Science.gov

Sample records for 3-dimensional craniomaxillofacial models

  1. 3-Dimensional Topographic Models for the Classroom

    NASA Technical Reports Server (NTRS)

    Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.

    2003-01-01

    We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.

  2. Experimental model for bone regeneration in oral and cranio-maxillo-facial surgery.

    PubMed

    Mardas, Nikos; Dereka, Xanthippi; Donos, Nikolaos; Dard, Michel

    2014-02-01

    Bone and tooth loss, as a result of trauma, anatomical or congenital reasons, cancer, and periodontal disease, is a common therapeutic problem in the fields of cranio-maxillo-facial surgery and periodontics. The proposed techniques for the treatment of various bone defects encountered include bone grafts, bone substitutes, guided tissue regeneration, and distraction osteogenesis as well as their combinations. In addition, dental implants have been successfully utilized for the restoration of full or partial edentulism. The introduction and development of new therapeutic approaches and devices demand the use of appropriate animal models that present bone anatomy and healing comparable to human. Among other animal models, the pig is extensively documented in several biomedical areas and has been largely used in maxillo-facial surgery and implants dentistry-related research. Anatomical and physiological similarities with human in size, physiology, and bone biology contribute to a successful involvement of this animal to understand and treat various osseous lesions. However, improvements and standardization are requested with respect to consistency and discrimination abilities. The aim of this review is to provide a critical appraisal of the literature related to swine models for the evaluation of cranio-maxillo-facial osseous defect healing, regeneration, and bone-implant interface. This review should assist researchers in the field to select the most appropriate model for each dedicated purpose and also contribute to stimulate an innovative thinking on the use of porcine models. PMID:23957784

  3. Estimating patient-specific and anatomically correct reference model for craniomaxillofacial deformity via sparse representation

    PubMed Central

    Wang, Li; Ren, Yi; Gao, Yaozong; Tang, Zhen; Chen, Ken-Chung; Li, Jianfu; Shen, Steve G. F.; Yan, Jin; Lee, Philip K. M.; Chow, Ben; Xia, James J.; Shen, Dinggang

    2015-01-01

    Purpose: A significant number of patients suffer from craniomaxillofacial (CMF) deformity and require CMF surgery in the United States. The success of CMF surgery depends on not only the surgical techniques but also an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. Currently, the outcome of the surgery is often subjective and highly dependent on surgeon’s experience. In this paper, the authors present an automatic method to estimate an anatomically correct reference shape of jaws for orthognathic surgery, a common type of CMF surgery. Methods: To estimate a patient-specific jaw reference model, the authors use a data-driven method based on sparse shape composition. Given a dictionary of normal subjects, the authors first use the sparse representation to represent the midface of a patient by the midfaces of the normal subjects in the dictionary. Then, the derived sparse coefficients are used to reconstruct a patient-specific reference jaw shape. Results: The authors have validated the proposed method on both synthetic and real patient data. Experimental results show that the authors’ method can effectively reconstruct the normal shape of jaw for patients. Conclusions: The authors have presented a novel method to automatically estimate a patient-specific reference model for the patient suffering from CMF deformity. PMID:26429255

  4. Estimating Anatomically-Correct Reference Model for Craniomaxillofacial Deformity via Sparse Representation

    PubMed Central

    Ren, Yi; Wang, Li; Gao, Yaozong; Tang, Zhen; Chen, Ken Chung; Li, Jianfu; Shen, Steve G.F.; Yan, Jin; Lee, Philip K.M.; Chow, Ben; Xia, James J.; Shen, Dinggang

    2014-01-01

    The success of craniomaxillofacial (CMF) surgery depends not only on the surgical techniques, but also upon an accurate surgical planning. However, surgical planning for CMF surgery is challenging due to the absence of a patient-specific reference model. In this paper, we present a method to automatically estimate an anatomically correct reference shape of jaws for the patient requiring orthognathic surgery, a common type of CMF surgery. We employ the sparse representation technique to represent the normal regions of the patient with respect to the normal subjects. The estimated representation is then used to reconstruct a patient-specific reference model with “restored” normal anatomy of the jaws. We validate our method on both synthetic subjects and patients. Experimental results show that our method can effectively reconstruct the normal shape of jaw for patients. Also, a new quantitative measurement is introduced to quantify the CMF deformity and validate the method in a quantitative approach, which is rarely used before. PMID:25328919

  5. Incorporating 3-dimensional models in online articles

    PubMed Central

    Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz

    2015-01-01

    Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can

  6. Development and Validation of a 3-Dimensional CFB Furnace Model

    NASA Astrophysics Data System (ADS)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  7. Human stem cells for craniomaxillofacial reconstruction.

    PubMed

    Jalali, Morteza; Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor; Pauklin, Siim; Vallier, Ludovic

    2014-07-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  8. Human Stem Cells for Craniomaxillofacial Reconstruction

    PubMed Central

    Kirkpatrick, William Niall Alexander; Cameron, Malcolm Gregor

    2014-01-01

    Human stem cell research represents an exceptional opportunity for regenerative medicine and the surgical reconstruction of the craniomaxillofacial complex. The correct architecture and function of the vastly diverse tissues of this important anatomical region are critical for life supportive processes, the delivery of senses, social interaction, and aesthetics. Craniomaxillofacial tissue loss is commonly associated with inflammatory responses of the surrounding tissue, significant scarring, disfigurement, and psychological sequelae as an inevitable consequence. The in vitro production of fully functional cells for skin, muscle, cartilage, bone, and neurovascular tissue formation from human stem cells, may one day provide novel materials for the reconstructive surgeon operating on patients with both hard and soft tissue deficit due to cancer, congenital disease, or trauma. However, the clinical translation of human stem cell technology, including the application of human pluripotent stem cells (hPSCs) in novel regenerative therapies, faces several hurdles that must be solved to permit safe and effective use in patients. The basic biology of hPSCs remains to be fully elucidated and concerns of tumorigenicity need to be addressed, prior to the development of cell transplantation treatments. Furthermore, functional comparison of in vitro generated tissue to their in vivo counterparts will be necessary for confirmation of maturity and suitability for application in reconstructive surgery. Here, we provide an overview of human stem cells in disease modeling, drug screening, and therapeutics, while also discussing the application of regenerative medicine for craniomaxillofacial tissue deficit and surgical reconstruction. PMID:24564584

  9. An eFace-Template Method for Efficiently Generating Patient-Specific Anatomically-Detailed Facial Soft Tissue FE Models for Craniomaxillofacial Surgery Simulation.

    PubMed

    Zhang, Xiaoyan; Tang, Zhen; Liebschner, Michael A K; Kim, Daeseung; Shen, Shunyao; Chang, Chien-Ming; Yuan, Peng; Zhang, Guangming; Gateno, Jaime; Zhou, Xiaobo; Zhang, Shao-Xiang; Xia, James J

    2016-05-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft-tissue changes following osteotomy. This can only be accomplished on an anatomically-detailed facial soft tissue model. However, current anatomically-detailed facial soft tissue model generation is not appropriate for clinical applications due to the time intensive nature of manual segmentation and volumetric mesh generation. This paper presents a novel semi-automatic approach, named eFace-template method, for efficiently and accurately generating a patient-specific facial soft tissue model. Our novel approach is based on the volumetric deformation of an anatomically-detailed template to be fitted to the shape of each individual patient. The adaptation of the template is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. This methodology was validated using 4 visible human datasets (regarded as gold standards) and 30 patient models. The results indicated that our approach can accurately preserve the internal anatomical correspondence (i.e., muscles) for finite element modeling. Additionally, our hybrid approach was able to achieve an optimal balance among the patient shape fitting accuracy, anatomical correspondence and mesh quality. Furthermore, the statistical analysis showed that our hybrid approach was superior to two previously published methods: mesh-matching and landmark-based transformation. Ultimately, our eFace-template method can be directly and effectively used clinically to simulate the facial soft tissue changes in the clinical application. PMID:26464269

  10. 3-dimensional orthodontics visualization system with dental study models and orthopantomograms

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.

    2005-04-01

    The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.

  11. Creating 3-dimensional Models of the Photosphere using the SIR Code

    NASA Astrophysics Data System (ADS)

    Thonhofer, S.; Utz, D.; Jurčák, J.; Pauritsch, J.; Hanslmeier, A.; Lemmerer, B.

    A high-resolution 3-dimensional model of the photospheric magnetic field is essential for the investigation of magnetic features such as sunspots, pores or smaller elements like single flux tubes seen as magnetic bright points. The SIR code is an advanced inversion code that retrieves physical quantities, e.g. magnetic field, from Stokes profiles. Based on this code, we developed a program for automated inversion of Hinode SOT/SP data and for storing these results in 3-dimensional data cubes in the form of fits files. We obtained models of the temperature, magnetic field strength, magnetic field angles and LOS-velocity in a region of the quiet sun. We will give a first discussion of those parameters in regards of small scale magnetic fields and what we can obtain and learn in the future.

  12. MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)

    SciTech Connect

    Nutter, C.; Wannamaker, P.E.

    1980-11-01

    MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.

  13. Hardware Removal in Craniomaxillofacial Trauma

    PubMed Central

    Cahill, Thomas J.; Gandhi, Rikesh; Allori, Alexander C.; Marcus, Jeffrey R.; Powers, David; Erdmann, Detlev; Hollenbeck, Scott T.; Levinson, Howard

    2015-01-01

    Background Craniomaxillofacial (CMF) fractures are typically treated with open reduction and internal fixation. Open reduction and internal fixation can be complicated by hardware exposure or infection. The literature often does not differentiate between these 2 entities; so for this study, we have considered all hardware exposures as hardware infections. Approximately 5% of adults with CMF trauma are thought to develop hardware infections. Management consists of either removing the hardware versus leaving it in situ. The optimal approach has not been investigated. Thus, a systematic review of the literature was undertaken and a resultant evidence-based approach to the treatment and management of CMF hardware infections was devised. Materials and Methods A comprehensive search of journal articles was performed in parallel using MEDLINE, Web of Science, and ScienceDirect electronic databases. Keywords and phrases used were maxillofacial injuries; facial bones; wounds and injuries; fracture fixation, internal; wound infection; and infection. Our search yielded 529 articles. To focus on CMF fractures with hardware infections, the full text of English-language articles was reviewed to identify articles focusing on the evaluation and management of infected hardware in CMF trauma. Each article’s reference list was manually reviewed and citation analysis performed to identify articles missed by the search strategy. There were 259 articles that met the full inclusion criteria and form the basis of this systematic review. The articles were rated based on the level of evidence. There were 81 grade II articles included in the meta-analysis. Result Our meta-analysis revealed that 7503 patients were treated with hardware for CMF fractures in the 81 grade II articles. Hardware infection occurred in 510 (6.8%) of these patients. Of those infections, hardware removal occurred in 264 (51.8%) patients; hardware was left in place in 166 (32.6%) patients; and in 80 (15.6%) cases

  14. Investigation of Asymmetries in Inductively Coupled Plasma Etching Reactors Using a 3-Dimensional Hybrid Model

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.; Grapperhaus, Michael J.

    1996-10-01

    Inductively Coupled Plasma (ICP) reactors have the potential for scaling to large area substrates while maintaining azimuthal symmetry or side-to-side uniformity across the wafer. Asymmetric etch properties in these devices have been attributed to transmission line properties of the coil, internal structures (such as wafer clamps) and non-uniform gas injection or pumping. To investigate the origins of asymmetric etch properties, a 3-dimensional hybrid model has been developed. The hybrid model contains electromagnetic, electric circuit, electron energy equation, and fluid modules. Continuity and momentum equations are solved in the fluid module along with Poisson's equation. We will discuss results for ion and radical flux uniformity to the substrate while varying the transmission line characteristics of the coil, symmetry of gas inlets/pumping, and internal structures. Comparisons will be made to expermental measurements of etch rates. ^*Work supported by SRC, NSF, ARPA/AFOSR and LAM Research.

  15. Using 3-dimensional printing to create presurgical models for endodontic surgery.

    PubMed

    Bahcall, James K

    2014-09-01

    Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery. PMID:25197746

  16. The Investigation of Accuracy of 3 Dimensional Models Generated From Point Clouds with Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Gumus, Kutalmis; Erkaya, Halil

    2013-04-01

    In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of

  17. 3-Dimensional Geologic Modeling Applied to the Structural Characterization of Geothermal Systems: Astor Pass, Nevada, USA

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett

    2013-04-16

    Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.

  18. Simple computer program to model 3-dimensional underground heat flow with realistic boundary conditions

    NASA Astrophysics Data System (ADS)

    Metz, P. D.

    A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.

  19. A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.

    PubMed

    Hathout, Leith; Patel, Vishal; Wen, Patrick

    2016-09-01

    Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model. PMID:27572745

  20. Assessment and Planning for a Pediatric Bilateral Hand Transplant Using 3-Dimensional Modeling: Case Report.

    PubMed

    Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott

    2016-03-01

    Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor. PMID:26810827

  1. Using Interior Point Method Optimization Techniques to Improve 2- and 3-Dimensional Models of Earth Structures

    NASA Astrophysics Data System (ADS)

    Zamora, A.; Gutierrez, A. E.; Velasco, A. A.

    2014-12-01

    2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.

  2. The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education

    PubMed Central

    Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki

    2012-01-01

    Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759

  3. 3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems

    NASA Astrophysics Data System (ADS)

    Rauf, Shahid

    2008-10-01

    Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.

  4. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    NASA Astrophysics Data System (ADS)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  5. An Explicit 3-Dimensional Model for Reactive Transport of Nitrogen in Tile Drained Fields

    NASA Astrophysics Data System (ADS)

    Hill, D. J.; Valocchi, A. J.; Hudson, R. J.

    2001-12-01

    Recently, there has been increased interest in nitrate contamination of groundwater in the Midwest because of its link to surface water eutrophication, especially in the Gulf of Mexico. The vast majority of this nitrate is the product of biologically mediated transformation of fertilizers containing ammonia in the vadose zone of agricultural fields. For this reason, it is imperative that mathematical models, which can serve as useful tools to evaluate both the impact of agricultural fertilizer applications and nutrient-reducing management practices, are able to specifically address transport in the vadose zone. The development of a 3-dimensional explicit numerical model to simulate the movement and transformation of nitrogen species through the subsurface on the scale of an individual farm plot will be presented. At this scale, nitrogen fate and transport is controlled by a complex coupling among hydrologic, agricultural and biogeochemical processes. The nitrogen model is a component of a larger modeling effort that focuses upon conditions typical of those found in agricultural fields in Illinois. These conditions include non-uniform, multi-dimensional, transient flow in both saturated and unsaturated zones, geometrically complex networks of tile drains, coupled surface-subsurface-tile flow, and dynamic levels of dissolved oxygen in the soil profile. The advection-dispersion-reaction equation is solved using an operator-splitting approach, which is a flexible and straightforward strategy. Advection is modeled using a total variation diminishing scheme, dispersion is modeled using an alternating direction explicit method, and reactions are modeled using rate law equations. The model's stability and accuracy will be discussed, and test problems will be presented.

  6. Basement membrane proteins promote progression of intraepithelial neoplasia in 3-dimensional models of human stratified epithelium.

    PubMed

    Andriani, Frank; Garfield, Jackie; Fusenig, Norbert E; Garlick, Jonathan A

    2004-01-20

    We have developed novel 3-dimensional in vitro and in vivo tissue models that mimic premalignant disease of human stratified epithelium in order to analyze the stromal contribution of extracellular matrix and basement membrane proteins to the progression of intraepithelial neoplasia. Three-dimensional, organotypic cultures were grown either on a de-epidermalized human dermis with pre-existing basement membrane components on its surface (AlloDerm), on a Type I collagen gel that lacked basement membrane proteins or on polycarbonate membranes coated with purified extracellular matrix proteins. When tumor cells (HaCaT-II4) were mixed with normal keratinocytes (4:1/normals:HaCaT-II4), tumor cells selectively attached, persisted and proliferated at the dermal-epidermal interface in vitro and generated dysplastic tissues when transplanted to nude mice only when grown in the presence of the AlloDerm substrate. This stromal interface was permissive for tumor cell attachment due to the rapid assembly of structured basement membrane. When tumor cells were mixed with normal keratinocytes and grown on polycarbonate membranes coated with individual extracellular matrix or basement membrane components, selective attachment and significant intraepithelial expansion occurred only on laminin 1 and Type IV collagen-coated membranes. This preferential adhesion of tumor cells restricted the synthesis of laminin 5 to basal cells where it was deposited in a polarized distribution. Western blot analysis revealed that tumor cell attachment was not due to differences in the synthesis or processing of laminin 5. Thus, intraepithelial progression towards premalignant disease is dependent on the selective adhesion of cells with malignant potential to basement membrane proteins that provide a permissive template for their persistence and expansion. PMID:14648700

  7. Contributions of the Musculus Uvulae to Velopharyngeal Closure Quantified With a 3-Dimensional Multimuscle Computational Model.

    PubMed

    Inouye, Joshua M; Lin, Kant Y; Perry, Jamie L; Blemker, Silvia S

    2016-02-01

    The convexity of the dorsal surface of the velum is critical for normal velopharyngeal (VP) function and is largely attributed to the levator veli palatini (LVP) and musculus uvulae (MU). Studies have correlated a concave or flat nasal velar surface to symptoms of VP dysfunction including hypernasality and nasal air emission. In the context of surgical repair of cleft palates, the MU has been given relatively little attention in the literature compared with the larger LVP. A greater understanding of the mechanics of the MU will provide insight into understanding the influence of a dysmorphic MU, as seen in cleft palate, as it relates to VP function. The purpose of this study was to quantify the contributions of the MU to VP closure in a computational model. We created a novel 3-dimensional (3D) finite element model of the VP mechanism from magnetic resonance imaging data collected from an individual with healthy noncleft VP anatomy. The model components included the velum, posterior pharyngeal wall (PPW), LVP, and MU. Simulations were based on the muscle and soft tissue mechanical properties from the literature. We found that, similar to previous hypotheses, the MU acts as (i) a space-occupying structure and (ii) a velar extensor. As a space-occupying structure, the MU helps to nearly triple the midline VP contact length. As a velar extensor, the MU acting alone without the LVP decreases the VP distance 62%. Furthermore, activation of the MU decreases the LVP activation required for closure almost 3-fold, from 20% (without MU) to 8% (with MU). Our study suggests that any possible salvaging and anatomical reconstruction of viable MU tissue in a cleft patient may improve VP closure due to its mechanical function. In the absence or dysfunction of MU tissue, implantation of autologous or engineered tissues at the velar midline, as a possible substitute for the MU, may produce a geometric convexity more favorable to VP closure. In the future, more complex models will

  8. First Results from a Forward, 3-Dimensional Regional Model of a Transpressional San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    Fitzenz, D. D.; Miller, S. A.

    2001-12-01

    We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity

  9. 3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers

    NASA Astrophysics Data System (ADS)

    Wu, X.; Yang, T.

    2013-12-01

    In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney

  10. Ancillary procedures necessary for translational research in experimental craniomaxillofacial surgery

    PubMed Central

    Al Rakan, Mohammed; Shores, Jaimie T.; Bonawitz, Steve; Santiago, Gabriel; Christensen, Joani M.; Grant, Gerald; Murphy, Ryan J.; Basafa, Ehsan; Armand, Mehran; Otovic, Pete; Eller, Sue; Brandacher, Gerald; Gordon, Chad R.

    2014-01-01

    Introduction Swine are often regarded as having analogous facial skeletons to humans and therefore serve as an ideal animal model for translational investigation. However, there's a dearth of literature describing the pertinent ancillary procedures required for craniomaxillofacial research. With this in mind, our objective was to evaluate all necessary procedures required for peri-operative management and animal safety related to experimental craniomaxillofacial surgical procedures such as orthotopic, maxillofacial transplantation. Methods Miniature swine (n=9) were used to investigate peri-operative airway management, methods for providing nutrition, and long-dwelling intravenous access. Flap perfusion using near-infrared laser angiography and facial nerve assessment with EMG were explored. Results Bivona(R) tracheostomy was deemed appropriate versus Shiley since soft, wire-reinforced tubing reduced the incidence of tracheal necrosis. PEG tube, as opposed to esophagostomy, provided a reliable route for post-operative feeding. Femoral venous access with dorsal tunneling proved to be an ideal option being far from pertinent neck vessels. Laser angiography was beneficial for real-time evaluation of graft perfusion. Facial EMG techniques for tracing capture were found most optimal using percutaneous leads near the oral commissure. Experience shows that ancillary procedures are critical and malpositioning of devices may lead to irreversible sequelae with premature animal death. Conclusion Face-jaw-teeth transplantation in swine is a complicated procedure which demands special attention to airway, feeding, and intravascular access. It is critical that each ancillary procedure be performed by a dedicated team familiar with relevant anatomy and protocol. Emphasis should be placed on secure skin-level fixation for all tube/lines to minimize risk of dislodgement. A reliable veterinarian team is invaluable and critical for long-term success. PMID:25377964

  11. Manufacturing models of fetal malformations built from 3-dimensional ultrasound, magnetic resonance imaging, and computed tomography scan data.

    PubMed

    Werner, Heron; Rolo, Liliam Cristine; Araujo Júnior, Edward; Dos Santos, Jorge Roberto Lopes

    2014-03-01

    Technological innovations accompanying advances in medicine have given rise to the possibility of obtaining better-defined fetal images that assist in medical diagnosis and contribute toward genetic counseling offered to parents during the prenatal period. In this article, we show our innovative experience of diagnosing fetal malformations through correlating 3-dimensional ultrasonography, magnetic resonance imaging, and computed tomography, which are accurate techniques for fetal assessment, with a fetal image reconstruction technique to create physical fetal models. PMID:24901782

  12. Experimental Validation of Plastic Mandible Models Produced by a "Low-Cost" 3-Dimensional Fused Deposition Modeling Printer.

    PubMed

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    BACKGROUND The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. MATERIAL AND METHODS Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. RESULTS The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm CONCLUSIONS Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  13. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer

    PubMed Central

    Maschio, Federico; Pandya, Mirali; Olszewski, Raphael

    2016-01-01

    Background The objective of this study was to investigate the accuracy of 3-dimensional (3D) plastic (ABS) models generated using a low-cost 3D fused deposition modelling printer. Material/Methods Two human dry mandibles were scanned with a cone beam computed tomography (CBCT) Accuitomo device. Preprocessing consisted of 3D reconstruction with Maxilim software and STL file repair with Netfabb software. Then, the data were used to print 2 plastic replicas with a low-cost 3D fused deposition modeling printer (Up plus 2®). Two independent observers performed the identification of 26 anatomic landmarks on the 4 mandibles (2 dry and 2 replicas) with a 3D measuring arm. Each observer repeated the identifications 20 times. The comparison between the dry and plastic mandibles was based on 13 distances: 8 distances less than 12 mm and 5 distances greater than 12 mm. Results The mean absolute difference (MAD) was 0.37 mm, and the mean dimensional error (MDE) was 3.76%. The MDE decreased to 0.93% for distances greater than 12 mm. Conclusions Plastic models generated using the low-cost 3D printer UPplus2® provide dimensional accuracies comparable to other well-established rapid prototyping technologies. Validated low-cost 3D printers could represent a step toward the better accessibility of rapid prototyping technologies in the medical field. PMID:27003456

  14. In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines

    PubMed Central

    Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M

    2015-01-01

    The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC. PMID:26046692

  15. The 3-dimensional, 4-channel model of human visual sensitivity to grayscale scrambles.

    PubMed

    Silva, Andrew E; Chubb, Charles

    2014-08-01

    Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the preattentive mechanisms (called here "field-capture channels") that confer this sensitivity remain obscure. The current experiments sought to characterize the specific field-capture channels that confer this sensitivity using a task in which the participant is required to detect the location of a small patch of one type of grayscale scramble in an extended background of another type. Analysis of the results supports the existence of four field-capture channels: (1) the (previously characterized) "blackshot" channel, sharply tuned to the blackest grayscales; (2) a (previously unknown) "gray-tuned" field-capture channel whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker than mid-gray then decreasing to half-height for brighter grayscales; (3) an "up-ramped" channel whose sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white; (4) a (complementary) "down-ramped" channel whose sensitivity is maximal for black, decreases linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4) are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a 3-dimensional space of histogram variations. PMID:24932891

  16. Spheroid-based 3-dimensional culture models: Gene expression and functionality in head and neck cancer.

    PubMed

    Schmidt, Marianne; Scholz, Claus-Juergen; Polednik, Christine; Roller, Jeanette

    2016-04-01

    In the present study a panel of 12 head and neck cancer (HNSCC) cell lines were tested for spheroid formation. Since the size and morphology of spheroids is dependent on both cell adhesion and proliferation in the 3-dimensional (3D) context, morphology of HNSCC spheroids was related to expression of E-cadherin and the proliferation marker Ki67. In HNSCC cell lines the formation of tight regular spheroids was dependent on distinct E-cadherin expression levels in monolayer cultures, usually resulting in upregulation following aggregation into 3D structures. Cell lines expressing only low levels of E-cadherin in monolayers produced only loose cell clusters, frequently decreasing E-cadherin expression further upon aggregation. In these cell lines no epidermal growth factor receptor (EGFR) upregulation occurred and proliferation generally decreased in spheroids/aggregates independent of E-cadherin expression. In a second approach a global gene expression analysis of the larynx carcinoma cell line HLaC78 monolayer and the corresponding spheroids was performed. A global upregulation of gene expression in HLaC78 spheroids was related to genes involved in cell adhesion, cell junctions and cytochrome P450-mediated metabolism of xenobiotics. Downregulation was associated with genes controlling cell cycle, DNA-replication and DNA mismatch repair. Analyzing the expression of selected genes of each functional group in monolayer and spheroid cultures of all 12 cell lines revealed evidence for common gene expression shifts in genes controlling cell junctions, cell adhesion, cell cycle and DNA replication as well as genes involved in the cytochrome P450-mediated metabolism of xenobiotics. PMID:26797047

  17. 3-Dimensional modelling of chick embryo eye development and growth using high resolution magnetic resonance imaging.

    PubMed

    Goodall, Nicola; Kisiswa, Lilian; Prashar, Ankush; Faulkner, Stuart; Tokarczuk, Paweł; Singh, Krish; Erichsen, Jonathan T; Guggenheim, Jez; Halfter, Willi; Wride, Michael A

    2009-10-01

    Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye. Using a 9.4 Tesla (400 MHz) high field ultra-shielded and refrigerated magnet (Bruker), MRI was carried out on paraformaldehyde-fixed chick embryos or heads at E4, E6, E8, and E10. Image data were processed using established and custom packages (MRICro, ImageJ, ParaVision, Bruker and mri3dX). Voxel dimensions ranged from 62.5 microm to 117.2 microm. We subsequently used the images obtained from the MRI data in order to make precise measurements of chick embryo eye surface area, volume and axial length from E4 to E10. MRI was validated for accurate sizing of ocular tissue features by direct comparison with previously published literature. Furthermore, we demonstrate the utility of high resolution MRI for making accurate measurements of morphological changes due to experimental manipulation of chick eye development, thereby facilitating a better understanding of the effects on chick embryo eye development and growth of such manipulations. Chondroitin sulphate or heparin were microinjected into the vitreous cavity of the right eyes of each of 3 embryos at E5. At E10, embryos were fixed and various eye parameters (volume, surface area, axial length and equatorial diameter) were determined using MRI and normalised with respect to the un-injected left eyes. Statistically significant alterations in eye volume (p < 0.05; increases with chondroitin sulphate and decreases with heparin) and changes in vitreous homogeneity were observed in embryos following microinjection of glycosaminoglycans. Furthermore, in the heparin-injected eyes, significant disturbances at the vitreo-retinal boundary were observed as well as retinal folding and detachment

  18. Application of 3-Dimensional Printing Technology to Construct an Eye Model for Fundus Viewing Study

    PubMed Central

    Li, Xinhua; Gao, Zhishan; Yuan, Dongqing; Liu, Qinghuai

    2014-01-01

    Objective To construct a life-sized eye model using the three-dimensional (3D) printing technology for fundus viewing study of the viewing system. Methods We devised our schematic model eye based on Navarro's eye and redesigned some parameters because of the change of the corneal material and the implantation of intraocular lenses (IOLs). Optical performance of our schematic model eye was compared with Navarro's schematic eye and other two reported physical model eyes using the ZEMAX optical design software. With computer aided design (CAD) software, we designed the 3D digital model of the main structure of the physical model eye, which was used for three-dimensional (3D) printing. Together with the main printed structure, polymethyl methacrylate(PMMA) aspherical cornea, variable iris, and IOLs were assembled to a physical eye model. Angle scale bars were glued from posterior to periphery of the retina. Then we fabricated other three physical models with different states of ammetropia. Optical parameters of these physical eye models were measured to verify the 3D printing accuracy. Results In on-axis calculations, our schematic model eye possessed similar size of spot diagram compared with Navarro's and Bakaraju's model eye, much smaller than Arianpour's model eye. Moreover, the spherical aberration of our schematic eye was much less than other three model eyes. While in off- axis simulation, it possessed a bit higher coma and similar astigmatism, field curvature and distortion. The MTF curves showed that all the model eyes diminished in resolution with increasing field of view, and the diminished tendency of resolution of our physical eye model was similar to the Navarro's eye. The measured parameters of our eye models with different status of ametropia were in line with the theoretical value. Conclusions The schematic eye model we designed can well simulate the optical performance of the human eye, and the fabricated physical one can be used as a tool in fundus

  19. Comparison of 1-, 2-, and 3-dimensional modeling of the TFTR for nuclear radiation transport analysis

    SciTech Connect

    Ku, L.P.; Kolibal, J.G.; Liew, S.L.

    1985-09-01

    The computational models of the TFTR constructed for the radiation transport analysis for the Q approx. 1 demonstration are summarized and reviewed. These models can be characterized by the dimensionality required to describe the geometry, and by the numerical methods of solving the transport equation. Results obtained with these models in the test cell are compared and discussed.

  20. Development of a liquid jet model for implementation in a 3-dimensional Eularian analysis tool

    NASA Astrophysics Data System (ADS)

    Buschman, Francis X., III

    The ability to model the thermal behavior of a nuclear reactor is of utmost importance to the reactor designer. Condensation is an important phenomenon when modeling a reactor system's response to a Loss Of Coolant Accident (LOCA). Condensation is even more important with the use of passive safety systems which rely on condensation heat transfer for long term cooling. The increasing use of condensation heat transfer, including condensation on jets of water, in safety systems puts added pressure to correctly model this phenomenon with thermal-hydraulic system and sub-channel analysis codes. In this work, a stand alone module with which to simulate condensation on a liquid jet was developed and then implemented within a reactor vessel analysis code to improve that code's handling of jet condensation. It is shown that the developed liquid jet model vastly improves the ability of COBRA-TF to model condensation on turbulent liquid jets. The stand alone jet model and the coupled liquid jet COBRA-TF have been compared to experimental data. Jet condensation heat transfer experiments by Celata et al. with a variety of jet diameters, velocities, and subcooling were utilized to evaluate the models. A sensitivity study on the effects of noncondensables on jet condensation was also carried out using the stand alone jet model.

  1. [Rapid 3-Dimensional Models of Cerebral Aneurysm for Emergency Surgical Clipping].

    PubMed

    Konno, Takehiko; Mashiko, Toshihiro; Oguma, Hirofumi; Kaneko, Naoki; Otani, Keisuke; Watanabe, Eiju

    2016-08-01

    We developed a method for manufacturing solid models of cerebral aneurysms, with a shorter printing time than that involved in conventional methods, using a compact 3D printer with acrylonitrile-butadiene-styrene(ABS)resin. We further investigated the application and utility of this printing system in emergency clipping surgery. A total of 16 patients diagnosed with acute subarachnoid hemorrhage resulting from cerebral aneurysm rupture were enrolled in the present study. Emergency clipping was performed on the day of hospitalization. Digital Imaging and Communication in Medicine(DICOM)data obtained from computed tomography angiography(CTA)scans were edited and converted to stereolithography(STL)file formats, followed by the production of 3D models of the cerebral aneurysm by using the 3D printer. The mean time from hospitalization to the commencement of surgery was 242 min, whereas the mean time required for manufacturing the 3D model was 67 min. The average cost of each 3D model was 194 Japanese Yen. The time required for manufacturing the 3D models shortened to approximately 1 hour with increasing experience of producing 3D models. Favorable impressions for the use of the 3D models in clipping were reported by almost all neurosurgeons included in this study. Although 3D printing is often considered to involve huge costs and long manufacturing time, the method used in the present study requires shorter time and lower costs than conventional methods for manufacturing 3D cerebral aneurysm models, thus making it suitable for use in emergency clipping. PMID:27506842

  2. Visualization of the 3-dimensional flow around a model with the aid of a laser knife

    NASA Technical Reports Server (NTRS)

    Borovoy, V. Y.; Ivanov, V. V.; Orlov, A. A.; Kharchenko, V. N.

    1984-01-01

    A method for visualizing the three-dimensional flow around models of various shapes in a wind tunnel at a Mach number of 5 is described. A laser provides a planar light flux such that any plane through the model can be selectively illuminated. The shape of shock waves and separation regions is then determined by the intensity of light scattered by soot particles in the flow.

  3. High fidelity 3-dimensional models of beam-electron cloud interactions in circular accelerators

    NASA Astrophysics Data System (ADS)

    Feiz Zarrin Ghalam, Ali

    Electron cloud is a low-density electron profile created inside the vacuum chamber of circular machines with positively charged beams. Electron cloud limits the peak current of the beam and degrades the beams' quality through luminosity degradation, emittance growth and head to tail or bunch to bunch instability. The adverse effects of electron cloud on long-term beam dynamics becomes more and more important as the beams go to higher and higher energies. This problem has become a major concern in many future circular machines design like the Large Hadron Collider (LHC) under construction at European Center for Nuclear Research (CERN). Due to the importance of the problem several simulation models have been developed to model long-term beam-electron cloud interaction. These models are based on "single kick approximation" where the electron cloud is assumed to be concentrated at one thin slab around the ring. While this model is efficient in terms of computational costs, it does not reflect the real physical situation as the forces from electron cloud to the beam are non-linear contrary to this model's assumption. To address the existing codes limitation, in this thesis a new model is developed to continuously model the beam-electron cloud interaction. The code is derived from a 3-D parallel Particle-In-Cell (PIC) model (QuickPIC) originally used for plasma wakefield acceleration research. To make the original model fit into circular machines environment, betatron and synchrotron equations of motions have been added to the code, also the effect of chromaticity, lattice structure have been included. QuickPIC is then benchmarked against one of the codes developed based on single kick approximation (HEAD-TAIL) for the transverse spot size of the beam in CERN-LHC. The growth predicted by QuickPIC is less than the one predicted by HEAD-TAIL. The code is then used to investigate the effect of electron cloud image charges on the long-term beam dynamics, particularly on the

  4. Remanent magnetization and 3-dimensional density model of the Kentucky anomaly region

    NASA Technical Reports Server (NTRS)

    Mayhew, M. A.; Estes, R. H.; Myers, D. M.

    1984-01-01

    A three-dimensional model of the Kentucky body was developed to fit surface gravity and long wavelength aeromagnetic data. Magnetization and density parameters for the model are much like those of Mayhew et al (1982). The magnetic anomaly due to the model at satellite altitude is shown to be much too small by itself to account for the anomaly measured by Magsat. It is demonstrated that the source region for the satellite anomaly is considerably more extensive than the Kentucky body sensu stricto. The extended source region is modeled first using prismatic model sources and then using dipole array sources. Magnetization directions for the source region found by inversion of various combinations of scalar and vector data are found to be close to the main field direction, implying the lack of a strong remanent component. It is shown by simulation that in a case (such as this) where the geometry of the source is known, if a strong remanent component is present its direction is readily detectable, but by scalar data as readily as vector data.

  5. Anthropogenic contamination of a phreatic drinking water winning: 3-dimensional reactive transport modelling

    NASA Astrophysics Data System (ADS)

    Griffioen, J.; van der Grift, B.; Maas, D.; van den Brink, C.; Zaadnoordijk, J. W.

    2003-04-01

    Groundwater is contaminated at the regional scale by agricultural activities and atmospheric deposition. A 3-D transport model was set-up for a phreatic drinking water winning, where the groundwater composition was monitored accurately. The winning is situated at an area with unconsolidated Pleistocene deposits. The land use is nature and agriculture. Annual mass-balances were determined using a wide range of historic data. The modelling approach for the unsaturated zone was either simple box models (Cl, NO_3 and SO_4) or 1-D transport modelling using HYDRUS (Cd). The modelling approach for the saturated zone used a multiple solute version of MT3D, where denitrification associated with pyrite oxidation and sorption of Cd were included. The solute transport calculations were performed for the period 1950--2030. The results obtained for the year 2000 were used as input concentration for the period 2000--2030. A comparison between the calculated and the measured concentrations of groundwater abstracted for Cl, NO_3 and SO_4 yields the following. First, the input at the surface is rather well estimated. Second, the redox reactivity of the first two aquifers is negligible around the winning, which is confirmed by respiration experiments using anaerobically sampled aquifer sediments. The reactivity of the third aquifer, which is a marine deposit and lies at least 30 meters below surface, is considerable. The discrepancies between modelled and measured output are explained by lack of knowledge about the subsurface reactivity and/or wrong estimates of surface loading and leaching from the unsaturated zone. The patterns for other hydrogeochemical variables such as Ca, HCO_3 may further constrain this lack of knowledge. The results for Cd indicate that Cd becomes strongly retarded, despite the low reactivity of the sandy sediments. The winning is rather insensitive to Cd contamination (but the surface water drainage network is not). Two major uncertainties for input of Cd

  6. Surgical treatment for congenital kyphosis correction using both spinal navigation and a 3-dimensional model.

    PubMed

    Sugimoto, Yoshihisa; Tanaka, Masato; Nakahara, Ryuichi; Misawa, Haruo; Kunisada, Toshiyuki; Ozaki, Toshifumi

    2012-01-01

    An 11 year-old girl had 66 degrees of kyphosis in the thoracolumbar junction. For the purpose of planning for kyphosis correction, we created a 3-D, full-scale model of the spine and consulted spinal navigation. Three-dimensional models are generally used as tactile guides to verify the surgical approach and portray the anatomic relations specific to a given patient. We performed posterior fusion from Th10 to L3, and vertebral column resection of Th12 and L1. Screw entry points, directions, lengths and diameters were determined by reference to navigation. Both tools were useful in the bone resection. We could easily detect the posterior element to be resected using the 3D model. During the anterior bony resection, navigation helped us to check the disc level and anterior wall of the vertebrae, which were otherwise difficult to detect due to their depth in the surgical field. Thus, the combination of navigation and 3D models helped us to safely perform surgery for a patient with complex spinal deformity. PMID:23254585

  7. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    PubMed Central

    2015-01-01

    Summary This paper introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tapping-mode imaging, for both of which the force curves exhibit the expected features. Finally, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments. PMID:26734515

  8. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    DOE PAGESBeta

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretationmore » of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.« less

  9. A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

    SciTech Connect

    Solares, Santiago D.

    2015-11-26

    This study introduces a quasi-3-dimensional (Q3D) viscoelastic model and software tool for use in atomic force microscopy (AFM) simulations. The model is based on a 2-dimensional array of standard linear solid (SLS) model elements. The well-known 1-dimensional SLS model is a textbook example in viscoelastic theory but is relatively new in AFM simulation. It is the simplest model that offers a qualitatively correct description of the most fundamental viscoelastic behaviors, namely stress relaxation and creep. However, this simple model does not reflect the correct curvature in the repulsive portion of the force curve, so its application in the quantitative interpretation of AFM experiments is relatively limited. In the proposed Q3D model the use of an array of SLS elements leads to force curves that have the typical upward curvature in the repulsive region, while still offering a very low computational cost. Furthermore, the use of a multidimensional model allows for the study of AFM tips having non-ideal geometries, which can be extremely useful in practice. Examples of typical force curves are provided for single- and multifrequency tappingmode imaging, for both of which the force curves exhibit the expected features. Lastly, a software tool to simulate amplitude and phase spectroscopy curves is provided, which can be easily modified to implement other controls schemes in order to aid in the interpretation of AFM experiments.

  10. Observations and Modeling of 3-Dimensional Cloud and Aerosol Fields from the Multiangle SpectroPolarimetric Imager (MSPI)

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Diner, D. J.; Martonchik, J. V.; Davis, A. B.

    2011-12-01

    Knowledge of the detailed 3-dimensional structure of clouds and atmospheric aerosols is vital for correctly modeling their radiative effects and interpreting optical remote sensing measurements of scattered sunlight. We will describe a set of new observations made by the Multiangle SpectroPolarimetric Imager (MSPI) from the ground and from the NASA ER-2 aircraft. MSPI is being developed and tested at JPL as a payload for the preliminary Aerosol-Cloud-Ecosystems (PACE) satellite mission, which is expected to fly near the end of the decade. MSPI builds upon experience gained from the Multi-angle Imaging SpectroRadiometer (MISR) currently orbiting on NASA's Terra satellite. Ground-MSPI and Air-MSPI are two prototype cameras operating in the ultraviolet (UV) to the visible/near-infrared (VNIR) range mounted on gimbals that acquire imagery in a pushbroom fashion, including polarization in selected spectral bands with demonstrated high polarimetric accuracy (0.5% uncertainty in degree of linear polarization). The spatial resolution of Ground-MSPI is 1 m for objects at a distance of 3 km. From the operational altitude of the ER-2, Air-MSPI has a ground resolution of approximately 10 m at nadir. This resolution, coupled with good calibration and high polarimetric performance means that MSPI can be used to derive radiatively important parameters of aerosols and clouds using intensity and polarization information together. As part of the effort for developing retrieval algorithms for the instrument, we have employed an extremely flexible 3-dimensional vector radiative transfer code. We will show example imagery from both MSPI cameras and describe how these scenes are modeled using this code. We will also discuss some of the important unknowns and limitations of this observational approach.

  11. An approximate single fluid 3-dimensional magnetohydrodynamic equilibrium model with toroidal flow

    NASA Astrophysics Data System (ADS)

    Cooper, W. A.; Hirshman, S. P.; Chapman, I. T.; Brunetti, D.; Faustin, J. M.; Graves, J. P.; Pfefferlé, D.; Raghunathan, M.; Sauter, O.; Tran, T. M.; Aiba, N.

    2014-09-01

    An approximate model for a single fluid three-dimensional (3D) magnetohydrodynamic (MHD) equilibrium with pure isothermal toroidal flow with imposed nested magnetic flux surfaces is proposed. It recovers the rigorous toroidal rotation equilibrium description in the axisymmetric limit. The approximation is valid under conditions of nearly rigid or vanishing toroidal rotation in regions with significant 3D deformation of the equilibrium flux surfaces. Bifurcated helical core equilibrium simulations of long-lived modes in the MAST device demonstrate that the magnetic structure is only weakly affected by the flow but that the 3D pressure distortion is important. The pressure is displaced away from the major axis and therefore is not as noticeably helically deformed as the toroidal magnetic flux under the subsonic flow conditions measured in the experiment. The model invoked fails to predict any significant screening by toroidal plasma rotation of resonant magnetic perturbations in MAST free boundary computations.

  12. 3-DIMENSIONAL Geological Mapping and Modeling Activities at the Geological Survey of Norway

    NASA Astrophysics Data System (ADS)

    Jarna, A.; Bang-Kittilsen, A.; Haase, C.; Henderson, I. H. C.; Høgaas, F.; Iversen, S.; Seither, A.

    2015-10-01

    Geology and all geological structures are three-dimensional in space. Geology can be easily shown as four-dimensional when time is considered. Therefore GIS, databases, and 3D visualization software are common tools used by geoscientists to view, analyse, create models, interpret and communicate geological data. The NGU (Geological Survey of Norway) is the national institution for the study of bedrock, mineral resources, surficial deposits and groundwater and marine geology. The interest in 3D mapping and modelling has been reflected by the increase of number of groups and researches dealing with 3D in geology within NGU. This paper highlights 3D geological modelling techniques and the usage of these tools in bedrock, geophysics, urban and groundwater studies at NGU, same as visualisation of 3D online. The examples show use of a wide range of data, methods, software and an increased focus on interpretation and communication of geology in 3D. The goal is to gradually expand the geospatial data infrastructure to include 3D data at the same level as 2D.

  13. Evaluation of 3-Dimensional Superimposition Techniques on Various Skeletal Structures of the Head Using Surface Models

    PubMed Central

    Pazera, Pawel; Zorkun, Berna; Katsaros, Christos; Ludwig, Björn

    2015-01-01

    Objectives To test the applicability, accuracy, precision, and reproducibility of various 3D superimposition techniques for radiographic data, transformed to triangulated surface data. Methods Five superimposition techniques (3P: three-point registration; AC: anterior cranial base; AC + F: anterior cranial base + foramen magnum; BZ: both zygomatic arches; 1Z: one zygomatic arch) were tested using eight pairs of pre-existing CT data (pre- and post-treatment). These were obtained from non-growing orthodontic patients treated with rapid maxillary expansion. All datasets were superimposed by three operators independently, who repeated the whole procedure one month later. Accuracy was assessed by the distance (D) between superimposed datasets on three form-stable anatomical areas, located on the anterior cranial base and the foramen magnum. Precision and reproducibility were assessed using the distances between models at four specific landmarks. Non parametric multivariate models and Bland-Altman difference plots were used for analyses. Results There was no difference among operators or between time points on the accuracy of each superimposition technique (p>0.05). The AC + F technique was the most accurate (D<0.17 mm), as expected, followed by AC and BZ superimpositions that presented similar level of accuracy (D<0.5 mm). 3P and 1Z were the least accurate superimpositions (0.790.05), the detected structural changes differed significantly between different techniques (p<0.05). Bland-Altman difference plots showed that BZ superimposition was comparable to AC, though it presented slightly higher random error. Conclusions Superimposition of 3D datasets using surface models created from voxel data can provide accurate, precise, and reproducible results, offering also high efficiency and increased post-processing capabilities. In

  14. A 3-dimensional in vitro model of epithelioid granulomas induced by high aspect ratio nanomaterials

    PubMed Central

    2011-01-01

    Background The most common causes of granulomatous inflammation are persistent pathogens and poorly-degradable irritating materials. A characteristic pathological reaction to intratracheal instillation, pharyngeal aspiration, or inhalation of carbon nanotubes is formation of epithelioid granulomas accompanied by interstitial fibrosis in the lungs. In the mesothelium, a similar response is induced by high aspect ratio nanomaterials, including asbestos fibers, following intraperitoneal injection. This asbestos-like behaviour of some engineered nanomaterials is a concern for their potential adverse health effects in the lungs and mesothelium. We hypothesize that high aspect ratio nanomaterials will induce epithelioid granulomas in nonadherent macrophages in 3D cultures. Results Carbon black particles (Printex 90) and crocidolite asbestos fibers were used as well-characterized reference materials and compared with three commercial samples of multiwalled carbon nanotubes (MWCNTs). Doses were identified in 2D and 3D cultures in order to minimize acute toxicity and to reflect realistic occupational exposures in humans and in previous inhalation studies in rodents. Under serum-free conditions, exposure of nonadherent primary murine bone marrow-derived macrophages to 0.5 μg/ml (0.38 μg/cm2) of crocidolite asbestos fibers or MWCNTs, but not carbon black, induced macrophage differentiation into epithelioid cells and formation of stable aggregates with the characteristic morphology of granulomas. Formation of multinucleated giant cells was also induced by asbestos fibers or MWCNTs in this 3D in vitro model. After 7-14 days, macrophages exposed to high aspect ratio nanomaterials co-expressed proinflammatory (M1) as well as profibrotic (M2) phenotypic markers. Conclusions Induction of epithelioid granulomas appears to correlate with high aspect ratio and complex 3D structure of carbon nanotubes, not with their iron content or surface area. This model offers a time- and cost

  15. Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer model

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Yang, W.; Ichii, K.

    2015-12-01

    Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.

  16. Effect of Heat-Inactivated Clostridium sporogenes and Its Conditioned Media on 3-Dimensional Colorectal Cancer Cell Models.

    PubMed

    Bhave, Madhura Satish; Hassanbhai, Ammar Mansoor; Anand, Padmaja; Luo, Kathy Qian; Teoh, Swee Hin

    2015-01-01

    Traditional cancer treatments, such as chemotherapy and radiation therapy continue to have limited efficacy due to tumor hypoxia. While bacterial cancer therapy has the potential to overcome this problem, it comes with the risk of toxicity and infection. To circumvent these issues, this paper investigates the anti-tumor effects of non-viable bacterial derivatives of Clostridium sporogenes. These non-viable derivatives are heat-inactivated C. sporogenes bacteria (IB) and the secreted bacterial proteins in culture media, known as conditioned media (CM). In this project, the effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on a 2-Dimensional (2D) and 3-Dimensional (3D) platform. IB significantly inhibited cell proliferation of CT26 to 6.3% of the control in 72 hours for the 2D monolayer culture. In the 3D spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the 2D and 3D models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the 3D model was less inhibitory than that of CM. Thus, the inhibitive effect of inactivated C. sporogenes and its conditioned media on colorectal cancer cells is established. PMID:26507312

  17. Effect of Heat-Inactivated Clostridium sporogenes and Its Conditioned Media on 3-Dimensional Colorectal Cancer Cell Models

    PubMed Central

    Bhave, Madhura Satish; Hassanbhai, Ammar Mansoor; Anand, Padmaja; Luo, Kathy Qian; Teoh, Swee Hin

    2015-01-01

    Traditional cancer treatments, such as chemotherapy and radiation therapy continue to have limited efficacy due to tumor hypoxia. While bacterial cancer therapy has the potential to overcome this problem, it comes with the risk of toxicity and infection. To circumvent these issues, this paper investigates the anti-tumor effects of non-viable bacterial derivatives of Clostridium sporogenes. These non-viable derivatives are heat-inactivated C. sporogenes bacteria (IB) and the secreted bacterial proteins in culture media, known as conditioned media (CM). In this project, the effects of IB and CM on CT26 and HCT116 colorectal cancer cells were examined on a 2-Dimensional (2D) and 3-Dimensional (3D) platform. IB significantly inhibited cell proliferation of CT26 to 6.3% of the control in 72 hours for the 2D monolayer culture. In the 3D spheroid culture, cell proliferation of HCT116 spheroids notably dropped to 26.2%. Similarly the CM also remarkably reduced the cell-proliferation of the CT26 cells to 2.4% and 20% in the 2D and 3D models, respectively. Interestingly the effect of boiled conditioned media (BCM) on the cells in the 3D model was less inhibitory than that of CM. Thus, the inhibitive effect of inactivated C. sporogenes and its conditioned media on colorectal cancer cells is established. PMID:26507312

  18. 3-dimensional Modeling of Electromagnetic and Physical Sources of Aziumuthal Nonuniformities in Inductively Coupled Plasmas for Deposition

    NASA Astrophysics Data System (ADS)

    Lu, Junqing; Keiter, Eric R.; Kushner, Mark J.

    1998-10-01

    Inductively Coupled Plasmas (ICPs) are being used for a variety of deposition processes for microelectronics fabrication. Of particular concern in scaling these devices to large areas is maintaining azimuthal symmetry of the reactant fluxes. Sources of nonuniformity may be physical (e.g., gas injection and side pumping) or electromagnetic (e.g., transmission line effects in the antennas). In this paper, a 3-dimensional plasma equipment model, HPEM-3D,(M. J. Kushner, J. Appl. Phys. v.82, 5312 (1997).) is used to investigate physical and electromagentic sources of azimuthal nonuniformities in deposition tools. An ionized metal physical vapor deposition (IMPVD) system will be investigated where transmission line effects in the coils produce an asymmetric plasma density. Long mean free path transport for sputtered neutrals and tensor conducitivities have been added to HPEM-3D to address this system. Since the coil generated ion flux drifts back to the target to sputter low ionization potential metal atoms, the asymmetry is reinforced by rapid ionization of the metal atoms.

  19. A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-temporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1) each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods. PMID:22423198

  20. Dental pulp stem cells as a multifaceted tool for bioengineering and the regeneration of craniomaxillofacial tissues

    PubMed Central

    Aurrekoetxea, Maitane; Garcia-Gallastegui, Patricia; Irastorza, Igor; Luzuriaga, Jon; Uribe-Etxebarria, Verónica; Unda, Fernando; Ibarretxe, Gaskon

    2015-01-01

    Dental pulp stem cells, or DPSC, are neural crest-derived cells with an outstanding capacity to differentiate along multiple cell lineages of interest for cell therapy. In particular, highly efficient osteo/dentinogenic differentiation of DPSC can be achieved using simple in vitro protocols, making these cells a very attractive and promising tool for the future treatment of dental and periodontal diseases. Among craniomaxillofacial organs, the tooth and salivary gland are two such cases in which complete regeneration by tissue engineering using DPSC appears to be possible, as research over the last decade has made substantial progress in experimental models of partial or total regeneration of both organs, by cell recombination technology. Moreover, DPSC seem to be a particularly good choice for the regeneration of nerve tissues, including injured or transected cranial nerves. In this context, the oral cavity appears to be an excellent testing ground for new regenerative therapies using DPSC. However, many issues and challenges need yet to be addressed before these cells can be employed in clinical therapy. In this review, we point out some important aspects on the biology of DPSC with regard to their use for the reconstruction of different craniomaxillofacial tissues and organs, with special emphasis on cranial bones, nerves, teeth, and salivary glands. We suggest new ideas and strategies to fully exploit the capacities of DPSC for bioengineering of the aforementioned tissues. PMID:26528190

  1. A 3-Dimensional Model of Water-Bearing Sequences in the Dominguez Gap Region, Long Beach, California

    USGS Publications Warehouse

    Ponti, Daniel J.; Ehman, Kenneth D.; Edwards, Brian D.; Tinsley, John C., III; Hildenbrand, Thomas; Hillhouse, John W.; Hanson, Randall T.; McDougall, Kristen; Powell, Charles L.; Wan, Elmira; Land, Michael; Mahan, Shannon; Sarna-Wojcicki, Andrei M.

    2007-01-01

    A 3-dimensional computer model of the Quaternary sequence stratigraphy in the Dominguez gap region of Long Beach, California has been developed to provide a robust chronostratigraphic framework for hydrologic and tectonic studies. The model consists of 13 layers within a 16.5 by 16.1 km (10.25 by 10 mile) square area and extends downward to an altitude of -900 meters (-2952.76 feet). Ten sequences of late Pliocene to Holocene age are identified and correlated within the model. Primary data to build the model comes from five reference core holes, extensive high-resolution seismic data obtained in San Pedro Bay, and logs from several hundred water and oil wells drilled in the region. The model is best constrained in the vicinity of the Dominguez gap seawater intrusion barrier where a dense network of subsurface data exist. The resultant stratigraphic framework and geologic structure differs significantly from what has been proposed in earlier studies. An important new discovery from this approach is the recognition of ongoing tectonic deformation throughout nearly all of Quaternary time that has impacted the geometry and character of the sequences. Anticlinal folding along a NW-SE trend, probably associated with Quaternary reactivation of the Wilmington anticline, has uplifted and thinned deposits along the fold crest, which intersects the Dominguez gap seawater barrier near Pacific Coast Highway. A W-NW trending fault system that approximately parallels the fold crest has also been identified. This fault progressively displaces all but the youngest sequences down to the north and serves as the southern termination of the classic Silverado aquifer. Uplift and erosion of fining-upward paralic sequences along the crest of the young fold has removed or thinned many of the fine-grained beds that serve to protect the underlying Silverado aquifer from seawater contaminated shallow groundwater. As a result of this process, the potential exists for vertical migration of

  2. Three-Dimensional Radiobiologic Dosimetry: Application of Radiobiologic Modeling to Patient-Specific 3-Dimensional Imaging–Based Internal Dosimetry

    PubMed Central

    Prideaux, Andrew R.; Song, Hong; Hobbs, Robert F.; He, Bin; Frey, Eric C.; Ladenson, Paul W.; Wahl, Richard L.; Sgouros, George

    2010-01-01

    Phantom-based and patient-specific imaging-based dosimetry methodologies have traditionally yielded mean organ-absorbed doses or spatial dose distributions over tumors and normal organs. In this work, radiobiologic modeling is introduced to convert the spatial distribution of absorbed dose into biologically effective dose and equivalent uniform dose parameters. The methodology is illustrated using data from a thyroid cancer patient treated with radioiodine. Methods Three registered SPECT/CT scans were used to generate 3-dimensional images of radionuclide kinetics (clearance rate) and cumulated activity. The cumulated activity image and corresponding CT scan were provided as input into an EGSnrc-based Monte Carlo calculation: The cumulated activity image was used to define the distribution of decays, and an attenuation image derived from CT was used to define the corresponding spatial tissue density and composition distribution. The rate images were used to convert the spatial absorbed dose distribution to a biologically effective dose distribution, which was then used to estimate a single equivalent uniform dose for segmented volumes of interest. Equivalent uniform dose was also calculated from the absorbed dose distribution directly. Results We validate the method using simple models; compare the dose-volume histogram with a previously analyzed clinical case; and give the mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for an illustrative case of a pediatric thyroid cancer patient with diffuse lung metastases. The mean absorbed dose, mean biologically effective dose, and equivalent uniform dose for the tumor were 57.7, 58.5, and 25.0 Gy, respectively. Corresponding values for normal lung tissue were 9.5, 9.8, and 8.3 Gy, respectively. Conclusion The analysis demonstrates the impact of radiobiologic modeling on response prediction. The 57% reduction in the equivalent dose value for the tumor reflects a high level of dose

  3. Use of 3-Dimensional Volumetric Modeling of Adrenal Gland Size in Patients with Primary Pigmented Nodular Adrenocortical Disease.

    PubMed

    Chrysostomou, P P; Lodish, M B; Turkbey, E B; Papadakis, G Z; Stratakis, C A

    2016-04-01

    Primary pigmented nodular adrenocortical disease (PPNAD) is a rare type of bilateral adrenal hyperplasia leading to hypercortisolemia. Adrenal nodularity is often appreciable with computed tomography (CT); however, accurate radiologic characterization of adrenal size in PPNAD has not been studied well. We used 3-dimensional (3D) volumetric analysis to characterize and compare adrenal size in PPNAD patients, with and without Cushing's syndrome (CS). Patients diagnosed with PPNAD and their family members with known mutations in PRKAR1A were screened. CT scans were used to create 3D models of each adrenal. Criteria for biochemical diagnosis of CS included loss of diurnal variation and/or elevated midnight cortisol levels, and paradoxical increase in urinary free cortisol and/or urinary 17-hydroxysteroids after dexamethasone administration. Forty-five patients with PPNAD (24 females, 27.8±17.6 years) and 8 controls (19±3 years) were evaluated. 3D volumetric modeling of adrenal glands was performed in all. Thirty-eight patients out of 45 (84.4%) had CS. Their mean adrenal volume was 8.1 cc±4.1, 7.2 cc±4.5 (p=0.643) for non-CS, and 8.0cc±1.6 for controls. Mean values were corrected for body surface area; 4.7 cc/kg/m(2)±2.2 for CS, and 3.9 cc/kg/m(2)±1.3 for non-CS (p=0.189). Adrenal volume and midnight cortisol in both groups was positively correlated, r=0.35, p=0.03. We conclude that adrenal volume measured by 3D CT in patients with PPNAD and CS was similar to those without CS, confirming empirical CT imaging-based observations. However, the association between adrenal volume and midnight cortisol levels may be used as a marker of who among patients with PPNAD may develop CS, something that routine CT cannot do. PMID:27065461

  4. Normal growth and development of the lips: a 3-dimensional study from 6 years to adulthood using a geometric model

    PubMed Central

    FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA

    2000-01-01

    A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to

  5. Verification and transfer of thermal pollution model. Volume 3: Verification of 3-dimensional rigid-lid model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Nwadike, E. V.; Sinha, S. K.

