmacy students’ shared learning experiences

    PubMed Central

    Tan, Chai-Eng; Jaffar, Aida; Tong, Seng-Fah; Hamzah, Majmin Sheikh; Mohamad, Nabishah

    2014-01-01

    Introduction The Comprehensive Healthcare (CHC) module was developed to introduce pre-clinical medical and pharmacy students to the concept of comprehensive healthcare. This study aims to explore their shared learning experiences within this module. Methodology During this module, medical and pharmacy students conducted visits to patients’ homes and to related community-based organisations in small groups. They were required to write a reflective journal on their experiences regarding working with other professions as part of their module assessment. Highly scored reflective journals written by students from the 2011/2012 academic session were selected for analysis. Their shared learning experiences were identified via thematic analysis. We also analysed students’ feedback regarding the module. Results Analysis of 25 selected reflective journals revealed several important themes: ‘Understanding of impact of illness and its relation to holistic care’, ‘Awareness of the role of various healthcare professions’ and ‘Generic or soft skills for inter-professional collaboration’. Although the primary objective of the module was to expose students to comprehensive healthcare, the students learnt skills required for future collaborative practice from their experiences. Discussion The CHC module provided early clinical exposure to community-based health issues and incorporated some elements of inter-professional education. The students learnt about the roles of other healthcare professions and acquired soft skills required for future collaborative practice during this module. PMID:25327980

  13. GEARS a 3D Virtual Learning Environment and Virtual Social and Educational World Used in Online Secondary Schools

    ERIC Educational Resources Information Center

    Barkand, Jonathan; Kush, Joseph

    2009-01-01

    Virtual Learning Environments (VLEs) are becoming increasingly popular in online education environments and have multiple pedagogical advantages over more traditional approaches to education. VLEs include 3D worlds where students can engage in simulated learning activities such as Second Life. According to Claudia L'Amoreaux at Linden Lab, "at…

  14. 3D-Printing Crystallographic Unit Cells for Learning Materials Science and Engineering

    ERIC Educational Resources Information Center

    Rodenbough, Philip P.; Vanti, William B.; Chan, Siu-Wai

    2015-01-01

    Introductory materials science and engineering courses universally include the study of crystal structure and unit cells, which are by their nature highly visual 3D concepts. Traditionally, such topics are explored with 2D drawings or perhaps a limited set of difficult-to-construct 3D models. The rise of 3D printing, coupled with the wealth of…

  15. Rapid probabilistic source characterisation in 3D earth models using learning algorithms

    NASA Astrophysics Data System (ADS)

    Valentine, A. P.; Kaeufl, P.; Trampert, J.

    2015-12-01

    Characterising earthquake sources rapidly and robustly is an essential component of any earthquake early warning (EEW) procedure. Ideally, this characterisation should:(i) be probabilistic -- enabling appreciation of the full range of mechanisms compatible with available data, and taking observational and theoretical uncertainties into account; and(ii) operate in a physically-complete theoretical framework.However, implementing either of these ideals increases computational costs significantly, making it unfeasible to satisfy both in the short timescales necessary for EEW applications.The barrier here arises from the fact that conventional probabilistic inversion techniques involve running many thousands of forward simulations after data has been obtained---a procedure known as `posterior sampling'. Thus, for EEW, all computational costs must be incurred after the event time. Here, we demonstrate a new approach---based instead on `prior sampling'---which circumvents this problem and is feasible for EEW applications. All forward simulations are conducted in advance, and a learning algorithm is used to assimilate information about the relationship between model and data. Once observations from an earthquake become available, this information can be used to infer probability density functions (pdfs) for seismic source parameters, within milliseconds.We demonstrate this procedure using data from the 2008 Mw5.4 Chino Hills earthquake. We compute Green's functions for 150 randomly-chosen locations on the Whittier and Chino faults, using SPECFEM3D and a 3D model of the regional velocity structure. We then use these to train neural networks that map from seismic waveforms to pdfs on a point-source, moment-tensor representation of the event mechanism. We show that using local network data from the Chino Hills event, this system provides accurate information on magnitude, epicentral location and source half-duration using data available 6 seconds after the first station

  16. Deformable segmentation of 3D MR prostate images via distributed discriminative dictionary and ensemble learning

    SciTech Connect

    Guo, Yanrong; Shao, Yeqin; Gao, Yaozong; Price, True; Oto, Aytekin; Shen, Dinggang

    2014-07-15

    patches of the prostate surface and trained to adaptively capture the appearance in different prostate zones, thus achieving better local tissue differentiation. For each local region, multiple classifiers are trained based on the randomly selected samples and finally assembled by a specific fusion method. In addition to this nonparametric appearance model, a prostate shape model is learned from the shape statistics using a novel approach, sparse shape composition, which can model nonGaussian distributions of shape variation and regularize the 3D mesh deformation by constraining it within the observed shape subspace. Results: The proposed method has been evaluated on two datasets consisting of T2-weighted MR prostate images. For the first (internal) dataset, the classification effectiveness of the authors' improved dictionary learning has been validated by comparing it with three other variants of traditional dictionary learning methods. The experimental results show that the authors' method yields a Dice Ratio of 89.1% compared to the manual segmentation, which is more accurate than the three state-of-the-art MR prostate segmentation methods under comparison. For the second dataset, the MICCAI 2012 challenge dataset, the authors' proposed method yields a Dice Ratio of 87.4%, which also achieves better segmentation accuracy than other methods under comparison. Conclusions: A new magnetic resonance image prostate segmentation method is proposed based on the combination of deformable model and dictionary learning methods, which achieves more accurate segmentation performance on prostate T2 MR images.

  17. Japanese healthcare system: lessons to be learned.

    PubMed

    Ikegami, Naoki

    2009-06-01

    Naoki Ikegami is Professor and Chair of the Department of Health Policy and Management at the Keio University School of Medicine (Tokyo, Japan), from which he received his MD and PhD. He also received a Master of Arts degree in health services studies with Distinction from Leeds University (UK). During 1990-1991, he was a visiting Professor at the University of Pennsylvania's Wharton School and Medical School (PA, USA). His publications include "The Art of Balance in Health Policy--Maintaining Japan's Low-Cost Egalitarian System" (Cambridge University Press, 1998) with John C Campbell, and "Measuring the quality of long-term care in institutional and community settings. In: "Measuring Up--Improving Health Care Performance in OECD Countries" (OECD, 2002) with John Hirdes and Iain Carpenter. His interests are comparative health policy, long-term care and reimbursement systems. He is currently president of the Japan Society on Healthcare Administration, and the Japan Healtheconomics Society. Here, Naoki Ikegami talks to Expert Review of Pharmacoeconomics & Outcomes Research about how Japan is dealing with the health policy issues of today. PMID:19527091

  18. TU-F-BRF-06: 3D Pancreas MRI Segmentation Using Dictionary Learning and Manifold Clustering

    SciTech Connect

    Gou, S; Rapacchi, S; Hu, P; Sheng, K

    2014-06-15

    Purpose: The recent advent of MRI guided radiotherapy machines has lent an exciting platform for soft tissue target localization during treatment. However, tools to efficiently utilize MRI images for such purpose have not been developed. Specifically, to efficiently quantify the organ motion, we develop an automated segmentation method using dictionary learning and manifold clustering (DLMC). Methods: Fast 3D HASTE and VIBE MR images of 2 healthy volunteers and 3 patients were acquired. A bounding box was defined to include pancreas and surrounding normal organs including the liver, duodenum and stomach. The first slice of the MRI was used for dictionary learning based on mean-shift clustering and K-SVD sparse representation. Subsequent images were iteratively reconstructed until the error is less than a preset threshold. The preliminarily segmentation was subject to the constraints of manifold clustering. The segmentation results were compared with the mean shift merging (MSM), level set (LS) and manual segmentation methods. Results: DLMC resulted in consistently higher accuracy and robustness than comparing methods. Using manual contours as the ground truth, the mean Dices indices for all subjects are 0.54, 0.56 and 0.67 for MSM, LS and DLMC, respectively based on the HASTE image. The mean Dices indices are 0.70, 0.77 and 0.79 for the three methods based on VIBE images. DLMC is clearly more robust on the patients with the diseased pancreas while LS and MSM tend to over-segment the pancreas. DLMC also achieved higher sensitivity (0.80) and specificity (0.99) combining both imaging techniques. LS achieved equivalent sensitivity on VIBE images but was more computationally inefficient. Conclusion: We showed that pancreas and surrounding normal organs can be reliably segmented based on fast MRI using DLMC. This method will facilitate both planning volume definition and imaging guidance during treatment.

  19. The role of healthcare IT: becoming a learning organization.

    PubMed

    Glaser, John; Overhage, J Marc

    2013-02-01

    IT advances that will support healthcare providers' transition toward becoming "learning organizations" include the following: The increase in big data" (patient data captured in EHRs, coupled with data from imaging, molecular medicine, patient-provided data, and insurance claims). Real-time analytics and novel decision aids. Ease-of-use advancements and effective data capture methods. Efforts to increase facile interoperability. Extended reach of EHRs in gathering data from other processes and sources PMID:23413670

  20. Machine learning and synthetic aperture refocusing approach for more accurate masking of fish bodies in 3D PIV data

    NASA Astrophysics Data System (ADS)

    Ford, Logan; Bajpayee, Abhishek; Techet, Alexandra

    2015-11-01

    3D particle image velocimetry (PIV) is becoming a popular technique to study biological flows. PIV images that contain fish or other animals around which flow is being studied, need to be appropriately masked in order to remove the animal body from the 3D reconstructed volumes prior to calculating particle displacement vectors. Presented here is a machine learning and synthetic aperture (SA) refocusing based approach for more accurate masking of fish from reconstructed intensity fields for 3D PIV purposes. Using prior knowledge about the 3D shape and appearance of the fish along with SA refocused images at arbitrarily oriented focal planes, the location and orientation of a fish in a reconstructed volume can be accurately determined. Once the location and orientation of a fish in a volume is determined, it can be masked out.

  1. Presence Pedagogy: Teaching and Learning in a 3D Virtual Immersive World

    ERIC Educational Resources Information Center

    Bronack, Stephen; Sanders, Robert; Cheney, Amelia; Riedl, Richard; Tashner, John; Matzen, Nita

    2008-01-01

    As the use of 3D immersive virtual worlds in higher education expands, it is important to examine which pedagogical approaches are most likely to bring about success. AET Zone, a 3D immersive virtual world in use for more than seven years, is one embodiment of pedagogical innovation that capitalizes on what virtual worlds have to offer to social…

  2. The Virtual Radiopharmacy Laboratory: A 3-D Simulation for Distance Learning

    ERIC Educational Resources Information Center

    Alexiou, Antonios; Bouras, Christos; Giannaka, Eri; Kapoulas, Vaggelis; Nani, Maria; Tsiatsos, Thrasivoulos

    2004-01-01

    This article presents Virtual Radiopharmacy Laboratory (VR LAB), a virtual laboratory accessible through the Internet. VR LAB is designed and implemented in the framework of the VirRAD European project. This laboratory represents a 3D simulation of a radio-pharmacy laboratory, where learners, represented by 3D avatars, can experiment on…

  3. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  4. Improving Learning Results and Reducing Cognitive Load through 3D Courseware on Color Management and Inspection Instruction

    ERIC Educational Resources Information Center

    Hsiung, Liang-Yuan; Lai, Mu-Hui

    2013-01-01

    This study intends to solve the problem that schools in Taiwan lack of the equipment for color management and inspection instruction and seek ways to improve learning results and reduce cognitive load. The researchers developed 3D courseware for color management and inspection through a research and development process. To further scrutinize the…

  5. Effectiveness of Applying 2D Static Depictions and 3D Animations to Orthographic Views Learning in Graphical Course

    ERIC Educational Resources Information Center

    Wu, Chih-Fu; Chiang, Ming-Chin

    2013-01-01

    This study provides experiment results as an educational reference for instructors to help student obtain a better way to learn orthographic views in graphical course. A visual experiment was held to explore the comprehensive differences between 2D static and 3D animation object features; the goal was to reduce the possible misunderstanding…

  6. A 3-D Virtual Reality Model of the Sun and the Moon for E-Learning at Elementary Schools

    ERIC Educational Resources Information Center

    Sun, Koun-Tem; Lin, Ching-Ling; Wang, Sheng-Min

    2010-01-01

    The relative positions of the sun, moon, and earth, their movements, and their relationships are abstract and difficult to understand astronomical concepts in elementary school science. This study proposes a three-dimensional (3-D) virtual reality (VR) model named the "Sun and Moon System." This e-learning resource was designed by combining…

  7. Using a Quest in a 3D Virtual Environment for Student Interaction and Vocabulary Acquisition in Foreign Language Learning

    ERIC Educational Resources Information Center

    Kastoudi, Denise

    2011-01-01

    The gaming and interactional nature of the virtual environment of Second Life offers opportunities for language learning beyond the traditional pedagogy. This study case examined the potential of 3D virtual quest games to enhance vocabulary acquisition through interaction, negotiation of meaning and noticing. Four adult students of English at…

  8. Healthcare

    ERIC Educational Resources Information Center

    Carnevale, Anthony P.; Smith, Nicole; Gulish, Artem; Beach, Bennett H.

    2012-01-01

    This report, provides detailed analyses and projections of occupations in healthcare fields, and wages earned. In addition, the important skills and work values associated with workers in those fields of healthcare are discussed. Finally, the authors analyze the implications of research findings for the racial, ethnic, and class diversity of the…

  9. An experiential learning simulation exercise for healthcare management students.

    PubMed

    Rubino, L; Freshman, B

    2001-01-01

    Preparing competent administrators to work in today's dynamic healthcare environment is a challenging task for contemporary educators. Experiential exercises in the classroom can contribute significantly to student training. This paper reviews the benefits to students of actively participating in simulations and role-plays, as well as the challenges in running such exercises. A simulation designed specifically for healthcare administration students is presented with details and implementation instructions. The intent of this article is to impart to other educators the learning experiences in running this particular simulation to inspire dialogue and program improvement. Readers are encouraged to create simulation exercises with optimum relevance for their students. Information to obtain e-mail versions of the simulation is also provided. PMID:11586655

  10. A new machine learning classifier for high dimensional healthcare data.

    PubMed

    Padman, Rema; Bai, Xue; Airoldi, Edoardo M

    2007-01-01

    Data sets with many discrete variables and relatively few cases arise in health care, commerce, information security, and many other domains. Learning effective and efficient prediction models from such data sets is a challenging task. In this paper, we propose a new approach that combines Metaheuristic search and Bayesian Networks to learn a graphical Markov Blanket-based classifier from data. The Tabu Search enhanced Markov Blanket (TS/MB) procedure is based on the use of restricted neighborhoods in a general Bayesian Network constrained by the Markov condition, called Markov Blanket Neighborhoods. Computational results from two real world healthcare data sets indicate that the TS/MB procedure converges fast and is able to find a parsimonious model with substantially fewer predictor variables than in the full data set. Furthermore, it has comparable or better prediction performance when compared against several machine learning methods, and provides insight into possible causal relations among the variables. PMID:17911800

  11. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  12. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  13. Experience, Trajectories, and Reifications: An Emerging Framework of Practice-Based Learning in Healthcare Workplaces

    ERIC Educational Resources Information Center

    Teunissen, Pim W.

    2015-01-01

    Learning by working is omnipresent in healthcare education. It enables people to learn how to perform, think, and interact in ways that work for their specific context. In this paper, I review my approach to studying this process. It centers on the question why healthcare professionals do what they do and how their actions and learning are…

  14. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    ERIC Educational Resources Information Center

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  15. Socialisation for Learning at a Distance in a 3-D Multi-User Virtual Environment

    ERIC Educational Resources Information Center

    Edirisingha, Palitha; Nie, Ming; Pluciennik, Mark; Young, Ruth

    2009-01-01

    This paper reports findings of a pilot study that examined the pedagogical potential of "Second Life" (SL), a popular three-dimensional multi-user virtual environment (3-D MUVE) developed by the Linden Lab. The study is part of a 1-year research and development project titled "Modelling of Secondlife Environments" (http://www.le.ac.uk/moose)…

  16. Effects of Training Method and Gender on Learning 2D/3D Geometry

    ERIC Educational Resources Information Center

    Khairulanuar, Samsudin; Nazre, Abd Rashid; Jamilah, H.; Sairabanu, Omar Khan; Norasikin, Fabil

    2010-01-01

    This article reports the findings of an experimental study involving 36 primary school students (16 girls, 20 boys, Mean age = 9.5 years, age range: 8-10 years) in geometrical understanding of 2D and 3D objects. Students were assigned into two experimental groups and one control group based on a stratified random sampling procedure. The first…

  17. From Multi-User Virtual Environment to 3D Virtual Learning Environment

    ERIC Educational Resources Information Center

    Livingstone, Daniel; Kemp, Jeremy; Edgar, Edmund

    2008-01-01

    While digital virtual worlds have been used in education for a number of years, advances in the capabilities and spread of technology have fed a recent boom in interest in massively multi-user 3D virtual worlds for entertainment, and this in turn has led to a surge of interest in their educational applications. In this paper we briefly review the…

  18. Policy Capacity in the Learning Healthcare System Comment on "Health Reform Requires Policy Capacity".

    PubMed

    Gardner, William

    2015-01-01

    Pierre-Gerlier Forest and his colleagues make a strong argument for the need to expand policy capacity among healthcare actors. In this commentary, I develop an additional argument in support of Forest et al view. Forest et al rightly point to the need to have embedded policy experts to successfully translate healthcare reform policy into healthcare change. Translation of externally generated innovation policy into local solutions is only one source of healthcare system change. We also need to build learning healthcare systems that can discover new health solutions at the frontline of care. Enhanced policy capacity staffing in those organizations will be key to building continuously learning health systems. PMID:26673470

  19. Mobile learning for HIV/AIDS healthcare worker training in resource-limited settings

    PubMed Central

    2010-01-01

    Background We present an innovative approach to healthcare worker (HCW) training using mobile phones as a personal learning environment. Twenty physicians used individual Smartphones (Nokia N95 and iPhone), each equipped with a portable solar charger. Doctors worked in urban and peri-urban HIV/AIDS clinics in Peru, where almost 70% of the nation's HIV patients in need are on treatment. A set of 3D learning scenarios simulating interactive clinical cases was developed and adapted to the Smartphones for a continuing medical education program lasting 3 months. A mobile educational platform supporting learning events tracked participant learning progress. A discussion forum accessible via mobile connected participants to a group of HIV specialists available for back-up of the medical information. Learning outcomes were verified through mobile quizzes using multiple choice questions at the end of each module. Methods In December 2009, a mid-term evaluation was conducted, targeting both technical feasibility and user satisfaction. It also highlighted user perception of the program and the technical challenges encountered using mobile devices for lifelong learning. Results With a response rate of 90% (18/20 questionnaires returned), the overall satisfaction of using mobile tools was generally greater for the iPhone. Access to Skype and Facebook, screen/keyboard size, and image quality were cited as more troublesome for the Nokia N95 compared to the iPhone. Conclusions Training, supervision and clinical mentoring of health workers are the cornerstone of the scaling up process of HIV/AIDS care in resource-limited settings (RLSs). Educational modules on mobile phones can give flexibility to HCWs for accessing learning content anywhere. However lack of softwares interoperability and the high investment cost for the Smartphones' purchase could represent a limitation to the wide spread use of such kind mLearning programs in RLSs. PMID:20825677

  20. Assessing the Applicability of 3D Holographic Technology as an Enhanced Technology for Distance Learning

    ERIC Educational Resources Information Center

    Kalansooriya, Pradeep; Marasinghe, Ashu; Bandara, K. M. D. N.

    2015-01-01

    Distance learning has provided an excellent platform for students in geographically remote locations while enabling them to learn at their own pace and convenience. A number of technologies are currently being utilized to conceptualize, design, enhance and foster distance learning. Teleconferences, electronic field trips, podcasts, webinars, video…

  1. The Use of 3D Virtual Learning Environments in Training Foreign Language Pre-Service Teachers

    ERIC Educational Resources Information Center

    Can, Tuncer; Simsek, Irfan

    2015-01-01

    The recent developments in computer and Internet technologies and in three dimensional modelling necessitates the new approaches and methods in the education field and brings new opportunities to the higher education. The Internet and virtual learning environments have changed the learning opportunities by diversifying the learning options not…

  2. Learning Dictionaries of Sparse Codes of 3D Movements of Body Joints for Real-Time Human Activity Understanding

    PubMed Central

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850

  3. Learning dictionaries of sparse codes of 3D movements of body joints for real-time human activity understanding.

    PubMed

    Qi, Jin; Yang, Zhiyong

    2014-01-01

    Real-time human activity recognition is essential for human-robot interactions for assisted healthy independent living. Most previous work in this area is performed on traditional two-dimensional (2D) videos and both global and local methods have been used. Since 2D videos are sensitive to changes of lighting condition, view angle, and scale, researchers begun to explore applications of 3D information in human activity understanding in recently years. Unfortunately, features that work well on 2D videos usually don't perform well on 3D videos and there is no consensus on what 3D features should be used. Here we propose a model of human activity recognition based on 3D movements of body joints. Our method has three steps, learning dictionaries of sparse codes of 3D movements of joints, sparse coding, and classification. In the first step, space-time volumes of 3D movements of body joints are obtained via dense sampling and independent component analysis is then performed to construct a dictionary of sparse codes for each activity. In the second step, the space-time volumes are projected to the dictionaries and a set of sparse histograms of the projection coefficients are constructed as feature representations of the activities. Finally, the sparse histograms are used as inputs to a support vector machine to recognize human activities. We tested this model on three databases of human activities and found that it outperforms the state-of-the-art algorithms. Thus, this model can be used for real-time human activity recognition in many applications. PMID:25473850

  4. An investigation of factors influencing healthcare workers' use and acceptance of e-learning in post-school healthcare education.

    PubMed

    Mikalsen, Marius; Walderhaug, Ståle

    2009-01-01

    The objective of the study presented here was to perform an empirical investigation on factors affecting healthcare workers acceptance and utilisation of e-learning in post-school healthcare education. E-learning benefits are realised when key features of e-learning are not only applied, but deemed useful, compatible with the learning process and supportive in order to reach the overall goals of the learning process. We conducted a survey of 14 state-enrolled nurses and skilled-workers within the field of healthcare in Norway. The results show that perceived compatibility and subjective norm explain system usage of the e-learning tool amongst the students. We found that the fact that the students considered the e-learning to be compatible with the course in question had a positive effect on e-learning tool usage. We also found support for factors such as facilitating conditions and ease of use leads to the e-learning tool being considered useful. PMID:19745441

  5. Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning

    NASA Astrophysics Data System (ADS)

    Serna, Andrés; Marcotegui, Beatriz

    2014-07-01

    We propose an automatic and robust approach to detect, segment and classify urban objects from 3D point clouds. Processing is carried out using elevation images and the result is reprojected onto the 3D point cloud. First, the ground is segmented and objects are detected as discontinuities on the ground. Then, connected objects are segmented using a watershed approach. Finally, objects are classified using SVM with geometrical and contextual features. Our methodology is evaluated on databases from Ohio (USA) and Paris (France). In the former, our method detects 98% of the objects, 78% of them are correctly segmented and 82% of the well-segmented objects are correctly classified. In the latter, our method leads to an improvement of about 15% on the classification step with respect to previous works. Quantitative results prove that our method not only provides a good performance but is also faster than other works reported in the literature.

  6. Readiness for interprofessional learning among healthcare professional students

    PubMed Central

    Fahs, Deborah B.; Kayingo, Gerald; Wong, Risa; Jeon, Sangchoon; Honan, Linda

    2016-01-01

    Objectives The purpose of this study was to investigate attitudes toward interprofessional learning among first year medical, nursing, and physician associate students at an American university at the start of their training. Methods First year medical (n=101), nursing (n=81), and physician associate (n=35) students were invited to complete an anonymous online survey which included items related to demographic information and the Readiness for Interprofessional Learning Scale. Scores were compared by the general linear model and Duncan’s multiple range test while controlling for demographic differences.  Results All three groups scored in the high range, indicating readiness for shared learning. Female students, those with advanced degrees, and those with healthcare experience prior to enrolment in health professional school had significantly higher scores than their counterparts. After controlling for differences in demographic factors, nursing students scored significantly higher than physician associate and medical students (F (2,162) = 6.22, 0.0025).  Conclusions Health professions students demonstrated readiness for interprofessional learning early in their academic programs, however important differences in baseline readiness emerged. These findings suggest that educators consider baseline attitudes of students when designing interprofessional education curricula, and use caution when extrapolating data from other geographies or cultures. PMID:27171559

  7. "The Evolution of e-Learning in the Context of 3D Virtual Worlds"

    ERIC Educational Resources Information Center

    Kotsilieris, Theodore; Dimopoulou, Nikoletta

    2013-01-01

    Information and Communication Technologies (ICT) offer new approaches towards knowledge acquisition and collaboration through distance learning processes. Web-based Learning Management Systems (LMS) have transformed the way that education is conducted nowadays. At the same time, the adoption of Virtual Worlds in the educational process is of great…

  8. Optimizing learning in healthcare: how Island Health is evolving to learn at the speed of change.

    PubMed

    Gottfredson, Conrad; Stroud, Carol; Jackson, Mary; Stevenson, R Lynn; Archer, Jana

    2014-01-01

    Healthcare organizations are challenged with constrained resources and increasing service demands by an aging population with complex care needs. Exponential growth in competency requirements also challenges staff's ability to provide quality patient care. How can a healthcare organization support its staff to learn "at or above the speed of change" while continuing to provide the quality patient care? Island Health is addressing this challenge by transforming its traditional education model into an innovative, evidence-based learning and performance support approach. Implementation of the methodology is yielding several lessons learned, both for the internal Learning and Performance Support team, and for what it takes to bring a new way of doing business into an organization. A key result is that this approach is enabling the organization to be more responsive in helping staff gain and maintain competencies. PMID:25906465

  9. Teaching organization theory for healthcare management: three applied learning methods.

    PubMed

    Olden, Peter C

    2006-01-01

    Organization theory (OT) provides a way of seeing, describing, analyzing, understanding, and improving organizations based on patterns of organizational design and behavior (Daft 2004). It gives managers models, principles, and methods with which to diagnose and fix organization structure, design, and process problems. Health care organizations (HCOs) face serious problems such as fatal medical errors, harmful treatment delays, misuse of scarce nurses, costly inefficiency, and service failures. Some of health care managers' most critical work involves designing and structuring their organizations so their missions, visions, and goals can be achieved-and in some cases so their organizations can survive. Thus, it is imperative that graduate healthcare management programs develop effective approaches for teaching OT to students who will manage HCOs. Guided by principles of education, three applied teaching/learning activities/assignments were created to teach OT in a graduate healthcare management program. These educationalmethods develop students' competency with OT applied to HCOs. The teaching techniques in this article may be useful to faculty teaching graduate courses in organization theory and related subjects such as leadership, quality, and operation management. PMID:16566496

  10. Complex scenes and situations visualization in hierarchical learning algorithm with dynamic 3D NeoAxis engine

    NASA Astrophysics Data System (ADS)

    Graham, James; Ternovskiy, Igor V.

