Ito, Kazumasa; Yongkoo, Seol
2003-04-09
Water fluxes in unsaturated, fractured rock involve the physical processes occurring at fracture-matrix interfaces within fracture networks. Modeling these water fluxes using a discrete fracture network model is a complicated effort. Existing preprocessors for TOUGH2 are not suitable to generate grids for fracture networks with various orientations and inclinations. There are several 3-D discrete-fracture-network simulators for flow and transport, but most of them do not capture fracture-matrix interaction. We have developed a new 3-D discrete-fracture-network mesh generator, FRACMESH, to provide TOUGH2 with information about the fracture network configuration and fracture-matrix interactions. FRACMESH transforms a discrete fracture network into a 3 dimensional uniform mesh, in which fractures are considered as elements with unique rock material properties and connected to surrounding matrix elements. Using FRACMESH, individual fractures may have uniform or random aperture distributions to consider heterogeneity. Fracture element volumes and interfacial areas are calculated from fracture geometry within individual elements. By using FRACMESH and TOUGH2, fractures with various inclinations and orientations, and fracture-matrix interaction, can be incorporated. In this paper, results of flow and transport simulations in a fractured rock block utilizing FRACMESH are presented.
Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures
Barde, Dhananjay H; Mudhol, Anupama; Ali, Fareedi Mukram; Madan, R S; Kar, Sanjay; Ustaad, Farheen
2014-01-01
Background: Mandibular fractures are treated surgically by either rigid or semi-rigid fixation, two techniques that reflect almost opposite concept of craniomaxillofacial osteosynthesis. The shortcomings of these fixations led to the development of 3 dimensional (3D) miniplates. This study was designed with the aim of evaluating the efficiency of 3D miniplate over Champys miniplate in anterior mandibular fractures. Materials & Methods: This study was done in 40 patients with anterior mandibular fractures. Group I consisting of 20 patients in whom 3D plates were used for fixation while in Group II consisting of other 20 patients, 4 holes straight plates were used. The efficacy of 3D miniplate over Champy’s miniplate was evaluated in terms of operating time, average pain, post operative infection, occlusion, wound dehiscence, post operative mobility and neurological deficit. Results: The mean operation time for Group II was more compared to Group I (statistically significant).There was significantly greater pain on day of surgery and at 2nd week for Group II patients but there was no significant difference between the two groups at 4th week. The post operative infection, occlusal disturbance, wound dehiscence, post operative mobility at facture site, neurological deficit was statistically insignificant (chi square test). Conclusion: The results of this study suggest that fixation of anterior mandibular fractures with 3D plates provides three dimensional stability and carries low morbidity and infection rates. The only probable limitation of these 3D plates may be excessive implant material, but they seem to be easy alternative to champys miniplate. How to cite the article: Barde DH, Mudhol A, Ali FM, Madan RS, Kar S, Ustaad F. Efficacy of 3-Dimensional plates over Champys miniplates in mandibular anterior fractures. J Int Oral Health 2014;6(1):20-6. PMID:24653598
Compartmentalization analysis using discrete fracture network models
La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.
1997-08-01
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph the theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Compartmentalization analysis using discrete fracture network models
La Pointe, P.R.; Eiben, T.; Dershowitz, W.; Wadleigh, E.
1997-12-31
This paper illustrates how Discrete Fracture Network (DFN) technology can serve as a basis for the calculation of reservoir engineering parameters for the development of fractured reservoirs. It describes the development of quantitative techniques for defining the geometry and volume of structurally controlled compartments. These techniques are based on a combination of stochastic geometry, computational geometry, and graph theory. The parameters addressed are compartment size, matrix block size and tributary drainage volume. The concept of DFN models is explained and methodologies to compute these parameters are demonstrated.
Discrete modeling of hydraulic fracturing processes in a complex pre-existing fracture network
NASA Astrophysics Data System (ADS)
Kim, K.; Rutqvist, J.; Nakagawa, S.; Houseworth, J. E.; Birkholzer, J. T.