    1982-01-01

    The six-volume report: describes the theory of a three dimensional (3-D) mathematical thermal discharge model and a related one dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth (e.g., natural or man-made inland lakes) because surface elevation has been removed as a parameter. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions. The free-surface model also provides surface height variations with time.

  6. Verification and transfer of thermal pollution model. Volume 2: User's manual for 3-dimensional free-surface model

    NASA Technical Reports Server (NTRS)

    Lee, S. S.; Sengupta, S.; Tuann, S. Y.; Lee, C. R.

    1982-01-01

    The six-volume report: describes the theory of a three-dimensional (3-D) mathematical thermal discharge model and a related one-dimensional (1-D) model, includes model verification at two sites, and provides a separate user's manual for each model. The 3-D model has two forms: free surface and rigid lid. The former, verified at Anclote Anchorage (FL), allows a free air/water interface and is suited for significant surface wave heights compared to mean water depth; e.g., estuaries and coastal regions. The latter, verified at Lake Keowee (SC), is suited for small surface wave heights compared to depth. These models allow computation of time-dependent velocity and temperature fields for given initial conditions and time-varying boundary conditions.

  7. [Modern technologies in cranio-maxillofacial surgery].

    PubMed

    Lübbers, Heinz-Theo; Matthews, Felix; Kruse, Astrid L

    2014-02-26

    Modern technologies are influencing medicine everyday. The oral and maxillofacial surgery meet the worlds from medicine and dentistry. So technologies from both fields are utilized. This article provides an overview about technologies in clinical use, which are typical for the specialty. Their principles and indications are described as well as benefits and limitations. Based on Cone Beam Computed Tomography image fusion and mirroring techniques are explained as well as patient specific models and implants, template guided and free surgical navigation with and without intraoperative three-dimensional imaging. An overall assessment reveals further need of research regarding indications and patient benefit. PMID:24568761

  8. A 3-dimensional ray-trace model for predicting the performance of flashlamp-pumped laser amplifiers

    SciTech Connect

    Jancaitis, K.S.; Haney, S.W.; Munro, D.H.; Le Touze, G.; Cabourdin, O.

    1997-02-13

    We have developed a fully three-dimensional model for the performance of flashlamp pumped laser amplifiers. The model uses a reverse ray-trace technique to calculate the pumping of the laser glass by the flashlamp radiation. We have discovered several different methods by which we can speed up the calculation of the gain profile in a amplifier. The model predicts the energy-storage performance of the Beamlet amplifiers to better than 5%. This model will be used in the optimization of the National Ignition Facility (NIF) amplifier design.

  9. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis

    PubMed Central

    Lambros, Maria P.; DeSalvo, Michael K.; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-01-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC–QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  10. Transcriptional profiling of radiation damage and preventive treatments in a 3-dimensional (3D) human cell culture model of oral mucositis.

    PubMed

    Lambros, Maria P; DeSalvo, Michael K; Moreno, Jonathan; Mulamalla, Hari Chandana; Kondapalli, Lavanya

    2015-12-01

    Cancer patients who receive radiation are often afflicted by oral mucositis, a debilitating disease, characterized by mouth sores and difficulty in swallowing. Oftentimes, cancer patients afflicted with mucositis must stop life-saving therapies. Thus it is very important to prevent mucositis before it develops. Using a validated organotypic model of human oral mucosa, a 3-dimensional cell culture model of human oral keratinocytes, it has been shown that a mixture (NAC-QYD) of N-acetyl cysteine (NAC) and a traditional Chinese medicine, Qingre Liyan decoction (QYD), prevented radiation damage (Lambros et al., 2014). Here we provide detailed methods and analysis of microarray data for non-irradiated and irradiated human oral mucosal tissue with and without pretreatment with NAC, QYD and NAC-QYD. The microarray data been deposited in Gene Expression Omnibus (GEO): GSE62397. These data can be used to further elucidate the mechanisms of irradiation damage in oral mucosa and its prevention. PMID:26697327

  11. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able...

  12. User's manual for master: Modeling of aerodynamic surfaces by 3-dimensional explicit representation. [input to three dimensional computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gibson, S. G.

    1983-01-01

    A system of computer programs was developed to model general three dimensional surfaces. Surfaces are modeled as sets of parametric bicubic patches. There are also capabilities to transform coordinates, to compute mesh/surface intersection normals, and to format input data for a transonic potential flow analysis. A graphical display of surface models and intersection normals is available. There are additional capabilities to regulate point spacing on input curves and to compute surface/surface intersection curves. Input and output data formats are described; detailed suggestions are given for user input. Instructions for execution are given, and examples are shown.

  13. The use of TOUGH2 for the LBL/USGS 3-dimensional site-scale model of Yucca Mountain, Nevada

    SciTech Connect

    Bodvarsson, G.; Chen, G.; Haukwa, C.; Kwicklis, E.

    1995-12-31

    The three-dimensional site-scale numerical model o the unsaturated zone at Yucca Mountain is under continuous development and calibration through a collaborative effort between Lawrence Berkeley Laboratory (LBL) and the United States Geological Survey (USGS). The site-scale model covers an area of about 30 km{sup 2} and is bounded by major fault zones to the west (Solitario Canyon Fault), east (Bow Ridge Fault) and perhaps to the north by an unconfirmed fault (Yucca Wash Fault). The model consists of about 5,000 grid blocks (elements) with nearly 20,000 connections between them; the grid was designed to represent the most prevalent geological and hydro-geological features of the site including major faults, and layering and bedding of the hydro-geological units. Submodels are used to investigate specific hypotheses and their importance before incorporation into the three-dimensional site-scale model. The primary objectives of the three-dimensional site-scale model are to: (1) quantify moisture, gas and heat flows in the ambient conditions at Yucca Mountain, (2) help in guiding the site-characterization effort (primarily by USGS) in terms of additional data needs and to identify regions of the mountain where sufficient data have been collected, and (3) provide a reliable model of Yucca Mountain that is validated by repeated predictions of conditions in new boreboles and the ESF and has therefore the confidence of the public and scientific community. The computer code TOUGH2 developed by K. Pruess at LBL was used along with the three-dimensional site-scale model to generate these results. In this paper, we also describe the three-dimensional site-scale model emphasizing the numerical grid development, and then show some results in terms of moisture, gas and heat flow.

  14. Coronal/Hemicoronal Approach – A Gateway to Craniomaxillofacial Region

    PubMed Central

    Tauro, David; Bagulkar, Bhupesh; Vyas, Anuj

    2015-01-01

    Aims The coronal incision with its various modifications provides the most versatile approach to various areas in the craniomaxillofacial region coupled with excellent exposure. The aesthetic advantage of a hidden scar in the hairline, accounts for its continued popularity. The aim of this study was to review the surgical anatomy, technique and problems of post-operative morbidity pertinent to coronal approach in various clinical situations such as craniofacial trauma, tumour resections and reconstructive craniofacial procedures. Materials and Methods In this study, ten patients who presented to Oral and maxillofacial surgery department with various craniofacial problems requiring the use of coronal and hemicoronal approach for treatment were evaluated over a period of two years. Five patients needed coronal approach and another five underwent the surgical procedures through hemicoronal approach. This was an observational study. Results It was observed that a well-planned and carefully designed coronal/hemicoronal incision with strict adherence to surgical principles posed minimal complication during surgery as well as post-operatively. None of the patients developed infection or heamatoma in the postoperative period. Sensory nerve deficits along the distribution of supraorbital nerve was observed in four patients of bicoronal approach and three patients of hemicoronal approach which completely resolved at the end of six months. Motor nerve weakness was observed in four patients in immediate postoperative period which gradually improved. But it persisted in one patient even after six months who had pathology of temporo-orbital region. All the patients had transient alopecia along the line of incision which improved at the end of six months. No other significant disadvantages or complications were noted. Conclusion This approach offers widest accessibility and visibility to the entire upper and middle one third of the face in less than twenty minutes as observed in

  15. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue.

    PubMed

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-10-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  16. Direct measurement of the 3-dimensional DNA lesion distribution induced by energetic charged particles in a mouse model tissue

    PubMed Central

    Mirsch, Johanna; Tommasino, Francesco; Frohns, Antonia; Conrad, Sandro; Durante, Marco; Scholz, Michael; Friedrich, Thomas; Löbrich, Markus

    2015-01-01

    Charged particles are increasingly used in cancer radiotherapy and contribute significantly to the natural radiation risk. The difference in the biological effects of high-energy charged particles compared with X-rays or γ-rays is determined largely by the spatial distribution of their energy deposition events. Part of the energy is deposited in a densely ionizing manner in the inner part of the track, with the remainder spread out more sparsely over the outer track region. Our knowledge about the dose distribution is derived solely from modeling approaches and physical measurements in inorganic material. Here we exploited the exceptional sensitivity of γH2AX foci technology and quantified the spatial distribution of DNA lesions induced by charged particles in a mouse model tissue. We observed that charged particles damage tissue nonhomogenously, with single cells receiving high doses and many other cells exposed to isolated damage resulting from high-energy secondary electrons. Using calibration experiments, we transformed the 3D lesion distribution into a dose distribution and compared it with predictions from modeling approaches. We obtained a radial dose distribution with sub-micrometer resolution that decreased with increasing distance to the particle path following a 1/r2 dependency. The analysis further revealed the existence of a background dose at larger distances from the particle path arising from overlapping dose deposition events from independent particles. Our study provides, to our knowledge, the first quantification of the spatial dose distribution of charged particles in biologically relevant material, and will serve as a benchmark for biophysical models that predict the biological effects of these particles. PMID:26392532

  17. New 3-dimensional CFD modeling of CO2 and H2S simultaneous stripping from water within PVDF hollow fiber membrane contactor

    NASA Astrophysics Data System (ADS)

    Bahlake, Ahmad; Farivar, Foad; Dabir, Bahram

    2016-07-01

    In this paper a 3-dimensional modeling of simultaneous stripping of carbon dioxide (CO2) and hydrogen sulfide (H2S) from water using hollow fiber membrane made of polyvinylidene fluoride is developed. The water, containing CO2 and H2S enters to the membrane as feed. At the same time, pure nitrogen flow in the shell side of a shell and tube hollow fiber as the solvent. In the previous methods of modeling hollow fiber membranes just one of the membranes was modeled and the results expand to whole shell and tube system. In this research the whole hollow fiber shell and tube module is modeled to reduce the errors. Simulation results showed that increasing the velocity of solvent flow and decreasing the velocity of the feed are leads to increase in the system yield. However the effect of the feed velocity on the process is likely more than the influence of changing the velocity of the gaseous solvent. In addition H2S stripping has higher yield in comparison with CO2 stripping. This model is compared to the previous modeling methods and shows that the new model is more accurate. Finally, the effect of feed temperature is studied using response surface method and the operating conditions of feed temperature, feed velocity, and solvent velocity is optimized according to synergistic effects. Simulation results show that, in the optimum operating conditions the removal percentage of H2S and CO2 are 27 and 21 % respectively.

  18. New 3-dimensional CFD modeling of CO2 and H2S simultaneous stripping from water within PVDF hollow fiber membrane contactor

    NASA Astrophysics Data System (ADS)

    Bahlake, Ahmad; Farivar, Foad; Dabir, Bahram

    2015-08-01

    In this paper a 3-dimensional modeling of simultaneous stripping of carbon dioxide (CO2) and hydrogen sulfide (H2S) from water using hollow fiber membrane made of polyvinylidene fluoride is developed. The water, containing CO2 and H2S enters to the membrane as feed. At the same time, pure nitrogen flow in the shell side of a shell and tube hollow fiber as the solvent. In the previous methods of modeling hollow fiber membranes just one of the membranes was modeled and the results expand to whole shell and tube system. In this research the whole hollow fiber shell and tube module is modeled to reduce the errors. Simulation results showed that increasing the velocity of solvent flow and decreasing the velocity of the feed are leads to increase in the system yield. However the effect of the feed velocity on the process is likely more than the influence of changing the velocity of the gaseous solvent. In addition H2S stripping has higher yield in comparison with CO2 stripping. This model is compared to the previous modeling methods and shows that the new model is more accurate. Finally, the effect of feed temperature is studied using response surface method and the operating conditions of feed temperature, feed velocity, and solvent velocity is optimized according to synergistic effects. Simulation results show that, in the optimum operating conditions the removal percentage of H2S and CO2 are 27 and 21 % respectively.

  19. 3-dimensional geometric modeling and parameter estimation of scoria cones of the San Francisco Volcanic Field, Arizona, USA

    NASA Astrophysics Data System (ADS)

    Király, E.; Székely, B.; Bata, T.; Lócsi, L.; Karátson, D.

    2009-04-01

    The almost global availability of medium- and high-resolution Digital Terrain Models (DTMs) paved the way of new approaches in volcanic geomorphology. The increasing importance of understanding of surface processes that act during the degradation of volcanic edifices also mean a demand for geometric modeling of their surface, in order to derive parameters from the topography that are suitable for further analysis. Our study area, the San Francisco Volcanic Field (SFVF), is a ca. 4500 km2-large volcanic region situated around the San Francisco stratovolcano at Flagstaff, Arizona (USA) that hosts some 600 scoria and lava domes, numerous lava flows with extensive volcanic ash deposits. Because of the wide range in size and age, as well as contrasting degradation of these volcanic features, several authors have analysed them in the last decades to derive general rules of their lowering. Morphometric parameters were determined that were expected to be suitable to fulfill this requirement. In his pioneering work, Wood (1980a,b) considered 40 scoria cones, while almost two decades later Hooper and Sheridan (1998) included 237 features in their study. Their manual morphometric analyses were based on topographic maps that are time consuming, therefore their limited scope can now be extended with the availability of digital data. In the initial phase of our project more than 300 cones were analysed using the classic approach (height of the cone, width of the cone and crater, etc.). Additionally the slope histogram were analysed in order to classify the cones into different evolutionary categories. These analyses led to the selection of a few volcanoes, that entered in the next processing phase. Firstly the derivation of parameters in two-dimensional approach were carried out. Horizontal and vertical cross sections were extracted from the DTM, and the resulting planar curves were analysed via parameter estimation. The horizontal planar outlines were approached with circles

  20. Catastrophic regime shifts in coral communities exposed to physical disturbances: simulation results from object-oriented 3-dimensional coral reef model.

    PubMed

    Tam, Tze-wai; Ang, Put O

    2009-07-21

    A 3-dimensional individual-based model, the ReefModel, was developed to simulate the dynamical structure of coral reef community using object-oriented techniques. Interactions among functional groups of reef organisms were simulated in the model. The behaviours of these organisms were described with simple mechanistic rules that were derived from their general behaviours (e.g. growing habits, competitive mechanisms, response to physical disturbance) observed in natural coral reef communities. The model was implemented to explore the effects of physical disturbance on the dynamical structure of a 3-coral community that was characterized with three functional coral groups: tabular coral, foliaceous coral and massive coral. Simulation results suggest that (i) the integration of physical disturbance and differential responses (disturbance sensitivity and growing habit) of corals plays an important role in structuring coral communities; (ii) diversity of coral communities can be maximal under intermediate level of acute physical disturbance; (iii) multimodality exists in the final states and dynamic regimes of individual coral group as well as coral community structure, which results from the influence of small random spatial events occurring during the interactions among the corals in the community, under acute and repeated physical disturbances. These results suggest that alternative stable states and catastrophic regime shifts may exist in a coral community under unstable physical environment. PMID:19306887

  1. [The progress in application of parathyroid hormone in craniomaxillofacial bone regeneration study].

    PubMed

    Chen, X Y; Tang, Z L

    2016-06-01

    Parathyroid hormone(PTH)is synthesized and secreted by chief cell of Gley's glands which possesses dual functions of catabolism and anabolism. It regulates the proliferation and differentiation of multiple cell lines including osteoblast, osteoclast and skeletal lining cells. Furthermore, PTH activates various signaling pathways which control calcium, phosphorous' metabolism and bone conversion, accelerating the bone regeneration and reconstruction. However, the study of PTH in craniomaxillofacial bone regeneration is relatively less and whether the role of parathyroid glands and the mechanism of ossification are consistent with the long bone or not needs further investigation. This review focuses on the progress of PTH in craniomaxillofacial bone regeneration in recent years. PMID:27256534

  2. Comparison of Scientific Calipers and Computer-Enabled CT Review for the Measurement of Skull Base and Craniomaxillofacial Dimensions

    PubMed Central

    Citardi, Martin J.; Herrmann, Brian; Hollenbeak, Chris S.; Stack, Brendan C.; Cooper, Margaret; Bucholz, Richard D.

    2001-01-01

    Traditionally, cadaveric studies and plain-film cephalometrics provided information about craniomaxillofacial proportions and measurements; however, advances in computer technology now permit software-based review of computed tomography (CT)-based models. Distances between standardized anatomic points were measured on five dried human skulls with standard scientific calipers (Geneva Gauge, Albany, NY) and through computer workstation (StealthStation 2.6.4, Medtronic Surgical Navigation Technology, Louisville, CO) review of corresponding CT scans. Differences in measurements between the caliper and CT model were not statistically significant for each parameter. Measurements obtained by computer workstation CT review of the cranial skull base are an accurate representation of actual bony anatomy. Such information has important implications for surgical planning and clinical research. ImagesFigure 1Figure 2Figure 3 PMID:17167599

  3. Opportunity Cost of Surgical Management of Craniomaxillofacial Trauma.

    PubMed

    Moses, Helen; Powers, David; Keeler, Jarrod; Erdmann, Detlev; Marcus, Jeff; Puscas, Liana; Woodard, Charles

    2016-03-01

    The provision of trauma care is a financial burden, continually associated with low reimbursement, and shifts the economic burden to major trauma centers and providers. Meanwhile, the volume of craniomaxillofacial (CMF) trauma and the number of surgically managed facial fractures are unchanged. Past financial analyses of cost and reimbursement for facial trauma are limited to mandibular and midface injuries, consistently revealing low reimbursement. The incurred financial burden also coincides with the changing landscape of health insurance. The goal of this study is to determine the opportunity cost of operative management of facial trauma at our institution. From our CMF database of greater than 3,000 facial fractures, the physician charges, collections, and relative value units (RVUs) for CMF trauma per year from 2007 to 2013 were compared with a general plastic surgery and otolaryngology population undergoing operative management during this same period. Collection rates were analyzed to assess if a significant difference exists between reimbursement for CMF and non-CMF cases. Results revealed a significant difference between the professional collection rate for operative CMF trauma and that for other operative procedures (17.25 vs. 29.61%, respectively; p < 0.0001). The average number of RVUs billed per provider for CMF trauma declines significantly, from greater than 700 RVUs to 300 over the study period, despite a stable volume. Surgical management of CMF trauma generates an unfavorable financial environment. The large opportunity cost associated with offering this service is a potential threat to the sustainability of providing care for this population. PMID:26889352

  4. Recent Developments of Functional Scaffolds for Craniomaxillofacial Bone Tissue Engineering Applications

    PubMed Central

    Kinoshita, Yukihiko; Maeda, Hatsuhiko

    2013-01-01

    Autogenous bone grafting remains a gold standard for the reconstruction critical-sized bone defects in the craniomaxillofacial region. Nevertheless, this graft procedure has several disadvantages such as restricted availability, donor-site morbidity, and limitations in regard to fully restoring the complicated three-dimensional structures in the craniomaxillofacial bone. The ultimate goal of craniomaxillofacial bone reconstruction is the regeneration of the physiological bone that simultaneously fulfills both morphological and functional restorations. Developments of tissue engineering in the last two decades have brought such a goal closer to reality. In bone tissue engineering, the scaffolds are fundamental, elemental and mesenchymal stem cells/osteoprogenitor cells and bioactive factors. A variety of scaffolds have been developed and used as spacemakers, biodegradable bone substitutes for transplanting to the new bone, matrices of drug delivery system, or supporting structures enhancing adhesion, proliferation, and matrix production of seeded cells according to the circumstances of the bone defects. However, scaffolds to be clinically completely satisfied have not been developed yet. Development of more functional scaffolds is required to be applied widely to cranio-maxillofacial bone defects. This paper reviews recent trends of scaffolds for crania-maxillofacial bone tissue engineering, including our studies. PMID:24163634

  5. Hydroelectric structures studies using 3-dimensional methods

    SciTech Connect

    Harrell, T.R.; Jones, G.V.; Toner, C.K. )

    1989-01-01

    Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.

  6. Comparing patients with Apert and Crouzon syndromes--clinical features and cranio-maxillofacial surgical reconstruction.

    PubMed

    Stavropoulos, Dimitrios; Tarnow, Peter; Mohlin, Bengt; Kahnberg, Karl-Erik; Hagberg, Catharina

    2012-01-01

    Cranio-maxillofacial malformations, as seen in Crouzon and Apert syndromes, may impose an immense distress on both function and aesthetics of the person affected. The aims of this study were to describe and compare the main facial and intraoral features of patients with Apert and Crouzon syndromes, the clinical manifestations that may be present, additionally to the main syndromic traits, as well as the cranio-maxillofacial surgical treatment protocols followed.Twenty-three patients with Apert syndrome (6 males, 17 females), and 28 patients with Crouzon syndrome (20 males, 8 females) were evaluated for general medical aspects, craniofacial characteristics, dentoalveolar traits before and after the final orthognathic surgery, and types and timing of cranio-maxillofacial operations. Mental retardation, associated additional malformations, cleft palate, and extensive lateral palatal soft tissue swellings were more common in children with Apert syndrome. In both syndromes, clinical findings included concave profile, negative overjet, posterior crossbites, anterior openbite, and dental midline deviation, which were corrected in almost all cases with the final orthognathic surgery, with the exception of the lateral crossbites, including more than one tooth pair, which were persisting in about half of the cases. Cranial vault decompression and/or reshaping, midfacial and orbital advancement procedures, often in conjunction with a mandibular setback, were the most frequent cranio-maxillofacial operations performed. In conclusion, Apert syndrome is more asymmetric in nature and a more severe clinical entity than Crouzon syndrome. The syndromic dentofacial features of both conditions could be significantly improved after a series of surgical procedures in almost all cases with the exception of the posterior crossbites, with haIf of them persisting post-surgically. PMID:22611902

  7. An excellent navigation system and experience in craniomaxillofacial navigation surgery: a double-center study

    PubMed Central

    Dai, Jiewen; Wu, Jinyang; Wang, Xudong; Yang, Xudong; Wu, Yunong; Xu, Bing; Shi, Jun; Yu, Hongbo; Cai, Min; Zhang, Wenbin; Zhang, Lei; Sun, Hao; Shen, Guofang; Zhang, Shilei

    2016-01-01

    Numerous problems regarding craniomaxillofacial navigation surgery are not well understood. In this study, we performed a double-center clinical study to quantitatively evaluate the characteristics of our navigation system and experience in craniomaxillofacial navigation surgery. Fifty-six patients with craniomaxillofacial disease were included and randomly divided into experimental (using our AccuNavi-A system) and control (using Strker system) groups to compare the surgical effects. The results revealed that the average pre-operative planning time was 32.32 mins vs 29.74 mins between the experimental and control group, respectively (p > 0.05). The average operative time was 295.61 mins vs 233.56 mins (p > 0.05). The point registration orientation accuracy was 0.83 mm vs 0.92 mm. The maximal average preoperative navigation orientation accuracy was 1.03 mm vs 1.17 mm. The maximal average persistent navigation orientation accuracy was 1.15 mm vs 0.09 mm. The maximal average navigation orientation accuracy after registration recovery was 1.15 mm vs 1.39 mm between the experimental and control group. All patients healed, and their function and profile improved. These findings demonstrate that although surgeons should consider the patients’ time and monetary costs, our qualified navigation surgery system and experience could offer an accurate guide during a variety of craniomaxillofacial surgeries. PMID:27305855

  8. 3-dimensional bioprinting for tissue engineering applications.

    PubMed

    Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho

    2016-01-01

    The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828

  9. Teleportation of a 3-dimensional GHZ State

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan

    2012-05-01

    The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.

  10. Adipose Stem Cells Used to Reconstruct 13 Cases With Cranio-Maxillofacial Hard-Tissue Defects

    PubMed Central

    Numminen, Jura; Wolff, Jan; Thesleff, Tuomo; Miettinen, Aimo; Tuovinen, Veikko J.; Mannerström, Bettina; Patrikoski, Mimmi; Seppänen, Riitta; Miettinen, Susanna; Rautiainen, Markus; Öhman, Juha

    2014-01-01

    Although isolated reports of hard-tissue reconstruction in the cranio-maxillofacial skeleton exist, multipatient case series are lacking. This study aimed to review the experience with 13 consecutive cases of cranio-maxillofacial hard-tissue defects at four anatomically different sites, namely frontal sinus (3 cases), cranial bone (5 cases), mandible (3 cases), and nasal septum (2 cases). Autologous adipose tissue was harvested from the anterior abdominal wall, and adipose-derived stem cells were cultured, expanded, and then seeded onto resorbable scaffold materials for subsequent reimplantation into hard-tissue defects. The defects were reconstructed with either bioactive glass or β-tricalcium phosphate scaffolds seeded with adipose-derived stem cells (ASCs), and in some cases with the addition of recombinant human bone morphogenetic protein-2. Production and use of ASCs were done according to good manufacturing practice guidelines. Follow-up time ranged from 12 to 52 months. Successful integration of the construct to the surrounding skeleton was noted in 10 of the 13 cases. Two cranial defect cases in which nonrigid resorbable containment meshes were used sustained bone resorption to the point that they required the procedure to be redone. One septal perforation case failed outright at 1 year because of the postsurgical resumption of the patient’s uncontrolled nasal picking habit. PMID:24558162

  11. Biodegradable fixation for craniomaxillofacial surgery: a 10-year experience involving 761 operations and 745 patients

    PubMed Central

    Turvey, T. A.; Proffit, W. P.; Phillips, C.

    2011-01-01

    Patient acceptance, safety, and efficacy of poly-L/DL-lactic acid (PLLDL) bone plates and screws in craniomaxillofacial surgery are reported in this article. Included in the sample are 745 patients who underwent 761 separate operations, including more than 1400 surgical procedures (orthognathic surgery (685), bone graft reconstruction (37), trauma (191) and transcranial surgery (20)). The success (no breakage or inflammation requiring additional operating room treatment) was 94%. Failure occurred because of breakage (14) or exuberant inflammation (31). All breakage occurred at mandibular sites and the majority of inflammatory failure occurred in the maxilla or orbit (29), with only two in the mandible. Failures were evenly distributed between the two major vendors. PLLDL 70/30 bone plates and screws may be used successfully in a variety of craniomaxillofacial surgical applications. The advantages include the gradual transference of physiological forces to the healing bone, the reduced need for a second operation to remove the material and its potential to serve as a vehicle to deliver bone-healing proteins to fracture/osteotomy sites. Bone healing was noted at all sites, even where exuberant inflammation required a second surgical intervention. PMID:21185695

  12. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures

    PubMed Central

    Barde, Dhananjay H; Mudhol, Anupama; Ali, Fareedi Mukram; Madan, R S; Kar, Sanjay; Ustaad, Farheen

    2014-01-01

    Background: Mandibular fractures are treated surgically by either rigid or semi-rigid fixation, two techniques that reflect almost opposite concept of craniomaxillofacial osteosynthesis. The shortcomings of these fixations led to the development of 3 dimensional (3D) miniplates. This study was designed with the aim of evaluating the efficiency of 3D miniplate over Champys miniplate in anterior mandibular fractures. Materials & Methods: This study was done in 40 patients with anterior mandibular fractures. Group I consisting of 20 patients in whom 3D plates were used for fixation while in Group II consisting of other 20 patients, 4 holes straight plates were used. The efficacy of 3D miniplate over Champy’s miniplate was evaluated in terms of operating time, average pain, post operative infection, occlusion, wound dehiscence, post operative mobility and neurological deficit. Results: The mean operation time for Group II was more compared to Group I (statistically significant).There was significantly greater pain on day of surgery and at 2nd week for Group II patients but there was no significant difference between the two groups at 4th week. The post operative infection, occlusal disturbance, wound dehiscence, post operative mobility at facture site, neurological deficit was statistically insignificant (chi square test). Conclusion: The results of this study suggest that fixation of anterior mandibular fractures with 3D plates provides three dimensional stability and carries low morbidity and infection rates. The only probable limitation of these 3D plates may be excessive implant material, but they seem to be easy alternative to champys miniplate. How to cite the article: Barde DH, Mudhol A, Ali FM, Madan RS, Kar S, Ustaad F. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures. J Int Oral Health 2014;6(1):20-6. PMID:24653598

  13. 3-dimensional Oil Drift Simulations

    NASA Astrophysics Data System (ADS)

    Wettre, C.; Reistad, M.; Hjøllo, B.Å.

    Simulation of oil drift has been an ongoing activity at the Norwegian Meteorological Institute since the 1970's. The Marine Forecasting Centre provides a 24-hour service for the Norwegian Pollution Control Authority and the oil companies operating in the Norwegian sector. The response time is 30 minutes. From 2002 the service is extended to simulation of oil drift from oil spills in deep water, using the DeepBlow model developed by SINTEF Applied Chemistry. The oil drift model can be applied both for instantaneous and continuous releases. The changes in the mass of oil and emulsion as a result of evaporation and emulsion are computed. For oil spill at deep water, hydrate formation and gas dissolution are taken into account. The properties of the oil depend on the oil type, and in the present version 64 different types of oil can be simulated. For accurate oil drift simulations it is important to have the best possible data on the atmospheric and oceanic conditions. The oil drift simulations at the Norwegian Meteorological Institute are always based on the most updated data from numerical models of the atmosphere and the ocean. The drift of the surface oil is computed from the vectorial sum of the surface current from the ocean model and the wave induced Stokes drift computed from wave energy spectra from the wave prediction model. In the new model the current distribution with depth is taken into account when calculating the drift of the dispersed oil droplets. Salinity and temperature profiles from the ocean model are needed in the DeepBlow model. The result of the oil drift simulations can be plotted on sea charts used for navigation, either as trajectory plots or particle plots showing the situation at a given time. The results can also be sent as data files to be included in the user's own GIS system.

  14. 3DHYDROGEOCHEM: A 3-DIMENSIONAL MODEL OF DENSITY-DEPENDENT SUBSURFACE FLOW AND THERMAL MULTISPECIES-MULTICOMPONENT HYDROGEOCHEMICAL TRANSPORT (EPA/600/SR-98/159)

    EPA Science Inventory

    This report presents a three-dimensional finite-element numerical model designed to simulate chemical transport in subsurface systems with temperature effect taken into account. The three-dimensional model is developed to provide (1) a tool of application, with which one is able ...

  15. Phase diagram of quark-antiquark and diquark condensates in the 3-dimensional Gross-Neveu model with the 4-component spinor representation

    SciTech Connect

    Kohyama, Hiroaki

    2008-07-01

    We construct the phase diagram of the quark-antiquark and diquark condensates at finite temperature and density in the 2+1 dimensional (3D) two flavor massless Gross-Neveu (GN) model with the 4-component quarks. In contrast to the case of the 2-component quarks, there appears the coexisting phase of the quark-antiquark and diquark condensates. This is the crucial difference between the 2-component and 4-component quark cases in the 3D GN model. The coexisting phase is also seen in the 4D Nambu Jona-Lasinio model. Then we see that the 3D GN model with the 4-component quarks bears closer resemblance to the 4D Nambu Jona-Lasinio model.

  16. Numerical Simulation of Boiling Two-Phase Flow in Tight-Lattice Rod Bundle by 3-Dimensional Two-Fluid Model Code ACE-3D

    NASA Astrophysics Data System (ADS)

    Yoshida, Hiroyuki; Misawa, Takeharu; Takase, Kazuyuki

    Two-fluid model can simulate two-phase flow by computational cost less than detailed two-phase flow simulation method such as interface tracking method or particle interaction method. Therefore, two-fluid model is useful for thermal hydraulic analysis in large-scale domain such as a rod bundle. Japan Atomic Energy Agency (JAEA) develops three dimensional two-fluid model analysis code ACE-3D that adopts boundary fitted coordinate system in order to simulate complex shape flow channel. In this paper, boiling two-phase flow analysis in a tight-lattice rod bundle was performed by ACE-3D code. The parallel computation using 126 CPUs was applied to this analysis. In the results, the void fraction, which distributes in outermost region of rod bundle, is lower than that in center region of rod bundle. The tendency of void fraction distribution agreed with the measurement results by neutron radiography qualitatively. To evaluate effects of two-phase flow model used in ACE-3D code, numerical simulation of boiling two-phase in tight-lattice rod bundle with no lift force model was also performed. From the comparison of calculated results, it was concluded that the effects of lift force model were not so large for overall void fraction distribution of tight-lattice rod bundle. However, the lift force model is important for local void fraction distribution of fuel bundles.

  17. Utility of a 3-dimensional full-scale NaCl model for rib strut grafting for anterior fusion for cervicothoracic kyphosis

    PubMed Central

    Kobayashi, Kazuyoshi; Imagama, Shiro; Muramoto, Akio; Ito, Zenya; Ando, Kei; Yagi, Hideki; Hida, Tetsuro; Ito, Kenyu; Ishikawa, Yoshimoto; Tsushima, Mikito; Ishiguro, Naoki

    2015-01-01

    ABSTRACT In severe spinal deformity, pain and neurological disorder may be caused by spinal cord compression. Surgery for spinal reconstruction is desirable, but may be difficult in a case with severe deformity. Here, we show the utility of a 3D NaCl (salt) model in preoperative planning of anterior reconstruction using a rib strut in a 49-year-old male patient with cervicothoracic degenerative spondylosis. We performed surgery in two stages: a posterior approach with decompression and posterior instrumentation with a pedicle screw; followed by a second operation using an anterior approach, for which we created a 3D NaCl model including the cervicothoracic lesion, spinal deformity, and ribs for anterior reconstruction. The 3D NaCl model was easily scraped compared with a conventional plaster model and was useful for planning of resection and identification of a suitable rib for grafting in a preoperative simulation. Surgery was performed successfully with reference to the 3D NaCl model. We conclude that preoperative simulation with a 3D NaCl model contributes to performance of anterior reconstruction using a rib strut in a case of cervicothoracic deformity. PMID:26412901

  18. Distinction of Green Sweet Peppers by Using Various Color Space Models and Computation of 3 Dimensional Location Coordinates of Recognized Green Sweet Peppers Based on Parallel Stereovision System

    NASA Astrophysics Data System (ADS)

    Bachche, Shivaji; Oka, Koichi

    2013-06-01

    This paper presents the comparative study of various color space models to determine the suitable color space model for detection of green sweet peppers. The images were captured by using CCD cameras and infrared cameras and processed by using Halcon image processing software. The LED ring around the camera neck was used as an artificial lighting to enhance the feature parameters. For color images, CieLab, YIQ, YUV, HSI and HSV whereas for infrared images, grayscale color space models were selected for image processing. In case of color images, HSV color space model was found more significant with high percentage of green sweet pepper detection followed by HSI color space model as both provides information in terms of hue/lightness/chroma or hue/lightness/saturation which are often more relevant to discriminate the fruit from image at specific threshold value. The overlapped fruits or fruits covered by leaves can be detected in better way by using HSV color space model as the reflection feature from fruits had higher histogram than reflection feature from leaves. The IR 80 optical filter failed to distinguish fruits from images as filter blocks useful information on features. Computation of 3D coordinates of recognized green sweet peppers was also conducted in which Halcon image processing software provides location and orientation of the fruits accurately. The depth accuracy of Z axis was examined in which 500 to 600 mm distance between cameras and fruits was found significant to compute the depth distance precisely when distance between two cameras maintained to 100 mm.

  19. Cardiothoracic Applications of 3-dimensional Printing.

    PubMed

    Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris

    2016-09-01

    Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367

  20. The Spatiotemporal Stability of Dominant Frequency Sites in In-Silico Modeling of 3-Dimensional Left Atrial Mapping of Atrial Fibrillation

    PubMed Central

    Hwang, Minki; Song, Jun-Seop; Lee, Young-Seon; Joung, Boyoung; Pak, Hui-Nam

    2016-01-01

    Background We previously reported that stable rotors were observed in in-silico human atrial fibrillation (AF) models, and were well represented by dominant frequency (DF). We explored the spatiotemporal stability of DF sites in 3D-AF models imported from patient CT images of the left atrium (LA). Methods We integrated 3-D CT images of the LA obtained from ten patients with persistent AF (male 80%, 61.8 ± 13.5 years old) into an in-silico AF model. After induction, we obtained 6 seconds of AF simulation data for DF analyses in 30 second intervals (T1–T9). The LA was divided into ten sections. Spatiotemporal changes and variations in the temporal consistency of DF were evaluated at each section of the LA. The high DF area was defined as the area with the highest 10% DF. Results 1. There was no spatial consistency in the high DF distribution at each LA section during T1–T9 except in one patient (p = 0.027). 2. Coefficients of variation for the high DF area were highly different among the ten LA sections (p < 0.001), and they were significantly higher in the four pulmonary vein (PV) areas, the LA appendage, and the peri-mitral area than in the other LA sections (p < 0.001). 3. When we conducted virtual ablation of 10%, 15%, and 20% of the highest DF areas (n = 270 cases), AF was changed to atrial tachycardia (AT) or terminated at a rate of 40%, 57%, and 76%, respectively. Conclusions Spatiotemporal consistency of the DF area was observed in 10% of AF patients, and high DF areas were temporally variable. Virtual ablation of DF is moderately effective in AF termination and AF changing into AT. PMID:27459377

  1. Wear particles derived from metal hip implants induce the generation of multinucleated giant cells in a 3-dimensional peripheral tissue-equivalent model.

    PubMed

    Dutta, Debargh K; Potnis, Pushya A; Rhodes, Kelly; Wood, Steven C

    2015-01-01

    Multinucleate giant cells (MGCs) are formed by the fusion of 5 to 15 monocytes or macrophages. MGCs can be generated by hip implants at the site where the metal surface of the device is in close contact with tissue. MGCs play a critical role in the inflammatory processes associated with adverse events such as aseptic loosening of the prosthetic joints and bone degeneration process called osteolysis. Upon interaction with metal wear particles, endothelial cells upregulate pro-inflammatory cytokines and other factors that enhance a localized immune response. However, the role of endothelial cells in the generation of MGCs has not been completely investigated. We developed a three-dimensional peripheral tissue-equivalent model (PTE) consisting of collagen gel, supporting a monolayer of endothelial cells and human peripheral blood mononuclear cells (PBMCs) on top, which mimics peripheral tissue under normal physiological conditions. The cultures were incubated for 14 days with Cobalt chromium alloy (CoCr ASTM F75, 1-5 micron) wear particles. PBMC were allowed to transit the endothelium and harvested cells were analyzed for MGC generation via flow cytometry. An increase in forward scatter (cell size) and in the propidium iodide (PI) uptake (DNA intercalating dye) was used to identify MGCs. Our results show that endothelial cells induce the generation of MGCs to a level 4 fold higher in 3-dimentional PTE system as compared to traditional 2-dimensional culture plates. Further characterization of MGCs showed upregulated expression of tartrate resistant alkaline phosphatase (TRAP) and dendritic cell specific transmembrane protein, (DC-STAMP), which are markers of bone degrading cells called osteoclasts. In sum, we have established a robust and relevant model to examine MGC and osteoclast formation in a tissue like environment using flow cytometry and RT-PCR. With endothelial cells help, we observed a consistent generation of metal wear particle- induced MGCs, which heralds

  2. 3-dimensional imaging at nanometer resolutions

    DOEpatents

    Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.

    2010-03-09

    An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.

  3. The 3-dimensional cellular automata for HIV infection

    NASA Astrophysics Data System (ADS)

    Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei

    2014-04-01

    The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.

  4. Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry

    NASA Astrophysics Data System (ADS)

    Leiner, Marc J.; Wolfbeis, Otto S.

    1988-06-01

    We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.

  5. Development of a methacrylate-terminated PLGA copolymer for potential use in craniomaxillofacial fracture plates.

    PubMed

    Upson, Sarah J; Partridge, Simon W; Tcacencu, Ion; Fulton, David A; Corbett, Ian; German, Matthew J; Dalgarno, Kenneth W

    2016-12-01

    We synthesised methacrylate-terminated PLGA (HT-PLGA, 85:15 LA:GA, 169kDa), for potential use as an adhesively attached craniomaxillofacial fracture fixation plate. The in vitro degradation of molecular weight, pH and flexural modulus were measured over 6weeks storage in PBS at 37°C, with commercially available high (225kDa, H-PLGA) and low (116kDa, L-PLGA) molecular weight 85:15 PLGAs used as comparators. Molecular weights of the materials reduced over 6weeks, HT-PLGA by 48%, H-PLGA by 23% and L-PLGA by 81%. HT-PLGA and H-PLGA exhibited a near constant pH (7.35) and had average flexural moduli in excess of 6GPa when produced, similar to that of the mandible. After 1week storage both exhibited a significant reduction in average modulus, however, from weeks 1-6 no further significant changes were observed, the average modulus never dropped significantly below 5.5GPa. In contrast, the L-PLGA caused a pH drop to below 7.3 by week 6 and an average modulus drop to 0.6 from an initial 4.6GPa. Cell culture using rat bone marrow stromal cells, revealed all materials were cytocompatible and exhibited no osteogenic potential. We conclude that our functionalised PLGA retains mechanical properties which are suitable for use in craniofacial fixation plates. PMID:27612737

  6. Herbert Moran Memorial Lecture. World War I: the genesis of craniomaxillofacial surgery?

    PubMed

    Simpson, Donald A; David, David J

    2004-01-01

    Herbert Moran enlisted in the Royal Army Medical Corps early in World War I. His autobiography captures the impact of contemporary experience of wartime gunshot wounds, seen in vast numbers and with little understanding of the requirements of wartime surgery. Wounds of the face and brain were numerous, especially in trench fighting. In France, Germany, Britain and elsewhere, surgeons and dentists collaborated to repair mutilated faces and special centres were set up to facilitate this. The innovative New Zealand surgeon Harold Gillies developed his famous reconstructive techniques in the Queen's Hospital at Sidcup, with the help of dental surgeons, anaesthetists and medical artists. The treatment of brain wounds was controversial. Many surgeons, especially on the German side, advocated minimal primary operative surgery and delayed closure. Others advocated early exploration and immediate closure; among the first to do so was the Austro-Hungarian otologist Robert Bárány. In 1918, the pioneer American neurosurgeon Harvey Cushing published well-documented proof of the desirability of definitive operative management done as soon as possible. Few World War I surgeons developed their knowledge of plastic surgery, neurosurgery and oral surgery in post-war practice. An exception was Henry Newland, who went on to pioneer the development of these specialties in Australasia. After World War II, the French plastic surgeon Paul Tessier created the multidisciplinary subspecialty of craniomaxillofacial surgery, with the help of his neurosurgical colleague Gérard Guiot, and applied this approach to the correction of facial deformities. It has become evident that the new subspecialty requires appropriate training programs. PMID:14725711

  7. Potential new method of design for reconstruction of complicated mandibular defects: a virtual deformable mandibular model.

    PubMed

    Chen, Quan; Zhigang, Cai; Xin, Peng; Yang, Wang; Chuanbin, Guo

    2016-02-01

    The treatment of complicated mandibular defects, including misshaped and missing bones, is challenging, and the success of reconstruction depends to a large extent on the formulation of a precise surgical plan. There is still no ideal preoperative method of design for reconstruction to deal with large, cross-midline, mandibular, segmental defects. We have built a virtual deformable mandibular model (VDMM) with 3-dimensional animation software. Sixteen handles were set on the model, and these could be easily controlled with a computer mouse to change the morphology of the deformable mandibular model. The computed tomographic (CT) data from 10 normal skulls was used to validate the adjustability of the VDMM. According to the positions of the mandibular fossa of the temporomandibular joint, the maxillary dental arch, and the craniomaxillofacial profile, the model could be adjusted to an ideal contour, which was coordinated with the skull. The VDMM was then adjusted further according to the morphology of the original mandible. A 3-dimensional comparison was made between the model of the deformed mandible and the original mandible. Using 16 control handles, the VDMM could be adjusted to a new outline, which was similar in shape to the original mandible. Within 3mm deviation either way, the absolute mean distribution of deviation between the contour of the deformed model and the original mandible was 92.5%. The VDMM might be useful for preoperative design of reconstruction of complicated mandibular defects. PMID:26711316

  8. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery.

    PubMed

    Gaudin, Robert; Knipfer, Christian; Henningsen, Anders; Smeets, Ralf; Heiland, Max; Hadlock, Tessa

    2016-01-01

    Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration. PMID:27556032

  9. Approaches to Peripheral Nerve Repair: Generations of Biomaterial Conduits Yielding to Replacing Autologous Nerve Grafts in Craniomaxillofacial Surgery

    PubMed Central

    Knipfer, Christian; Hadlock, Tessa

    2016-01-01

    Peripheral nerve injury is a common clinical entity, which may arise due to traumatic, tumorous, or even iatrogenic injury in craniomaxillofacial surgery. Despite advances in biomaterials and techniques over the past several decades, reconstruction of nerve gaps remains a challenge. Autografts are the gold standard for nerve reconstruction. Using autografts, there is donor site morbidity, subsequent sensory deficit, and potential for neuroma development and infection. Moreover, the need for a second surgical site and limited availability of donor nerves remain a challenge. Thus, increasing efforts have been directed to develop artificial nerve guidance conduits (ANCs) as new methods to replace autografts in the future. Various synthetic conduit materials have been tested in vitro and in vivo, and several first- and second-generation conduits are FDA approved and available for purchase, while third-generation conduits still remain in experimental stages. This paper reviews the current treatment options, summarizes the published literature, and assesses future prospects for the repair of peripheral nerve injury in craniomaxillofacial surgery with a particular focus on facial nerve regeneration. PMID:27556032

  10. Application of 3-dimensional printing in hand surgery for production of a novel bone reduction clamp.

    PubMed

    Fuller, Sam M; Butz, Daniel R; Vevang, Curt B; Makhlouf, Mansour V

    2014-09-01

    Three-dimensional printing is being rapidly incorporated in the medical field to produce external prosthetics for improved cosmesis and fabricated molds to aid in presurgical planning. Biomedically engineered products from 3-dimensional printers are also utilized as implantable devices for knee arthroplasty, airway orthoses, and other surgical procedures. Although at first expensive and conceptually difficult to construct, 3-dimensional printing is now becoming more affordable and widely accessible. In hand surgery, like many other specialties, new or customized instruments would be desirable; however, the overall production cost restricts their development. We are presenting our step-by-step experience in creating a bone reduction clamp for finger fractures using 3-dimensional printing technology. Using free, downloadable software, a 3-dimensional model of a bone reduction clamp for hand fractures was created based on the senior author's (M.V.M.) specific design, previous experience, and preferences for fracture fixation. Once deemed satisfactory, the computer files were sent to a 3-dimensional printing company for the production of the prototypes. Multiple plastic prototypes were made and adjusted, affording a fast, low-cost working model of the proposed clamp. Once a workable design was obtained, a printing company produced the surgical clamp prototype directly from the 3-dimensional model represented in the computer files. This prototype was used in the operating room, meeting the expectations of the surgeon. Three-dimensional printing is affordable and offers the benefits of reducing production time and nurturing innovations in hand surgery. This article presents a step-by-step description of our design process using online software programs and 3-dimensional printing services. As medical technology advances, it is important that hand surgeons remain aware of available resources, are knowledgeable about how the process works, and are able to take advantage of

  11. Protalign: a 3-dimensional protein alignment assessment tool.

    PubMed

    Meads, D; Hansen, M D; Pang, A

    1999-01-01

    Protein fold recognition (sometimes called threading) is the prediction of a protein's 3-dimensional shape based on its similarity to a protein of known structure. Fold predictions are low resolution; that is, no effort is made to rotate the protein's component amino acid side chains into their correct spatial orientations. The goal is simply to recognize the protein family member that most closely resembles the target sequence of unknown structure and to create a sensible alignment of the target to the known structure (i.e., a structure-sequence alignment). To facilitate this type of structure prediction, we have designed a low resolution molecular graphics tool. ProtAlign introduces the ability to interact with and edit alignments directly in the 3-dimensional structure as well as in the usual 2-dimensional layout. It also contains several functions and features to help the user assess areas within the alignment. ProtAlign implements an open pipe architecture to allow other programs to access its molecular graphics capabilities. In addition, it is capable of "driving" other programs. Because amino acid side chain orientation is not relevant in fold recognition, we represent amino acid residues as abstract shapes or glyphs much like Lego (tm) blocks and we borrow techniques from comparative flow visualization using streamlines to provide clean depictions of the entire protein model. By creating a low resolution representation of protein structure, we are able to at least double the amount of information on the screen. At the same time, we create a view that is not as busy as the corresponding representations using traditional high resolution visualization methods which show detailed atomic structure. This eliminates distracting and possibly misleading visual clutter resulting from the mapping of protein alignment information onto a high resolution display of the known structure. This molecular graphics program is implemented in Open GL to facilitate porting to

  12. Improving Perceptual Skills with 3-Dimensional Animations.

    ERIC Educational Resources Information Center

    Johns, Janet Faye; Brander, Julianne Marie

    1998-01-01

    Describes three-dimensional computer aided design (CAD) models for every component in a representative mechanical system; the CAD models made it easy to generate 3-D animations that are ideal for teaching perceptual skills in multimedia computer-based technical training. Fifteen illustrations are provided. (AEF)

  13. 3DIVS: 3-Dimensional Immersive Virtual Sculpting

    SciTech Connect

    Kuester, F; Duchaineau, M A; Hamann, B; Joy, K I; Uva, A E

    2001-10-03

    Virtual Environments (VEs) have the potential to revolutionize traditional product design by enabling the transition from conventional CAD to fully digital product development. The presented prototype system targets closing the ''digital gap'' as introduced by the need for physical models such as clay models or mockups in the traditional product design and evaluation cycle. We describe a design environment that provides an intuitive human-machine interface for the creation and manipulation of three-dimensional (3D) models in a semi-immersive design space, focusing on ease of use and increased productivity for both designer and CAD engineers.

  14. 3-dimensional strain fields from tomographic measurements

    NASA Astrophysics Data System (ADS)

    Haldrup, K.; Nielsen, S. F.; Mishnaevsky, L., Jr.; Beckmann, F.; Wert, J. A.

    2006-08-01

    Understanding the distributions of strain within solid bodies undergoing plastic deformations has been of interest for many years in a wide range of disciplines, ranging from basic materials science to biology. However, the desire to investigate these strain fields has been frustrated by the inaccessibility of the interior of most samples to detailed investigation without destroying the sample in the process. To some extent, this has been remedied by the development of advanced surface measurement techniques as well as computer models based on Finite Element methods. Over the last decade, this situation has changed by the introduction of a range of tomographic methods based both on advances in computer technology and in instrumentation, advances which have opened up the interior of optically opaque samples for detailed investigations. We present a general method for assessing the strain in the interior of marker-containing specimens undergoing various types of deformation. The results are compared with Finite Element modelling.

  15. A rotational stereoscopic 3-dimensional movement aftereffect.

    PubMed

    Webster, W R; Panthradil, J T; Conway, D M

    1998-06-01

    A stereoscopic rotational movement aftereffect (MAE) and a stereoscopic bi-directional MAE were generated by rotation of a cyclopean random dot cylinder in depth and by movement of two cyclopean random dot planes in opposite directions, respectively. Cross-adaptational MAEs were also generated on each other, but not with stimuli lacking any disparity. Cross-adaptation MAEs were generated between stereoscopic and non-stereoscopic random dot stimuli moving in the one X/Y plane. Spontaneous reversals in direction of movement were observed with bistable stimuli lacking disparity. Two models of the middle temporal area were considered which might explain both the stereoscopic MAEs and the spontaneous reversals. PMID:9797953

  16. A Seafloor Benchmark for 3-dimensional Geodesy

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Webb, S. C.; Nooner, S. L.

    2014-12-01

    We have developed an inexpensive, permanent seafloor benchmark to increase the longevity of seafloor geodetic measurements. The benchmark provides a physical tie to the sea floor lasting for decades (perhaps longer) on which geodetic sensors can be repeatedly placed and removed with millimeter resolution. Global coordinates estimated with seafloor geodetic techniques will remain attached to the benchmark allowing for the interchange of sensors as they fail or become obsolete, or for the sensors to be removed and used elsewhere, all the while maintaining a coherent series of positions referenced to the benchmark. The benchmark has been designed to free fall from the sea surface with transponders attached. The transponder can be recalled via an acoustic command sent from the surface to release from the benchmark and freely float to the sea surface for recovery. The duration of the sensor attachment to the benchmark will last from a few days to a few years depending on the specific needs of the experiment. The recovered sensors are then available to be reused at other locations, or again at the same site in the future. Three pins on the sensor frame mate precisely and unambiguously with three grooves on the benchmark. To reoccupy a benchmark a Remotely Operated Vehicle (ROV) uses its manipulator arm to place the sensor pins into the benchmark grooves. In June 2014 we deployed four benchmarks offshore central Oregon. We used the ROV Jason to successfully demonstrate the removal and replacement of packages onto the benchmark. We will show the benchmark design and its operational capabilities. Presently models of megathrust slip within the Cascadia Subduction Zone (CSZ) are mostly constrained by the sub-aerial GPS vectors from the Plate Boundary Observatory, a part of Earthscope. More long-lived seafloor geodetic measures are needed to better understand the earthquake and tsunami risk associated with a large rupture of the thrust fault within the Cascadia subduction zone

  17. From 2-dimensional cephalograms to 3-dimensional computed tomography scans.

    PubMed

    Halazonetis, Demetrios J

    2005-05-01

    Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045

  18. In Vitro Evaluation of New Approach to Digital Dental Model Articulation

    PubMed Central

    Chang, Yu-Bing; Xia, James J.; Gateno, Jaime; Xiong, Zixiang; Teichgraeber, John F.; Lasky, Robert E.; Zhou, Xiaobo

    2015-01-01

    Purpose The purpose of the present study was to evaluate the accuracy of our newly developed approach to digital dental model articulation. Materials and Methods Twelve sets of stone dental models from patients with craniomaxillofacial deformities were used for validation. All the models had stable occlusion and no evidence of early contact. The stone models were hand articulated to the maximal intercuspation (MI) position and scanned using a 3-dimensional surface laser scanner. These digital dental models at the MI position served as the control group. To establish an experimental group, each mandibular dental model was disarticulated from its original MI position to 80 initial positions. Using a regular office personal computer, they were digitally articulated to the MI position using our newly developed approach. These rearticulated mandibular models served as the experimental group. Finally, the translational, rotational, and surface deviations in the mandibular position were calculated between the experimental and control groups, and statistical analyses were performed. Results All the digital dental models were successfully articulated. Between the control and experimental groups, the largest translational difference in mandibular position was within 0.2 mm ± 0.6 mm. The largest rotational difference was within 0.1° ± 1.1°. The averaged surface deviation was 0.08 ± 0.07. The results of the Bland and Altman method of assessing measurement agreement showed tight limits for the translational, rotational, and surface deviations. In addition, the final positions of the mandibular articulated from the 80 initial positions were absolutely agreed on. Conclusion The results of our study have demonstrated that using our approach, the digital dental models can be accurately and effectively articulated to the MI position. In addition, the 3-dimensional surface geometry of the mandibular teeth played a more important role in digital dental articulation than the

  19. The 3-dimensional construction of the Rae craton, central Canada

    NASA Astrophysics Data System (ADS)

    Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.

    2015-10-01

    Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.

  20. A 3-Dimensional Anatomic Study of the Distal Biceps Tendon

    PubMed Central

    Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr

    2015-01-01

    Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092

  1. Differential Cross Section Kinematics for 3-dimensional Transport Codes

    NASA Technical Reports Server (NTRS)

    Norbury, John W.; Dick, Frank

    2008-01-01

    In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.

  2. Controlled teleportation of a 3-dimensional bipartite quantum state

    NASA Astrophysics Data System (ADS)

    Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan

    2008-07-01

    A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.

  3. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives.

    PubMed

    Audigé, Laurent; Cornelius, Carl-Peter; Di Ieva, Antonio; Prein, Joachim

    2014-12-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  4. Blood lead concentrations as a result of retained lead pellets in the craniomaxillofacial region in Benin City, Nigeria.

    PubMed

    Edetanlen, B E; Saheeb, B D

    2016-06-01

    Patients who survive gunshot wounds often retain pellets in their bodies, which cause delayed morbidity from lead poisoning, and even death. Our aim was to find out whether there is a high concentration of lead in the blood of patients who have asymptomatic retention of lead pellets in the craniomaxillofacial region. We prospectively studied 28 patients who were admitted to our hospital with gunshot injuries to the region, and 28 control subjects. Each was originally recruited three days after injury. The control subjects were chosen from people who lived in the same household or worked in the same place as the patients. Any previous exposure to lead was excluded. Blood samples were collected three days and three months after injury and analysed for the presence of lead by atomic absorption spectrophotometry. The mean (SD) age for both patients and control subjects was 33 (12) years. The mean (SD) and range of concentrations of lead in patients three days after injury was 0.11 (0.07), range 0.01-0.32μmol/L, while those of the control subjects were 0.03 (0.02) and 0-0.06, respectively. Three months after injury, the mean (SD) and range of concentrations of the patients were 0.30 (0.11) and 0.12-0.59μmol/L, while those of the control subjects were 0-1.25 and 0.12 (0.006) μmol/L, respectively (p= 0.000). The study showed a higher mean blood lead concentration in patients with gunshot injuries than in control subjects, but lower than the threshold values published by the Centers for Disease Control/Occupational Health and Safety Administration in the United States. PMID:26969292

  5. The First AO Classification System for Fractures of the Craniomaxillofacial Skeleton: Rationale, Methodological Background, Developmental Process, and Objectives

    PubMed Central

    Audigé, Laurent; Cornelius, Carl-Peter; Ieva, Antonio Di; Prein, Joachim

    2014-01-01

    Validated trauma classification systems are the sole means to provide the basis for reliable documentation and evaluation of patient care, which will open the gateway to evidence-based procedures and healthcare in the coming years. With the support of AO Investigation and Documentation, a classification group was established to develop and evaluate a comprehensive classification system for craniomaxillofacial (CMF) fractures. Blueprints for fracture classification in the major constituents of the human skull were drafted and then evaluated by a multispecialty group of experienced CMF surgeons and a radiologist in a structured process during iterative agreement sessions. At each session, surgeons independently classified the radiological imaging of up to 150 consecutive cases with CMF fractures. During subsequent review meetings, all discrepancies in the classification outcome were critically appraised for clarification and improvement until consensus was reached. The resulting CMF classification system is structured in a hierarchical fashion with three levels of increasing complexity. The most elementary level 1 simply distinguishes four fracture locations within the skull: mandible (code 91), midface (code 92), skull base (code 93), and cranial vault (code 94). Levels 2 and 3 focus on further defining the fracture locations and for fracture morphology, achieving an almost individual mapping of the fracture pattern. This introductory article describes the rationale for the comprehensive AO CMF classification system, discusses the methodological framework, and provides insight into the experiences and interactions during the evaluation process within the core groups. The details of this system in terms of anatomy and levels are presented in a series of focused tutorials illustrated with case examples in this special issue of the Journal. PMID:25489387

  6. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer.