    2013-06-01

    We applied a two stage unsupervised hierarchical learning system to model complex dynamic surveillance and cyber space monitoring systems using a non-commercial version of the NeoAxis visualization software. The hierarchical scene learning and recognition approach is based on hierarchical expectation maximization, and was linked to a 3D graphics engine for validation of learning and classification results and understanding the human - autonomous system relationship. Scene recognition is performed by taking synthetically generated data and feeding it to a dynamic logic algorithm. The algorithm performs hierarchical recognition of the scene by first examining the features of the objects to determine which objects are present, and then determines the scene based on the objects present. This paper presents a framework within which low level data linked to higher-level visualization can provide support to a human operator and be evaluated in a detailed and systematic way.

  11. [Managing digital medical imaging projects in healthcare services: lessons learned].

    PubMed

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. PMID:22944485

  12. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): Architecture

    PubMed Central

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative ‘apps’ to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  13. Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS): architecture.

    PubMed

    Mandl, Kenneth D; Kohane, Isaac S; McFadden, Douglas; Weber, Griffin M; Natter, Marc; Mandel, Joshua; Schneeweiss, Sebastian; Weiler, Sarah; Klann, Jeffrey G; Bickel, Jonathan; Adams, William G; Ge, Yaorong; Zhou, Xiaobo; Perkins, James; Marsolo, Keith; Bernstam, Elmer; Showalter, John; Quarshie, Alexander; Ofili, Elizabeth; Hripcsak, George; Murphy, Shawn N

    2014-01-01

    We describe the architecture of the Patient Centered Outcomes Research Institute (PCORI) funded Scalable Collaborative Infrastructure for a Learning Healthcare System (SCILHS, http://www.SCILHS.org) clinical data research network, which leverages the $48 billion dollar federal investment in health information technology (IT) to enable a queryable semantic data model across 10 health systems covering more than 8 million patients, plugging universally into the point of care, generating evidence and discovery, and thereby enabling clinician and patient participation in research during the patient encounter. Central to the success of SCILHS is development of innovative 'apps' to improve PCOR research methods and capacitate point of care functions such as consent, enrollment, randomization, and outreach for patient-reported outcomes. SCILHS adapts and extends an existing national research network formed on an advanced IT infrastructure built with open source, free, modular components. PMID:24821734

  14. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  15. Learning Benefits of Using 2D versus 3D Maps: Evidence from a Randomized Controlled Experiment

    ERIC Educational Resources Information Center

    Niedomysl, Thomas; Ellder, Erik; Larsson, Anders; Thelin, Mikael; Jansund, Bodil

    2013-01-01

    The traditional important role of maps used for educational purposes has gained further potential with recent advances in GIS technology. But beyond specific courses in cartography this potential seems little realized in geography teaching. This article investigates the extent to which any learning benefits may be derived from the use of such…

  16. The Development of a Virtual 3D Model of the Renal Corpuscle from Serial Histological Sections for E-Learning Environments

    ERIC Educational Resources Information Center

    Roth, Jeremy A.; Wilson, Timothy D.; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated…

  17. An Examination of the Effects of Collaborative Scientific Visualization via Model-Based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning within an Immersive 3D World

    ERIC Educational Resources Information Center

    Soleimani, Ali

    2013-01-01

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits…

  18. Multiresolutional schemata for unsupervised learning of autonomous robots for 3D space operation

    NASA Technical Reports Server (NTRS)

    Lacaze, Alberto; Meystel, Michael; Meystel, Alex

    1994-01-01

    This paper describes a novel approach to the development of a learning control system for autonomous space robot (ASR) which presents the ASR as a 'baby' -- that is, a system with no a priori knowledge of the world in which it operates, but with behavior acquisition techniques that allows it to build this knowledge from the experiences of actions within a particular environment (we will call it an Astro-baby). The learning techniques are rooted in the recursive algorithm for inductive generation of nested schemata molded from processes of early cognitive development in humans. The algorithm extracts data from the environment and by means of correlation and abduction, it creates schemata that are used for control. This system is robust enough to deal with a constantly changing environment because such changes provoke the creation of new schemata by generalizing from experiences, while still maintaining minimal computational complexity, thanks to the system's multiresolutional nature.

  19. E-service learning: A pedagogic innovation for healthcare management education.

    PubMed

    Malvey, Donna M; Hamby, Eileen F; Fottler, Myron D

    2006-01-01

    This paper proposes an innovation in service learning that we identify as e-service learning. By adding the "e" to service learning, we create a service learning model that is dynamic, mediated by technology, and delivered online. This paper begins by examining service learning, which is a distinct learning concept. Service learning furnishes students with opportunities for applied learning through participation in projects and activities in community organizations. The authors then define and conceptualize e-service learning, including the anticipated outcomes of implementation such as enhanced access, quality, and cost effectiveness of healthcare management education. Because e-service learning is mediated by technology, we identify state of the art technologies that support e-service learning activities. In addition, possible e-service learning projects and activities that may be included in healthcare management courses such as finance, human resources, quality, service management/marketing and strategy are identified. Finally, opportunities for future research are suggested. PMID:16700443

  20. An approach to enrich online medical Problem-Based Learning with tacit healthcare knowledge.

    PubMed

    Cheah, Yu-N; Rashid, Faridah Abdul; Abidi, Syed Sibte Raza

    2003-01-01

    Existing Problem-Based Learning (PBL) problems, though suitable in their own right for teaching purposes, are limited in their potential to evolve by themselves and to create new knowledge. Presently, they are based on textbook examples of past cases and/or cases that have been transcribed by a clinician. In this paper, we present (a) a tacit healthcare knowledge representation formalism called Healthcare Scenarios, (b) the relevance of healthcare scenarios in PBL in healthcare and medicine, (c) a novel PBL-Scenario-based tacit knowledge explication strategy and (d) an online PBL Problem Composer and Presenter (PBL-Online) to facilitate the acquisition and utilisation of expert-quality tacit healthcare knowledge to enrich online PBL. We employ a confluence of healthcare knowledge management tools and Internet technologies to bring tacit healthcare knowledge-enriched PBL to a global and yet more accessible level. PMID:14664077

  1. 3D scene's object detection and recognition using depth layers and SIFT-based machine learning

    NASA Astrophysics Data System (ADS)

    Kounalakis, T.; Triantafyllidis, G. A.

    2011-09-01

    This paper presents a novel system that is fusing efficient and state-of-the-art techniques of stereo vision and machine learning, aiming at object detection and recognition. To this goal, the system initially creates depth maps by employing the Graph-Cut technique. Then, the depth information is used for object detection by separating the objects from the whole scene. Next, the Scale-Invariant Feature Transform (SIFT) is used, providing the system with unique object's feature key-points, which are employed in training an Artificial Neural Network (ANN). The system is then able to classify and recognize the nature of these objects, creating knowledge from the real world. [Figure not available: see fulltext.

  2. Lessons learned in detailed clinical modeling at Intermountain Healthcare

    PubMed Central

    Oniki, Thomas A; Coyle, Joseph F; Parker, Craig G; Huff, Stanley M

    2014-01-01

    Background and objective Intermountain Healthcare has a long history of using coded terminology and detailed clinical models (DCMs) to govern storage of clinical data to facilitate decision support and semantic interoperability. The latest iteration of DCMs at Intermountain is called the clinical element model (CEM). We describe the lessons learned from our CEM efforts with regard to subjective decisions a modeler frequently needs to make in creating a CEM. We present insights and guidelines, but also describe situations in which use cases conflict with the guidelines. We propose strategies that can help reconcile the conflicts. The hope is that these lessons will be helpful to others who are developing and maintaining DCMs in order to promote sharing and interoperability. Methods We have used the Clinical Element Modeling Language (CEML) to author approximately 5000 CEMs. Results Based on our experience, we have formulated guidelines to lead our modelers through the subjective decisions they need to make when authoring models. Reported here are guidelines regarding precoordination/postcoordination, dividing content between the model and the terminology, modeling logical attributes, and creating iso-semantic models. We place our lessons in context, exploring the potential benefits of an implementation layer, an iso-semantic modeling framework, and ontologic technologies. Conclusions We assert that detailed clinical models can advance interoperability and sharing, and that our guidelines, an implementation layer, and an iso-semantic framework will support our progress toward that goal. PMID:24993546

  3. Volume learning algorithm artificial neural networks for 3D QSAR studies.

    PubMed

    Tetko, I V; Kovalishyn, V V; Livingstone, D J

    2001-07-19

    The current study introduces a new method, the volume learning algorithm (VLA), for the investigation of three-dimensional quantitative structure-activity relationships (QSAR) of chemical compounds. This method incorporates the advantages of comparative molecular field analysis (CoMFA) and artificial neural network approaches. VLA is a combination of supervised and unsupervised neural networks applied to solve the same problem. The supervised algorithm is a feed-forward neural network trained with a back-propagation algorithm while the unsupervised network is a self-organizing map of Kohonen. The use of both of these algorithms makes it possible to cluster the input CoMFA field variables and to use only a small number of the most relevant parameters to correlate spatial properties of the molecules with their activity. The statistical coefficients calculated by the proposed algorithm for cannabimimetic aminoalkyl indoles were comparable to, or improved, in comparison to the original study using the partial least squares algorithm. The results of the algorithm can be visualized and easily interpreted. Thus, VLA is a new convenient tool for three-dimensional QSAR studies. PMID:11448223

  4. Issues for Deployment of Mobile Learning by Nurses in Australian Healthcare Settings.

    PubMed

    Mather, Carey; Cummings, Elizabeth

    2016-01-01

    Undergraduate nursing curricula are being redesigned to include strategies for deployment of mobile learning as a legitimate nursing function. A recent online survey exploring the use of mobile learning by undergraduate student nurses revealed barriers, challenges, risks, and benefits to using mobile learning at the workplace. Inability to access mobile learning at both individual and organisational levels impacted on student learning and teaching opportunities. Students also indicated that educational preparation for ensuring appropriate use of mobile learning is necessary to guide learning and teaching in situ at point of care. This highlights the need for the development of policy to guide best practice that will enable this new pedagogy to be fully utilised for learning and teaching in healthcare settings. Until governance of mobile learning in educational and healthcare settings in Australia is addressed, harnessing the indubitable benefit of mobile learning and teaching will be unachievable. PMID:27332206

  5. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  6. Introducing an Avatar Acceptance Model: Student Intention to Use 3D Immersive Learning Tools in an Online Learning Classroom

    ERIC Educational Resources Information Center

    Kemp, Jeremy William

    2011-01-01

    This quantitative survey study examines the willingness of online students to adopt an immersive virtual environment as a classroom tool and compares this with their feelings about more traditional learning modes including our ANGEL learning management system and the Elluminate live Web conferencing tool. I surveyed 1,108 graduate students in…

  7. Collaborative 3D Learning Games for Future Learning: Teachers' Instructional Practices to Enhance Shared Knowledge Construction among Students

    ERIC Educational Resources Information Center

    Hämäläinen, Raija; Oksanen, Kimmo

    2014-01-01

    Collaborative games will enable new kinds of possibilities for learning. In the future, the goal of game-based learning should be to introduce new ideas and deepen learners' in-depth understanding. However, studies have shown that shared high-level knowledge construction is a challenging process. Moreover, thus far, few empirical studies have…

  8. Healthcare in Kenya: learning from a Third World country.

    PubMed

    Hoy, R

    Kenya's healthcare problems are exacerbated by illiteracy, widespread communities, poor sanitation in some areas, and tribal customs and traditions. This article gives an overview of Kenya's healthcare system that was gained by the author during a study tour to Kenya in March 1991. PMID:1290901

  9. Stem Cell Bioprinting: Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells (Adv. Healthcare Mater. 12/2016).

    PubMed

    Gu, Qi; Tomaskovic-Crook, Eva; Lozano, Rodrigo; Chen, Yu; Kapsa, Robert M; Zhou, Qi; Wallace, Gordon G; Crook, Jeremy M

    2016-06-01

    On page 1429 G. G. Wallace, J. M. Crook, and co-workers report the first example of fabricating neural tissue by 3D bioprinting human neural stem cells. A novel polysaccharide based bioink preserves stem cell viability and function within the printed construct, enabling self-renewal and differentiation to neurons and supporting neuroglia. Neurons are predominantly GABAergic, establish networks, are spontaneously active, and show a bicuculline induced increased calcium response. PMID:27333401

  10. Cellular Microcultures: Programming Mechanical and Physicochemical Properties of 3D Hydrogel Cellular Microcultures via Direct Ink Writing (Adv. Healthcare Mater. 9/2016).

    PubMed

    McCracken, Joselle M; Badea, Adina; Kandel, Mikhail E; Gladman, A Sydney; Wetzel, David J; Popescu, Gabriel; Lewis, Jennifer A; Nuzzo, Ralph G

    2016-05-01

    R. Nuzzo and co-workers show on page 1025 how compositional differences in hydrogels are used to tune their cellular compliance by controlling their polymer mesh properties and subsequent uptake of the protein poly-l-lysine (green spheres in circled inset). The cover image shows pyramid micro-scaffolds prepared using direct ink writing (DIW) that differentially direct fibroblast and preosteoblast growth in 3D, depending on cell motility and surface treatment. PMID:27166616

  11. 3D Simulation as a Learning Environment for Acquiring the Skill of Self-Management: An Experience Involving Spanish University Students of Education

    ERIC Educational Resources Information Center

    Cela-Ranilla, Jose María; Esteve-Gonzalez, Vanessa; Esteve-Mon, Francesc; Gisbert-Cervera, Merce

    2014-01-01

    In this study we analyze how 57 Spanish university students of Education developed a learning process in a virtual world by conducting activities that involved the skill of self-management. The learning experience comprised a serious game designed in a 3D simulation environment. Descriptive statistics and non-parametric tests were used in the…

  12. A Web 2.0/Web3D Hybrid Platform for Engaging Students in e-Learning Environments

    ERIC Educational Resources Information Center

    de Byl, Penny; Taylor, Janet

    2007-01-01

    This paper explores the Web 2.0 ethos with respect to the application of pedagogy within 3D online virtual environments. 3D worlds can create a synthetic experience capturing the essence of "being" in a particular world or context. The AliveX3D platform adopts the Web 2.0 ethos and applies it to online 3D virtual environment forming a Web…

  13. Examining Informal Learning Using Mobile Devices in the Healthcare Workplace

    ERIC Educational Resources Information Center

    Fahlman, Dorothy

    2013-01-01

    The study of workplace learning and informal learning are not new to adult education and pedagogy. However, the use of mobile devices as learning tools for informal learning in the workplace is an understudied area. Using theories on informal learning and constructivism as a framework, this paper explores informal learning of registered nurses…

  14. Healthcare for Men and Women with Learning Disabilities: Understanding Inequalities in Access

    ERIC Educational Resources Information Center

    Redley, Marcus; Banks, Carys; Foody, Karen; Holland, Anthony

    2012-01-01

    Healthcare for men and women with learning disabilities (known internationally as intellectual disabilities) has risen up the political agenda in the United Kingdom, propelled by a report from the charity Mencap. This report has resulted in renewed efforts, set out in "Valuing People Now", to ensure that people with learning disabilities receive…

  15. Team Learning to Narrow the Gap between Healthcare Knowledge and Practice

    ERIC Educational Resources Information Center

    Anand, Tejwansh S.

    2014-01-01

    This study explored team-based learning in teams of healthcare professionals working on making meaning of evidence-based clinical guidelines in their field to apply them within their practice setting. The research based team learning models posited by Kasl, Marsick, and Dechant (1997) and Edmondson, Dillon, and Roloff (2007) were used as the…

  16. Experience, trajectories, and reifications: an emerging framework of practice-based learning in healthcare workplaces.

    PubMed

    Teunissen, Pim W

    2015-10-01

    Learning by working is omnipresent in healthcare education. It enables people to learn how to perform, think, and interact in ways that work for their specific context. In this paper, I review my approach to studying this process. It centers on the question why healthcare professionals do what they do and how their actions and learning are intertwined. The aim of this paper is to illustrate what I have learned from the research I have been involved in, in such a way that it enables other researchers, educators, and clinicians to understand and study practice-based learning in healthcare workplaces. Therefore, I build on a programmatic line of research to present a framework of practice-based learning consisting of three inextricably linked levels of analysis. The first level focuses on how situations lead to personal experiences, the second level looks at strings of experiences that lead to multiple trajectories, and the third level deals with reifications arising from recurrent activities. This framework, and its interrelations and inherent tensions, helps to understand why healthcare workplaces can be both a powerful learning environment and a frustratingly hard place to change. PMID:25269765

  17. The development of a virtual 3D model of the renal corpuscle from serial histological sections for E-learning environments.

    PubMed

    Roth, Jeremy A; Wilson, Timothy D; Sandig, Martin

    2015-01-01

    Histology is a core subject in the anatomical sciences where learners are challenged to interpret two-dimensional (2D) information (gained from histological sections) to extrapolate and understand the three-dimensional (3D) morphology of cells, tissues, and organs. In gross anatomical education 3D models and learning tools have been associated with improved learning outcomes, but similar tools have not been created for histology education to visualize complex cellular structure-function relationships. This study outlines steps in creating a virtual 3D model of the renal corpuscle from serial, semi-thin, histological sections obtained from epoxy resin-embedded kidney tissue. The virtual renal corpuscle model was generated by digital segmentation to identify: Bowman's capsule, nuclei of epithelial cells in the parietal capsule, afferent arteriole, efferent arteriole, proximal convoluted tubule, distal convoluted tubule, glomerular capillaries, podocyte nuclei, nuclei of extraglomerular mesangial cells, nuclei of epithelial cells of the macula densa in the distal convoluted tubule. In addition to the imported images of the original sections the software generates, and allows for visualization of, images of virtual sections generated in any desired orientation, thus serving as a "virtual microtome". These sections can be viewed separately or with the 3D model in transparency. This approach allows for the development of interactive e-learning tools designed to enhance histology education of microscopic structures with complex cellular interrelationships. Future studies will focus on testing the efficacy of interactive virtual 3D models for histology education. PMID:25808044

  18. Assessment of 3D Viewers for the Display of Interactive Documents in the Learning of Graphic Engineering

    ERIC Educational Resources Information Center

    Barbero, Basilio Ramos; Pedrosa, Carlos Melgosa; Mate, Esteban Garcia

    2012-01-01

    The purpose of this study is to determine which 3D viewers should be used for the display of interactive graphic engineering documents, so that the visualization and manipulation of 3D models provide useful support to students of industrial engineering (mechanical, organizational, electronic engineering, etc). The technical features of 26 3D…

  19. Effects of Type of Exploratory Strategy and Prior Knowledge on Middle School Students' Learning of Chemical Formulas from a 3D Role-Playing Game

    ERIC Educational Resources Information Center

    Chen, Ming-Puu; Wong, Yu-Ting; Wang, Li-Chun

    2014-01-01

    The purpose of this study was to examine the effects of the type of exploratory strategy and level of prior knowledge on middle school students' performance and motivation in learning chemical formulas via a 3D role-playing game (RPG). Two types of exploratory strategies-RPG exploratory with worked-example and RPG exploratory without…

  20. An Assessment of Students' Perceptions of Learning Benefits Stemming from the Design and Instructional Use of a Web3D Atlas

    ERIC Educational Resources Information Center

    Salajan, Florin D.; Mount, Greg J.; Prakki, Anuradha

    2015-01-01

    This article has a dual purpose: it describes the development of First Year Dental Anatomy (FYDA), a web-based 3D interactive application used in the dental curriculum at a major Canadian university, and it reports on the results of a research study conducted to assess the perception of learning benefits students experienced through the use of…

  1. What healthcare leaders can learn from research on dark networks.

    PubMed

    Milward, H Brinton

    2014-01-01

    For 12 years, a research program has been conducted on "dark networks," which are both illegal and covert. One of the major findings is that the structure of the network is conditioned by an existential dilemma-the need to act or exist. The more you do of one, the less you can do of the other. This article examines the findings of that research and applies it to the dilemmas of organizing healthcare networks. PMID:25518149

  2. Evaluating the Quality of the Learning Outcome in Healthcare Sector: The Expero4care Model

    ERIC Educational Resources Information Center

    Cervai, Sara; Polo, Federica

    2015-01-01

    Purpose: This paper aims to present the Expero4care model. Considering the growing need for a training evaluation model that does not simply fix processes, the Expero4care model represents the first attempt of a "quality model" dedicated to the learning outcomes of healthcare trainings. Design/Methodology/Approach: Created as development…

  3. Inclusion and Healthcare Choices: The Experiences of Adults with Learning Disabilities

    ERIC Educational Resources Information Center

    Ferguson, Morag; Jarrett, Dominic; Terras, Melody

    2011-01-01

    People with learning disabilities have fewer choice opportunities than the general population. Existing research provides some insight, but the choice-making experiences of those who do not always utilise available healthcare remains under-explored. This research explored the choice-making experiences of two groups of individuals with a learning…

  4. Exploring the Learning Experiences of Filipino Nurse Immigrants New to the U.S. Healthcare Industry

    ERIC Educational Resources Information Center

    Smith, Walter L.

    2011-01-01

    Precepting, coaching, and mentoring are teaching methods used extensively in nursing education in U.S. healthcare facilities. Filipino nurse immigrants have cultural backgrounds that may influence their experience with and perspectives of these learning interventions. Although Filipino nurse immigrants comprise approximately 0.2% of the population…

  5. Frequent Deadlines: Evaluating the Effect of Learner Control on Healthcare Executives' Performance in Online Learning

    ERIC Educational Resources Information Center

    Fulton, Lawrence V.; Ivanitskaya, Lana V.; Bastian, Nathaniel D.; Erofeev, Dmitry A.; Mendez, Francis A.

    2013-01-01

    In a three-group, gender-matched, preexisting knowledge-controlled, randomized experiment, we evaluated the effect of learner control over study pace on healthcare executives' performance in an online statistics course. Overall, frequent deadlines enhanced distribution of practice and improved learning. Students with less control over pace (in…

  6. Assessing Health Care Students' Intentions and Motivations for Learning: The Healthcare Learning and Studying Inventory (HLSI)

    ERIC Educational Resources Information Center

    Baxter, Lisa; Mattick, Karen; Kuyken, Willem

    2013-01-01

    Inventories that measure approaches to learning have revealed that certain approaches are associated with better academic performance. However, these inventories were developed primarily with higher education students on non-vocational courses and recent research shows they fail to capture the full range of healthcare students' intentions and…

  7. Beyond textbook illustrations: Hand-held models of ordered DNA and protein structures as 3D supplements to enhance student learning of helical biopolymers.

    PubMed

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-11-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we report a study on how our students learned more from using our ordered DNA and protein models assembled from colored computer-printouts on transparency film sheets that have useful structural details. Our models (reported in BAMBED 2009), having certain distinguished features, helped our students to grasp various aspects of these biopolymers that they usually find difficult. Quantitative and qualitative learning data from this study are reported. PMID:21567863

  8. The Effect of 3D Virtual Learning Environment on Secondary School Third Grade Students' Attitudes toward Mathematics

    ERIC Educational Resources Information Center

    Simsek, Irfan

    2016-01-01

    With this research, in Second Life environment which is a three dimensional online virtual world, it is aimed to reveal the effects of student attitudes toward mathematics courses and design activities which will enable the third grade students of secondary school (primary education seventh grade) to see the 3D objects in mathematics courses in a…

  9. How Multi-Levels of Individual and Team Learning Interact in a Public Healthcare Organisation: A Conceptual Framework

    ERIC Educational Resources Information Center

    Doyle, Louise; Kelliher, Felicity; Harrington, Denis

    2016-01-01

    The aim of this paper is to review the relevant literature on organisational learning and offer a preliminary conceptual framework as a basis to explore how the multi-levels of individual learning and team learning interact in a public healthcare organisation. The organisational learning literature highlights a need for further understanding of…

  10. Problem-based learning: a strategic learning system design for the education of healthcare professionals in the 21st century.