2015-12-01
Hydraulic fracturing and stimulation of fracture networks are widely used by the energy industry (e.g., shale gas extraction, enhanced geothermal systems) to increase permeability of geological formations. Numerous analytical and numerical models have been developed to help understand and predict the behavior of hydraulically induced fractures. However, many existing models assume simple fracturing scenarios with highly idealized fracture geometries (e.g., propagation of a single fracture with assumed shapes in a homogeneous medium). Modeling hydraulic fracture propagation in the presence of natural fractures and homogeneities can be very challenging because of the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and pre-existing natural fractures. In this study, the TOUGH-RBSN code for coupled hydro-mechanical modeling is utilized to simulate hydraulic fracture propagation and its interaction with pre-existing fracture networks. The simulation tool combines TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach, with the implementation of a lattice modeling approach for geomechanical and fracture-damage behavior, named Rigid-Body-Spring Network (RBSN). The discrete fracture network (DFN) approach is facilitated in the Voronoi discretization via a fully automated modeling procedure. The numerical program is verified through a simple simulation for single fracture propagation, in which the resulting fracture geometry is compared to an analytical solution for given fracture length and aperture. Subsequently, predictive simulations are conducted for planned laboratory experiments using rock-analogue (soda-lime glass) samples containing a designed, pre-existing fracture network. The results of a preliminary simulation demonstrate selective fracturing and fluid infiltration along the pre-existing fractures, with additional fracturing in part
Effects of using a continuum representation of discrete fracture networks
Hull, L.C.; Clemo, T.M.
1987-01-01
The substitution of matrix or continuum permeability for discrete fracture permeability in the simulation of complex fracture systems requires a radically different treatment of transport in the matrix. The spatial distribution of pressure is reasonably well described by inclusion of only the major fractures. Transport of tracer and heat, however, depends on a detailed knowledge of fluid velocities. Two factors are involved. First, the velocities are dependent on the active porosity of the system. Because fractures channel flow, the active porosity may be much smaller than the total porosity of the system. Secondly, the distribution of velocities is generally not normally distributed precluding the use of a Gaussian dispersion model. Characterization of the active porosity and velocity distribution are necessary to quantify tracer and heat movement.
Towards effective flow simulations in realistic discrete fracture networks
NASA Astrophysics Data System (ADS)
Berrone, Stefano; Pieraccini, Sandra; Scialò, Stefano
2016-04-01
We focus on the simulation of underground flow in fractured media, modeled by means of Discrete Fracture Networks. Focusing on a new recent numerical approach proposed by the authors for tackling the problem avoiding mesh generation problems, we further improve the new family of methods making a step further towards effective simulations of large, multi-scale, heterogeneous networks. Namely, we tackle the imposition of Dirichlet boundary conditions in weak form, in such a way that geometrical complexity of the DFN is not an issue; we effectively solve DFN problems with fracture transmissivities spanning many orders of magnitude and approaching zero; furthermore, we address several numerical issues for improving the numerical solution also in quite challenging networks.
Radionuclide migration analysis using a discrete fracture network model
Ijiri, Y.; Sawada, A.; Webb, E.K.; Watari, S.; Hatanaka, K.; Uchida, M.; Ishiguro, K.; Umeki, H.; Dershowitz, W.S.
1999-07-01
This paper describes an approach for assessing the geosphere performance of nuclear waste disposal in fractured rock. In this approach, a three-dimensional heterogeneous channel-network model is constructed using a stochastic discrete fracture network (DFN) code. Radionuclide migration in the channel-network model is solved using the Laplace transform Galerkin finite element method, taking into account advection-dispersion in a fracture network, matrix diffusion, sorption in the rock matrix as well as radioactive chain decay. Preliminary radionuclide migration analysis was performed for fifty realizations of a synthetic block-scale DFN model. The total radionuclide release from all packages in the repository was estimated from the statistics of the results of fifty realizations under the hypothesis of ergodicity. The interpretation of the result of the three-dimensional network model by a combination of simpler one-dimensional parallel plate models is also discussed.