    PubMed

    Joosten, A; Bochud, F; Moeckli, R

    2014-08-21

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  7. A critical evaluation of secondary cancer risk models applied to Monte Carlo dose distributions of 2-dimensional, 3-dimensional conformal and hybrid intensity-modulated radiation therapy for breast cancer

    NASA Astrophysics Data System (ADS)

    Joosten, A.; Bochud, F.; Moeckli, R.

    2014-08-01

    The comparison of radiotherapy techniques regarding secondary cancer risk has yielded contradictory results possibly stemming from the many different approaches used to estimate risk. The purpose of this study was to make a comprehensive evaluation of different available risk models applied to detailed whole-body dose distributions computed by Monte Carlo for various breast radiotherapy techniques including conventional open tangents, 3D conformal wedged tangents and hybrid intensity modulated radiation therapy (IMRT). First, organ-specific linear risk models developed by the International Commission on Radiological Protection (ICRP) and the Biological Effects of Ionizing Radiation (BEIR) VII committee were applied to mean doses for remote organs only and all solid organs. Then, different general non-linear risk models were applied to the whole body dose distribution. Finally, organ-specific non-linear risk models for the lung and breast were used to assess the secondary cancer risk for these two specific organs. A total of 32 different calculated absolute risks resulted in a broad range of values (between 0.1% and 48.5%) underlying the large uncertainties in absolute risk calculation. The ratio of risk between two techniques has often been proposed as a more robust assessment of risk than the absolute risk. We found that the ratio of risk between two techniques could also vary substantially considering the different approaches to risk estimation. Sometimes the ratio of risk between two techniques would range between values smaller and larger than one, which then translates into inconsistent results on the potential higher risk of one technique compared to another. We found however that the hybrid IMRT technique resulted in a systematic reduction of risk compared to the other techniques investigated even though the magnitude of this reduction varied substantially with the different approaches investigated. Based on the epidemiological data available, a reasonable

  8. A 3-dimensional Analysis of the Cassiopeia A Supernova Remnant

    NASA Astrophysics Data System (ADS)

    Isensee, Karl

    We present a multi-wavelength study of the nearby supernova remnant Cassiopeia A (Cas A). Easily resolvable supernova remnants such as Cas A provide a unique opportunity to test supernova explosion models. Additionally, we can observe key processes in the interstellar medium as the ejecta from the initial explosion encounter Cas A's powerful shocks. In order to accomplish these science goals, we used the Spitzer Space Telescope's Infrared Spectrograph to create a high resolution spectral map of select regions of Cas A, allowing us to make a Doppler reconstruction of its 3-dimensional structure structure. In the center of the remnant, we find relatively pristine ejecta that have not yet reached Cas A's reverse shock or interacted with the circumstellar environment. We observe O, Si, and S emission. These ejecta can form both sheet-like structures as well as filaments. Si and O, which come from different nucleosynthetic layers of the star, are observed to be coincident in some regions, and separated by >500 km s -1 in others. Observed ejecta traveling toward us are, on average, ˜800 km s -1 slower than the material traveling away from us. We compare our observations to recent supernova explosion models and find that no single model can simultaneously reproduce all the observed features. However, models of different supernova explosions can collectively produce the observed geometries and structures of the emission interior to Cas A's reverse shock. We use the results from the models to address the conditions during the supernova explosion, concentrating on asymmetries in the shock structure. We also predict that the back surface of Cassiopeia A will begin brightening in ∼30 years, and the front surface in ˜100 years. We then used similar observations from 3 regions on Cas A's reverse shock in order to create more 3-dimensional maps. In these regions, we observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the

  9. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  10. Contribution of seismic processing to put up the scaffolding for the 3-dimensional study of deep sedimentary basins: the fundaments of trans-national 3D modelling in the project GeoMol

    NASA Astrophysics Data System (ADS)

    Capar, Laure

    2013-04-01

    Within the framework of the transnational project GeoMol geophysical and geological information on the entire Molasse Basin and on the Po Basin are gathered to build consistent cross-border 3D geological models based on borehole evidence and seismic data. Benefiting from important progress in seismic processing, these new models will provide some answers to various questions regarding the usage of subsurface resources, as there are geothermal energy, CO2 and gas storage, oil and gas production, and support decisions-making to national and local administrations as well as to industries. More than 28 000 km of 2D seismic lines are compiled reprocessed and harmonized. This work faces various problems like the vertical drop of more than 700 meters between West and East of the Molasse Basin and to al lesser extent in the Po Plain, the heterogeneities of the substratum, the large disparities between the period and parameters of seismic acquisition, and depending of their availability, the use of two types of seismic data, raw and processed seismic data. The main challenge is to harmonize all lines at the same reference level, amplitude and step of signal processing from France to Austria, spanning more than 1000 km, to avoid misfits at crossing points between seismic lines and artifacts at the country borders, facilitating the interpretation of the various geological layers in the Molasse Basin and Po Basin. A generalized stratigraphic column for the two basins is set up, representing all geological layers relevant to subsurface usage. This stratigraphy constitutes the harmonized framework for seismic reprocessing. In general, processed seismic data is available on paper at stack stage and the mandatory information to take these seismic lines to the final stage of processing, the migration step, are datum plane and replacement velocity. However several datum planes and replacement velocities were used during previous processing projects. Our processing sequence is to

  11. Molecular Signatures in the Prevention of Radiation Damage by the Synergistic Effect of N-Acetyl Cysteine and Qingre Liyan Decoction, a Traditional Chinese Medicine, Using a 3-Dimensional Cell Culture Model of Oral Mucositis

    PubMed Central

    Lambros, Maria P.; Kondapalli, Lavanya; Parsa, Cyrus; Mulamalla, Hari Chandana; Orlando, Robert; Pon, Doreen; Huang, Ying; Chow, Moses S. S.

    2015-01-01

    Qingre Liyan decoction (QYD), a Traditional Chinese medicine, and N-acetyl cysteine (NAC) have been used to prevent radiation induced mucositis. This work evaluates the protective mechanisms of QYD, NAC, and their combination (NAC-QYD) at the cellular and transcriptional level. A validated organotypic model of oral mucosal consisting of a three-dimensional (3D) cell tissue-culture of primary human keratinocytes exposed to X-ray irradiation was used. Six hours after the irradiation, the tissues were evaluated by hematoxylin and eosin (H and E) and a TUNEL assay to assess histopathology and apoptosis, respectively. Total RNA was extracted and used for microarray gene expression profiling. The tissue-cultures treated with NAC-QYD preserved their integrity and showed no apoptosis. Microarray results revealed that the NAC-QYD caused the upregulation of genes encoding metallothioneins, HMOX1, and other components of the Nrf2 pathway, which protects against oxidative stress. DNA repair genes (XCP, GADD45G, RAD9, and XRCC1), protective genes (EGFR and PPARD), and genes of the NFκB pathway were upregulated. Finally, tissue-cultures treated prophylactically with NAC-QYD showed significant downregulation of apoptosis, cytokines and chemokines genes, and constrained damage-associated molecular patterns (DAMPs). NAC-QYD treatment involves the protective effect of Nrf2, NFκB, and DNA repair factors. PMID:25705238

  12. Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization

    PubMed Central

    2014-01-01

    Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757

  13. 3-Dimensional modeling of protein structures distinguishes closely related phytoplasmas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phytoplasmas (formerly mycoplasmalike organisms, MLOs) are cell wall-less bacteria that inhabit phloem tissue of plants and are transmitted from plant-to-plant by phloem-feeding insects. Numerous diseases affecting hundreds of plant species in many botanical families are attributed to infections by...

  14. Conditioned Media From Adipose-Derived Stromal Cells Accelerates Healing in 3-Dimensional Skin Cultures.

    PubMed

    Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T

    2016-04-01

    Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733

  15. Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.

    PubMed

    Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun

    2016-08-01

    We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. PMID:27222318

  16. Preparation and Characterization of Nitinol Bone Staples for Cranio-Maxillofacial Surgery

    NASA Astrophysics Data System (ADS)

    Lekston, Z.; Stróż, D.; Jędrusik-Pawłowska, M.

    2012-12-01

    The aim of this work was to form NiTi and TiNiCo body temperature activated and superelastic staples for clinical joining of mandible and face bone fractures. The alloys were obtained by VIM technique. Hot and cold processing was applied to obtain wires of required diameters. The martensitic transformation was studied by DSC, XRD, and TEM. The shape memory effects were measured by a bend and free recovery ASTM F2082-06 test. The superelasticity was recorded in the tension stress-strain and by the three-point bending cycles in an instrument equipped with a Hottinger force transducer and LVDT. Excellent superelastic behavior of TiNiCo wires was obtained after cold working and annealing at 400-500 °C. The body temperature activated shape memory staples were applied for fixation of mandibular condyle fractures. In experiments on the skull models, fixation of the facial fractures by using shape memory and superelastic staples were compared. The superelastic staples were used in osteosynthesis of zygomatico-maxillo-orbital fractures.

  17. Scene-of-crime analysis by a 3-dimensional optical digitizer: a useful perspective for forensic science.

    PubMed

    Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo

    2011-09-01

    Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene. PMID:21811148

  18. 3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice

    PubMed Central

    Powell, K. A.; Wilson, D.

    2013-01-01

    A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851

  19. Design of 3-dimensional complex airplane configurations with specified pressure distribution via optimization

    NASA Technical Reports Server (NTRS)

    Kubrynski, Krzysztof

    1991-01-01

    A subcritical panel method applied to flow analysis and aerodynamic design of complex aircraft configurations is presented. The analysis method is based on linearized, compressible, subsonic flow equations and indirect Dirichlet boundary conditions. Quadratic dipol and linear source distribution on flat panels are applied. In the case of aerodynamic design, the geometry which minimizes differences between design and actual pressure distribution is found iteratively, using numerical optimization technique. Geometry modifications are modeled by surface transpiration concept. Constraints in respect to resulting geometry can be specified. A number of complex 3-dimensional design examples are presented. The software is adopted to personal computers, and as result an unexpected low cost of computations is obtained.

  20. A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals

    NASA Technical Reports Server (NTRS)

    Dietzen, F. J.; Nordmann, R.

    1989-01-01

    A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.

  1. Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids

    PubMed Central

    Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika

    2015-01-01

    In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643

  2. Thermal crosstalk in 3-dimensional RRAM crossbar array

    PubMed Central

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  3. Thermal crosstalk in 3-dimensional RRAM crossbar array.

    PubMed

    Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming

    2015-01-01

    High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537

  4. Video Based Sensor for Tracking 3-Dimensional Targets

    NASA Technical Reports Server (NTRS)

    Howard, R. T.; Book, Michael L.; Bryan, Thomas C.

    2000-01-01

    Video-Based Sensor for Tracking 3-Dimensional Targets The National Aeronautics and Space Administration's (NASAs) Marshall Space Flight Center (MSFC) has been developing and testing video-based sensors for automated spacecraft guidance for several years, and the next generation of video sensor will have tracking rates up to 100 Hz and will be able to track multiple reflectors and targets. The Video Guidance Sensor (VGS) developed over the past several years has performed well in testing and met the objective of being used as the terminal guidance sensor for an automated rendezvous and capture system. The first VGS was successfully tested in closed-loop 3-degree-of-freedom (3- DOF) tests in 1989 and then in 6-DOF open-loop tests in 1992 and closed-loop tests in 1993-4. Development and testing continued, and in 1995 approval was given to test the VGS in an experiment on the Space Shuttle. The VGS flew in 1997 and in 1998, performing well for both flights. During the development and testing before, during, and after the flight experiments, numerous areas for improvement were found. The VGS was developed with a sensor head and an electronics box, connected by cables. The VGS was used in conjunction with a target that had wavelength-filtered retro-reflectors in a specific pattern, The sensor head contained the laser diodes, video camera, and heaters and coolers. The electronics box contained a frame grabber, image processor, the electronics to control the components in the sensor head, the communications electronics, and the power supply. The system works by sequentially firing two different wavelengths of laser diodes at the target and processing the two images. Since the target only reflects one wavelength, it shows up well in one image and not at all in the other. Because the target's dimensions are known, the relative positions and attitudes of the target and the sensor can be computed from the spots reflected from the target. The system was designed to work from I

  5. Tracking Error analysis of Concentrator Photovoltaic Module Using Total 3-Dimensional Simulator

    NASA Astrophysics Data System (ADS)

    Ota, Yasuyuki; Nishioka, Kensuke

    2011-12-01

    A 3-dimensional (3D) operating simulator for concentrator photovoltaic (CPV) module using triple-junction solar cell was developed. By connecting 3D equivalent circuit simulation for triple-junction solar cell and ray-trace simulation for optics model, the operating characteristics of CPV module were calculated. A typical flat Fresnel lens and homogenizer were adapted to the optics model. The influence of tracking error on the performance of CPV module was calculated. There was the correlation between the optical efficiency and Isc. However, Pm was not correlated with these values, and was strongly dependent on FF. We can use this total simulator for the evaluation and optimization from the light incidence to operating characteristic of CPV modules.

  6. Use of 3-Dimensional Printing for Preoperative Planning in the Treatment of Recurrent Anterior Shoulder Instability

    PubMed Central

    Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad

    2015-01-01

    Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768

  7. Method and apparatus for imaging through 3-dimensional tracking of protons

    NASA Technical Reports Server (NTRS)

    Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)

    2001-01-01

    A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.

  8. Generation and 3-Dimensional Quantitation of Arterial Lesions in Mice Using Optical Projection Tomography

    PubMed Central

    Kirkby, Nicholas S.; Low, Lucinda; Wu, Junxi; Miller, Eileen; Seckl, Jonathan R.; Walker, Brian R.; Webb, David J.; Hadoke, Patrick W. F.

    2015-01-01

    The generation and analysis of vascular lesions in appropriate animal models is a cornerstone of research into cardiovascular disease, generating important information on the pathogenesis of lesion formation and the action of novel therapies. Use of atherosclerosis-prone mice, surgical methods of lesion induction, and dietary modification has dramatically improved understanding of the mechanisms that contribute to disease development and the potential of new treatments. Classically, analysis of lesions is performed ex vivo using 2-dimensional histological techniques. This article describes application of optical projection tomography (OPT) to 3-dimensional quantitation of arterial lesions. As this technique is non-destructive, it can be used as an adjunct to standard histological and immunohistochemical analyses. Neointimal lesions were induced by wire-insertion or ligation of the mouse femoral artery whilst atherosclerotic lesions were generated by administration of an atherogenic diet to apoE-deficient mice. Lesions were examined using OPT imaging of autofluorescent emission followed by complementary histological and immunohistochemical analysis. OPT clearly distinguished lesions from the underlying vascular wall. Lesion size was calculated in 2-dimensional sections using planimetry, enabling calculation of lesion volume and maximal cross-sectional area. Data generated using OPT were consistent with measurements obtained using histology, confirming the accuracy of the technique and its potential as a complement (rather than alternative) to traditional methods of analysis. This work demonstrates the potential of OPT for imaging atherosclerotic and neointimal lesions. It provides a rapid, much needed ex vivo technique for the routine 3-dimensional quantification of vascular remodelling. PMID:26067588

  9. Unification of color postprocessing techniques for 3-dimensional computational mechanics

    NASA Technical Reports Server (NTRS)

    Bailey, Bruce Charles

    1985-01-01

    To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.

  10. Biomechanical 3-Dimensional Finite Element Analysis of Obturator Protheses Retained with Zygomatic and Dental Implants in Maxillary Defects

    PubMed Central

    Akay, Canan; Yaluğ, Suat

    2015-01-01

    Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental implant, model 2 with 1 zygomatic implant and 2 dental implants, and model 3 with 2 zygomatic implants. Locator attachments were used as a superstructure. A 150-N load was applied 3 different ways. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis are expressed in MPa. Results In all loading conditions, model 3 (when compared models 1 and 2) showed the lowest maximum principal stress value. Model 3 is the most appropirate reconstruction in Aramany class IV maxillary defects. Two zygomatic implants can reduce the stresses in model 3. The distribution of stresses on prostheses were more rational with the help of zygoma implants, which can distribute the stresses on each part of the maxilla. Conclusions Aramany class IV obturator prosthesis placement of 2 zygomatic implants in each side of the maxilla is more advantageous than placement of dental implants. In the non-defective side, increasing the number of dental implants is not as suitable as zygomatic implants. PMID:25714086

  11. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-12-31

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free-surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  12. 3-dimensional wells and tunnels for finite element grids

    SciTech Connect

    Cherry, T.A.; Gable, C.W.; Trease, H.

    1996-04-01

    Modeling fluid, vapor, and air injection and extraction from wells poses a number of problems. The length scale of well bores is centimeters, the region of high pressure gradient may be tens of meters and the reservoir may be tens of kilometers. Furthermore, accurate representation of the path of a deviated well can be difficult. Incorporating the physics of injection and extraction can be made easier and more accurate with automated grid generation tools that incorporate wells as part of a background mesh that represents the reservoir. GEOMESH is a modeling tool developed for automating finite element grid generation. This tool maintains the geometric integrity of the geologic framework and produces optimal (Delaunay) tetrahedral grids. GEOMESH creates a 3D well as hexagonal segments formed along the path of the well. This well structure is tetrahedralized into a Delaunay mesh and then embedded into a background mesh. The well structure can be radially or vertically refined and each well layer is assigned a material property or can take on the material properties of the surrounding stratigraphy. The resulting embedded well can then be used by unstructured finite element models for gas and fluid flow in the vicinity of wells or tunnels. This 3D well representation allows the study of the free- surface of the well and surrounding stratigraphy. It reduces possible grid orientation effects, and allows better correlation between well sample data and the geologic model. The well grids also allow improved visualization for well and tunnel model analysis. 3D observation of the grids helps qualitative interpretation and can reveal features not apparent in fewer dimensions.

  13. Interfacial magnetic anisotropy from a 3-dimensional Rashba substrate

    NASA Astrophysics Data System (ADS)

    Li, Junwen; Haney, Paul M.

    2016-07-01

    We study the magnetic anisotropy which arises at the interface between a thin film ferromagnet and a 3-d Rashba material. We use a tight-binding model to describe the bilayer, and the 3-d Rashba material characterized by the spin-orbit strength α and the direction of broken bulk inversion symmetry n ̂ . We find an in-plane uniaxial anisotropy in the z ̂ × n ̂ direction, where z ̂ is the interface normal. For realistic values of α, the uniaxial anisotropy is of a similar order of magnitude as the bulk magnetocrystalline anisotropy. Evaluating the uniaxial anisotropy for a simplified model in 1-d shows that for small band filling, the in-plane easy axis anisotropy scales as α4 and results from a twisted exchange interaction between the spins in the 3-d Rashba material and the ferromagnet. For a ferroelectric 3-d Rashba material, n ̂ can be controlled with an electric field, and we propose that the interfacial magnetic anisotropy could provide a mechanism for electrical control of the magnetic orientation.

  14. 3-Dimensional simulations of storm dynamics on Saturn

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Sanchez-Lavega, A.

    2000-10-01

    The formation and evolution of convective clouds in the atmosphere of Saturn is investigated using an anelastic three-dimensional time-dependent model with parameterized microphysics. The model is designed to study the development of moist convection on any of the four giant planets and has been previously used to investigate the formation of water convective storms in the jovian atmosphere. The role of water and ammonia in moist convection is investigated with varying deep concentrations. Results imply that most of the convective activity observed at Saturn may occur at the ammonia cloud deck while the formation of water moist convection may happen only when very strong constraints on the lower troposphere are met. Ammonia storms can ascend to the 300 mb level with vertical velocities around 30 ms-1. The seasonal effect on the thermal profile at the upper troposphere may have important effects on the development of ammonia storms. In the cases where water storms can develop they span many scale heights with peak vertical velocities around 160 ms-1 and cloud particles can be transported up to the 150 mb level. These predicted characteristics are similar to the Great White Spots observed in Saturn which, therefore, could be originated at the water cloud base level. This work has been supported by Gobierno Vasco PI 1997-34. R. Hueso acknowledges a PhD fellowship from Gobierno Vasco.

  15. Input shaped control of 3-dimensional maneuvers of flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Singh, T.; Vadali, S. R.

    1992-01-01

    This paper deals with the control of three dimensional rotational maneuvers of flexible spacecraft. A spacecraft with a spherical hub and six symmetric appendages is considered here as a model. The appendages are long and flexible leading to low frequency vibration under any control action. To provide a comprehensive treatment of input shaped controllers, both open loop and closed loop controllers are considered. The minimum-time bang-bang and the near-minimum-time controller, used in conjunction with the shaped input technique are studied. In addition, a combination of a Liapunov controller with the shaped input control technique is proposed to take advantage of the simple feedback control strategy and augment it with a technique that can eliminate the vibratory motion of the flexible appendages more efficiently.

  16. A 3-Dimensional discrete fracture network generator to examine fracture-matrix interaction using TOUGH2

    SciTech Connect

    Ito, Kazumasa; Yongkoo, Seol

    2003-04-09

    Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.

  17. Phase transitions in a 3 dimensional lattice loop gas

    NASA Astrophysics Data System (ADS)

    MacKenzie, Richard; Nebia-Rahal, F.; Paranjape, M. B.

    2010-06-01

    We investigate, via Monte Carlo simulations, the phase structure of a system of closed, nonintersecting but otherwise noninteracting, loops in 3 Euclidean dimensions. The loops correspond to closed trajectories of massive particles and we find a phase transition as a function of their mass. We identify the order parameter as the average length of the loops at equilibrium. This order parameter exhibits a sharp increase as the mass is decreased through a critical value, the behavior seems to be a crossover transition. We believe that the model represents an effective description of the broken-symmetry sector of the 2+1 dimensional Abelian Higgs model, in the extreme strong coupling limit. The massive gauge bosons and the neutral scalars are decoupled, and the relevant low-lying excitations correspond to vortices and antivortices. The functional integral can be approximated by a sum over simple, closed vortex loop configurations. We present a novel fashion to generate nonintersecting closed loops, starting from a tetrahedral tessellation of three space. The two phases that we find admit the following interpretation: the usual Higgs phase and a novel phase which is heralded by the appearance of effectively infinitely long loops. We compute the expectation value of the Wilson loop operator and that of the Polyakov loop operator. The Wilson loop exhibits perimeter law behavior in both phases implying that the transition corresponds neither to the restoration of symmetry nor to confinement. The effective interaction between external charges is screened in both phases, however there is a dramatic increase in the polarization cloud in the novel phase as shown by the energy shift introduced by the Wilson loop.

  18. Regulation and 3 dimensional culture of tertiary follicle growth

    PubMed Central

    2012-01-01

    It has been revealed that multiple cohorts of tertiary follicles develop during some animal estrous cycle and the human menstrual cycle. To reach developmental competence, oocytes need the support of somatic cells. During embryogenesis, the primordial germ cells appear, travel to the gonadal rudiments, and form follicles. The female germ cells develop within the somatic cells of the ovary, granulosa cells, and theca cells. How the oocyte and follicle cells support each other has been seriously studied. The latest technologies in genes and proteins and genetic engineering have allowed us to collect a great deal of information about folliculogenesis. For example, a few web pages (http://www.ncbi.nlm.nih.gov; http://mrg.genetics.washington.edu) provide access to databases of genomes, sequences of transcriptomes, and various tools for analyzing and discovering genes important in ovarian development. Formation of the antrum (tertiary follicle) is the final phase of folliculogenesis and the transition from intraovarian to extraovian regulation. This final step coordinates with the hypothalamic-pituitary-ovarian axis. On the other hand, currently, follicle physiology is under intense investigation, as little is known about how to overcome women's ovarian problems or how to develop competent oocytes from in vitro follicle culture or transplantation. In this review, some of the known roles of hormones and some of the genes involved in tertiary follicle growth and the general characteristics of tertiary follicles are summarized. In addition, in vitro culture of tertiary follicles is also discussed as a study model and an assisted reproductive technology model. PMID:23106040

  19. Development of 3-dimensional time-dependent density functional theory and its application to gas diffusion in nanoporous materials.

    PubMed

    Liu, Yu

    2016-05-11

    I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986

  20. A Novel Method of Orbital Floor Reconstruction Using Virtual Planning, 3-Dimensional Printing, and Autologous Bone.

    PubMed

    Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan

    2016-08-01

    Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437

  1. Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks

    PubMed Central

    Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben

    2015-01-01

    When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839

  2. Fusion of radar data to extract 3-dimensional objects LDRD final report

    SciTech Connect

    Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.

    1997-03-01

    Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.

  3. Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System

    PubMed Central

    Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.

    2015-01-01

    Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591

  4. Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario

    PubMed Central

    Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.

    2016-01-01

    Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359

  5. Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids

    PubMed Central

    Wientjes, Michael G.; Yeung, Bertrand Z.; Lu, Ze; Wientjes, M. Guillaume; Au, Jessie L.S.

    2014-01-01

    Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity.Liposomes comprising different amounts of cationic and fusogenic lipids (10-30 mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine,1-20 mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44 mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30 mol% DOTAP and ≤10 mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposomesize increase did not improve the predictions. The difference among low- and high-DOPE liposomessuggestsconcentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135 nm diameter, -49 to +44 mV) in 3D spheroids, with the exception of liposomes comprising >10 mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoralsubcompartments within spheroids. PMID:24995948

  6. Studies of Cosmic Ray Modulation and Energetic Particle Propagation in Time-Dependent 3-Dimensional Heliospheric Magnetic Fields

    NASA Technical Reports Server (NTRS)

    Zhang, Ming

    2005-01-01

    The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.

  7. Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels.

    PubMed

    Nikitichev, Daniil I; Barburas, Anamaria; McPherson, Kirstie; Mari, Jean-Martial; West, Simeon J; Desjardins, Adrien E

    2016-06-01

    Ultrasound phantoms are invaluable as training tools for vascular access procedures. We developed ultrasound phantoms with wall-less vessels using 3-dimensional printed chambers. Agar was used as a soft tissue-mimicking material, and the wall-less vessels were created with rods that were retracted after the agar was set. The chambers had integrated luer connectors to allow for fluid injections with clinical syringes. Several variations on this design are presented, which include branched and stenotic vessels. The results show that 3-dimensional printing can be well suited to the construction of wall-less ultrasound phantoms, with designs that can be readily customized and shared electronically. PMID:27162278

  8. 3-Dimensional Terraced NAND (3D TNAND) Flash Memory-Stacked Version of Folded NAND Array

    NASA Astrophysics Data System (ADS)

    Kim, Yoon; Cho, Seongjae; Lee, Gil Sung; Park, Il Han; Lee, Jong Duk; Shin, Hyungcheol; Park, Byung-Gook

    We propose a 3-dimensional terraced NAND flash memory. It has a vertical channel so it is possible to make a long enough channel in 1F2 size. And it has 3-dimensional structure whose channel is connected vertically along with two stairs. So we can obtain high density as in the stacked array structure, without silicon stacking process. We can make NAND flash memory with 3F2 cell size. Using SILVACO ATLAS simulation, we study terraced NAND flash memory characteristics such as program, erase, and read. Also, its fabrication method is proposed.

  9. Magnetic topologies of coronal mass ejection events: Effects of 3-dimensional reconnection

    SciTech Connect

    Gosling, J.T.

    1995-09-01

    New magnetic loops formed in the corona following coronal mass ejection, CME, liftoffs provide strong evidence that magnetic reconnection commonly occurs within the magnetic ``legs`` of the departing CMEs. Such reconnection is inherently 3-dimensional and naturally produces CMEs having magnetic flux rope topologies. Sustained reconnection behind CMEs can produce a mixture of open and disconnected field lines threading the CMES. In contrast to the results of 2-dimensional reconnection. the disconnected field lines are attached to the outer heliosphere at both ends. A variety of solar and solar wind observations are consistent with the concept of sustained 3-dimensional reconnection within the magnetic legs of CMEs close to the Sun.

  10. Dosimetric Comparison Between 3-Dimensional Conformal and Robotic SBRT Treatment Plans for Accelerated Partial Breast Radiotherapy.

    PubMed

    Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C

    2016-06-01

    Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter

  11. Preliminary Development of a Workstation for Craniomaxillofacial Surgical Procedures: Introducing a Computer-Assisted Planning and Execution System

    PubMed Central

    Gordon, Chad R.; Murphy, Ryan J.; Coon, Devin; Basafa, Ehsan; Otake, Yoshito; Al Rakan, Mohammed; Rada, Erin; Susarla, Sriniras; Swanson, Edward; Fishman, Elliot; Santiago, Gabriel; Brandacher, Gerald; Liacouras, Peter; Grant, Gerald; Armand, Mehran

    2014-01-01

    Introduction Facial transplantation represents one of the most complicated scenarios in craniofacial surgery because of skeletal, aesthetic, and dental discrepancies between donor and recipient. However, standard off-the-shelf vendor computer-assisted surgery systems may not provide custom features to mitigate the increased complexity of this particular procedure. We propose to develop a computer-assisted surgery solution customized for preoperative planning, intraoperative navigation including cutting guides, and dynamic, instantaneous feedback of cephalometric measurements/angles as needed for facial transplantation. Methods We developed the Computer-Assisted Planning and Execution (CAPE) workstation to assist with planning and execution of facial transplantation. Preoperative maxillofacial computed tomography (CT) scans were obtained on 4 size-mismatched miniature swine encompassing 2 live face-jaw-teeth transplants. The system was tested in a laboratory setting using plastic models of mismatched swine, after which the system was used in 2 live swine transplants. Postoperative CT imaging was obtained and compared with the preoperative plan and intraoperative measures from the CAPE workstation for both transplants. Results Plastic model tests familiarized the team with the CAPE workstation and identified several defects in the workflow. Live swine surgeries demonstrated utility of the CAPE system in the operating room, showing submillimeter registration error of 0.6 ± 0.24 mm and promising qualitative comparisons between intraoperative data and postoperative CT imaging. Conclusions The initial development of the CAPE workstation demonstrated integration of computer planning and intraoperative navigation for facial transplantation are possible with submillimeter accuracy. This approach can potentially improve preoperative planning, allowing ideal donor-recipient matching despite significant size mismatch, and accurate surgical execution. PMID:24406592

  12. Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.

    PubMed

    Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin

    2013-12-01

    Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency. PMID:24649670

  13. 3-dimensional root phenotyping with a novel imaging and software platform

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A novel imaging and software platform was developed for the high-throughput phenotyping of 3-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and ...

  14. 3-DIMENSIONAL MEASURED AND SIMULATED FLOW FOR SCOUR NEAR SPUR DIKES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To improve understanding of the flow and scour processes associated with spur dikes more fully, 3-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed flat bed with a submerged spur dike. Some 2592 three-dimensional velocities around a...

  15. Characterization of Students' Reasoning and Proof Abilities in 3-Dimensional Geometry

    ERIC Educational Resources Information Center

    Gutierrez, Angel; Pegg, John; Lawrie, Christine

    2004-01-01

    In this paper we report on a research aimed to identify and characterize secondary school students' reasoning and proof abilities when working with 3-dimensional geometric solids. We analyze students' answers to two problems asking them to prove certain properties of prisms. As results of this analysis, we get, on the one side, a characterization…

  16. 3-Dimensional and Interactive Istanbul University Virtual Laboratory Based on Active Learning Methods

    ERIC Educational Resources Information Center

    Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu

    2014-01-01

    The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…

  17. Water uptake by a maize root system - An explicit numerical 3-dimensional simulation.

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Schnepf, Andrea; Klepsch, Sabine; Roose, Tiina

    2010-05-01

    Water is one of the most important resources for plant growth and function. An accurate modelling of the unsaturated flow is not only substantial to predict water uptake but also important to describe nutrient movement regarding water saturation and transport. In this work we present a model for water uptake. The model includes the simultaneous flow of water inside the soil and inside the root network. Water saturation in the soil volume is described by the Richards equation. Water flow inside the roots' xylem is calculated using the Poiseuille law for water flow in a cylindrical tube. The water saturation in the soil as well as water uptake of the root system is calculated numerically in three dimensions. We study water uptake of a maize plant in a confined pot under different supply scenarios. The main improvement of our approach is that the root surfaces act as spatial boundaries of the soil volume. Therefore water influx into the root is described by a surface flux instead of a volume flux, which is commonly given by an effective sink term. For the numerical computation we use the following software: The 3-dimensional maize root architecture is created by a root growth model based on L-Systems (Leitner et al 2009). A mesh of the surrounding soil volume is created using the meshing software DistMesh (Persson & Strang 2004). Using this mesh the partial differential equations are solved with the finite element method using Comsol Multiphysics 3.5a. Modelling results are related to accepted water uptake models from literature (Clausnitzer & Hopmans 1994, Roose & Fowler 2004, Javaux et al 2007). This new approach has several advantages. By considering the individual roots it is possible to analyse the influence of overlapping depletion zones due to inter root competition. Furthermore, such simulations can be used to estimate the influence of simplifying assumptions that are made in the development of effective models. The model can be easily combined with a nutrient

  18. Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation

    PubMed Central

    Oshiro, Yukio; Yano, Hiroaki; Mitani, Jun; Kim, Sangtae; Kim, Jaejeong; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro

    2015-01-01

    AIM: To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver. METHODS: We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software. RESULTS: There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically

  19. A 3-dimensional digital atlas of the ascending sensory and the descending motor systems in the pigeon brain.

    PubMed

    Güntürkün, Onur; Verhoye, Marleen; De Groof, Geert; Van der Linden, Annemie

    2013-01-01

    Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community. PMID:22367250

  20. Towards non-AdS holography in 3-dimensional higher spin gravity

    NASA Astrophysics Data System (ADS)

    Gary, Michael; Grumiller, Daniel; Rashkov, Radoslav

    2012-03-01

    We take the first steps towards non-AdS holography in higher spin gravity. Namely, we propose a variational principle for generic 3-dimensional higher spin gravity that accommodates asymptotic backgrounds beyond AdS, like asymptotically Schrödinger, Lifshitz or warped AdS spacetimes. As examples we study in some detail the four sl(2) embeddings of spin-4 gravity and provide associated geometries, including an asymptotic Lifshitz black hole.

  1. Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes

    NASA Technical Reports Server (NTRS)

    Schubert, S.

    1985-01-01

    The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.

  2. Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.

    PubMed

    Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan

    2016-09-01

    Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated

  3. Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue

    PubMed Central

    Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann

    2015-01-01

    Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement

  4. Single-Molecule Imaging of DNA Pairing by RecA Reveals a 3-Dimensional Homology Search

    PubMed Central

    Forget, Anthony L.; Kowalczykowski, Stephen C.

    2011-01-01

    DNA breaks can be repaired with high-fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA1. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange2,3, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament play important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining its available 3-dimensional conformations, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed “intersegmental contact sampling”, wherein the intrinsic multivalent nature of the RecA nucleoprotein filament is employed to search DNA sequence space within 3-dimensional domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3-dimensional conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a

  5. Morphological analysis and preoperative simulation of a double-chambered right ventricle using 3-dimensional printing technology.

    PubMed

    Shirakawa, Takashi; Koyama, Yasushi; Mizoguchi, Hiroki; Yoshitatsu, Masao

    2016-05-01

    We present a case of a double-chambered right ventricle in adulthood, in which we tried a detailed morphological assessment and preoperative simulation using 3-dimensional (3D) heart models for improved surgical planning. Polygonal object data for the heart were constructed from computed tomography images of this patient, and transferred to a desktop 3D printer to print out models in actual size. Medical staff completed all of the work processes. Because the 3D heart models were examined by hand, observed from various viewpoints and measured by callipers with ease, we were able to create an image of the complete form of the heart. The anatomical structure of an anomalous bundle was clearly observed, and surgical approaches to the lesion were simulated accurately. During surgery, we used an incision on the pulmonary infundibulum and resected three muscular components of the stenosis. The similarity between the models and the actual heart was excellent. As a result, the operation for this rare defect was performed safely and successfully. We concluded that the custom-made model was useful for morphological analysis and preoperative simulation. PMID:26860990

  6. Patterned 3-dimensional metal grid electrodes as alternative electron collectors in dye-sensitized solar cells.

    PubMed

    Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G

    2011-11-21

    We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy. PMID:21989708

  7. International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.

  8. High-speed 3-dimensional imaging in robot-assisted thoracic surgical procedures.

    PubMed

    Kajiwara, Naohiro; Akata, Soichi; Hagiwara, Masaru; Yoshida, Koichi; Kato, Yasufumi; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko

    2014-06-01

    We used a high-speed 3-dimensional (3D) image analysis system (SYNAPSE VINCENT, Fujifilm Corp, Tokyo, Japan) to determine the best positioning of robotic arms and instruments preoperatively. The da Vinci S (Intuitive Surgical Inc, Sunnyvale, CA) was easily set up accurately and rapidly for this operation. Preoperative simulation and intraoperative navigation using the SYNAPSE VINCENT for robot-assisted thoracic operations enabled efficient planning of the operation settings. The SYNAPSE VINCENT can detect the tumor location and depict surrounding tissues quickly, accurately, and safely. This system is also excellent for navigational and educational use. PMID:24882302

  9. Evaluation of Temperature and Stress Distribution on 2 Different Post Systems Using 3-Dimensional Finite Element Analysis

    PubMed Central

    Değer, Yalçın; Adigüzel, Özkan; Özer, Senem Yiğit; Kaya, Sadullah; Polat, Zelal Seyfioğlu; Bozyel, Bejna

    2015-01-01

    Background The mouth is exposed to thermal irritation from hot and cold food and drinks. Thermal changes in the oral cavity produce expansions and contractions in tooth structures and restorative materials. The aim of this study was to investigate the effect of temperature and stress distribution on 2 different post systems using the 3-dimensional (3D) finite element method. Material/Methods The 3D finite element model shows a labio-lingual cross-sectional view of the endodontically treated upper right central incisor and supporting periodontal ligament with bone structures. Stainless steel and glass fiber post systems with different physical and thermal properties were modelled in the tooth restored with composite core and ceramic crown. We placed 100 N static vertical occlusal loading onto the center of the incisal surface of the tooth. Thermal loads of 0°C and 65°C were applied on the model for 5 s. Temperature and thermal stresses were determined on the labio-lingual section of the model at 6 different points. Results The distribution of stress, including thermal stress values, was calculated using 3D finite element analysis. The stainless steel post system produced more temperature and thermal stresses on the restorative materials, tooth structures, and posts than did the glass fiber reinforced composite posts. Conclusions Thermal changes generated stresses in the restorative materials, tooth, and supporting structures. PMID:26615495

  10. 3-Dimensional quantitative detection of nanoparticle content in biological tissue samples after local cancer treatment

    NASA Astrophysics Data System (ADS)

    Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan

    2014-06-01

    X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.

  11. A New 3-Dimensional Dynamic Quantitative Analysis System of Facial Motion: An Establishment and Reliability Test

    PubMed Central

    Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang

    2014-01-01

    This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881

  12. A customizable 3-dimensional digital atlas of the canary brain in multiple modalities.

    PubMed

    Vellema, Michiel; Verschueren, Jacob; Van Meir, Vincent; Van der Linden, Annemie

    2011-07-15

    Songbirds are well known for their ability to learn their vocalizations by imitating conspecific adults. This uncommon skill has led to many studies examining the behavioral and neurobiological processes involved in vocal learning. Canaries display a variable, seasonally dependent, vocal behavior throughout their lives. This trait makes this bird species particularly valuable to study the functional relationship between the continued plasticity in the singing behavior and alterations in the anatomy and physiology of the brain. In order to optimally interpret these types of studies, a detailed understanding of the brain anatomy is essential. Because traditional 2-dimensional brain atlases are limited in the information they can provide about the anatomy of the brain, here we present a 3-dimensional MRI-based atlas of the canary brain. Using multiple imaging protocols we were able to maximize the number of detectable brain regions, including most of the areas involved in song perception, learning, and production. The brain atlas can readily be used to determine the stereotactic location of delineated brain areas at any desirable head angle. Alternatively the brain data can be used to determine the ideal orientation of the brain for stereotactic injections, electrophysiological recordings, and brain sectioning. The 3-dimensional canary brain atlas presented here is freely available and is easily adaptable to support many types of neurobiological studies, including anatomical, electrophysiological, histological, explant, and tracer studies. PMID:21565273

  13. Realization of integral 3-dimensional image using fabricated tunable liquid lens array

    NASA Astrophysics Data System (ADS)

    Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub

    2015-03-01

    Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.

  14. Morphological Control of Cells on 3-Dimensional Multi-Layer Nanotopographic Structures.

    PubMed

    Jeong, Heon-Ho; Noh, Young-Mu; Song, Hwan-Moon; Lee, Sang-Ho; Park, Jin-Sung; Lee, Chang-Soo

    2015-05-01

    The extracellular matrix (ECM) environment is known to play an important role in the process of various cell regulatory mechanisms. We have investigated the ability of 3-dimensional ECM geometries to induce morphological changes in cells. Bi-layer polymeric structures with submicron scale stripe patterns were fabricated using a two-step nano-imprinting technique, and the orientation angle (θ(α)) of the upper layer was controlled by changing its alignment with respect to the orientation of the bottom layer. When cells were grown on the mono-layer stripe structure with a single orientation, they elongated along the direction of the stripe pattern. On bi-layer polymer structures, the cell morphologies gradually changed and became rounded, with an increase of θα up to 90 degrees, but the polarities of these cells were still aligned along the orientation of the upper layer. As a result, we show that the polarity and the roundness of cells can be independently regulated by adjusting the orientation of 3-dimensional hierarchical ECM topography. PMID:26505024

  15. Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Kim, J. J.

    1986-01-01

    A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.

  16. A High Performance Pulsatile Pump for Aortic Flow Experiments in 3-Dimensional Models.

    PubMed

    Chaudhury, Rafeed A; Atlasman, Victor; Pathangey, Girish; Pracht, Nicholas; Adrian, Ronald J; Frakes, David H

    2016-06-01

    Aortic pathologies such as coarctation, dissection, and aneurysm represent a particularly emergent class of cardiovascular diseases. Computational simulations of aortic flows are growing increasingly important as tools for gaining understanding of these pathologies, as well as for planning their surgical repair. In vitro experiments are required to validate the simulations against real world data, and the experiments require a pulsatile flow pump system that can provide physiologic flow conditions characteristic of the aorta. We designed a newly capable piston-based pulsatile flow pump system that can generate high volume flow rates (850 mL/s), replicate physiologic waveforms, and pump high viscosity fluids against large impedances. The system is also compatible with a broad range of fluid types, and is operable in magnetic resonance imaging environments. Performance of the system was validated using image processing-based analysis of piston motion as well as particle image velocimetry. The new system represents a more capable pumping solution for aortic flow experiments than other available designs, and can be manufactured at a relatively low cost. PMID:26983961

  17. Numerical model of electromagnetic scattering off a subterranean 3-dimensional dielectric

    SciTech Connect

    Dease, C.G.; Didwall, E.M.

    1983-08-01

    As part of the effort to develop On-Site Inspection (OSI) techniques for verification of compliance to a Comprehensive Test Ban Treaty (CTBT), a computer code was developed to predict the interaction of an electromagnetic (EM) wave with an underground cavity. Results from the code were used to evaluate the use of surface electromagnetic exploration techniques for detection of underground cavities or rubble-filled regions characteristic of underground nuclear explosions.

  18. 3-dimensional interactive space (3DIS); A new dimension in asset protection

    SciTech Connect

    Veitch, S. ); Veitch, J. ); West, S.J. )

    1991-01-01

    This paper reports on the 3DIS security system which uses standard CCTV cameras to create 3-Dimensional detection zones around valuable assets within protected areas. An intrusion into a zone changes light values and triggers an alarm that is annunciated, while images from multiple cameras are recorded. 3DIS lowers nuisance alarm rates and provides superior automated surveillance capability. Performance is improved over 2-D systems because activity around, above or below the zone does to cause an alarm. Invisible 3-D zones protect assets as small as a pin or as large as a 747 jetliner. Detection zones are created by excising subspaces from the overlapping fields of view of two or more video cameras. Hundred of zones may co-exist, operating simultaneously. Intrusion into any 3-D zone will cause a coincidental change in light values, triggering an alarm specific to that space.

  19. Theory of relativistic Brownian motion: the (1+3) -dimensional case.

    PubMed

    Dunkel, Jörn; Hänggi, Peter

    2005-09-01

    A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions. PMID:16241514

  20. A 3-Dimensional Cockpit Display with Traffic and Terrain Information for the Small Aircraft Transportation System

    NASA Technical Reports Server (NTRS)

    UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.

    2004-01-01

    The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.

  1. PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and 3-dimensional structural information

    PubMed Central

    Pei, Jimin; Grishin, Nick V.

    2015-01-01

    SUMMARY Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of 3-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408

  2. The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications

    NASA Technical Reports Server (NTRS)

    Bravo, Ramiro H.; Chen, Ching-Jen

    1992-01-01

    In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.

  3. Evaluation of the 3-Dimensional, Weight-bearing Orientation of the Normal Adult Knee

    PubMed Central

    Nam, Denis; Shah, Ritesh R.; Nunley, Ryan M.; Barrack, Robert L.

    2014-01-01

    The purpose of this study was to use 3-dimensional, weight-bearing images corrected for rotation to establish normative data of limb alignment and joint line orientation in asymptomatic, adult knees. One hundred adults (200 lower extremities) were recruited to receive weight-bearing, simultaneous biplanar imaging of both lower extremities. Multiple radiographic parameters were measured from 3D images, corrected for limb rotation. 70.0% of knees were in neutral, 19.5% in varus, and 10.5% in valgus overall alignment. Only 31 % of knees possessed both a neutral mechanical axis and the absence of joint line obliquity. There was substantial agreement between the 2D and 3D images for overall mechanical alignment (κ=0.77), but only a moderate agreement for joint line obliquity (κ=0.58). A substantial portion of asymptomatic adults possess either a varus or valgus mechanical alignment and joint line obliquity, PMID:24315446

  4. Carbohydrate Cluster Microarrays Fabricated on 3-Dimensional Dendrimeric Platforms for Functional Glycomics Exploration

    PubMed Central

    Zhou, Xichun; Turchi, Craig; Wang, Denong

    2009-01-01

    We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771

  5. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.

    PubMed

    Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-03-01

    Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  6. DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold

    PubMed Central

    Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko

    2015-01-01

    Summary: Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927

  7. S2PLOT: a Straightforward Library for Advanced 3-dimensional Scientific Visualisation

    NASA Astrophysics Data System (ADS)

    Barnes, D. G.; Fluke, C. J.

    2008-08-01

    S2PLOT is a user-oriented programming library for generating and exploring 3-dimensional (3-d) scientific plots and diagrams. It provides a lightweight interface---inspired by the simple yet widely-used PGPLOT---to produce hardware-accelerated visualisations of point, line, image and volumetric data. S2PLOT provides C and FORTRAN interfaces, and supports monoscopic, stereoscopic and curved (eg. dome) display devices. PGPLOT-savvy astronomers can usually write their first S2PLOT program in less than ten minutes. In this paper, we introduce the latest S2PLOT version and highlight major new additions to the library, including volume rendering and isosurfacing of astronomical data. We describe a simple extension that enables the embedding of large-area FITS images directly into S2PLOT programs using standard World Coordinate Systems, and we introduce the Python interface to S2PLOT.

  8. Selection of massive bone allografts using shape-matching 3-dimensional registration

    PubMed Central

    Docquier, Pierre-Louis; Cartiaux, Olivier; Cornu, Olivier; Delloye, Christian; Banse, Xavier

    2010-01-01

    Background and purpose Massive bone allografts are used when surgery causes large segmental defects. Shape-matching is the primary criterion for selection of an allograft. The current selection method, based on 2-dimensional template comparison, is inefficient for 3-dimensional complex bones. We have analyzed a 3-dimensional (3-D) registration method to match the anatomy of the allograft with that of the recipient. Methods 3-D CT-based registration was performed to match the shapes of both bones. We used the registration to align the allograft volume onto the recipient's bone. Hemipelvic allograft selection was tested in 10 virtual recipients with a panel of 10 potential allografts, including one from the recipient himself (trap graft). 4 observers were asked to visually inspect the superposition of allograft over the recipient, to classify the allografts into 4 categories according to the matching of anatomic zones, and to select the 3 best matching allografts. The results obtained using the registration method were compared with those from a previous study on the template method. Results Using the registration method, the observers systematically detected the trap graft. Selections of the 3 best matching allografts performed using registration and template methods were different. Selection of the 3 best matching allografts was improved by the registration method. Finally, reproducibility of the selection was improved when using the registration method. Interpretation 3-D CT registration provides more useful information than the template method but the final decision lies with the surgeon, who should select the optimal allograft according to his or her own preferences and the needs of the recipient. PMID:20175643

  9. 3 Dimensional Diagnosis Unravelling Prognosis of Multiple Impacted Teeth – A Case Report

    PubMed Central

    Gopinath, Adusumilli; Reddy, Naveen Admala; Rohra, Mayur G

    2013-01-01

    Impaction of teeth results from the interplay between nature and nurture. Radiographs play an important role in assessment of both the location and the typing of impacted teeth. In general, periapical, occlusal, and/or panoramic radiographs are sufficient for providing the information required by the clinician. Recent advances in diagnostic imaging enables to visualize , diagnose and prognose the treatment outcome of the impacted teeth. This case report discusses the value of cone beam computerized tomography (CBCT) for evaluation of the critical parameters like bone thickness , tooth position and tooth morphology of multiple impacted teeth by 3 dimensional radiography – CBCT. In this report, we present a case of 27-year-old male patient with multiple missing teeth. Radiographs revealed multiple impacted permanent teeth, though medical and family history along with physical examination was not suggestive of any syndromes. Intraoral periapical radiograph, Orthopantomograph, Occlusal radiograph, Cone beam computed tomography were taken for the same patient to determine the exact position of multiple impacted teeth and prognose the treatment plan with the associated factors to impacted teeth. Cone beam computed tomography is an accurate modality to localize and determine the prognosing factors associated with multiple impacted teeth. Three-dimensional volumetric imaging might provide information for improved diagnosis and treatment plans, and ultimately result in more successful treatment outcomes and better care for patients. How to cite this article: Gopinath A, Reddy NA, Rohra MG. 3 Dimensional Diagnosis Unravelling Prognosis of Multiple Impacted Teeth – A Case Report. J Int Oral Health 2013; 5(4):78-83. PMID:24155625

  10. Self-assembled 3-dimensional arrays of Au@SiO 2 core-shell nanoparticles for enhanced optical nonlinearities

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Hori, Mamiko; Hayakawa, Tomokatsu; Nogami, Masayuki

    2005-04-01

    Homogeneous SiO 2 coated Au nanoparticles were prepared and assembled into densely-packed 3-dimensional arrays by a simple "one-step" route based on the layer-by-layer self-assembly (LBL) technique. Every layer of films exhibited densely packed 2-dimensional arrays of Au@SiO 2 composite nanoparticles and the film thickness was controllable through the number of deposition cycles. These multilayer films exhibited high effective packing density of composite nanoparticles (0.57). Those arrays also exhibited enhanced third-order optical nonlinear responses and ultra-fast response times. The third-order nonlinear optical susceptibility of the seven layer arrays was estimated to be 1.7 × 10 -9 esu at 532 nm and the response time was as fast as several picoseconds. The enhancement of the optical nonlinearity was calculated according to the electrostatic approximation by solution of Laplace's equation under the boundary conditions appropriate to the model of core-shell nanoparticles, and mainly attributed to localized electric-field effects.

  11. Adventitial Cells and Perictyes Support Chondrogenesis Through Different Mechanisms in 3-Dimensional Cultures With or Without Nanoscaffolds.

    PubMed

    Zhang, Shu; Ba, Kai; Wu, Ling; Lee, Siyong; Peault, Bruno; Petrigliano, Frank A; McAllister, David R; Adams, John S; Evseenko, Denis; Lin, Yunfeng

    2015-10-01

    In previous studies, mesenchymal stromal cells (MSCs) derived from bone marrow and fat tissues were shown to increase proliferation and matrix production of chondrocytes (CH) in co-culture. The aim of this study was to investigate the roles of pericytes (CD31(neg)CD45(neg)CD146+CD34(neg)) and adventitial cells (CD31(neg)CD45(neg)CD146(neg)CD34+) sub-populations of MSCs in supporting proliferation and matrix deposition of CH. The MSCs were derived from synovial membrane and attaching fat tissue. Then, the pericytes and adventitial cells were sorted from total MSCs and co-cultured with articular CH respectively. In pellet co-culture model, the pericytes showed more prominent effects on glycosaminoglycans (GAGs) production and Collagen II synthesis than the adventitial cells which had stronger effects on promoting CH proliferation. In addition, quantitative polymerase chain reaction (qPCR) was performed to examine the expression of a group of secreted growth factors and co-culture performed on electrospun scaffolds based on Poly(3-hydroxybutyrate-co-4-hydroxybutyrate) (P3HB4HB), to verify the trophic effects of different MSC sub-populations in 3-Dimensional (3D) environment. In conclusion, it was found that the pericytes and adventitial cells support CH in different ways; the adventitial cells more supporting the proliferation of CH, while pericytes are better in stimulating GAGs and collagen production of CH. PMID:26502642

  12. Cost-Effectiveness Analysis of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Anal Cancer

    SciTech Connect

    Hodges, Joseph C.; Beg, Muhammad S.; Das, Prajnan; Meyer, Jeffrey

    2014-07-15

    Purpose: To compare the cost-effectiveness of intensity modulated radiation therapy (IMRT) and 3-dimensional conformal radiation therapy (3D-CRT) for anal cancer and determine disease, patient, and treatment parameters that influence the result. Methods and Materials: A Markov decision model was designed with the various disease states for the base case of a 65-year-old patient with anal cancer treated with either IMRT or 3D-CRT and concurrent chemotherapy. Health states accounting for rates of local failure, colostomy failure, treatment breaks, patient prognosis, acute and late toxicities, and the utility of toxicities were informed by existing literature and analyzed with deterministic and probabilistic sensitivity analysis. Results: In the base case, mean costs and quality-adjusted life expectancy in years (QALY) for IMRT and 3D-CRT were $32,291 (4.81) and $28,444 (4.78), respectively, resulting in an incremental cost-effectiveness ratio of $128,233/QALY for IMRT compared with 3D-CRT. Probabilistic sensitivity analysis found that IMRT was cost-effective in 22%, 47%, and 65% of iterations at willingness-to-pay thresholds of $50,000, $100,000, and $150,000 per QALY, respectively. Conclusions: In our base model, IMRT was a cost-ineffective strategy despite the reduced acute treatment toxicities and their associated costs of management. The model outcome was sensitive to variations in local and colostomy failure rates, as well as patient-reported utilities relating to acute toxicities.

  13. Successful Parenchyma-Sparing Anatomical Surgery by 3-Dimensional Reconstruction of Hilar Cholangiocarcinoma Combined with Anatomic Variation.

    PubMed

    Ni, Qihong; Wang, Haolu; Liang, Xiaowen; Zhang, Yunhe; Chen, Wei; Wang, Jian

    2016-06-01

    The combination of hilar cholangiocarcinoma and anatomic variation constitutes a rare and complicated condition. Precise understanding of 3-dimensional position of tumor in the intrahepatic structure in such cases is important for operation planning and navigation. We report a case of a 61-year woman presenting with hilar cholangiocarcinoma. Anatomic variation and tumor location were well depicted on preoperative multidetector computed tomography (MDCT) combined with 3-dimensional reconstruction as the right posterior segmental duct drained to left hepatic duct. The common hepatic duct, biliary confluence, right anterior segmental duct, and right anterior branch of portal vein were involved by the tumor (Bismuth IIIa). After carefully operation planning, we successfully performed a radical parenchyma-sparing anatomical surgery of hilar cholangiocarcinoma: Liver segmentectomy (segments 5 and 8) and caudate lobectomy. MDCTcombined with 3-dimensional reconstruction is a reliable non-invasive modality for preoperative evaluation of hilar cholangiocarcinoma. PMID:27376205

  14. Effects of Non-Uniform Wall Heating on Thermal and Momentum Fields in a 3-Dimensional Urban Environment

    NASA Astrophysics Data System (ADS)

    Nazarian, N.; Kleissl, J. P.

    2014-12-01

    As urbanization progresses, microclimate modifications are also aggravated and the increasing environmental concerns call for more sophisticated methods of urban microclimate analysis. Comprehensive numerical simulations for a clear summer day in southern California are performed in a compact low-rise urban environment. The effect of realistic unsteady, non-uniform thermal forcing, that is caused by solar insolation and inter-building shadowing on thermal and flow conditions are analyzed based on Algebraic Wall-Modeled Large Eddy Simulation (LES) model. The urban thermal field is influenced by urban density, material properties and local weather conditions, as well as urban canyon flow. Urban canyon conditions are translated into vertical and horizontal bulk Richardson numbers indicating atmospheric instability and solar tilt with respect to the momentum forcing of the canyon vortex, respectively. The effect of roof heating is found to be critical on the vortex formation between buildings when the vertical bulk Richardson number is low. Variations of Convective Heat Transfer Coefficients (CHTCs) along building walls are studied and the street canyon ventilation performance is characterized by the mean of air exchange rate (ACH). It is found that volumetric air exchange from street canyons, as well as the distribution of heat transfer along the wall depends strongly on the three-dimensional orientation of the heated wall in relation to wind direction. For example, air removal increases by surface heating and is larger when the leeward wall is heated. In summary, we demonstrate the importance of considering complex realistic conditions on 3-dimensional thermal and momentum fields in Urban Environments.

  15. Cellulose acetate based 3-dimensional electrospun scaffolds for skin tissue engineering applications.

    PubMed

    Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen

    2015-11-20

    Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. PMID:26344279

  16. A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna

    NASA Astrophysics Data System (ADS)

    Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo

    A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.

  17. EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies

    PubMed Central

    Royer, Audrey S.; Doud, Alexander J.; Rose, Minn L.

    2011-01-01

    Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-dimensional (3D) space using neuroprosthetics. However, non-invasive BCIs have not been able to demonstrate such mastery of 3D space. Here, we report our work, which demonstrates that human subjects can use a non-invasive BCI to fly a virtual helicopter to any point in a 3D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined. PMID:20876032

  18. Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes

    PubMed Central

    Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.

    2013-01-01

    We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563

  19. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays

    PubMed Central

    Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.

    2016-01-01

    ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  20. Fabrication of a 3-dimensional nanostructured binary colloidal crystal within a confined channel.