    PubMed

    Gwee, Matthew Choon-Eng

    2009-05-01

    Problem-based learning (PBL) was first implemented by McMaster University medical school in 1969 as a radical, innovative, and alternative pathway to learning in medical education, thus setting a new educational trend. PBL has now spread widely across the globe and beyond the healthcare disciplines, and has prevailed for almost four decades. PBL is essentially a strategic learning system design, which combines several complementary educational principles for the delivery of instruction. PBL is specifically aimed at enhancing and optimizing the educational outcomes of learner-centered, collaborative, contextual, integrated, self-directed, and reflective learning. The design and delivery of instruction in PBL involve peer teaching and learning in small groups through the social construction of knowledge using a real-life problem case to trigger the learning process. Therefore, PBL represents a major shift in the educational paradigm from the traditional teacher-directed (teacher-centered) instruction to student-centered (learner-centered) learning. PBL is firmly underpinned by several educational theories, but problems are often encountered in practice that can affect learning outcomes. Educators contemplating implementing PBL in their institutions should have a clear understanding of its basic tenets, its practice and its philosophy, as well as the issues, challenges, and opportunities associated with its implementation. Special attention should be paid to the training and selection of PBL tutors who have a critical role in the PBL process. Furthermore, a significant change in the mindsets of both students and teachers are required for the successful implementation of PBL. Thus, effective training programs for students and teachers must precede its implementation. PBL is a highly resource-intensive learning strategy and the returns on investment (i.e. the actual versus expected learning outcomes) should be carefully and critically appraised in the decision

  11. WE-G-18A-04: 3D Dictionary Learning Based Statistical Iterative Reconstruction for Low-Dose Cone Beam CT Imaging

    SciTech Connect

    Bai, T; Yan, H; Shi, F; Jia, X; Jiang, Steve B.; Lou, Y; Xu, Q; Mou, X

    2014-06-15

    Purpose: To develop a 3D dictionary learning based statistical reconstruction algorithm on graphic processing units (GPU), to improve the quality of low-dose cone beam CT (CBCT) imaging with high efficiency. Methods: A 3D dictionary containing 256 small volumes (atoms) of 3x3x3 voxels was trained from a high quality volume image. During reconstruction, we utilized a Cholesky decomposition based orthogonal matching pursuit algorithm to find a sparse representation on this dictionary basis of each patch in the reconstructed image, in order to regularize the image quality. To accelerate the time-consuming sparse coding in the 3D case, we implemented our algorithm in a parallel fashion by taking advantage of the tremendous computational power of GPU. Evaluations are performed based on a head-neck patient case. FDK reconstruction with full dataset of 364 projections is used as the reference. We compared the proposed 3D dictionary learning based method with a tight frame (TF) based one using a subset data of 121 projections. The image qualities under different resolutions in z-direction, with or without statistical weighting are also studied. Results: Compared to the TF-based CBCT reconstruction, our experiments indicated that 3D dictionary learning based CBCT reconstruction is able to recover finer structures, to remove more streaking artifacts, and is less susceptible to blocky artifacts. It is also observed that statistical reconstruction approach is sensitive to inconsistency between the forward and backward projection operations in parallel computing. Using high a spatial resolution along z direction helps improving the algorithm robustness. Conclusion: 3D dictionary learning based CBCT reconstruction algorithm is able to sense the structural information while suppressing noise, and hence to achieve high quality reconstruction. The GPU realization of the whole algorithm offers a significant efficiency enhancement, making this algorithm more feasible for potential

  12. Systematic Poisoning Attacks on and Defenses for Machine Learning in Healthcare.

    PubMed

    Mozaffari-Kermani, Mehran; Sur-Kolay, Susmita; Raghunathan, Anand; Jha, Niraj K

    2015-11-01

    Machine learning is being used in a wide range of application domains to discover patterns in large datasets. Increasingly, the results of machine learning drive critical decisions in applications related to healthcare and biomedicine. Such health-related applications are often sensitive, and thus, any security breach would be catastrophic. Naturally, the integrity of the results computed by machine learning is of great importance. Recent research has shown that some machine-learning algorithms can be compromised by augmenting their training datasets with malicious data, leading to a new class of attacks called poisoning attacks. Hindrance of a diagnosis may have life-threatening consequences and could cause distrust. On the other hand, not only may a false diagnosis prompt users to distrust the machine-learning algorithm and even abandon the entire system but also such a false positive classification may cause patient distress. In this paper, we present a systematic, algorithm-independent approach for mounting poisoning attacks across a wide range of machine-learning algorithms and healthcare datasets. The proposed attack procedure generates input data, which, when added to the training set, can either cause the results of machine learning to have targeted errors (e.g., increase the likelihood of classification into a specific class), or simply introduce arbitrary errors (incorrect classification). These attacks may be applied to both fixed and evolving datasets. They can be applied even when only statistics of the training dataset are available or, in some cases, even without access to the training dataset, although at a lower efficacy. We establish the effectiveness of the proposed attacks using a suite of six machine-learning algorithms and five healthcare datasets. Finally, we present countermeasures against the proposed generic attacks that are based on tracking and detecting deviations in various accuracy metrics, and benchmark their effectiveness. PMID

  13. Extracellular environment contribution to astrogliosis—lessons learned from a tissue engineered 3D model of the glial scar

    PubMed Central

    Rocha, Daniela N.; Ferraz-Nogueira, José P.; Barrias, Cristina C.; Relvas, João B.; Pêgo, Ana P.

    2015-01-01

    Glial scars are widely seen as a (bio)mechanical barrier to central nervous system regeneration. Due to the lack of a screening platform, which could allow in-vitro testing of several variables simultaneously, up to now no comprehensive study has addressed and clarified how different lesion microenvironment properties affect astrogliosis. Using astrocytes cultured in alginate gels and meningeal fibroblast conditioned medium, we have built a simple and reproducible 3D culture system of astrogliosis mimicking many features of the glial scar. Cells in this 3D culture model behave similarly to scar astrocytes, showing changes in gene expression (e.g., GFAP) and increased extra-cellular matrix production (chondroitin 4 sulfate and collagen), inhibiting neuronal outgrowth. This behavior being influenced by the hydrogel network properties. Astrocytic reactivity was found to be dependent on RhoA activity, and targeting RhoA using shRNA-mediated lentivirus reduced astrocytic reactivity. Further, we have shown that chemical inhibition of RhoA with ibuprofen or indirectly targeting RhoA by the induction of extracellular matrix composition modification with chondroitinase ABC, can diminish astrogliosis. Besides presenting the extracellular matrix as a key modulator of astrogliosis, this simple, controlled and reproducible 3D culture system constitutes a good scar-like system and offers great potential in future neurodegenerative mechanism studies, as well as in drug screenings envisaging the development of new therapeutic approaches to minimize the effects of the glial scar in the context of central nervous system disease. PMID:26483632

  14. Ames Lab 101: Real-Time 3D Imaging

    ScienceCinema

    Zhang, Song

    2012-08-29

    Ames Laboratory scientist Song Zhang explains his real-time 3-D imaging technology. The technique can be used to create high-resolution, real-time, precise, 3-D images for use in healthcare, security, and entertainment applications.

  15. Teaching and learning teamwork: competency requirements for healthcare managers.

    PubMed

    Leggat, Sandra G

    2007-01-01

    This paper addresses an essential element of postgraduate health service management education - development of individual competencies to enhance teamwork among health service managers. A survey of qualified health service managers in the state of Victoria, Australia revealed a set of individual competencies that the managers felt made a positive contribution to the success of workplace teams. The identified competencies included skills in leadership and communication; clinical knowledge and knowledge of organizational goals and strategies; motives such as commitment to the organization, to quality, to working collaboratively and to a consumer focus; and respect for others as a trait. Building on acknowledged teaching and learning theories, a teamwork teaching and learning model was successfully introduced into the postgraduate health services management curriculum at La Trobe University in Melbourne. PMID:18214076

  16. Transforming Clinical Imaging and 3D Data for Virtual Reality Learning Objects: HTML5 and Mobile Devices Implementation

    ERIC Educational Resources Information Center

    Trelease, Robert B.; Nieder, Gary L.

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android…

  17. Transforming clinical imaging and 3D data for virtual reality learning objects: HTML5 and mobile devices implementation.

    PubMed

    Trelease, Robert B; Nieder, Gary L

    2013-01-01

    Web deployable anatomical simulations or "virtual reality learning objects" can easily be produced with QuickTime VR software, but their use for online and mobile learning is being limited by the declining support for web browser plug-ins for personal computers and unavailability on popular mobile devices like Apple iPad and Android tablets. This article describes complementary methods for creating comparable, multiplatform VR learning objects in the new HTML5 standard format, circumventing platform-specific limitations imposed by the QuickTime VR multimedia file format. Multiple types or "dimensions" of anatomical information can be embedded in such learning objects, supporting different kinds of online learning applications, including interactive atlases, examination questions, and complex, multi-structure presentations. Such HTML5 VR learning objects are usable on new mobile devices that do not support QuickTime VR, as well as on personal computers. Furthermore, HTML5 VR learning objects can be embedded in "ebook" document files, supporting the development of new types of electronic textbooks on mobile devices that are increasingly popular and self-adopted for mobile learning. PMID:23212750

  18. 3D Talking-Head Mobile App: A Conceptual Framework for English Pronunciation Learning among Non-Native Speakers

    ERIC Educational Resources Information Center

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah

    2013-01-01

    One of the critical issues pertaining learning English as second language successfully is pronunciation, which consequently contributes to learners' poor communicative power. This situation is moreover crucial among non-native speakers. Therefore, various initiatives have been taken in order to promote effective language learning, which includes…

  19. Implementation of 3d Tools and Immersive Experience Interaction for Supporting Learning in a Library-Archive Environment. Visions and Challenges

    NASA Astrophysics Data System (ADS)

    Angeletaki, A.; Carrozzino, M.; Johansen, S.

    2013-07-01

    In this paper we present an experimental environment of 3D books combined with a game application that has been developed by a collaboration project between the Norwegian University of Science and Technology in Trondheim, Norway the NTNU University Library, and the Percro laboratory of Santa Anna University in Pisa, Italy. MUBIL is an international research project involving museums, libraries and ICT academy partners aiming to develop a consistent methodology enabling the use of Virtual Environments as a metaphor to present manuscripts content through the paradigms of interaction and immersion, evaluating different possible alternatives. This paper presents the results of the application of two prototypes of books augmented with the use of XVR and IL technology. We explore immersive-reality design strategies in archive and library contexts for attracting new users. Our newly established Mubil-lab has invited school classes to test the books augmented with 3D models and other multimedia content in order to investigate whether the immersion in such environments can create wider engagement and support learning. The metaphor of 3D books and game designs in a combination allows the digital books to be handled through a tactile experience and substitute the physical browsing. In this paper we present some preliminary results about the enrichment of the user experience in such environment.

  20. The Effects of 3D-Representation Instruction on Composite-Solid Surface-Area Learning for Elementary School Students

    ERIC Educational Resources Information Center

    Sung, Yao-Ting; Shih, Pao-Chen; Chang, Kuo-En

    2015-01-01

    Providing instruction on spatial geometry, specifically how to calculate the surface areas of composite solids, challenges many elementary school teachers. Determining the surface areas of composite solids involves complex calculations and advanced spatial concepts. The goals of this study were to build on students' learning processes for…

  1. Coming down to Earth: Helping Teachers Use 3D Virtual Worlds in Across-Spaces Learning Situations

    ERIC Educational Resources Information Center

    Muñoz-Cristóbal, Juan A.; Prieto, Luis P.; Asensio-Pérez, Juan I.; Martínez-Monés, Alejandra; Jorrín-Abellán, Iván M.; Dimitriadis, Yannis

    2015-01-01

    Different approaches have explored how to provide seamless learning across multiple ICT-enabled physical and virtual spaces, including three-dimensional virtual worlds (3DVW). However, these approaches present limitations that may reduce their acceptance in authentic educational practice: The difficulties of authoring and sharing teacher-created…

  2. Implementing Advanced Characteristics of X3D Collaborative Virtual Environments for Supporting e-Learning: The Case of EVE Platform

    ERIC Educational Resources Information Center

    Bouras, Christos; Triglianos, Vasileios; Tsiatsos, Thrasyvoulos

    2014-01-01

    Three dimensional Collaborative Virtual Environments are a powerful form of collaborative telecommunication applications, enabling the users to share a common three-dimensional space and interact with each other as well as with the environment surrounding them, in order to collaboratively solve problems or aid learning processes. Such an…

  3. Responding to the Widening Participation Agenda through Improved Access to and within 3D Virtual Learning Environments

    ERIC Educational Resources Information Center

    Wood, Denise; Willems, Julie

    2012-01-01

    The Australian Government's widening participation agenda--also referred to as the social inclusion agenda--considers equity through the triple focus of access, participation and outcomes. These foci are catalysts for re-examining teaching and learning approaches in formal education. This article considers this national refocus and the…

  4. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  5. The Value of E-Learning for the Prevention of Healthcare-Associated Infections.

    PubMed

    Labeau, Sonia O; Rello, Jordi; Dimopoulos, George; Lipman, Jeffrey; Sarikaya, Aklime; Oztürk, Candan; Vandijck, Dominique M; Vogelaers, Dirk; Vandewoude, Koenraad; Blot, Stijn I

    2016-09-01

    BACKGROUND Healthcare workers (HCWs) lack familiarity with evidence-based guidelines for the prevention of healthcare-associated infections (HAIs). There is good evidence that effective educational interventions help to facilitate guideline implementation, so we investigated whether e-learning could enhance HCW knowledge of HAI prevention guidelines. METHODS We developed an electronic course (e-course) and tested its usability and content validity. An international sample of voluntary learners submitted to a pretest (T0) that determined their baseline knowledge of guidelines, and they subsequently studied the e-course. Immediately after studying the course, posttest 1 (T1) assessed the immediate learning effect. After 3 months, during which participants had no access to the course, a second posttest (T2) evaluated the residual learning effect. RESULTS A total of 3,587 HCWs representing 79 nationalities enrolled: 2,590 HCWs (72%) completed T0; 1,410 HCWs (39%) completed T1; and 1,011 HCWs (28%) completed T2. The median study time was 193 minutes (interquartile range [IQR], 96-306 minutes) The median scores were 52% (IQR, 44%-62%) for T0, 80% (IQR, 68%-88%) for T1, and 74% (IQR, 64%-84%) for T2. The immediate learning effect (T0 vs T1) was +24% (IQR, 12%-34%; P300 minutes yielded the greatest residual effect (24%). CONCLUSIONS Moderate time invested in e-learning yielded significant immediate and residual learning effects. Decision makers could consider promoting e-learning as a supporting tool in HAI prevention. Infect Control Hosp Epidemiol 2016;37:1052-1059. PMID:27174463

  6. Graph-based active learning of agglomeration (GALA): a Python library to segment 2D and 3D neuroimages

    PubMed Central

    Nunez-Iglesias, Juan; Kennedy, Ryan; Plaza, Stephen M.; Chakraborty, Anirban; Katz, William T.

    2014-01-01

    The aim in high-resolution connectomics is to reconstruct complete neuronal connectivity in a tissue. Currently, the only technology capable of resolving the smallest neuronal processes is electron microscopy (EM). Thus, a common approach to network reconstruction is to perform (error-prone) automatic segmentation of EM images, followed by manual proofreading by experts to fix errors. We have developed an algorithm and software library to not only improve the accuracy of the initial automatic segmentation, but also point out the image coordinates where it is likely to have made errors. Our software, called gala (graph-based active learning of agglomeration), improves the state of the art in agglomerative image segmentation. It is implemented in Python and makes extensive use of the scientific Python stack (numpy, scipy, networkx, scikit-learn, scikit-image, and others). We present here the software architecture of the gala library, and discuss several designs that we consider would be generally useful for other segmentation packages. We also discuss the current limitations of the gala library and how we intend to address them. PMID:24772079

  7. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method

    PubMed Central

    Chu, Chengwen; Belavý, Daniel L.; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  8. Fully Automatic Localization and Segmentation of 3D Vertebral Bodies from CT/MR Images via a Learning-Based Method.

    PubMed

    Chu, Chengwen; Belavý, Daniel L; Armbrecht, Gabriele; Bansmann, Martin; Felsenberg, Dieter; Zheng, Guoyan

    2015-01-01

    In this paper, we address the problems of fully automatic localization and segmentation of 3D vertebral bodies from CT/MR images. We propose a learning-based, unified random forest regression and classification framework to tackle these two problems. More specifically, in the first stage, the localization of 3D vertebral bodies is solved with random forest regression where we aggregate the votes from a set of randomly sampled image patches to get a probability map of the center of a target vertebral body in a given image. The resultant probability map is then further regularized by Hidden Markov Model (HMM) to eliminate potential ambiguity caused by the neighboring vertebral bodies. The output from the first stage allows us to define a region of interest (ROI) for the segmentation step, where we use random forest classification to estimate the likelihood of a voxel in the ROI being foreground or background. The estimated likelihood is combined with the prior probability, which is learned from a set of training data, to get the posterior probability of the voxel. The segmentation of the target vertebral body is then done by a binary thresholding of the estimated probability. We evaluated the present approach on two openly available datasets: 1) 3D T2-weighted spine MR images from 23 patients and 2) 3D spine CT images from 10 patients. Taking manual segmentation as the ground truth (each MR image contains at least 7 vertebral bodies from T11 to L5 and each CT image contains 5 vertebral bodies from L1 to L5), we evaluated the present approach with leave-one-out experiments. Specifically, for the T2-weighted MR images, we achieved for localization a mean error of 1.6 mm, and for segmentation a mean Dice metric of 88.7% and a mean surface distance of 1.5 mm, respectively. For the CT images we achieved for localization a mean error of 1.9 mm, and for segmentation a mean Dice metric of 91.0% and a mean surface distance of 0.9 mm, respectively. PMID:26599505

  9. Influence of a quality improvement learning collaborative program on team functioning in primary healthcare.

    PubMed

    Kotecha, Jyoti; Brown, Judith Belle; Han, Han; Harris, Stewart B; Green, Michael; Russell, Grant; Roberts, Sharon; Webster-Bogaert, Susan; Fournie, Meghan; Thind, Amardeep; Reichert, Sonja M; Birtwhistle, Richard

    2015-09-01

    Quality improvement (QI) programs are frequently implemented to support primary healthcare (PHC) team development and to improve care outcomes. In Ontario, Canada, the Quality Improvement and Innovation Partnership (QIIP) offered a learning collaborative (LC) program to support the development of interdisciplinary team function and improve chronic disease management, disease prevention, and access to care. A qualitative study using a phenomenological approach was conducted as part of a mixed-method evaluation to explore the influence of the program on team functioning in participating PHC teams. A purposive sampling strategy was used to identify PHC teams (n = 10), from which participants of different professional roles were selected through a purposeful recruitment process to reflect maximum variation of team roles. Additionally, QI coaches working with the interview participants and the LC administrators were also interviewed. Data were collected through semistructured telephone interviews that were audiotaped and transcribed verbatim. Thematic analysis was conducted through an iterative and interpretive approach. The shared experience of participating in the program appeared to improve team functioning. Participants described increased trust and respect for each other's clinical and administrative roles and were inspired by learning about different approaches to interdisciplinary care. This appeared to enhance collegial relationships, collapse professional silos, improve communication, and increase interdisciplinary collaboration. Teamwork involves more than just physically grouping healthcare providers from multiple disciplines and mandating them to work together. The LC program provided opportunities for participants to learn how to work collaboratively, and participation in the LC program appeared to enhance team functioning. PMID:25799255

  10. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  11. Case-Based Learning: A Formal Approach to Generate Health Case Studies from Electronic Healthcare Records.

    PubMed

    Ricci, Fabrizio L; Consorti, Fabrizio; Gentile, Manuel; Messineo, Linda; La Guardia, Dario; Arrigo, Marco; Allegra, Mario

    2016-01-01

    There is an increasing social pressure to train medical students with a level of competency sufficient to face clinical practice already at the end of their curriculum. The case-based learning (CBL) is an efficient teaching method to prepare students for clinical practice through the use of real or realistic clinical cases. In this regard, the Electronic Healthcare Record (EHR) could be a good source of real patient stories that can be transformed into educative cases. In this paper a formal approach to generate Health Case Studies from EHR is defined. PMID:27071887

  12. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke

    PubMed Central

    2012-01-01

    Background Novel stroke rehabilitation techniques that employ electrical stimulation (ES) and robotic technologies are effective in reducing upper limb impairments. ES is most effective when it is applied to support the patients’ voluntary effort; however, current systems fail to fully exploit this connection. This study builds on previous work using advanced ES controllers, and aims to investigate the feasibility of Stimulation Assistance through Iterative Learning (SAIL), a novel upper limb stroke rehabilitation system which utilises robotic support, ES, and voluntary effort. Methods Five hemiparetic, chronic stroke participants with impaired upper limb function attended 18, 1 hour intervention sessions. Participants completed virtual reality tracking tasks whereby they moved their impaired arm to follow a slowly moving sphere along a specified trajectory. To do this, the participants’ arm was supported by a robot. ES, mediated by advanced iterative learning control (ILC) algorithms, was applied to the triceps and anterior deltoid muscles. Each movement was repeated 6 times and ILC adjusted the amount of stimulation applied on each trial to improve accuracy and maximise voluntary effort. Participants completed clinical assessments (Fugl-Meyer, Action Research Arm Test) at baseline and post-intervention, as well as unassisted tracking tasks at the beginning and end of each intervention session. Data were analysed using t-tests and linear regression. Results From baseline to post-intervention, Fugl-Meyer scores improved, assisted and unassisted tracking performance improved, and the amount of ES required to assist tracking reduced. Conclusions The concept of minimising support from ES using ILC algorithms was demonstrated. The positive results are promising with respect to reducing upper limb impairments following stroke, however, a larger study is required to confirm this. PMID:22676920

  13. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  14. 3D Virtual Reality Check: Learner Engagement and Constructivist Theory

    ERIC Educational Resources Information Center

    Bair, Richard A.

    2013-01-01

    The inclusion of three-dimensional (3D) virtual tools has created a need to communicate the engagement of 3D tools and specify learning gains that educators and the institutions, which are funding 3D tools, can expect. A review of literature demonstrates that specific models and theories for 3D Virtual Reality (VR) learning do not exist "per…

  15. Beyond Effectiveness: A Pragmatic Evaluation Framework for Learning and Continuous Quality Improvement of e-Learning Interventions in Healthcare.

    PubMed

    Dafalla, Tarig Dafalla Mohamed; Kushniruk, Andre W; Borycki, Elizabeth M

    2015-01-01

    A pragmatic evaluation framework for evaluating the usability and usefulness of an e-learning intervention for a patient clinical information scheduling system is presented in this paper. The framework was conceptualized based on two different but related concepts (usability and usefulness) and selection of appropriate and valid methods of data collection and analysis that included: (1) Low-Cost Rapid Usability Engineering (LCRUE), (2) Cognitive Task Analysis (CTA), (3) Heuristic Evaluation (HE) criteria for web-based learning, and (4) Software Usability Measurement Inventory (SUMI). The results of the analysis showed some areas where usability that were related to General Interface Usability (GIU), instructional design and content was problematic; some of which might account for the poorly rated aspects of usability when subjectively measured. This paper shows that using a pragmatic framework can be a useful way, not only for measuring the usability and usefulness, but also for providing a practical objective evidences for learning and continuous quality improvement of e-learning systems. The findings should be of interest to educators, developers, designers, researchers, and usability practitioners involved in the development of e-learning systems in healthcare. This framework could be an appropriate method for assessing the usability, usefulness and safety of health information systems both in the laboratory and in the clinical context. PMID:25676959

  16. Peer-Led Team Learning in an Online Course on Controversial Medication Issues and the US Healthcare System

    PubMed Central

    LimBybliw, Amy L.

    2013-01-01

    Objective. To implement peer-led team learning in an online course on controversial issues surrounding medications and the US healthcare system. Design. The course was delivered completely online using a learning management system. Students participated in weekly small-group discussions in online forums, completed 3 reflective writing assignments, and collaborated on a peer-reviewed grant proposal project. Assessment. In a post-course survey, students reported that the course was challenging but meaningful. Final projects and peer-reviewed assignments demonstrated that primary learning goals for the course were achieved and students were empowered to engage in the healthcare debate. Conclusions. A peer-led team-learning is an effective strategy for an online course offered to a wide variety of student learners. By shifting some of the learning and grading responsibility to students, the instructor workload for the course was rendered more manageable. PMID:24052653

  17. Combining Speech Recognition/Natural Language Processing with 3D Online Learning Environments to Create Distributed Authentic and Situated Spoken Language Learning

    ERIC Educational Resources Information Center

    Jones, Greg; Squires, Todd; Hicks, Jeramie

    2008-01-01

    This article will describe research done at the National Institute of Multimedia in Education, Japan and the University of North Texas on the creation of a distributed Internet-based spoken language learning system that would provide more interactive and motivating learning than current multimedia and audiotape-based systems. The project combined…

  18. Designing Multimedia Learning Application with Learning Theories: A Case Study on a Computer Science Subject with 2-D and 3-D Animated Versions

    ERIC Educational Resources Information Center

    Rias, Riaza Mohd; Zaman, Halimah Badioze

    2011-01-01

    Higher learning based instruction may be primarily concerned in most cases with the content of their academic lessons, and not very much with their instructional delivery. However, the effective application of learning theories and technology in higher education has an impact on student performance. With the rapid progress in the computer and…

  19. Development of a Top-View Numeric Coding Teaching-Learning Trajectory within an Elementary Grades 3-D Visualization Design Research Project

    ERIC Educational Resources Information Center

    Sack, Jacqueline J.

    2013-01-01

    This article explicates the development of top-view numeric coding of 3-D cube structures within a design research project focused on 3-D visualization skills for elementary grades children. It describes children's conceptual development of 3-D cube structures using concrete models, conventional 2-D pictures and abstract top-view numeric…

  20. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  1. Educating healthcare professionals in antimicrobial stewardship: can online-learning solutions help?

    PubMed

    Rocha-Pereira, Nuno; Lafferty, Natalie; Nathwani, Dilip

    2015-12-01

    Education is widely recognized as one of the cornerstones of successful antimicrobial stewardship programmes. There is evidence of important knowledge flaws around antimicrobial prescribing among both medical students and clinicians. Educational interventions improve antimicrobial prescribing, but traditional tools may be insufficient to deliver training to meet the complex demands of global healthcare professionals working across a diverse range of healthcare and resource settings. The educational solutions increasingly need to be timely, efficient, pragmatic, high quality, aligned to the needs of the professional in a specific context, sustainable and cost-effective. Online learning has been playing a growing role in education about antimicrobial stewardship and the recent phenomenon of massive open online courses (MOOCs) offers novel and additional opportunities to deliver relevant information to a wide range of people. Additional research on MOOCs as an educational approach is needed in order to define their effectiveness, sustainability and the best ways to achieve the intended results. Although the precise value of new online strategies such as MOOCs is ill defined, they certainly will have an important place in increasing awareness and improving antimicrobial prescribing. PMID:26429566

  2. Managing human resources in healthcare: learning from world class practices--Part II.

    PubMed

    Zairi, M

    1998-01-01

    This is part II of an analysis of world class practices adopted by model organisations known for their excellence in terms of people management and their superior competitiveness based on harnessing the potential of their employees. This paper continues by addressing best practices adhered to by organisations using the NASA framework, such as Rockwell Space Systems Divisions. In addition and quite comprehensively, the paper examines the personnel function and how it is managed in Japan. Finally, the paper describes two cases of model organisations and the human resource practices adopted and concludes by drawing some useful pointers that professionals who are in a healthcare setting and who are concerned with human resources can learn from. PMID:10346309

  3. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  4. How the Role of Socialization Affects Blended Learning Methodologies for Faculty Working with Teams in a Healthcare Setting

    ERIC Educational Resources Information Center

    Kenny, Kevin J.

    2010-01-01

    When looking at healthcare education settings, one barrier to understanding the nature of socialization and its effect on teaching methodology design is the advent of blended learning formats used within education departments. The author utilized qualitative research using grounded theory with deductive, verification and inductive processes to…

  5. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  6. TRACE 3-D documentation

    SciTech Connect

    Crandall, K.R.

    1987-08-01

    TRACE 3-D is an interactive beam-dynamics program that calculates the envelopes of a bunched beam, including linear space-charge forces, through a user-defined transport system. TRACE 3-D provides an immediate graphics display of the envelopes and the phase-space ellipses and allows nine types of beam-matching options. This report describes the beam-dynamics calculations and gives detailed instruction for using the code. Several examples are described in detail.