Dershowitz, William S.; Einstein, Herbert H.; LaPoint, Paul R.; Eiben, Thorsten; Wadleigh, Eugene; Ivanova, Violeta
1998-12-01
This report summarizes research conducted for the Fractured Reservoir Discrete Feature Network Technologies Project. The five areas studied are development of hierarchical fracture models; fractured reservoir compartmentalization, block size, and tributary volume analysis; development and demonstration of fractured reservoir discrete feature data analysis tools; development of tools for data integration and reservoir simulation through application of discrete feature network technologies for tertiary oil production; quantitative evaluation of the economic value of this analysis approach.
NASA Astrophysics Data System (ADS)
Meheust, Y.; De Dreuzy, J.; Pichot, G.
2011-12-01
Flow channeling and permeability scaling in fractured media have been classically addressed either at the fracture- or at the network- scales. In the latter case they are linked to the topological structure of the network, while at the fracture scale they are controlled by the variability of the local aperture distribution inside individual fractures. In this study we analyze these two combined effects, investigating how flow localization below the scale of individual fractures influences that at the network scale and the resulting medium permeability. This is done by use of a new highly-resolved 3D discrete fracture network model (DFN). The local apertures of individual fractures are distributed according to a truncated Gaussian law, and exhibit self-affine spatial correlations that are bounded by an upper cutoff scale Lc; Lc and the fracture closure, defined as the ratio of the aperture fluctuations at scale Lc to the mean aperture, are considered homogeneous over the DFN. The network topology is controlled by a homogeneous scalar fracture density and a power law fracture length distribution. We have varied these features to investigate a large variety of DFN topologies, from sparse networks with varying degrees of fracture interconnections, flow bottlenecks and dead-ends (Fig. 1a), to dense well-connected networks (Fig. 1b). We have also investigated a large range of fracture closures, performing extensive simulations of about 105 different DFN realizations. At the fracture scale, accounting for local aperture fluctuations leads to a monotical deviation (which can exceed 50%) of the equivalent fracture transmissivity from the parallel plate behavior. At the network scale we observe a complex interaction between flow channeling within fracture planes and flow localization in the network. This interaction is controlled by the location of fracture interactions with respect to that of low local transmissivity zones (particularly the closed zones), in the fracture
Characterization of fracture processes by continuum and discrete modelling
NASA Astrophysics Data System (ADS)
Kaliske, M.; Dal, H.; Fleischhauer, R.; Jenkel, C.; Netzker, C.
2012-09-01
A large number of methods to describe fracture mechanical features of structures on basis of computational algorithms have been developed in the past due to the importance of the topic. In this paper, current and promising numerical approaches for the characterization of fracture processes are presented. A fracture phenomenon can either be depicted by a continuum formulation or a discrete notch. Thus, starting point of the description is a micromechanically motivated formulation for the development of a local failure situation. A current, generalized method without any restriction to material modelling and loading situation in order to describe an existing crack in a structure is available through the material force approach. One possible strategy to simulate arbitrary crack growth is based on an adaptive implementation of cohesive elements in combination with the standard discretization of the body. In this case, crack growth criteria and the determination of the crack propagation direction in combination with the modification of the finite element mesh are required. The nonlinear structural behaviour of a fibre reinforced composite material is based on the heterogeneous microstructure. A two-scale simulation is therefore an appropriate and effective way to take into account the scale differences of macroscopic structures with microscopic elements. In addition, fracture mechanical structural properties are far from being sharp and deterministic. Moreover, a wide range of uncertainties influence the ultimate load bearing behaviour. Therefore, it is evident that the deterministic modelling has to be expanded by a characterization of the uncertainty in order to achieve a reliable and realistic simulation result. The employed methods are illustrated by numerical examples.