    PubMed

    Gorey, Brian; Smyth, Malcolm R; Morrin, Aoife; White, Blánaid

    2014-12-15

    The reproducible fabrication of nanostructured 3Dimensional (3D) binary colloidal crystal (bCC) in a defined geometric space through a simple one step process is detailed. This method allows for the potential fabrication of a bCC in a sealed μchip within a defined area or channel by capillary forces, unlike other bCC formation methods such as dip-drawing, where the substrate must be submerged in a suspension to form a bCC, or bCC monolayers, which are fabricated at the water air interface. Through simple variation in volume fraction ratio (VF(S/L)) of nano-(denoted small, S) and macro-sized (denoted large, L) polystyrene (PS) spheres and diameter size ratio (D(S/L)), the manipulation of bCC structures was also achieved. Variation of nano-sized PS sphere number within the interstitial voids formed between neighbouring macro-sized spheres enabled the reproducible fabrication of LS2 and LS6 structures, which contain 1 and 3 nano-spheres respectively in each interstitial void. It must be noted that while VF(S/L) allows for control of the final LSn structure, thickness of bCC formation in this manner is independent of VFS/L. PMID:25268825

  1. Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.

    PubMed

    Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G

    2015-01-01

    Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722

  2. Casting of 3-dimensional footwear prints in snow with foam blocks.

    PubMed

    Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel

    2016-06-01

    Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. PMID:27124876

  3. 3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis

    NASA Astrophysics Data System (ADS)

    Law, Victor J.; O'Neill, Feidhlim T.; Dowling, Denis P.

    2012-09-01

    The recording of atmospheric pressure plasmas (APP) electro-acoustic emission data has been developed as a plasma metrology tool in the last couple of years. The industrial applications include automotive and aerospace industry for surface activation of polymers prior to bonding [1, 2, and 3]. It has been shown that as the APP jets proceeds over a treatment surface, at a various fixed heights, two contrasting acoustic signatures are produced which correspond to two very different plasma-surface entropy states (blow arc ˜ 1700 ± 100 K; and; afterglow ˜ 300-400 K) [4]. The metrology challenge is now to capture deterministic data points within data clusters. For this to be achieved new real-time data cluster measurement techniques needs to be developed [5]. The cluster information must be extracted within the allotted process time period if real-time process control is to be achieved. This abstract describes a theoretical structural complexity analysis (in terms crossing points) of 2 and 3-dimentional line-graphs that contain time-series data. In addition LabVIEW implementation of the 3-dimensional data analysis is performed. It is also shown the cluster analysis technique can be transfer to other (non-acoustic) datasets.

  4. Fabrication and selective surface modification of 3-dimensionally textured biomedical polymers from etched silicon substrates.

    PubMed

    Kapur, R; Spargo, B J; Chen, M S; Calvert, J M; Rudolph, A S

    1996-01-01

    A new method is described for producing biomedically relevant polymers with precisely defined micron scale surface texture in the x, y, and z planes. Patterned Si templates were fabricated using photolithography to create a relief pattern in photoresist with lateral dimensions as small as 1 micron. Electroless Ni was selectively deposited in the trenches of the patterned substrate. The Ni served as a resilient mask for transferring the patterns onto the Si substrate to depths of up to 8.5 microns by anisotropic reactive ion etching with a fluorine-based plasma. The 3-dimensional (3-D) textured silicon substrates were used as robust, reusable molds for pattern transfer onto poly (dimethyl siloxane), low density poly (ethylene), poly (L-lactide), and poly (glycolide) by either casting or injection molding. The fidelity of the pattern transfer from the silicon substrates to the polymers was 90 to 95% in all three planes for all polymers for more than 60 transfers from a single wafer, as determined by scanning electron microscopy and atomic force microscopy. Further, the 3-D textured polymers were selectively modified to coat proteins either in the trenches or on the mesas by capillary modification or selective coating techniques. These selectively patterned 3-D polymer substrates may be useful for a variety of biomaterial applications. PMID:8953387

  5. Cerebral Degeneration in Amyotrophic Lateral Sclerosis Revealed by 3-Dimensional Texture Analysis

    PubMed Central

    Maani, Rouzbeh; Yang, Yee-Hong; Emery, Derek; Kalra, Sanjay

    2016-01-01

    Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain. Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction. Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed. Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS. PMID:27064416

  6. Embedding and Publishing Interactive, 3-Dimensional, Scientific Figures in Portable Document Format (PDF) Files

    PubMed Central

    Barnes, David G.; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J.; Quayle, Michelle R.; McHenry, Colin R.

    2013-01-01

    With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2). PMID:24086243

  7. Comparison of 3-dimensional dose reconstruction system between fluence-based system and dose measurement-guided system.

    PubMed

    Nakaguchi, Yuji; Ono, Takeshi; Onitsuka, Ryota; Maruyama, Masato; Shimohigashi, Yoshinobu; Kai, Yudai

    2016-01-01

    COMPASS system (IBA Dosimetry, Schwarzenbruck, Germany) and ArcCHECK with 3DVH software (Sun Nuclear Corp., Melbourne, FL) are commercial quasi-3-dimensional (3D) dosimetry arrays. Cross-validation to compare them under the same conditions, such as a treatment plan, allows for clear evaluation of such measurement devices. In this study, we evaluated the accuracy of reconstructed dose distributions from the COMPASS system and ArcCHECK with 3DVH software using Monte Carlo simulation (MC) for multi-leaf collimator (MLC) test patterns and clinical VMAT plans. In a phantom study, ArcCHECK 3DVH showed clear differences from COMPASS, measurement and MC due to the detector resolution and the dose reconstruction method. Especially, ArcCHECK 3DVH showed 7% difference from MC for the heterogeneous phantom. ArcCHECK 3DVH only corrects the 3D dose distribution of treatment planning system (TPS) using ArcCHECK measurement, and therefore the accuracy of ArcCHECK 3DVH depends on TPS. In contrast, COMPASS showed good agreement with MC for all cases. However, the COMPASS system requires many complicated installation procedures such as beam modeling, and appropriate commissioning is needed. In terms of clinical cases, there were no large differences for each QA device. The accuracy of the compass and ArcCHECK 3DVH systems for phantoms and clinical cases was compared. Both systems have advantages and disadvantages for clinical use, and consideration of the operating environment is important. The QA system selection is depending on the purpose and workflow in each hospital. PMID:27179708

  8. Evaluating Osteoarthritic Chondrocytes through a Novel 3-Dimensional In Vitro System for Cartilage Tissue Engineering and Regeneration

    PubMed Central

    Li, Hanwei; Davison, Noel; Moroni, Lorenzo; Feng, Felicia; Crist, Joshua; Salter, Erin; Bingham, Clifton O.

    2012-01-01

    Objective: To characterize and evaluate osteoarthritic (OA) chondrocytes, in comparison to normal chondrocytes, through a novel 3-dimensional (3-D) culture system, poly(ethylene-glycol) diacrylate (PEGDA). The cytokine interleukin 1β (IL-1β) was also used to simulate an in vitro OA model. Methods: Normal and OA chondrocytes were cultured in monolayer and analyzed for changes in cartilage-specific gene expressions due to passage number. Then, cells were encapsulated in PEGDA to evaluate phenotype and matrix production capabilities through the in vitro culture system. Characterization was conducted with polymerase chain reaction (PCR), biochemical analyses, and histological staining. 3-D encapsulated chondrocytes (human and bovine) were also treated with IL-1β to characterize how the cytokine affects gene transcription and extracellular matrix (ECM) content. Results: In 2-dimensional monolayer, anabolic genes were down-regulated significantly in both normal and OA chondrocytes. In 3-D culture, OA chondrocytes demonstrated significantly higher expressions of catabolic genes when compared to normal cells. Differentiation medium resulted in significantly more matrix production than growth medium from OA chondrocytes, indicated through histological staining. In addition, normal chondrocytes responded more significantly to exogenous administration of IL-1β than OA chondrocytes. Temporary initial stimulation of IL-1β to OA chondrocytes resulted in comparable gene expressions to untreated cells after 3 weeks of in vitro culture. Conclusions: Our findings demonstrate the use of OA chondrocytes in tissue engineering and their significance for potential future cartilage regeneration research through their matrix production capabilities and the use of a hydrogel culture system. PMID:26069626

  9. A 3-Dimensional Absorbed Dose Calculation Method Based on Quantitative SPECT for Radionuclide Therapy: Evaluation for 131I Using Monte Carlo Simulation

    PubMed Central

    Ljungberg, Michael; Sjögreen, Katarina; Liu, Xiaowei; Frey, Eric; Dewaraja, Yuni; Strand, Sven-Erik

    2009-01-01

    A general method is presented for patient-specific 3-dimensional absorbed dose calculations based on quantitative SPECT activity measurements. Methods The computational scheme includes a method for registration of the CT image to the SPECT image and position-dependent compensation for attenuation, scatter, and collimator detector response performed as part of an iterative reconstruction method. A method for conversion of the measured activity distribution to a 3-dimensional absorbed dose distribution, based on the EGS4 (electron-gamma shower, version 4) Monte Carlo code, is also included. The accuracy of the activity quantification and the absorbed dose calculation is evaluated on the basis of realistic Monte Carlo–simulated SPECT data, using the SIMIND (simulation of imaging nuclear detectors) program and a voxel-based computer phantom. CT images are obtained from the computer phantom, and realistic patient movements are added relative to the SPECT image. The SPECT-based activity concentration and absorbed dose distributions are compared with the true ones. Results Correction could be made for object scatter, photon attenuation, and scatter penetration in the collimator. However, inaccuracies were imposed by the limited spatial resolution of the SPECT system, for which the collimator response correction did not fully compensate. Conclusion The presented method includes compensation for most parameters degrading the quantitative image information. The compensation methods are based on physical models and therefore are generally applicable to other radionuclides. The proposed evaluation methodology may be used as a basis for future intercomparison of different methods. PMID:12163637

  10. Effect of decompression on cystic lesions of the mandible: 3-dimensional volumetric analysis.

    PubMed

    Song, I S; Park, H S; Seo, B M; Lee, J H; Kim, M J

    2015-11-01

    Decompression is effective in reducing both the size of cystic lesions on jaws and the associated morbidity of resection. However, quantitative measurement of reduced volume after decompression among different cystic diseases has not been fully investigated. We have retrospectively investigated the difference in reduction in volume among keratocystic odontogenic tumours (n=17), unicystic ameloblastomas (n=10), and dentigerous cysts (n=10) of the posterior mandible using 3-dimensional computed tomography (CT). Various other influential factors such as age, sex, the presence of impacted teeth, and the number of drains were also recorded. There was no significant difference in the speed of shrinkage among the 3 groups, but there was a significant correlation (p<0.01) between the initial detected volume of the lesion and the absolute speed of shrinkage in each type of cyst. Initial volume was also significantly associated (p<0.01) with reduction of total volume in each type of cyst. Age may correlate negatively with the rate of reduction in dentigerous cysts, which means that the older the patient is, the less the reduction. Treatment seemed to last longer as the speed of shrinkage lessened in the keratocystic tumours and dentigerous cysts (p<0.05) as multiple regression has shown. The relative speed of shrinkage of unicystic ameloblastomas seemed to be slower when an impacted tooth was involved in the lesion (p=0.019). However, the sample size was too small to make any definite statistical statement. These results suggest that the rate of reduction of volume was related to the original size of the lesion. Despite the need for a second operation and longer duration of treatment compared with excision alone, decompression is a valuable way of reducing the size of large cystic lesions, with low morbidity and recurrence rate. There was no difference in the rate of reduction according to the underlying histopathological picture. PMID:26212420

  11. A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy

    PubMed Central

    Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun

    2014-01-01

    Objective Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient’s skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. Methods We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. Results The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. Conclusions A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses. PMID:25337700

  12. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  13. Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion

    NASA Astrophysics Data System (ADS)

    Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo

    2015-07-01

    The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.

  14. Immediate 3-dimensional ridge augmentation after extraction of periodontally hopeless tooth using chinblock graft

    PubMed Central

    Desai, Ankit; Thomas, Raison; A. Baron, Tarunkumar; Shah, Rucha; Mehta, Dhoom-Singh

    2015-01-01

    Background The aim of the present study was to evaluate clinically and radiographically, the efficacy of immediate ridge augmentation to reconstruct the vertical and horizontal dimensions at extraction sites of periodontally hopeless tooth using an autogenous chin block graft. Material and Methods A total of 11 patients (7 male & 4 female) with localized advanced bone loss around single rooted teeth having hopeless prognosis and indicated for extraction were selected for the study. The teeth were atraumatically extracted and deficient sites were augmented using autogenous chin block graft. Parameters like clinically soft tissue height - width and also radiographic ridge height -width were measured before and 6 months after augmentation. Obtained results were tabulated and analysed statistically. Results After 6 months of immediate ridge augmentation, the mean gain in radiographic vertical height and horizontal width was 7.64 + 1.47 mm (P = 0.005) and 5.28 + 0.46 mm (P = 0.007) respectively which was found to be statistically significant (P < 0.05). Mean change of width gain of 0.40mm and height loss of 0.40mm of soft tissue parameters, from the baseline till completion of the study at 6 months was observed. Conclusions The present study showed predictable immediate ridge augmentation with autogenous chin block graft at periodontally compromised extraction site. It can provide adequate hard and soft tissue foundation for perfect 3-Dimensional prosthetic positioning of implant in severely deficient ridges. Key words:Immediate ridge augmentation, periondontally hopeless tooth, autogenous chin graft, dental implant. PMID:26644832

  15. New Stereoacuity Test Using a 3-Dimensional Display System in Children

    PubMed Central

    Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min

    2015-01-01

    The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus. PMID:25693034

  16. TAF4 Inactivation Reveals the 3 Dimensional Growth Promoting Activities of Collagen 6A3

    PubMed Central

    Duluc, Isabelle; Vicaire, Serge; Philipps, Muriel; Freund, Jean-Noel; Davidson, Irwin

    2014-01-01

    Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their 3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf4−/− MEFs revealed repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense conditions in Taf4−/− MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf4−/− MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3 expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf4−/− MEFs and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell growth. PMID:24498316

  17. SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife

    SciTech Connect

    Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S

    2014-06-01

    Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.

  18. Surgical Classification of the Mandibular Deformity in Craniofacial Microsomia Using 3-Dimensional Computed Tomography

    PubMed Central

    Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.

    2016-01-01

    Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097

  19. Effect of Watching 3-Dimensional Television on Refractive Error in Children

    PubMed Central

    Kim, Seung-Hyun; Choi, Yong-Min; Han, Ji-Yoon; Nam, Gi-Tae; You, Eun-Joo; Cho, Yoonae A.

    2015-01-01

    Purpose To investigate the effect of watching 3-dimensional (3D) television (TV) on refractive error in children. Methods Sixty healthy volunteers, aged 6 to 12 years, without any ocular abnormalities other than refractive error were recruited for this study. They watched 3D TV for 50 minutes at a viewing distance of 2.8 meters. The image disparity of the 3D contents was from -1 to 1 degree. Refractive errors were measured both before and immediately after watching TV and were rechecked after a 10-minute rest period. The refractive errors before and after watching TV were compared. The amount of refractive change was also compared between myopes and controls. The refractive error of the participants who showed a myopic shift immediately after watching TV were compared across each time point to assure that the myopic shift persisted after a 10-minute rest. Results The mean age of the participants was 9.23 ± 1.75 years. The baseline manifest refractive error was -1.70 ± 1.79 (-5.50 to +1.25) diopters. The refractive errors immediately after watching and after a 10-minute rest were -1.75 ± 1.85 and -1.69 ± 1.80 diopters, respectively, which were not different from the baseline values. Myopic participants (34 participants), whose spherical equivalent was worse than -0.75 diopters, also did not show any significant refractive change after watching 3D TV. A myopic shift was observed in 31 participants with a mean score of 0.29 ± 0.23 diopters, which resolved after a 10-minute rest. Conclusions Watching properly made 3D content on a 3D TV for 50 minutes with a 10-minute intermission at more than 2.8 meters of viewing distance did not affect the refractive error of children. PMID:25646061

  20. Reproducibility of 3-dimensional ultrasound readings of volume of carotid atherosclerotic plaque

    PubMed Central

    Ludwig, Malte; Zielinski, Tomasz; Schremmer, Dieter; Stumpe, Klaus O

    2008-01-01

    Background Non-invasive 3-dimensional (3D) ultrasound (US) has emerged as the predominant approach for evaluating the progression of carotid atherosclerosis and its response to treatment. The aim of this study was to investigate the quality of a central reading procedure concerning plaque volume (PV), measured by 3D US in a multinational US trial. Methods Two data sets of 45 and 60 3D US patient images of plaques (mean PV, 71.8 and 39.8 μl, respectively) were used. PV was assessed by means of manual planimetry. The intraclass correlation coefficient (ICC) was applied to determine reader variabilities. The repeatability coefficient (RC) and the coefficient of variation (CV) were used to investigate the effect of number of slices (S) in manual planimetry and plaque size on measurement variability. Results Intra-reader variability was small as reflected by ICCs of 0.985, 0.967 and 0.969 for 3 appointed readers. The ICC value generated between the 3 readers was 0.964, indicating that inter-reader variability was small, too. Subgroup analyses showed that both intra- and inter-reader variabilities were lower for larger than for smaller plaques. Mean CVs were similar for the 5S- and 10S-methods with a RC of 4.7 μl. The RC between both methods as well as the CVs were comparatively lower for larger plaques. Conclusion By implementing standardised central 3D US reading protocols and strict quality control procedures highly reliable ultrasonic re-readings of plaque images can be achieved in large multicentre trials. PMID:18727816

  1. Reliability of Aortic Stenosis Severity Classified by 3-Dimensional Echocardiography in the Prediction of Cardiovascular Events.

    PubMed

    Sato, Kimi; Seo, Yoshihiro; Ishizu, Tomoko; Nakajima, Hideki; Takeuchi, Masaaki; Izumo, Masaki; Suzuki, Kengo; Akashi, Yoshihiro J; Otsuji, Yutaka; Aonuma, Kazutaka

    2016-08-01

    The estimation of aortic valve area (AVA) by Doppler echocardiography-derived left ventricular stroke volume (LVSV) remains controversial. We hypothesized that AVA estimated from directly measured LVSV by 3-dimensional echocardiography (3DE) on the continuity equation might be more accurate in classifying aortic stenosis (AS) severity. We retrospectively enrolled 265 patients with moderate-to-severe AS with preserved ejection fraction. Indexed AVA (iAVA) was calculated using LVSV derived by 2D Doppler (iAVADop), Simpson's method (iAVASimp), and 3DE (iAVA3D). During a median follow-up period of 397 days (interquartile range 197 to 706 days), 135 patients experienced the composite end point (cardiac death 9%, aortic valve replacement 24%, and cardiovascular event 27%). Estimated iAVA3D and iAVASimp were significantly smaller than iAVADop and moderately correlated with peak aortic jet velocity. Upper septal hypertrophy was a major cause of discrepancy between iAVADop and iAVA3D methods. Based on the optimal cut-off point of iAVA for predicting peak aortic jet velocity >4.0 m/s, 141 patients (53%) were classified as severe AS and 124 patients (47%) as moderate AS by iAVADop. Indexed AVA3D classified 118 patients (45%) as severe and 147 patients (55%) as moderate AS. Of the 124 patients with moderate AS by iAVADop, 22 patients (18%) were reclassified as severe AS by iAVA3D and showed poor prognosis (hazard ratio 2.7, 95% CI 1.4 to 5.0; p = 0.001). In conclusion, 3DE might be superior in classifying patients with AS compared with Doppler method, particularly in patients with upper septal hypertrophy. PMID:27287062

  2. Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy.

    PubMed

    Christopher, Lauren A; William, Albert; Cohen-Gadol, Aaron A

    2013-01-01

    Recent advances in 3-dimensional (3-D) stereoscopic imaging have enabled 3-D display technologies in the operating room. We find 2 beneficial applications for the inclusion of 3-D imaging in clinical practice. The first is the real-time 3-D display in the surgical theater, which is useful for the neurosurgeon and observers. In surgery, a 3-D display can include a cutting-edge mixed-mode graphic overlay for image-guided surgery. The second application is to improve the training of residents and observers in neurosurgical techniques. This article documents the requirements of both applications for a 3-D system in the operating room and for clinical neurosurgical training, followed by a discussion of the strengths and weaknesses of the current and emerging 3-D display technologies. An important comparison between a new autostereoscopic display without glasses and current stereo display with glasses improves our understanding of the best applications for 3-D in neurosurgery. Today's multiview autostereoscopic display has 3 major benefits: It does not require glasses for viewing; it allows multiple views; and it improves the workflow for image-guided surgery registration and overlay tasks because of its depth-rendering format and tools. Two current limitations of the autostereoscopic display are that resolution is reduced and depth can be perceived as too shallow in some cases. Higher-resolution displays will be available soon, and the algorithms for depth inference from stereo can be improved. The stereoscopic and autostereoscopic systems from microscope cameras to displays were compared by the use of recorded and live content from surgery. To the best of our knowledge, this is the first report of application of autostereoscopy in neurosurgery. PMID:23254802

  3. Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution

    SciTech Connect

    Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2015-07-15

    Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.

  4. Novel Multicompartment 3-Dimensional Radiochromic Radiation Dosimeters for Nanoparticle-Enhanced Radiation Therapy Dosimetry

    SciTech Connect

    Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi

    2012-11-15

    Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of

  5. Carotid-Sparing TomoHelical 3-Dimensional Conformal Radiotherapy for Early Glottic Cancer

    PubMed Central

    Hong, Chae-Seon; Oh, Dongryul; Ju, Sang Gyu; Ahn, Yong Chan; Noh, Jae Myoung; Chung, Kwangzoo; Kim, Jin Sung; Suh, Tae-Suk

    2016-01-01

    Purpose The purpose of this study was to investigate the dosimetric benefits and treatment efficiency of carotid-sparing TomoHelical 3-dimensional conformal radiotherapy (TH-3DCRT) for early glottic cancer. Materials and Methods Ten early-stage (T1N0M0) glottic squamous cell carcinoma patients were simulated, based on computed tomography scans. Two-field 3DCRT (2F-3DCRT), 3-field intensity-modulated radiation therapy (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated with a 67.5-Gy total prescription dose to the planning target volume (PTV) for each patient. In order to evaluate the plan quality, dosimetric characteristics were compared in terms of conformity index (CI) and homogeneity index (HI) for PTV, dose to the carotid arteries, and maximum dose to the spinal cord. Treatment planning and delivery times were compared to evaluate treatment efficiency. Results The median CI was substantially better for the 3F-IMRT (0.65), TH-IMRT (0.64), and TH-3DCRT (0.63) plans, compared to the 2F-3DCRT plan (0.32). PTV HI was slightly better for TH-3DCRT and TH-IMRT (1.05) compared to 2F-3DCRT (1.06) and 3F-IMRT (1.09). TH-3DCRT, 3F-IMRT, and TH-IMRT showed an excellent carotid sparing capability compared to 2F-3DCRT (p < 0.05). For all plans, the maximum dose to the spinal cord was < 45 Gy. The median treatment planning times for 2F-3DCRT (5.85 minutes) and TH-3DCRT (7.10 minutes) were much lower than those for 3F-IMRT (45.48 minutes) and TH-IMRT (35.30 minutes). The delivery times for 2F-3DCRT (2.06 minutes) and 3F-IMRT (2.48 minutes) were slightly lower than those for TH-IMRT (2.90 minutes) and TH-3DCRT (2.86 minutes). Conclusion TH-3DCRT showed excellent carotid-sparing capability, while offering high efficiency and maintaining good PTV coverage. PMID:25761477

  6. New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer

    SciTech Connect

    Ju, Sang Gyu; Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho; Shin, Dongho; Lee, Se Byeong

    2014-02-01

    Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.

  7. Editorial Commentary: Single-Image Slice Magnetic Resonance Imaging Assessments Do Not Predict 3-Dimensional Muscle Volume.

    PubMed

    Brand, Jefferson C

    2016-01-01

    No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. PMID:26743416

  8. Targeting FAK Radiosensitizes 3-Dimensional Grown Human HNSCC Cells Through Reduced Akt1 and MEK1/2 Signaling

    SciTech Connect

    Hehlgans, Stephanie; Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden ; Eke, Iris; Cordes, Nils; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden; Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden

    2012-08-01

    Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.

  9. A Simple 3-Dimensional Printed Aid for a Corrective Palmar Opening Wedge Osteotomy of the Distal Radius.

    PubMed

    Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia

    2016-03-01

    The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture. PMID:26787406

  10. Quantification of mitral apparatus dynamics in functional and ischemic mitral regurgitation using real-time 3-dimensional echocardiography.

    PubMed

    Veronesi, Federico; Corsi, Cristiana; Sugeng, Lissa; Caiani, Enrico G; Weinert, Lynn; Mor-Avi, Victor; Cerutti, Sergio; Lamberti, Claudio; Lang, Roberto M

    2008-04-01

    Mitral regurgitation (MR) in dilated cardiomyopathy (DCM-MR) and MR in ischemic cardiomyopathy (ISC-MR) usually occurs as a result of mitral annulus (MA) dilatation and papillary muscle displacement secondary to global left ventricle remodelling. We propose a method to determine MA area and motion throughout the cardiac cycle and to define papillary muscle position in 3-dimensional space using real-time 3-dimensional echocardiography. Real-time 3-dimensional echocardiography was performed in 24 healthy individuals, and in 30 patients with DCM-MR (n = 15) or ISC-MR (n = 15). Significant intergroup differences were noted in MA surface area (control: 6.4 +/- 1.7 cm(2); DCM-MR: 11.1 +/- 2.6 cm(2); ISC-MR: 9.0 +/- 2.0 cm(2)) and in peak MA motion (control: 8.7 +/- 3.0 mm; DCM-MR: 3.4 +/- 1.7 mm; ISC-MR: 4.9 +/- 1.5 mm). In patients with DCM-MR, papillary muscle symmetry was preserved, whereas in patients with ISC-MR, papillary tethering lengths were unequal as a result of wall-motion abnormalities. Our methodology for dynamic volumetric measurements of the mitral apparatus allows better understanding of MR mechanisms. PMID:17681731

  11. THEHYCO-3DT: Thermal hydrodynamic code for the 3 dimensional transient calculation of advanced LMFBR core

    SciTech Connect

    Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.

    1995-09-01

    The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.

  12. Location Memory in the Real World: Category Adjustment Effects in 3-Dimensional Space

    ERIC Educational Resources Information Center

    Holden, Mark P.; Newcombe, Nora S.; Shipley, Thomas F.

    2013-01-01

    The ability to remember spatial locations is critical to human functioning, both in an evolutionary and in an everyday sense. Yet spatial memories and judgments often show systematic errors and biases. Bias has been explained by models such as the Category Adjustment model (CAM), in which fine-grained and categorical information about locations…

  13. Studies for the 3-Dimensional Structure, Composition, and Dynamic of Io's Atmosphere

    NASA Technical Reports Server (NTRS)

    Smyth, William H.

    2001-01-01

    Research work is discussed for the following: (1) the exploration of new H and Cl chemistry in Io's atmosphere using the already developed two-dimensional multi-species hydrodynamic model of Wong and Smyth; and (2) for the development of a new three-dimensional multi-species hydrodynamic model for Io's atmosphere.

  14. 3-dimensional local field polarization vector mapping of a focused radially polarized beam using gold nanoparticle functionalized tips.

    PubMed

    Ahn, J S; Kihm, H W; Kihm, J E; Kim, D S; Lee, K G

    2009-02-16

    We have measured local electric field polarization vectors in 3-dimensional space on the nanoscale. A radial polarized light is generated by using a radial polarization converter and focused by an objective lens. Gold nanoparticle functionalized tips are used to scatter the focused field into the far-field region. Two different methods, rotational analyzer ellipsometry and Stokes parameters, are used in determining the polarization state of the scattered light. Two methods give consistent results with each other. Three dimensional local polarization vectors could be reconstructed by applying back transformation of the fully characterized polarizability tensor of the tip. PMID:19219131

  15. All-on-4 concept: a 3-dimensional finite element analysis.

    PubMed

    Sannino, Gianpaolo

    2015-04-01

    The aim of this work was to study the biomechanical behavior of an All-on-4 implant-supported prosthesis through a finite element analysis comparing 3 different tilt degrees of the distal implants. Three-dimensional finite element models of an edentulous maxilla restored with a prosthesis supported by 4 implants were reconstructed to carry out the analysis. Three distinct configurations, corresponding to 3 tilt degrees of the distal implants (15°, 30°, and 45°) were subjected to 4 loading simulations. The von Mises stresses generated around the implants were localized and quantified for comparison. Negligible differences in von Mises stress values were found in the comparison of the 15° and 30° models. From a stress-level viewpoint, the 45° model was revealed to be the most critical for peri-implant bone. In all the loading simulations, the maximum stress values were always found at the neck of the distal implants. The stress in the distal implants increased in the apical direction as the tilt degree increased. The stress location and distribution patterns were very similar among the evaluated models. The increase in the tilt degree of the distal implants was proportional to the increase in stress concentration. The 45° model induced higher stress values at the bone-implant interface, especially in the distal aspect, than the other 2 models analyzed. PMID:23560570

  16. Joint inversion for 3-dimensional S-velocity mantle structure along the Tethyan margin

    NASA Astrophysics Data System (ADS)

    Chang, S.; van der Lee, S.; Flanagan, M. P.; Bedle, H.; Marone, F.; Matzel, E. M.; Pasyanos, M. E.; Rodgers, A. J.; Romanowicz, B.; Schmid, C.

    2007-12-01

    For purposes of studying the lateral heterogeneity as well as for ultimately predicting seismograms for the region which extends from the western Mediterranean region to the Hindu Kush, we construct a new 3-D S-velocity model by jointly inverting regional waveforms, surface wave group velocity measurements, teleseismic S arrival times, and crustal thickness estimates from receiver functions, refraction lines, and gravity surveys. We can expect better resolution for the resulting model than when using individual data set, because these data types have complementary resolving power for crust and mantle structures, vertical and lateral variations, shallow and deep mantle features, local and global structure, and are jointly inverted to image the complexity of this tectonically diverse area. We have fitted the waveforms of regional S and Rayleigh waves from over 3800 seismograms using Partitioned Waveform Inversion. We have accumulated over 3000 crustal thicknesses from receiver functions, gravity measurements, and refraction profiles. We have measured Rayleigh wave group velocities for hundreds of new paths recorded at the MIDSEA stations and combined them with thousands of existing paths transecting the region. We have over 5000 teleseismic S arrival times measured through cross correlation and 200,000 more from picks originally reported to the ISC. We scale the resulting S-velocity model to a P-velocity model using observed relations between S and P delay times as well as mineral physics. We then update the P-model using P delay times and compare the result to existing P-velocity models of the region. We discuss features of our new model, which includes oceanic structure, cratons, subducting slabs that penetrate into the lower mantle and others that do not, low-velocity mantle plumes, rifts, plateaus, and basins.

  17. Soft tissue engineering in craniomaxillofacial surgery

    PubMed Central

    Kim, Roderick Y; Fasi, Anthony C; Feinberg, Stephen E

    2014-01-01

    Craniofacial soft tissue reconstruction may be required following trauma, tumor resection, and to repair congenital deformities. Recent advances in the field of tissue engineering have significantly widened the reconstructive armamentarium of the surgeon. The successful identification and combination of tissue engineering, scaffold, progenitor cells, and physiologic signaling molecules has enabled the surgeon to design, recreate the missing tissue in its near natural form. This has resolved the issues like graft rejection, wound dehiscence, or poor vascularity. Successfully reconstructed tissue through soft tissue engineering protocols would help surgeon to restore the form and function of the lost tissue in its originality. This manuscript intends to provide a glimpse of the basic principle of tissue engineering, contemporary, and future direction of this field as applied to craniofacial surgery. PMID:24987591

  18. A system for extracting 3-dimensional measurements from a stereo pair of TV cameras

    NASA Technical Reports Server (NTRS)

    Yakimovsky, Y.; Cunningham, R.

    1976-01-01

    Obtaining accurate three-dimensional (3-D) measurement from a stereo pair of TV cameras is a task requiring camera modeling, calibration, and the matching of the two images of a real 3-D point on the two TV pictures. A system which models and calibrates the cameras and pairs the two images of a real-world point in the two pictures, either manually or automatically, was implemented. This system is operating and provides three-dimensional measurements resolution of + or - mm at distances of about 2 m.

  19. Experimental studies on the stability and transition of 3-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Nitschke-Kowsky, P.

    1987-01-01

    Three-dimensional unstable boundary layers were investigated as to their characteristic instabilities, leading to turbulence. Standing cross-flow instabilities and traveling waves preceding the transition were visualized with the hydrogen bubble technique in the boundary layer above the wall of a swept cylinder. With the sublimation method and hot film technique, a model consisting of a swept flat plate with a pressure-inducing displacement body in the 1 m wind tunnel was studied. Standing waves and traveling waves in a broad frequency are observed. The boundary layer of this model is close to the assumptions of the theory.

  20. MICRO-DOSIMETRY ANALYSIS USING 3-DIMENSIONAL COMPUTER SIMULATIONS OF PARTICLE DEPOSITION IN HUMAN LUNGS

    EPA Science Inventory

    The aim of this project is to develop three-dimensional computer simulations for aerosol transport and deposition in human respiratory tract. Three-dimensional CFPD (computational fluid and particle dynamics) modeling is a powerful tool to obtain microscopic dose information at l...

  1. Open and disconnected magnetic field lines within coronal mass ejections in the solar wind: Evidence for 3-dimensional reconnection

    NASA Technical Reports Server (NTRS)

    Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.

    1995-01-01

    Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.

  2. Reconstruction of a 3-dimensional transonic rotor flow field from holographic interferogram data

    NASA Technical Reports Server (NTRS)

    Yu, Y. H.; Kittleson, J. K.; Becker, F.

    1985-01-01

    Holographic interferometry and computer-assisted tomography (CAT) are used to determine the transonic velocity field of a model rotor blade in hover. A pulsed ruby laser recorded 40 interferograms with a 2-ft-diam view field near the model rotor-blade tip operating at a tip Mach number of 0.90. After digitizing the interferograms and extracting fringe-order functions, the data are transferred to a CAT code. The CAT code then calculates the perturbation velocity in seeral planes above the blade surface. The values from the holography-CAT method compare favorably with previously obtained numerical computations in most locations near the blade tip. The results demonstrate the technique's potential for three-dimensional transonic rotor flow studies.

  3. Broad-band near-field ground motion simulations in 3-dimensional scattering media

    NASA Astrophysics Data System (ADS)

    Imperatori, W.; Mai, P. M.

    2013-02-01

    The heterogeneous nature of Earth's crust is manifested in the scattering of propagating seismic waves. In recent years, different techniques have been developed to include such phenomenon in broad-band ground-motion calculations, either considering scattering as a semi-stochastic or purely stochastic process. In this study, we simulate broad-band (0-10 Hz) ground motions with a 3-D finite-difference wave propagation solver using several 3-D media characterized by von Karman correlation functions with different correlation lengths and standard deviation values. Our goal is to investigate scattering characteristics and its influence on the seismic wavefield at short and intermediate distances from the source in terms of ground motion parameters. We also examine scattering phenomena, related to the loss of radiation pattern and the directivity breakdown. We first simulate broad-band ground motions for a point-source characterized by a classic ω2 spectrum model. Fault finiteness is then introduced by means of a Haskell-type source model presenting both subshear and super-shear rupture speed. Results indicate that scattering plays an important role in ground motion even at short distances from the source, where source effects are thought to be dominating. In particular, peak ground motion parameters can be affected even at relatively low frequencies, implying that earthquake ground-motion simulations should include scattering also for peak ground velocity (PGV) calculations. At the same time, we find a gradual loss of the source signature in the 2-5 Hz frequency range, together with a distortion of the Mach cones in case of super-shear rupture. For more complex source models and truly heterogeneous Earth, these effects may occur even at lower frequencies. Our simulations suggests that von Karman correlation functions with correlation length between several hundred metres and few kilometres, Hurst exponent around 0.3 and standard deviation in the 5-10 per cent range

  4. Comparison of intraoral scanning and conventional impression techniques using 3-dimensional superimposition

    PubMed Central

    Rhee, Ye-Kyu

    2015-01-01

    PURPOSE The aim of this study is to evaluate the appropriate impression technique by analyzing the superimposition of 3D digital model for evaluating accuracy of conventional impression technique and digital impression. MATERIALS AND METHODS Twenty-four patients who had no periodontitis or temporomandibular joint disease were selected for analysis. As a reference model, digital impressions with a digital impression system were performed. As a test models, for conventional impression dual-arch and full-arch, impression techniques utilizing addition type polyvinylsiloxane for fabrication of cast were applied. 3D laser scanner is used for scanning the cast. Each 3 pairs for 25 STL datasets were imported into the inspection software. The three-dimensional differences were illustrated in a color-coded map. For three-dimensional quantitative analysis, 4 specified contact locations(buccal and lingual cusps of second premolar and molar) were established. For twodimensional quantitative analysis, the sectioning from buccal cusp to lingual cusp of second premolar and molar were acquired depending on the tooth axis. RESULTS In color-coded map, the biggest difference between intraoral scanning and dual-arch impression was seen (P<.05). In three-dimensional analysis, the biggest difference was seen between intraoral scanning and dual-arch impression and the smallest difference was seen between dual-arch and full-arch impression. CONCLUSION The two- and three-dimensional deviations between intraoral scanner and dual-arch impression was bigger than full-arch and dual-arch impression (P<.05). The second premolar showed significantly bigger three-dimensional deviations than the second molar in the three-dimensional deviations (P>.05). PMID:26816576

  5. Study of journal bearing dynamics using 3-dimensional motion picture graphics

    NASA Technical Reports Server (NTRS)

    Brewe, D. E.; Sosoka, D. J.

    1985-01-01

    Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.

  6. Whole-core comet solutions to a 3-dimensional PWR benchmark problem with gadolinium

    SciTech Connect

    Zhang, D.; Rahnema, F.

    2012-07-01

    A pressurized water reactor (PWR) benchmark problem with gadolinium was used to determine the accuracy and computational efficiency of the coarse mesh radiation transport method COMET. The benchmark problem contains 193 square fuel assemblies. The COMET solution (eigenvalue, assembly averaged and fuel pin averaged fission density distributions) was compared with those obtained from the corresponding Monte Carlo reference solution using the same 2-group material cross section library. The comparison showed that both the core eigenvalue and fission density distribution averaged over each assembly and fuel pin predicated by COMET agree very well with the corresponding MCNP reference solution if the incident flux response expansion used in COMET is truncated at 2nd order in the two spatial and the two angular variables. The benchmark calculations indicate that COMET has Monte Carlo accuracy. In, particular, the eigenvalue difference between the codes ranged from 17 pcm to 35 pcm, being within 2 standard deviations of the calculational uncertainty. The mean flux weighted relative differences in the assembly and fuel pin fission densities were 0.47% and 0.65%, respectively. It was also found that COMET's full (whole) core computational speed is 30,000 times faster than MCNP in which only 1/8 of the core is modeled. It is estimated that COMET would have been about over 6 orders of magnitude faster than MCNP if the full core were also modeled in MCNP. (authors)

  7. Galactic scale gas flows in colliding galaxies: 3-dimensional, N-body/hydrodynamics experiments

    NASA Technical Reports Server (NTRS)

    Lamb, Susan A.; Gerber, Richard A.; Balsara, Dinshaw S.

    1994-01-01

    We present some results from three dimensional computer simulations of collisions between models of equal mass galaxies, one of which is a rotating, disk galaxy containing both gas and stars and the other is an elliptical containing stars only. We use fully self consistent models in which the halo mass is 2.5 times that of the disk. In the experiments we have varied the impact parameter between zero (head on) and 0.9R (where R is the radius of the disk), for impacts perpendicular to the disk plane. The calculations were performed on a Cray 2 computer using a combined N-body/smooth particle hydrodynamics (SPH) program. The results show the development of complicated flows and shock structures in the direction perpendicular to the plane of the disk and the propagation outwards of a density wave in both the stars and the gas. The collisional nature of the gas results in a sharper ring than obtained for the star particles, and the development of high volume densities and shocks.

  8. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    PubMed Central

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  9. Micropatterned 3-Dimensional Hydrogel System to Study Human Endothelial-Mesenchymal Stem Cell Interactions

    PubMed Central

    Trkov, Sasa; Eng, George; di Liddo, Rosa; Parnigotto, Pier Paolo; Vunjak-Novakovic, Gordana

    2009-01-01

    The creation of vascularized engineered tissues of clinically relevant size is a major challenge of tissue engineering. While it is known that endothelial and mural vascular cells are integral to the formation of stable blood vessels, the specific cell type and optimal conditions for engineered vascular networks are poorly understood. To this end, we investigated the vasculogenic potential of human mesenchymal stem cell (MSC) populations derived from three different sources: (i) bone marrow aspirates, (ii) perivascular cells from umbilical cord vein, and (iii) perivascular cells from umbilical cord artery. Cell populations were isolated and identified as MSCs according to their phenotypes and differentiation potential. Human umbilical vein endothelial cells (HUVEC) were used as a standard for endothelial cells. A novel co-culture system was developed to study cell-cell interactions in a spatially controlled three-dimensional (3D) fibrin hydrogel model. Using microfluidic patterning, it was possible to localize hydrogel-encapsulated HUVECs and MSCs within separate channels spaced at 500, 1000 or 2000 μm. All three MSC populations had similar expression profiles of mesenchymal cell markers, and similar capacity for osteogenic and adipogenic differentiation. However, bone marrow-derived MSCs (but not umbilical vein or artery derived MSCs) showed strong distance-dependent migration toward HUVECs and supported the formation of stable vascular networks resembling capillary-like vasculature. The presented approach provides a simple and robust model to study cell-cell communication of relevance to engineering vascularized tissues. PMID:19998330

  10. A Modular Computer Code for Simulating Reactive Multi-Species Transport in 3-Dimensional Groundwater Systems

    SciTech Connect

    TP Clement

    1999-06-24

    RT3DV1 (Reactive Transport in 3-Dimensions) is computer code that solves the coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in three-dimensional saturated groundwater systems. RT3D is a generalized multi-species version of the US Environmental Protection Agency (EPA) transport code, MT3D (Zheng, 1990). The current version of RT3D uses the advection and dispersion solvers from the DOD-1.5 (1997) version of MT3D. As with MT3D, RT3D also requires the groundwater flow code MODFLOW for computing spatial and temporal variations in groundwater head distribution. The RT3D code was originally developed to support the contaminant transport modeling efforts at natural attenuation demonstration sites. As a research tool, RT3D has also been used to model several laboratory and pilot-scale active bioremediation experiments. The performance of RT3D has been validated by comparing the code results against various numerical and analytical solutions. The code is currently being used to model field-scale natural attenuation at multiple sites. The RT3D code is unique in that it includes an implicit reaction solver that makes the code sufficiently flexible for simulating various types of chemical and microbial reaction kinetics. RT3D V1.0 supports seven pre-programmed reaction modules that can be used to simulate different types of reactive contaminants including benzene-toluene-xylene mixtures (BTEX), and chlorinated solvents such as tetrachloroethene (PCE) and trichloroethene (TCE). In addition, RT3D has a user-defined reaction option that can be used to simulate any other types of user-specified reactive transport systems. This report describes the mathematical details of the RT3D computer code and its input/output data structure. It is assumed that the user is familiar with the basics of groundwater flow and contaminant transport mechanics. In addition, RT3D users are expected to have some experience in

  11. Nanophotonic light trapping in 3-dimensional thin-film silicon architectures.

    PubMed

    Lockau, Daniel; Sontheimer, Tobias; Becker, Christiane; Rudigier-Voigt, Eveline; Schmidt, Frank; Rech, Bernd

    2013-01-14

    Emerging low cost and large area periodic texturing methods promote the fabrication of complex absorber structures for thin film silicon solar cells. We present a comprehensive numerical analysis of a 2 μm square periodic polycrystalline silicon absorber architecture designed in our laboratories. Simulations are performed on the basis of a precise finite element reconstruction of the experimentally realized silicon structure. In contrast to many other publications, superstrate light trapping effects are included in our model. Excellent agreement to measured absorptance spectra is obtained. For the inclusion of the absorber into a standard single junction cell layout, we show that light trapping close to the Yablonovitch limit can be realized, but is usually strongly damped by parasitic absorption. PMID:23389274

  12. A comparison of VRML and animation of rotation for teaching 3-dimensional crystal lattice structures

    NASA Astrophysics Data System (ADS)

    Sauls, Barbara Lynn

    Chemistry students often have difficulty visualizing abstract concepts of molecules and atoms, which may lead to misconceptions. The three-dimensionality of these structures presents a challenge to educators. Typical methods of teaching include text with two-dimensional graphics and structural models. Improved methods to allow visualization of 3D structures may improve learning of these concepts. This research compared the use of Virtual Reality Modeling Language (VRML) and animation of rotation for teaching three-dimensional structures. VRML allows full control of objects by altering angle, size, rotation, and provides the ability to zoom into and through objects. Animations may only be stopped, restarted and replayed. A web-based lesson teaching basic concepts of crystals, which requires comprehension of their three-dimensional structure was given to 100 freshmen chemistry students. Students were stratified by gender then randomly to one of two lessons, which were identical except for the multimedia method used to show the lattices and unit cells. One method required exploration of the structures using VRML, the other provided animations of the same structures rotating. The students worked through an examination as the lesson progressed. A Welch t' test was used to compare differences between groups. No significant difference in mean achievement was found between the two methods, between genders, or within gender. There was no significant difference in mean total SAT in the animation and VRML group. Total time on task had no significant difference nor did enjoyment of the lesson. Students, however, spent 14% less time maneuvering VRML structures than viewing the animations of rotation. Neither method proved superior for presenting three-dimensional information. The students spent less time maneuvering the VRML structures with no difference in mean score so the use of VRML may be more efficient. The investigator noted some manipulation difficulties using VRML to

  13. Towards a 3-dimensional atlas of the developing human embryo: the Amsterdam experience.

    PubMed

    de Bakker, Bernadette S; de Jong, Kees H; Hagoort, Jaco; Oostra, Roelof-Jan; Moorman, Antoon F M

    2012-09-01

    Knowledge of complex morphogenetic processes that occur during embryonic development is essential for understanding anatomy and to get insight in the pathogenesis of congenital malformations. Understanding these processes can be facilitated by using a three-dimensional (3D) developmental series of human embryos, which we aim to create in this project. Digital images of serial sections of 34 human embryos of the Carnegie Collection between Carnegie stages 7 (15-17 days) and 23 (56-60 days) are used to create 3D reconstructions of different organ systems. The software package Amira is used to align the sections and to create the 3D reconstructions. In this midway evaluation we show the first results of the atlas, containing 34 embryos with more than 13.500 manually annotated sections. The 3D models can be interactively viewed within a 3D-pdf. This will be the first complete digital 3D human embryology atlas of this size, containing all developing organ systems. PMID:22640940

  14. Computer-Aided Designed, 3-Dimensionally Printed Porous Tissue Bioscaffolds For Craniofacial Soft Tissue Reconstruction

    PubMed Central

    Zopf, David A.; Mitsak, Anna G.; Flanagan, Colleen L.; Wheeler, Matthew; Green, Glenn E.; Hollister, Scott J.

    2016-01-01

    Objectives To determine the potential of integrated image-based Computer Aided Design (CAD) and 3D printing approach to engineer scaffolds for head and neck cartilaginous reconstruction for auricular and nasal reconstruction. Study Design Proof of concept revealing novel methods for bioscaffold production with in vitro and in vivo animal data. Setting Multidisciplinary effort encompassing two academic institutions. Subjects and Methods DICOM CT images are segmented and utilized in image-based computer aided design to create porous, anatomic structures. Bioresorbable, polycaprolactone scaffolds with spherical and random porous architecture are produced using a laser-based 3D printing process. Subcutaneous in vivo implantation of auricular and nasal scaffolds was performed in a porcine model. Auricular scaffolds were seeded with chondrogenic growth factors in a hyaluronic acid/collagen hydrogel and cultured in vitro over 2 months duration. Results Auricular and nasal constructs with several microporous architectures were rapidly manufactured with high fidelity to human patient anatomy. Subcutaneous in vivo implantation of auricular and nasal scaffolds resulted in excellent appearance and complete soft tissue ingrowth. Histologic analysis of in vitro scaffolds demonstrated native appearing cartilaginous growth respecting the boundaries of the scaffold. Conclusions Integrated image-based computer-aided design (CAD) and 3D printing processes generated patient-specific nasal and auricular scaffolds that supported cartilage regeneration. PMID:25281749

  15. 3-dimensional microscope analysis of bone and tooth surface modifications: comparisons of fossil specimens and replicas.

    PubMed

    Bello, Silvia M; Verveniotou, Efstratia; Cornish, Lorraine; Parfitt, Simon A

    2011-01-01

    Cut-marks on fossil bones and teeth are an important source of evidence in the reconstruction of ancient butchery practices. The analysis of butchery marks has allowed archaeologists to interpret aspects of past subsistence strategies and the behavior of early humans. Recent advances in optical scanning microscopy allow detailed measurements of cut-mark morphology to be undertaken. An example of this technology is the Alicona 3D InfiniteFocus imaging microscope, which has been applied recently to the study of surface modifications on bones and teeth. Three-dimensional models generated by the Alicona microscope have been used to identify cross-sectional features of experimental cut-marks that are characteristic for specific cutting actions (e.g., slicing, chopping, scraping) and different tool types (e.g., metal versus stone tools). More recently, this technology has been applied successfully to the analysis of ∼500,000 year-old cut-marked animal bones from Boxgrove (U.K.), as well as cannibalized 14,700 cal BP year-old human bones from Gough's Cave (U.K.). This article describes molding methods used to replicate fragile prehistoric bones and teeth, where image quality was adversely affected by specimen translucency and reflectivity. Alicona images generated from molds and casts are often of better quality than those of the original specimen. PMID:21660994

  16. EK3D: an E. coli K antigen 3-dimensional structure database

    PubMed Central

    Kunduru, Bharathi Reddy; Nair, Sanjana Anilkumar; Rathinavelan, Thenmalarchelvi

    2016-01-01

    A very high rate of multidrug resistance (MDR) seen among Gram-negative bacteria such as Escherichia, Klebsiella, Salmonella, Shigella, etc. is a major threat to public health and safety. One of the major virulent determinants of Gram-negative bacteria is capsular polysaccharide or K antigen located on the bacterial outer membrane surface, which is a potential drug & vaccine target. It plays a key role in host–pathogen interactions as well as host immune evasion and thus, mandates detailed structural information. Nonetheless, acquiring structural information of K antigens is not straightforward due to their innate enormous conformational flexibility. Here, we have developed a manually curated database of K antigens corresponding to various E. coli serotypes, which differ from each other in their monosaccharide composition, linkage between the monosaccharides and their stereoisomeric forms. Subsequently, we have modeled their 3D structures and developed an organized repository, namely EK3D that can be accessed through www.iith.ac.in/EK3D/. Such a database would facilitate the development of antibacterial drugs to combat E. coli infections as it has evolved resistance against 2 major drugs namely, third-generation cephalosporins and fluoroquinolones. EK3D also enables the generation of polymeric K antigens of varying lengths and thus, provides comprehensive information about E. coli K antigens. PMID:26615200

  17. Error analysis of a direct current electromagnetic tracking system in digitizing 3-dimensional surface geometries.

    PubMed

    Milne, A D; Lee, J M

    1999-01-01

    The direct current electromagnetic tracking device has seen increasing use in biomechanics studies of joint kinematics and anatomical surface geometry. In these applications, a stylus is attached to a sensor to measure the spatial location of three-dimensional landmarks. Stylus calibration is performed by rotating the stylus about a fixed point in space and using regression analysis to determine the tip offset vector. Measurement errors can be induced via several pathways, including; intrinsic system errors in sensor position or angle and tip offset calibration errors. A detailed study was performed to determine the errors introduced in digitizing small surfaces with different stylus lengths (35, 55, and 65 mm) and approach angles (30 and 45 degrees) using a plastic calibration board and hemispherical models. Two-point discrimination errors increased to an average of 1.93 mm for a 254 mm step size. Rotation about a single point produced mean errors of 0.44 to 1.18 mm. Statistically significant differences in error were observed with increasing approach angles (p < 0.001). Errors of less than 6% were observed in determining the curvature of a 19 mm hemisphere. This study demonstrates that the "Flock of Birds" can be used as a digitizing tool with accuracy better than 0.76% over 254 mm step sizes. PMID:11143353

  18. Self-assembled proteinticle nanostructures for 3-dimensional display of antibodies

    NASA Astrophysics Data System (ADS)

    Lee, Eun Jung; Lee, Euna; Kim, Hyun Jin; Lee, Jong-Hwan; Ahn, Keum-Young; Park, Jin-Seung; Lee, Jeewon

    2014-11-01

    ``Proteinticle'' is a nano-scale protein particle that is self-assembled inside cells with constant 3D structure and surface topology. The binding of IgG to the B domain of Staphylococcal protein A (SPAB) molecules that are genetically inserted on the surface of proteinticle enables the variable domains of bound IgG to be well oriented to effectively capture antigens, accordingly forming a highly sensitive 3D IgG probe. The five different proteinticles that originate from humans, bacteria, and virus and totally differ in size, shape, and surface structure were used for the surface display of SPAB. The dissociation constant (KD) in the binding of IgG to SPAB on the proteinticle surface was estimated based on the Langmuir adsorption isotherm model: KD was 1-3 orders-of-magnitude lower compared to the previously reported KD in the binding of IgG to Staphylococcal protein A. The surface density and distribution of SPAB and especially the existence of hot (or highly congested) spots of SPAB, which depend on the surface structure and the number of subunits as well as size and shape of proteinticle, is of crucial importance for the effective binding of IgG to SPAB on proteinticles. Although the five different proteinticles were demonstrated as proof-of-concept here, SPAB-mediated immobilization of IgG on the other proteinticles would be very useful for the fabrication of sensitive 3D immunoassay platforms.``Proteinticle'' is a nano-scale protein particle that is self-assembled inside cells with constant 3D structure and surface topology. The binding of IgG to the B domain of Staphylococcal protein A (SPAB) molecules that are genetically inserted on the surface of proteinticle enables the variable domains of bound IgG to be well oriented to effectively capture antigens, accordingly forming a highly sensitive 3D IgG probe. The five different proteinticles that originate from humans, bacteria, and virus and totally differ in size, shape, and surface structure were used for

  19. Validating the relationship between 3-dimensional body acceleration and oxygen consumption in trained Steller sea lions.

    PubMed

    Volpov, Beth L; Rosen, David A S; Trites, Andrew W; Arnould, John P Y

    2015-08-01

    We tested the ability of overall dynamic body acceleration (ODBA) to predict the rate of oxygen consumption ([Formula: see text]) in freely diving Steller sea lions (Eumetopias jubatus) while resting at the surface and diving. The trained sea lions executed three dive types-single dives, bouts of multiple long dives with 4-6 dives per bout, or bouts of multiple short dives with 10-12 dives per bout-to depths of 40 m, resulting in a range of activity and oxygen consumption levels. Average metabolic rate (AMR) over the dive cycle or dive bout calculated was calculated from [Formula: see text]. We found that ODBA could statistically predict AMR when data from all dive types were combined, but that dive type was a significant model factor. However, there were no significant linear relationships between AMR and ODBA when data for each dive type were analyzed separately. The potential relationships between AMR and ODBA were not improved by including dive duration, food consumed, proportion of dive cycle spent submerged, or number of dives per bout. It is not clear whether the lack of predictive power within dive type was due to low statistical power, or whether it reflected a true absence of a relationship between ODBA and AMR. The average percent error for predicting AMR from ODBA was 7-11 %, and standard error of the estimated AMR was 5-32 %. Overall, the extensive range of dive behaviors and physiological conditions we tested indicated that ODBA was not suitable for estimating AMR in the field due to considerable error and the inconclusive effects of dive type. PMID:26002519

  20. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observation with Satellite-Based LIS Observations in Oklahoma

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations were obtained in central Oklahoma during June 1998, using New Mexico Tech's Lightning Mapping Array (LMA). The results have been compared with observations of the discharges from space obtained by NASA's Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Excellent spatial and temporal correlations were obtained between the two sets of observations. All discharges seen by LIS were mapped by the LMA. Most of the detected optical events were associated with lightning channels that extended into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended to be detected by LIS at the time of late-stage return strokes. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud discharges and appeared to be produced by energetic K-changes that typically occur at these times.

  1. Fine designing 3-dimensional ZnO nanowalls with TiO2 nanoparticles for DSSC application

    NASA Astrophysics Data System (ADS)

    Polkoo, Sajad Saghaye; Saievar-Iranizad, Esmaiel; Bayatloo, Elham

    2015-06-01

    In this research, we report a low-cost low-temperature hydrothermal technique for covering 3-dimensional (3-D) electrodeposited ZnO nanowall with thin layer of aggregated TiO2 nanoparticles on FTO substrate for dye-sensitized solar cell application, in a way that morphology and crystal structure of ZnO nanowalls were preserved. Comparing photovoltaic characteristics of devices with and without TiO2-coating layer, it was revealed that the 3-D ZnO/TiO2-nanostructured photoanode resulted in a 35 % cell performance improved mostly because of enhancement of short-circuit current density ( J sc) and open-circuit voltage ( V oc). The XRD pattern showed that 3-D ZnO nanowalls and TiO2 compose of wurtzite and anatase phases, respectively.

  2. 3-Dimensional Physiologic Postural Range of the Mandible: A Computerized-Assisted Technique—A Case Study

    PubMed Central

    2013-01-01

    Previous studies demonstrated that while the mandible assumes its resting position in space, antagonistic muscles should assume minimal muscle activity within a spatial range. This zone of mandibular rest has been mapped using physiologic parameters of muscle activity and incisal spatial kinematics. This case study expands on previous research by monitoring incisal and posterior jaw position and includes lateral pterygoid muscle activity, thus allowing for determining the spatial range including additional relevant coordinates and muscle activity. Four positions were evaluated: a maximum physiologic open position, a maximum physiologic closed position, physiologic rest position, and maximum physiologic protrusion position. Within the physiologic zone of rest formed by these 4 positions, the vertical and anterior borders of the envelope of function may be documented for the incisal and posterior mandible in true 3-dimensional fashion to assist the clinician in determining a physiologic interocclusal freeway space and vertical dimension of occlusion. Advantages and limitations are discussed. PMID:24194764

  3. A Method for Ovarian Follicle Encapsulation and Culture in a Proteolytically Degradable 3 Dimensional System

    PubMed Central

    Shikanov, Ariella; Xu, Min; Woodruff, Teresa K.; Shea, Lonnie D.

    2011-01-01

    The ovarian follicle is the functional unit of the ovary that secretes sex hormones and supports oocyte maturation. In vitro follicle techniques provide a tool to model follicle development in order to investigate basic biology, and are further being developed as a technique to preserve fertility in the clinic1-4. Our in vitro culture system employs hydrogels in order to mimic the native ovarian environment by maintaining the 3D follicular architecture, cell-cell interactions and paracrine signaling that direct follicle development 5. Previously, follicles were successfully cultured in alginate, an inert algae-derived polysaccharide that undergoes gelation with calcium ions6-8. Alginate hydrogels formed at a concentration of 0.25% w/v were the most permissive for follicle culture, and retained the highest developmental competence 9. Alginate hydrogels are not degradable, thus an increase in the follicle diameter results in a compressive force on the follicle that can impact follicle growth10. We subsequently developed a culture system based on a fibrin-alginate interpenetrating network (FA-IPN), in which a mixture of fibrin and alginate are gelled simultaneously. This combination provides a dynamic mechanical environment because both components contribute to matrix rigidity initially; however, proteases secreted by the growing follicle degrade fibrin in the matrix leaving only alginate to provide support. With the IPN, the alginate content can be reduced below 0.25%, which is not possible with alginate alone 5. Thus, as the follicle expands, it will experience a reduced compressive force due to the reduced solids content. Herein, we describe an encapsulation method and an in vitro culture system for ovarian follicles within a FA-IPN. The dynamic mechanical environment mimics the natural ovarian environment in which small follicles reside in a rigid cortex and move to a more permissive medulla as they increase in size11. The degradable component may be particularly

  4. Kelvin-Helmholtz instability during northward IMF conditions: Global 3-Dimensional MHD simulations (Invited)

    NASA Astrophysics Data System (ADS)

    Merkin, V. G.; Lyon, J.; Claudepierre, S. G.