  7. Managing human resources in healthcare: learning from world class practices--Part I.

    PubMed

    Zairi, M

    1998-01-01

    This paper, which is presented in two parts, is intended to demonstrate that practices related to the area of human resources management, adopted by model organisations that have dominated their markets consistently, can lend themselves very well to the healthcare sector, which is primarily a "people-oriented" sector. As change in a modern business context is set to continue in an unrelenting way, most organisations will be presented with the challenge of developing the necessary skills and areas of expertise to enable them to cope with the demands on them, master technological opportunities at their disposal, learn how to exploit modern management concepts and optimise value to all the stakeholders they intend to serve. This paper draws from best practices using the experiences of quality recognised organisations and many admired names through pioneering human resource policies and practices and through clear demonstrations on the benefits of relying on people as the major "asset". Part I of this article addresses the importance of human resources as revealed through models of management for organisational excellence. In particular, the paper refers to the criteria for excellence in relation to people management using the following prestigious and integrative management models: Deming Prize (Japan); European Quality Award Model (Europe); and Malcolm Baldrige National Quality Award (USA). In addition, this paper illustrates several case studies using organisations known for their pioneering approaches to people management and which led them to win very prestigious quality awards and various international accolades. The paper concludes by reinforcing the point that human resource management in a healthcare context has to be viewed as an integrated set of processes and practices which need to be adhered to from an integrated perspective in order to optimise individuals' performance levels and so that the human potential can be exploited fully. PMID:10346308

  8. Beyond Textbook Illustrations: Hand-Held Models of Ordered DNA and Protein Structures as 3D Supplements to Enhance Student Learning of Helical Biopolymers

    ERIC Educational Resources Information Center

    Jittivadhna, Karnyupha; Ruenwongsa, Pintip; Panijpan, Bhinyo

    2010-01-01

    Textbook illustrations of 3D biopolymers on printed paper, regardless of how detailed and colorful, suffer from its two-dimensionality. For beginners, computer screen display of skeletal models of biopolymers and their animation usually does not provide the at-a-glance 3D perception and details, which can be done by good hand-held models. Here, we…

  9. Organ-Mounted Electronics: An Universal and Easy-to-Use Model for the Pressure of Arbitrary-Shape 3D Multifunctional Integumentary Cardiac Membranes (Adv. Healthcare Mater. 8/2016).

    PubMed

    Su, Yewang; Liu, Zhuangjian; Xu, Lizhi

    2016-04-01

    Recently developed concepts for 3D, organ-mounted electronics for cardiac applications require an universal and easy-to-use mechanical model to calculate the average pressure associated with operation of the device, which is crucial for evaluation of design efficacy and optimization. A simple, accurate, easy-to-use, and universal model to quantify the average pressure for arbitrarily shaped organs is proposed by Y. Su and colleagues on page 889. Cover designed by Zhenhai Li. PMID:27091775

  10. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  11. Using machine learning to speed up manual image annotation: application to a 3D imaging protocol for measuring single cell gene expression in the developing C. elegans embryo

    PubMed Central

    2010-01-01

    Background Image analysis is an essential component in many biological experiments that study gene expression, cell cycle progression, and protein localization. A protocol for tracking the expression of individual C. elegans genes was developed that collects image samples of a developing embryo by 3-D time lapse microscopy. In this protocol, a program called StarryNite performs the automatic recognition of fluorescently labeled cells and traces their lineage. However, due to the amount of noise present in the data and due to the challenges introduced by increasing number of cells in later stages of development, this program is not error free. In the current version, the error correction (i.e., editing) is performed manually using a graphical interface tool named AceTree, which is specifically developed for this task. For a single experiment, this manual annotation task takes several hours. Results In this paper, we reduce the time required to correct errors made by StarryNite. We target one of the most frequent error types (movements annotated as divisions) and train a support vector machine (SVM) classifier to decide whether a division call made by StarryNite is correct or not. We show, via cross-validation experiments on several benchmark data sets, that the SVM successfully identifies this type of error significantly. A new version of StarryNite that includes the trained SVM classifier is available at http://starrynite.sourceforge.net. Conclusions We demonstrate the utility of a machine learning approach to error annotation for StarryNite. In the process, we also provide some general methodologies for developing and validating a classifier with respect to a given pattern recognition task. PMID:20146825

  12. Detection of subjects and brain regions related to Alzheimer's disease using 3D MRI scans based on eigenbrain and machine learning

    PubMed Central

    Zhang, Yudong; Dong, Zhengchao; Phillips, Preetha; Wang, Shuihua; Ji, Genlin; Yang, Jiquan; Yuan, Ti-Fei

    2015-01-01

    Purpose: Early diagnosis or detection of Alzheimer's disease (AD) from the normal elder control (NC) is very important. However, the computer-aided diagnosis (CAD) was not widely used, and the classification performance did not reach the standard of practical use. We proposed a novel CAD system for MR brain images based on eigenbrains and machine learning with two goals: accurate detection of both AD subjects and AD-related brain regions. Method: First, we used maximum inter-class variance (ICV) to select key slices from 3D volumetric data. Second, we generated an eigenbrain set for each subject. Third, the most important eigenbrain (MIE) was obtained by Welch's t-test (WTT). Finally, kernel support-vector-machines with different kernels that were trained by particle swarm optimization, were used to make an accurate prediction of AD subjects. Coefficients of MIE with values higher than 0.98 quantile were highlighted to obtain the discriminant regions that distinguish AD from NC. Results: The experiments showed that the proposed method can predict AD subjects with a competitive performance with existing methods, especially the accuracy of the polynomial kernel (92.36 ± 0.94) was better than the linear kernel of 91.47 ± 1.02 and the radial basis function (RBF) kernel of 86.71 ± 1.93. The proposed eigenbrain-based CAD system detected 30 AD-related brain regions (Anterior Cingulate, Caudate Nucleus, Cerebellum, Cingulate Gyrus, Claustrum, Inferior Frontal Gyrus, Inferior Parietal Lobule, Insula, Lateral Ventricle, Lentiform Nucleus, Lingual Gyrus, Medial Frontal Gyrus, Middle Frontal Gyrus, Middle Occipital Gyrus, Middle Temporal Gyrus, Paracentral Lobule, Parahippocampal Gyrus, Postcentral Gyrus, Posterial Cingulate, Precentral Gyrus, Precuneus, Subcallosal Gyrus, Sub-Gyral, Superior Frontal Gyrus, Superior Parietal Lobule, Superior Temporal Gyrus, Supramarginal Gyrus, Thalamus, Transverse Temporal Gyrus, and Uncus). The results were coherent with existing

  13. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  14. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  15. The Impact of Learning Style on Healthcare Providers' Preference for Voice Advisory Manikins versus Live Instructors in Basic Life Support Training

    ERIC Educational Resources Information Center

    DiGiovanni, Lisa Marie

    2013-01-01

    The American Heart Association's HeartCode[TM] Healthcare Provider (HCP) Basic Life Support (BLS) e-learning program with voice-advisory manikins was implemented in an acute care hospital as the only teaching method offered for BLS certification. On course evaluations, healthcare provider staff commented that the VAM technology for skills…

  16. Learning to value differences. A Catholic healthcare system implements a cultural diversity education program.

    PubMed

    Peel, K C

    1992-09-01

    Each year the U.S. labor force is becoming increasingly diverse. Many healthcare organizations are adopting plans to meet the needs of leaders who manage culturally diverse groups of employees and to ensure that the organization can continue to attract and retain employees of all cultures. In December 1988 Mercy Health Services, Farmington Hills, MI, began a cultural diversity program to increase the number of minority and women employees, especially in management and leadership positions. Its education program was designed to enhance manager and employee awareness of their own biases and those of others and to build skills in dealing with persons from a variety of cultures. Mercy Health Services first held 90-minute educational sessions for managers. The sessions covered expected demographic changes and the importance of working together. Employees then attended sessions where they practiced interactive exercises to help each person recognize his or her own biases. In the subsequent weeks the corporate human resources staff experienced an increase in the number of employee relations problems managers and nonmanagers attributed to diversity conflict. In response, Mercy developed a pilot series of awareness- and skill-building workshops for those who managed Mercy's most culturally diverse staffs. They heard lectures on racial and gender issues and watched and discussed conflict resolution videos. Most workshop participants increased their awareness of cultural bias and their commitment to learning and practicing skills to deal with conflict. PMID:10120202

  17. 3D Virtual Reality for Teaching Astronomy

    NASA Astrophysics Data System (ADS)

    Speck, Angela; Ruzhitskaya, L.; Laffey, J.; Ding, N.

    2012-01-01

    We are developing 3D virtual learning environments (VLEs) as learning materials for an undergraduate astronomy course, in which will utilize advances both in technologies available and in our understanding of the social nature of learning. These learning materials will be used to test whether such VLEs can indeed augment science learning so that it is more engaging, active, visual and effective. Our project focuses on the challenges and requirements of introductory college astronomy classes. Here we present our virtual world of the Jupiter system and how we plan to implement it to allow students to learn course material - physical laws and concepts in astronomy - while engaging them into exploration of the Jupiter's system, encouraging their imagination, curiosity, and motivation. The VLE can allow students to work individually or collaboratively. The 3D world also provides an opportunity for research in astronomy education to investigate impact of social interaction, gaming features, and use of manipulatives offered by a learning tool on students’ motivation and learning outcomes. Use of this VLE is also a valuable source for exploration of how the learners’ spatial awareness can be enhanced by working in 3D environment. We will present the Jupiter-system environment along with a preliminary study of the efficacy and usability of our Jupiter 3D VLE.

  18. 3D microscope

    NASA Astrophysics Data System (ADS)

    Iizuka, Keigo

    2008-02-01

    In order to circumvent the fact that only one observer can view the image from a stereoscopic microscope, an attachment was devised for displaying the 3D microscopic image on a large LCD monitor for viewing by multiple observers in real time. The principle of operation, design, fabrication, and performance are presented, along with tolerance measurements relating to the properties of the cellophane half-wave plate used in the design.

  19. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care. PMID:25620087

  20. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary. PMID:22745004

  1. Multiviewer 3D monitor

    NASA Astrophysics Data System (ADS)

    Kostrzewski, Andrew A.; Aye, Tin M.; Kim, Dai Hyun; Esterkin, Vladimir; Savant, Gajendra D.

    1998-09-01

    Physical Optics Corporation has developed an advanced 3-D virtual reality system for use with simulation tools for training technical and military personnel. This system avoids such drawbacks of other virtual reality (VR) systems as eye fatigue, headaches, and alignment for each viewer, all of which are due to the need to wear special VR goggles. The new system is based on direct viewing of an interactive environment. This innovative holographic multiplexed screen technology makes it unnecessary for the viewer to wear special goggles.

  2. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  3. Imagining Technology-Enhanced Learning with Heritage Artefacts: Teacher-Perceived Potential of 2D and 3D Heritage Site Visualisations

    ERIC Educational Resources Information Center

    Lackovic, Natasa; Crook, Charles; Cobb, Sue; Shalloe, Sally; D'Cruz, Mirabelle

    2015-01-01

    Background: There is much to be realised in the educational potential of national and world heritage sites. Such sites need to be supported in sharing their resources with a wide and international public, especially within formal education. Two-dimensional (2D) and three-dimensional (3D) heritage site visualisations could serve this need. Our…

  4. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  5. 3-D Art Tasks.

    ERIC Educational Resources Information Center

    Niswander, Virginia

    1983-01-01

    Perceptual motor dysfunctions may not allow children with learning and behavior problems to perform as most children do. A successful art activity for these children is construction using wood scraps. (SR)

  6. Challenge of Supporting Vocational Learning: Empowering Collaboration in a Scripted 3D Game--How Does Teachers' Real-Time Orchestration Make a Difference?

    ERIC Educational Resources Information Center

    Hamalainen, Raija; Oksanen, Kimmo

    2012-01-01

    Along with the development of new technologies, orchestrating computer-supported collaborative learning (CSCL) has become a topic of discussion because new learning spaces challenge teacher to support collaborative learning in new ways. However, despite the optimistic notions of teachers' orchestration in CSCL situations, there are still no…

  7. Wireless Rover Meets 3D Design and Product Development

    ERIC Educational Resources Information Center

    Deal, Walter F., III; Hsiung, Steve C.

    2016-01-01

    Today there are a number of 3D printing technologies that are low cost and within the budgets of middle and high school programs. Educational technology companies offer a variety of 3D printing technologies and parallel curriculum materials to enable technology and engineering teachers to easily add 3D learning activities to their programs.…

  8. Using Cabri3D Diagrams for Teaching Geometry

    ERIC Educational Resources Information Center

    Accascina, Giuseppe; Rogora, Enrico

    2006-01-01

    Cabri3D is a potentially very useful software for learning and teaching 3D geometry. The dynamic nature of the digital diagrams produced with it provides a useful aid for helping students to better develop concept images of geometric concepts. However, since any Cabri3D diagram represents three-dimensional objects on the two dimensional screen of…

  9. 3D polarimetric purity

    NASA Astrophysics Data System (ADS)

    Gil, José J.; San José, Ignacio

    2010-11-01

    From our previous definition of the indices of polarimetric purity for 3D light beams [J.J. Gil, J.M. Correas, P.A. Melero and C. Ferreira, Monogr. Semin. Mat. G. de Galdeano 31, 161 (2004)], an analysis of their geometric and physical interpretation is presented. It is found that, in agreement with previous results, the first parameter is a measure of the degree of polarization, whereas the second parameter (called the degree of directionality) is a measure of the mean angular aperture of the direction of propagation of the corresponding light beam. This pair of invariant, non-dimensional, indices of polarimetric purity contains complete information about the polarimetric purity of a light beam. The overall degree of polarimetric purity is obtained as a weighted quadratic average of the degree of polarization and the degree of directionality.

  10. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  11. 'Bonneville' in 3-D!

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The Mars Exploration Rover Spirit took this 3-D navigation camera mosaic of the crater called 'Bonneville' after driving approximately 13 meters (42.7 feet) to get a better vantage point. Spirit's current position is close enough to the edge to see the interior of the crater, but high enough and far enough back to get a view of all of the walls. Because scientists and rover controllers are so pleased with this location, they will stay here for at least two more martian days, or sols, to take high resolution panoramic camera images of 'Bonneville' in its entirety. Just above the far crater rim, on the left side, is the rover's heatshield, which is visible as a tiny reflective speck.

  12. Applications of social constructivist learning theories in knowledge translation for healthcare professionals: a scoping review

    PubMed Central

    2014-01-01

    Background Use of theory is essential for advancing the science of knowledge translation (KT) and for increasing the likelihood that KT interventions will be successful in reducing existing research-practice gaps in health care. As a sociological theory of knowledge, social constructivist theory may be useful for informing the design and evaluation of KT interventions. As such, this scoping review explored the extent to which social constructivist theory has been applied in the KT literature for healthcare professionals. Methods Searches were conducted in six databases: Ovid MEDLINE (1948 – May 16, 2011), Ovid EMBASE, CINAHL, ERIC, PsycInfo, and AMED. Inclusion criteria were: publications from all health professions, research methodologies, as well as conceptual and theoretical papers related to KT. To be included in the review, key words such as constructivism, social constructivism, or social constructivist theories had to be included within the title or abstract. Papers that discussed the use of social constructivist theories in the context of undergraduate learning in academic settings were excluded from the review. An analytical framework of quantitative (numerical) and thematic analysis was used to examine and combine study findings. Results Of the 514 articles screened, 35 papers published between 1992 and 2011 were deemed eligible and included in the review. This review indicated that use of social constructivist theory in the KT literature was limited and haphazard. The lack of justification for the use of theory continues to represent a shortcoming of the papers reviewed. Potential applications and relevance of social constructivist theory in KT in general and in the specific studies were not made explicit in most papers. For the acquisition, expression and application of knowledge in practice, there was emphasis on how the social constructivist theory supports clinicians in expressing this knowledge in their professional interactions. Conclusions This

  13. 3-D Color Wheels

    ERIC Educational Resources Information Center

    DuBois, Ann

    2010-01-01

    The blending of information from an academic class with projects from art class can do nothing but strengthen the learning power of the student. Creating three-dimensional color wheels provides the perfect opportunity to combine basic geometry knowledge with color theory. In this article, the author describes how her seventh-grade painting…

  14. Toward a Learning Health-care System - Knowledge Delivery at the Point of Care Empowered by Big Data and NLP.

    PubMed

    Kaggal, Vinod C; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P; Ross, Jason L; Chaudhry, Rajeev; Buntrock, James D; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future. PMID:27385912

  15. Safety and quality in healthcare: what can England and Australia learn from each other?

    PubMed

    Smallwood, Richard

    2003-01-01

    Australia and England have similar healthcare systems. They are affordable and accessible to all; both are blessed with health professionals of great skill. Anybody who falls ill in either country can expect a high standard of care. And yet, all is not well. The care we give our patients is not as safe as it should be and the community is becoming well aware of this. Our public healthcare systems never seem to have enough resources; our public hospitals show varying degrees of dilapidation. Access to care, while universal, is too often delayed. The medical workforce is understaffed, maldistributed (or both) and the shortage of nurses is of great concern. In both professions, morale is fragile. What, then, can be done to improve the safety and quality of healthcare in Australia and England? PMID:12617419

  16. Balancing student/trainee learning with the delivery of patient care in the healthcare workplace: a protocol for realist synthesis

    PubMed Central

    Sholl, Sarah; Ajjawi, Rola; Allbutt, Helen; Butler, Jane; Jindal-Snape, Divya; Morrison, Jill; Rees, Charlotte

    2016-01-01

    Introduction A national survey was recently conducted to explore medical education research priorities in Scotland. The identified themes and underlying priority areas can be linked to current medical education drivers in the UK. The top priority area rated by stakeholders was: ‘Understanding how to balance service and training conflicts’. Despite its perceived importance, a preliminary scoping exercise revealed the least activity with respect to published literature reviews. This protocol has therefore been developed so as to understand how patient care, other service demands and student/trainee learning can be simultaneously facilitated within the healthcare workplace. The review will identify key interventions designed to balance patient care and student/trainee learning, to understand how and why such interventions produce their effects. Our research questions seek to address how identified interventions enable balanced patient care-trainee learning within the healthcare workplace, for whom, why and under what circumstances. Methods and analysis Pawson's five stages for undertaking a realist review underpin this protocol. These stages may progress in a non-linear fashion due to the iterative nature of the review process. We will: (1) clarify the scope of the review, identifying relevant interventions and existing programme theories, understanding how interventions act to produce their intended outcomes; (2) search journal articles and grey literature for empirical evidence from 1998 (introduction of the European Working Time Directive) on the UK multidisciplinary team working concerning these interventions, theories and outcomes, using databases such as ERIC, Scopus and CINAHL; (3) assess study quality; (4) extract data; and (5) synthesise data, drawing conclusions. Ethics and dissemination A formal ethical review is not required. These findings should provide an important understanding of how workplace-based interventions influence the balance of trainee

  17. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  19. Exploratory Research on the Effect of Autonomous Learners to Team Learning within Healthcare Systems

    ERIC Educational Resources Information Center

    Goodman, Patricia R.; Chalofsky, Neal

    2005-01-01

    How does individual learning impact team learning? Through an exploratory case study, data was collected from questionnaires, documentation review, observations, and interviews. Three themes emerged describing how an autonomous learner affected team learning. The results indicated that the autonomous learner influenced team learning through…

  20. Learning from people with long-term conditions: new insights for governance in primary healthcare.

    PubMed

    Ross, Fiona; Smith, Pam; Byng, Richard; Christian, Sara; Allan, Helen; Price, Linnie; Brearley, Sally

    2014-07-01

    The introduction of top-down centrally driven solutions to governance of healthcare, at the same time as increasing policy emphasis on greater 'bottom up' patient and public involvement in all aspects of healthcare, has set up complex tensions for policy implementation and healthcare practice. This paper explores the interplay of these agendas in the context of changes in primary healthcare services provided by the National Health Service in England. Specifically, it looks at service user involvement in a qualitative study of the professional response to changes in the governance and incentives in the care of people with long-term conditions. Service users influenced and guided the study at local and national levels. Vignettes of patient stories developed by service users informed in-depth interviews with 56 health and social care professionals engaged in the development of local policies and services for people with complex long-term illness, and themes generated by cross case analysis were validated through service users. The findings presented here focus on four themes about risk and comparison of professionals' and service users' perspectives of the issues: managing risks/consistent support, the risks of letting go/feeling in control, professional identity/helping people to help themselves, and managing expectations/professionals losing out. In this study, service user involvement added value by validating understandings of governance, framing debates to focus on what matters at the point of care and enabling perspective sharing and interaction. We suggest that more collaborative forms of governance in healthcare that take account of service user perspectives and enable interaction with professional groups could help validate processes of quality assurance and provide motivation for continuous quality improvement. We offer a model for 'opening up' collaborative projects to evaluation and critical reflection of the interrelationships between the context, methods

  1. Corporate E-Learning: How Three Healthcare Companies Implement and Measure the Effectiveness of E-Learning

    ERIC Educational Resources Information Center

    Hodges, Allison

    2009-01-01

    Technological advancements such as the growth of the Internet provide opportunities for learning that are hard to resist. As technology continues to change at a rapid pace, e-learning has become an important priority of corporate education. E-learning is evolving as a way to train and enhance employee value by combining different learning styles…

  2. Spacecraft 3D Augmented Reality Mobile App

    NASA Technical Reports Server (NTRS)

    Hussey, Kevin J.; Doronila, Paul R.; Kumanchik, Brian E.; Chan, Evan G.; Ellison, Douglas J.; Boeck, Andrea; Moore, Justin M.

    2013-01-01

    The Spacecraft 3D application allows users to learn about and interact with iconic NASA missions in a new and immersive way using common mobile devices. Using Augmented Reality (AR) techniques to project 3D renditions of the mission spacecraft into real-world surroundings, users can interact with and learn about Curiosity, GRAIL, Cassini, and Voyager. Additional updates on future missions, animations, and information will be ongoing. Using a printed AR Target and camera on a mobile device, users can get up close with these robotic explorers, see how some move, and learn about these engineering feats, which are used to expand knowledge and understanding about space. The software receives input from the mobile device's camera to recognize the presence of an AR marker in the camera's field of view. It then displays a 3D rendition of the selected spacecraft in the user's physical surroundings, on the mobile device's screen, while it tracks the device's movement in relation to the physical position of the spacecraft's 3D image on the AR marker.

  3. Immersive 3D geovisualisation in higher education

    NASA Astrophysics Data System (ADS)

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2014-05-01

    Through geovisualisation we explore spatial data, we analyse it towards a specific questions, we synthesise results, and we present and communicate them to a specific audience (MacEachren & Kraak 1997). After centuries of paper maps, the means to represent and visualise our physical environment and its abstract qualities have changed dramatically since the 1990s - and accordingly the methods how to use geovisualisation in teaching. Whereas some people might still consider the traditional classroom as ideal setting for teaching and learning geographic relationships and its mapping, we used a 3D CAVE (computer-animated virtual environment) as environment for a problem-oriented learning project called "GEOSimulator". Focussing on this project, we empirically investigated, if such a technological advance like the CAVE make 3D visualisation, including 3D geovisualisation, not only an important tool for businesses (Abulrub et al. 2012) and for the public (Wissen et al. 2008), but also for educational purposes, for which it had hardly been used yet. The 3D CAVE is a three-sided visualisation platform, that allows for immersive and stereoscopic visualisation of observed and simulated spatial data. We examined the benefits of immersive 3D visualisation for geographic research and education and synthesized three fundamental technology-based visual aspects: First, the conception and comprehension of space and location does not need to be generated, but is instantaneously and intuitively present through stereoscopy. Second, optical immersion into virtual reality strengthens this spatial perception which is in particular important for complex 3D geometries. And third, a significant benefit is interactivity, which is enhanced through immersion and allows for multi-discursive and dynamic data exploration and knowledge transfer. Based on our problem-oriented learning project, which concentrates on a case study on flood risk management at the Wilde Weisseritz in Germany, a river

  4. Predicting the learning and consultation time in a computerized primary healthcare clinic.

    PubMed

    Blignaut, P J; McDonald, T; Tolmie, C J

    2001-01-01

    Managers would like to know how long it takes healthcare service providers to achieve the same throughput of patients per day that they were used to with a pen-and-paper system. This study has been undertaken to derive a model for predicting the time it takes a service provider from a previously disadvantaged community to enter a patient's record in terms of his or her experience and the number of data units that have to be captured. A model was also derived to predict the average consultation time in terms of the number of data units that are captured by an experienced service provider. It can be inferred that healthcare service providers should be allowed at least 6 months of computerized system experience before any decisions about the success of the technology introduction can be made. PMID:11391885

  5. Fusion of multisensor passive and active 3D imagery

    NASA Astrophysics Data System (ADS)

    Fay, David A.; Verly, Jacques G.; Braun, Michael I.; Frost, Carl E.; Racamato, Joseph P.; Waxman, Allen M.

    2001-08-01

    We have extended our previous capabilities for fusion of multiple passive imaging sensors to now include 3D imagery obtained from a prototype flash ladar. Real-time fusion of low-light visible + uncooled LWIR + 3D LADAR, and SWIR + LWIR + 3D LADAR is demonstrated. Fused visualization is achieved by opponent-color neural networks for passive image fusion, which is then textured upon segmented object surfaces derived from the 3D data. An interactive viewer, coded in Java3D, is used to examine the 3D fused scene in stereo. Interactive designation, learning, recognition and search for targets, based on fused passive + 3D signatures, is achieved using Fuzzy ARTMAP neural networks with a Java-coded GUI. A client-server web-based architecture enables remote users to interact with fused 3D imagery via a wireless palmtop computer.

  6. Action Learning: Developing Leaders and Supporting Change in a Healthcare Context

    ERIC Educational Resources Information Center

    Doyle, Louise

    2014-01-01

    This account of practice outlines how action learning was used as the key component of a leadership development initiative for managers in an acute hospital setting. It explains how the initiative was conceived, why action learning was chosen and how action learning principles were incorporated. Insights into the outcomes and considerations for…

  7. Open Source Software and Design-Based Research Symbiosis in Developing 3D Virtual Learning Environments: Examples from the iSocial Project

    ERIC Educational Resources Information Center

    Schmidt, Matthew; Galyen, Krista; Laffey, James; Babiuch, Ryan; Schmidt, Carla

    2014-01-01

    Design-based research (DBR) and open source software are both acknowledged as potentially productive ways for advancing learning technologies. These approaches have practical benefits for the design and development process and for building and leveraging community to augment and sustain design and development. This report presents a case study of…

  8. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  9. Incorporation of learned shape priors into a graph-theoretic approach with application to the 3D segmentation of intraretinal surfaces in SD-OCT volumes of mice

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Song, Qi; Abràmoff, Michael D.; Sohn, Eliott; Wu, Xiaodong; Garvin, Mona K.