    2013-12-01

    The Kelvin-Helmholtz Instability (KHI) has long been suggested to operate on the magnetospheric boundary, where the magnetosheath plasma streams past the magnetosphere. The instability is thought to be responsible for inducing various wave populations in the magnetosphere and for mass, momentum and energy transport across the magnetospheric boundary. Waves attributed to the KHI have been observed at the Earth's magnetosphere flanks as well as at Saturn and Mercury during spacecraft crossings, and remotely at boundaries of Coronal Mass Ejections (CMEs). Recent high-resolution global 3D magnetohydrodynamic (MHD) simulations of the magnetosphere confirm the existence of pronounced perturbations of the magnetospheric boundary, which are thought to be due to KHI. Such global simulations had been challenging in the past because of the need to encompass the entire magnetosphere, while sufficiently resolving the boundary layer. Here we present results of such a high-resolution simulation of the magnetosphere, using the Lyon-Fedder-Mobarry (LFM) model, under steady northward Interplanetary Magnetic Field (IMF) conditions. We find the magnetospheric boundary to be globally unstable, including the high-latitude boundary layer (meridional plane), where magnetic tension is apparently not sufficient to stabilize the growth of oscillations. Roughly beyond the terminator, global modes, coupled into the surface modes, become apparent, so that the entire body of the magnetosphere is engaged in an oscillatory motion. The wave vector of the surface oscillations has a component perpendicular to the background flow and tangential to the shear layer (in the equatorial plane, k_z component of the wave vector), which is consistent with the generation of field-aligned currents that flow on closed field lines between the inner portion of the boundary layer and the ionosphere. We calculate the distribution of wave power in the equatorial plane and find it consistent with the existence of a

  5. Producing a full-scale model from computed tomographic data with the rapid prototyping technique using the binder jet method: a comparison with the laser lithography method using a dry skull.

    PubMed

    Ono, I; Abe, K; Shiotani, S; Hirayama, Y

    2000-11-01

    Rapid prototyping using the binder jet method has recently been established and has already produced excellent results in industrial applications. The authors recently developed a technique for producing a full-scale model from computed tomographic (CT) data with the binder jet method as an approach to overcome the shortcomings of the laser lithography method, which is already widely used in medicine. They conducted a comparative investigation of full-scale models made with both techniques using a dry skull to determine the accuracy of the models. It was clearly demonstrated that the accuracy of the binder jet method was high enough to be used in craniomaxillofacial surgery because it was the same as the laser lithography method. This study employed data from the latest helical volume scan computed tomography device using a multidetector. The study showed that the new rapid prototyping technique was satisfactory in terms of speed, cost, installation environment, and accuracy of models, and that detailed shapes and structures can be reproduced well. Because this technique has many advantages over the laser lithography method, it should play a major role in craniomaxillofacial surgery and in other medical fields in combination with advances in CT devices. Although plaster is a more suitable fixation material when the emphasis is on the reproducibility of detailed structures, the binder jet method using starch is extremely useful for simulating operations and determining implant shapes because it allows for the prompt production of models. PMID:11314492

  6. The Effects of 3-Dimensional CADD Modeling on the Development of the Spatial Ability of Technology Education Students

    ERIC Educational Resources Information Center

    Basham, K. Lynn; Kotrlik, Joe W.

    2008-01-01

    Spatial abilities are fundamental to human functioning in the physical world. Spatial reasoning allows people to use concepts of shape, features, and relationships in both concrete and abstract ways, to make and use things in the world, to navigate, and to communicate. Surgeons, pilots, architects, engineers, mechanics, builders, farmers, trades…

  7. 3-Dimensional culture systems for anti-cancer compound profiling and high-throughput screening reveal increases in EGFR inhibitor-mediated cytotoxicity compared to monolayer culture systems.

    PubMed

    Howes, Amy L; Richardson, Robyn D; Finlay, Darren; Vuori, Kristiina

    2014-01-01

    3-dimensional (3D) culture models have the potential to bridge the gap between monolayer cell culture and in vivo studies. To benefit anti-cancer drug discovery from 3D models, new techniques are needed that enable their use in high-throughput (HT) screening amenable formats. We have established miniaturized 3D culture methods robust enough for automated HT screens. We have applied these methods to evaluate the sensitivity of normal and tumorigenic breast epithelial cell lines against a panel of oncology drugs when cultured as monolayers (2D) and spheroids (3D). We have identified two classes of compounds that exhibit preferential cytotoxicity against cancer cells over normal cells when cultured as 3D spheroids: microtubule-targeting agents and epidermal growth factor receptor (EGFR) inhibitors. Further improving upon our 3D model, superior differentiation of EC50 values in the proof-of-concept screens was obtained by co-culturing the breast cancer cells with normal human fibroblasts and endothelial cells. Further, the selective sensitivity of the cancer cells towards chemotherapeutics was observed in 3D co-culture conditions, rather than as 2D co-culture monolayers, highlighting the importance of 3D cultures. Finally, we examined the putative mechanisms that drive the differing potency displayed by EGFR inhibitors. In summary, our studies establish robust 3D culture models of human cells for HT assessment of tumor cell-selective agents. This methodology is anticipated to provide a useful tool for the study of biological differences within 2D and 3D culture conditions in HT format, and an important platform for novel anti-cancer drug discovery. PMID:25247711

  8. Two-Year and Lifetime Cost-Effectiveness of Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy for Head-and-Neck Cancer

    SciTech Connect

    Kohler, Racquel E.; Sheets, Nathan C.; Wheeler, Stephanie B.; Nutting, Chris; Hall, Emma; Chera, Bhishamjit S.

    2013-11-15

    Purpose: To assess the cost-effectiveness of intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of head-and neck-cancer (HNC). Methods and Materials: We used a Markov model to simulate radiation therapy-induced xerostomia and dysphagia in a hypothetical cohort of 65-year-old HNC patients. Model input parameters were derived from PARSPORT (CRUK/03/005) patient-level trial data and quality-of-life and Medicare cost data from published literature. We calculated average incremental cost-effectiveness ratios (ICERs) from the US health care perspective as cost per quality-adjusted life-year (QALY) gained and compared our ICERs with current cost-effectiveness standards whereby treatment comparators less than $50,000 per QALY gained are considered cost-effective. Results: In the first 2 years after initial treatment, IMRT is not cost-effective compared with 3D-CRT, given an average ICER of $101,100 per QALY gained. However, over 15 years (remaining lifetime on the basis of average life expectancy of a 65-year-old), IMRT is more cost-effective at $34,523 per QALY gained. Conclusion: Although HNC patients receiving IMRT will likely experience reduced xerostomia and dysphagia symptoms, the small quality-of-life benefit associated with IMRT is not cost-effective in the short term but may be cost-effective over a patient's lifetime, assuming benefits persist over time and patients are healthy and likely to live for a sustained period. Additional data quantifying the long-term benefits of IMRT, however, are needed.

  9. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    NASA Astrophysics Data System (ADS)

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels).

  10. Metal organic framework derived magnetically separable 3-dimensional hierarchical Ni@C nanocomposites: Synthesis and adsorption properties

    NASA Astrophysics Data System (ADS)

    Song, Yixuan; Qiang, Tingting; Ye, Ming; Ma, Qiuyang; Fang, Zhen

    2015-12-01

    Design an effective absorbent that has high surface area, and perfect recyclable is imperative for pollution elimination. Herein, we report a facile two-step strategy to fabricate magnetically separable 3-dimensional (3D) hierarchical carbon-coated nickel (Ni@C) nanocomposites by calcinating nickel based metal organic framework (Ni3(OH)2(C8H4O4)2(H2O)4). SEM and TEM images illuminate that the nanocomposites were constructed by 8 nm nickel nanoparticle encapsulated in 3D flake like carbon. The specific surface area of the obtained nanocomposites is up to 120.38 m2 g-1. Room temperature magnetic measurement indicates the nanocomposites show soft magnetism property, which endows the nanocomposites with an ideal fast magnetic separable property. The maximum adsorption capacity of the nanocomposites for rhodamine B is 84.5 mg g-1. Furthermore, the nanocomposites also exhibit a high adsorption capacity for heavy metal ions. The adsorbent can be very easily separated from the solution by using a common magnet without exterior energy. The as-prepared Ni@C nanocomposites can apply in waste water treatment on a large-scale as a new adsorbent with high efficiency and excellent recyclability.

  11. Heating-Rate-Triggered Carbon-Nanotube-based 3-Dimensional Conducting Networks for a Highly Sensitive Noncontact Sensing Device

    PubMed Central

    Tai, Yanlong; Lubineau, Gilles

    2016-01-01

    Recently, flexible and transparent conductive films (TCFs) are drawing more attention for their central role in future applications of flexible electronics. Here, we report the controllable fabrication of TCFs for moisture-sensing applications based on heating-rate-triggered, 3-dimensional porous conducting networks through drop casting lithography of single-walled carbon nanotube (SWCNT)/poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS) ink. How ink formula and baking conditions influence the self-assembled microstructure of the TCFs is discussed. The sensor presents high-performance properties, including a reasonable sheet resistance (2.1 kohm/sq), a high visible-range transmittance (>69%, PET = 90%), and good stability when subjected to cyclic loading (>1000 cycles, better than indium tin oxide film) during processing, when formulation parameters are well optimized (weight ratio of SWCNT to PEDOT:PSS: 1:0.5, SWCNT concentration: 0.3 mg/ml, and heating rate: 36 °C/minute). Moreover, the benefits of these kinds of TCFs were verified through a fully transparent, highly sensitive, rapid response, noncontact moisture-sensing device (5 × 5 sensing pixels). PMID:26818091

  12. Meta-analysis of incidence of early lung toxicity in 3-dimensional conformal irradiation of breast carcinomas

    PubMed Central

    2013-01-01

    Background This meta-analysis aims to ascertain the significance of early lung toxicity with 3-Dimensional (3D) conformal irradiation for breast carcinomas and identify the sub-groups of patients with increased risk. Methods Electronic databases, reference sections of major oncological textbooks and identified studies were searched for synonyms of breast radiotherapy and radiation pneumonitis (RP). Major studies in thoracic irradiation were reviewed to identify factors frequently associated with RP. Meta-analysis for RP incidence estimation and odds ratio calculation were carried out. Results The overall incidence of Clinical and Radiological RP is 14% and 42% respectively. Ten studies were identified. Dose-volume Histogram (DVH) related dosimetric factors (Volume of lung receiving certain dose, Vdose and Mean lung Dose, MLD), supraclavicular fossa (SCF) irradiation and age are significantly associated with RP, but not sequential chemotherapy and concomitant use of Tamoxifen. A poorly powered study in IMN group contributed to the negative finding. Smoking has a trend towards protective effect against RP. Conclusion Use of other modalities may be considered when Ipsilateral lung V20Gy > 30% or MLD > 15 Gy. Extra caution is needed in SCF and IMN irradiation as they are likely to influence these dosimetric parameters. PMID:24229418

  13. MIRD Pamphlet No. 23: Quantitative SPECT for Patient-Specific 3-Dimensional Dosimetry in Internal Radionuclide Therapy

    PubMed Central

    Dewaraja, Yuni K.; Frey, Eric C.; Sgouros, George; Brill, A. Bertrand; Roberson, Peter; Zanzonico, Pat B.; Ljungberg, Michael

    2012-01-01

    In internal radionuclide therapy, a growing interest in voxel-level estimates of tissue-absorbed dose has been driven by the desire to report radiobiologic quantities that account for the biologic consequences of both spatial and temporal nonuniformities in these dose estimates. This report presents an overview of 3-dimensional SPECT methods and requirements for internal dosimetry at both regional and voxel levels. Combined SPECT/CT image-based methods are emphasized, because the CT-derived anatomic information allows one to address multiple technical factors that affect SPECT quantification while facilitating the patient-specific voxel-level dosimetry calculation itself. SPECT imaging and reconstruction techniques for quantification in radionuclide therapy are not necessarily the same as those designed to optimize diagnostic imaging quality. The current overview is intended as an introduction to an upcoming series of MIRD pamphlets with detailed radionuclide-specific recommendations intended to provide best-practice SPECT quantification–based guidance for radionuclide dosimetry. PMID:22743252

  14. A (3 + 3)-dimensional "hypercubic" oxide-ionic conductor: type II Bi2O3-Nb2O5.

    PubMed

    Ling, Chris D; Schmid, Siegbert; Blanchard, Peter E R; Petříček, Vaclav; McIntyre, Garry J; Sharma, Neeraj; Maljuk, Andrey; Yaremchenko, Aleksey A; Kharton, Vladislav V; Gutmann, Matthias; Withers, Ray L

    2013-05-01

    The high-temperature cubic form of bismuth oxide, δ-Bi2O3, is the best intermediate-temperature oxide-ionic conductor known. The most elegant way of stabilizing δ-Bi2O3 to room temperature, while preserving a large part of its conductivity, is by doping with higher valent transition metals to create wide solid-solutions fields with exceedingly rare and complex (3 + 3)-dimensional incommensurately modulated "hypercubic" structures. These materials remain poorly understood because no such structure has ever been quantitatively solved and refined, due to both the complexity of the problem and a lack of adequate experimental data. We have addressed this by growing a large (centimeter scale) crystal using a novel refluxing floating-zone method, collecting high-quality single-crystal neutron diffraction data, and treating its structure together with X-ray diffraction data within the superspace symmetry formalism. The structure can be understood as an "inflated" pyrochlore, in which corner-connected NbO6 octahedral chains move smoothly apart to accommodate the solid solution. While some oxide vacancies are ordered into these chains, the rest are distributed throughout a continuous three-dimensional network of wide δ-Bi2O3-like channels, explaining the high oxide-ionic conductivity compared to commensurately modulated phases in the same pseudobinary system. PMID:23570580

  15. How Technology Can Impact Surgeon Performance: A Randomized Trial Comparing 3-Dimensional versus 2-Dimensional Laparoscopy in Gynecology Oncology.

    PubMed

    Fanfani, Francesco; Rossitto, Cristiano; Restaino, Stefano; Ercoli, Alfredo; Chiantera, Vito; Monterossi, Giorgia; Barbati, Giulia; Scambia, Giovanni

    2016-01-01

    This randomized clinical trial (Canadian Task Force classification I) aimed to compare 2-dimension (2-D) versus 3-dimensional (3-D) laparoscopic hysterectomy and pelvic lymphadenectomy in endometrial and cervical cancer patients. Between December 2014 and March 2015, 90 patients were enrolled: 29 (32.2%) with early or locally advanced cervical cancer after neoadjuvant treatment and 61 (67.8%) with early-stage endometrial cancer. Patients were randomly assigned to undergo 2-D (Group A, n = 48 [53.3%]) or 3-D (Group B, n = 42 [46.7%)]) laparoscopy. Baseline characteristics were superimposable in the 2 groups. Median operative time was similar in the 2 groups. Median estimated blood loss during lymphadenectomy was significantly lower in Group B than in Group A (38 mL [range, 0-450] vs 65 mL [range, 0-200]; p = .033). In cervical cancer patients operative time of pelvic lymphadenectomy performed by "novice" surgeons (those with <10 procedures performed) was statistically significantly lower in Group B (p = .047). No differences in perioperative outcomes and postoperative complications were observed between the 2 groups. The 2-D and 3-D systems can be used safely in laparoscopic hysterectomy. However, the 3-D system could provide key benefits to intraoperative techniques and postoperative outcomes in reducing operative time for "expert" surgeons and in enhancing surgical precision for "novice" surgeons. PMID:27046747

  16. Calculation Of Correction Angles Of 3-Dimensional Vertebral Rotations Based On Bi-Plane X-Ray Photogrammetry

    NASA Astrophysics Data System (ADS)

    Tamaki, Tamotsu; Umezaki, Eisaku; Yamagata, Masatsune; Inoue, Shun-ichi

    1984-10-01

    For the therapy of diseases of spinal deformity such as scoliosis, the data of 3-dimensional and correct spinal configuration are needed. Authors developed the system of spinal configuration analysis using bi-plane X-ray photogrammetry which is strong aid for this subject. The idea of correction angle of rotation of vertebra is introduced for this system. Calculated result under this idea has the clinical meaning because the correction angle is the angle which should be corrected on the treatment such as operation or wearing the equipment. Method of 30° oblique projection which gives the apparent X-ray image and eases the measurement of the anatomically characteristic points is presented. The anatomically characteristic bony points whose images should be measured on a- or b-film are of four points. These are centers of upper and lower end plates of each vertebra the center is calculated from two points which are most distant each other on the contour of vertebral end plate ), the lower end points of root of right and left pedicles. Some clinical applications and the effectiveness of this system are presented.

  17. METEOROLOGICAL AND TRANSPORT MODELING

    EPA Science Inventory

    Advanced air quality simulation models, such as CMAQ, as well as other transport and dispersion models, require accurate and detailed meteorology fields. These meteorology fields include primary 3-dimensional dynamical and thermodynamical variables (e.g., winds, temperature, mo...

  18. Treatment-Related Morbidity in Prostate Cancer: A Comparison of 3-Dimensional Conformal Radiation Therapy With and Without Image Guidance Using Implanted Fiducial Markers

    SciTech Connect

    Singh, Jasmeet; Greer, Peter B.; White, Martin A.; Parker, Joel; Patterson, Jackie; Tang, Colin I.; Capp, Anne; Wratten, Christopher; Denham, James W.

    2013-03-15

    Purpose: To estimate the prevalence of rectal and urinary dysfunctional symptoms using image guided radiation therapy (IGRT) with fiducials and magnetic resonance planning for prostate cancer. Methods and Materials: During the implementation stages of IGRT between September 2008 and March 2010, 367 consecutive patients were treated with prostatic irradiation using 3-dimensional conformal radiation therapy with and without IGRT (non-IGRT). In November 2010, these men were asked to report their bowel and bladder symptoms using a postal questionnaire. The proportions of patients with moderate to severe symptoms in these groups were compared using logistic regression models adjusted for tumor and treatment characteristic variables. Results: Of the 282 respondents, the 154 selected for IGRT had higher stage tumors, received higher prescribed doses, and had larger volumes of rectum receiving high dosage than did the 128 selected for non-IGRT. The follow-up duration was 8 to 26 months. Compared with the non-IGRT group, improvement was noted in all dysfunctional rectal symptoms using IGRT. In multivariable analyses, IGRT improved rectal pain (odds ratio [OR] 0.07 [0.009-0.7], P=.02), urgency (OR 0.27 [0.11-0.63], P=<.01), diarrhea (OR 0.009 [0.02-0.35], P<.01), and change in bowel habits (OR 0.18 [0.06-0.52], P<.010). No correlation was observed between rectal symptom levels and dose-volume histogram data. Urinary dysfunctional symptoms were similar in both treatment groups. Conclusions: In comparison with men selected for non-IGRT, a significant reduction of bowel dysfunctional symptoms was confirmed in men selected for IGRT, even though they had larger volumes of rectum treated to higher doses.

  19. Reliability of 3-Dimensional Measures of Single-Leg Drop Landing Across 3 Institutions: Implications for Multicenter Research for Secondary ACL-Injury Prevention

    PubMed Central

    Myer, Gregory D.; Bates, Nathaniel A.; DiCesare, Christopher A.; Barber Foss, Kim D.; Thomas, Staci M.; Wordeman, Samuel C.; Sugimoto, Dai; Roewer, Benjamin D.; Medina McKeon, Jennifer M.; Di Stasi, Stephanie L.; Noehren, Brian W.; McNally, Michael; Ford, Kevin R.; Kiefer, Adam W.; Hewett, Timothy E.

    2016-01-01

    Context Due to the limitations of single-center studies in achieving appropriate sampling with relatively rare disorders, multicenter collaborations have been proposed to achieve desired sampling levels. However, documented reliability of biomechanical data is necessary for multicenter injury-prevention studies and is currently unavailable. Objective To measure the reliability of 3-dimensional (3D) biomechanical waveforms from kinetic and kinematic variables during a single-leg landing (SLL) performed at 3 separate testing facilities. Design Multicenter reliability study. Setting 3 laboratories. Patients 25 female junior varsity and varsity high school volleyball players who visited each facility over a 1-mo period. Intervention Subjects were instrumented with 43 reflective markers to record 3D motion as they performed SLLs. During the SLL the athlete balanced on 1 leg, dropped down off of a 31-cm-high box, and landed on the same leg. Kinematic and kinetic data from both legs were processed from 2 trials across the 3 laboratories. Main Outcome Measures Coefficients of multiple correlations (CMC) were used to statistically compare each joint angle and moment waveform for the first 500 ms of landing. Results Average CMC for lower-extremity sagittal-plane motion was excellent between laboratories (hip .98, knee .95, ankle .99). Average CMC for lower-extremity frontal-plane motion was also excellent between laboratories (hip .98, knee .80, ankle .93). Kinetic waveforms were repeatable in each plane of rotation (3-center mean CMC ≥.71), while knee sagittal-plane moments were the most consistent measure across sites (3-center mean CMC ≥.94). Conclusions CMC waveform comparisons were similar relative to the joint measured to previously published reports of between-sessions reliability of sagittal- and frontal-plane biomechanics performed at a single institution. Continued research is needed to further standardize technology and methods to help ensure that highly

  20. DNA damage intensity in fibroblasts in a 3-dimensional collagen matrix correlates with the Bragg curve energy distribution of a high LET particle

    PubMed Central

    Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.

    2012-01-01

    Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648

  1. Exposure of Female Macaques to Western-Style Diet With or Without Chronic T In Vivo Alters Secondary Follicle Function During Encapsulated 3-Dimensional Culture

    PubMed Central

    McGee, Whitney K.; Bishop, Cecily V.; Park, Byung S.; Cameron, Judy L.; Zelinski, Mary B.; Stouffer, Richard L.

    2015-01-01

    Increased adiposity and hyperandrogenemia alter reproductive parameters in both animal models and women, but their effects on preantral follicles in the ovary remain unknown. We recently reported that Western-style diet (WSD) consumption over 1 year, with or without chronic exposure to elevated circulating T, increased the body fat percentage, elicited insulin resistance, suppressed estradiol and progesterone production, as well as altered the numbers, size, and dynamics of antral follicles in the ovary during the menstrual cycle in female macaques. Therefore, experiments were designed to compare the WSD and WSD+T effects to age-matched controls on the survival, growth, and function of isolated secondary follicles during 5 weeks of encapsulated 3-dimensional culture. Follicle survival significantly declined in the WSD and WSD+T groups compared with the control (CTRL) group. Although media progesterone levels were comparable among groups, androstenedione and estradiol levels were markedly reduced in the WSD and WSD+T groups compared with the CTRL group at week 5. Anti-Müllerian hormone levels peaked at week 3 and were lower in the WSD+T group compared with the WSD or CTRL group. Vascular endothelial growth factor levels also decreased at week 5 in the WSD+T group compared with the WSD or CTRL group. After human chorionic gonadotropin exposure, only antral follicles developed from the CTRL group yielded metaphase II oocytes. Thus, WSD with or without T exposure affects the cohort of secondary follicles in vivo, suppressing their subsequent survival, production of steroid hormones and local factors, as well as oocyte maturation in vitro. PMID:25545382

  2. Reconstruction of a seminiferous tubule-like structure in a 3 dimensional culture system of re-aggregated mouse neonatal testicular cells within a collagen matrix.

    PubMed

    Zhang, Jidong; Hatakeyama, Jun; Eto, Ko; Abe, Shin-Ichi

    2014-09-01

    Male gonad development is initiated by the aggregation of pre-Sertoli cells (SCs), which surround germ cells to form cords. Several attempts to reconstruct testes from dissociated testicular cells have been made; however, only very limited morphogenesis beyond seminiferous cord formation has been achieved. Therefore, we aimed to reconstruct seminiferous tubules using a 3-dimensional (D) re-aggregate culture of testicular cells, which were dissociated from 6-dpp neonatal mice, inside a collagen matrix. We performed a short-term culture (for 3 days) and a long-term culture (up to 3 wks). The addition of KnockOut Serum Replacement (KSR) promoted (1) the enlargement of SC re-aggregates; (2) the attachment of peritubular myoid (PTM) cells around the SC re-aggregates; (3) the sorting of germ cells inside, and Leydig cells outside, seminiferous cord-like structures; (4) the alignment of SC polarity inside a seminiferous cord-like structure relative to the basement membrane; (5) the differentiation of SCs (the expression of the androgen receptor); (6) the formation of a blood-testis-barrier between the SCs; (7) SC elongation and lumen formation; and (8) the proliferation of SCs and spermatogonia, as well as the differentiation of spermatogonia into primary spermatocytes. Eventually, KSR promoted the formation of seminiferous tubule-like structures, which accompanied germ cell differentiation. However, these morphogenetic events did not occur in the absence of KSR. This in vitro system presents an excellent model with which to identify the possible factors that induce these events and to analyze the mechanisms that underlie cellular interactions during testicular morphogenesis and germ cell differentiation. PMID:24717811

  3. Application of a parallel 3-dimensional hydrogeochemistry HPF code to a proposed waste disposal site at the Oak Ridge National Laboratory

    SciTech Connect

    Gwo, Jin-Ping; Yeh, Gour-Tsyh

    1997-02-01

    The objectives of this study are (1) to parallelize a 3-dimensional hydrogeochemistry code and (2) to apply the parallel code to a proposed waste disposal site at the Oak Ridge National Laboratory (ORNL). The 2-dimensional hydrogeochemistry code HYDROGEOCHEM, developed at the Pennsylvania State University for coupled subsurface solute transport and chemical equilibrium processes, was first modified to accommodate 3-dimensional problem domains. A bi-conjugate gradient stabilized linear matrix solver was then incorporated to solve the matrix equation. We chose to parallelize the 3-dimensional code on the Intel Paragons at ORNL by using an HPF (high performance FORTRAN) compiler developed at PGI. The data- and task-parallel algorithms available in the HPF compiler proved to be highly efficient for the geochemistry calculation. This calculation can be easily implemented in HPF formats and is perfectly parallel because the chemical speciation on one finite-element node is virtually independent of those on the others. The parallel code was applied to a subwatershed of the Melton Branch at ORNL. Chemical heterogeneity, in addition to physical heterogeneities of the geological formations, has been identified as one of the major factors that affect the fate and transport of contaminants at ORNL. This study demonstrated an application of the 3-dimensional hydrogeochemistry code on the Melton Branch site. A uranium tailing problem that involved in aqueous complexation and precipitation-dissolution was tested. Performance statistics was collected on the Intel Paragons at ORNL. Implications of these results on the further optimization of the code were discussed.

  4. Comparative Analysis of Visitors' Experiences and Knowledge Acquisition between a 3Dimensional Online and a Real-World Art Museum Tour

    ERIC Educational Resources Information Center

    D' Alba, Adriana; Jones, Greg; Wright, Robert

    2015-01-01

    This paper discusses a study conducted in the fall of 2011 and the spring of 2012 which explored the use of existing 3D virtual environment technologies by bringing a selected permanent museum exhibit displayed at a museum located in central Mexico into an online 3Dimensional experience. Using mixed methods, the research study analyzed knowledge…

  5. Evaluation of postoperative lymphocele according to amounts and symptoms by using 3-dimensional CT volumetry in kidney transplant recipients

    PubMed Central

    Jun, Heungman; Hwang, Sung Ho; Lim, Sungyoon; Kim, Myung Gyu

    2016-01-01

    Purpose To analyze the risk factors for postoperative lymphocele, for predicting and preventing complications. Methods We evaluated 92 kidney transplant recipients with multidetector CT (MDCT) at 1-month posttransplantation. From admission and 1-month postoperative records, data including diabetes, dialysis type, immunosuppressant use, steroid pulse therapy, and transplantation side were collected. Lymphocele volume was measured with 3-dimensional reconstructed, nonenhanced MDCT at one month postoperatively. The correlations between risk factors and lymphocele volume and between risk factors and symptomatic lymphocele (SyL) were analyzed. The cutoff was calculated by using the receiver operating characteristic (ROC) curve for SyL volume. Results Among 92 recipients, the mean volume was 44.53 ± 176.43 cm3 and 12 had SyL. Univariable analysis between risk factors and lymphocele volume indicated that donor age, retransplantation, and inferiorly located lymphocele were statistically significant. The ROC curve for SyL showed that 33.20 cm3 was the cutoff, with 83.3% sensitivity and 93.7% specificity. On univariable analysis between risk factors and SyL, steroid pulse, inferiorly located lymphocele, and >33.20 cm3 were statistically significant. Multivariable analysis indicated that steroid pulse, >33.20 cm3, and serum creatinine level at one month were significant factors. Conclusion Risk factors including donor age, retransplantation, steroid pulse therapy, and inferiorly located lymphocele are important predictors of large lymphoceles or SyL. In high-risk recipients, careful monitoring of renal function and early image surveillance such as CT or ultrasound are recommended. If the asymptomatic lymphocele is >33.20 cm3 or located inferiorly, early interventions can be considered while carefully observing the changes in symptoms. PMID:27617254

  6. Automorphosis of higher plants in space is simulated by using a 3-dimensional clinostat or by application of chemicals

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Hoshino, T.; Hitotsubashi, R.; Yamashita, M.; Ueda, J.

    In STS-95 space experiments, etiolated pea seedlings grown under microgravity conditions in space have shown to be automorphosis. Epicotyls were almost straight but the most oriented toward the direction far from their cotyledons with ca. 45 degrees from the vertical line as compared with that on earth. In order to know the mechanism of microgravity conditions in space to induce automorphosis, we introduced simulated microgravity conditions on a 3-dimensional clinostat, resulting in the successful induction of automorphosis-like growth and development. Kinetic studies revealed that epicotyls bent at their basal region or near cotyledonary node toward the direction far from the cotyledons with about 45 degrees in both seedlings grown on 1 g and under simulated microgravity conditions on the clinostat within 48 hrs after watering. Thereafter epicotyls grew keeping this orientation under simulated microgravity conditions on the clinostat, whereas those grown on 1 g changed the growth direction to vertical direction by negative gravitropic response. Automorphosis-like growth and development was induced by the application of auxin polar transport inhibitors (2,3,5-triiodobenzoic acid, N-(1-naphtyl)phthalamic acid, 9-hydroxyfluorene-9-carboxylic acid), but not an anti-auxin, p-chlorophenoxyisobutyric acid. Automorphosis-like epicotyl bending was also phenocopied by the application of inhibitors of stretch-activated channel, LaCl3 and GdCl3, and by the application of an inhibitor of protein kinase, cantharidin. These results suggest that automorphosis-like growth in epicotyls of etiolated pea seedlings is due to suppression of negative gravitropic responses on 1 g, and the growth and development of etiolated pea seedlings under 1 g conditions requires for normal activities of auxin polar transport and the gravisensing system relating to calcium channels. Possible mechanisms of perception and transduction of gravity signals to induce automorphosis are discussed.

  7. Analysis of shape and motion of the mitral annulus in subjects with and without cardiomyopathy by echocardiographic 3-dimensional reconstruction

    NASA Technical Reports Server (NTRS)

    Flachskampf, F. A.; Chandra, S.; Gaddipatti, A.; Levine, R. A.; Weyman, A. E.; Ameling, W.; Hanrath, P.; Thomas, J. D.

    2000-01-01

    The shape and dynamics of the mitral annulus of 10 patients without heart disease (controls), 3 patients with dilated cardiomyopathy, and 5 patients with hypertrophic obstructive cardiomyopathy and normal systolic function were analyzed by transesophageal echocardiography and 3-dimensional reconstruction. Mitral annular orifice area, apico-basal motion of the annulus, and nonplanarity were calculated over time. Annular area was largest in end diastole and smallest in end systole. Mean areas were 11.8 +/- 2.5 cm(2) (controls), 15.2 +/- 4.2 cm(2) (dilated cardiomyopathy), and 10.2 +/- 2.4 cm(2) (hypertrophic cardiomyopathy) (P = not significant). After correction for body surface, annuli from patients with normal left ventricular function were smaller than annuli from patients with dilated cardiomyopathy (5.9 +/- 1.2 cm(2)/m(2) vs 7.7 +/- 1.0 cm(2)/m(2); P <.02). The change in area during the cardiac cycle showed significant differences: 23.8% +/- 5.1% (controls), 13.2% +/- 2.3% (dilated cardiomyopathy), and 32.4% +/- 7.6% (hypertrophic cardiomyopathy) (P <.001). Apico-basal motion was highest in controls, followed by those with hypertrophic obstructive and dilated cardiomyopathy (1.0 +/- 0.3 cm, 0.8 +/- 0.2 cm, 0.3 +/- 0.2 cm, respectively; P <.01). Visual inspection and Fourier analysis showed a consistent pattern of anteroseptal and posterolateral elevations of the annulus toward the left atrium. In conclusion, although area changes and apico-basal motion of the mitral annulus strongly depend on left ventricular systolic function, nonplanarity is a structural feature preserved throughout the cardiac cycle in all three groups.

  8. Effect of Transcatheter Mitral Annuloplasty With the Cardioband Device on 3-Dimensional Geometry of the Mitral Annulus.

    PubMed

    Arsalan, Mani; Agricola, Eustachio; Alfieri, Ottavio; Baldus, Stephan; Colombo, Antonio; Filardo, Giovanni; Hammerstingl, Christophe; Huntgeburth, Michael; Kreidel, Felix; Kuck, Karl-Heinz; LaCanna, Giovanni; Messika-Zeitoun, David; Maisano, Francesco; Nickenig, Georg; Pollock, Benjamin D; Roberts, Bradley J; Vahanian, Alec; Grayburn, Paul A

    2016-09-01

    This study was performed to assess the acute intraprocedural effects of transcatheter direct mitral annuloplasty using the Cardioband device on 3-dimensional (3D) anatomy of the mitral annulus. Of 45 patients with functional mitral regurgitation (MR) enrolled in a single arm, multicenter, prospective trial, 22 had complete pre- and post-implant 3D transesophageal echocardiography (TEE) images stored in native data format that allowed off-line 3D reconstruction. Images with the highest volume rate and best image quality were selected for analysis. Multiple measurements of annular geometry were compared from baseline to post-implant using paired t tests with Bonferroni correction to account for multiple comparisons. The device was successfully implanted in all patients, and MR was reduced to moderate in 2 patients, mild in 17 patients, and trace in 3 patients after final device cinching. Compared with preprocedural TEE, postprocedural TEE showed statistically significantly reductions in annular circumference (137 ± 15 vs 128 ± 17 mm; p = 0.042), intercommissural distance (42.4 ± 4.3 vs 38.6 ± 4.4 mm; p = 0.029), anteroposterior distance (40.0 ± 5.4 vs 37.0 ± 5.7 mm; p = 0.025), and aortic-mitral angle (117 ± 8° vs 112 ± 8°; p = 0.032). This study demonstrates that transcatheter direct mitral annuloplasty with the Cardioband device results in acute remodeling of the mitral annulus with successful reduction of functional MR. PMID:27389565

  9. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    SciTech Connect

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van; Remeijer, Peter

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  10. Control of 3-dimensional collagen matrix polymerization for reproducible human mammary fibroblast cell culture in microfluidic devices.

    PubMed

    Sung, Kyung Eun; Su, Gui; Pehlke, Carolyn; Trier, Steven M; Eliceiri, Kevin W; Keely, Patricia J; Friedl, Andreas; Beebe, David J

    2009-09-01

    Interest in constructing a reliable 3-dimensional (3D) collagen culture platform in microfabricated systems is increasing as researchers strive to investigate reciprocal interaction between extracellular matrix (ECM) and cells under various conditions. However, in comparison to conventional 2-dimensional (2D) cell culture research, relatively little work has been reported about the polymerization of collagen type I matrix in microsystems. We, thus, present a study of 3D collagen polymerization to achieve reproducible 3D cell culture in microfluidic devices. Array-based microchannels are employed to efficiently examine various polymerization conditions, providing more replicates with less sample volume than conventional means. Collagen fibers assembled in microchannels were almost two-times thinner than those in conventional gels prepared under similar conditions, and the fiber thickness difference influenced viability and morphology of embedded human mammary fibroblast (HMF) cells. HMF cells contained more actin stress fibers and showed increased viability in 3D collagen matrix composed of thicker collagen fibers. Relatively low pH of the collagen solution within a physiological pH range (6.5-8.5) and pre-incubation at low temperature (approximately 4 degrees C) before polymerization at 37 degrees C allow sufficient time for molecular assembly, generating thicker collagen fibers and enhancing HMF cell viability. The results provide the basis for improved process control and reproducibility of 3D collagen matrix culture in microchannels, allowing predictable modifications to provide optimum conditions for specific cell types. In addition, the presented method lays the foundation for high throughput 3D cellular screening. PMID:19540580

  11. Joint environmental assessment for western NPR-1 3-dimensional seismic project at Naval Petroleum Reserve No. 1, Kern County, California

    SciTech Connect

    1996-05-01

    The Department of Energy (DOE), in conjunction with the Bureau of Land Management (BLM), has prepared an Environmental Assessment (DOE/EA-1124) to identify and evaluate the potential environmental impacts of the proposed geophysical seismic survey on and adjacent to the Naval Petroleum Reserve No.1 (NPR-1), located approximately 35 miles west of Bakersfield, California. NPR-1 is jointly owned and operated by the federal government and Chevron U.S.A. Production Company. The federal government owns about 78 percent of NPR-1, while Chevron owns the remaining 22 percent. The government`s interest is under the jurisdiction of DOE, which has contracted with Bechtel Petroleum Operations, Inc. (BPOI) for the operation and management of the reserve. The 3-dimensional seismic survey would take place on NPR-1 lands and on public and private lands adjacent to NPR-1. This project would involve lands owned by BLM, California Department of Fish and Game (CDFG), California Energy Commission (CEC), The Nature Conservancy, the Center for Natural Lands Management, oil companies (Chevron, Texaco, and Mobil), and several private individuals. The proposed action is designed to provide seismic data for the analysis of the subsurface geology extant in western NPR-1 with the goal of better defining the commercial limits of a currently producing reservoir (Northwest Stevens) and three prospective hydrocarbon bearing zones: the {open_quotes}A Fan{close_quotes} in Section 7R, the 19R Structure in Section 19R, and the 13Z Structure in Section 13Z. Interpreting the data is expected to provide NPR-1 owners with more accurate locations of structural highs, faults, and pinchouts to maximize the recovery of the available hydrocarbon resources in western NPR-1. Completion of this project is expected to increase NPR-1 recoverable reserves, and reduce the risks and costs associated with further exploration and development in the area.

  12. Chondroregulatory action of prolactin on proliferation and differentiation of mouse chondrogenic ATDC5 cells in 3-dimensional micromass cultures

    SciTech Connect

    Seriwatanachai, Dutmanee; Krishnamra, Nateetip; Charoenphandhu, Narattaphol

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Mouse chondrogenic ATDC5 cells expressed PRL receptor mRNAs and proteins. Black-Right-Pointing-Pointer Low PRL concentration (10 ng/mL) increased chondrocyte viability and differentiation. Black-Right-Pointing-Pointer Higher PRL concentrations ( Greater-Than-Or-Slanted-Equal-To 100 ng/mL) decreased viability and increased apoptosis. -- Abstract: A recent investigation in lactating rats has provided evidence that the lactogenic hormone prolactin (PRL) increases endochondral bone growth and bone elongation, presumably by accelerating apoptosis of hypertrophic chondrocytes in the growth plate and/or subsequent chondrogenic matrix mineralization. Herein, we demonstrated the direct chondroregulatory action of PRL on proliferation, differentiation and apoptosis of chondrocytes in 3-dimensional micromass culture of mouse chondrogenic ATDC5 cell line. The results showed that ATDC5 cells expressed PRL receptor (PRLR) transcripts, and responded typically to PRL by downregulating PRLR expression. Exposure to a low PRL concentration of 10 ng/mL, comparable to the normal levels in male and non-pregnant female rats, increased chondrocyte viability, differentiation, proteoglycan accumulation, and mRNA expression of several chondrogenic differentiation markers, such as Sox9, ALP and Hspg2. In contrast, high PRL concentrations of Greater-Than-Or-Slanted-Equal-To 100 ng/mL, comparable to the levels in pregnancy or lactation, decreased chondrocyte viability by inducing apoptosis, with no effect on chondrogenic marker expression. It could be concluded that chondrocytes directly but differentially responded to non-pregnant and pregnant/lactating levels of PRL, thus suggesting the stimulatory effect of PRL on chondrogenesis in young growing individuals, and supporting the hypothesis of hypertrophic chondrocyte apoptosis in the growth plate of lactating rats.

  13. On the Need for Comprehensive Validation of Deformable Image Registration, Investigated With a Novel 3-Dimensional Deformable Dosimeter

    SciTech Connect

    Juang, Titania; Das, Shiva; Adamovics, John; Benning, Ron; Oldham, Mark

    2013-10-01

    Purpose: To introduce and evaluate a novel deformable 3-dimensional (3D) dosimetry system (Presage-Def/Optical-CT) and its application toward investigating the accuracy of dose deformation in a commercial deformable image registration (DIR) package. Methods and Materials: Presage-Def is a new dosimetry material consisting of an elastic polyurethane matrix doped with radiochromic leuco dye. Radiologic and mechanical properties were characterized using standard techniques. Dose-tracking feasibility was evaluated by comparing dose distributions between dosimeters irradiated with and without 27% lateral compression. A checkerboard plan of 5-mm square fields enabled precise measurement of true deformation using 3D dosimetry. Predicted deformation was determined from a commercial DIR algorithm. Results: Presage-Def exhibited a linear dose response with sensitivity of 0.0032 ΔOD/(Gy∙cm). Mass density is 1.02 g/cm{sup 3}, and effective atomic number is within 1.5% of water over a broad (0.03-10 MeV) energy range, indicating good water-equivalence. Elastic characteristics were close to that of liver tissue, with Young's modulus of 13.5-887 kPa over a stress range of 0.233-303 kPa, and Poisson's ratio of 0.475 (SE, 0.036). The Presage-Def/Optical-CT system successfully imaged the nondeformed and deformed dose distributions, with isotropic resolution of 1 mm. Comparison with the predicted deformed 3D dose distribution identified inaccuracies in the commercial DIR algorithm. Although external contours were accurately deformed (submillimeter accuracy), volumetric dose deformation was poor. Checkerboard field positioning and dimension errors of up to 9 and 14 mm, respectively, were identified, and the 3D DIR-deformed dose γ passing rate was only γ{sub 3%/3} {sub mm} = 60.0%. Conclusions: The Presage-Def/Optical-CT system shows strong potential for comprehensive investigation of DIR algorithm accuracy. Substantial errors in a commercial DIR were found in the conditions

  14. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    PubMed Central

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  15. Optimization of Magnetization-Prepared 3-Dimensional Fluid Attenuated Inversion Recovery Imaging for Lesion Detection at 7 T

    PubMed Central

    Saranathan, Manojkumar; Tourdias, Thomas; Kerr, Adam B.; Bernstein, Jeff D.; Kerchner, Geoffrey A.; Han, May H.; Rutt, Brian K.

    2016-01-01

    Purpose The aim of this study was to optimize the 3-dimensional (3D) fluid attenuated inversion recovery (FLAIR) pulse sequence for isotropic high-spatial-resolution imaging of white matter (WM) and cortical lesions at 7 T. Materials and Methods We added a magnetization-prepared (MP) FLAIR module to a Cube 3D fast spin echo sequence and optimized the refocusing flip angle train using extended phase graph simulations, taking into account image contrast, specific absorption rate (SAR), and signal-to-noise ratio (SNR) as well as T1/T2 values of the different species of interest (WM, grey matter, lesions) at 7 T. We also effected improved preparation homogeneity at 7 T by redesigning the refocusing pulse used in the MP segments. Two sets of refocusing flip angle trains—(a) an SNR-optimal and (b) a contrast-optimal set—were derived and used to scan 7 patients with Alzheimer disease/cognitive impairment and 7 patients with multiple sclerosis. Conventional constant refocusing flip MP-FLAIR images were also acquired for comparison. Lesion SNR, contrast, and lesion count were compared between the 2 optimized and the standard FLAIR sequences. Results Whole brain coverage with 0.8 mm3 isotropic spatial resolution in ~5-minute scan times was achieved using the optimized 3D FLAIR sequences at clinically acceptable SAR levels. The SNR efficiency of the SNR-optimal sequence was significantly better than that of conventional constant refocusing flip MP-FLAIR sequence, whereas the scan time was reduced more than 2-fold (~5 vs >10 minutes). The contrast efficiency of the contrast-optimal sequence was comparable with that of the constant refocusing flip sequence. Lesion load ascertained by lesion counting was not significantly different among the sequences. Conclusion Magnetization-prepared FLAIR-Cube with refocusing flip angle trains optimized for SNR and contrast can be used to characterize WM and cortical lesions at 7 Twith 0.8 mm3 isotropic resolution in short scan times and

  16. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles.

    PubMed

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  17. The effectiveness and user perception of 3-dimensional digital human anatomy in an online undergraduate anatomy laboratory

    NASA Astrophysics Data System (ADS)

    Hilbelink, Amy Joanne

    2007-12-01

    The primary purpose of this study was to determine the effectiveness of implementing desktop 3-dimensional (3D) stereo images of human anatomy into an undergraduate human anatomy distance laboratory. User perceptions of 2D and 3D images were gathered via questionnaire in order to determine ease of use and level of satisfaction associated with the 3D software in the online learning environment. Mayer's (2001, p. 184) principles of design were used to develop the study materials that consisted of PowerPoint presentations and AVI files accessed via Blackboard. The research design employed a mixed-methods approach. Volunteers each were administered a demographic survey and were then stratified into groups based upon pre-test scores. A total sample size of 62 pairs was available for combined data analysis. Quantitative research questions regarding the effectiveness of 2D versus the 3D treatment were analyzed using a doubly-multivariate repeated measures (Doubly-MANOVA) design. Paired test scores achieved by undergraduates on a laboratory practical of identification and spatial relationships of the bones and features of a human skull were used in the analysis. The questionnaire designed to gather user perceptions consisted of quantitative and qualitative questions. Response frequencies were analyzed for the two groups and common themes were noted. Results revealed a statistically significant difference in group means for the main effect of the treatment groups 2D and 3D and for the variables of identification and relationship with the 3D group outperforming the 2D group on both dependent variables. Effect sizes were determined to be small, 0.215 for the identification variable and 0.359 for the relationship variable. Overall, all students liked the convenience of using PowerPoint and AVI files online. The 3D group felt their PowerPoint was more realistic than did the 2D group and both groups appreciated the detailed labeling of the online images. One third of the

  18. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging.

    PubMed

    Brahme, Anders

    2003-01-01

    PET-CT is probably the ultimate tool for accurate tumor imaging and 3-dimensional in vivo predictive assay of radiation sensitivity. By imaging the tumor twice during the early course of therapy, it should be possible to quantify both the tumor responsiveness to therapy and the rate of loss of functional tumor cells using the presently derived equations. This new information is ideal for use together with biologically based therapy optimization and makes it possible accurately to quantitate the dose-response relation, at least for the bulk of the tumor cells. Since the tumor responsiveness is available after about one and a half weeks of therapy, the information is also ideal for use with adaptive therapy where all forms of deviations from the original treatment plan can be accurately corrected for since they generally influence the still functional, but mainly doomed tumor cell compartment. Thus, uncertainties such as: 1) the geometric misalignment of the therapeutic beam with the tumor, 2) deviations of the delivered dose distribution from the planned delivery whether due to 3) an erroneous treatment planning algorithm or 4) treatment equipment uncertainties and 5) deviations in the anticipated responsiveness of the tumor of the patient based on historical response data, can all be taken into account. Fortunately, when a larger tumor cell compartment than expected is seen an increased dose during the remainder of the treatment should always be delivered independently on whichever combination of the above deviations was the true reason. With high-energy photon and hadron therapy it is even possible to image the integral dose delivery in vivo during or after a treatment using PET-CT imaging. The high-energy photons above about 20 MeV produce positron emitters through photonuclear reactions in tissue which are proportional to the photon fluence and thus approximately also to the absorbed dose. Light ion beams, the ultimate radiation modality with regard to physical

  19. 3-D Visualisation: Using Internet-based Activities to Enhance Student Understanding of 3-dimensional Spatial Relationships

    NASA Astrophysics Data System (ADS)

    Boyle, A. P.; Williams, M.; Williams, P.

    2011-12-01

    Spatial ability forms its own category separate from verbal ability. Various spatial abilities have been identified over the last three decades and classified into three types: mental rotation, spatial rotation and spatial visualization, which have been linked to high performance in STEM subjects. Geoscience demands spatial thinking from learners and practitioners, and spatial literacy has been seen as a fundamental skill in Geography, Earth & Environmental Sciences (GEES disciplines) essential for progression. First year GEES students not only have to cope with new learning and teaching environments (Maguire et al., 2008), but, arriving with different science backgrounds, are faced with the challenge of developing essential skills that may be novel for them. These essential skills are subject-specific, as well as transferable, and require an understanding of 3-dimensional spatial relationships. However, spatial skills can be troublesome for some students to master. Not only do many students find difficulty in acquiring spatial skills, facing a succession of hurdles that need to be overcome in developing their understanding, but also educators, often strong spatial thinkers themselves and unaware of the degree to which some students are spatially-challenged, may find it difficult to help. Recent studies have suggested that performance on abstract and applied spatial tasks may be enhanced through instruction and practice and spatially-intensive geoscience courses may strengthen performance on spatial tasks. At Liverpool, many first year geoscience modules require understanding of 3-D spatial relationships, often from initial 2-D observations (e.g. mineralogy, petrography, vulcanology, sedimentology, palaeontology, geological map work, structural geology and fieldwork). In this paper we outline work, supported by the UK Subject Centre for Geography, Earth and Environmental Sciences (GEES), involving first year geosciences students at Liverpool, in which we explored

  20. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    SciTech Connect

    Arinilhaq,; Widita, Rena

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  1. Quantitative analysis of aortic regurgitation: real-time 3-dimensional and 2-dimensional color Doppler echocardiographic method--a clinical and a chronic animal study

    NASA Technical Reports Server (NTRS)

    Shiota, Takahiro; Jones, Michael; Tsujino, Hiroyuki; Qin, Jian Xin; Zetts, Arthur D.; Greenberg, Neil L.; Cardon, Lisa A.; Panza, Julio A.; Thomas, James D.

    2002-01-01

    BACKGROUND: For evaluating patients with aortic regurgitation (AR), regurgitant volumes, left ventricular (LV) stroke volumes (SV), and absolute LV volumes are valuable indices. AIM: The aim of this study was to validate the combination of real-time 3-dimensional echocardiography (3DE) and semiautomated digital color Doppler cardiac flow measurement (ACM) for quantifying absolute LV volumes, LVSV, and AR volumes using an animal model of chronic AR and to investigate its clinical applicability. METHODS: In 8 sheep, a total of 26 hemodynamic states were obtained pharmacologically 20 weeks after the aortic valve noncoronary (n = 4) or right coronary (n = 4) leaflet was incised to produce AR. Reference standard LVSV and AR volume were determined using the electromagnetic flow method (EM). Simultaneous epicardial real-time 3DE studies were performed to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV), and LVSV by subtracting LVESV from LVEDV. Simultaneous ACM was performed to obtain LVSV and transmitral flows; AR volume was calculated by subtracting transmitral flow volume from LVSV. In a total of 19 patients with AR, real-time 3DE and ACM were used to obtain LVSVs and these were compared with each other. RESULTS: A strong relationship was found between LVSV derived from EM and those from the real-time 3DE (r = 0.93, P <.001, mean difference (3D - EM) = -1.0 +/- 9.8 mL). A good relationship between LVSV and AR volumes derived from EM and those by ACM was found (r = 0.88, P <.001). A good relationship between LVSV derived from real-time 3DE and that from ACM was observed (r = 0.73, P <.01, mean difference = 2.5 +/- 7.9 mL). In patients, a good relationship between LVSV obtained by real-time 3DE and ACM was found (r = 0.90, P <.001, mean difference = 0.6 +/- 9.8 mL). CONCLUSION: The combination of ACM and real-time 3DE for quantifying LV volumes, LVSV, and AR volumes was validated by the chronic animal study and was shown to be clinically applicable.

  2. Potential for Improved Intelligence Quotient Using Volumetric Modulated Arc Therapy Compared With Conventional 3-Dimensional Conformal Radiation for Whole-Ventricular Radiation in Children

    SciTech Connect

    Qi, X. Sharon; Stinauer, Michelle; Rogers, Brion; Madden, Jennifer R.; Wilkening, Greta N.; Liu, Arthur K.

    2012-12-01

    Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobe sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.

  3. Dependence of Coronary 3-Dimensional Dose Maps on Coronary Topologies and Beam Set in Breast Radiation Therapy: A Study Based on CT Angiographies

    SciTech Connect

    Moignier, Alexandra; Girinsky, Théodore; Paul, Jean-François; and others

    2014-05-01

    Purpose: In left-side breast radiation therapy (RT), doses to the left main (LM) and left anterior descending (LAD) coronary arteries are usually assessed after delineation by prior anatomic knowledge on the treatment planning computed tomography (CT) scan. In this study, dose sensitivity due to interindividual coronary topology variation was assessed, and hot spots were located. Methods and Materials: Twenty-two detailed heart models, created from heart computed tomography angiographies, were fitted into a single representative female thorax. Two breast RT protocols were then simulated into a treatment planning system: the first protocol comprised tangential and tumoral bed beams (TGs{sub T}B) at 50 + 16 Gy, the second protocol added internal mammary chain beams at 50 Gy to TGs{sub T}B (TGs{sub T}B{sub I}MC). For the heart, the LAD, and the LM, several dose indicators were calculated: dose-volume histograms, mean dose (D{sub mean}), minimal dose received by the most irradiated 2% of the volume (D{sub 2%}), and 3-dimensional (3D) dose maps. Variations of these indicators with anatomies were studied. Results: For the LM, the intermodel dispersion of D{sub mean} and D{sub 2%} was 10% and 11%, respectively, with TGs{sub T}B and 40% and 80%, respectively, with TGs{sub T}B{sub I}MC. For the LAD, these dispersions were 19% (D{sub mean}) and 49% (D{sub 2%}) with TGs{sub T}B and 35% (D{sub mean}) and 76% (D{sub 2%}) with TGs{sub T}B{sub I}MC. The 3D dose maps revealed that the internal mammary chain beams induced hot spots between 20 and 30 Gy on the LM and the proximal LAD for some coronary topologies. Without IMC beams, hot spots between 5 and 26 Gy are located on the middle and distal LAD. Conclusions: Coronary dose distributions with hot spot location and dose level can change significantly depending on coronary topology, as highlighted by 3D coronary dose maps. In clinical practice, coronary imaging may be required for a relevant coronary dose assessment

  4. A 3-DIMENSIONAL MATRIX ASSAY THAT MAY HELP PREDICT TREATMENT RESPONSE TO TEMOZOLOMIDE IN PATIENTS WITH GLIOBASTOMA: SUBGROUP ANALYSIS OF PATIENTS UNDERGOING MGMT TESTING

    PubMed Central

    Megyesi, Joseph F.; Costello, Penny; McDonald, Warren; Macdonald, David; Easaw, Jay

    2014-01-01

    BACKGROUND: (blind field). METHODS: Records for patients treated for newly diagnosed or recurrent glioblastoma were analyzed. All patients had undergone surgical resection and tumor specimens at time of surgery were available for culture in a 3-dimensional matrix assay and observed for growth and invasion. Drug effects on mean invasion and growth were expressed as a ratio relative to control conditions. Length of survival was compared between temozolomide treated patients whose screening results had predicted a positive or negative response to temozolomide. The MGMT status of a subgroup of these patients was analyzed and correlated with the response of tumor tissue in the assay to temozolomide. RESULTS: Fifty-eight patients with glioblastoma were assessed. Each patient's tumor displayed a unique invasion and response profile. We looked in particular at the correlation between the outcome of a patient with glioblastoma treated with temozolomide and the response of that patient's tumor tissue to temozolomide in the 3-dimensional assay. Mean survival time for patients whose tumors were not significantly sensitive to temozolomide in the assay was 181.7 +/- 43 days. Mean survival time for patients whose tumors were significantly sensitive to temozolomide in the assay was 290.0 +/- 33 days. Twelve patients underwent MGMT testing. In 10 of the 12 patients there was a correlation between tumor response in the assay and MGMT status. CONCLUSIONS: The 3-dimensional assay may help predict glioblastoma patients who will show a treatment response to temozolomide. There appears to be a positive correlation between the response profiles in the assay to the MGMT status of the patient's tumor. SECONDARY CATEGORY: n/a.

  5. Computational Fluid Dynamics of Intracranial and Extracranal Arteries using 3-Dimensional Angiography: Technical Considerations with Physician's Point of View

    PubMed Central

    Yoon, Kyunghwan; Ko, Young Bae; Suh, Dae Chul

    2013-01-01

    We investigate the potentials and limitations of computational fluid dynamics (CFD) analysis of patient specific models from 3D angiographies. There are many technical problems in acquisition of proper vascular models, in pre-processing for making 2D surface and 3D volume meshes and also in post-processing steps for display the CFD analysis. We hope that our study could serves as a technical reference to validating other tools and CFD results. PMID:24024073

  6. Integration of 3-dimensional surgical and orthodontic technologies with orthognathic "surgery-first" approach in the management of unilateral condylar hyperplasia.

    PubMed

    Janakiraman, Nandakumar; Feinberg, Mark; Vishwanath, Meenakshi; Nalaka Jayaratne, Yasas Shri; Steinbacher, Derek M; Nanda, Ravindra; Uribe, Flavio

    2015-12-01

    Recent innovations in technology and techniques in both surgical and orthodontic fields can be integrated, especially when treating subjects with facial asymmetry. In this article, we present a treatment method consisting of 3-dimensional computer-aided surgical and orthodontic planning, which was implemented with the orthognathic surgery-first approach. Virtual surgical planning, fabrication of surgical splints using the computer-aided design/computer-aided manufacturing technique, and prediction of final orthodontic occlusion using virtual planning with robotically assisted customized archwires were integrated for this patient. Excellent esthetic and occlusal outcomes were obtained in a short period of 5.5 months. PMID:26672712

  7. The 3-dimensional kinematics of the walking gait cycle of children aged between 10 and 24 months: cross sectional and repeated measures.