    2014-03-01

    Spectral-domain optical coherence tomography (SD-OCT) finds widespread use clinically for the detection and management of ocular diseases. This non-invasive imaging modality has also begun to find frequent use in research studies involving animals such as mice. Numerous approaches have been proposed for the segmentation of retinal surfaces in SD-OCT images obtained from human subjects; however, the segmentation of retinal surfaces in mice scans is not as well-studied. In this work, we describe a graph-theoretic segmentation approach for the simultaneous segmentation of 10 retinal surfaces in SD-OCT scans of mice that incorporates learned shape priors. We compared the method to a baseline approach that did not incorporate learned shape priors and observed that the overall unsigned border position errors reduced from 3.58 +/- 1.33 μm to 3.20 +/- 0.56 μm.

  10. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  11. Making sense of the shadows: priorities for creating a learning healthcare system based on routinely collected data

    PubMed Central

    Deeny, Sarah R; Steventon, Adam

    2015-01-01

    Socrates described a group of people chained up inside a cave, who mistook shadows of objects on a wall for reality. This allegory comes to mind when considering ‘routinely collected data’—the massive data sets, generated as part of the routine operation of the modern healthcare service. There is keen interest in routine data and the seemingly comprehensive view of healthcare they offer, and we outline a number of examples in which they were used successfully, including the Birmingham OwnHealth study, in which routine data were used with matched control groups to assess the effect of telephone health coaching on hospital utilisation. Routine data differ from data collected primarily for the purposes of research, and this means that analysts cannot assume that they provide the full or accurate clinical picture, let alone a full description of the health of the population. We show that major methodological challenges in using routine data arise from the difficulty of understanding the gap between patient and their ‘data shadow’. Strategies to overcome this challenge include more extensive data linkage, developing analytical methods and collecting more data on a routine basis, including from the patient while away from the clinic. In addition, creating a learning health system will require greater alignment between the analysis and the decisions that will be taken; between analysts and people interested in quality improvement; and between the analysis undertaken and public attitudes regarding appropriate use of data. PMID:26065466

  12. Making sense of the shadows: priorities for creating a learning healthcare system based on routinely collected data.

    PubMed

    Deeny, Sarah R; Steventon, Adam

    2015-08-01

    Socrates described a group of people chained up inside a cave, who mistook shadows of objects on a wall for reality. This allegory comes to mind when considering 'routinely collected data'-the massive data sets, generated as part of the routine operation of the modern healthcare service. There is keen interest in routine data and the seemingly comprehensive view of healthcare they offer, and we outline a number of examples in which they were used successfully, including the Birmingham OwnHealth study, in which routine data were used with matched control groups to assess the effect of telephone health coaching on hospital utilisation.Routine data differ from data collected primarily for the purposes of research, and this means that analysts cannot assume that they provide the full or accurate clinical picture, let alone a full description of the health of the population. We show that major methodological challenges in using routine data arise from the difficulty of understanding the gap between patient and their 'data shadow'. Strategies to overcome this challenge include more extensive data linkage, developing analytical methods and collecting more data on a routine basis, including from the patient while away from the clinic. In addition, creating a learning health system will require greater alignment between the analysis and the decisions that will be taken; between analysts and people interested in quality improvement; and between the analysis undertaken and public attitudes regarding appropriate use of data. PMID:26065466

  13. Best interests in the MCA 2005--what can healthcare law learn from family law?

    PubMed

    Choudhry, Shazia

    2008-09-01

    The 'best interests' standard is a highly seductive standard in English law. Not only does it appear to be fairly uncontroversial but it also presents as the most sensible, objective and 'fair' method of dealing with decision making on behalf of those who are perceived to be the most vulnerable within society. This article aims to provide a critical appraisal of how the standard has been applied within family law, to outline how the standard is to be applied within healthcare law and, finally, to assess the relevance of the family law experience of the best interests standard to the operation of the standards as envisaged by the MCA. PMID:18677570

  14. Are Educators Actually Coaches? The Implication of Teaching and Learning via Simulation in Education in Healthcare Professions

    PubMed Central

    Janes, William C. I; Silvey, Dustin

    2016-01-01

    Simulation is a unique pedagogical tool designed specifically to develop skills, attitudes, behaviors, and knowledge using experiential learning. Though the teachers in the field of simulation are known as educators, they are generally categorized as educators or coaches and must employ unique pedagogic approaches. Though the aspects of educating and coaching are similar, there are numerous differences that set the two roles apart. Thus, the purpose of this editorial is to highlight the differences between the two roles and also to contextualize their differences, as they relate to simulation in healthcare professions, teaching, and learning. The fundamental proposition of this editorial is to highlight that the teachers who use simulation as their teaching and learning technology function as coaches and not educators as they are currently labeled. Like Haji et al. propose in their article titled "What we call what we do affects how we do it: a new nomenclature for simulation research in medical education," we propose that there needs to be a slight shift in the nomenclature of simulation.

  15. 3D fast wavelet network model-assisted 3D face recognition

    NASA Astrophysics Data System (ADS)

    Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri

    2015-12-01

    In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.

  16. A Discussion Paper on the Assessment of Student Learning Outcomes for Healthcare Management

    ERIC Educational Resources Information Center

    Roberts, Velma; Perryman, Martha; Rivers, Patrick A.

    2009-01-01

    As employers, parents, and policy makers demand more accountability from higher education, transferring student learning to health services management practice is more important than ever. If educators want to give these stakeholders the evidence-based performance results they expect, assessment of student learning outcomes, as well as aggregate…

  17. Distance Learning as a Viable Staff Development Alternative for Behavioral Healthcare Direct Support Professionals

    ERIC Educational Resources Information Center

    Gill, James G., Jr.

    2011-01-01

    This quasi-experiment utilized three groups of direct service staff to explore the effectiveness of three methods of training and an optional survey was offered after the study. The researcher used a counterbalance design. Three courses developed by an independent distance learning company were utilized to provide the learning experience. Each…

  18. Modular 3-D Transport model

    EPA Science Inventory

    MT3D was first developed by Chunmiao Zheng in 1990 at S.S. Papadopulos & Associates, Inc. with partial support from the U.S. Environmental Protection Agency (USEPA). Starting in 1990, MT3D was released as a pubic domain code from the USEPA. Commercial versions with enhanced capab...

  19. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  20. LLNL-Earth3D

    Energy Science and Technology Software Center (ESTSC)

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  1. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  2. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D World Building System

    ScienceCinema

    None

    2014-02-26

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  5. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  6. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  7. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  10. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  11. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  12. Engineering a learning healthcare system: using health information technology to develop an objective nurse staffing tool.

    PubMed

    Harper, Ellen M

    2012-01-01

    Nurses represent the largest proportion of direct healthcare providers. Overstaffed or understaffed units will have implications for the quality, cost, patient, and nurse satisfaction. It is vital that nurses are armed with appropriate instruments and data to help them plan and implement efficient and effective nursing teams. A compelling case is made for the association between nursing care and clinical, quality, and financial outcomes. Even though there is a great body of work on the correlation, there is little agreement on the best approach to determine the correct balance between the patient-to-nurse ratios. The sheer number of variables depicted in the literature suggests why precise evidenced based formulas are difficult to achieve. This paper will describe a practice based knowledge generation mixed methods study using detailed observation and electronic health record abstraction to generate a structural equation for use in predicting staffing needs. PMID:24199075

  13. Learning from Listening: Helping Healthcare Students to Understand Spiritual Assessment in Clinical Practice.

    PubMed

    Gonçalves, Lídia Maria; Osório, Igraíne Helena Scholz; Oliveira, Luan Leal; Simonetti, Lígia Rodrigues; dos Reis, Edilson; Lucchetti, Giancarlo

    2016-06-01

    We aim to evaluate the perceptions of healthcare students while taking a spiritual history (SH). Fifty students were trained on how to take a SH, interviewed inpatients and answered a questionnaire concerning their perceptions. A total of 362 patients were interviewed: 60.1% of students felt comfortable taking a SH, 85.1% believed the patient liked the approach, and 72.1% believed more benefits could come with a follow-up. When students felt more comfortable, they tended to believe the patient: liked the approach (p < 0.01), felt better (p < 0.01) and more motivated (p < 0.01). Spirituality/health educational strategies may be a valid strategy to prepare future health professionals to face spiritual issues in health scenarios. PMID:26515368

  14. Engineering a Learning Healthcare System: Using Health Information Technology to Develop an Objective Nurse Staffing Tool

    PubMed Central

    Harper, Ellen M

    2012-01-01

    Nurses represent the largest proportion of direct healthcare providers. Overstaffed or understaffed units will have implications for the quality, cost, patient, and nurse satisfaction. It is vital that nurses are armed with appropriate instruments and data to help them plan and implement efficient and effective nursing teams. A compelling case is made for the association between nursing care and clinical, quality, and financial outcomes. Even though there is a great body of work on the correlation, there is little agreement on the best approach to determine the correct balance between the patient-to-nurse ratios. The sheer number of variables depicted in the literature suggests why precise evidenced based formulas are difficult to achieve. This paper will describe a practice based knowledge generation mixed methods study using detailed observation and electronic health record abstraction to generate a structural equation for use in predicting staffing needs. PMID:24199075

  15. Bioprinting of 3D hydrogels.

    PubMed

    Stanton, M M; Samitier, J; Sánchez, S

    2015-08-01

    Three-dimensional (3D) bioprinting has recently emerged as an extension of 3D material printing, by using biocompatible or cellular components to build structures in an additive, layer-by-layer methodology for encapsulation and culture of cells. These 3D systems allow for cell culture in a suspension for formation of highly organized tissue or controlled spatial orientation of cell environments. The in vitro 3D cellular environments simulate the complexity of an in vivo environment and natural extracellular matrices (ECM). This paper will focus on bioprinting utilizing hydrogels as 3D scaffolds. Hydrogels are advantageous for cell culture as they are highly permeable to cell culture media, nutrients, and waste products generated during metabolic cell processes. They have the ability to be fabricated in customized shapes with various material properties with dimensions at the micron scale. 3D hydrogels are a reliable method for biocompatible 3D printing and have applications in tissue engineering, drug screening, and organ on a chip models. PMID:26066320

  16. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  17. Arena3D: visualization of biological networks in 3D

    PubMed Central

    Pavlopoulos, Georgios A; O'Donoghue, Seán I; Satagopam, Venkata P; Soldatos, Theodoros G; Pafilis, Evangelos; Schneider, Reinhard

    2008-01-01

    Background Complexity is a key problem when visualizing biological networks; as the number of entities increases, most graphical views become incomprehensible. Our goal is to enable many thousands of entities to be visualized meaningfully and with high performance. Results We present a new visualization tool, Arena3D, which introduces a new concept of staggered layers in 3D space. Related data – such as proteins, chemicals, or pathways – can be grouped onto separate layers and arranged via layout algorithms, such as Fruchterman-Reingold, distance geometry, and a novel hierarchical layout. Data on a layer can be clustered via k-means, affinity propagation, Markov clustering, neighbor joining, tree clustering, or UPGMA ('unweighted pair-group method with arithmetic mean'). A simple input format defines the name and URL for each node, and defines connections or similarity scores between pairs of nodes. The use of Arena3D is illustrated with datasets related to Huntington's disease. Conclusion Arena3D is a user friendly visualization tool that is able to visualize biological or any other network in 3D space. It is free for academic use and runs on any platform. It can be downloaded or lunched directly from . Java3D library and Java 1.5 need to be pre-installed for the software to run. PMID:19040715

  18. Fdf in US3D

    NASA Astrophysics Data System (ADS)

    Otis, Collin; Ferrero, Pietro; Candler, Graham; Givi, Peyman

    2013-11-01

    The scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. This is an unstructured Eulerian finite volume hydrodynamic solver and has proven very effective for simulation of compressible turbulent flows. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) on unstructured meshes. Simulations are conducted of subsonic and supersonic flows under non-reacting and reacting conditions. The consistency and the accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. The SFMDF-US3D is now capable of simulating high speed flows in complex configurations.

  19. ESL Teacher Training in 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Kozlova, Iryna; Priven, Dmitri

    2015-01-01

    Although language learning in 3D Virtual Worlds (VWs) has become a focus of recent research, little is known about the knowledge and skills teachers need to acquire to provide effective task-based instruction in 3D VWs and the type of teacher training that best prepares instructors for such an endeavor. This study employs a situated learning…

  20. Wavefront construction in 3-D

    SciTech Connect

    Chilcoat, S.R. Hildebrand, S.T.

    1995-12-31

    Travel time computation in inhomogeneous media is essential for pre-stack Kirchhoff imaging in areas such as the sub-salt province in the Gulf of Mexico. The 2D algorithm published by Vinje, et al, has been extended to 3D to compute wavefronts in complicated inhomogeneous media. The 3D wavefront construction algorithm provides many advantages over conventional ray tracing and other methods of computing travel times in 3D. The algorithm dynamically maintains a reasonably consistent ray density without making a priori guesses at the number of rays to shoot. The determination of caustics in 3D is a straight forward geometric procedure. The wavefront algorithm also enables the computation of multi-valued travel time surfaces.

  1. Heterodyne 3D ghost imaging

    NASA Astrophysics Data System (ADS)

    Yang, Xu; Zhang, Yong; Yang, Chenghua; Xu, Lu; Wang, Qiang; Zhao, Yuan

    2016-06-01

    Conventional three dimensional (3D) ghost imaging measures range of target based on pulse fight time measurement method. Due to the limit of data acquisition system sampling rate, range resolution of the conventional 3D ghost imaging is usually low. In order to take off the effect of sampling rate to range resolution of 3D ghost imaging, a heterodyne 3D ghost imaging (HGI) system is presented in this study. The source of HGI is a continuous wave laser instead of pulse laser. Temporal correlation and spatial correlation of light are both utilized to obtain the range image of target. Through theory analysis and numerical simulations, it is demonstrated that HGI can obtain high range resolution image with low sampling rate.

  2. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    The availability of 3D hardware has so far outpaced the production of 3D content. Although to date many methods have been proposed to convert 2D images to 3D stereopairs, the most successful ones involve human operators and, therefore, are time-consuming and costly, while the fully-automatic ones have not yet achieved the same level of quality. This subpar performance is due to the fact that automatic methods usually rely on assumptions about the captured 3D scene that are often violated in practice. In this paper, we explore a radically different approach inspired by our work on saliency detection in images. Instead of relying on a deterministic scene model for the input 2D image, we propose to "learn" the model from a large dictionary of stereopairs, such as YouTube 3D. Our new approach is built upon a key observation and an assumption. The key observation is that among millions of stereopairs available on-line, there likely exist many stereopairs whose 3D content matches that of the 2D input (query). We assume that two stereopairs whose left images are photometrically similar are likely to have similar disparity fields. Our approach first finds a number of on-line stereopairs whose left image is a close photometric match to the 2D query and then extracts depth information from these stereopairs. Since disparities for the selected stereopairs differ due to differences in underlying image content, level of noise, distortions, etc., we combine them by using the median. We apply the resulting median disparity field to the 2D query to obtain the corresponding right image, while handling occlusions and newly-exposed areas in the usual way. We have applied our method in two scenarios. First, we used YouTube 3D videos in search of the most similar frames. Then, we repeated the experiments on a small, but carefully-selected, dictionary of stereopairs closely matching the query. This, to a degree, emulates the results one would expect from the use of an extremely large 3D

  3. 3D Holographic Technology and Its Educational Potential

    ERIC Educational Resources Information Center

    Lee, Hyangsook

    2013-01-01

    This article discusses a number of significant developments in 3D holographic technology, its potential to revolutionize aspects of teaching and learning, and challenges of implementing the technology in educational settings.

  4. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  5. What is 3D good for? A review of human performance on stereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    This work reviews the human factors-related literature on the task performance implications of stereoscopic 3D displays, in order to point out the specific performance benefits (or lack thereof) one might reasonably expect to observe when utilizing these displays. What exactly is 3D good for? Relative to traditional 2D displays, stereoscopic displays have been shown to enhance performance on a variety of depth-related tasks. These tasks include judging absolute and relative distances, finding and identifying objects (by breaking camouflage and eliciting perceptual "pop-out"), performing spatial manipulations of objects (object positioning, orienting, and tracking), and navigating. More cognitively, stereoscopic displays can improve the spatial understanding of 3D scenes or objects, improve memory/recall of scenes or objects, and improve learning of spatial relationships and environments. However, for tasks that are relatively simple, that do not strictly require depth information for good performance, where other strong cues to depth can be utilized, or for depth tasks that lie outside the effective viewing volume of the display, the purported performance benefits of 3D may be small or altogether absent. Stereoscopic 3D displays come with a host of unique human factors problems including the simulator-sickness-type symptoms of eyestrain, headache, fatigue, disorientation, nausea, and malaise, which appear to effect large numbers of viewers (perhaps as many as 25% to 50% of the general population). Thus, 3D technology should be wielded delicately and applied carefully; and perhaps used only as is necessary to ensure good performance.

  6. 3D printed microfluidics for biological applications.

    PubMed

    Ho, Chee Meng Benjamin; Ng, Sum Huan; Li, King Ho Holden; Yoon, Yong-Jin

    2015-01-01

    The term "Lab-on-a-Chip," is synonymous with describing microfluidic devices with biomedical applications. Even though microfluidics have been developing rapidly over the past decade, the uptake rate in biological research has been slow. This could be due to the tedious process of fabricating a chip and the absence of a "killer application" that would outperform existing traditional methods. In recent years, three dimensional (3D) printing has been drawing much interest from the research community. It has the ability to make complex structures with high resolution. Moreover, the fast building time and ease of learning has simplified the fabrication process of microfluidic devices to a single step. This could possibly aid the field of microfluidics in finding its "killer application" that will lead to its acceptance by researchers, especially in the biomedical field. In this paper, a review is carried out of how 3D printing helps to improve the fabrication of microfluidic devices, the 3D printing technologies currently used for fabrication and the future of 3D printing in the field of microfluidics. PMID:26237523

  7. GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare.

    PubMed

    Ali, Rahman; Siddiqi, Muhammad Hameed; Idris, Muhammad; Ali, Taqdir; Hussain, Shujaat; Huh, Eui-Nam; Kang, Byeong Ho; Lee, Sungyoung

    2015-01-01

    A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM) to provide a global unified data structure for all data sources and generate a unified dataset by a "data modeler" tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets. PMID:26147731

  8. GUDM: Automatic Generation of Unified Datasets for Learning and Reasoning in Healthcare

    PubMed Central

    Ali, Rahman; Siddiqi, Muhammad Hameed; Idris, Muhammad; Ali, Taqdir; Hussain, Shujaat; Huh, Eui-Nam; Kang, Byeong Ho; Lee, Sungyoung

    2015-01-01

    A wide array of biomedical data are generated and made available to healthcare experts. However, due to the diverse nature of data, it is difficult to predict outcomes from it. It is therefore necessary to combine these diverse data sources into a single unified dataset. This paper proposes a global unified data model (GUDM) to provide a global unified data structure for all data sources and generate a unified dataset by a “data modeler” tool. The proposed tool implements user-centric priority based approach which can easily resolve the problems of unified data modeling and overlapping attributes across multiple datasets. The tool is illustrated using sample diabetes mellitus data. The diverse data sources to generate the unified dataset for diabetes mellitus include clinical trial information, a social media interaction dataset and physical activity data collected using different sensors. To realize the significance of the unified dataset, we adopted a well-known rough set theory based rules creation process to create rules from the unified dataset. The evaluation of the tool on six different sets of locally created diverse datasets shows that the tool, on average, reduces 94.1% time efforts of the experts and knowledge engineer while creating unified datasets. PMID:26147731

  9. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. Designing Virtual Museum Using Web3D Technology

    NASA Astrophysics Data System (ADS)

    Zhao, Jianghai

    VRT was born to have the potentiality of constructing an effective learning environment due to its 3I characteristics: Interaction, Immersion and Imagination. It is now applied in education in a more profound way along with the development of VRT. Virtual Museum is one of the applications. The Virtual Museum is based on the WEB3D technology and extensibility is the most important factor. Considering the advantage and disadvantage of each WEB3D technology, VRML, CULT3D AND VIEWPOINT technologies are chosen. A web chatroom based on flash and ASP technology is also been created in order to make the Virtual Museum an interactive learning environment.

  11. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  12. Lessons Learned from Implementation of Information and Communication Technologies in Spain's Healthcare Services

    PubMed Central

    Carnicero, J.; Rojas, D.

    2010-01-01

    Background Spain’s health services have undertaken a number of important projects aimed at the creation of Electronic Health Records (EHR) through the incorporation of Information and Communication Technologies (ICT) into patient care practices. The objective of this endeavor is to improve care quality and efficiency and increase responsiveness to the population's needs and demands. Between 2006-2009 over 300 million Euro were invested in projects of this type. Objective To better understand the success criteria, the difficulties encountered and certain issues that must be kept in mind to ensure successful implementation of ICT projects in health organizations, based on Spain's experiences in this field. Methods The projects' results are analyzed using the criteria of compliance with the expected scope, cost and time frame. Results The results can be considered satisfactory in primary care facilities, where almost 90% of Spain's general practitioners, pediatricians and primary care nurses are using electronic health record (EHR) systems. In hospitals EHR implementation is more uneven. Over 40% of Spanish primary care centers and 42% of pharmacies are using electronic prescription (the information system that connects the physician to the dispensing pharmacy and the dispensing pharmacy to the payer). Discussion All of Spain’s health services are currently carrying out projects involving ICT application in healthcare, and a priori the benefits of ICT are not questioned. However, the costs and time frames required for these projects are clearly surpassing initial expectations, while the benefits perceived by both professionals and institutions remain limited. This situation may be due in part to the absence of a project management culture in the health services, which has led them to pay insufficient attention to the main difficulties and key issues related to the implementation of EHR. PMID:23616846

  13. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  14. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  15. Emergence of 3D Printed Dosage Forms: Opportunities and Challenges.

    PubMed

    Alhnan, Mohamed A; Okwuosa, Tochukwu C; Sadia, Muzna; Wan, Ka-Wai; Ahmed, Waqar; Arafat, Basel

    2016-08-01

    The recent introduction of the first FDA approved 3D-printed drug has fuelled interest in 3D printing technology, which is set to revolutionize healthcare. Since its initial use, this rapid prototyping (RP) technology has evolved to such an extent that it is currently being used in a wide range of applications including in tissue engineering, dentistry, construction, automotive and aerospace. However, in the pharmaceutical industry this technology is still in its infancy and its potential yet to be fully explored. This paper presents various 3D printing technologies such as stereolithographic, powder based, selective laser sintering, fused deposition modelling and semi-solid extrusion 3D printing. It also provides a comprehensive review of previous attempts at using 3D printing technologies on the manufacturing dosage forms with a particular focus on oral tablets. Their advantages particularly with adaptability in the pharmaceutical field have been highlighted, which enables the preparation of dosage forms with complex designs and geometries, multiple actives and tailored release profiles. An insight into the technical challenges facing the different 3D printing technologies such as the formulation and processing parameters is provided. Light is also shed on the different regulatory challenges that need to be overcome for 3D printing to fulfil its real potential in the pharmaceutical industry. PMID:27194002

  16. The cranial nerve skywalk: A 3D tutorial of cranial nerves in a virtual platform.

    PubMed

    Richardson-Hatcher, April; Hazzard, Matthew; Ramirez-Yanez, German

    2014-01-01

    Visualization of the complex courses of the cranial nerves by students in the health-related professions is challenging through either diagrams in books or plastic models in the gross laboratory. Furthermore, dissection of the cranial nerves in the gross laboratory is an extremely meticulous task. Teaching and learning the cranial nerve pathways is difficult using two-dimensional (2D) illustrations alone. Three-dimensional (3D) models aid the teacher in describing intricate and complex anatomical structures and help students visualize them. The study of the cranial nerves can be supplemented with 3D, which permits the students to fully visualize their distribution within the craniofacial complex. This article describes the construction and usage of a virtual anatomy platform in Second Life™, which contains 3D models of the cranial nerves III, V, VII, and IX. The Cranial Nerve Skywalk features select cranial nerves and the associated autonomic pathways in an immersive online environment. This teaching supplement was introduced to groups of pre-healthcare professional students in gross anatomy courses at both institutions and student feedback is included. PMID:24678025

  17. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia. PMID:26854878

  18. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  19. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2003-05-12

    This project is in its first full year after the combining of two previously funded projects: ''3D Code Development'' and ''Dynamic Material Properties''. The motivation behind this move was to emphasize and strengthen the ties between the experimental work and the computational model development in the materials area. The next year's activities will indicate the merging of the two efforts. The current activity is structured in two tasks. Task A, ''Simulations and Measurements'', combines all the material model development and associated numerical work with the materials-oriented experimental activities. Task B, ''ALE3D Development'', is a continuation of the non-materials related activities from the previous project.

  20. Enhancing pathways & mental healthcare for BME groups: learning between the ideological and operational.

    PubMed

    Moffat, Joanne; Sass, Bernd; McKenzie, Kwame; Bhui, Kamaldeep

    2009-01-01

    Improving pathways to care is one of the aims of the Department of Health's plan for improving mental health services for black and minority ethnic (BME) groups. However, service providers have not been supplied with the information and advice on how to improve routes into and through their services for ethnic minorities. The Enhancing Pathways Into Care (EPIC) project provided four clinical teams and mental health providers a process of focused consultancy and a collaborative learning network in order to evolve pathways to recovery. This paper documents the project implementation between January 2006 and March 2007. We report here the key lessons about recruiting innovative and gifted sites to this programme, and the benefits in terms of team development, understanding leadership and operational delivery of a vision. Three of the four sites completed an evaluation consisting of a race equality impact assessment. The project revealed that keys to success include a reflective use of team strengths, engagement of stakeholders from boardroom to clinical teams, transformational leadership, transmission of leadership to more appropriate leaders for different stages of the project, a reflective learning style that permits obstacles to be embraced and managed, and cycles of movement between 'ideological' and 'operational' phases of the project. PMID:20374160

  1. Collecting, Integrating, and Disseminating Patient-Reported Outcomes for Research in a Learning Healthcare System

    PubMed Central

    Harle, Christopher A.; Lipori, Gloria; Hurley, Robert W.

    2016-01-01

    Introduction: Advances in health policy, research, and information technology have converged to increase the electronic collection and use of patient-reported outcomes (PROs). Therefore, it is important to share lessons learned in implementing PROs in research information systems. Case Description: The purpose of this case study is to describe a novel information system for electronic PROs and lessons learned in implementing that system to support research in an academic health center. The system incorporates freely available and commercial software and involves clinical and research workflows that support the collection, transformation, and research use of PRO data. The software and processes that comprise the system serve three main functions, (i) collecting electronic PROs in clinical care, (ii) integrating PRO data with non-patient generated clinical data, and (iii) disseminating data to researchers through the institution’s research informatics infrastructure, including the i2b2 (Informatics for Integrating Biology and the Bedside) system. Strategies: Our successful design and implementation was driven by three overarching strategies. First, we selected and implemented multiple interfaced technologies to support PRO collection, management, and research use. Second, we aimed to use standardized approaches to measuring PROs, sending PROs between systems, and disseminating PROs. Finally, we focused on using technologies and processes that aligned with existing clinical research information management strategies within our organization. Conclusion: These experiences and lessons may help future implementers and researchers enhance the scale and sustainable use of systems for research use of PROs. PMID:27563683

  2. Autonomous Exploration for 3D Map Learning

    NASA Astrophysics Data System (ADS)

    Joho, Dominik; Stachniss, Cyrill; Pfaff, Patrick; Burgard, Wolfram

    Autonomous exploration is a frequently addressed problem in the robotics community. This paper presents an approach to mobile robot exploration that takes into account that the robot acts in the three-dimensional space. Our approach can build compact three-dimensional models autonomously and is able to deal with negative obstacles such as abysms. It applies a decision-theoretic framework which considers the uncertainty in the map to evaluate potential actions. Thereby, it trades off the cost of executing an action with the expected information gain taking into account possible sensor measurements. We present experimental results obtained with a real robot and in simulation.

  3. SNL3dFace

    Energy Science and Technology Software Center (ESTSC)

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  4. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  5. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  6. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  7. 3D object retrieval using salient views.

    PubMed

    Atmosukarto, Indriyati; Shapiro, Linda G

    2013-06-01

    This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223-232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223-232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. PMID:23833704

  8. 3D object retrieval using salient views

    PubMed Central

    Shapiro, Linda G.

    2013-01-01

    This paper presents a method for selecting salient 2D views to describe 3D objects for the purpose of retrieval. The views are obtained by first identifying salient points via a learning approach that uses shape characteristics of the 3D points (Atmosukarto and Shapiro in International workshop on structural, syntactic, and statistical pattern recognition, 2008; Atmosukarto and Shapiro in ACM multimedia information retrieval, 2008). The salient views are selected by choosing views with multiple salient points on the silhouette of the object. Silhouette-based similarity measures from Chen et al. (Comput Graph Forum 22(3):223–232, 2003) are then used to calculate the similarity between two 3D objects. Retrieval experiments were performed on three datasets: the Heads dataset, the SHREC2008 dataset, and the Princeton dataset. Experimental results show that the retrieval results using the salient views are comparable to the existing light field descriptor method (Chen et al. in Comput Graph Forum 22(3):223–232, 2003), and our method achieves a 15-fold speedup in the feature extraction computation time. PMID:23833704

  9. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  10. Social Influence on Information Technology Adoption and Sustained Use in Healthcare: A Hierarchical Bayesian Learning Method Analysis

    ERIC Educational Resources Information Center

    Hao, Haijing

    2013-01-01

    Information technology adoption and diffusion is currently a significant challenge in the healthcare delivery setting. This thesis includes three papers that explore social influence on information technology adoption and sustained use in the healthcare delivery environment using conventional regression models and novel hierarchical Bayesian…

  11. CaseWorld: Authentic Case-Based Learning Simulating Healthcare Practice.

    PubMed

    Tucker, Katie; Parker, Steve; Gillham, David; Wright, Victoria; Cornell, Jackie

    2015-10-01

    Health educators in Australia are challenged by the need to provide clinically relevant education to large numbers of students across a wide range of specialties. This situation is compounded by changed student demographics, new technologies in both the workplace and university, and decreased access to clinical placement opportunities for students. This article describes an innovative response addressing nurse education priorities and implemented in the School of Nursing at Flinders University South Australia, involving the development of CaseWorld, a prototype virtual case-based learning environment. CaseWorld implementation was unique because large-scale innovation occurred as part of routine curriculum development. This was challenging as there was limited opportunity for prototype evaluation before student use, thus necessitating a flexible implementation process. The outcome was the development of scripted unfolding cases that provide students with low-fidelity simulation enhanced by multimedia. Students engage with cases based on real patient experiences, which are modified to protect confidentiality. These authentic cases provide the basis for the development of critical-thinking and decision-making skills as students problem solve issues and identify priorities for nursing care, explain the pathophysiology, and respond to simulated patient complaints. CaseWorld was modified in response to evaluation data from surveys and focus groups, and the revised version is discussed in terms of its implementation in nursing and planned use across multiple health sciences disciplines. PMID:26176635

  12. Who Needs 3D When the Universe Is Flat?

    ERIC Educational Resources Information Center

    Eriksson, Urban; Linder, Cedric; Airey, John; Redfors, Andreas

    2014-01-01

    An overlooked feature in astronomy education is the need for students to learn to extrapolate three-dimensionality and the challenges that this may involve. Discerning critical features in the night sky that are embedded in dimensionality is a long-term learning process. Several articles have addressed the usefulness of three-dimensional (3D)…

  13. Optoplasmonics: hybridization in 3D

    NASA Astrophysics Data System (ADS)

    Rosa, L.; Gervinskas, G.; Žukauskas, A.; Malinauskas, M.; Brasselet, E.; Juodkazis, S.

    2013-12-01

    Femtosecond laser fabrication has been used to make hybrid refractive and di ractive micro-optical elements in photo-polymer SZ2080. For applications in micro- uidics, axicon lenses were fabricated (both single and arrays), for generation of light intensity patterns extending through the entire depth of a typically tens-of-micrometers deep channel. Further hybridisation of an axicon with a plasmonic slot is fabricated and demonstrated nu- merically. Spiralling chiral grooves were inscribed into a 100-nm-thick gold coating sputtered over polymerized micro-axicon lenses, using a focused ion beam. This demonstrates possibility of hybridisation between optical and plasmonic 3D micro-optical elements. Numerical modelling of optical performance by 3D-FDTD method is presented.

  14. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikawa, K.-I.; Frank, J.; Koide, S.; Sakai, J.-I.; Christodoulou, D. M.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W = 4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure.

  15. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  17. 360-degree 3D profilometry

    NASA Astrophysics Data System (ADS)

    Song, Yuanhe; Zhao, Hong; Chen, Wenyi; Tan, Yushan

    1997-12-01

    A new method of 360 degree turning 3D shape measurement in which light sectioning and phase shifting techniques are both used is presented in this paper. A sine light field is applied in the projected light stripe, meanwhile phase shifting technique is used to calculate phases of the light slit. Thereafter wrapped phase distribution of the slit is formed and the unwrapping process is made by means of the height information based on the light sectioning method. Therefore phase measuring results with better precision can be obtained. At last the target 3D shape data can be produced according to geometric relationships between phases and the object heights. The principles of this method are discussed in detail and experimental results are shown in this paper.

  18. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  19. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  20. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  1. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  2. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  3. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  4. GPU-Accelerated Denoising in 3D (GD3D)

    Energy Science and Technology Software Center (ESTSC)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  5. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  6. Better be prepared than sorry: what should the New Zealand healthcare system learn from the 2009 Pacific Tsunami?

    PubMed

    Al-Shaqsi, Sultan I

    2011-04-29

    On the early hours of the 29 September 2009, an earthquake in the Pacific generated a massive tsunami that caused significant destruction and claimed many lives across several Pacific nations. The disaster initiated an international relief operation from New Zealand (NZ), Australia, and the United States. The NZ healthcare response was adequate given the multiple challenges encountered. This article reviews the challenges faced by NZ healthcare responders to the Pacific Tsunami. Furthermore, it presents the lessons learnt from this operation in order to enhance the NZ healthcare system preparedness to respond to future disasters and mass emergencies nationally and internationally. PMID:21750590

  7. Improvements in education in pathology: virtual 3D specimens.

    PubMed

    Kalinski, Thomas; Zwönitzer, Ralf; Jonczyk-Weber, Thomas; Hofmann, Harald; Bernarding, Johannes; Roessner, Albert

    2009-01-01

    Virtual three-dimensional (3D) specimens correspond to 3D visualizations of real pathological specimens on a computer display. We describe a simple method for the digitalization of such specimens from high-quality digital images. The images were taken during a whole rotation of a specimen, and merged together into a JPEG2000 multi-document file. The files were made available in the internet (http://patho.med.uni-magdeburg.de/research.shtml) and obtained very positive ratings by medical students. Virtual 3D specimens expand the application of digital techniques in pathology, and will contribute significantly to the successful introduction of knowledge databases and electronic learning platforms. PMID:19457621

  8. Personal perceptual and cognitive property for 3D recognition

    NASA Astrophysics Data System (ADS)

    Matozaki, Takeshi; Tanisita, Akihiko

    1996-04-01

    3D closed circuit TV which produces stereoscopic vision by observing different images through each eye alternately, has been proposed. But, there are several problems, both physiological and psychological, for 3D image observation in many fields. From this prospective, we are learning personal visual characteristics for 3D recognition in the transition from 2D to 3D. We have separated the mechanism of 3D recognition into several categories, and formed some hypothesis about the personal features. These hypotheses are related to an observer's personal features, as follows: (1) consideration of the angle between the left and the right eye's line of vision and the adjustment of focus, (2) consideration of the angle of vision and the time required for fusion, (3) consideration of depth sense based on life experience, (4) consideration of 3D experience, and (5) consideration of 3D sense based on the observer's age. To establish these hypotheses, and we have analyzed the personal features of the time interval required for 3D recognition through some examinations to examinees. Examinees indicate their response for 3D recognition by pushing a button. Recently, we introduced a method for picking up the reaction of 3D recognition from examinees through their biological information, for example, analysis of pulse waves of the finger. We also bring a hypothesis, as a result of the analysis of pulse waves. (1) We can observe chaotic response when the examinee is recognizing a 2D image. (2) We can observe periodic response when the examinee is recognizing a 3D image. We are making nonlinear forecasts by getting correlation between the forecast and the biological phenomena. Deterministic nonlinear prediction are applied to the data, as a promising method of chaotic time series analysis in order to analyze the long term unpredictability, one of the fundamental characteristics of deterministic chaos.

  9. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  10. Bringing 3D Printing to Geophysical Science Education

    NASA Astrophysics Data System (ADS)

    Boghosian, A.; Turrin, M.; Porter, D. F.

    2014-12-01

    3D printing technology has been embraced by many technical fields, and is rapidly making its way into peoples' homes and schools. While there is a growing educational and hobbyist community engaged in the STEM focused technical and intellectual challenges associated with 3D printing, there is unrealized potential for the earth science community to use 3D printing to communicate scientific research to the public. Moreover, 3D printing offers scientists the opportunity to connect students and the public with novel visualizations of real data. As opposed to introducing terrestrial measurements through the use of colormaps and gradients, scientists can represent 3D concepts with 3D models, offering a more intuitive education tool. Furthermore, the tactile aspect of models make geophysical concepts accessible to a wide range of learning styles like kinesthetic or tactile, and learners including both visually impaired and color-blind students.We present a workflow whereby scientists, students, and the general public will be able to 3D print their own versions of geophysical datasets, even adding time through layering to include a 4th dimension, for a "4D" print. This will enable scientists with unique and expert insights into the data to easily create the tools they need to communicate their research. It will allow educators to quickly produce teaching aids for their students. Most importantly, it will enable the students themselves to translate the 2D representation of geophysical data into a 3D representation of that same data, reinforcing spatial reasoning.

  11. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  12. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  13. Vacant Lander in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D image captured by the Mars Exploration Rover Opportunity's rear hazard-identification camera shows the now-empty lander that carried the rover 283 million miles to Meridiani Planum, Mars. Engineers received confirmation that Opportunity's six wheels successfully rolled off the lander and onto martian soil at 3:01 a.m. PST, January 31, 2004, on the seventh martian day, or sol, of the mission. The rover is approximately 1 meter (3 feet) in front of the lander, facing north.

  14. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  15. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  16. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  17. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  18. 3-D Relativistic MHD Simulations

    NASA Astrophysics Data System (ADS)

    Nishikaw, K.-I.; Frank, J.; Christodoulou, D. M.; Koide, S.; Sakai, J.-I.; Sol, H.; Mutel, R. L.

    1998-12-01

    We present 3-D numerical simulations of moderately hot, supersonic jets propagating initially along or obliquely to the field lines of a denser magnetized background medium with Lorentz factors of W=4.56 and evolving in a four-dimensional spacetime. The new results are understood as follows: Relativistic simulations have consistently shown that these jets are effectively heavy and so they do not suffer substantial momentum losses and are not decelerated as efficiently as their nonrelativistic counterparts. In addition, the ambient magnetic field, however strong, can be pushed aside with relative ease by the beam, provided that the degrees of freedom associated with all three spatial dimensions are followed self-consistently in the simulations. This effect is analogous to pushing Japanese ``noren'' or vertical Venetian blinds out of the way while the slats are allowed to bend in 3-D space rather than as a 2-D slab structure. We also simulate jets with the more realistic initial conditions for injecting jets for helical mangetic field, perturbed density, velocity, and internal energy, which are supposed to be caused in the process of jet generation. Three possible explanations for the observed variability are (i) tidal disruption of a star falling into the black hole, (ii) instabilities in the relativistic accretion disk, and (iii) jet-related PRocesses. New results will be reported at the meeting.

  19. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  20. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  1. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  2. 3D Ion Temperature Reconstruction

    NASA Astrophysics Data System (ADS)

    Tanabe, Hiroshi; You, Setthivoine; Balandin, Alexander; Inomoto, Michiaki; Ono, Yasushi

    2009-11-01

    The TS-4 experiment at the University of Tokyo collides two spheromaks to form a single high-beta compact toroid. Magnetic reconnection during the merging process heats and accelerates the plasma in toroidal and poloidal directions. The reconnection region has a complex 3D topology determined by the pitch of the spheromak magnetic fields at the merging plane. A pair of multichord passive spectroscopic diagnostics have been established to measure the ion temperature and velocity in the reconnection volume. One setup measures spectral lines across a poloidal plane, retrieving velocity and temperature from Abel inversion. The other, novel setup records spectral lines across another section of the plasma and reconstructs velocity and temperature from 3D vector and 2D scalar tomography techniques. The magnetic field linking both measurement planes is determined from in situ magnetic probe arrays. The ion temperature is then estimated within the volume between the two measurement planes and at the reconnection region. The measurement is followed over several repeatable discharges to follow the heating and acceleration process during the merging reconnection.

  3. Virtual reality training for health-care professionals.

    PubMed

    Mantovani, Fabrizia; Castelnuovo, Gianluca; Gaggioli, Andrea; Riva, Giuseppe

    2003-08-01

    Emerging changes in health-care delivery are having a significant impact on the structure of health-care professionals' education. Today it is recognized that medical knowledge doubles every 6-8 years, with new medical procedures emerging everyday. While the half-life of medical information is so short, the average physician practices 30 years and the average nurse 40 years. Continuing education thus represents an important challenge to face. Recent advances in educational technology are offering an increasing number of innovative learning tools. Among these, Virtual Reality represents a promising area with high potential of enhancing the training of health-care professionals. Virtual Reality Training can provide a rich, interactive, engaging educational context, thus supporting experiential learning-by-doing; it can, in fact, contribute to raise interest and motivation in trainees and to effectively support skills acquisition and transfer, since the learning process can be settled within an experiential framework. Current virtual training applications for health-care differ a lot as to both their technological/multimedia sophistication and to the types of skills trained, varying for example from telesurgical applications to interactive simulations of human body and brain, to virtual worlds for emergency training. Other interesting applications include the development of immersive 3D environments for training psychiatrists and psychologists in the treatment of mental disorders. This paper has the main aim of discussing the rationale and main benefits for the use of virtual reality in health-care education and training. Significant research and projects carried out in this field will also be presented, followed by discussion on key issues concerning current limitations and future development directions. PMID:14511451

  4. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  5. Analytical augmentation of 3D simulation environments

    NASA Astrophysics Data System (ADS)

    Loughran, Julia J.; Stahl, Marchelle M.

    1998-05-01

    This paper describes an approach for augmenting three- dimensional (3D) virtual environments (VEs) with analytic information and multimedia annotations to enhance training and education applications. Analytic or symbolic information in VEs is presented as bar charts, text, graphical overlays, or with the use of color. Analytic results can be computed and displayed in the VE at run-time or, more likely, while replaying a simulation. These annotations would typically include computations of pre-defined Measures of Performance (MOPs) or Measures of Effectiveness (MOEs) associated with the training or educational goals of the simulation. Multimedia annotations are inserted into the VE by the user and may include: a drawing or whiteboarding capability, enabling participants to insert written text and/or graphics into the two-dimensional (2D) or 3D world; audio comments, and/or video recordings. These annotations can clarify a point, capture teacher feedback, or elaborate on the student's perspective or understanding of the experience. The annotations are captured in the VE either synchronously or asynchronously from the users (students and instructors), during simulation execution or afterward during a replay. When replaying or reviewing the simulation, the embedded annotations can be reviewed by a single user or by multiple users through the use of collaboration technologies. By augmenting 3D virtual environments with analytic and multimedia annotations, the education and training experience may be enhanced. The annotations can offer more effective feedback, enhance understanding, and increase participation. They may also support distance learning by promoting student/teacher interaction without co-location.

  6. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  7. Virtual VMASC: A 3D Game Environment

    NASA Technical Reports Server (NTRS)

    Manepalli, Suchitra; Shen, Yuzhong; Garcia, Hector M.; Lawsure, Kaleen

    2010-01-01

    The advantages of creating interactive 3D simulations that allow viewing, exploring, and interacting with land improvements, such as buildings, in digital form are manifold and range from allowing individuals from anywhere in the world to explore those virtual land improvements online, to training military personnel in dealing with war-time environments, and to making those land improvements available in virtual worlds such as Second Life. While we haven't fully explored the true potential of such simulations, we have identified a requirement within our organization to use simulations like those to replace our front-desk personnel and allow visitors to query, naVigate, and communicate virtually with various entities within the building. We implemented the Virtual VMASC 3D simulation of the Virginia Modeling Analysis and Simulation Center (VMASC) office building to not only meet our front-desk requirement but also to evaluate the effort required in designing such a simulation and, thereby, leverage the experience we gained in future projects of this kind. This paper describes the goals we set for our implementation, the software approach taken, the modeling contribution made, and the technologies used such as XNA Game Studio, .NET framework, Autodesk software packages, and, finally, the applicability of our implementation on a variety of architectures including Xbox 360 and PC. This paper also summarizes the result of our evaluation and the lessons learned from our effort.

  8. The Role of Employee Whistleblowing and Raising Concerns in an Organizational Learning Culture - Elusive and Laudable?: Comment on "Cultures of Silence and Cultures of Voice: The Role of Whistleblowing in Healthcare Organisations".

    PubMed

    Jones, Aled

    2016-01-01

    It is inevitable that healthcare workers throughout their careers will witness actual or potential threats to patient safety in the course of their work. Some of these threats will result in serious harm occurring to others, whilst at other times such threats will result in minimal harm, or a 'near miss' where harm is avoided at the last minute. Despite organizations encouraging employees to 'speak up' about such threats, healthcare systems globally struggle to engage their staff to do so. Even when staff do raise concerns they are often ignored by those with a responsibility to listen and act. Learning how to create the conditions where employees continuously raise and respond to concerns is essential in creating a continuous and responsive learning culture that cherishes keeping patients and employees safe. Workplace culture is a real barrier to the creation of such a learning system but examples in healthcare exist from which we can learn. PMID:26673654

  9. ShowMe3D

    Energy Science and Technology Software Center (ESTSC)

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  10. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  11. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  12. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  13. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  14. Toward a Learning Health-care System – Knowledge Delivery at the Point of Care Empowered by Big Data and NLP

    PubMed Central

    Kaggal, Vinod C.; Elayavilli, Ravikumar Komandur; Mehrabi, Saeed; Pankratz, Joshua J.; Sohn, Sunghwan; Wang, Yanshan; Li, Dingcheng; Rastegar, Majid Mojarad; Murphy, Sean P.; Ross, Jason L.; Chaudhry, Rajeev; Buntrock, James D.; Liu, Hongfang

    2016-01-01

    The concept of optimizing health care by understanding and generating knowledge from previous evidence, ie, the Learning Health-care System (LHS), has gained momentum and now has national prominence. Meanwhile, the rapid adoption of electronic health records (EHRs) enables the data collection required to form the basis for facilitating LHS. A prerequisite for using EHR data within the LHS is an infrastructure that enables access to EHR data longitudinally for health-care analytics and real time for knowledge delivery. Additionally, significant clinical information is embedded in the free text, making natural language processing (NLP) an essential component in implementing an LHS. Herein, we share our institutional implementation of a big data-empowered clinical NLP infrastructure, which not only enables health-care analytics but also has real-time NLP processing capability. The infrastructure has been utilized for multiple institutional projects including the MayoExpertAdvisor, an individualized care recommendation solution for clinical care. We compared the advantages of big data over two other environments. Big data infrastructure significantly outperformed other infrastructure in terms of computing speed, demonstrating its value in making the LHS a possibility in the near future. PMID:27385912

  15. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  16. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  17. Teaching Molecular 3-D Literacy

    ERIC Educational Resources Information Center

    Richardson, David C.; Richardson, Jane S.

    2002-01-01

    This article describes how the use of interactive molecular graphics makes a unique and important contribution to student learning of biochemistry and molecular biology at any level. These authors developed the concept of the kinemage (from "kinetic image"), a different way of organizing computer graphics that is aimed explicitly at the…

  18. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  19. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  20. Planning an eLearning Dementia Care Program for Healthcare Teams in Long-Term Care Facilities: The Learners' Perspectives

    ERIC Educational Resources Information Center

    MacDonald, Colla J.; Stodel, Emma J.; Coulson, Irene

    2004-01-01

    This paper presents a needs analysis conducted to obtain information concerning online dementia care training of healthcare workers in long-term care (LTC) facilities. The resulting information was used to guide the development of an online dementia care training program designed to facilitate the acquisition of skills and knowledge necessary for…

  1. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  2. Yogi the rock - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Yogi, a rock taller than rover Sojourner, is the subject of this image, taken in stereo by the deployed Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The soil in the foreground has been the location of multiple soil mechanics experiments performed by Sojourner's cleated wheels. Pathfinder scientists were able to control the force inflicted on the soil beneath the rover's wheels, giving them insight into the soil's mechanical properties. The soil mechanics experiments were conducted after this image was taken.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  4. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  5. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  6. An automatic approach for 3D registration of CT scans

    NASA Astrophysics Data System (ADS)

    Hu, Yang; Saber, Eli; Dianat, Sohail; Vantaram, Sreenath Rao; Abhyankar, Vishwas

    2012-03-01

    CT (Computed tomography) is a widely employed imaging modality in the medical field. Normally, a volume of CT scans is prescribed by a doctor when a specific region of the body (typically neck to groin) is suspected of being abnormal. The doctors are required to make professional diagnoses based upon the obtained datasets. In this paper, we propose an automatic registration algorithm that helps healthcare personnel to automatically align corresponding scans from 'Study' to 'Atlas'. The proposed algorithm is capable of aligning both 'Atlas' and 'Study' into the same resolution through 3D interpolation. After retrieving the scanned slice volume in the 'Study' and the corresponding volume in the original 'Atlas' dataset, a 3D cross correlation method is used to identify and register various body parts.

  7. Evaluation of a theory-driven e-learning intervention for future oral healthcare providers on secondary prevention of disordered eating behaviors.

    PubMed

    DeBate, Rita D; Severson, Herbert H; Cragun, Deborah L; Gau, Jeff M; Merrell, Laura K; Bleck, Jennifer R; Christiansen, Steve; Koerber, Anne; Tomar, Scott L; McCormack Brown, Kelli R; Tedesco, Lisa A; Hendricson, William

    2013-06-01

    Oral healthcare providers have a clinical opportunity for early detection of disordered eating behaviors because they are often the first health professionals to observe overt oral and physical signs. Curricula regarding early recognition of this oral/systemic medical condition are limited in oral health educational programs. Web-based learning can supplement and reinforce traditional learning and has the potential to develop skills. The study purpose was to determine the efficacy of a theory-driven Web-based training program to increase the capacity of oral health students to perform behaviors related to the secondary prevention of disordered eating behaviors. Using the Reach, Effectiveness, Adoption, Implementation and Maintenance evaluation framework, a longitudinal group-randomized controlled trial involving 27 oral health classes from 12 oral health education programs in the United States was implemented to assess the efficacy of the Web-based training on attitudes, knowledge, self-efficacy and skills related to the secondary prevention of disordered eating behaviors. Mixed-model analysis of covariance indicated substantial improvements among students in the intervention group (effect sizes: 0.51-0.83) on all six outcomes of interest. Results suggest that the Web-based training program may increase the capacity of oral healthcare providers to deliver secondary prevention of disordered eating behaviors. Implications and value of using the Reach, Effectiveness, Adoption, Implementation and Maintenance framework are discussed. PMID:23564725

  8. Clarifying the learning experiences of healthcare professionals with in situ and off-site simulation-based medical education: a qualitative study

    PubMed Central

    Sørensen, Jette Led; Navne, Laura Emdal; Martin, Helle Max; Ottesen, Bent; Albrecthsen, Charlotte Krebs; Pedersen, Berit Woetmann; Kjærgaard, Hanne; van der Vleuten, Cees

    2015-01-01

    Objective To examine how the setting in in situ simulation (ISS) and off-site simulation (OSS) in simulation-based medical education affects the perceptions and learning experience of healthcare professionals. Design Qualitative study using focus groups and content analysis. Participants Twenty-five healthcare professionals (obstetricians, midwives, auxiliary nurses, anaesthesiologists, a nurse anaesthetist and operating theatre nurse) participated in four focus groups and were recruited due to their exposure to either ISS or OSS in multidisciplinary obstetric emergencies in a randomised trial. Setting Departments of obstetrics and anaesthesia, Rigshospitalet, Copenhagen, Denmark. Results Initially participants preferred ISS, but this changed after the training when the simulation site became of less importance. There was a strong preference for simulation in authentic roles. These perceptions were independent of the ISS or OSS setting. Several positive and negative factors in simulation were identified, but these had no relation to the simulation setting. Participants from ISS and OSS generated a better understanding of and collaboration with the various health professionals. They also provided individual and team reflections on learning. ISS participants described more experiences that would involve organisational changes than the OSS participants did. Conclusions Many psychological and sociological aspects related to the authenticity of the learning experience are important in simulation, but the physical setting of the simulation as an ISS and OSS is the least important. Based on these focus groups OSS can be used provided that all other authenticity elements are taken into consideration and respected. The only difference was that ISS had an organisational impact and ISS participants talked more about issues that would involve practical organisational changes. ISS and OSS participants did, however, go through similar individual and team learning experiences

  9. John C. Belland: A Pioneer in 3D Graphics.

    ERIC Educational Resources Information Center

    Hay, Kenneth

    2000-01-01

    Provides a profile of the career of John Belland and his work in instructional technology. Highlights include his educational background, teaching experience in higher education, work in learning with 3D computer-generated animation, alternative paradigms of instructional design, and ideas of postmodernism. (LRW)

  10. 3D Digital Legos for Teaching Security Protocols

    ERIC Educational Resources Information Center

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  11. 3-D Cavern Enlargement Analyses

    SciTech Connect

    EHGARTNER, BRIAN L.; SOBOLIK, STEVEN R.