    PubMed

    Grimshaw; Marques-Bruna; Salo; Messenger

    1998-01-01

    The purpose of this study was to examine the 3-dimensional kinematics of 'normal' walking gait in young children. A cross sectional study using nine children aged between 10 and 24 months, filmed whilst walking at natural speed, was undertaken using two gen-locked video cameras. The children were at different stages of walking development (from 0.5 to 10 months of independent walking (IW)). Repeated measures were taken from two of the children at 10 and 17 months of age and then at 18 and 24 months respectively. 3-dimensional video digitisation techniques utilising the DLT algorithm were used to obtain variables of the gait cycle. The position and movement of the arms were identified as potential motor development patterns. Ranges of movement and motion patterns observed in other variables are useful to determine 'normal' walking gait in such young children. The knees and hips were flexed throughout the gait cycle. Inter-limb asymmetries were observed for the knee angle pattern and for the stance and swing phase time. The mean stance phase time and double support time were 4 and 15% (respectively) greater than in adult's gait. The findings of this study are useful as a guide to research, teaching and clinical professions in this area of biomechanics. Copyright 1998 Elsevier Science B.V. PMID:10200371

  8. Methodology for Using 3-Dimensional Sonography to Measure Fetal Adrenal Gland Volumes in Pregnant Women With and Without Early Life Stress.

    PubMed

    Kim, Deborah; Epperson, C Neill; Ewing, Grace; Appleby, Dina; Sammel, Mary D; Wang, Eileen

    2016-09-01

    Fetal adrenal gland volumes on 3-dimensional sonography have been studied as potential predictors of preterm birth. However, no consistent methodology has been published. This article describes the methodology used in a study that is evaluating the effects of maternal early life stress on fetal adrenal growth to allow other researchers to compare methodologies across studies. Fetal volumetric data were obtained in 36 women at 20 to 22 and 28 to 30 weeks' gestation. Two independent examiners measured multiple images of a single fetal adrenal gland from each sonogram. Intra- and inter-rater consistency was examined. In addition, fetal adrenal volumes between male and female fetuses were reported. The intra- and inter-rater reliability was satisfactory when the mean of 3 measurements from each rater was used. At 20 weeks' gestation, male fetuses had larger average adjusted adrenal volumes than female fetuses (mean, 0.897 versus 0.638; P = .004). At 28 weeks' gestation, the fetal weight was more influential in determining values for adjusted fetal adrenal volume (0.672 for male fetuses versus 0.526 for female fetuses; P = .034). This article presents a methodology for assessing fetal adrenal volume using 3-dimensional sonography that can be used by other researchers to provide more consistency across studies. PMID:27562975

  9. Development of an Autonomous, Dual Chamber Bioreactor for the Growth of 3-Dimensional Epithelial-Stromal Tissues in Microgravity

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Wettergreen, Matthew A.; Huff, Janice L.

    2014-01-01

    We are developing a novel, autonomous bioreactor that can provide for the growth and maintenance in microgravity of 3-D organotypic epithelial-stromal cultures that require an air-liquid interface. These complex 3-D tissue models accurately represent the morphological features, differentiation markers, and growth characteristics observed in normal human epithelial tissues, including the skin, esophagus, lung, breast, pancreas, and colon. However, because of their precise and complex culture requirements, including that of an air-liquid interface, these 3-D models have yet to be utilized for life sciences research aboard the International Space Station. The development of a bioreactor for these cultures will provide the capability to perform biological research on the ISS using these realistic, tissue-like human epithelial-stromal cell models and will contribute significantly to advances in fundamental space biology research on questions regarding microgravity effects on normal tissue development, aging, cancer, and other disease processes. It will also allow for the study of how combined stressors, such as microgravity with radiation and nutritional deficiencies, affect multiple biological processes and will provide a platform for conducting countermeasure investigations on the ISS without the use of animal models. The technology will be autonomous and consist of a cell culture chamber that provides for air-liquid, liquid-liquid, and liquid-air exchanges within the chambers while maintaining the growth and development of the biological samples. The bioreactor will support multiple tissue types and its modular design will provide for incorporation of add-on capabilities such as microfluidics drug delivery, media sampling, and in situ biomarker analysis. Preliminary flight testing of the hardware will be conducted on a parabolic platform through NASA's Flight Opportunities Program.

  10. A 3 dimensional assessment of the depth of tumor invasion in microinvasive tongue squamous cell carcinoma - A case series analysis

    PubMed Central

    Amit-Byatnal, Aditi; Natarajan, Jayalakshmi; Shenoy, Satish; Kamath, Asha; Hunter, Keith

    2015-01-01

    Background Accurate assessment of the depth of tumor invasion (DI) in microinvasive squamous cell carcinoma (MISCC) of the tongue is critical to prognosis. An arithmetic model is generated to determine a reliable method of measurement of DI and correlate this with the local recurrence. Material and Methods Tumor thickness (TT) and DI were measured in tissue sections of 14 cases of MISCC of the tongue, by manual ocular micrometer and digital image analysis at four reference points (A, B, C, and D). The comparison of TT and DI with relevant clinicopathologic parameters was assessed using Mann Whitney U test. Reliability of these methods and the values obtained were compared and correlated with the recurrence of tumors by Wilcoxon Signed Ranks Test. 3D reconstruction of the lesion was done on a Cartesian coordinate system. X face was on the YZ plane and Z face was on the XY plane of the coordinate system. Results Computer generated 3D model of oral mucosa in four cases that recurred showed increased DI in the Z coordinate compared to the XY coordinate. The median DI measurements between XY and Z coordinates in these cases showed no significant difference (Wilcoxon Signed Ranks Test, p = 0.068). Conclusions The assessment of DI in 3 dimensions is critical for accurate assessment of MISCC and precise DI allows complete removal of tumor. Key words:Depth of invasion, tumor thickness, microinvasive squamous cell carcinoma, tongue squamous cell carcinoma. PMID:26449426

  11. Evolution of the 3-dimensional video system for facial motion analysis: ten years' experiences and recent developments.

    PubMed

    Tzou, Chieh-Han John; Pona, Igor; Placheta, Eva; Hold, Alina; Michaelidou, Maria; Artner, Nicole; Kropatsch, Walter; Gerber, Hans; Frey, Manfred

    2012-08-01

    Since the implementation of the computer-aided system for assessing facial palsy in 1999 by Frey et al (Plast Reconstr Surg. 1999;104:2032-2039), no similar system that can make an objective, three-dimensional, quantitative analysis of facial movements has been marketed. This system has been in routine use since its launch, and it has proven to be reliable, clinically applicable, and therapeutically accurate. With the cooperation of international partners, more than 200 patients were analyzed. Recent developments in computer vision--mostly in the area of generative face models, applying active--appearance models (and extensions), optical flow, and video-tracking-have been successfully incorporated to automate the prototype system. Further market-ready development and a business partner will be needed to enable the production of this system to enhance clinical methodology in diagnostic and prognostic accuracy as a personalized therapy concept, leading to better results and higher quality of life for patients with impaired facial function. PMID:21734549

  12. Three-dimensional portable document format: a simple way to present 3-dimensional data in an electronic publication.

    PubMed

    Danz, Jan C; Katsaros, Christos

    2011-08-01

    Three-dimensional (3D) models of teeth and soft and hard tissues are tessellated surfaces used for diagnosis, treatment planning, appliance fabrication, outcome evaluation, and research. In scientific publications or communications with colleagues, these 3D data are often reduced to 2-dimensional pictures or need special software for visualization. The portable document format (PDF) offers a simple way to interactively display 3D surface data without additional software other than a recent version of Adobe Reader (Adobe, San Jose, Calif). The purposes of this article were to give an example of how 3D data and their analyses can be interactively displayed in 3 dimensions in electronic publications, and to show how they can be exported from any software for diagnostic reports and communications among colleagues. PMID:21803267

  13. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy.

    PubMed

    Liu, Yijin; Meirer, Florian; Krest, Courtney M; Webb, Samuel; Weckhuysen, Bert M

    2016-01-01

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metal deposition, simulate the response of the network to a virtual ageing of the catalyst particle. The developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material's pore space, which is an essential factor in the rational design of functional porous materials. PMID:27572475

  14. Full-coverage film cooling: 3-dimensional measurements of turbulence structure and prediction of recovery region hydrodynamics

    NASA Technical Reports Server (NTRS)

    Yavuzkurt, S.; Moffat, R. J.; Kays, W. M.

    1979-01-01

    Hydrodynamic measurements were made with a triaxial hot-wire in the full-coverage region and the recovery region following an array of injection holes inclined downstream, at 30 degrees to the surface. The data were taken under isothermal conditions at ambient temperature and pressure for two blowing ratios: M = 0.9 and M = 0.4. Profiles of the three main velocity components and the six Reynolds stresses were obtained at several spanwise positions at each of the five locations down the test plate. A one-equation model of turbulence (using turbulent kinetic energy with an algebraic mixing length) was used in a two-dimensional computer program to predict the mean velocity and turbulent kinetic energy profiles in the recovery region. A new real-time hotwire scheme was developed to make measurements in the three-dimensional turbulent boundary layer over the full-coverage surface.

  15. An Evaluation of Matrix-Containing and Humanised Matrix-Free 3-Dimensional Cell Culture Systems for Studying Breast Cancer

    PubMed Central

    Roberts, Grace C.; Morris, Paul G.; Moss, Marcus A.; Maltby, Sarah L.; Palmer, Chelsea A.; Nash, Claire E.; Smart, Emily; Holliday, Deborah L.; Speirs, Valerie

    2016-01-01

    Background 3D cell cultures are emerging as more physiologically meaningful alternatives to monolayer cultures for many biological applications. They are attractive because they more closely mimic in vivo morphology, especially when co-cultured with stromal fibroblasts. Methodology/Principal Findings We compared the efficacy of 3 different 3D cell culture systems; collagen I, low attachment culture vessels and a modification of Fibrolife®, a specialised humanised cell culture medium devoid of animal-derived components, using breast cancer cell lines representative of the different molecular subtypes of breast cancer, cultured alone or with human mammary fibroblasts with a view to developing matrix-free humanised systems. 3D collagen I culture supported the growth of a range of breast cancer cell lines. By modifying the composition of Fibrolife® to epiFL, matrix-free cell culture was possible. During sequential transfer to epiFL breast cancer cells gradually detached from the flask, growing progressively as spheroids. Phenotype was stable and reversible with cells remaining actively proliferating and easily accessible throughout culture. They could also be revived from frozen stocks. To achieve co-culture with fibroblasts in epiFL required use of low attachment culture vessels instead of standard plastic as fibroblasts remained adherent in epiFL. Here, cancer cell spheroids were allowed to form before adding fibroblasts. Immunohistochemical examination showed fibroblasts scattered throughout the epithelial spheroid, not dissimilar to the relationship of tumour stroma in human breast cancer. Conclusions Because of its ease of handling, matrix-free 3D cell culture may be a useful model to study the influence of fibroblasts on breast cancer epithelial cells with use of epiFL culture medium taking this a step further towards a fully humanised 3D model. This methodology could be applied to other types of cancer cell lines, making this a versatile technique for cancer

  16. The 3-Dimensional Inner and Outer Structure of Ejecta Around Eta Carinae as Detected by the STIS

    NASA Technical Reports Server (NTRS)

    Ishibashi, Kazunori; Fisher, Richard R. (Technical Monitor)

    2000-01-01

    The HST/STIS instrument was used successfully to perform a complete mapping of the Homunculus nebula at two wavelength ranges including H-alpha and H-beta with a spectral resolving power of about 5000 and a spatial resolution of 0.1". The individual spectra were merged to synthesize three-dimensional data cubes that contain a set of images of Eta Car with spatial resolution of 0.10 to 0.251, sliced at velocity increment of 10 -- 30 km/s. For the first time this unique method allows us to diagnose the origin of intrinsic narrow emission structure of the nebula with high spatial and velocity resolution. Our initial analysis revealed the inner emission structure appeared to trace an elongated bipolar shell (possibly other shells as well) with a scale size of an arcsecond (i.e., "little homunculus in the Homunculus"). Furthermore, the mapping data cube revealed that the "fan" or "paddle" -- often referred as the source of peculiar blue-shifted intrinsic emissions including the Strontium cloud -- is not the source of intrinsic emissions. The fan is not even a part of the equatorial disk, but is spatially separated from the peculiar emission structure. Indeed we suggest that the fan is a surface of the Northwest lobe, possibly revealed by a blowout of the equatorial disk. We will use a number of visualization techniques (tomographic animations and simple 3-D models) to show these structures. These new results have strong impact upon future numerical modelings of the Homunculus nebula and of understanding of the evolution of the ejecta powered by the central source(s).

  17. Noninvasive imaging of 3-dimensional myocardial infarction from the inverse solution of equivalent current density in pathological hearts.

    PubMed

    Zhou, Zhaoye; Han, Chengzong; Yang, Ting; He, Bin

    2015-02-01

    We propose a new approach to noninvasively image the 3-D myocardial infarction (MI) substrates based on equivalent current density (ECD) distribution that is estimated from the body surface potential maps (BSPMs) during S-T segment. The MI substrates were identified using a predefined threshold of ECD. Computer simulations were performed to assess the performance with respect to: 1) MI locations; 2) MI sizes; 3) measurement noise; 4) numbers of BSPM electrodes; and 5) volume conductor modeling errors. A total of 114 sites of transmural infarctions, 91 sites of epicardial infarctions, and 36 sites of endocardial infarctions were simulated. The simulation results show that: 1) Under 205 electrodes and 10-μV noise, the averaged accuracies of imaging transmural MI are 83.4% for sensitivity, 82.2% for specificity, 65.0% for Dice's coefficient, and 6.5 mm for distances between the centers of gravity (DCG). 2) For epicardial infarction, the averaged imaging accuracies are 81.6% for sensitivity, 75.8% for specificity, 45.3% for Dice's coefficient, and 7.5 mm for DCG; while for endocardial infarction, the imaging accuracies are 80.0% for sensitivity, 77.0% for specificity, 39.2% for Dice's coefficient, and 10.4 mm for DCG. 3) A reasonably good imaging performance was obtained under higher noise levels, fewer BSPM electrodes, and mild volume conductor modeling errors. The present results suggest that this method has the potential to aid in the clinical identification of the MI substrates. PMID:25248174

  18. High- and low-LET Radiation-induced Chromosome Aberrations in Human Epithelial Cells Cultured in 3-dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; George K.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts who participate in extended ISS missions and will be an even greater concern for future manned lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D in vitro cellular environment can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected in the first cell cycle after irradiation using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference in the

  19. The Effects of Different Miniscrew Thread Designs and Force Directions on Stress Distribution by 3-dimensional Finite Element Analysis

    PubMed Central

    Fattahi, Hamidreza; Ajami, Shabnam; Nabavizadeh Rafsanjani, Ali

    2015-01-01

    Statement of the Problem The use of miniscrew as an absolute anchorage device in clinical orthodontics is growing increasingly. Many attempts have been made to reduce the size, to improve the design, and to increase the stability of miniscrew. Purpose The purpose of this study was to determine the effects of different thread shapes and force directions of orthodontic miniscrew on stress distribution in the supporting bone structure. Materials and Method A three-dimensional finite element analysis was used. A 200-cN force in three angles (0°, 45°, and 90°) was applied on the head of the miniscrew. The stress distribution between twelve thread shapes was investigated as categorized in four main groups; buttress, reverse buttress, square, and V-shape. Results Stress distribution was not significantly different among different thread shapes. The maximum amount of bone stress at force angles 0°, 45°, and 90° were 38.90, 30.57 and 6.62 MPa, respectively. Analyzing the von Mises stress values showed that in all models, the maximum stress was concentrated on the lowest diameter of the shank, especially the part that was in the soft tissue and cervical cortical bone regions. Conclusion There was no relation between thread shapes and von Mises stress distribution in the bone; however, different force angles could affect the von Mises stress in the bone and miniscrew. PMID:26636123

  20. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy

    DOE PAGESBeta

    Liu, Yijin; Meirer, Florian; Krest, Courtney M.; Webb, Samuel; Weckhuysen, Bert M.

    2016-08-30

    To understand how hierarchically structured functional materials operate, analytical tools are needed that can reveal small structural and chemical details in large sample volumes. Often, a single method alone is not sufficient to get a complete picture of processes happening at multiple length scales. Here we present a correlative approach combining three-dimensional X-ray imaging techniques at different length scales for the analysis of metal poisoning of an individual catalyst particle. The correlative nature of the data allowed establishing a macro-pore network model that interprets metal accumulations as a resistance to mass transport and can, by tuning the effect of metalmore » deposition, simulate the response of the network to a virtual ageing of the catalyst particle. In conclusion, the developed approach is generally applicable and provides an unprecedented view on dynamic changes in a material’s pore space, which is an essential factor in the rational design of functional porous materials.« less

  1. Application of 3-dimensional radiation transport codes to the analysis of the CRBR prototypic coolant pipe chaseway neutron streaming experiment

    SciTech Connect

    Chatani, K. )

    1992-08-01

    This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.

  2. Fibrin and Collagen Differentially but Synergistically Regulate Sprout Angiogenesis of Human Dermal Microvascular Endothelial Cells in 3-Dimensional Matrix

    PubMed Central

    Tonnesen, Marcia G.; Mousa, Shaker A.; Clark, Richard A. F.

    2013-01-01

    Angiogenesis is a highly regulated event involving complex, dynamic interactions between microvascular endothelial cells and extracellular matrix (ECM) proteins. Alteration of ECM composition and architecture is a hallmark feature of wound clot and tumor stroma. We previously reported that during angiogenesis, endothelial cell responses to growth factors are modulated by the compositional and mechanical properties of a surrounding three-dimensional (3D) extracellular matrix (ECM) that is dominated by either cross-linked fibrin or type I collagen. However, the role of 3D ECM in the regulation of angiogenesis associated with wound healing and tumor growth is not well defined. This study investigates the correlation of sprout angiogenesis and ECM microenvironment using in vivo and in vitro 3D angiogenesis models. It demonstrates that fibrin and type I collagen 3D matrices differentially but synergistically regulate sprout angiogenesis. Thus blocking both integrin alpha v beta 3 and integrin alpha 2 beta 1 might be a novel strategy to synergistically block sprout angiogenesis in solid tumors. PMID:23737792

  3. Comparison of Ground-Based 3-Dimensional Lightning Mapping Observations with Satellite-Based LIS Observations in Oklahoma: Comparison of LMS and LIS Lightning Mapping

    NASA Technical Reports Server (NTRS)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.

    1999-01-01

    3-dimensional lightning mapping observations obtained during the MEaPRS program in central Oklahoma during June, 1998 have been compared with observations of the discharges from space, obtained by NASA's Lightning Imaging Sensor (LIS) on the TRMM satellite. Excellent spatial and temporal correlations were observed between the two sets of observations. Most of the detected optical events were associated with intracloud discharges that developed into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended not to be detected by LIS. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud flashes and appeared to be produced by energetic K-changes that typically occur at these times.

  4. Morphology-controlled MnO2-graphene oxide-diatomaceous earth 3-dimensional (3D) composites for high-performance supercapacitors.

    PubMed

    Wen, Zhong Quan; Li, Min; Li, Fei; Zhu, Shi Jin; Liu, Xiao Ying; Zhang, Yu Xin; Kumeria, Tushar; Losic, Dusan; Gao, Yang; Zhang, Wei; He, Shi Xuan

    2016-01-21

    3-Dimensional (3D) composites based on a unique combination of MnO2-nanostructures, graphene oxide nanosheets and porous Diatomaceous Earth (DE) microparticles (GO-DE@MnO2) were synthesized and explored for application in high-performance supercapacitors. To explore the influence of the structural properties of MnO2 nanostructures on supercapacitor performances, several MnO2 structures with nanosheet and nanowire morphologies were synthesized and characterized. The prepared GO-DE@MnO2 composites with MnO2 nanosheets due to their higher conductivity and higher surface area showed a larger specific capacitance of 152.5 F g(-1) and a relatively better cycle stability (83.3% capacitance retention after 2000 cycles at a scan rate of 2 A g(-1)), indicating great potential for application in supercapacitors. PMID:26645931

  5. Mesoporous bioactive glass doped-poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) composite scaffolds with 3-dimensionally hierarchical pore networks for bone regeneration.

    PubMed

    Yang, Shengbing; Wang, Jing; Tang, Liangji; Ao, Haiyong; Tan, Honglue; Tang, Tingting; Liu, Changsheng

    2014-04-01

    Scaffolds play a critical role in bone tissue engineering. Composite scaffolds made of biodegradable polymers and bioactive inorganic compounds have demonstrated superior properties in bone defect repair. In this study, highly bioactive, resorbable poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx)-based scaffolds were prepared using combinational 3-dimensional (3D) printing and surface-doping protocol. Structural and morphological characterization of the composite scaffolds demonstrated the homogenous surface-coating of mesoporous bioactive glass (MBG) throughout their porous framework. These hierarchical scaffolds showed bioactivity superior to that of scaffolds made of pure PHBHHx. MBG coating appeared to provide a better environment for human mesenchymal stem cells (hMSCs) attachment, activity, and osteogenic differentiation. Our study indicates that MBG-coated PHBHHx (PHBM) scaffolds may be excellent candidates for use in bone tissue engineering. PMID:24441182

  6. TriTel 3 dimensional space dosimetric telescope in the European Student Earth Orbiter project of ESA

    NASA Astrophysics Data System (ADS)

    Zábori, Balázs; Hirn, Attila

    2012-02-01

    The development of the European Student Earth Orbiter (ESEO) was announced in the year of 2008 by the European Space Agency for students interested in the space exploration. The Budapest University of Technology and Economics joined this international cooperation with three student groups among other participating European universities. One of them is the ESEO-TriTel team. The development of the TriTel 3D silicon detector telescope began in the KFKI Atomic Energy Research Institute several years ago in order to determine the average radiation quality factor of the space radiation field for dosimetric purposes. In the year 2011—before the start of the ESEO mission—it will be operated on board the European Columbus module of the International Space Station (ISS) and will be installed in the Russian segment of the ISS as well. The ESEO version of TriTel will fly higher than the ISS version, at an altitude of 520 km. At this altitude the Earth's geomagnetic field is much lower and the spectrum of the radiation field is also different. In the ESEO-TriTel experiment the anisotropies in the radiation field, the effects of the Earth shadow and the South Atlantic Anomaly (SAA) will be analysed and the results will be compared with the fluxes calculated with the standard AP-8 and AE-8 trapped proton and electron models. In the near future the frequency of manned space flights will probably increase, we can think of the continuous human presence in the near-Earth region (low Earth orbits) or the proposed human Mars expedition. That is why the cosmic radiation field is interesting not only in the near-Earth region but at higher altitudes or in the interplanetary field as well. The present paper addresses the optimal shielding of the dosimetric telescopes of TriTel in order to avoid the saturation of the electronics. The amount of optimal shielding is equivalent to the effective thickness of astronaut's space suit, which means that the same dose will be measured as what the

  7. Atomic layer deposition conformality and process optimization: Transitioning from 2-dimensional planar systems to 3-dimensional nanostructures

    NASA Astrophysics Data System (ADS)

    Robertson Cleveland, Erin Darcy

    gradients down the length of the nanopore. Also, deposition of ALD films over sharp surface features are very uniform, and verified by profile evolution modeling. This behavior, in contrast to that in high aspect ratio structures, suggests strongly that detailed dynamics, local flow conditions (e.g. viscous vs molecular), surface residence time, and ALD surface reaction kinetics play a complex role in determining ALD profiles for high aspect ratio features.

  8. Long-term Cosmetic Outcomes and Toxicities of Proton Beam Therapy Compared With Photon-Based 3-Dimensional Conformal Accelerated Partial-Breast Irradiation: A Phase 1 Trial

    SciTech Connect

    Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.

    2014-11-01

    Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.

  9. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation.

    PubMed

    Cao, Xia; Deng, Wenwen; Wei, Yuan; Yang, Yan; Su, Weiyan; Wei, Yawei; Xu, Ximing; Yu, Jiangnan

    2012-01-01

    The objective of this study was to prepare a 3-dimensional nanoparticle gene delivery system (3D-NGDS) based on collagen/chitosan scaffolds, in which plasmid transforming growth factor beta 1 (TGF-β1)/calcium phosphate nanoparticles mixed with fibronectin (FN) were used to transfect mesenchymal stem cells (MSCs). Scanning electron microscopy was used to characterise the microstructure of 3-dimensional collagen/chitosan scaffolds. An analysis performed to quantify the TGF-b1 concentrations in MSC cultures revealed that the MSCs transfected with the 3D-NGDS showed remarkably high levels of TGF-b1 over long periods, retaining a concentration of TGF-b1 of approximately 10 ng/mL within two weeks, with the highest level (12.6 ng/mL) being observed on the 6th day. An immunohistochemistry analysis for collagen type II revealed that much higher production of collagen II from the 9th to 15th day was observed in the 3D-NGDS-transfected MSCs than that in MSCs transfected by the Lipofectamine 2000 method. The glycosaminoglycan content of the 3D-NGDS was comparable to those treated with TGF-β1 as well as TGF-β1 plus dexamethasone, and was significantly higher than those treated with free plasmid and Lipofectamine 2000. A remarkable type I collagen expression inhibition of the 3D-NGDS at day 21 was observed via ELISA. These results suggested that transfection with the 3D-NGDS could successfully induce MSC chondrogenic differentiation in vitro without dexamethasone. In summary, the 3D-NGDS could be developed into a promising alternative method to transfer exogenous nucleic acid to MSCs in clinical trials. PMID:22314694

  10. Advances in 3-dimensional braiding

    NASA Technical Reports Server (NTRS)

    Thaxton, Cirrelia; Reid, Rona; El-Shiekh, Aly

    1992-01-01

    This paper encompasses an overview of the history of 3-D braiding and an in-depth survey of the most recent, technological advances in machine design and implementation. Its purpose is to review the major efforts of university and industry research and development into the successful machining of this textile process.

  11. Stereotactic Ablative Body Radiation Therapy for Primary Kidney Cancer: A 3-Dimensional Conformal Technique Associated With Low Rates of Early Toxicity

    SciTech Connect

    Pham, Daniel; Thompson, Ann; Kron, Tomas; Foroudi, Farshad; Kolsky, Michal Schneider; Devereux, Thomas; Lim, Andrew; Siva, Shankar

    2014-12-01

    Purpose: To describe our 3-dimensional conformal planning approaches and report early toxicities with stereotactic body radiation therapy for the management of primary renal cell carcinoma. Methods and Materials: This is an analysis of a phase 1 trial of stereotactic body radiation therapy for primary inoperable renal cell carcinoma. A dose of 42 Gy/3 fractions was prescribed to targets ≥5 cm, whereas for <5 cm 26 Gy/1 fraction was used. All patients underwent a planning 4-dimensional CT to generate a planning target volume (PTV) from a 5-mm isotropic expansion of the internal target volume. Planning required a minimum of 8 fields prescribing to the minimum isodose surrounding the PTV. Intermediate dose spillage at 50% of the prescription dose (R50%) was measured to describe the dose gradient. Early toxicity (<6 months) was scored using the Common Terminology Criteria for Adverse Events (v4.0). Results: From July 2012 to August 2013 a total of 20 patients (median age, 77 years) were recruited into a prospective clinical trial. Eleven patients underwent fractionated treatment and 9 patients a single fraction. For PTV targets <100 cm{sup 3} the median number of beams used was 8 (2 noncoplanar) to achieve an average R50% of 3.7. For PTV targets >100 cm{sup 3} the median beam number used was 10 (4 noncoplanar) for an average R50% value of 4.3. The R50% was inversely proportional to decreasing PTV volume (r=−0.62, P=.003) and increasing total beams used (r=−0.51, P=.022). Twelve of 20 patients (60%) suffered grade ≤2 early toxicity, whereas 8 of 20 patients (40%) were asymptomatic. Nausea, chest wall pain, and fatigue were the most common toxicities reported. Conclusion: A 3-dimensional conformal planning technique of 8-10 beams can be used to deliver highly tolerable stereotactic ablation to primary kidney targets with minimal early toxicities. Ongoing follow-up is currently in place to assess long-term toxicities and cancer control.

  12. Demodicidosis: an uncommon erythema after cranio-maxillofacial surgery.

    PubMed

    Luebbers, Heinz-Theo; Lanzer, Martin; Graetz, Klaus W; Kruse, Astrid L

    2013-12-01

    Demodex mites are commonly found in the healthy population, but the pathogenesis of demodicidosis has still not been clarified, though it is usually found in cases of immune deficiency. A 45-year-old man presented with an unusual outbreak of erythema and swelling 6 months after resection and chemoradiotherapy for a squamous cell carcinoma of the anterior floor of the mouth. The cheek was biopsied and histological examination showed demodicidosis. In cases of erythema with a normal blood cell count and no history of allergy, particularly in patients with reduced immunity, demodicidosis should be considered as a diagnosis and should be confirmed by examination of a biopsy specimen. PMID:23099109

  13. Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum

    PubMed Central

    He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping

    2016-01-01

    Abstract Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture. A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups. There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture. The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448

  14. Comparison of Isocentric C-Arm 3-Dimensional Navigation and Conventional Fluoroscopy for Percutaneous Retrograde Screwing for Anterior Column Fracture of Acetabulum: An Observational Study.

    PubMed

    He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping

    2016-01-01

    Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture.A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups.There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture.The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448

  15. Simultaneous Bimaxillary Surgery and Mandibular Reconstruction With a 3-Dimensional Printed Titanium Implant Fabricated by Electron Beam Melting: A Preliminary Mechanical Testing of the Printed Mandible.

    PubMed

    Lee, Ui-Lyong; Kwon, Jae-Sung; Woo, Su-Heon; Choi, Young-Jun

    2016-07-01

    A woman presented with a long history of mandibular defects posterior to the left lower first premolar caused by inadequate reconstruction after removal of a tumor on the left side of the mandible. In the frontal view, extreme facial asymmetry was apparent. The dental midline of the mandible was deviated 10 mm to the left compared with the dental midline of the maxilla, and all maxillary teeth were inclined to the left owing to dental compensation. There was an 8-mm maxillary occlusal cant relative to the maxillary first molar. Bimaxillary surgery using computer-assisted designed and computer-assisted manufactured devices without an intermediate occlusal splint was performed to align the maxilla and mandible at the correct position, and reconstructive surgery for the mandible using a 3-dimensional printed titanium mandible was concurrently performed. In particular, during the virtual mandible design, 2 abutments that enabled the prosthetic restoration were included in the mandible using a computer-assisted design program. This report describes the successful functional and esthetic reconstruction of the mandible using electron beam melting technology, an alternative technique for reconstruction of mandibles that did not undergo radiation therapy. PMID:27060494

  16. Going beyond 2D: following membrane diffusion and topography in the IgE-Fc[epsilon]RI system using 3-dimensional tracking microscopy

    SciTech Connect

    Wells, Nathan P; Lessard, Guillaume A; Phipps, Marry E; Goodwin, Peter M; Werner, James H; Lidke, Diane S; Wilson, Bridget S

    2008-01-01

    The ability to follow and observe single molecules as they function in live cells would represent a major milestone for molecular-cellular biology. Here we present a tracking microscope that is able to track quantum dots in 3 dimensions and simultaneously record time-resolved emission statistics from a single dot. This innovative microscopy approach is based on four spatial filters and closed loop feedback to constantly keep a single quantum dot in the focal spot. Using this microscope, we demonstrate the ability to follow quantum dot-labeled IgE antibodies bound to Fc{epsilon}Rl membrane receptors in live RBL-2H3 cells. The results are consistent with prior studies of 2 dimensional membrane diffusion (Andrews et al., Nat. Cell Biol., 10, 955, 2008). In addition, the microscope captures motion in the axial (Z) direction, which permits tracking of diffusing receptors relative the 'hills and valley' of the dynamically changing membrane landscape. Our novel approach is uniquely capable of following single-molecule dynamics on live cells with 3 dimensional spatial resolution.

  17. Novel D-A-π-A organic dyes based on 3-dimensional triarylamine and benzothiadiazole derivatives for high-performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Huang, Hongli; Chen, Huajie; Long, Jun; Wang, Guo; Tan, Songting

    2016-09-01

    Organic dyes with a 3-dimensional (3D) structure is helpful for retarding dyes aggregation and charge recombination as well as improving the power conversion efficiency (PCE) of dye-sensitized solar cells (DSSCs). In this contribution, a novel 3D triarylamine derivative (IDTTPA) featuring an indenothiophenene unit has been designed, synthesized, and applied to develop a 3D organic dyes. Two novel D-A-π-A organic dyes (CD1 and CD2) based on IDTTPA as the electron donors, 2,1,3-benzothiadiazole derivatives as the auxiliary acceptors, and formic acid as the anchoring groups have been successfully synthesized and applied in DSSCs. The effects of the fluoro substitute groups on the photophysical, electrochemical, and photovoltaic properties are investigated. The results indicate that the fluoro-containing dye CD2 exhibits higher molar extinction coefficient, stronger light-capturing ability, and better photovoltaic performance than those of CD1 dye without fluoro substitute. Investigation of the DSSCs performance shows that CD2-based DSSCs exhibit a high PCE value of 7.91%, higher than that of CD1-based DSSCs (6.29%), even higher than that of the reference DSSCs based on N719 (7.49%). This works has demonstrated that this kind of 3D unit (IDTTPA) is a strong and promising electron donor unit to develop high efficiency metal-free organic dyes.

  18. Adjuvant Radiotherapy for Gastric Cancer: A Dosimetric Comparison of 3-Dimensional Conformal Radiotherapy, Tomotherapy (registered) and Conventional Intensity Modulated Radiotherapy Treatment Plans

    SciTech Connect

    Dahele, Max; Skinner, Matthew; Schultz, Brenda; Cardoso, Marlene; Bell, Chris; Ung, Yee C.

    2010-07-01

    Some patients with gastric cancer benefit from post-operative chemo-radiotherapy, but adequately irradiating the planning target volume (PTV) whilst avoiding organs at risk (OAR) can be difficult. We evaluate 3-dimensional conformal radiotherapy (CRT), conventional intensity-modulated radiotherapy (IMRT) and helical tomotherapy (TT). TT, 2 and 5-field (F) CRT and IMRT treatment plans with the same PTV coverage were generated for 5 patients and compared. Median values are reported. The volume of left/right kidney receiving at least 20Gy (V20) was 57/51% and 51/60% for 2 and 5F-CRT, and 28/14% for TT and 27/19% for IMRT. The volume of liver receiving at least 30Gy (V30) was 45% and 62% for 2 and 5F-CRT, and 37% for TT and 35% for IMRT. With TT, 98% of the PTV received 95-105% of the prescribed dose, compared with 45%, 34% and 28% for 2F-CRT, 5F-CRT and IMRT respectively. Using conventional metrics, conventional IMRT can achieve comparable PTV coverage and OAR sparing to TT, but at the expense of PTV dose heterogeneity. Both irradiate large volumes of normal tissue to low doses. Additional studies are needed to demonstrate the clinical impact of these technologies.

  19. Fabrication of 3-Dimensional Structure of Metal Oxide Semiconductor Field Effect Transistor Embodied in the Convex Corner of the Silicon Micro-Fluidic Channel

    NASA Astrophysics Data System (ADS)

    Lim, Geunbae; Park, Chin-Sung; Lyu, Hong-Kun; Kim, Dong-Sun; Jeong, Yong-Taek; Park, Hey-Jung; Kim, Hyoung Sik; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun

    2003-06-01

    As micro-fluidic systems and biochemical detection systems are scaled to smaller dimensions, the realization of small and portable biochemical detection systems has become increasingly important. In this paper, we propose a 3-dimensional structure of a metal oxide semiconductor field-effect transistor(3-D MOSFET) using tetramethyl ammonium hydroxide (TMAH) anisotropic etching, which is a suitable device for combining with a micro-fluidic system. After fabricating a trapezoidal micro-fluidic channel, the 3-D MOSFET embodied in the convex corner of the micro-fluidic channel was fabricated. The length of the gate is about 20 μm and the width is about 9 μm. The depth and top width of the trapezoidal micro-fluidic channel are about 8 μm and 60 μm, respectively. The measured drain saturation current of the 3-D MOSFET was about -22 μA at VGS=-5 V and VDS=-5 V, and the device characteristics exhibit a typical MOSFET behavior. Moreover, a gold layer was used for the MOSFET’s gate metal to detect charged biochemical samples using the affinity between gold and thiol.

  20. Regorafenib as a potential adjuvant chemotherapy agent in disseminated small colon cancer: Drug selection outcome of a novel screening system using nanoimprinting 3-dimensional culture with HCT116-RFP cells.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Aoyama, Hironori; Adachi, Naoya; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2016-04-01

    Colon cancer is one of the leading causes of cancer death worldwide. Adjuvant chemotherapy following primary surgical treatment is suggested to be beneficial in eradicating invisible disseminated small tumors in colon cancer; however, an effective drug remains to be developed. Recently, we reported a novel drug screening system using a nanoimprinting 3-dimensional (3D) culture that creates multicellular spheroids, which simulate in vivo conditions and, thereby, predict effective drugs in vivo. This study aimed to perform drug selection using our recently developed 3D culture system in a human colon cancer HCT116 cell line stably expressing red fluorescent protein (HCT116-RFP), to determine the most effective agent in a selection of clinically used antitumor agents for colon cancer. In addition, we confirmed the efficacy of the selected drug regorafenib, in vivo using a mouse model of disseminated small tumors. HCT116-RFP cells were cultured using a nanoimprinting 3D culture and in vitro drug selection was performed with 8 clinically used drugs [bevacizumab, capecitabine, cetuximab, 5-fluorouracil (5-FU), irinotecan, oxaliplatin, panitumumab and regorafenib]. An in vivo study was performed in mice bearing HCT116-RFP intraperitoneally disseminated small tumors using 3'-[18F]-fluoro-3'-deoxythymidine-positron emission tomography and fluorescence microscopy imaging to evaluate the therapeutic effects. Regorafenib was determined to be the most effective drug in the 3D culture, and significantly inhibited tumor growth in vivo, compared to the untreated control and 5-FU-treated group. The drug 5-FU is commonly used in colon cancer treatment and was used as a reference. Our results demonstrate that regorafenib is a potentially efficacious adjuvant chemotherapeutic agent for the treatment of disseminated small colon cancer and, therefore, warrants further preclinical and clinical studies. PMID:26820693

  1. The Feasibility and Efficacy of a Large-Sized Lasso Catheter Combined With 3 Dimensional Mapping System for Catheter Ablation of Atrial Fibrillation

    PubMed Central

    Jang, Sung-Won; Shin, Woo-Seung; Kim, Ji-Hoon; Choi, Min-Seok; Choi, Yun Seok; Lee, Man-Young; Rho, Tai-Ho

    2011-01-01

    Background and Objectives We aimed to investigate whether a large-sized Lasso catheter could increase the success rate of immediate complete pulmonary vein (PV) antral isolation and improve the outcome of catheter ablation in atrial fibrillation (AF) patients. Subjects and Methods This study included 107 consecutive patients (67 males, mean age: 57.8±9.7 years) who underwent PV mapping and ablation due to symptomatic drug-refractory AF. The first 43 patients underwent isolation of both ipsilateral PVs using the Carto-Merge 3 dimensional mapping system (group 1). The other 64 patients underwent isolation of both ipsilateral PVs using the same technique with a large-sized (a diameter of 30 to 35 mm) Lasso cathe-ter (group 2). When ipsilateral PVs did not show any potential after the initial circumferential ablation, we defined this as 'immediate complete antral isolation (ICAI)'. We compared the AF recurrence rate of both groups. Results There was no significant difference of the clinical characteristics between group 1 and group 2. All the patients were followed-up for 1 year. The ICAI rate of group 1 and group 2 was significantly different (21% vs. 78%, p<0.001), and the AF recurrence rates of group 1 and group 2 were also different (34.9% vs. 18.8%, p=0.042). Using multiple logistic regression analysis, the use of a large-sized Lasso catheter was a significant predictive factor for preventing recurrence (odds ratio: 0.489, 95% confidence interval: 0.136-0.927). Conclusion It is likely that a large-sized Lasso catheter plays an important role in achieving ICAI and in lowering the rate of AF recurrence. PMID:21949528

  2. Impact of Gemcitabine Chemotherapy and 3-Dimensional Conformal Radiation Therapy/5-Fluorouracil on Quality of Life of Patients Managed for Pancreatic Cancer

    SciTech Connect

    Short, Michala; Halkett, Georgia; Borg, Martin; Zissiadis, Yvonne; Kneebone, Andrew; Spry, Nigel

    2013-01-01

    Purpose: To report quality of life (QOL) results for patients receiving chemoradiation therapy for pancreatic cancer. Methods and Materials: Eligible patients (n=41 locally advanced, n=22 postsurgery) entered the B9E-AY-S168 study and received 1 cycle of induction gemcitabine (1000 mg/m{sup 2} weekly Multiplication-Sign 3 with 1-week break) followed by 3-dimensional conformal radiation therapy (RT) (54 Gy locally advanced and 45 Gy postsurgery) and concomitant continuous-infusion 5-fluorouracil (5FU) (200 mg/m{sup 2}/d throughout RT). After 4 weeks, patients received an additional 3 cycles of consolidation gemcitabine chemotherapy. Patients completed the European Organization for Research and Treatment of Cancer QLQ-C30 and QLQ-PAN26 questionnaires at baseline, before RT/5FU, at end of RT/5FU, before consolidation gemcitabine, and at treatment completion. Results: The patterns of change in global QOL scores differed between groups. In the locally advanced group global QOL scores were +13, +8, +3, and +1 compared with baseline before RT/5FU (P=.008), at end of RT/5FU, before consolidation gemcitabine, and at treatment completion, respectively. In the postsurgery group, global QOL scores were -3, +4, +15, and +17 compared with baseline at the same time points, with a significant improvement in global QOL before consolidation gemcitabine (P=.03). No significant declines in global QOL were reported by either cohort. Conclusions: This study demonstrates that global QOL and associated function and symptom profiles for pancreatic chemoradiation therapy differ between locally advanced and postsurgery patients, likely owing to differences in underlying disease status. For both groups, the treatment protocol was well tolerated and did not have a negative impact on patients' global QOL.

  3. Epicardial delivery of VEGF and cardiac stem cells guided by 3-dimensional PLLA mat enhancing cardiac regeneration and angiogenesis in acute myocardial infarction.

    PubMed

    Chung, Hye-Jin; Kim, Jong-Tae; Kim, Hee-Jung; Kyung, Hei-Won; Katila, Pramila; Lee, Jeong-Han; Yang, Tae-Hyun; Yang, Young-Il; Lee, Seung-Jin

    2015-05-10

    Congestive heart failure is mostly resulted in a consequence of the limited myocardial regeneration capacity after acute myocardial infarction. Targeted delivery of proangiogenic factors and/or stem cells to the ischemic myocardium is a promising strategy for enhancing their local and sustained therapeutic effects. Herein, we designed an epicardial delivery system of vascular endothelial growth factor (VEGF) and cardiac stem cells (CSCs) using poly(l-lactic acid) (PLLA) mat applied to the acutely infarcted myocardium. The fibrous VEGF-loaded PLLA mat was fabricated by an electrospinning method using PLLA solution emulsified VEGF. This mat not only allowed for sustained release of VEGF for 4weeks but boosted migration and proliferation of both endothelial cells and CSCs in vitro. Furthermore, sustained release of VEGF showed a positive effect on in vitro capillary-like network formation of endothelial cells compared with bolus treatment of VEGF. PLLA mat provided a permissive 3-dimensional (3D) substratum that led to spontaneous cardiomyogenic differentiation of CSCs in vitro. Notably, sustained stimulation by VEGF-loaded PLLA mat resulted in a substantial increase in the expression of proangiogenic mRNAs of CSCs in vitro. The epicardially implanted VEGF-loaded PLLA mat showed modest effects on angiogenesis and cardiomyogenesis in the acutely infarcted hearts. However, co-implantation of VEGF and CSCs using the PLLA mat showed meaningful therapeutic effects on angiogenesis and cardiomyogenesis compared with controls, leading to reduced cardiac remodeling and enhanced global cardiac function. Collectively, the PLLA mat allowed a smart cargo that enabled the sustained release of VEGF and the delivery of CSCs, thereby synergistically inducing angiogenesis and cardiomyogenesis in acute myocardial infarction. PMID:25681051

  4. 3 dimensional distributions of NO2, CHOCHO, and HCHO measured by the University of Colorado 2D-MAX-DOAS during MAD-CAT

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan; Sinreich, Roman; Volkamer, Rainer

    2014-05-01

    We present results of 2 dimensional Multi Axis-DOAS (2D-MAX-DOAS) measurements to infer 3-dimensional measurements of trace gases by characterizing boundary layer vertical profiles and near surface azimuth horizontal distribution of NO2 (14 angles covering 360°). We combine the established optimal estimation inversion with a new parameterization approach; the first method to derive NO2 tropospheric vertical profiles and boundary layer height and the second one to retrieve the azimuth horizontal distribution of near surface NO2 mixing ratios, both at multiple wavelengths (350 nm, 450 nm, and 560 nm). This was conducted for three cloud-free days in the framework of the intensive Multi Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) in Mainz, Germany 2013. By retrieving NO2 at multiple wavelengths range-resolved distributions of NO2 are derived using an 'Onion-peeling' approach, i.e., exploiting the fact that the optical path lengths at different wavelengths probe different horizontal air masses. We also measure glyoxal (CHOCHO) and formaldehyde (HCHO) distributions, and present to our knowledge the first 3-dimesional trace-gas distribution measurements of CHOCHO by a ground-based instrument. We expand the 2D-MAX-DOAS capabilities to calculate azimuth ratios of HCHO-to-NO2 (RFN) and CHOCHO-to-NO2 (RGN) to pinpoint volatile organic compound (VOC) oxidation chemistry and CHOCHO-to-HCHO (RGF) ratios as an indicator of biogenic and/or anthropogenic VOC emissions. The results of RFN correlate well with RGN and we identify azimuth variations that indicate gradients in the VOC/NOx chemistry that leads to O3 and secondary aerosol production. While there is a clear diurnal pattern in the RFN and RGN, no such variations are observed in the RGF, which shows rather constant values below 0.04 throughout the day, consistent with previous measurements, and indicative of urban air masses.

  5. Comparative Effectiveness of 3-Dimensional vs 2-Dimensional and High-Definition vs Standard-Definition Neuroendoscopy: A Preclinical Randomized Crossover Study

    PubMed Central

    Hughes-Hallett, Archie; Cundy, Thomas P.; Di Marco, Aimee; Pratt, Philip; Nandi, Dipankar; Darzi, Ara; Yang, Guang-Zhong

    2013-01-01

    BACKGROUND: Although the potential benefits of 3-dimensional (3-D) vs 2-dimensional (2-D) and high-definition (HD) vs standard-definition (SD) endoscopic visualization have long been recognized in other surgical fields, such endoscopes are generally considered too large and bulky for use within the brain. The recent development of 3-D and HD neuroendoscopes may therefore herald improved depth perception, better appreciation of anatomic details, and improved overall surgical performance. OBJECTIVE: To compare simultaneously the effectiveness of 3-D vs 2-D and HD vs SD neuroendoscopy. METHODS: Ten novice neuroendoscopic surgeons were recruited from a university hospital. A preclinical randomized crossover study design was adopted to compare 3-D vs 2-D and HD vs SD neuroendoscopy. The primary outcomes were time to task completion and accuracy. The secondary outcomes were perceived task workload using the NASA (National Aeronautics and Space Administration) Task Load Index and subjective impressions of the endoscopes using a 5-point Likert scale. RESULTS: Time to task completion was significantly shorter when using the 3-D vs the 2-D neuroendoscopy (P = .001), and accuracy of probe placement was significantly greater when using the HD vs the SD neuroendoscopy (P = .009). We found that 3-D endoscopy significantly improved perceived depth perception (P < .001), HD endoscopy significantly improved perceived image quality (P < .001), and both improved participants’ overall impression (P < .001). CONCLUSION: Three-dimensional neuroendoscopy and HD neuroendoscopy have differing but complementary effects on surgical performance, suggesting that neither alone can completely compensate for the lack of the other. There is therefore strong preclinical evidence to justify 3-D HD neuroendoscopy. ABBREVIATIONS: HD, high definition SD, standard definition PMID:24220007

  6. Automated Patient Identification and Localization Error Detection Using 2-Dimensional to 3-Dimensional Registration of Kilovoltage X-Ray Setup Images

    SciTech Connect

    Lamb, James M. Agazaryan, Nzhde; Low, Daniel A.

    2013-10-01

    Purpose: To determine whether kilovoltage x-ray projection radiation therapy setup images could be used to perform patient identification and detect gross errors in patient setup using a computer algorithm. Methods and Materials: Three patient cohorts treated using a commercially available image guided radiation therapy (IGRT) system that uses 2-dimensional to 3-dimensional (2D-3D) image registration were retrospectively analyzed: a group of 100 cranial radiation therapy patients, a group of 100 prostate cancer patients, and a group of 83 patients treated for spinal lesions. The setup images were acquired using fixed in-room kilovoltage imaging systems. In the prostate and cranial patient groups, localizations using image registration were performed between computed tomography (CT) simulation images from radiation therapy planning and setup x-ray images corresponding both to the same patient and to different patients. For the spinal patients, localizations were performed to the correct vertebral body, and to an adjacent vertebral body, using planning CTs and setup x-ray images from the same patient. An image similarity measure used by the IGRT system image registration algorithm was extracted from the IGRT system log files and evaluated as a discriminant for error detection. Results: A threshold value of the similarity measure could be chosen to separate correct and incorrect patient matches and correct and incorrect vertebral body localizations with excellent accuracy for these patient cohorts. A 10-fold cross-validation using linear discriminant analysis yielded misclassification probabilities of 0.000, 0.0045, and 0.014 for the cranial, prostate, and spinal cases, respectively. Conclusions: An automated measure of the image similarity between x-ray setup images and corresponding planning CT images could be used to perform automated patient identification and detection of localization errors in radiation therapy treatments.

  7. Accuracy of Real-time Couch Tracking During 3-dimensional Conformal Radiation Therapy, Intensity Modulated Radiation Therapy, and Volumetric Modulated Arc Therapy for Prostate Cancer

    SciTech Connect

    Wilbert, Juergen; Baier, Kurt; Hermann, Christian; Flentje, Michael; Guckenberger, Matthias

    2013-01-01

    Purpose: To evaluate the accuracy of real-time couch tracking for prostate cancer. Methods and Materials: Intrafractional motion trajectories of 15 prostate cancer patients were the basis for this phantom study; prostate motion had been monitored with the Calypso System. An industrial robot moved a phantom along these trajectories, motion was detected via an infrared camera system, and the robotic HexaPOD couch was used for real-time counter-steering. Residual phantom motion during real-time tracking was measured with the infrared camera system. Film dosimetry was performed during delivery of 3-dimensional conformal radiation therapy (3D-CRT), step-and-shoot intensity modulated radiation therapy (IMRT), and volumetric modulated arc therapy (VMAT). Results: Motion of the prostate was largest in the anterior-posterior direction, with systematic ( N-Ary-Summation ) and random ({sigma}) errors of 2.3 mm and 2.9 mm, respectively; the prostate was outside a threshold of 5 mm (3D vector) for 25.0%{+-}19.8% of treatment time. Real-time tracking reduced prostate motion to N-Ary-Summation =0.01 mm and {sigma} = 0.55 mm in the anterior-posterior direction; the prostate remained within a 1-mm and 5-mm threshold for 93.9%{+-}4.6% and 99.7%{+-}0.4% of the time, respectively. Without real-time tracking, pass rates based on a {gamma} index of 2%/2 mm in film dosimetry ranged between 66% and 72% for 3D-CRT, IMRT, and VMAT, on average. Real-time tracking increased pass rates to minimum 98% on average for 3D-CRT, IMRT, and VMAT. Conclusions: Real-time couch tracking resulted in submillimeter accuracy for prostate cancer, which transferred into high dosimetric accuracy independently of whether 3D-CRT, IMRT, or VMAT was used.

  8. Influences of reconstruction and attenuation correction in brain SPECT images obtained by the hybrid SPECT/CT device: evaluation with a 3-dimensional brain phantom

    PubMed Central

    Akamatsu, Mana; Yamashita, Yasuo; Akamatsu, Go; Tsutsui, Yuji; Ohya, Nobuyoshi; Nakamura, Yasuhiko; Sasaki, Masayuki

    2014-01-01

    Objective(s): The aim of this study was to evaluate the influences of reconstruction and attenuation correction on the differences in the radioactivity distributions in 123I brain SPECT obtained by the hybrid SPECT/CT device. Methods: We used the 3-dimensional (3D) brain phantom, which imitates the precise structure of gray matter, white matter and bone regions. It was filled with 123I solution (20.1 kBq/mL) in the gray matter region and with K2HPO4 in the bone region. The SPECT/CT data were acquired by the hybrid SPECT/CT device. SPECT images were reconstructed by using filtered back projection with uniform attenuation correction (FBP-uAC), 3D ordered-subsets expectation-maximization with uniform AC (3D-OSEM-uAC) and 3D OSEM with CT-based non-uniform AC (3D-OSEM-CTAC). We evaluated the differences in the radioactivity distributions among these reconstruction methods using a 3D digital phantom, which was developed from CT images of the 3D brain phantom, as a reference. The normalized mean square error (NMSE) and regional radioactivity were calculated to evaluate the similarity of SPECT images to the 3D digital phantom. Results: The NMSE values were 0.0811 in FBP-uAC, 0.0914 in 3D-OSEM-uAC and 0.0766 in 3D-OSEM-CTAC. The regional radioactivity of FBP-uAC was 11.5% lower in the middle cerebral artery territory, and that of 3D-OSEM-uAC was 5.8% higher in the anterior cerebral artery territory, compared with the digital phantom. On the other hand, that of 3D-OSEM-CTAC was 1.8% lower in all brain areas. Conclusion: By using the hybrid SPECT/CT device, the brain SPECT reconstructed by 3D-OSEM with CT attenuation correction can provide an accurate assessment of the distribution of brain radioactivity.

  9. Microfluidic cell culture chip with multiplexed medium delivery and efficient cell/scaffold loading mechanisms for high-throughput perfusion 3-dimensional cell culture-based assays.

    PubMed

    Huang, Song-Bin; Wu, Min-Hsien; Wang, Shih-Siou; Lee, Gwo-Bin

    2011-06-01

    This study reports a microfluidic cell culture chip consisting of 48 microbioreactors for high-throughput perfusion 3-dimensional (3-D) cell culture-based assays. Its advantages include the capability for multiplexed and backflow-free medium delivery, and both efficient and high-throughput micro-scale, 3-D cell culture construct loading. In this work, the microfluidic cell culture chip is fabricated using two major processes, specifically, a computer-numerical-controlled (CNC) mold machining process and a polydimethylsiloxane (PDMS) replication process. The chip is composed of micropumps, microbioreactors, connecting microchannels and a cell/agarose scaffold loading mechanism. The performance of the new pneumatic micropumps and the cell/agarose scaffold loading mechanism has been experimentally evaluated. The experimental results show that this proposed multiplexed medium-pumping design is able to provide a uniform pumping rate ranging from 1.5 to 298.3 μl hr(-1) without any fluid backflow and the resultant medium contamination. In addition, the simple cell/agarose loading method has been proven to be able to load the 3-D cell culture construct uniformly and efficiently in all 48 microbioreactors investigated. Furthermore, a micro-scale, perfusion, 3-D cell culture-based assay has been successfully demonstrated using this proposed cell culture chip. The experimental results are also compared to a similar evaluation using a conventional static 3-D cell culture with a larger scale culture. It is concluded that the choice of a cell culture format can influence assay results. As a whole, because of the inherent advantages of a miniaturized perfusion 3-D cell culture assay, the cell culture chip not only can provide a stable, well-defined and more biologically-meaningful culture environment, but it also features a low consumption of research resources. Moreover, due to the integrated medium pumping mechanism and the simple cell/agarose loading method, this chip is

  10. Volumetric-modulated arc radiotherapy for pancreatic malignancies: Dosimetric comparison with sliding-window intensity-modulated radiotherapy and 3-dimensional conformal radiotherapy

    SciTech Connect

    Nabavizadeh, Nima Simeonova, Anna O.; Waller, Joseph G.; Romer, Jeanna L.; Monaco, Debra L.; Elliott, David A.; Tanyi, James A.; Fuss, Martin; Thomas, Charles R.; Holland, John M.

    2014-10-01

    Volumetric-modulated arc radiotherapy (VMAT) is an iteration of intensity-modulated radiotherapy (IMRT), both of which deliver highly conformal dose distributions. Studies have shown the superiority of VMAT and IMRT in comparison with 3-dimensional conformal radiotherapy (3D-CRT) in planning target volume (PTV) coverage and organs-at-risk (OARs) sparing. This is the first study examining the benefits of VMAT in pancreatic cancer for doses more than 55.8 Gy. A planning study comparing 3D-CRT, IMRT, and VMAT was performed in 20 patients with pancreatic cancer. Treatments were planned for a 25-fraction delivery of 45 Gy to a large field followed by a reduced-volume 8-fraction external beam boost to 59.4 Gy in total. OARs and PTV doses, conformality index (CI) deviations from 1.0, monitor units (MUs) delivered, and isodose volumes were compared. IMRT and VMAT CI deviations from 1.0 for the large-field and the boost plans were equivalent (large field: 0.032 and 0.046, respectively; boost: 0.042 and 0.037, respectively; p > 0.05 for all comparisons). Both IMRT and VMAT CI deviations from 1.0 were statistically superior to 3D-CRT (large field: 0.217, boost: 0.177; p < 0.05 for all comparisons). VMAT showed reduction of the mean dose to the boost PTV (VMAT: 61.4 Gy, IMRT: 62.4 Gy, and 3D-CRT: 62.3 Gy; p < 0.05). The mean number of MUs per fraction was significantly lower for VMAT for both the large-field and the boost plans. VMAT delivery time was less than 3 minutes compared with 8 minutes for IMRT. Although no statistically significant dose reduction to the OARs was identified when comparing VMAT with IMRT, VMAT showed a reduction in the volumes of the 100% isodose line for the large-field plans. Dose escalation to 59.4 Gy in pancreatic cancer is dosimetrically feasible with shorter treatment times, fewer MUs delivered, and comparable CIs for VMAT when compared with IMRT.

  11. The Effect of Dose-Volume Parameters and Interfraction Interval on Cosmetic Outcome and Toxicity After 3-Dimensional Conformal Accelerated Partial Breast Irradiation

    SciTech Connect

    Leonard, Kara Lynne; Hepel, Jaroslaw T.; Hiatt, Jessica R.; Dipetrillo, Thomas A.; Price, Lori Lyn; Wazer, David E.