    2002-03-01

    Three-dimensional finite element analyses simulate the mechanical response of enlarging existing caverns at the Strategic Petroleum Reserve (SPR). The caverns are located in Gulf Coast salt domes and are enlarged by leaching during oil drawdowns as fresh water is injected to displace the crude oil from the caverns. The current criteria adopted by the SPR limits cavern usage to 5 drawdowns (leaches). As a base case, 5 leaches were modeled over a 25 year period to roughly double the volume of a 19 cavern field. Thirteen additional leaches where then simulated until caverns approached coalescence. The cavern field approximated the geometries and geologic properties found at the West Hackberry site. This enabled comparisons are data collected over nearly 20 years to analysis predictions. The analyses closely predicted the measured surface subsidence and cavern closure rates as inferred from historic well head pressures. This provided the necessary assurance that the model displacements, strains, and stresses are accurate. However, the cavern field has not yet experienced the large scale drawdowns being simulated. Should they occur in the future, code predictions should be validated with actual field behavior at that time. The simulations were performed using JAS3D, a three dimensional finite element analysis code for nonlinear quasi-static solids. The results examine the impacts of leaching and cavern workovers, where internal cavern pressures are reduced, on surface subsidence, well integrity, and cavern stability. The results suggest that the current limit of 5 oil drawdowns may be extended with some mitigative action required on the wells and later on to surface structure due to subsidence strains. The predicted stress state in the salt shows damage to start occurring after 15 drawdowns with significant failure occurring at the 16th drawdown, well beyond the current limit of 5 drawdowns.

  12. Employing Virtual Humans for Education and Training in X3D/VRML Worlds

    ERIC Educational Resources Information Center

    Ieronutti, Lucio; Chittaro, Luca

    2007-01-01

    Web-based education and training provides a new paradigm for imparting knowledge; students can access the learning material anytime by operating remotely from any location. Web3D open standards, such as X3D and VRML, support Web-based delivery of Educational Virtual Environments (EVEs). EVEs have a great potential for learning and training…

  13. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  14. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  15. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  16. 3D Elastic Seismic Wave Propagation Code

    Energy Science and Technology Software Center (ESTSC)

    1998-09-23

    E3D is capable of simulating seismic wave propagation in a 3D heterogeneous earth. Seismic waves are initiated by earthquake, explosive, and/or other sources. These waves propagate through a 3D geologic model, and are simulated as synthetic seismograms or other graphical output.

  17. 3D Printing and Its Urologic Applications.

    PubMed

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  18. 3D Virtual Worlds as Art Media and Exhibition Arenas: Students' Responses and Challenges in Contemporary Art Education

    ERIC Educational Resources Information Center

    Lu, Lilly

    2013-01-01

    3D virtual worlds (3D VWs) are considered one of the emerging learning spaces of the 21st century; however, few empirical studies have investigated educational applications and student learning aspects in art education. This study focused on students' responses to and challenges with 3D VWs in both aspects. The findings show that most…

  19. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  20. The Esri 3D city information model

    NASA Astrophysics Data System (ADS)

    Reitz, T.; Schubiger-Banz, S.

    2014-02-01

    With residential and commercial space becoming increasingly scarce, cities are going vertical. Managing the urban environments in 3D is an increasingly important and complex undertaking. To help solving this problem, Esri has released the ArcGIS for 3D Cities solution. The ArcGIS for 3D Cities solution provides the information model, tools and apps for creating, analyzing and maintaining a 3D city using the ArcGIS platform. This paper presents an overview of the 3D City Information Model and some sample use cases.

  1. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  2. 3D laptop for defense applications

    NASA Astrophysics Data System (ADS)

    Edmondson, Richard; Chenault, David

    2012-06-01

    Polaris Sensor Technologies has developed numerous 3D display systems using a US Army patented approach. These displays have been developed as prototypes for handheld controllers for robotic systems and closed hatch driving, and as part of a TALON robot upgrade for 3D vision, providing depth perception for the operator for improved manipulation and hazard avoidance. In this paper we discuss the prototype rugged 3D laptop computer and its applications to defense missions. The prototype 3D laptop combines full temporal and spatial resolution display with the rugged Amrel laptop computer. The display is viewed through protective passive polarized eyewear, and allows combined 2D and 3D content. Uses include robot tele-operation with live 3D video or synthetically rendered scenery, mission planning and rehearsal, enhanced 3D data interpretation, and simulation.

  3. Transferring of speech movements from video to 3D face space.

    PubMed

    Pei, Yuru; Zha, Hongbin

    2007-01-01

    We present a novel method for transferring speech animation recorded in low quality videos to high resolution 3D face models. The basic idea is to synthesize the animated faces by an interpolation based on a small set of 3D key face shapes which span a 3D face space. The 3D key shapes are extracted by an unsupervised learning process in 2D video space to form a set of 2D visemes which are then mapped to the 3D face space. The learning process consists of two main phases: 1) Isomap-based nonlinear dimensionality reduction to embed the video speech movements into a low-dimensional manifold and 2) K-means clustering in the low-dimensional space to extract 2D key viseme frames. Our main contribution is that we use the Isomap-based learning method to extract intrinsic geometry of the speech video space and thus to make it possible to define the 3D key viseme shapes. To do so, we need only to capture a limited number of 3D key face models by using a general 3D scanner. Moreover, we also develop a skull movement recovery method based on simple anatomical structures to enhance 3D realism in local mouth movements. Experimental results show that our method can achieve realistic 3D animation effects with a small number of 3D key face models. PMID:17093336

  4. 3D statistical shape models incorporating 3D random forest regression voting for robust CT liver segmentation

    NASA Astrophysics Data System (ADS)

    Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.

    2015-03-01

    During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.

  5. Campaign 2008: healthcare reform revisited.

    PubMed

    Wilensky, Gail R

    2008-10-01

    *An important lesson to be learned from the failed efforts at healthcare reform of the early 1990s is that successful reform cannot be an all-or-nothing proposition. *The McCain and Obama healthcare plans have some elements in common, but they also have important differences. *Whoever wins the election will face the challenge of persuading Congress to go along with his proposal. PMID:18839667

  6. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  7. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  8. Understanding 3D human torso shape via manifold clustering

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Li, Peng; Fu, Yun

    2013-05-01

    Discovering the variations in human torso shape plays a key role in many design-oriented applications, such as suit designing. With recent advances in 3D surface imaging technologies, people can obtain 3D human torso data that provide more information than traditional measurements. However, how to find different human shapes from 3D torso data is still an open problem. In this paper, we propose to use spectral clustering approach on torso manifold to address this problem. We first represent high-dimensional torso data in a low-dimensional space using manifold learning algorithm. Then the spectral clustering method is performed to get several disjoint clusters. Experimental results show that the clusters discovered by our approach can describe the discrepancies in both genders and human shapes, and our approach achieves better performance than the compared clustering method.

  9. Efficient framework for deformable 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Fluck, Oliver; Aharon, Shmuel; Khamene, Ali

    2008-03-01

    Using 2D-3D registration it is possible to extract the body transformation between the coordinate systems of X-ray and volumetric CT images. Our initial motivation is the improvement of accuracy of external beam radiation therapy, an effective method for treating cancer, where CT data play a central role in radiation treatment planning. Rigid body transformation is used to compute the correct patient setup. The drawback of such approaches is that the rigidity assumption on the imaged object is not valid for most of the patient cases, mainly due to respiratory motion. In the present work, we address this limitation by proposing a flexible framework for deformable 2D-3D registration consisting of a learning phase incorporating 4D CT data sets and hardware accelerated free form DRR generation, 2D motion computation, and 2D-3D back projection.

  10. MO-A-9A-01: Innovation in Medical Physics Practice: 3D Printing Applications

    SciTech Connect

    Ehler, E; Perks, J; Rasmussen, K; Bakic, P

    2014-06-15

    3D printing, also called additive manufacturing, has great potential to advance the field of medicine. Many medical uses have been exhibited from facial reconstruction to the repair of pulmonary obstructions. The strength of 3D printing is to quickly convert a 3D computer model into a physical object. Medical use of 3D models is already ubiquitous with technologies such as computed tomography and magnetic resonance imaging. Thus tailoring 3D printing technology to medical functions has the potential to impact patient care. This session will discuss applications to the field of Medical Physics. Topics discussed will include introduction to 3D printing methods as well as examples of real-world uses of 3D printing spanning clinical and research practice in diagnostic imaging and radiation therapy. The session will also compare 3D printing to other manufacturing processes and discuss a variety of uses of 3D printing technology outside the field of Medical Physics. Learning Objectives: Understand the technologies available for 3D Printing Understand methods to generate 3D models Identify the benefits and drawbacks to rapid prototyping / 3D Printing Understand the potential issues related to clinical use of 3D Printing.

  11. 3D Dynamic Echocardiography with a Digitizer

    NASA Astrophysics Data System (ADS)

    Oshiro, Osamu; Matani, Ayumu; Chihara, Kunihiro

    1998-05-01

    In this paper,a three-dimensional (3D) dynamic ultrasound (US) imaging system,where a US brightness-mode (B-mode) imagetriggered with an R-wave of electrocardiogram (ECG)was obtained with an ultrasound diagnostic deviceand the location and orientation of the US probewere simultaneously measured with a 3D digitizer, is described.The obtained B-mode imagewas then projected onto a virtual 3D spacewith the proposed interpolation algorithm using a Gaussian operator.Furthermore, a 3D image was presented on a cathode ray tube (CRT)and stored in virtual reality modeling language (VRML).We performed an experimentto reconstruct a 3D heart image in systole using this system.The experimental results indicatethat the system enables the visualization ofthe 3D and internal structure of a heart viewed from any angleand has potential for use in dynamic imaging,intraoperative ultrasonography and tele-medicine.

  12. 3D Scientific Visualization with Blender

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2015-03-01

    This is the first book written on using Blender for scientific visualization. It is a practical and interesting introduction to Blender for understanding key parts of 3D rendering and animation that pertain to the sciences via step-by-step guided tutorials. 3D Scientific Visualization with Blender takes you through an understanding of 3D graphics and modelling for different visualization scenarios in the physical sciences.

  13. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  14. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  15. Stereo 3-D Vision in Teaching Physics

    NASA Astrophysics Data System (ADS)

    Zabunov, Svetoslav

    2012-03-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The current paper describes the modern stereo 3-D technologies that are applicable to various tasks in teaching physics in schools, colleges, and universities. Examples of stereo 3-D simulations developed by the author can be observed on online.

  16. Accuracy in Quantitative 3D Image Analysis

    PubMed Central

    Bassel, George W.

    2015-01-01

    Quantitative 3D imaging is becoming an increasingly popular and powerful approach to investigate plant growth and development. With the increased use of 3D image analysis, standards to ensure the accuracy and reproducibility of these data are required. This commentary highlights how image acquisition and postprocessing can introduce artifacts into 3D image data and proposes steps to increase both the accuracy and reproducibility of these analyses. It is intended to aid researchers entering the field of 3D image processing of plant cells and tissues and to help general readers in understanding and evaluating such data. PMID:25804539

  17. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology. PMID:26669842

  18. Single Cell Traction Microscopy within 3D Collagen Matrices

    NASA Astrophysics Data System (ADS)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  19. 3D PDF - a means of public access to geological 3D - objects, using the example of GTA3D

    NASA Astrophysics Data System (ADS)

    Slaby, Mark-Fabian; Reimann, Rüdiger

    2013-04-01

    In geology, 3D modeling has become very important. In the past, two-dimensional data such as isolines, drilling profiles, or cross-sections based on those, were used to illustrate the subsurface geology, whereas now, we can create complex digital 3D models. These models are produced with special software, such as GOCAD ®. The models can be viewed, only through the software used to create them, or through viewers available for free. The platform-independent PDF (Portable Document Format), enforced by Adobe, has found a wide distribution. This format has constantly evolved over time. Meanwhile, it is possible to display CAD data in an Adobe 3D PDF file with the free Adobe Reader (version 7). In a 3D PDF, a 3D model is freely rotatable and can be assembled from a plurality of objects, which can thus be viewed from all directions on their own. In addition, it is possible to create moveable cross-sections (profiles), and to assign transparency to the objects. Based on industry-standard CAD software, 3D PDFs can be generated from a large number of formats, or even be exported directly from this software. In geoinformatics, different approaches to creating 3D PDFs exist. The intent of the Authority for Mining, Energy and Geology to allow free access to the models of the Geotectonic Atlas (GTA3D), could not be realized with standard software solutions. A specially designed code converts the 3D objects to VRML (Virtual Reality Modeling Language). VRML is one of the few formats that allow using image files (maps) as textures, and to represent colors and shapes correctly. The files were merged in Acrobat X Pro, and a 3D PDF was generated subsequently. A topographic map, a display of geographic directions and horizontal and vertical scales help to facilitate the use.

  20. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  1. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  2. Addressing healthcare.

    PubMed

    Daly, Rich

    2013-02-11

    Though President Barack Obama has rarely made healthcare references in his State of the Union addresses, health policy experts are hoping he changes that strategy this year. "The question is: Will he say anything? You would hope that he would, given that that was the major issue he started his presidency with," says Dr. James Weinstein, left, of the Dartmouth-Hitchcock health system. PMID:23487896

  3. 3-D seismology in the Arabian Gulf

    SciTech Connect

    Al-Husseini, M.; Chimblo, R.

    1995-08-01

    Since 1977 when Aramco and GSI (Geophysical Services International) pioneered the first 3-D seismic survey in the Arabian Gulf, under the guidance of Aramco`s Chief Geophysicist John Hoke, 3-D seismology has been effectively used to map many complex subsurface geological phenomena. By the mid-1990s extensive 3-D surveys were acquired in Abu Dhabi, Oman, Qatar and Saudi Arabia. Also in the mid-1990`s Bahrain, Kuwait and Dubai were preparing to record surveys over their fields. On the structural side 3-D has refined seismic maps, focused faults and fractures systems, as well as outlined the distribution of facies, porosity and fluid saturation. In field development, 3D has not only reduced drilling costs significantly, but has also improved the understanding of fluid behavior in the reservoir. In Oman, Petroleum Development Oman (PDO) has now acquired the first Gulf 4-D seismic survey (time-lapse 3D survey) over the Yibal Field. The 4-D survey will allow PDO to directly monitor water encroachment in the highly-faulted Cretaceous Shu`aiba reservoir. In exploration, 3-D seismology has resolved complex prospects with structural and stratigraphic complications and reduced the risk in the selection of drilling locations. The many case studies from Saudi Arabia, Oman, Qatar and the United Arab Emirates, which are reviewed in this paper, attest to the effectiveness of 3D seismology in exploration and producing, in clastics and carbonates reservoirs, and in the Mesozoic and Paleozoic.

  4. A 3D Geostatistical Mapping Tool

    Energy Science and Technology Software Center (ESTSC)

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  5. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  6. Stereoscopic Investigations of 3D Coulomb Balls

    SciTech Connect

    Kaeding, Sebastian; Melzer, Andre; Arp, Oliver; Block, Dietmar; Piel, Alexander

    2005-10-31

    In dusty plasmas particles are arranged due to the influence of external forces and the Coulomb interaction. Recently Arp et al. were able to generate 3D spherical dust clouds, so-called Coulomb balls. Here, we present measurements that reveal the full 3D particle trajectories from stereoscopic imaging.

  7. 3-D structures of planetary nebulae

    NASA Astrophysics Data System (ADS)

    Steffen, W.

    2016-07-01

    Recent advances in the 3-D reconstruction of planetary nebulae are reviewed. We include not only results for 3-D reconstructions, but also the current techniques in terms of general methods and software. In order to obtain more accurate reconstructions, we suggest to extend the widely used assumption of homologous nebula expansion to map spectroscopically measured velocity to position along the line of sight.

  8. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  9. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  10. Static & Dynamic Response of 3D Solids

    Energy Science and Technology Software Center (ESTSC)

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  11. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  12. A Parameterizable Framework for Replicated Experiments in Virtual 3D Environments

    NASA Astrophysics Data System (ADS)

    Biella, Daniel; Luther, Wolfram

    This paper reports on a parameterizable 3D framework that provides 3D content developers with an initial spatial starting configuration, metaphorical connectors for accessing exhibits or interactive 3D learning objects or experiments, and other optional 3D extensions, such as a multimedia room, a gallery, username identification tools and an avatar selection room. The framework is implemented in X3D and uses a Web-based content management system. It has been successfully used for an interactive virtual museum for key historical experiments and in two additional interactive e-learning implementations: an African arts museum and a virtual science centre. It can be shown that, by reusing the framework, the production costs for the latter two implementations can be significantly reduced and content designers can focus on developing educational content instead of producing cost-intensive out-of-focus 3D objects.

  13. Clinical applications of 3-D dosimeters

    NASA Astrophysics Data System (ADS)

    Wuu, Cheng-Shie

    2015-01-01

    Both 3-D gels and radiochromic plastic dosimeters, in conjunction with dose image readout systems (MRI or optical-CT), have been employed to measure 3-D dose distributions in many clinical applications. The 3-D dose maps obtained from these systems can provide a useful tool for clinical dose verification for complex treatment techniques such as IMRT, SRS/SBRT, brachytherapy, and proton beam therapy. These complex treatments present high dose gradient regions in the boundaries between the target and surrounding critical organs. Dose accuracy in these areas can be critical, and may affect treatment outcome. In this review, applications of 3-D gels and PRESAGE dosimeter are reviewed and evaluated in terms of their performance in providing information on clinical dose verification as well as commissioning of various treatment modalities. Future interests and clinical needs on studies of 3-D dosimetry are also discussed.

  14. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-01

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering. PMID:26805790

  15. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  16. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  17. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  18. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  19. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  20. Development of a Flexible and Extensible Computer-based Simulation Platform for Healthcare Students.

    PubMed

    Bindoff, Ivan; Cummings, Elizabeth; Ling, Tristan; Chalmers, Leanne; Bereznicki, Luke

    2015-01-01

    Accessing appropriate clinical placement positions for all health profession students can be expensive and challenging. Increasingly simulation, in a range of modes, is being used to enhance student learning and prepare them for clinical placement. Commonly these simulations are focused on the use of simulated patient mannequins which typically presented as single-event scenarios, difficult to organise, and usually scenarios include only a single healthcare profession. Computer based simulation is relatively under-researched and under-utilised but is beginning to demonstrate potential benefits. This paper describes the development and trialling of an entirely virtual 3D simulated environment for inter-professional student education. PMID:25676952

  1. Teaching the geological subsurface with 3D models

    NASA Astrophysics Data System (ADS)

    Thorpe, Steve; Ward, Emma

    2014-05-01

    3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough

  2. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. PMID:26562233

  3. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology. PMID:25093879

  4. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc. PMID:25361316

  5. Extra Dimensions: 3D in PDF Documentation

    NASA Astrophysics Data System (ADS)

    Graf, Norman A.

    2012-12-01

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) and the ISO PRC file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. Until recently, Adobe's Acrobat software was also capable of incorporating 3D content into PDF files from a variety of 3D file formats, including proprietary CAD formats. However, this functionality is no longer available in Acrobat X, having been spun off to a separate company. Incorporating 3D content now requires the additional purchase of a separate plug-in. In this talk we present alternatives based on open source libraries which allow the programmatic creation of 3D content in PDF format. While not providing the same level of access to CAD files as the commercial software, it does provide physicists with an alternative path to incorporate 3D content into PDF files from such disparate applications as detector geometries from Geant4, 3D data sets, mathematical surfaces or tesselated volumes.

  6. Monocular 3-D gait tracking in surveillance scenes.

    PubMed

    Rogez, Grégory; Rihan, Jonathan; Guerrero, Jose J; Orrite, Carlos

    2014-06-01

    Gait recognition can potentially provide a noninvasive and effective biometric authentication from a distance. However, the performance of gait recognition systems will suffer in real surveillance scenarios with multiple interacting individuals and where the camera is usually placed at a significant angle and distance from the floor. We present a methodology for view-invariant monocular 3-D human pose tracking in man-made environments in which we assume that observed people move on a known ground plane. First, we model 3-D body poses and camera viewpoints with a low dimensional manifold and learn a generative model of the silhouette from this manifold to a reduced set of training views. During the online stage, 3-D body poses are tracked using recursive Bayesian sampling conducted jointly over the scene's ground plane and the pose-viewpoint manifold. For each sample, the homography that relates the corresponding training plane to the image points is calculated using the dominant 3-D directions of the scene, the sampled location on the ground plane and the sampled camera view. Each regressed silhouette shape is projected using this homographic transformation and is matched in the image to estimate its likelihood. Our framework is able to track 3-D human walking poses in a 3-D environment exploring only a 4-D state space with success. In our experimental evaluation, we demonstrate the significant improvements of the homographic alignment over a commonly used similarity transformation and provide quantitative pose tracking results for the monocular sequences with a high perspective effect from the CAVIAR dataset. PMID:23955796

  7. The practice of commissioning healthcare from a private provider: learning from an in-depth case study

    PubMed Central

    2013-01-01

    innovation adoption in the healthcare context. The case identifies ‘negotiated order’, managerial performance of providers and disciplinary control as three media of power used in combination by commissioners. The case lends support for stewardship and resource dependency governance theories as explanations of the underpinning conditions for effective commissioning in certain circumstances within a quasi marketised healthcare system. PMID:23735082

  8. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  9. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  10. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  11. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  12. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  13. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models. PMID:19147891

  14. New method of 3-D object recognition

    NASA Astrophysics Data System (ADS)

    He, An-Zhi; Li, Qun Z.; Miao, Peng C.

    1991-12-01

    In this paper, a new method of 3-D object recognition using optical techniques and a computer is presented. We perform 3-D object recognition using moire contour to obtain the object's 3- D coordinates, projecting drawings of the object in three coordinate planes to describe it and using a method of inquiring library of judgement to match objects. The recognition of a simple geometrical entity is simulated by computer and studied experimentally. The recognition of an object which is composed of a few simple geometrical entities is discussed.

  15. Explicit 3-D Hydrodynamic FEM Program

    Energy Science and Technology Software Center (ESTSC)

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, includingmore » frictional sliding, single surface contact and automatic contact generation.« less

  16. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  17. An Improved Version of TOPAZ 3D

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  18. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  2. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    PubMed

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing. PMID:24808080

  3. JAR3D Webserver: Scoring and aligning RNA loop sequences to known 3D motifs.

    PubMed

    Roll, James; Zirbel, Craig L; Sweeney, Blake; Petrov, Anton I; Leontis, Neocles

    2016-07-01

    Many non-coding RNAs have been identified and may function by forming 2D and 3D structures. RNA hairpin and internal loops are often represented as unstructured on secondary structure diagrams, but RNA 3D structures show that most such loops are structured by non-Watson-Crick basepairs and base stacking. Moreover, different RNA sequences can form the same RNA 3D motif. JAR3D finds possible 3D geometries for hairpin and internal loops by matching loop sequences to motif groups from the RNA 3D Motif Atlas, by exact sequence match when possible, and by probabilistic scoring and edit distance for novel sequences. The scoring gauges the ability of the sequences to form the same pattern of interactions observed in 3D structures of the motif. The JAR3D webserver at http://rna.bgsu.edu/jar3d/ takes one or many sequences of a single loop as input, or else one or many sequences of longer RNAs with multiple loops. Each sequence is scored against all current motif groups. The output shows the ten best-matching motif groups. Users can align input sequences to each of the motif groups found by JAR3D. JAR3D will be updated with every release of the RNA 3D Motif Atlas, and so its performance is expected to improve over time. PMID:27235417

  4. Research and Teaching: Methods for Creating and Evaluating 3D Tactile Images to Teach STEM Courses to the Visually Impaired

    ERIC Educational Resources Information Center

    Hasper, Eric; Windhorst, Rogier; Hedgpeth, Terri; Van Tuyl, Leanne; Gonzales, Ashleigh; Martinez, Britta; Yu, Hongyu; Farkas, Zolton; Baluch, Debra P.

    2015-01-01

    Project 3D IMAGINE or 3D Image Arrays to Graphically Implement New Education is a pilot study that researches the effectiveness of incorporating 3D tactile images, which are critical for learning science, technology, engineering, and mathematics, into entry-level lab courses. The focus of this project is to increase the participation and…

  5. UK Health-Care Professionals' Experience of On-Line Learning Techniques: A Systematic Review of Qualitative Data

    ERIC Educational Resources Information Center

    Carroll, Christopher; Booth, Andrew; Papaioannou, Diana; Sutton, Anthea; Wong, Ruth

    2009-01-01

    Introduction: Continuing professional development and education is vital to the provision of better health services and outcomes. The aim of this study is to contribute to the evidence base by performing a systematic review of qualitative data from studies reporting health professionals' experience of e-learning. No such previous review has been…

  6. Developing Ethical Competence in Healthcare Management

    ERIC Educational Resources Information Center

    Falkenström, Erica; Ohlsson, Jon; Höglund, Anna T

    2016-01-01

    Purpose: The purpose of this paper was to explore what kind of ethical competence healthcare managers need in handling conflicts of interest (COI). The aim is also to highlight essential learning processes to develop healthcare managers' ethical competence. Design/methodology/approach: A qualitative study was performed. Semi-structured interviews…

  7. 3D-printed bioanalytical devices

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  8. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  9. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  10. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  11. 3D Visualization of Recent Sumatra Earthquake

    NASA Astrophysics Data System (ADS)

    Nayak, Atul; Kilb, Debi

    2005-04-01

    Scientists and visualization experts at the Scripps Institution of Oceanography have created an interactive three-dimensional visualization of the 28 March 2005 magnitude 8.7 earthquake in Sumatra. The visualization shows the earthquake's hypocenter and aftershocks recorded until 29 March 2005, and compares it with the location of the 26 December 2004 magnitude 9 event and the consequent seismicity in that region. The 3D visualization was created using the Fledermaus software developed by Interactive Visualization Systems (http://www.ivs.unb.ca/) and stored as a ``scene'' file. To view this visualization, viewers need to download and install the free viewer program iView3D (http://www.ivs3d.com/products/iview3d).

  12. Future Engineers 3-D Print Timelapse

    NASA Video Gallery

    NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...

  13. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  14. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  15. 3D-patterned polymer brush surfaces

    NASA Astrophysics Data System (ADS)

    Zhou, Xuechang; Liu, Xuqing; Xie, Zhuang; Zheng, Zijian

    2011-12-01

    Polymer brush-based three-dimensional (3D) structures are emerging as a powerful platform to engineer a surface by providing abundant spatially distributed chemical and physical properties. In this feature article, we aim to give a summary of the recent progress on the fabrication of 3D structures with polymer brushes, with a particular focus on the micro- and nanoscale. We start with a brief introduction on polymer brushes and the challenges to prepare their 3D structures. Then, we highlight the recent advances of the fabrication approaches on the basis of traditional polymerization time and grafting density strategies, and a recently developed feature density strategy. Finally, we provide some perspective outlooks on the future directions of engineering the 3D structures with polymer brushes.

  16. Modeling Cellular Processes in 3-D

    PubMed Central

    Mogilner, Alex; Odde, David

    2011-01-01

    Summary Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated, we must address the issue of modeling cellular processes in 3-D. Here, we highlight recent advances related to 3-D modeling in cell biology. While some processes require full 3-D analysis, we suggest that others are more naturally described in 2-D or 1-D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3-D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling. PMID:22036197

  17. Eyes on the Earth 3D

    NASA Technical Reports Server (NTRS)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  18. 3-D Animation of Typhoon Bopha

    NASA Video Gallery

    This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...

  19. 3-D TRMM Flyby of Hurricane Amanda

    NASA Video Gallery

    The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...

  20. Cyclone Rusty's Landfall in 3-D

    NASA Video Gallery

    This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...

  1. TRMM 3-D Flyby of Ingrid

    NASA Video Gallery

    This 3-D flyby of Tropical Storm Ingrid's rainfall was created from TRMM satellite data for Sept. 16. Heaviest rainfall appears in red towers over the Gulf of Mexico, while moderate rainfall stretc...

  2. 3D-printed bioanalytical devices.

    PubMed

    Bishop, Gregory W; Satterwhite-Warden, Jennifer E; Kadimisetty, Karteek; Rusling, James F

    2016-07-15

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices. PMID:27250897

  3. Palacios field: A 3-D case history

    SciTech Connect

    McWhorter, R.; Torguson, B.

    1994-12-31

    In late 1992, Mitchell Energy Corporation acquired a 7.75 sq mi (20.0 km{sup 2}) 3-D seismic survey over Palacios field. Matagorda County, Texas. The company shot the survey to help evaluate the field for further development by delineating the fault pattern of the producing Middle Oligocene Frio interval. They compare the mapping of the field before and after the 3-D survey. This comparison shows that the 3-D volume yields superior fault imaging and interpretability compared to the dense 2-D data set. The problems with the 2-D data set are improper imaging of small and oblique faults and insufficient coverage over a complex fault pattern. Whereas the 2-D data set validated a simple fault model, the 3-D volume revealed a more complex history of faulting that includes three different fault systems. This discovery enabled them to reconstruct the depositional and structural history of Palacios field.

  4. Radiosity diffusion model in 3D

    NASA Astrophysics Data System (ADS)

    Riley, Jason D.; Arridge, Simon R.; Chrysanthou, Yiorgos; Dehghani, Hamid; Hillman, Elizabeth M. C.; Schweiger, Martin

    2001-11-01

    We present the Radiosity-Diffusion model in three dimensions(3D), as an extension to previous work in 2D. It is a method for handling non-scattering spaces in optically participating media. We present the extension of the model to 3D including an extension to the model to cope with increased complexity of the 3D domain. We show that in 3D more careful consideration must be given to the issues of meshing and visibility to model the transport of light within reasonable computational bounds. We demonstrate the model to be comparable to Monte-Carlo simulations for selected geometries, and show preliminary results of comparisons to measured time-resolved data acquired on resin phantoms.

  5. 3D-HST results and prospects

    NASA Astrophysics Data System (ADS)

    Van Dokkum, Pieter G.

    2015-01-01

    The 3D-HST survey is providing a comprehensive census of the distant Universe, combining HST WFC3 imaging and grism spectroscopy with a myriad of other ground- and space-based datasets. This talk constitutes an overview of science results from the survey, with a focus on ongoing work and ways to exploit the rich public release of the 3D-HST data.

  6. 3D shape decomposition and comparison for gallbladder modeling

    NASA Astrophysics Data System (ADS)

    Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen

    2011-03-01

    This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.

  7. 3DSEM++: Adaptive and intelligent 3D SEM surface reconstruction.

    PubMed

    Tafti, Ahmad P; Holz, Jessica D; Baghaie, Ahmadreza; Owen, Heather A; He, Max M; Yu, Zeyun

    2016-08-01

    Structural analysis of microscopic objects is a longstanding topic in several scientific disciplines, such as biological, mechanical, and materials sciences. The scanning electron microscope (SEM), as a promising imaging equipment has been around for decades to determine the surface properties (e.g., compositions or geometries) of specimens by achieving increased magnification, contrast, and resolution greater than one nanometer. Whereas SEM micrographs still remain two-dimensional (2D), many research and educational questions truly require knowledge and facts about their three-dimensional (3D) structures. 3D surface reconstruction from SEM images leads to remarkable understanding of microscopic surfaces, allowing informative and qualitative visualization of the samples being investigated. In this contribution, we integrate several computational technologies including machine learning, contrario methodology, and epipolar geometry to design and develop a novel and efficient method called 3DSEM++ for multi-view 3D SEM surface reconstruction in an adaptive and intelligent fashion. The experiments which have been performed on real and synthetic data assert the approach is able to reach a significant precision to both SEM extrinsic calibration and its 3D surface modeling. PMID:27200484

  8. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  9. 3D model reconstruction of underground goaf

    NASA Astrophysics Data System (ADS)

    Fang, Yuanmin; Zuo, Xiaoqing; Jin, Baoxuan

    2005-10-01

    Constructing 3D model of underground goaf, we can control the process of mining better and arrange mining work reasonably. However, the shape of goaf and the laneway among goafs are very irregular, which produce great difficulties in data-acquiring and 3D model reconstruction. In this paper, we research on the method of data-acquiring and 3D model construction of underground goaf, building topological relation among goafs. The main contents are as follows: a) The paper proposed an efficient encoding rule employed to structure the field measurement data. b) A 3D model construction method of goaf is put forward, which by means of combining several TIN (triangulated irregular network) pieces, and an efficient automatic processing algorithm of boundary of TIN is proposed. c) Topological relation of goaf models is established. TIN object is the basic modeling element of goaf 3D model, and the topological relation among goaf is created and maintained by building the topological relation among TIN objects. Based on this, various 3D spatial analysis functions can be performed including transect and volume calculation of goaf. A prototype is developed, which can realized the model and algorithm proposed in this paper.

  10. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems. PMID:22752138

  11. DYNA3D example problem manual

    SciTech Connect

    Lovejoy, S.C.; Whirley, R.G.

    1990-10-10

    This manual describes in detail the solution of ten example problems using the explicit nonlinear finite element code DYNA3D. The sample problems include solid, shell, and beam element types, and a variety of linear and nonlinear material models. For each example, there is first an engineering description of the physical problem to be studied. Next, the analytical techniques incorporated in the model are discussed and key features of DYNA3D are highlighted. INGRID commands used to generate the mesh are listed, and sample plots from the DYNA3D analysis are given. Finally, there is a description of the TAURUS post-processing commands used to generate the plots of the solution. This set of example problems is useful in verifying the installation of DYNA3D on a new computer system. In addition, these documented analyses illustrate the application of DYNA3D to a variety of engineering problems, and thus this manual should be helpful to new analysts getting started with DYNA3D. 7 refs., 56 figs., 9 tabs.

  12. RAG-3D: a search tool for RNA 3D substructures.

    PubMed

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-10-30

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D-a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool-designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  13. 3-D SAR image formation from sparse aperture data using 3-D target grids

    NASA Astrophysics Data System (ADS)

    Bhalla, Rajan; Li, Junfei; Ling, Hao

    2005-05-01

    The performance of ATR systems can potentially be improved by using three-dimensional (3-D) SAR images instead of the traditional two-dimensional SAR images or one-dimensional range profiles. 3-D SAR image formation of targets from radar backscattered data collected on wide angle, sparse apertures has been identified by AFRL as fundamental to building an object detection and recognition capability. A set of data has been released as a challenge problem. This paper describes a technique based on the concept of 3-D target grids aimed at the formation of 3-D SAR images of targets from sparse aperture data. The 3-D target grids capture the 3-D spatial and angular scattering properties of the target and serve as matched filters for SAR formation. The results of 3-D SAR formation using the backhoe public release data are presented.

  14. Rapid 360 degree imaging and stitching of 3D objects using multiple precision 3D cameras

    NASA Astrophysics Data System (ADS)

    Lu, Thomas; Yin, Stuart; Zhang, Jianzhong; Li, Jiangan; Wu, Frank

    2008-02-01

    In this paper, we present the system architecture of a 360 degree view 3D imaging system. The system consists of multiple 3D sensors synchronized to take 3D images around the object. Each 3D camera employs a single high-resolution digital camera and a color-coded light projector. The cameras are synchronized to rapidly capture the 3D and color information of a static object or a live person. The color encoded structure lighting ensures the precise reconstruction of the depth of the object. A 3D imaging system architecture is presented. The architecture employs the displacement of the camera and the projector to triangulate the depth information. The 3D camera system has achieved high depth resolution down to 0.1mm on a human head sized object and 360 degree imaging capability.

  15. CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.

    2013-01-01

    Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.

  16. Leveraging Avatars in 3D Virtual Environments ("Second Life") for Interactive Learning: The Moderating Role of the Behavioral Activation System "vs." Behavioral Inhibition System and the Mediating Role of Enjoyment

    ERIC Educational Resources Information Center

    Jin, Seung-A. Annie

    2011-01-01

    Within the Entertainment-Education (E-E) framework, two experiments examined the effects of avatar-based e-health education targeting college students. Study 1 (between-subjects factorial design experiment: N = 94) tested the effects of message framing in e-learning and the moderating role of students' motivational systems on their enjoyment of…

  17. PLOT3D Export Tool for Tecplot

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  18. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  19. Lessons learned in Liberia: preliminary examination of the psychometric properties of trust and teamwork among maternal healthcare workers

    PubMed Central

    2013-01-01

    Background Post-conflict Liberia has one of the fastest growing populations on the continent and one of the highest maternal mortality rates among the world. However, in the rural regions, less than half of all births are attended by a skilled birth attendant. There is a need to evaluate the relationship between trained traditional healthcare providers and skilled birth attendants to improve maternal health outcomes. This evaluation must also take into consideration the needs and desires of the patients. The purpose of this pilot study was to establish the validity and reliability of a survey tool to evaluate trust and teamwork in the working relationships between trained traditional midwives and certified midwives in a post-conflict country. Methods A previously established scale, the Trust and Teambuilding Scale, was used with non- and low-literate trained traditional midwives (n=48) in rural Liberia to evaluate trust and teamwork with certified midwives in their communities. Initial results indicated that the scale and response keys were culturally inadequate for this population. A revised version of the scale, the Trust and Teamwork Scale – Liberia, was created and administered to an additional group of non- and low-literate, trained traditional midwives (n=42). Exploratory factor analysis using Mplus for dichotomous variables was used to determine the psychometric properties of the revised scale and was then confirmed with the full sample (n=90). Additional analyses included contrast validity, convergent validity, and Kuder-Richardson reliability. Results Exploratory factor analysis revealed two factors in the revised Trust and Teamwork Scale – Liberia. These two factors, labeled trust and teamwork, included eleven of the original eighteen items used in the Trust and Teamwork Scale and demonstrated contrast and convergent validity and adequate reliability. Conclusions The revised scale is suitable for use with non- and low-literate, trained traditional

  20. Thermal infrared exploitation for 3D face reconstruction

    NASA Astrophysics Data System (ADS)

    Abayowa, Bernard O.

    2009-05-01

    Despite the advances in face recognition research, current face recognition systems are still not accurate or robust enough to be deployed in uncontrolled environments. The existence of a pose and illumination invariant face recognition system is still lacking. This research exploits the relationship between thermal infrared and visible imagery, to estimate 3D face with visible texture from infrared imagery. The relationship between visible and thermal infrared texture is learned using kernel canonical correlation analysis(KCCA), and then a 3D modeler is used to estimate the geometric structure from predicted visual imagery. This research will find it's application in uncontrolled environments where illumination and pose invariant identification or tracking is required at long range such as urban search and rescue (Amber alert, missing dementia patient), and manhunt scenarios.

  1. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGESBeta

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  2. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  3. RAG-3D: a search tool for RNA 3D substructures

    PubMed Central

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-01-01

    To address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding. PMID:26304547

  4. Automatic needle segmentation in 3D ultrasound images using 3D Hough transform

    NASA Astrophysics Data System (ADS)

    Zhou, Hua; Qiu, Wu; Ding, Mingyue; Zhang, Songgeng

    2007-12-01

    3D ultrasound (US) is a new technology that can be used for a variety of diagnostic applications, such as obstetrical, vascular, and urological imaging, and has been explored greatly potential in the applications of image-guided surgery and therapy. Uterine adenoma and uterine bleeding are the two most prevalent diseases in Chinese woman, and a minimally invasive ablation system using an RF button electrode which is needle-like is being used to destroy tumor cells or stop bleeding currently. Now a 3D US guidance system has been developed to avoid accidents or death of the patient by inaccurate localizations of the electrode and the tumor position during treatment. In this paper, we described two automated techniques, the 3D Hough Transform (3DHT) and the 3D Randomized Hough Transform (3DRHT), which is potentially fast, accurate, and robust to provide needle segmentation in 3D US image for use of 3D US imaging guidance. Based on the representation (Φ , θ , ρ , α ) of straight lines in 3D space, we used the 3DHT algorithm to segment needles successfully assumed that the approximate needle position and orientation are known in priori. The 3DRHT algorithm was developed to detect needles quickly without any information of the 3D US images. The needle segmentation techniques were evaluated using the 3D US images acquired by scanning water phantoms. The experiments demonstrated the feasibility of two 3D needle segmentation algorithms described in this paper.

  5. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  6. Interlopers 3D: experiences designing a stereoscopic game

    NASA Astrophysics Data System (ADS)

    Weaver, James; Holliman, Nicolas S.

    2014-03-01

    Background In recent years 3D-enabled televisions, VR headsets and computer displays have become more readily available in the home. This presents an opportunity for game designers to explore new stereoscopic game mechanics and techniques that have previously been unavailable in monocular gaming. Aims To investigate the visual cues that are present in binocular and monocular vision, identifying which are relevant when gaming using a stereoscopic display. To implement a game whose mechanics are so reliant on binocular cues that the game becomes impossible or at least very difficult to play in non-stereoscopic mode. Method A stereoscopic 3D game was developed whose objective was to shoot down advancing enemies (the Interlopers) before they reached their destination. Scoring highly required players to make accurate depth judgments and target the closest enemies first. A group of twenty participants played both a basic and advanced version of the game in both monoscopic 2D and stereoscopic 3D. Results The results show that in both the basic and advanced game participants achieved higher scores when playing in stereoscopic 3D. The advanced game showed that by disrupting the depth from motion cue the game became more difficult in monoscopic 2D. Results also show a certain amount of learning taking place over the course of the experiment, meaning that players were able to score higher and finish the game faster over the course of the experiment. Conclusions Although the game was not impossible to play in monoscopic 2D, participants results show that it put them at a significant disadvantage when compared to playing in stereoscopic 3D.

  7. Can Force Feedback and Science Learning Enhance the Effectiveness of Neuro-Rehabilitation? An Experimental Study on Using a Low-Cost 3D Joystick and a Virtual Visit to a Zoo

    PubMed Central

    Cappa, Paolo; Clerico, Andrea; Nov, Oded; Porfiri, Maurizio

    2013-01-01

    In this paper, we demonstrate that healthy adults respond differentially to the administration of force feedback and the presentation of scientific content in a virtual environment, where they interact with a low-cost haptic device. Subjects are tasked with controlling the movement of a cursor on a predefined trajectory that is superimposed on a map of New York City’s Bronx Zoo. The system is characterized in terms of a suite of objective indices quantifying the subjects’ dexterity in planning and generating the multijoint visuomotor tasks. We find that force feedback regulates the smoothness, accuracy, and duration of the subject’s movement, whereby converging or diverging force fields influence the range of variations of the hand speed. Finally, our findings provide preliminary evidence that using educational content increases subjects’ satisfaction. Improving the level of interest through the inclusion of learning elements can increase the time spent performing rehabilitation tasks and promote learning in a new context. PMID:24349562

  8. Shim3d Helmholtz Solution Package

    Energy Science and Technology Software Center (ESTSC)

    2009-01-29

    This suite of codes solves the Helmholtz Equation for the steady-state propagation of single-frequency electromagnetic radiation in an arbitrary 2D or 3D dielectric medium. Materials can be either transparent or absorptive (including metals) and are described entirely by their shape and complex dielectric constant. Dielectric boundaries are assumed to always fall on grid boundaries and the material within a single grid cell is considered to be uniform. Input to the problem is in the formmore » of a Dirichlet boundary condition on a single boundary, and may be either analytic (Gaussian) in shape, or a mode shape computed using a separate code (such as the included eigenmode solver vwave20), and written to a file. Solution is via the finite difference method using Jacobi iteration for 3D problems or direct matrix inversion for 2D problems. Note that 3D problems that include metals will require different iteration parameters than described in the above reference. For structures with curved boundaries not easily modeled on a rectangular grid, the auxillary codes helmholtz11(2D), helm3d (semivectoral), and helmv3d (full vectoral) are provided. For these codes the finite difference equations are specified on a topological regular triangular grid and solved using Jacobi iteration or direct matrix inversion as before. An automatic grid generator is supplied.« less

  9. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  10. T-HEMP3D user manual

    SciTech Connect

    Turner, D.

    1983-08-01

    The T-HEMP3D (Transportable HEMP3D) computer program is a derivative of the STEALTH three-dimensional thermodynamics code developed by Science Applications, Inc., under the direction of Ron Hofmann. STEALTH, in turn, is based entirely on the original HEMP3D code written at Lawrence Livermore National Laboratory. The primary advantage STEALTH has over its predecessors is that it was designed using modern structured design techniques, with rigorous programming standards enforced. This yields two benefits. First, the code is easily changeable; this is a necessity for a physics code used for research. The second benefit is that the code is easily transportable between different types of computers. The STEALTH program was transferred to LLNL under a cooperative development agreement. Changes were made primarily in three areas: material specification, coordinate generation, and the addition of sliding surface boundary conditions. The code was renamed T-HEMP3D to avoid confusion with other versions of STEALTH. This document summarizes the input to T-HEMP3D, as used at LLNL. It does not describe the physics simulated by the program, nor the numerical techniques employed. Furthermore, it does not describe the separate job steps of coordinate generation and post-processing, including graphical display of results. (WHK)

  11. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  12. 3D dynamic roadmapping for abdominal catheterizations.

    PubMed

    Bender, Frederik; Groher, Martin; Khamene, Ali; Wein, Wolfgang; Heibel, Tim Hauke; Navab, Nassir

    2008-01-01

    Despite rapid advances in interventional imaging, the navigation of a guide wire through abdominal vasculature remains, not only for novice radiologists, a difficult task. Since this navigation is mostly based on 2D fluoroscopic image sequences from one view, the process is slowed down significantly due to missing depth information and patient motion. We propose a novel approach for 3D dynamic roadmapping in deformable regions by predicting the location of the guide wire tip in a 3D vessel model from the tip's 2D location, respiratory motion analysis, and view geometry. In a first step, the method compensates for the apparent respiratory motion in 2D space before backprojecting the 2D guide wire tip into three dimensional space, using a given projection matrix. To countervail the error connected to the projection parameters and the motion compensation, as well as the ambiguity caused by vessel deformation, we establish a statistical framework, which computes a reliable estimate of the guide wire tip location within the 3D vessel model. With this 2D-to-3D transfer, the navigation can be performed from arbitrary viewing angles, disconnected from the static perspective view of the fluoroscopic sequence. Tests on a realistic breathing phantom and on synthetic data with a known ground truth clearly reveal the superiority of our approach compared to naive methods for 3D roadmapping. The concepts and information presented in this paper are based on research and are not commercially available. PMID:18982662

  13. Lifting Object Detection Datasets into 3D.

    PubMed

    Carreira, Joao; Vicente, Sara; Agapito, Lourdes; Batista, Jorge

    2016-07-01

    While data has certainly taken the center stage in computer vision in recent years, it can still be difficult to obtain in certain scenarios. In particular, acquiring ground truth 3D shapes of objects pictured in 2D images remains a challenging feat and this has hampered progress in recognition-based object reconstruction from a single image. Here we propose to bypass previous solutions such as 3D scanning or manual design, that scale poorly, and instead populate object category detection datasets semi-automatically with dense, per-object 3D reconstructions, bootstrapped from:(i) class labels, (ii) ground truth figure-ground segmentations and (iii) a small set of keypoint annotations. Our proposed algorithm first estimates camera viewpoint using rigid structure-from-motion and then reconstructs object shapes by optimizing over visual hull proposals guided by loose within-class shape similarity assumptions. The visual hull sampling process attempts to intersect an object's projection cone with the cones of minimal subsets of other similar objects among those pictured from certain vantage points. We show that our method is able to produce convincing per-object 3D reconstructions and to accurately estimate cameras viewpoints on one of the most challenging existing object-category detection datasets, PASCAL VOC. We hope that our results will re-stimulate interest on joint object recognition and 3D reconstruction from a single image. PMID:27295458

  14. 3D camera tracking from disparity images

    NASA Astrophysics Data System (ADS)

    Kim, Kiyoung; Woo, Woontack

    2005-07-01

    In this paper, we propose a robust camera tracking method that uses disparity images computed from known parameters of 3D camera and multiple epipolar constraints. We assume that baselines between lenses in 3D camera and intrinsic parameters are known. The proposed method reduces camera motion uncertainty encountered during camera tracking. Specifically, we first obtain corresponding feature points between initial lenses using normalized correlation method. In conjunction with matching features, we get disparity images. When the camera moves, the corresponding feature points, obtained from each lens of 3D camera, are robustly tracked via Kanade-Lukas-Tomasi (KLT) tracking algorithm. Secondly, relative pose parameters of each lens are calculated via Essential matrices. Essential matrices are computed from Fundamental matrix calculated using normalized 8-point algorithm with RANSAC scheme. Then, we determine scale factor of translation matrix by d-motion. This is required because the camera motion obtained from Essential matrix is up to scale. Finally, we optimize camera motion using multiple epipolar constraints between lenses and d-motion constraints computed from disparity images. The proposed method can be widely adopted in Augmented Reality (AR) applications, 3D reconstruction using 3D camera, and fine surveillance systems which not only need depth information, but also camera motion parameters in real-time.

  15. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  16. Extra dimensions: 3D in PDF documentation

    SciTech Connect

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  17. Extra dimensions: 3D in PDF documentation

    DOE PAGESBeta

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less

  18. The importance of 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Low, Daniel

    2015-01-01

    Radiation therapy has been getting progressively more complex for the past 20 years. Early radiation therapy techniques needed only basic dosimetry equipment; motorized water phantoms, ionization chambers, and basic radiographic film techniques. As intensity modulated radiation therapy and image guided therapy came into widespread practice, medical physicists were challenged with developing effective and efficient dose measurement techniques. The complex 3-dimensional (3D) nature of the dose distributions that were being delivered demanded the development of more quantitative and more thorough methods for dose measurement. The quality assurance vendors developed a wide array of multidetector arrays that have been enormously useful for measuring and characterizing dose distributions, and these have been made especially useful with the advent of 3D dose calculation systems based on the array measurements, as well as measurements made using film and portal imagers. Other vendors have been providing 3D calculations based on data from the linear accelerator or the record and verify system, providing thorough evaluation of the dose but lacking quality assurance (QA) of the dose delivery process, including machine calibration. The current state of 3D dosimetry is one of a state of flux. The vendors and professional associations are trying to determine the optimal balance between thorough QA, labor efficiency, and quantitation. This balance will take some time to reach, but a necessary component will be the 3D measurement and independent calculation of delivered radiation therapy dose distributions.

  19. Visual inertia of rotating 3-D objects.

    PubMed

    Jiang, Y; Pantle, A J; Mark, L S

    1998-02-01

    Five experiments were designed to determine whether a rotating, transparent 3-D cloud of dots (simulated sphere) could influence the perceived direction of rotation of a subsequent sphere. Experiment 1 established conditions under which the direction of rotation of a virtual sphere was perceived unambiguously. When a near-far luminance difference and perspective depth cues were present, observers consistently saw the sphere rotate in the intended direction. In Experiment 2, a near-far luminance difference was used to create an unambiguous rotation sequence that was followed by a directionally ambiguous rotation sequence that lacked both the near-far luminance cue and the perspective cue. Observers consistently saw the second sequence as rotating in the same direction as the first, indicating the presence of 3-D visual inertia. Experiment 3 showed that 3-D visual inertia was sufficiently powerful to bias the perceived direction of a rotation sequence made unambiguous by a near-far luminance cue. Experiment 5 showed that 3-D visual inertia could be obtained using an occlusion depth cue to create an unambiguous inertia-inducing sequence. Finally, Experiments 2, 4, and 5 all revealed a fast-decay phase of inertia that lasted for approximately 800 msec, followed by an asymptotic phase that lasted for periods as long as 1,600 msec. The implications of these findings are examined with respect to motion mechanisms of 3-D visual inertia. PMID:9529911

  20. Integral 3D display using multiple LCDs

    NASA Astrophysics Data System (ADS)

    Okaichi, Naoto; Miura, Masato; Arai, Jun; Mishina, Tomoyuki

    2015-03-01

    The quality of the integral 3D images created by a 3D imaging system was improved by combining multiple LCDs to utilize a greater number of pixels than that possible with one LCD. A prototype of the display device was constructed by using four HD LCDs. An integral photography (IP) image displayed by the prototype is four times larger than that reconstructed by a single display. The pixel pitch of the HD display used is 55.5 μm, and the number of elemental lenses is 212 horizontally and 119 vertically. The 3D image pixel count is 25,228, and the viewing angle is 28°. Since this method is extensible, it is possible to display an integral 3D image of higher quality by increasing the number of LCDs. Using this integral 3D display structure makes it possible to make the whole device thinner than a projector-based display system. It is therefore expected to be applied to the home television in the future.