    2013-03-01

    Purpose: To evaluate dose-volume parameters and the interfraction interval (IFI) as they relate to cosmetic outcome and normal tissue effects of 3-dimensional conformal radiation therapy (3D-CRT) for accelerated partial breast irradiation (APBI). Methods and Materials: Eighty patients were treated by the use of 3D-CRT to deliver APBI at our institutions from 2003-2010 in strict accordance with the specified dose-volume constraints outlined in the National Surgical Adjuvant Breast and Bowel Project B39/Radiation Therapy Oncology Group 0413 (NSABP-B39/RTOG 0413) protocol. The prescribed dose was 38.5 Gy in 10 fractions delivered twice daily. Patients underwent follow-up with assessment for recurrence, late toxicity, and overall cosmetic outcome. Tests for association between toxicity endpoints and dosimetric parameters were performed with the chi-square test. Univariate logistic regression was used to evaluate the association of interfraction interval (IFI) with these outcomes. Results: At a median follow-up time of 32 months, grade 2-4 and grade 3-4 subcutaneous fibrosis occurred in 31% and 7.5% of patients, respectively. Subcutaneous fibrosis improved in 5 patients (6%) with extended follow-up. Fat necrosis developed in 11% of women, and cosmetic outcome was fair/poor in 19%. The relative volume of breast tissue receiving 5%, 20%, 50%, 80%, and 100% (V5-V100) of the prescribed dose was associated with risk of subcutaneous fibrosis, and the volume receiving 50%, 80%, and 100% (V50-V100) was associated with fair/poor cosmesis. The mean IFI was 6.9 hours, and the minimum IFI was 6.2 hours. The mean and minimum IFI values were not significantly associated with late toxicity. Conclusions: The incidence of moderate to severe late toxicity, particularly subcutaneous fibrosis and fat necrosis and resulting fair/poor cosmesis, remains high with continued follow-up. These toxicity endpoints are associated with several dose-volume parameters. Minimum and mean IFI values were

  12. Five-Year Outcomes, Cosmesis, and Toxicity With 3-Dimensional Conformal External Beam Radiation Therapy to Deliver Accelerated Partial Breast Irradiation

    SciTech Connect

    Rodríguez, Núria; Sanz, Xavier; Dengra, Josefa; Foro, Palmira; Membrive, Ismael; Reig, Anna; Quera, Jaume; Fernández-Velilla, Enric; Pera, Óscar; Lio, Jackson; Lozano, Joan; Algara, Manuel

    2013-12-01

    Purpose: To report the interim results from a study comparing the efficacy, toxicity, and cosmesis of breast-conserving treatment with accelerated partial breast irradiation (APBI) or whole breast irradiation (WBI) using 3-dimensional conformal external beam radiation therapy (3D-CRT). Methods and Materials: 102 patients with early-stage breast cancer who underwent breast-conserving surgery were randomized to receive either WBI (n=51) or APBI (n=51). In the WBI arm, 48 Gy was delivered to the whole breast in daily fractions of 2 Gy, with or without additional 10 Gy to the tumor bed. In the APBI arm, patients received 37.5 Gy in 3.75 Gy per fraction delivered twice daily. Toxicity results were scored according to the Radiation Therapy Oncology Group Common Toxicity Criteria. Skin elasticity was measured using a dedicated device (Multi-Skin-Test-Center MC-750-B2, CKelectronic-GmbH). Cosmetic results were assessed by the physician and the patients as good/excellent, regular, or poor. Results: The median follow-up time was 5 years. No local recurrences were observed. No significant differences in survival rates were found. APBI reduced acute side effects and radiation doses to healthy tissues compared with WBI (P<.01). Late skin toxicity was no worse than grade 2 in either group, without significant differences between the 2 groups. In the ipsilateral breast, the areas that received the highest doses (ie, the boost or quadrant) showed the greatest loss of elasticity. WBI resulted in a greater loss of elasticity in the high-dose area compared with APBI (P<.05). Physician assessment showed that >75% of patients in the APBI arm had excellent or good cosmesis, and these outcomes appear to be stable over time. The percentage of patients with excellent/good cosmetic results was similar in both groups. Conclusions: APBI delivered by 3D-CRT to the tumor bed for a selected group of early-stage breast cancer patients produces 5-year results similar to those achieved with

  13. Frontal soft tissue analysis using a 3 dimensional camera following two-jaw rotational orthognathic surgery in skeletal class III patients.

    PubMed

    Choi, Jong Woo; Lee, Jang Yeol; Oh, Tae-Suk; Kwon, Soon Man; Yang, Sung Joon; Koh, Kyung Suk

    2014-04-01

    Although two dimensional cephalometry is the standard method for analyzing the results of orthognathic surgery, it has potential limits in frontal soft tissue analysis. We have utilized a 3 dimensional camera to examine changes in soft tissue landmarks in patients with skeletal class III dentofacial deformity who underwent two-jaw rotational setback surgery. We assessed 25 consecutive Asian patients (mean age, 22 years; range, 17-32 years) with skeletal class III dentofacial deformities who underwent two-jaw rotational surgery without maxillary advancement. Using a 3D camera, we analyzed changes in facial proportions, including vertical and horizontal dimensions, facial surface areas, nose profile, lip contour, and soft tissue cheek convexity, as well as landmarks related to facial symmetry. The average mandibular setback was 10.7 mm (range: 5-17 mm). The average SNA changed from 77.4° to 77.8°, the average SNB from 89.2° to 81.1°, and the average occlusal plane from 8.7° to 11.4°. The mid third vertical dimension changed from 58.8 mm to 57.8 mm (p = 0.059), and the lower third vertical dimension changed from 70.4 mm to 68.2 mm (p = 0.0006). The average bigonial width decreased from 113.5 mm to 109.2 mm (p = 0.0028), the alar width increased from 34.7 mm to 36.1 mm (p-value = 0.0002), and lip length was unchanged. Mean mid and lower facial surface areas decreased significantly, from 171.8 cm(2) to 166.2 cm(2) (p = 0.026) and from 71.23 cm(2) to 61.9 cm(2) (p < 0.0001), respectively. Cheek convexity increased significantly, from 171.8° to 155.9° (p = 0.0007). The 3D camera was effective in frontal soft tissue analysis for orthognathic surgery, and enabled quantitative analysis of changes in frontal soft tissue landmarks and facial proportions that were not possible with conventional 2D cephalometric analysis. PMID:23870714

  14. A Multi-Center Study Comparing Shunt Type in the Norwood Procedure for Single-Ventricle Lesions: 3-Dimensional Echocardiographic Analysis

    PubMed Central

    Marx, Gerald R.; Shirali, Girish; Levine, Jami C.; Guey, Lin T.; Cnota, James F.; Baffa, Jeanne M.; Border, William L.; Colan, Steve; Ensing, Gregory; Friedberg, Mark K.; Goldberg, David J.; Idriss, Salim F.; John, J. Blaine; Lai, Wyman W.; Lu, Minmin; Menon, Shaji C.; Ohye, Richard G.; Saudek, David; Wong, Pierre C.; Pearson, Gail D.

    2013-01-01

    Background The Pediatric Heart Network’s (PHN) Single Ventricle Reconstruction Trial (SVR) randomized infants with single right ventricles (RV) undergoing a Norwood procedure to a modified Blalock-Taussig or RV-to-pulmonary artery shunt. This report compares RV parameters in the two groups using 3-dimensional echocardiography (3DE). Methods and Results 3DE studies were obtained at 10/15 SVR centers. Of the 549 subjects, 314 underwent 3DE studies at one to four time points (pre-Norwood, post-Norwood, pre-stage II, and 14 months) for a total of 757 3DEs. Of these, 565 (75%) were acceptable for analysis. RV volume, mass, mass:volume ratio, ejection fraction (EF), and severity of tricuspid regurgitation did not differ by shunt type. RV volumes and mass did not change after the Norwood, but increased from pre-Norwood to pre-stage II (end-diastolic volume [EDV, ml]/body surface area [BSA]1.3, end-systolic volume [ESV, ml]/BSA1.3 and mass[g]/BSA1.3 mean difference [95% confidence interval] = 25.0 [8.7, 41.3], 19.3 [8.3, 30.4], and 17.9 [7.3, 28.5], then decreased by 14 months (EDV/BSA1.3, ESV/BSA1.3 and mass/BSA1.3 mean difference [95% confidence interval] = −24.4 [−35.0, −13.7], −9.8 [−17.9, −1.7], and −15.3 [−22.0, −8.6]. EF decreased from pre-Norwood to pre-stage II (mean difference [95% confidence interval] = −3.7% [−6.9%, −0.5%]), but did not decrease further by 14 months. Conclusions We found no statistically significant differences between study groups in 3DE measures of RV size and function, or magnitude of tricuspid regurgitation. Volume unloading was seen after stage II, as expected, but EF did not improve. This study provides insights into the remodeling of the operated univentricular RV in infancy. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00115934. PMID:24097422

  15. 3-Dimensional Magnetic Resonance Spectroscopic Imaging at 3 Tesla for Early Response Assessment of Glioblastoma Patients During External Beam Radiation Therapy

    SciTech Connect

    Muruganandham, Manickam; Clerkin, Patrick P.; Smith, Brian J.; Anderson, Carryn M.; Morris, Ann; Capizzano, Aristides A.; Magnotta, Vincent; McGuire, Sarah M.; Smith, Mark C.; Bayouth, John E.; Buatti, John M.

    2014-09-01

    Purpose: To evaluate the utility of 3-dimensional magnetic resonance (3D-MR) proton spectroscopic imaging for treatment planning and its implications for early response assessment in glioblastoma multiforme. Methods and Materials: Eighteen patients with newly diagnosed, histologically confirmed glioblastoma had 3D-MR proton spectroscopic imaging (MRSI) along with T2 and T1 gadolinium-enhanced MR images at simulation and at boost treatment planning after 17 to 20 fractions of radiation therapy. All patients received standard radiation therapy (RT) with concurrent temozolomide followed by adjuvant temozolomide. Imaging for response assessment consisted of MR scans every 2 months. Progression-free survival was defined by the criteria of MacDonald et al. MRSI images obtained at initial simulation were analyzed for choline/N-acetylaspartate ratios (Cho/NAA) on a voxel-by-voxel basis with abnormal activity defined as Cho/NAA ≥2. These images were compared on anatomically matched MRSI data collected after 3 weeks of RT. Changes in Cho/NAA between pretherapy and third-week RT scans were tested using Wilcoxon matched-pairs signed rank tests and correlated with progression-free survival, radiation dose and location of recurrence using Cox proportional hazards regression. Results: After a median follow-up time of 8.6 months, 50% of patients had experienced progression based on imaging. Patients with a decreased or stable mean or median Cho/NAA values had less risk of progression (P<.01). Patients with an increase in mean or median Cho/NAA values at the third-week RT scan had a significantly greater chance of early progression (P<.01). An increased Cho/NAA at the third-week MRSI scan carried a hazard ratio of 2.72 (95% confidence interval, 1.10-6.71; P=.03). Most patients received the prescription dose of RT to the Cho/NAA ≥2 volume, where recurrence most often occurred. Conclusion: Change in mean and median Cho/NAA detected at 3 weeks was a significant predictor of

  16. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing

    PubMed Central

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  17. Possibilities of Preoperative Medical Models Made by 3D Printing or Additive Manufacturing.

    PubMed

    Salmi, Mika

    2016-01-01

    Most of the 3D printing applications of preoperative models have been focused on dental and craniomaxillofacial area. The purpose of this paper is to demonstrate the possibilities in other application areas and give examples of the current possibilities. The approach was to communicate with the surgeons with different fields about their needs related preoperative models and try to produce preoperative models that satisfy those needs. Ten different kinds of examples of possibilities were selected to be shown in this paper and aspects related imaging, 3D model reconstruction, 3D modeling, and 3D printing were presented. Examples were heart, ankle, backbone, knee, and pelvis with different processes and materials. Software types required were Osirix, 3Data Expert, and Rhinoceros. Different 3D printing processes were binder jetting and material extrusion. This paper presents a wide range of possibilities related to 3D printing of preoperative models. Surgeons should be aware of the new possibilities and in most cases help from mechanical engineering side is needed. PMID:27433470

  18. High resolution bone material property assignment yields robust subject specific finite element models of complex thin bone structures.

    PubMed

    Pakdel, Amirreza; Fialkov, Jeffrey; Whyne, Cari M

    2016-06-14

    Accurate finite element (FE) modeling of complex skeletal anatomy requires high resolution in both meshing and the heterogeneous mapping of material properties onto the generated mesh. This study introduces Node-based elastic Modulus Assignment with Partial-volume correction (NMAP) as a new approach for FE material property assignment to thin bone structures. The NMAP approach incorporates point spread function based deblurring of CT images, partial-volume correction of CT image voxel intensities and anisotropic interpolation and mapping of CT intensity assignment to FE mesh nodes. The NMAP procedure combined with a derived craniomaxillo-facial skeleton (CMFS) specific density-isotropic elastic modulus relationship was applied to produce specimen-specific FE models of 6 cadaveric heads. The NMAP procedure successfully generated models of the complex thin bone structures with surface elastic moduli reflective of cortical bone material properties. The specimen-specific CMFS FE models were able to accurately predict experimental strains measured under in vitro temporalis and masseter muscle loading (r=0.93, slope=1.01, n=5). The strength of this correlation represents a robust validation for CMFS FE modeling that can be used to better understand load transfer in this complex musculoskeletal system. The developed methodology offers a systematic process-flow able to address the complexity of the CMFS that can be further applied to create high-fidelity models of any musculoskeletal anatomy. PMID:27033728

  19. P17.56A 3-DIMENSIONAL MATRIX ASSAY TO HELP PREDICT TREATMENT RESPONSE TO TEMOZOLOMIDE IN PATIENTS WITH GLIOBASTOMA: UPDATE OF RESULTS AND SUBGROUP ANALYSIS OF PATIENTS UNDERGOING MGMT TESTING

    PubMed Central

    Megyesi, J.F.; Costello, P.; McDonald, W.; Macdonald, D.; Easaw, J.

    2014-01-01

    INTRODUCTION: Usual treatment for glioblastoma is surgical resection, if possible, followed by radiotherapy with adjuvant chemotherapy using temozolomide. However a significant number of patients have a short response to temozolomide and subsequently a poorer prognosis. We investigated the possibility that surgical specimens obtained at the time of surgery might provide valuable information regarding sensitivity to chemotherapies, including temozolomide. In order to do this we used a 3-dimensional matrix assay that mimics brain. We analyzed a subgroup of these patients for O-6-methylguanine-DNA methyltransferase (MGMT) status and correlated this with the response of tumor tissue in the assay to temozolomide. METHODS: Records for patients treated for newly diagnosed or recurrent glioblastoma were analyzed. All patients had undergone surgical resection and tumor specimens at time of surgery were available for culture in a 3-dimensional matrix assay and observed for growth and invasion. Drug effects on mean invasion and growth were expressed as a ratio relative to control conditions. Length of survival was compared between temozolomide treated patients whose screening results had predicted a positive or negative response to temozolomide. The MGMT status of a subgroup of these patients was analyzed and correlated with the response of tumor tissue in the assay to temozolomide. RESULTS: Fifty-eight patients with glioblastoma were assessed. Each patient's tumor displayed a unique invasion and response profile. We looked in particular at the correlation between the outcome of a patient with glioblastoma treated with temozolomide and the response of that patient's tumor tissue to temozolomide in the 3-dimensional assay. Mean survival time for patients whose tumors were not significantly sensitive to temozolomide in the assay was 181.7 +/- 43 days. Mean survival time for patients whose tumors were significantly sensitive to temozolomide in the assay was 290.0 +/- 33 days

  20. 3-dimensional magnetotelluric inversion including topography using deformed hexahedral edge finite elements and direct solvers parallelized on symmetric multiprocessor computers - Part II: direct data-space inverse solution

    NASA Astrophysics Data System (ADS)

    Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.

    2016-01-01

    Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.

  1. Type II Bi1 - xWxO1.5 + 1.5x: a (3 + 3)-dimensional commensurate modulation that stabilizes the fast-ion conducting delta phase of bismuth oxide.

    PubMed

    Wind, Julia; Auckett, Josie E; Withers, Ray L; Piltz, Ross O; Maljuk, Andrey; Ling, Chris D

    2015-12-01

    The Type II phase in the Bi1 - xWxO1.5 + 1.5x system is shown to have a (3 + 3)-dimensional modulated δ-Bi2O3-related structure, in which the modulation vector ℇ `locks in' to a commensurate value of 1/3. The structure was refined in a 3 × 3 × 3 supercell against single-crystal Laue neutron diffraction data. Ab initio calculations were used to test and optimize the local structure of the oxygen sublattice around a single mixed Bi/W site. The underlying crystal chemistry was shown to be essentially the same as for the recently refined (3 + 3)-dimensional modulated structure of Type II Bi1 - xNbxO1.5 + x (Ling et al., 2013), based on a transition from fluorite-type to pyrochlore-type via the appearance of W4O18 `tetrahedra of octahedra' and chains of corner-sharing WO6 octahedra along 〈110〉F directions. The full range of occupancies on this mixed Bi/W site give a hypothetical solid-solution range bounded by Bi23W4O46.5 (x = 0.148) and Bi22W5O48 (x = 0.185), consistent with previous reports and with our own synthetic and analytical results. PMID:26634724

  2. Computation of synthetic seismograms in a 3 dimensional Earth and inversion of eigenfrequency and Q quality factor datasets of normal modes

    NASA Astrophysics Data System (ADS)

    Roch, Julien; Clevede, Eric; Roult, Genevieve

    2010-05-01

    The 26 December 2004 Sumatra-Andaman event is the third biggest earthquake that has never been recorded but the first recorded with high quality broad-band seismometers. Such an earthquake offered a good opportunity for studying the normal modes of the Earth and particularly the gravest ones (frequency lower than 1 mHz) which provide important information on deep Earth. The splitting of some modes has been carefully analyzed. The eigenfrequencies and the Q quality factors of particular singlets have been retrieved with an unprecedented precision. In some cases, the eigenfrequencies of some singlets exhibit a clear shift when compared to the theoretical eigenfrequencies. Some core modes such as the 3S2 mode present an anomalous splitting, that is to say, a splitting width much larger than the expected one. Such anomalous splitting is presently admitted to be due to the existence of lateral heterogeneities in the inner core. We need an accurate model of the whole Earth and a method to compute synthetic seismograms in order to compare synthetic and observed data and to explain the behavior of such modes. Synthetic seismograms are computed by normal modes summation using a perturbative method developed up to second order in amplitude and up to third order in frequency (HOPT method). The last step consists in inverting both eigenfrequency and Q quality factor datasets in order to better constrain the deep Earth structure and especially the inner core. In order to find models of acceptable data fit in a multidimensional parameter space, we use the neighborhood algorithm method which is a derivative-free search method. It is particularly well adapted in our case (non linear problem) and is easy to tune with only 2 parameters. Our purpose is to find an ensemble of models that fit the data rather than a unique model.

  3. Evaluation of the middle cerebral artery occlusion techniques in the rat by in-vitro 3-dimensional micro- and nano computed tomography

    PubMed Central

    2010-01-01

    Background Animal models of focal cerebral ischemia are widely used in stroke research. The purpose of our study was to evaluate and compare the cerebral macro- and microvascular architecture of rats in two different models of permanent middle cerebral artery occlusion using an innovative quantitative micro- and nano-CT imaging technique. Methods 4h of middle cerebral artery occlusion was performed in rats using the macrosphere method or the suture technique. After contrast perfusion, brains were isolated and scanned en-bloc using micro-CT (8 μm)3 or nano-CT at 500 nm3 voxel size to generate 3D images of the cerebral vasculature. The arterial vascular volume fraction and gray scale attenuation was determined and the significance of differences in measurements was tested with analysis of variance [ANOVA]. Results Micro-CT provided quantitative information on vascular morphology. Micro- and nano-CT proved to visualize and differentiate vascular occlusion territories performed in both models of cerebral ischemia. The suture technique leads to a remarkable decrease in the intravascular volume fraction of the middle cerebral artery perfusion territory. Blocking the medial cerebral artery with macrospheres, the vascular volume fraction of the involved hemisphere decreased significantly (p < 0.001), independently of the number of macrospheres, and was comparable to the suture method. We established gray scale measurements by which focal cerebral ischemia could be radiographically categorized (p < 0.001). Nano-CT imaging demonstrates collateral perfusion related to different occluded vessel territories after macrosphere perfusion. Conclusion Micro- and Nano-CT imaging is feasible for analysis and differentiation of different models of focal cerebral ischemia in rats. PMID:20509884

  4. Effects of gape and tooth position on bite force and skull stress in the dingo (Canis lupus dingo) using a 3-dimensional finite element approach.

    PubMed

    Bourke, Jason; Wroe, Stephen; Moreno, Karen; McHenry, Colin; Clausen, Philip

    2008-01-01

    Models of the mammalian jaw have predicted that bite force is intimately linked to jaw gape and to tooth position. Despite widespread use, few empirical studies have provided evidence to validate these models in non-human mammals and none have considered the influence of gape angle on the distribution of stress. Here using a multi-property finite element (FE) model of Canis lupus dingo, we examined the influence of gape angle and bite point on both bite force and cranial stress. Bite force data in relation to jaw gape and along the tooth row, are in broad agreement with previously reported results. However stress data showed that the skull of C. l. dingo is mechanically suited to withstand stresses at wide gapes; a result that agreed well with previously held views regarding carnivoran evolution. Stress data, combined with bite force information, suggested that there is an optimal bite angle of between 25 degrees and 35 degrees in C. l. dingo. The function of these rather small bite angles remains unclear. PMID:18493603

  5. Effects of 3 dimensional crystal geometry and orientation on 1D and 2D time-scale determinations of magmatic processes using olivine and orthopyroxene

    NASA Astrophysics Data System (ADS)

    Shea, Thomas; Krimer, Daniel; Costa, Fidel; Hammer, Julia

    2014-05-01

    One of the achievements in recent years in volcanology is the determination of time-scales of magmatic processes via diffusion in minerals and its addition to the petrologists' and volcanologists' toolbox. The method typically requires one-dimensional modeling of randomly cut crystals from two-dimensional thin sections. Here we address the question whether using 1D (traverse) or 2D (surface) datasets exploited from randomly cut 3D crystals introduces a bias or dispersion in the time-scales estimated, and how this error can be improved or eliminated. Computational simulations were performed using a concentration-dependent, finite-difference solution to the diffusion equation in 3D. The starting numerical models involved simple geometries (spheres, parallelepipeds), Mg/Fe zoning patterns (either normal or reverse), and isotropic diffusion coefficients. Subsequent models progressively incorporated more complexity, 3D olivines possessing representative polyhedral morphologies, diffusion anisotropy along the different crystallographic axes, and more intricate core-rim zoning patterns. Sections and profiles used to compare 1, 2 and 3D diffusion models were selected to be (1) parallel to the crystal axes, (2) randomly oriented but passing through the olivine center, or (3) randomly oriented and sectioned. Results show that time-scales estimated on randomly cut traverses (1D) or surfaces (2D) can be widely distributed around the actual durations of 3D diffusion (~0.2 to 10 times the true diffusion time). The magnitude over- or underestimations of duration are a complex combination of the geometry of the crystal, the zoning pattern, the orientation of the cuts with respect to the crystallographic axes, and the degree of diffusion anisotropy. Errors on estimated time-scales retrieved from such models may thus be significant. Drastic reductions in the uncertainty of calculated diffusion times can be obtained by following some simple guidelines during the course of data

  6. 3DFATMIC: THREE DIMENSIONAL SUBSURFACE FLOW, FATE AND TRANSPORT OF MICROBES AND CHEMICALS MODEL - USER'S MANUAL VERSION 1.0

    EPA Science Inventory

    This document is the user's manual of 3DFATMIC, a 3-Dimensional Subsurface Flow, Fate and Transport of Microbes and Chemicals Model using a Lagrangian-Eulerian adapted zooming and peak capturing (LEZOOMPC) algorithm.

  7. 3-Dimensional Patient-Derived Lung Cancer Assays Reveal Resistance to Standards-of-Care Promoted by Stromal Cells but Sensitivity to Histone Deacetylase Inhibitors.

    PubMed

    Onion, David; Argent, Richard H; Reece-Smith, Alexander M; Craze, Madeleine L; Pineda, Robert G; Clarke, Philip A; Ratan, Hari L; Parsons, Simon L; Lobo, Dileep N; Duffy, John P; Atherton, John C; McKenzie, Andrew J; Kumari, Rajendra; King, Peter; Hall, Brett M; Grabowska, Anna M

    2016-04-01

    There is a growing recognition that current preclinical models do not reflect the tumor microenvironment in cellular, biological, and biophysical content and this may have a profound effect on drug efficacy testing, especially in the era of molecular-targeted agents. Here, we describe a method to directly embed low-passage patient tumor-derived tissue into basement membrane extract, ensuring a low proportion of cell death to anoikis and growth complementation by coculture with patient-derived cancer-associated fibroblasts (CAF). A range of solid tumors proved amenable to growth and pharmacologic testing in this 3D assay. A study of 30 early-stage non-small cell lung cancer (NSCLC) specimens revealed high levels of de novo resistance to a large range of standard-of-care agents, while histone deacetylase (HDAC) inhibitors and their combination with antineoplastic drugs displayed high levels of efficacy. Increased resistance was seen in the presence of patient-derived CAFs for many agents, highlighting the utility of the assay for tumor microenvironment-educated drug testing. Standard-of-care agents showed similar responses in the 3D ex vivo and patient-matched in vivo models validating the 3D-Tumor Growth Assay (3D-TGA) as a high-throughput screen for close-to-patient tumors using significantly reduced animal numbers. Mol Cancer Ther; 15(4); 753-63. ©2016 AACR. PMID:26873730

  8. A 3-Dimensional Analysis of the Galactic Gamma-Ray Emission Resulting from Cosmic-Ray Interactions with the Interstellar Gas and Radiation Fields

    NASA Technical Reports Server (NTRS)

    Sodroski, Thomas J.; Dwek, Eli (Technical Monitor)

    2001-01-01

    The contractor will provide support for the analysis of data under ADP (NRA 96-ADP- 09; Proposal No . 167-96adp). The primary task objective is to construct a 3-D model for the distribution of high-energy (20 MeV - 30 GeV) gamma-ray emission in the Galactic disk. Under this task the contractor will utilize data from the EGRET instrument on the Compton Gamma-Ray Observatory, H I and CO surveys, radio-continuum surveys at 408 MHz, 1420 MHz, 5 GHz, and 19 GHz, the COBE Diffuse Infrared Background Experiment (DIME) all-sky maps from 1 to 240 p, and ground-based B, V, J, H, and K photometry. The respective contributions to the gamma-ray emission from cosmic ray/matter interactions, inverse Compton scattering, and extragalactic emission will be determined.

  9. Wind-tunnel tests on a 3-dimensional fixed-geometry scramjet inlet at M = 2.30 to 4.60

    NASA Technical Reports Server (NTRS)

    Mueller, J. N.; Trexler, C. A.; Souders, S. W.

    1977-01-01

    Wind-tunnel tests were conducted on a baseline scramjet inlet model having fixed geometry and swept leading edges at M = 2.30, 2.96, 3.95, and 4.60 in the Langley unitary plan wind tunnel. The unit Reynolds number of the tests was held constant at 6.56 million per meter (2 million per foot). The objectives of the tests were to establish inlet performance and starting characteristics in the lower Mach number range of operation (less than M = 5). Surface pressures obtained on the inlet components are presented, along with the results of the internal flow surveys made at the throat and capture stations of the inlet. Contour plots of the inlet-flow-field parameters such as Mach numbers, pressure recovery, flow capture, local static and total pressure ratios at the survey stations are shown for the test Mach numbers.

  10. SAI (SYSTEMS APPLICATIONS, INCORPORATED) URBAN AIRSHED MODEL

    EPA Science Inventory

    The magnetic tape contains the FORTRAN source code, sample input data, and sample output data for the SAI Urban Airshed Model (UAM). The UAM is a 3-dimensional gridded air quality simulation model that is well suited for predicting the spatial and temporal distribution of photoch...

  11. M-BAND Analysis of Chromosome Aberration Induced by Fe-Ions in Human Epithelial Cells Cultured in 3-Dimensional Matrices

    NASA Technical Reports Server (NTRS)

    Hada, M.; Cucinotta, F. A.; Wu, H.

    2008-01-01

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied low- and high-LET radiation-induced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelia cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultued at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  12. M-BAND analysis of chromosome aberration induced by Fe-ions in human epithelial cells cultured in 3-dimensional matrices

    NASA Astrophysics Data System (ADS)

    Hada, Megumi; Cucinotta, Francis A.; Wu, Honglu

    Energetic heavy ions pose a great health risk to astronauts in extended ISS and future lunar and Mars missions. High-LET heavy ions are particularly effective in causing various biological effects, including cell inactivation, genetic mutations, cataracts and cancer induction. Most of these biological endpoints are closely related to chromosomal damage, which can be utilized as a biomarker for radiation insults. Previously, we had studied lowand high-LET radiationinduced chromosome aberrations in human epithelial cells cultured in 2-dimension (2D) using the multicolor banding fluorescence in situ hybridization (mBAND) technique. However, it has been realized that the biological response to radiation insult in a 2D cellular environment in vitro can differ significantly from the response in 3-dimension (3D) or at the actual tissue level. In this study, we cultured human epithelial cells in 3D to provide a more suitable model for human tissue. Human mammary epithelial cells (CH184B5F5/M10) were grown in Matrigel to form 3D structures, and exposed to Fe-ions at NASA Space Radiation Laboratory (NSRL) at the Brookhaven National Laboratory or 137 Cs-gamma radiation source at the University of Texas MD Anderson Cancer Center. After exposure, cells were allowed to repair for 16hr before dissociation and subcultured at low density in 2D. G2 and metaphase chromosomes in the first cell cycle were collected using a chemical-induced premature chromosome condensation (PCC) technique, and chromosome aberrations were analyzed using mBAND technique. With this technique, individually painted chromosomal bands on one chromosome allowed the identification of interchromosomal aberrations (translocation to unpainted chromosomes) and intrachromosomal aberrations (inversions and deletions within a single painted chromosome). Our data indicate a significant difference of the chromosome aberration yield between 2D and 3D cell cultures for gamma exposures, but not for Fe ion exposures

  13. Young children’s ability to use 2-dimensional and 3-dimensional symbols to show placements of body touches and hidden objects

    PubMed Central

    Lytle, Nicole; London, Kamala; Bruck, Maggie

    2015-01-01

    In two experiments, we investigated 3- to 5-year-old children’s ability to use dolls and human figure drawings as symbols to map body touches. In Experiment 1 stickers were placed on different locations of children’s bodies, and they were asked to indicate the location of the sticker using three different symbols: a doll, a human figure drawing, and the adult researcher. Performance on the tasks increased with age, but many 5-year-olds did not attain perfect performance. Surprisingly, younger children made more errors on the 2D human figure drawing task compared to the 3D doll and adult tasks. In Experiment 2, we compared children’s ability to use 3D and 2D symbols to indicate body touch as well as to guide their search for a hidden object. We replicated the findings of Experiment 1 for the body touch task: for younger children, 3D symbols were easier to use than 2D symbols. However, the reverse pattern was found for the object locations task with children showing superior performance using 2D drawings over 3D models. Though children showed developmental improvements in using dolls and drawings to show where they were touched, less than two-thirds of the 5-year-olds performed perfectly on the touch tasks. Developmental as well as forensic implications of these results are discussed. PMID:25781003

  14. Stress and strain analysis of the bone-implant interface: a comparison of fiber-reinforced composite and titanium implants utilizing 3-dimensional finite element study.

    PubMed

    Shinya, Akikazu; Ballo, Ahmed M; Lassila, Lippo V J; Shinya, Akiyoshi; Närhi, Timo O; Vallittu, Pekka K

    2011-03-01

    This study analyzed stress and strain mediated by 2 different implant materials, titanium (Ti) and experimental fiber-reinforced composite (FRC), on the implant and on the bone tissue surrounding the implant. Three-dimensional finite element models constructed from a mandibular bone and an implant were subjected to a load of 50 N in vertical and horizontal directions. Postprocessing files allowed the calculation of stress and strain within the implant materials and stresses at the bone-to-implant interface (stress path). Maximum stress concentrations were located around the implant on the rim of the cortical bone in both implant materials; Ti and overall stresses decreased toward the Ti implant apex. In the FRC implant, a stress value of 0.6 to 2.0 MPa was detected not only on the screw threads but also on the implant surface between the threads. Clear differences were observed in the strain distribution between the materials. Based on the results, the vertical load stress range of the FRC implant was close to the stress level for optimal bone growth. Furthermore, the stress at the bone around the FRC implant was more evenly distributed than that with Ti implant. PMID:20545537

  15. 3-Dimensional Portrait of the Female CEO

    ERIC Educational Resources Information Center

    Lemasters, Linda; Roach, Virginia

    2012-01-01

    Dobie and Hummel (2001) asserted that the school superintendency is the most male-dominated position within the field of education. According to a 1992 study, 72% of educators were women; however, only 13.2% of superintendents are women (Glass, 1992). The most recent survey by the American Association of School Administrators (AASA) found that…

  16. Visualization of 3 Dimensional Seismic Vector Fields

    NASA Astrophysics Data System (ADS)

    McQuinn, E.; Chourasia, A.; Minster, J. H.; Schulze, J.

    2009-12-01

    Earthquake simulations produce vast amounts of surface and volumetric temporal data. We have implemented methods to visualize scalar and vector data that allows comprehension of the large amount of information. We leverage advances in graphics processors to draw oriented and textured geometry interactively. We have developed four glyphs to depict the underlying vector data: spheres, ellipsoids, lines, and voxels. The glyphs can be switched interactively and offer multiple visual representations where each glyph enhances different underlying property. Additionally, we have developed highlighting mechanisms to enhance comprehension of direction of vector data. For instance, a sphere would ordinarily not provide directional cues but with our method of highlight the sphere can indicate the direction. We have also developed interactively tunable methods to resolve occlusion of volumetric data. We present multimodal visual representations that provide an array of interactive and flexible visualization techniques to the scientists for scientific investigation through visualization. The visualization tool can be run on a laptop, desktop or virtual reality (VR) environment. We are leveraging one such state-of-the-art system called “StarCAVE”. The StarCAVE surrounds the user with seamless, immersive and stereoscopic virtual environment. This VR environment provides the capability to view the volumetric data from inside the volume in an immersive manner, which is similar to witnessing the earthquake event from inside earth from any vantage point. Interactive visualization of the Terashake simulation allows scientists to flexibly explore existing data intuitively. This is a crop of the Terashake simulation containing the San Andreas near San Bernadino. Color represents velocity magnitude, while direction is that of the displacement vector.

  17. 3-Dimensional Protein Structure of Influenza

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The loss of productivity due to flu is staggering. Costs range as much as $20 billio a year. High mutation rates of the flu virus have hindered development of new drugs or vaccines. The secret lies in a small molecule which is attached to the host cell's surface. Each flu virus, no matter what strain, must remove this small molecule to escape the host cell to spread infection. Using data from space and earth grown crystals, researchers from the Center of Macromolecular Crystallography (CMC) are desining drugs to bind with this protein's active site. This lock and key fit reduces the spread of flu in the body by blocking its escape route. In collaboration with its corporate partner, the CMC has refined drug structure in preparation for clinical trials. Tested and approved relief is expected to reach drugstores by year 2004.

  18. Realisation of 3-dimensional data sets.

    NASA Astrophysics Data System (ADS)

    Brown, D.; Galsgaard, K.; Ireland, J.; Verwichte, E.; Walsh, R.

    The visualisation of three-dimensional objects on two dimensions is a very common problem, but is a tricky one to solve. Every discipline has its way of solving it. The artist uses light-shade interaction, perspective, special colour coding. The architect produces projections of the object. The cartographer uses both colour-coding and shading to represent height elevations. There have been many attempts in the last century by the entertainment industry to produce a three-dimensional illusion, in the fifties it was fashionable to have 3d movies which utilize the anaglyph method. Nowadays one can buy "Magic Eye" postcards which show a hidden three dimensional picture if you stare at it half cross-eyed. This poster attempts to demonstrate how some of these techniques can be applied to three-dimensional data sets that can occur in solar physics.

  19. Lithographically defined 3-dimensional graphene scaffolds

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Xiao, Xiaoyin; Polsky, Ronen

    2015-09-01

    Interferometrically defined 3D photoresist scaffolds are formed through a series of three successive two-beam interference exposures, a post exposure bake and development. Heating the resist scaffold in a reducing atmosphere to > 1000 °C, results in the conversion of the resist structure into a carbon scaffold through pyrolysis, resulting in a 3D sp3- bonded glassy carbon scaffold which maintains the same in-plane morphology as the resist despite significant shrinkage. The carbon scaffolds are readily modified using a variety of deposition methods such as electrochemical, sputtering and CVD/ALD. Remarkably, sputtering metal into scaffolds with ~ 5 unit cells tall results in conformal coating of the scaffold with the metal. When the metal is a transition metal such as nickel, the scaffold can be re-annealed, during which time the carbon diffuses through the nickel, emerging on the exterior of the nickel as sp2-bonded carbon, termed 3D graphene. This paper details the fabrication, characterization and some potential applications for these structures.

  20. Manipulator path planning in 3-dimensional space

    NASA Astrophysics Data System (ADS)

    Pavlov, Dmitry A.

    2006-04-01

    Present paper is aimed to work out efficient algorithm of multi-chain manipulator path planning in 3D space with static polygonal obstacles. The resulting solution is based on navigational maps approach. Using this approach, manipulator features are considered as intellectual agent, and reachability information is stored in compact form. This enables fast adaptation to arbitrary parameters of manipulator and workspace. The paper describes two algorithms: (i) a local walkthrough with obstacle avoidance, and (ii) incremental navigational map building, performed at running stage. Both algorithms take an extensive use of the specific features of the task. Working simultaneously, they allow real-time manipulator path planning, as well as self-learning in idle mode. Algorithms are implemented as a demonstration program.

  1. MODELING DYNAMIC THERMAL PROPERTIES OF IMPORTED FIRE ANT MOUNDS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ground-based thermal infrared imagery, 3-dimensional modeling, and spatial analyses were used to model daily fluctuation in the temperature of imported fire ant mounds and their surroundings. The thermal center of the mound moved in a predictable fashion from east-southeast to west-southwest during...

  2. Endolymphatic Hydrops Detected by 3-Dimensional Fluid-Attenuated Inversion Recovery MRI following Intratympanic Injection of Gadolinium in the Asymptomatic Contralateral Ears of Patients with Unilateral Ménière’s Disease

    PubMed Central

    Liu, Yupeng; Jia, Huan; Shi, Jun; Zheng, Hui; Li, Yuhua; Yang, Jun; Wu, Hao

    2015-01-01

    Background The aim of this study was to identify the incidence of endolymphatic hydrops using 3-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging (MRI) in the contralateral ear in patients with unilateral Ménière’s disease (MD). Material/Methods This was a prospective study. 3D-FLAIR MRI was performed with a 3 Tesla (3 T) unit 24 h after the intratympanic administration of gadolinium (Gd) in 30 unilateral MD patients with an asymptomatic contralateral ear. The incidence of contralateral involvement in unilateral MD patients and the potential correlations between the affected and contralateral ears were analyzed. Results Endolymphatic hydrops was observed in 7 of the 30 (23.3%) asymptomatic ears. The mean PTA of the asymptomatic ears in the contralateral hydrops patients (33.0±6.1 dB) was significantly higher compared with the non-hydrops patients (17.8±5.7 dB). The patients with observed contralateral hydrops exhibited a significantly longer duration of the disease compared with the non-hydrops patients (6.7±6.3 vs. 2.9±3.1 years, respectively). Furthermore, the patients with contralateral hydrops had a worse hearing level in the affected ears compared with the non-hydrops patients (70.3±7.4 vs. 52.5±3.8 dB, respectively). Conclusions Endolymphatic hydrops is closely related to hearing loss but does not necessarily result in Ménière’s symptoms. Patients with a long history of MD and severe hearing loss in the affected ear are more likely to exhibit endolymphatic hydrops in the asymptomatic contralateral ear. Adequate attention should focus on unilateral MD patients with contralateral ear hydrops because of the potential to develop bilateral MD. PMID:25742875

  3. Novel method using 3-dimensional segmentation in spectral domain-optical coherence tomography imaging in the chick reveals defocus-induced regional and time-sensitive asymmetries in the choroidal thickness.

    PubMed

    Nava, Diane R; Antony, Bhavna; Zhang, L I; Abràmoff, Michael D; Wildsoet, Christine F

    2016-01-01

    Studies into the mechanisms underlying the active emmetropization process by which neonatal refractive errors are corrected, have described rapid, compensatory changes in the thickness of the choroidal layer in response to imposed optical defocus. While high frequency A-scan ultrasonography, as traditionally used to characterize such changes, offers good resolution of central (on-axis) changes, evidence of local retinal control mechanisms make it imperative that more peripheral, off-axis changes also be tracked. In this study, we used in vivo high resolution spectral domain-optical coherence tomography (SD-OCT) imaging in combination with the Iowa Reference Algorithms for 3-dimensional segmentation, to more fully characterize these changes, both spatially and temporally, in young, 7-day old chicks (n = 15), which were fitted with monocular +15 D defocusing lenses to induce choroidal thickening. With these tools, we were also able to localize the retinal area centralis, which was used as a landmark along with the ocular pectin in standardizing the location of scans and aligning them for subsequent analyses of choroidal thickness (CT) changes across time and between eyes. Values were derived for each of four quadrants, centered on the area centralis, and global CT values were also derived for all eyes. Data were compared with on-axis changes measured using ultrasonography. There were significant on-axis choroidal thickening that was detected after just one day of lens wear (∼190 µm), and regional (quadrant-related) differences in choroidal responses were also found, as well as global thickness changes 1 day after treatment. The ratio of global to on-axis choroidal thicknesses, used as an index of regional variability in responses, was also found to change significantly, reflecting the significant central changes. In summary, we demonstrated in vivo high resolution SD-OCT imaging, used in combination with segmentation algorithms, to be a viable and informative

  4. Differentiation and Genomic Instability in a Human Mammary Cell Model

    NASA Technical Reports Server (NTRS)

    Richmond, R.; Kale, R.; Pettengill, O.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Harvest of prophylactic mastectomy specimens from an obligate heterozygote for ataxia-telangiectasia provided autologous fibroblasts as well epithelial cells (HMEC). The routine availability of these autologous cells has provided an opportunity to study cell-cell interactions in coculture and monoculture, and in 3-dimensional cultures grown in the NASA rotating bioreactor. HMEC and stromal fibroblasts grown in 2-dimensional monoculture were both observed to produce extracellular matrix. Similar matrix was encountered in 3-dimensional cultures containing HMEC. Metaphases were analyzed. For stromal fibroblasts, genomic aberrations were found in 18% of metaphase spreads. For HMEC, aberrations were greater such that a majority were found to be abnormal. The level of genomic instability determined for these noncancerous cells in 2-dimensional monoculture should be useful for generating a human cell model that can correlate the effects of differentiation in 3-dimensional coculture on the level of genomic instability.

  5. Constituent Components of Out-of-Field Scatter Dose for 18-MV Intensity Modulated Radiation Therapy Versus 3-Dimensional Conformal Radiation Therapy: A Comparison With 6-MV and Implications for Carcinogenesis

    SciTech Connect

    Ruben, Jeremy D.; Smith, Ryan; Lancaster, Craig M.; Haynes, Matthew; Jones, Phillip; Panettieri, Vanessa

    2014-11-01

    Purpose: To characterize and compare the components of out-of-field dose for 18-MV intensity modulated radiation therapy (IMRT) versus 3-dimensional conformal radiation therapy (3D-CRT) and their 6-MV counterparts and consider implications for second cancer induction. Methods and Materials: Comparable plans for each technique/energy were delivered to a water phantom with a sloping wall; under full scatter conditions; with field edge abutting but outside the bath to prevent internal/phantom scatter; and with shielding below the linear accelerator head to attenuate head leakage. Neutron measurements were obtained from published studies. Results: Eighteen-megavolt IMRT produces 1.7 times more out-of-field scatter than 18-MV 3D-CRT. In absolute terms, however, differences are just approximately 0.1% of central axis dose. Eighteen-megavolt IMRT reduces internal/patient scatter by 13%, but collimator scatter (C) is 2.6 times greater than 18-MV 3D-CRT. Head leakage (L) is minimal. Increased out-of-field photon scatter from 18-MV IMRT carries out-of-field second cancer risks of approximately 0.2% over and above the 0.4% from 18-MV 3D-CRT. Greater photoneutron dose from 18-MV IMRT may result in further maximal, absolute increased risk to peripheral tissue of approximately 1.2% over 18-MV 3D-CRT. Out-of-field photon scatter remains comparable for the same modality irrespective of beam energy. Machine scatter (C+L) from 18 versus 6 MV is 1.2 times higher for IMRT and 1.8 times for 3D-CRT. It is 4 times higher for 6-MV IMRT versus 3D-CRT. Reduction in internal scatter with 18 MV versus 6 MV is 27% for 3D-CRT and 29% for IMRT. Compared with 6-MV 3D-CRT, 18-MV IMRT increases out-of-field second cancer risk by 0.2% from photons and adds 0.28-2.2% from neutrons. Conclusions: Out-of-field photon dose seems to be independent of beam energy for both techniques. Eighteen-megavolt IMRT increases out-of-field scatter 1.7-fold over 3D-CRT because of greater collimator scatter despite

  6. Preliminary Toxicity Analysis of 3-Dimensional Conformal Radiation Therapy Versus Intensity Modulated Radiation Therapy on the High-Dose Arm of the Radiation Therapy Oncology Group 0126 Prostate Cancer Trial

    SciTech Connect

    Michalski, Jeff M.; Yan, Yan; Watkins-Bruner, Deborah; Bosch, Walter R.; Winter, Kathryn; Galvin, James M.; Bahary, Jean-Paul; Morton, Gerard C.; Parliament, Matthew B.; Sandler, Howard M.

    2013-12-01

    Purpose: To give a preliminary report of clinical and treatment factors associated with toxicity in men receiving high-dose radiation therapy (RT) on a phase 3 dose-escalation trial. Methods and Materials: The trial was initiated with 3-dimensional conformal RT (3D-CRT) and amended after 1 year to allow intensity modulated RT (IMRT). Patients treated with 3D-CRT received 55.8 Gy to a planning target volume that included the prostate and seminal vesicles, then 23.4 Gy to prostate only. The IMRT patients were treated to the prostate and proximal seminal vesicles to 79.2 Gy. Common Toxicity Criteria, version 2.0, and Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late morbidity scores were used for acute and late effects. Results: Of 763 patients randomized to the 79.2-Gy arm of Radiation Therapy Oncology Group 0126 protocol, 748 were eligible and evaluable: 491 and 257 were treated with 3D-CRT and IMRT, respectively. For both bladder and rectum, the volumes receiving 65, 70, and 75 Gy were significantly lower with IMRT (all P<.0001). For grade (G) 2+ acute gastrointestinal/genitourinary (GI/GU) toxicity, both univariate and multivariate analyses showed a statistically significant decrease in G2+ acute collective GI/GU toxicity for IMRT. There were no significant differences with 3D-CRT or IMRT for acute or late G2+ or 3+ GU toxicities. Univariate analysis showed a statistically significant decrease in late G2+ GI toxicity for IMRT (P=.039). On multivariate analysis, IMRT showed a 26% reduction in G2+ late GI toxicity (P=.099). Acute G2+ toxicity was associated with late G3+ toxicity (P=.005). With dose–volume histogram data in the multivariate analysis, RT modality was not significant, whereas white race (P=.001) and rectal V70 ≥15% were associated with G2+ rectal toxicity (P=.034). Conclusions: Intensity modulated RT is associated with a significant reduction in acute G2+ GI/GU toxicity. There is a trend for a

  7. Development of an anthropomorphic shoulder phantom model that simulates bony anatomy for sonographic measurement of the acromiohumeral distance.

    PubMed

    Adusumilli, Pratik; McCreesh, Karen; Evans, Tony

    2014-11-01

    The purpose of this project was to create a sonographic phantom model of the shoulder that was accurate in bone configuration. Its main purpose was for operator training to measure the acromiohumeral distance. A computerized 3-dimensional model of the superior half of the humerus and scapula was rendered and 3-dimensionally printed. The bone model was embedded in a gelatin compound and set in a shoulder-shaped mold. The materials used had speeds of sound that were well matched to soft tissue and epiphyseal bone. The model was specifically effective in simulating the acromiohumeral distance because of its accurate bone geometry. PMID:25336490

  8. Modeling the shock initiation of PBX 9501 in ALE3D

    SciTech Connect

    Mace, Jonathan; Mas, Eric M; Leininger, Lara; Springer, H Keo

    2008-01-01

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX based heterogeneous high explosive, PBX9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model in this fully 3-dimensional regime of Shock to Detonation Transition (SDT).

  9. Symmetry Breaking in a Model for Nodal Cilia

    NASA Astrophysics Data System (ADS)

    Brokaw, Charles J.

    2005-03-01

    Nodal cilia are very short cilia found in the embryonic node on the ventral surface of early mammalian embryos. They create a right to left fluid flow that is responsible for determining the normal asymmetry of the internal organs of the mammalian body. To do this, the distal end of the cilium must circle in a counterclockwise sense. Computer simulations with 3-dimensional models of flagella allow examination of 3-dimensional movements such as those of nodal cilia. 3-dimensional circling motions of short cilia can be achieved with velocity controlled models, in which dynein activity is regulated by sliding velocity. If dyneins on one outer doublet are controlled by the sliding velocity experienced by that doublet, the system is symmetric, and the 3-dimensional models can show either clockwise or counterclockwise circling. My computer simulations have examined two possible symmetry breaking mechanisms: 1) dyneins on doublet N are regulated by a mixture of the sliding velocities experienced by doublets N and N+1 (numbered in a clockwise direction, looking from the base). or 2) symmetry is broken by an off-axis force that produces a right-handed twist of the axoneme, consistent with observations that some dyneins can rotate their substrate microtubules in a clockwise direction.

  10. A Neural Model of Visually Guided Steering, Obstacle Avoidance, and Route Selection

    ERIC Educational Resources Information Center

    Elder, David M.; Grossberg, Stephen; Mingolla, Ennio

    2009-01-01

    A neural model is developed to explain how humans can approach a goal object on foot while steering around obstacles to avoid collisions in a cluttered environment. The model uses optic flow from a 3-dimensional virtual reality environment to determine the position of objects on the basis of motion discontinuities and computes heading direction,…

  11. Sphenoid Sinus and Sphenoid Bone Fractures in Patients with Craniomaxillofacial Trauma

    PubMed Central

    Cantini Ardila, Jorge Ernesto; Mendoza, Miguel Ángel Rivera; Ortega, Viviana Gómez

    2013-01-01

    Background and Purpose Sphenoid bone fractures and sphenoid sinus fractures have a high morbidity due to its association with high-energy trauma. The purpose of this study is to describe individuals with traumatic injuries from different mechanisms and attempt to determine if there is any relationship between various isolated or combined fractures of facial skeleton and sphenoid bone and sphenoid sinus fractures. Methods We retrospectively studied hospital charts of all patients who reported to the trauma center at Hospital de San José with facial fractures from December 2009 to August 2011. All patients were evaluated by computed tomography scan and classified into low-, medium-, and high-energy trauma fractures, according to the classification described by Manson. Design This is a retrospective descriptive study. Results The study data were collected as part of retrospective analysis. A total of 250 patients reported to the trauma center of the study hospital with facial trauma. Thirty-eight patients were excluded. A total of 212 patients had facial fractures; 33 had a combination of sphenoid sinus and sphenoid bone fractures, and facial fractures were identified within this group (15.5%). Gender predilection was seen to favor males (77.3%) more than females (22.7%). The mean age of the patients was 37 years. Orbital fractures (78.8%) and maxillary fractures (57.5%) were found more commonly associated with sphenoid sinus and sphenoid bone fractures. Conclusions High-energy trauma is more frequently associated with sphenoid fractures when compared with medium- and low-energy trauma. There is a correlation between facial fractures and sphenoid sinus and sphenoid bone fractures. A more exhaustive multicentric case-control study with a larger sample and additional parameters will be essential to reach definite conclusions regarding the spectrum of fractures of the sphenoid bone associated with facial fractures. PMID:24436756

  12. The biology of distraction osteogenesis for correction of mandibular and craniomaxillofacial defects: A review

    PubMed Central

    Natu, Subodh Shankar; Ali, Iqbal; Alam, Sarwar; Giri, Kolli Yada; Agarwal, Anshita; Kulkarni, Vrishali Ajit

    2014-01-01

    Limb lengthening by distraction osteogenesis was first described in 1905. The technique did not gain wide acceptance until Gavril Ilizarov identified the physiologic and mechanical factors governing successful regeneration of bone formation. Distraction osteogenesis is a new variation of more traditional orthognathic surgical procedure for the correction of dentofacial deformities. It is most commonly used for the correction of more severe deformities and syndromes of both the maxilla and the mandible and can also be used in children at ages previously untreatable. The basic technique includes surgical fracture of deformed bone, insertion of device, 5-7 days rest, and gradual separation of bony segments by subsequent activation at the rate of 1 mm per day, followed by an 8-12 weeks consolidation phase. This allows surgeons, the lengthening and reshaping of deformed bone. The aim of this paper is to review the principle, technical considerations, applications and limitations of distraction osteogenesis. The application of osteodistraction offers novel solutions for surgical-orthodontic management of developmental anomalies of the craniofacial skeleton as bone may be molded into different shapes along with the soft tissue component gradually thereby resulting in less relapse. PMID:24688555

  13. Cranio-maxillofacial non-Hodgkin's lymphoma: clinical and histological presentation.

    PubMed

    Scherfler, Sebastian; Freier, Kolja; Seeberger, Robin; Bacon, Claire; Hoffmann, Jürgen; Thiele, Oliver C

    2012-10-01

    Non-Hodgkin's lymphoma represents about 5% of all malignant lesions of the head and neck. In this study we retrospectively evaluated clinical presentation, histological subtype and long-term prognosis of 42 patients with non-Hodgkin's lymphoma involving the craniofacial area. The mean age at diagnosis was 64 years. More than half of the patients presented with disseminated disease at multiple sites (55%, n=23). In 62% (n=26) the first manifestation was extranodal. The most common affected region was the oral cavity (65%, n=17). Treatment consisted of local therapy, including surgical resection and radiation, as well as chemotherapy with or without local therapy. Recurrence occurred in 31% (n=13) of the treated patients. Mean survival after first diagnosis varied from 17 months in patients presenting with diffuse large B-cell lymphoma (DLBCL), to 8.5 years in patients with follicular lymphoma. The most common histological subtype is DLBCL. Standard treatment for DLBCL consists of chemotherapy combined with CD 20 monoclonal antibody, even after total resection of the tumour. There is high risk of systemic disease in patients presenting with non-Hodgkin's lymphoma and high risk of post therapy recurrence. PMID:22093243

  14. Virtual skeletal complex model- and landmark-guided orthognathic surgery system.

    PubMed

    Lee, Sang-Jeong; Woo, Sang-Yoon; Huh, Kyung-Hoe; Lee, Sam-Sun; Heo, Min-Suk; Choi, Soon-Chul; Han, Jeong Joon; Yang, Hoon Joo; Hwang, Soon Jung; Yi, Won-Jin

    2016-05-01

    intraoperative visualization and quantification of deviations for simulated postoperative MMC and landmarks. The guidance using simulated skeletal models and landmarks can complement and improve conventional navigational surgery for bone repositioning in the craniomaxillofacial area. PMID:27012762

  15. FinFET Doping; Material Science, Metrology, and Process Modeling Studies for Optimized Device Performance

    SciTech Connect

    Duffy, R.; Shayesteh, M.

    2011-01-07

    In this review paper the challenges that face doping optimization in 3-dimensional (3D) thin-body silicon devices will be discussed, within the context of material science studies, metrology methodologies, process modeling insight, ultimately leading to optimized device performance. The focus will be on ion implantation at the method to introduce the dopants to the target material.

  16. Using Virtual Reality Computer Models to Support Student Understanding of Astronomical Concepts

    ERIC Educational Resources Information Center

    Barnett, Michael; Yamagata-Lynch, Lisa; Keating, Tom; Barab, Sasha A.; Hay, Kenneth E.

    2005-01-01

    The purpose of this study was to examine how 3-dimensional (3-D) models of the Solar System supported student development of conceptual understandings of various astronomical phenomena that required a change in frame of reference. In the course described in this study, students worked in teams to design and construct 3-D virtual reality computer…

  17. Impact modeling with Smooth Particle Hydrodynamics

    SciTech Connect

    Stellingwerf, R.F.; Wingate, C.A.

    1993-07-01

    Smooth Particle Hydrodynamics (SPH) can be used to model hypervelocity impact phenomena via the addition of a strength of materials treatment. SPH is the only technique that can model such problems efficiently due to the combination of 3-dimensional geometry, large translations of material, large deformations, and large void fractions for most problems of interest. This makes SPH an ideal candidate for modeling of asteroid impact, spacecraft shield modeling, and planetary accretion. In this paper we describe the derivation of the strength equations in SPH, show several basic code tests, and present several impact test cases with experimental comparisons.

  18. SIMULATION OF A METHYL TERT-BUTYL ETHER (MTBE) PLUME WITH MODFLOW, MT3D AND THE HYDROCARBON SPILL SCREENING MODEL (HSSM)

    EPA Science Inventory

    An MTBE plume in the Upper Glacial Aquifer of Long Island, NY was simulated by combining MODFLOW and MT3D with a semi-analytical model for a gasoline release. The first step was to develop and calibrate a 3-dimensional steady-state numerical ground water flow model of the aquife...

  19. With the advent of domestic 3-dimensional (3D) printers and their associated reduced cost, is it now time for every medical school to have their own 3D printer?

    PubMed

    Balestrini, Christopher; Campo-Celaya, Tatiana

    2016-01-01

    Anatomy is the backbone of medical education and new techniques to improve learning are frequently explored. With the introduction of 3D printers specifically for the home market, the price of this technology has reached affordable levels. Using patient scan data, accurate 3D models can be printed that represent real human variation in anatomy to provide an innovative, inexpensive and valuable adjunct to anatomical teaching. Is it now time for every medical school to have their own 3D printer? PMID:26383082

  20. Implant shape optimization using reverse FEA

    NASA Astrophysics Data System (ADS)

    Gladilin, Evgeny; Ivanov, A.; Roginsky, V.

    2005-04-01

    This work presents a novel approach for the physically-based optimization of individual implants in cranio-maxillofacial surgery. The proposed method is based on solving an inverse boundary value problem of the cranio-maxillofacial surgery planning, i.e. finding an optimal implant shape for a desired correction of soft tissues. The paper describes the methodology for the generation of individual geometrical models of human head, the reverse finite element approach for solving biomechanical boundary value problems and two clinical studies dealing with the computer aided design of individual craniofacial implants.

  1. A Low-Cost Teaching Model of Inguinal Canal: A Useful Method to Teach Surgical Concepts in Hernia Repair

    ERIC Educational Resources Information Center

    Ansaloni, Luca; Catena, Fausto; Coccolini, Frederico; Ceresoli, Marco; Pinna, Antonio Daniele

    2014-01-01

    Objectives: Inguinal canal anatomy and hernia repair is difficult for medical students and surgical residents to comprehend. Methods: Using low-cost material, a 3-dimensional inexpensive model of the inguinal canal was created to allow students to learn anatomical details and landmarks and to perform their own simulated hernia repair. In order to…

  2. A 3-D Model of Signaling and Transport Pathways in Epithelial Cells

    SciTech Connect

    Quong, A A; Westbrook, C K

    2005-04-01

    A 3-dimensional computer model was developed to simulate the spatial and chemical evolution of calcium ions inside an array of human epithelial kidney cells. This is a prototype model, intended to develop a methodology to incorporate much more complex interactions of metabolic and other processes within many types of cells and lead to increased ability to predict cellular responses to disease as well as to chemical and biological warfare situations. Preliminary tests of the model are described.

  3. Modeling

    SciTech Connect

    Loth, E.; Tryggvason, G.; Tsuji, Y.; Elghobashi, S. E.; Crowe, Clayton T.; Berlemont, A.; Reeks, M.; Simonin, O.; Frank, Th; Onishi, Yasuo; Van Wachem, B.

    2005-09-01

    Slurry flows occur in many circumstances, including chemical manufacturing processes, pipeline transfer of coal, sand, and minerals; mud flows; and disposal of dredged materials. In this section we discuss slurry flow applications related to radioactive waste management. The Hanford tank waste solids and interstitial liquids will be mixed to form a slurry so it can be pumped out for retrieval and treatment. The waste is very complex chemically and physically. The ARIEL code is used to model the chemical interactions and fluid dynamics of the waste.

  4. 3-dimensional auditory displays: development, applications, and performance.

    PubMed

    McKinley, R L; Erickson, M A; D'Angelo, W R

    1994-05-01

    Virtual or 3-D audio display technology has become a reality. This type of system has the capability of synthesizing signals presented over headphones that give the user the illusion that the sound is emanating from some external location. The development of this technology, its applications, and its performance in both laboratory and flight test situations are presented. Potential fighter aircraft applications include threat location warning, wingman location indication, spatially separated multi-channel communications, and audio target location indications. The laboratory performance data show an average localization error in azimuth of approximately 5 degrees, a minimum audible angle of approximately 5 degrees, and a speech intelligibility improvement of up to 28%. Flight test results demonstrated successful audio cued target acquisition, a subjective decrease in target acquisition times, a subjective improvement in speech intelligibility, a subjective increase in situational awareness, and a subjective decrease in pilot workload. A summary of both laboratory and flight test results is presented in addition to recommendations for future research. PMID:8018076

  5. Designing 3 Dimensional Virtual Reality Using Panoramic Image

    NASA Astrophysics Data System (ADS)

    Wan Abd Arif, Wan Norazlinawati; Wan Ahmad, Wan Fatimah; Nordin, Shahrina Md.; Abdullah, Azrai; Sivapalan, Subarna

    The high demand to improve the quality of the presentation in the knowledge sharing field is to compete with rapidly growing technology. The needs for development of technology based learning and training lead to an idea to develop an Oil and Gas Plant Virtual Environment (OGPVE) for the benefit of our future. Panoramic Virtual Reality learning based environment is essential in order to help educators overcome the limitations in traditional technical writing lesson. Virtual reality will help users to understand better by providing the simulations of real-world and hard to reach environment with high degree of realistic experience and interactivity. Thus, in order to create a courseware which will achieve the objective, accurate images of intended scenarios must be acquired. The panorama shows the OGPVE and helps to generate ideas to users on what they have learnt. This paper discusses part of the development in panoramic virtual reality. The important phases for developing successful panoramic image are image acquisition and image stitching or mosaicing. In this paper, the combination of wide field-of-view (FOV) and close up image used in this panoramic development are also discussed.

  6. The 3-dimensional cored and logarithm potentials: Periodic orbits

    SciTech Connect

    Kulesza, Maité; Llibre, Jaume

    2014-11-15

    We study analytically families of periodic orbits for the cored and logarithmic Hamiltonians with 3 degrees of freedom, which are relevant in the analysis of the galactic dynamics. First, after introducing a scale transformation in the coordinates and momenta with a parameter ε, we show that both systems give essentially the same set of equations of motion up to first order in ε. Then the conditions for finding families of periodic orbits, using the averaging theory up to first order in ε, apply equally to both systems in every energy level H = h > 0 showing the existence of at least 3 periodic orbits, for ε small enough, and also provides an analytic approximation for the initial conditions of these periodic orbits. We prove that at every positive energy level the cored and logarithmic Hamiltonians with 3 degrees of freedom have at least three periodic solutions. The technique used for proving such a result can be applied to other Hamiltonian systems.

  7. Fiber Scanning Array for 3 Dimensional Topographic Imaging

    NASA Technical Reports Server (NTRS)

    Coyle, D. Barry; Rabine, David L.; Poulios, Demetrios; Blair, J. Bryan; Stysley, Paul R.; Kay, Richard; Clarke, Greg; Bufton, Jack

    2013-01-01

    We report on the design and development of a fiber optic scanning 3-D LIDAR employing a switched fiber array. This design distributes ns length laser pulses over a sample field, collects the return pulses, and assembles them into a 3-D image. This instrument is a reduced size version consisting of 35 beams, and will serve as a proof-of-principle demonstration for a planned 1000 beam instrument for Earth and planetary topographical missions.

  8. 3-dimensional telepresence system for a robotic environment

    DOEpatents

    Anderson, Matthew O.; McKay, Mark D.

    2000-01-01

    A telepresence system includes a camera pair remotely controlled by a control module affixed to an operator. The camera pair provides for three dimensional viewing and the control module, affixed to the operator, affords hands-free operation of the camera pair. In one embodiment, the control module is affixed to the head of the operator and an initial position is established. A triangulating device is provided to track the head movement of the operator relative to the initial position. A processor module receives input from the triangulating device to determine where the operator has moved relative to the initial position and moves the camera pair in response thereto. The movement of the camera pair is predetermined by a software map having a plurality of operation zones. Each zone therein corresponds to unique camera movement parameters such as speed of movement. Speed parameters include constant speed, or increasing or decreasing. Other parameters include pan, tilt, slide, raise or lowering of the cameras. Other user interface devices are provided to improve the three dimensional control capabilities of an operator in a local operating environment. Such other devices include a pair of visual display glasses, a microphone and a remote actuator. The pair of visual display glasses are provided to facilitate three dimensional viewing, hence depth perception. The microphone affords hands-free camera movement by utilizing voice commands. The actuator allows the operator to remotely control various robotic mechanisms in the remote operating environment.

  9. Computer-assisted 3-dimensional anthropometry of the scaphoid.

    PubMed

    Pichler, Wolfgang; Windisch, Gunther; Schaffler, Gottfried; Heidari, Nima; Dorr, Katrin; Grechenig, Wolfgang

    2010-02-01

    Scaphoid fracture fixation using a cannulated headless compression screw and the Matti-Russe procedure for the treatment of scaphoid nonunions are performed routinely. Surgeons performing these procedures need to be familiar with the anatomy of the scaphoid. A literature review reveals relatively few articles on this subject. The goal of this anatomical study was to measure the scaphoid using current technology and to discuss the findings with respect to the current, relevant literature.Computed tomography scans of 30 wrists were performed using a 64-slice SOMATOM Sensation CT system (resolution 0.6 mm) (Siemens Medical Solutions Inc, Malvern, Pennsylvania). Three-dimensional reconstructions from the raw data were generated by MIMICS software (Materialise, Leuven, Belgium). The scaphoid had a mean length of 26.0 mm (range, 22.3-30.7 mm), and men had a significantly longer (P<.001) scaphoid than women (27.861.6 mm vs 24.561.6 mm, respectively). The width and height were measured at 3 different levels for volume calculations, resulting in a mean volume of 3389.5 mm(3). Men had a significantly larger (P<.001) scaphoid volume than women (4057.86740.7 mm(3) vs 2846.56617.5 mm(3), respectively).We found considerable variation in the length and volume of the scaphoid in our cohort. We also demonstrated a clear correlation between scaphoid size and sex. Surgeons performing operative fixation of scaphoid fractures and corticocancellous bone grafting for nonunions need to be familiar with these anatomical variations. PMID:20192143

  10. A 3-Dimensional display and process software for THz spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaowen; Zhang, Zhaohui; Zhao, Xiaoyan; Yin, Yixin; Ajito, Katsuhiro; Song, Hojin

    2011-02-01

    An underpinning software is devoted to THz spectrum analyzing and 3-D imaging. The paper describes the software's outline, structure, functions and some of considerations. Users in LAN (local area network) can access it and implement some basic and advanced works such as files operation, echoes cutting, spectrum calculation, baseline cancelling, peak fitting, qualitative and quantitative measuring of solid-state samples.

  11. A 3-dimensional mass conserving element for compressible flows

    NASA Technical Reports Server (NTRS)

    Fix, G.; Suri, M.

    1985-01-01

    A variety of finite element schemes has been used in the numerical approximation of compressible flows particularly in underwater acoustics. In many instances instabilities have been generated due to the lack of mass conservation. Two- and three-dimensional elements are developed which avoid these problems.

  12. [Cerebral aneurysms: their 3-dimensional imaging with spiral CT].

    PubMed

    Rieger, J; Hosten, N; Lemke, A J; Langer, R; Lanksch, W R; Felix, R

    1994-03-01

    In this study, the possibility of non-invasive, three-dimensional demonstration of aneurysms of the basal cerebral arteries by means of spiral CT was investigated. The first step was to obtain exact definition of optimal examination parameters. Angio CTs at appropriate levels were performed on 10 subjects and time/density curves of the arterial and venous phases obtained in order to optimise the beginning of the arterial spiral CT series. The second step in this investigation was to examine 7 patients; in 6 of these basal aneurysms had been demonstrated by DSA. By means of multiplanar three-dimensional reconstruction from the data of the spiral CT it was possible to demonstrate 7 aneurysms with a diameter between 5 and 18 mm. Their position and relationship to the bony skull was also shown. PMID:8136472

  13. Monolithically integrated Helmholtz coils by 3-dimensional printing

    SciTech Connect

    Li, Longguang; Abedini-Nassab, Roozbeh; Yellen, Benjamin B.

    2014-06-23

    3D printing technology is of great interest for the monolithic fabrication of integrated systems; however, it is a challenge to introduce metallic components into 3D printed molds to enable broader device functionality. Here, we develop a technique for constructing a multi-axial Helmholtz coil by injecting a eutectic liquid metal Gallium Indium alloy (EGaIn) into helically shaped orthogonal cavities constructed in a 3D printed block. The tri-axial solenoids each carry up to 3.6 A of electrical current and produce magnetic field up to 70 G. Within the central section of the coil, the field variation is less than 1% and is in agreement with theory. The flow rates and critical pressures required to fill the 3D cavities with liquid metal also agree with theoretical predictions and provide scaling trends for filling the 3D printed parts. These monolithically integrated solenoids may find future applications in electronic cell culture platforms, atomic traps, and miniaturized chemical analysis systems based on nuclear magnetic resonance.

  14. Partial hyperbolicity and attracting regions in 3-dimensional manifolds

    NASA Astrophysics Data System (ADS)

    Potrie, Rafael

    The need for reliable, fiber-based sources of entangled and paired photons has intensified in recent years because of potential uses in optical quantum communication and computing. In particular, indistinguishable photon sources are an inherent part of several quantum communication protocols and are needed to establish the viability of quantum communication networks. This thesis is centered around the development of such sources at telecommunication-band wavelengths. In this thesis, we describe experiments on entangled photon generation and the creation of quantum logic gates in the C-band, and on photon indistinguishability in the O-band. These experiments utilize the four-wave mixing process in fiber which occurs as a result of the Kerr nonlinearity, to create paired photons. To begin, we report the development of a source of 1550-nm polarization entangled photons in fiber. We then interface this source with a quantum Controlled-NOT gate, which is a universal quantum logic gate. We set experimental bounds on the process fidelity of the Controlled-NOT gate. Next, we report a demonstration of quantum interference between 1310-nm photons produced in independent sources. We demonstrate high quantum interference visibility, a signature of quantum indistinguishability, while using distinguishable pump photons. Together, these efforts constitute preliminary steps toward establishing the viability of fiber-based quantum communication, which will allow us to utilize existing infrastructure for implementing quantum communication protocols.

  15. A 3-dimensional time-resolved photothermal deflection ``Mirage'' method

    NASA Astrophysics Data System (ADS)

    Astrath, N. G. C.; Malacarne, L. C.; Lukasievicz, G. V. B.; Bernabe, H. S.; Rohling, J. H.; Baesso, M. L.; Shen, J.; Bialkowski, S. E.

    2012-02-01

    A three-dimensional time-resolved theory and experiment for photothermal deflection spectroscopy is developed. The heat conduction equations for two semi-infinite media consisting of an opaque sample and a fluid are solved considering temperature and energy flux balance conditions for a Gaussian heat source. The time dependent perpendicular deflection signal is calculated and compared to experimental measurements on glassy carbon and copper samples. Excellent agreement with literature values for thermal diffusivity of the samples is found. The transient behavior is analyzed for different coupling fluids.

  16. Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity

    NASA Astrophysics Data System (ADS)

    Knodel, Gino; Lisbão, Pedro; Liu, James T.

    2016-06-01

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional mathcal{N} = 2 super-gravity [1]. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are 1/2 -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of mathcal{N} = 2 supergravity are connected to the solutions found here in the c → ∞ limit.

  17. Automatic non-contact 3-dimensional gauging via sensor fusion

    NASA Astrophysics Data System (ADS)

    Zhang, Yi F.

    1993-09-01

    The methods by which damaged rolling element bearings generate vibration at a low speed how that vibratioll may be measured and separated from vibration produced by other mechanical components and how that vibration may be analyzed and interpreted as well as examined for a variety damage locations and operating conditions.

  18. Novel 3-Dimensional Dendrimer Platform for Glycolipid Microarray

    PubMed Central

    Zhang, Jian; Zhou, Xichun

    2011-01-01

    Glycolipids are important biological molecules that modulate cellular recognitions and pathogen adhesions. In this paper, we report a sensitive glycolipid microarray for non-covalently immobilizing glycolipids on a microarray substrate and we perform a set of immunoassays to explore glycolipid-protein interactions. This substrate utilizes a three-dimensional hydrazide-functionalized dendrimer monolayer attached onto a microscopic glass surface, which possesses the characteristics to adsorb glycoliplids non-covalently and facilitates multivalent attributes on the substrate surface. In the proof-of-concept experiments, gangliosides such as GM1, FucGM1, GM3, GD1b, GT1b, and GQ1b, and a lipoarabinomannan were tested on the substrate and interrogated with toxins and antibodies. The resulting glycolipid microarrays exhibited hypersensitivity and specificity for detection of glycolipid-protein interactions. In particular, a robust and specific binding of a pentameric cholera toxin B subunit to the GM1 glycolipid spotted on the array has demonstrated its superiority in sensitivity and specificity. In addition, this glycolipid microarray substrate was used to detect lipoarabinomannan in buffer within a limit-of-detection of 125 ng/mL. Furthermore, Mycobacterium tuberculosis (Mtb) Lipoarabinomannan was tested in human urine specimens on this platform, which can effectively identify urine samples either infected or not infected with Mtb. The results of this work suggest the possibility of using this glycolipid microarray platform to fabricate glycoconjugate microarrays, which includes free glycans and glycolipids and potential application in detection of pathogen and toxin. PMID:21820887

  19. 3-dimensional imaging system using crystal diffraction lenses

    DOEpatents

    Smither, Robert K.

    1999-01-01

    A device for imaging a plurality of sources of x-ray and gamma-ray radiation is provided. Diffracting crystals are used for focussing the radiation and directing the radiation to a detector which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for a method for imaging x-ray and gamma radiation by supplying a plurality of sources of radiation; focussing the radiation onto a detector; analyzing the focused radiation to collect data as to the type and location of the radiation; and producing an image using the data.

  20. 3-dimensional imaging system using crystal diffraction lenses

    DOEpatents

    Smither, R.K.

    1999-02-09

    A device for imaging a plurality of sources of x-ray and gamma-ray radiation is provided. Diffracting crystals are used for focusing the radiation and directing the radiation to a detector which is used for analyzing their addition to collect data as to the location of the source of radiation. A computer is used for converting the data to an image. The invention also provides for a method for imaging x-ray and gamma radiation by supplying a plurality of sources of radiation; focusing the radiation onto a detector; analyzing the focused radiation to collect data as to the type and location of the radiation; and producing an image using the data. 18 figs.

  1. Method of fabricating a 3-dimensional tool master

    DOEpatents

    Bonivert, William D.; Hachman, John T.

    2002-01-01

    The invention is a method for the fabrication of an imprint tool master. The process begins with a metallic substrate. A layer of photoresist is placed onto the metallic substrate and a image pattern mask is then aligned to the mask. The mask pattern has opaque portions that block exposure light and "open" or transparent portions which transmit exposure light. The photoresist layer is then exposed to light transmitted through the "open" portions of the first image pattern mask and the mask is then removed. A second layer of photoresist then can be placed onto the first photoresist layer and a second image pattern mask may be placed on the second layer of photoresist. The second layer of photoresist is exposed to light, as before, and the second mask removed. The photoresist layers are developed simultaneously to produce a multi-level master mandrel upon which a conductive film is formed. A tool master can now be formed onto the conductive film. An imprint tool is then produced from the tool master. In one embodiment, nickel is electroplated onto the tool master to produce a three-dimensional imprint tool.

  2. Aerodynamics of 3-dimensional bodies in transitional flow

    NASA Technical Reports Server (NTRS)

    Potter, J. Leith

    1987-01-01

    Based on considerations of fluid dynamic simulation appropriate to hypersonic, viscous flow over blunt-nosed lifting bodies, a method was presented earlier for estimating drag coefficients in the transitional-flow regime. The extension of the same method to prediction of lift coefficients is presented. Correlation of available experimental data by a simulation parameter appropriate for this purpose is the basis for the procedure described. The ease of application of the method makes it useful for preliminary studies which involve a wide variety of three-dimensional vehicle configurations or a range of angles of attack of a given vehicle.

  3. Applying the Inverse Maximum Ratio- Λ to 3-Dimensional Surfaces

    NASA Astrophysics Data System (ADS)

    Chandran, Avinash; Brown, Derek; DiPietro, Loretta; Danoff, Jerome

    2016-06-01

    The question of contour uniformity on a three-dimensional surface arises in various fields of study. Although many questions related to surface uniformity exist, there is a lack of standard methodology to quantify uniformity of a three-dimensional surface. Therefore, a sound mathematical approach to this question could prove to be useful in various areas of study. The purpose of this paper is to expand the previously validated mathematical concept of the inverse maximum ratio over a three-dimensional surface and assess its robustness. We will describe the mathematical approach used to accomplish this and use several simulated examples to validate the metric.

  4. Development and applications of 3-dimensional integration nanotechnologies.

    PubMed

    Kim, Areum; Choi, Eunmi; Son, Hyungbin; Pyo, Sung Gyu

    2014-02-01

    Unlike conventional two-dimensional (2D) planar structures, signal or power is supplied through through-silicon via (TSV) in three-dimensional (3D) integration technology to replace wires for binding the chip/wafer. TSVs have becomes an essential technology, as they satisfy Moore's law. This 3D integration technology enables system and sensor functions at a nanoscale via the implementation of a highly integrated nano-semiconductor as well as the fabrication of a single chip with multiple functions. Thus, this technology is considered to be a new area of development for the systemization of the nano-bio area. In this review paper, the basic technology required for such 3D integration is described and methods to measure the bonding strength in order to measure the void occurring during bonding are introduced. Currently, CMOS image sensors and memory chips associated with nanotechnology are being realized on the basis of 3D integration technology. In this paper, we intend to describe the applications of high-performance nano-biosensor technology currently under development and the direction of development of a high performance lab-on-a-chip (LOC). PMID:24749469

  5. Rigid supersymmetric backgrounds of 3-dimensional Newton-Cartan supergravity

    NASA Astrophysics Data System (ADS)

    Knodel, Gino; Lisbão, Pedro; Liu, James T.

    2016-06-01

    Recently, a non-relativistic off-shell formulation of three dimensional Newton-Cartan supergravity was proposed as the c → ∞ limit of three dimensional {N} = 2 super-gravity [1]. In the present paper we study supersymmetric backgrounds within this theory. Using integrability constraints for the non-relativistic Killing spinor equations, we explicitly construct all maximally supersymmetric solutions, which admit four supercharges. In addition to these solutions, there are 1/2 -BPS solutions with reduced supersymmetry. We give explicit examples of such backgrounds and derive necessary conditions for backgrounds preserving two supercharges. Finally, we address how supersymmetric backgrounds of {N} = 2 supergravity are connected to the solutions found here in the c → ∞ limit.

  6. Estimating 3-dimensional colony surface area of field corals

    EPA Science Inventory

    Colony surface area is a critical descriptor for biological and physical attributes of reef-building (scleractinian, stony) corals. The three-dimensional (3D) size and structure of corals are directly related to many ecosystem values and functions. Most methods to estimate colony...

  7. Gravitational coset models

    NASA Astrophysics Data System (ADS)

    Cook, Paul P.; Fleming, Michael

    2014-07-01

    The algebra A {/D - 3 + + +} dimensionally reduces to the E D-1 symmetry algebra of (12 - D)-dimensional supergravity. An infinite set of five-dimensional gravitational objects embedded in D-dimensions is constructed by identifying the null geodesic motion on cosets embedded in the generalised Kac-Moody algebra A {/D - 3 + + +}. By analogy with super-gravity these are bound states of dual gravitons. The metric interpolates continuously between exotic gravitational solutions generated by the action of an affine sub-group. We investigate mixed-symmetry fields in the brane sigma model, identify actions for the full interpolating bound state and investigate the dualisation of the bound state to a solution of the Einstein-Hilbert action via the Hodge dual on multiforms. We conclude that the Hodge dual is insufficient to reconstruct solutions to the Einstein-Hilbert action from mixed-symmetry tensors.

  8. 3-dimensional throat region segmentation from MRI data based on Fourier interpolation and 3-dimensional level set methods.

    PubMed

    Campbell, Sean; Doshi, Trushali; Soraghan, John; Petropoulakis, Lykourgos; Di Caterina, Gaetano; Grose, Derek; MacKenzie, Kenneth

    2015-08-01

    A new algorithm for 3D throat region segmentation from magnetic resonance imaging (MRI) is presented. The proposed algorithm initially pre-processes the MRI data to increase the contrast between the throat region and its surrounding tissues and to reduce artifacts. Isotropic 3D volume is reconstructed using the Fourier interpolation. Furthermore, a cube encompassing the throat region is evolved using level set method to form a smooth 3D boundary of the throat region. The results of the proposed algorithm on real and synthetic MRI data are used to validate the robustness and accuracy of the algorithm. PMID:26736782

  9. Modeling Electromagnetic Scattering From Complex Inhomogeneous Objects

    NASA Technical Reports Server (NTRS)

    Deshpande, Manohar; Reddy, C. J.

    2011-01-01

    This software innovation is designed to develop a mathematical formulation to estimate the electromagnetic scattering characteristics of complex, inhomogeneous objects using the finite-element-method (FEM) and method-of-moments (MoM) concepts, as well as to develop a FORTRAN code called FEMOM3DS (Finite Element Method and Method of Moments for 3-Dimensional Scattering), which will implement the steps that are described in the mathematical formulation. Very complex objects can be easily modeled, and the operator of the code is not required to know the details of electromagnetic theory to study electromagnetic scattering.

  10. A model of the holographic principle: Randomness and additional dimension

    NASA Astrophysics Data System (ADS)

    Boyarsky, Abraham; Góra, Paweł; Proppe, Harald

    2010-01-01

    In recent years an idea has emerged that a system in a 3-dimensional space can be described from an information point of view by a system on its 2-dimensional boundary. This mysterious correspondence is called the Holographic Principle and has had profound effects in string theory and our perception of space-time. In this note we describe a purely mathematical model of the Holographic Principle using ideas from nonlinear dynamical systems theory. We show that a random map on the surface S of a 3-dimensional open ball B has a natural counterpart in B, and the two maps acting in different dimensional spaces have the same entropy. We can reverse this construction if we start with a special 3-dimensional map in B called a skew product. The key idea is to use the randomness, as imbedded in the parameter of the 2-dimensional random map, to define a third dimension. The main result shows that if we start with an arbitrary dynamical system in B with entropy E we can construct a random map on S whose entropy is arbitrarily close to E.

  11. Imaging, virtual planning, design, and production of patient-specific implants and clinical validation in craniomaxillofacial surgery.

    PubMed

    Dérand, Per; Rännar, Lars-Erik; Hirsch, Jan-M

    2012-09-01

    The purpose of this article was to describe the workflow from imaging, via virtual design, to manufacturing of patient-specific titanium reconstruction plates, cutting guide and mesh, and its utility in connection with surgical treatment of acquired bone defects in the mandible using additive manufacturing by electron beam melting (EBM). Based on computed tomography scans, polygon skulls were created. Following that virtual treatment plans entailing free microvascular transfer of fibula flaps using patient-specific reconstruction plates, mesh, and cutting guides were designed. The design was based on the specification of a Compact UniLOCK 2.4 Large (Synthes(®), Switzerland). The obtained polygon plates were bent virtually round the reconstructed mandibles. Next, the resections of the mandibles were planned virtually. A cutting guide was outlined to facilitate resection, as well as plates and titanium mesh for insertion of bone or bone substitutes. Polygon plates and meshes were converted to stereolithography format and used in the software Magics for preparation of input files for the successive step, additive manufacturing. EBM was used to manufacture the customized implants in a biocompatible titanium grade, Ti6Al4V ELI. The implants and the cutting guide were cleaned and sterilized, then transferred to the operating theater, and applied during surgery. Commercially available software programs are sufficient in order to virtually plan for production of patient-specific implants. Furthermore, EBM-produced implants are fully usable under clinical conditions in reconstruction of acquired defects in the mandible. A good compliance between the treatment plan and the fit was demonstrated during operation. Within the constraints of this article, the authors describe a workflow for production of patient-specific implants, using EBM manufacturing. Titanium cutting guides, reconstruction plates for fixation of microvascular transfer of osteomyocutaneous bone grafts, and mesh to replace resected bone that can function as a carrier for bone or bone substitutes were designed and tested during reconstructive maxillofacial surgery. A clinically fit, well within the requirements for what is needed and obtained using traditional free hand bending of commercially available devices, or even higher precision, was demonstrated in ablative surgery in four patients. PMID:23997858

  12. The surgical treatment of fibrous dysplasia. With emphasis on recent contributions from cranio-maxillo-facial surgery.

    PubMed Central

    Edgerton, M T; Persing, J A; Jane, J A

    1985-01-01

    Fibrous dysplasia is a congenital, metabolic, nonfamilial disturbance that occurs in one or more bones, at times in association with skin pigmentations or endocrine abnormalities. The authors report on a large personal series of 23 patients with fibrous dysplasia involving the craniofacial skeleton. The etiology, clinical findings, pathology, and differential diagnosis of this condition are reviewed and a working hypothesis is offered for the pathophysiology of this disorder. Approximately one-third of patients with fibrous dysplasia have involvement of the cranial or facial bones. The authors describe how new techniques in craniofacial surgery have opened up additional options for this group of patients. Deformity, diplopia, proptosis, sinus infection, deafness, and loss of vision, are some of the clinical features that may require early surgical management. Evidence is given to support more complete resection of bony lesions with immediate reconstruction by several techniques. The removal, remodeling, and replacement of the dysplastic bone is advanced as a promising new method for the management of these complex problems. Successful use of this technique in four patients is reported. In a separate group of patients, continuing good experience is reported with cranio-orbital reconstruction by means of large methyl-methacrylate implants. Both of these surgical approaches eliminate donor site morbidity that results from the grafting of large amounts of autogenous bone. Both techniques also avoid the problems associated with postoperative absorption of bone grafting. Several patients are reported in whom serious disturbances in visual function appear to have been prevented or reversed by early treatment. Factors leading to malignant change in patients with fibrous dysplasia are reviewed. Images FIG. 1A. FIG. 1B. FIG. 1C. FIG. 1D. FIG. 1E. FIG. 1F. FIG. 2A. FIG. 2B. FIG. 2C. FIG. 2D. FIG. 2E. FIG. 2F. FIG. 2G. FIG. 2H. FIGS. 2I and J. FIG. 3A. FIG. 3B. FIG. 3C. FIG. 3D. FIG. 4A. FIG. 4B. FIG. 4C. FIG. 4D. FIG. 4E. FIG. 4F. FIG. 4G. FIG. 4H. FIG. 4I. FIG. 5A. FIG. 5B. FIG. 5C. FIG. 5D. FIG. 5E. FIG. 5F. FIG. 5G. PMID:3901941

  13. Bidirectional reflectance modeling of non-homogeneous plant canopies

    NASA Technical Reports Server (NTRS)

    Norman, John M.

    1986-01-01

    The objective of this research is to develop a 3-dimensional radiative transfer model for predicting the bidirectional reflectance distribution function (BRDF) for heterogeneous vegetation canopies. Leaf bidirectional reflectance and transmittance distribution functions were measured for corn and soybean leaves. The measurements clearly show that leaves are complex scatterers and considerable specular reflectance is possible. Because of the character of leaf reflectance, true leaf reflectance is larger than the nadir reflectances that are normally used to represent leaves. A 3-dimensional reflectance model, named BIGAR (Bidirectional General Array Model), was developed and compared with measurements from corn and soybean. The model is based on the concept that heterogeneous canopies can be described by a combination of many subcanopies, which contain all the foliage, and these subcanopy envelopes can be characterized by ellipsoids of various sizes and shapes. The model/measurement comparison results indicate that this relatively simple model captures the essential character of row crop BRDF's. Finally, two soil BDRF models were developed: one represents soil particles as rectangular blocks and the other represents soil particles as spheres. The sphere model was found to be superior.

  14. Electrical two and three dimensional modelling of high-speed board to board interconnections

    SciTech Connect

    Gailus, M.; Fusi, M.A.; Zanella, F.

    1995-12-31

    In today`s high speed electronic systems, board-to-board connectors can contribute to signal degradation, reflections, and crosstalk. Methods exist for using computer modeling to predict the electrical behavior of interconnections from a knowledge of their materials and construction. A typical modeling process utilizes a combination of 2 or 3 dimensional electromagnetic field solvers to derive an approximate circuit model of the connector. Predictions of connector electrical performance are then obtained by plugging this connector model into a model test circuit and simulating the combination with circuit simulation software such as SPICE.

  15. Preform Characterization in VARTM Process Model Development

    NASA Technical Reports Server (NTRS)

    Grimsley, Brian W.; Cano, Roberto J.; Hubert, Pascal; Loos, Alfred C.; Kellen, Charles B.; Jensen, Brian J.

    2004-01-01

    Vacuum-Assisted Resin Transfer Molding (VARTM) is a Liquid Composite Molding (LCM) process where both resin injection and fiber compaction are achieved under pressures of 101.3 kPa or less. Originally developed over a decade ago for marine composite fabrication, VARTM is now considered a viable process for the fabrication of aerospace composites (1,2). In order to optimize and further improve the process, a finite element analysis (FEA) process model is being developed to include the coupled phenomenon of resin flow, preform compaction and resin cure. The model input parameters are obtained from resin and fiber-preform characterization tests. In this study, the compaction behavior and the Darcy permeability of a commercially available carbon fabric are characterized. The resulting empirical model equations are input to the 3- Dimensional Infiltration, version 5 (3DINFILv.5) process model to simulate infiltration of a composite panel.

  16. Low Order Empirical Galerkin Models for Feedback Flow Control

    NASA Astrophysics Data System (ADS)

    Tadmor, Gilead; Noack, Bernd

    2005-11-01

    Model-based feedback control restrictions on model order and complexity stem from several generic considerations: real time computation, the ability to either measure or reliably estimate the state in real time and avoiding sensitivity to noise, uncertainty and numerical ill-conditioning are high on that list. Empirical POD Galerkin models are attractive in the sense that they are simple and (optimally) efficient, but are notoriously fragile, and commonly fail to capture transients and control effects. In this talk we review recent efforts to enhance empirical Galerkin models and make them suitable for feedback design. Enablers include `subgrid' estimation of turbulence and pressure representations, tunable models using modes from multiple operating points, and actuation models. An invariant manifold defines the model's dynamic envelope. It must be respected and can be exploited in observer and control design. These ideas are benchmarked in the cylinder wake system and validated by a systematic DNS investigation of a 3-dimensional Galerkin model of the controlled wake.

  17. Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)

    SciTech Connect

    Lee, K. J.; Smith K.; Kim, G. H.

    2011-04-01

    This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

  18. Application of three-dimensional computer modeling for reservoir and ore-body analysis

    SciTech Connect

    Hamilton, D.E.; Marie, J.L.; Moon, G.M.; Moretti, F.J.; Ryman, W.P.; Didur, R.S.

    1985-02-01

    Three-dimensional computer modeling of reservoirs and ore bodies aids in understanding and exploiting these resources. This modeling tool enables the geologist and engineer to correlate in 3 dimensions, experiment with various geologic interpretations, combine variables to enhance certain geologic attributes, test for reservoir heterogeneities and continuity, select drill sites or perforation zones, determine volumes, plan production, generate geologic parameters for input to flow simulators, calculate tonnages and ore-waste ratios, and test sensitivity of reserves to various ore-grade cutoffs and economic parameters. All applications benefit from the ability to update rapidly the 3-dimensional computer models when new data are collected. Two 3-dimensional computer modeling projects demonstrate these capabilities. The first project involves modeling porosity, permeability, and water saturation in a Malaysian reservoir. The models were used to analyze the relationship between water saturation and porosity and to generate geologic parameters for input to a flow simulator. The second project involves modeling copper, zinc, silver, gold, and specific gravity in a massive sulfide ore body in British Columbia. The 4 metal models were combined into one copper-equivalence model and evaluated for tonnage, stripping ratio, and sensitivity to variations of ore-grade cutoff.

  19. Simulations of three-dimensional dendritic growth using a coupled thermo-solutal phase-field model

    NASA Astrophysics Data System (ADS)

    Bollada, P. C.; Goodyer, C. E.; Jimack, P. K.; Mullis, A. M.

    2015-08-01

    Using a phase field model, which fully couples the thermal and solute concentration field, we present simulation results in three dimensions of the rapid dendritic solidification of a class of dilute alloys at the meso scale. The key results are the prediction of steady state tip velocity and radius at varying undercooling and thermal diffusivities. Less computationally demanding 2-dimensional results are directly compared with the corresponding 3-dimensional results, where significant quantitative differences emerge. The simulations provide quantitative predictions for the range of thermal and solutal diffusivities considered and show the effectiveness and potential of the computational techniques employed. These results thus provide benchmark 3-dimensional computations, allow direct comparison with underlying analytical theory, and pave the way for further quantitative results.

  20. Ring Current Modeling in a Realistic Magnetic Field Configuration

    NASA Technical Reports Server (NTRS)

    Fok, M.-C.; Moore, T. E.

    1997-01-01

    A 3-dimensional kinetic model has been developed to study the dynamics of the storm time ring current in a dipole magnetic field. In this paper, the ring current model is extended to include a realistic, time-varying magnetic field model. The magnetic field is expressed as the cross product of the gradients of two Euler potentials and the bounce-averaged particle drifts are calculated in the Euler potential coordinates. A dipolarization event is modeled by collapsing a tail-like magnetosphere to a dipole-like configuration. Our model is able to simulate the sudden enhancements in the ring current ion fluxes and the corresponding ionospheric precipitation during the substorm expansion.

  1. Modeling The Shock Initiation of PBX-9501 in ALE3D

    SciTech Connect

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-01

    The SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has determined the 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate the code predictions. The SMIS tests use a powder gun to shoot scaled NATO standard fragments at a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. The SMIS real-world shot scenario creates a unique test-bed because many of the fragments arrive at the impact plate off-center and at an angle of impact. The goal of this model validation experiments is to demonstrate the predictive capability of the Tarver-Lee Ignition and Growth (I&G) reactive flow model [2] in this fully 3-dimensional regime of Shock to Detonation Transition (SDT). The 3-dimensional Arbitrary Lagrange Eulerian hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations accurately reproduce the 'Go/No-Go' threshold of the Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied in a predictive fashion for the response of heterogeneous high explosives in the SDT regime.

  2. Modeling Three-Dimensional Shock Initiation of PBX 9501 in ALE3D

    SciTech Connect

    Leininger, L; Springer, H K; Mace, J; Mas, E

    2008-07-08

    A recent SMIS (Specific Munitions Impact Scenario) experimental series performed at Los Alamos National Laboratory has provided 3-dimensional shock initiation behavior of the HMX-based heterogeneous high explosive, PBX 9501. A series of finite element impact calculations have been performed in the ALE3D [1] hydrodynamic code and compared to the SMIS results to validate and study code predictions. These SMIS tests used a powder gun to shoot scaled NATO standard fragments into a cylinder of PBX 9501, which has a PMMA case and a steel impact cover. This SMIS real-world shot scenario creates a unique test-bed because (1) SMIS tests facilitate the investigation of 3D Shock to Detonation Transition (SDT) within the context of a considerable suite of diagnostics, and (2) many of the fragments arrive at the impact plate off-center and at an angle of impact. A particular goal of these model validation experiments is to demonstrate the predictive capability of the ALE3D implementation of the Tarver-Lee Ignition and Growth reactive flow model [2] within a fully 3-dimensional regime of SDT. The 3-dimensional Arbitrary Lagrange Eulerian (ALE) hydrodynamic model in ALE3D applies the Ignition and Growth (I&G) reactive flow model with PBX 9501 parameters derived from historical 1-dimensional experimental data. The model includes the off-center and angle of impact variations seen in the experiments. Qualitatively, the ALE3D I&G calculations reproduce observed 'Go/No-Go' 3D Shock to Detonation Transition (SDT) reaction in the explosive, as well as the case expansion recorded by a high-speed optical camera. Quantitatively, the calculations show good agreement with the shock time of arrival at internal and external diagnostic pins. This exercise demonstrates the utility of the Ignition and Growth model applied for the response of heterogeneous high explosives in the SDT regime.

  3. A 10 km-resolution synthetic Venus gravity field model based on topography

    NASA Astrophysics Data System (ADS)

    Li, Fei; Yan, Jianguo; Xu, Luyuan; Jin, Shuanggen; Rodriguez, J. Alexis P.; Dohm, James H.

    2015-02-01

    A high resolution gravity field model is extremely important in the exploration of Venus. In this paper, we present a 3-dimensional Venus gravity field VGM2014 constructed by using the latest gravity and topography models, residual terrain model (RTM) and the Airy-Heiskanen isostatic compensation model. The VGM2014 is the first 10 km scale Venus gravity field model; the final results are representations of the 3-dimensional surface gravity accelerations and gravity disturbances for Venus. We found that the optimal global compensation depth of Venus is about 60 km, and the crustal density is potentially less than the commonly accepted value of 2700-2900 kg m-3. This model will be potentially beneficial for the precise orbit determination and landing navigation of spacecraft around Venus, and may be utilized as a priori model for Venus gravity field simulation and inversion studies. The VGM2014 does not incorporate direct gravity information beyond degree 70 and it is not recommended for small-scale geophysical interpretation.

  4. New experimental models of skin homeostasis and diseases.

    PubMed

    Larcher, F; Espada, J; Díaz-Ley, B; Jaén, P; Juarranz, A; Quintanilla, M

    2015-01-01

    Homeostasis, whose regulation at the molecular level is still poorly understood, is intimately related to the functions of epidermal stem cells. Five research groups have been brought together to work on new in vitro and in vivo skin models through the SkinModel-CM program, under the auspices of the Spanish Autonomous Community of Madrid. This project aims to analyze the functions of DNA methyltransferase 1, endoglin, and podoplanin in epidermal stem cell activity, homeostasis, and skin cancer. These new models include 3-dimensional organotypic cultures, immunodeficient skin-humanized mice, and genetically modified mice. Another aim of the program is to use skin-humanized mice to model dermatoses such as Gorlin syndrome and xeroderma pigmentosum in order to optimize new protocols for photodynamic therapy. PMID:24878038

  5. The karst contagion model: Synopsis and environmental implications

    NASA Astrophysics Data System (ADS)

    Kemmerly, Phillip R.

    1989-03-01

    The contagion model of karst terrane evolution focuses on the environmental implications for a large karst depression population on the Pennyroyal Plain (southern Kentucky) and the adjacent Western Highland Rim (Tennessee) immediately south of the Mammoth Cave Plateau. In karst terranes where the contagion model applies, there is a well-defined infrastructure comprised of hydrologic, structural geologic and geomorphic interacting elements that result in clustered depressions underlain by a radial conduit system. Clusters tend to be randomly distributed and typically contain a parent depression surrounded by numerous daughters. Groundwater flow is assumed to be turbulent and confined largely to conduits that are 3-dimensionally configured between clusters in a dendritic to trellis network. Parent depressions serve as conduit nodes for collecting groundwater migrating from beneath daughter depressions. Flow velocities in the 3-dimensional “cluster-cell” conduits exceed those in granular media by several orders of magnitude making pathogen and chemical contaminant migration rapid. Groundwater quality assessment in karst conduit hydrogeologic settings is difficult because monitoring wells are inappropriate. Monitoring wells may have a low probability of intercepting a major conduit and therefore the sampling regime must take into consideration the pulse discharge of pollutants in karst conduits. Representative water quality data must come from springs located near the local base level.

  6. Modeling Array Stations in SIG-VISA

    NASA Astrophysics Data System (ADS)

    Ding, N.; Moore, D.; Russell, S.

    2013-12-01

    We add support for array stations to SIG-VISA, a system for nuclear monitoring using probabilistic inference on seismic signals. Array stations comprise a large portion of the IMS network; they can provide increased sensitivity and more accurate directional information compared to single-component stations. Our existing model assumed that signals were independent at each station, which is false when lots of stations are close together, as in an array. The new model removes that assumption by jointly modeling signals across array elements. This is done by extending our existing Gaussian process (GP) regression models, also known as kriging, from a 3-dimensional single-component space of events to a 6-dimensional space of station-event pairs. For each array and each event attribute (including coda decay, coda height, amplitude transfer and travel time), we model the joint distribution across array elements using a Gaussian process that learns the correlation lengthscale across the array, thereby incorporating information of array stations into the probabilistic inference framework. To evaluate the effectiveness of our model, we perform ';probabilistic beamforming' on new events using our GP model, i.e., we compute the event azimuth having highest posterior probability under the model, conditioned on the signals at array elements. We compare the results from our probabilistic inference model to the beamforming currently performed by IMS station processing.

  7. Technique for 3-Dimesional (3D) Modeling of Osteoarticular Medial Femoral Condyle Vascularized Grafting to Replace the Proximal Pole of Unsalvagable Scaphoid Nonunions.

    PubMed

    Houdek, Matthew T; Matsumoto, Jane M; Morris, Jonathan M; Bishop, Allen T; Shin, Alexander Y

    2016-09-01

    This study describes a novel technique for the preoperative surgical planning for an osteoarticular medial femoral condyle (MFC) graft to replace the proximal pole of a scaphoid. In cases of proximal pole scaphoid nonunion or in Preiser disease, fragmentation of the articular surface can occur, leading to significant pain and disability. Osteoarticular MFC bone grafting can be used to treat these injuries by providing a vascularized osteoarticular surface. Using 3-dimensional imaging and printing we are able to precisely model the injured scaphoid, and also accurately plan the harvest of MFC osteoarticular graft. This technique allows for accurate preoperative planning of a complex 3-dimensional bone, and has improved our execution of the plan intraoperatively. PMID:27466049

  8. Interpolating Fields of Carbon Monoxide Data Using a Hybrid Statistical-Physical Model

    NASA Technical Reports Server (NTRS)

    Arellano, A. A.; Edwards, D. P.; Flyer, N.; Nychka, D.; Wikle, C.

    2008-01-01

    Atmospheric Carbon Monoxide (CO) is a pollutant gas of which the US congress has mandated regular monitoring, and satellite sensors can be used to retrieve regional concentrations of CO over several vertical layers. However, CO at cloudy locations cannot be observed and have to be estimated from the observed data set, resulting in an interpolation problem. The current state-of-the-art solution is to combine prior information, computed by a deterministic physical model, with observations. However, the deterministic model may introduce uncertainties that do not derive from the data. While sharing certain features with the physical model, this paper presents a Bayesian hierarchical model for interpolating CO on a 3-dimensional spatial grid, across time. To our knowledge such a model has not been considered before. The model is applied to a hypothetical air-quality monitoring scenario, and is compared to existing interpolation methods. The results provide motivation for the use of the statistical model for regional to local applications.

  9. A model for ductile metal friction at high velocities

    NASA Astrophysics Data System (ADS)

    Hammerberg, J. E.; Ravelo, R. J.; Germann, T. C.

    We describe a meso-macro scale model for the frictional force at ductile metal interfaces for high velocities and large compressions. The model incorporates the micro-mesoscopic growth and refinement of material microstructure in a highly strained region at the sliding interface and incorporates both rate dependent plasticity and thermal conduction. The model compares favorably with recent large scale (1.8 billion atom) simulations to 50 ns of 3-dimensional polycrystalline 13-50 nm grain size Al-Al interfaces at pressures of 15 GPa using the SPaSM NonEquilibrium Molecular Dynamics (NEMD) simulation code. This work was performed under the auspices of the U.S. Dept. of Energy under Contract DE-AC52-06NA25396. The support of the LANL ASC-PEM program is gratefully acknowledged.

  10. Bidirectional Reflectance Modeling of Non-homogeneous Plant Canopies

    NASA Technical Reports Server (NTRS)

    Norman, J. M.

    1984-01-01

    Efforts to develop a three dimensional model to predict canopy, bidirectional reflectance for heterogenous plant stands using incident radiation and canopy structural descriptions as inputs are described. Utility programs were developed to cope with the complex output from the 3 dimensional model. In addition an attempt was made to define leaf and soil properties, which are appropriate to the mode, by measuring leaf and soil bidirectional reflectance distribution functions; since almost no data exist on these distributions. In the process it was realized that most models probably are using the wrong leaf spectral properties, and that off-nadir reflectance measurements are difficult to make because of non-Lambertian properties of reference surfaces. Also, in the visible wavebands, rough soil may not be distinguishable from canopies when viewed from above.

  11. A Terrestrial Integrated Modeling System (TIMS) at a catchment scale - implications for Earth System Modeling

    NASA Astrophysics Data System (ADS)

    Niu, G. Y.; Fang, Y.; Wu, R.; Mathias, A.; Paniconi, C.; Troch, P. A. A.; Zeng, X.; Chorover, J.; Monson, R. K.

    2014-12-01

    To enhance our predictive understandings of the interactions between the soil, plants, and air and their integrated behavior at hillslope and catchment scales, we have been developing a Terrestrial Integrated Modeling System (TIMS). TIMS aims to numerically simulate various physical and chemical processes that occur over the Earth's terrestrial surface, e.g., exchanges and flows of energy, water, carbon and other chemicals between and within the soil, plants, and air. TIMS is being compiled from existing models that have arisen from individual scientific communities, including 1) a surface energy, water, and carbon exchange scheme (NoahMP), 2) a 3-dimensional physically-based hydrological model (CATHY), 3) a reactive transport model (CrunchFlow), and 4) an individual-based vegetation dynamics model (ECOTONE). TIMS also integrates newly developed components, e.g., a microbial enzyme based soil organic carbon decomposition model and a solar radiation correction scheme accounting for the effects of terrain shading and slope angle and aspect. We will present the current state of TIMS development and some validations against measurements at various scales, the challenges for developing and evaluating such a complex modeling system, and implications for scaling-up plot-scale processes (e.g., AmeriFlux) to global-scale land surface models for use in Earth System Models (ESMs).

  12. Development of a Finite-Difference Time Domain (FDTD) Model for Propagation of Transient Sounds in Very Shallow Water.

    PubMed

    Sprague, Mark W; Luczkovich, Joseph J

    2016-01-01

    This finite-difference time domain (FDTD) model for sound propagation in very shallow water uses pressure and velocity grids with both 3-dimensional Cartesian and 2-dimensional cylindrical implementations. Parameters, including water and sediment properties, can vary in each dimension. Steady-state and transient signals from discrete and distributed sources, such as the surface of a vibrating pile, can be used. The cylindrical implementation uses less computation but requires axial symmetry. The Cartesian implementation allows asymmetry. FDTD calculations compare well with those of a split-step parabolic equation. Applications include modeling the propagation of individual fish sounds, fish aggregation sounds, and distributed sources. PMID:26611072

  13. Analytic gravitational-force calculations for models of the Kuiper Belt, with application to the Pioneer anomaly

    SciTech Connect

    Nieto, Michael Martin

    2005-10-15

    We use analytic techniques to study the gravitational force that would be produced by different Kuiper-Belt mass distributions. In particular, we study the 3-dimensional rings (and wedge) whose densities vary as the inverse of the distance, as a constant, as the inverse-squared of the distance, as well as that which varies according to the Boss-Peale model. These analytic calculations yield physical insight into the physics of the problem. They also verify that physically viable models of this type can produce neither the magnitude nor the constancy of the Pioneer anomaly.

  14. Cell culture models using rat primary alveolar type I cells.

    PubMed

    Downs, Charles A; Montgomery, David W; Merkle, Carrie J

    2011-10-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ± 2.7%) and MVECL (97.9 ± 1.1%) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin-coated 24-well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 μm pores. Additionally, AT I cells were grown in a thick layer of Matrigel(®) to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  15. Cell culture models using rat primary alveolar type I cells

    PubMed Central

    Downs, Charles A.; Montgomery, David W.; Merkle, Carrie J.

    2011-01-01

    There is a lack of cell culture models using primary alveolar type I (AT I) cells. The purpose of this study was to develop cell culture models using rat AT I cells and microvascular endothelial cells from the lung (MVECL). Two types of model systems were developed: single and co-culture systems; additionally a 3-dimensional model system was developed. Pure AT I cell (96.3 ±2.7%) and MVECL (97.9 ±1.1 %) preparations were used. AT I cell morphology, mitochondrial number and distribution, actin filament arrangement and number of apoptotic cells at confluence, and telomere attrition were characterized. AT I cells maintained their morphometric characteristics through at least population doubling (PD) 35, while demonstrating telomere attrition through at least PD 100. Furthermore, AT I cells maintained the expression of their specific markers, T1α and AQ-5, through PD 42. For the co-cultures, AT I cells were grown on the top and MVECL were grown on the bottom of fibronectin coated 24 well Transwell Fluroblok™ filter inserts. Neither cell type transmigrated the 1 micron pores. Additionally AT I cells were grown in a thick layer of Matrigel® to create a 3-dimensional model in which primary AT I cells form ring-like structures that resemble an alveolus. The development of these model systems offers the opportunities to investigate AT I cell cells and their interactions with MVECL in response to pharmacological interventions and in the processes of disease, repair and regeneration. PMID:21624488

  16. Numerical modeling of nonintrusive inspection systems

    SciTech Connect

    Hall, J.; Morgan, J.; Sale, K.

    1992-12-01

    A wide variety of nonintrusive inspection systems have been proposed in the past several years for the detection of hidden contraband in airline luggage and shipping containers. The majority of these proposed techniques depend on the interaction of radiation with matter to produce a signature specific to the contraband of interest, whether drugs or explosives. In the authors` role as diagnostic specialists in the Underground Test Program over the past forty years, L-Division of the Lawrence Livermore National Laboratory has developed a technique expertise in the combined numerical and experimental modeling of these types of system. Based on their experience, they are convinced that detailed numerical modeling provides a much more accurate estimate of the actual performance of complex experiments than simple analytical modeling. Furthermore, the construction of detailed numerical prototypes allows experimenters to explore the entire region of parameter space available to them before committing their ideas to hardware. This sort of systematic analysis has often led to improved experimental designs and reductions in fielding costs. L-Division has developed an extensive suite of computer codes to model proposed experiments and possible background interactions. These codes allow one to simulate complex radiation sources, model 3-dimensional system geometries with {open_quotes}real world{close_quotes} complexity, specify detailed elemental distributions, and predict the response of almost any type of detector. In this work several examples are presented illustrating the use of these codes in modeling experimental systems at LLNL and their potential usefulness in evaluating nonintrusive inspection systems is discussed.

  17. Reservoir model for Hillsboro gas storage field management

    USGS Publications Warehouse

    Udegbunam, Emmanuel O.; Kemppainen, Curt; Morgan, Jim

    1995-01-01

    A 3-dimensional reservoir model is used to understand the behavior of the Hillsboro Gas Storage Field and to investigate the field's performance under various future development. Twenty-two years of the gas storage reservoir history, comprising the initial gas bubble development and seasonal gas injection and production cycles, are examined with a full-field, gas water, reservoir simulation model. The results suggest that the gas-water front is already in the vicinity of the west observation well that increasing the field's total gas-in-place volume would cause gas to migrate beyond the east, north and west observation well. They also suggest that storage enlargement through gas injection into the lower layers may not prevent gas migration. Moreover, the results suggest that the addition of strategically-located new wells would boost the simulated gas deliverabilities.

  18. Development of a numerical model for vehicle-bridge interaction analysis of railway bridges

    NASA Astrophysics Data System (ADS)

    Kim, Hee Ju; Cho, Eun Sang; Ham, Jun Su; Park, Ki Tae; Kim, Tae Heon

    2016-04-01

    In the field of civil engineering, analyzing dynamic response was main concern for a long time. These analysis methods can be divided into moving load analysis method and moving mass analysis method, and formulating each an equation of motion has recently been studied after dividing vehicles and bridges. In this study, the numerical method is presented, which can consider the various train types and can solve the equations of motion for a vehicle-bridge interaction analysis by non-iteration procedure through formulating the coupled equations for motion. Also, 3 dimensional accurate numerical models was developed by KTX-vehicle in order to analyze dynamic response characteristics. The equations of motion for the conventional trains are derived, and the numerical models of the conventional trains are idealized by a set of linear springs and dashpots with 18 degrees of freedom. The bridge models are simplified by the 3 dimensional space frame element which is based on the Euler-Bernoulli theory. The rail irregularities of vertical and lateral directions are generated by PSD functions of the Federal Railroad Administration (FRA).

  19. Some results on hyperscaling in the 3D Ising model

    SciTech Connect

    Baker, G.A. Jr.; Kawashima, Naoki

    1995-09-01

    The authors review exact studies on finite-sized 2 dimensional Ising models and show that the point for an infinite-sized model at the critical temperature is a point of nonuniform approach in the temperature-size plane. They also illuminate some strong effects of finite-size on quantities which do not diverge at the critical point. They then review Monte Carlo studies for 3 dimensional Ising models of various sizes (L = 2--100) at various temperatures. From these results they find that the data for the renormalized coupling constant collapses nicely when plotted against the correlation length, determined in a system of edge length L, divided by L. They also find that {zeta}{sub L}/L {ge} 0.26 is definitely too large for reliable studies of the critical value, g*, of the renormalized coupling constant. They have reasonable evidence that {zeta}{sub L}/L {approx} 0.1 is adequate for results that are within one percent of those for the infinite system size. On this basis, they have conducted a series of Monte Carlo calculations with this condition imposed. These calculations were made practical by the development of improved estimators for use in the Swendsen-Wang cluster method. The authors found from these results, coupled with a reversed limit computation (size increases with the temperature fixed at the critical temperature), that g* > 0, although there may well be a sharp downward drop in g as the critical temperature is approached in accord with the predictions of series analysis. The results support the validity of hyperscaling in the 3 dimensional Ising model.

  20. SAI (Systems Applications, Incorporated) Urban Airshed Model. Model

    SciTech Connect

    Schere, K.L.

    1985-06-01

    This magnetic tape contains the FORTRAN source code, sample input data, and sample output data for the SAI Urban Airshed Model (UAM). The UAM is a 3-dimensional gridded air-quality simulation model that is well suited for predicting the spatial and temporal distribution of photochemical pollutant concentrations in an urban area. The model is based on the equations of conservation of mass for a set of reactive pollutants in a turbulent-flow field. To solve these equations, the UAM uses numerical techniques set in a 3-D finite-difference grid array of cells, each about 1 to 10 kilometers wide and 10 to several hundred meters deep. As output, the model provides the calculated pollutant concentrations in each cell as a function of time. The chemical species of prime interest included in the UAM simulations are O3, NO, NO/sub 2/ and several organic compounds and classes of compounds. The UAM system contains at its core the Airshed Simulation Program that accesses input data consisting of 10 to 14 files, depending on the program options chosen. Each file is created by a separate data-preparation program. There are 17 programs in the entire UAM system. The services of a qualified dispersion meteorologist, a chemist, and a computer programmer will be necessary to implement and apply the UAM and to interpret the results. Software Description: The program is written in the FORTRAN programming language for implementation on a UNIVAC 1110 computer under the UNIVAC 110 0 operating system level 38R5A. Memory requirement is 80K.

  1. Finite-size scaling of the magnetization probability density for the critical Ising model in slab geometry

    NASA Astrophysics Data System (ADS)

    Lopes Cardozo, David; Holdsworth, Peter C. W.

    2016-04-01

    The magnetization probability density in d  =  2 and 3 dimensional Ising models in slab geometry of volume L\\paralleld-1× {{L}\\bot} is computed through Monte-Carlo simulation at the critical temperature and zero magnetic field. The finite-size scaling of this distribution and its dependence on the system aspect-ratio ρ =\\frac{{{L}\\bot}}{{{L}\\parallel}} and boundary conditions are discussed. In the limiting case ρ \\to 0 of a macroscopically large slab ({{L}\\parallel}\\gg {{L}\\bot} ) the distribution is found to scale as a Gaussian function for all tested system sizes and boundary conditions.

  2. Optimized Null Model for Protein Structure Networks

    PubMed Central

    Lappe, Michael; Pržulj, Nataša

    2009-01-01

    Much attention has recently been given to the statistical significance of topological features observed in biological networks. Here, we consider residue interaction graphs (RIGs) as network representations of protein structures with residues as nodes and inter-residue interactions as edges. Degree-preserving randomized models have been widely used for this purpose in biomolecular networks. However, such a single summary statistic of a network may not be detailed enough to capture the complex topological characteristics of protein structures and their network counterparts. Here, we investigate a variety of topological properties of RIGs to find a well fitting network null model for them. The RIGs are derived from a structurally diverse protein data set at various distance cut-offs and for different groups of interacting atoms. We compare the network structure of RIGs to several random graph models. We show that 3-dimensional geometric random graphs, that model spatial relationships between objects, provide the best fit to RIGs. We investigate the relationship between the strength of the fit and various protein structural features. We show that the fit depends on protein size, structural class, and thermostability, but not on quaternary structure. We apply our model to the identification of significantly over-represented structural building blocks, i.e., network motifs, in protein structure networks. As expected, choosing geometric graphs as a null model results in the most specific identification of motifs. Our geometric random graph model may facilitate further graph-based studies of protein conformation space and have important implications for protein structure comparison and prediction. The choice of a well-fitting null model is crucial for finding structural motifs that play an important role in protein folding, stability and function. To our knowledge, this is the first study that addresses the challenge of finding an optimized null model for RIGs, by

  3. A Network Model for the Effective Thermal Conductivity of Rigid Fibrous Refractory Insulations

    NASA Technical Reports Server (NTRS)

    Marschall, Jochen; Cooper, D. M. (Technical Monitor)

    1995-01-01

    A procedure is described for computing the effective thermal conductivity of a rigid fibrous refractory insulation. The insulation is modeled as a 3-dimensional Cartesian network of thermal conductance. The values and volume distributions of the conductance are assigned to reflect the physical properties of the insulation, its constituent fibers, and any permeating gas. The effective thermal conductivity is computed by considering the simultaneous energy transport by solid conduction, gas conduction and radiation through a cubic volume of model insulation; thus the coupling between heat transfer modes is retained (within the simplifications inherent to the