Uncertainties in Parameterizing Faults for Discrete Fracture Network Models (Invited)
NASA Astrophysics Data System (ADS)
Doe, T.
2013-12-01
Discrete Fracture Network (DFN) models represent conducting faults and fractures as two dimensional features with transmissivity that defines the flow capacity, storativity that represents the open volume and compressibility, and aperture that determines the flow velocity. While these properties work well for capturing the pressure and flow behaviors they are not complete for understanding solute transport in groundwater or production in fault-dominated oil and gas reservoirs. For oil and gas production, water breakthrough will be controlled by the small portion of the fault that accounts for most of the fault's transmissivity, while the major portion in the fault's storage will be released more slowly. Similarly, in contaminant hydrology, the multiple porosities of the faults may enhance matrix diffusion effects. This presentation focuses on faults in granitic basement rock with low matrix permeability and porosity. Although these rocks contain joints and simple fractures, the major portion of the flow and storage may appear in faults and shear fractures that span a large range of scales. Unlike simple fractures or joints, faults and shear fractures have complex internal geometries including a range of materials including altered rock, breccia, mylonite, cataclasite, and gouge. These materials may have significant porosities ranging from a few percent to over thirty percent in heavily weathered or altered rocks. The core materials may act as either barriers or conduits. Altered granitic rock may also have porosities in the range of several percent. As faults may have thicknesses from a few centimeters to several tens of meters, the pore volumes in fault rock can be very significant. A key to understanding fault zone behaviors lies in having a range for the relative pore volumes of the conducting portion of the fault versus that of the larger damage zone. This presentation summarizes a literature review focusing on these fault properties. The conducting portion of
Kijima, Hiroaki; Konishi, Natsuo; Kubota, Hitoshi; Tazawa, Hiroshi; Tani, Takayuki; Suzuki, Norio; Kamo, Keiji; Okudera, Yoshihiko; Sasaki, Ken; Kawano, Tetsuya; Shimada, Yoichi
2014-01-01
The reliability of proximal femoral fracture classifications using 3DCT was evaluated, and a comprehensive “area classification” was developed. Eleven orthopedists (5–26 years from graduation) classified 27 proximal femoral fractures at one hospital from June 2013 to July 2014 based on preoperative images. Various classifications were compared to “area classification.” In “area classification,” the proximal femur is divided into 4 areas with 3 boundary lines: Line-1 is the center of the neck, Line-2 is the border between the neck and the trochanteric zone, and Line-3 links the inferior borders of the greater and lesser trochanters. A fracture only in the first area was classified as a pure first area fracture; one in the first and second area was classified as a 1-2 type fracture. In the same way, fractures were classified as pure 2, 3-4, 1-2-3, and so on. “Area classification” reliability was highest when orthopedists with varying experience classified proximal femoral fractures using 3DCT. Other classifications cannot classify proximal femoral fractures if they exceed each classification's particular zones. However, fractures that exceed the target zones are “dangerous” fractures. “Area classification” can classify such fractures, and it is therefore useful for selecting osteosynthesis methods. PMID:25610659
NASA Astrophysics Data System (ADS)
Donado-Garzon, L. D.; Pardo, Y.
2013-12-01
Fractured media are very heterogeneous systems where occur complex physical and chemical processes to model. One of the possible approaches to conceptualize this type of massifs is the Discrete Fracture Network (DFN). Donado et al., modeled flow and transport in a granitic batholith based on this approach and found good fitting with hydraulic and tracer tests, but the computational cost was excessive due to a gigantic amount of elements to model. We present in this work a methodology based on percolation theory for reducing the number of elements and in consequence, to reduce the bandwidth of the conductance matrix and the execution time of each network. DFN poses as an excellent representation of all the set of fractures of the media, but not all the fractures of the media are part of the conductive network. Percolation theory is used to identify which nodes or fractures are not conductive, based on the occupation probability or percolation threshold. In a fractured system, connectivity determines the flow pattern in the fractured rock mass. This volume of fluid is driven through connection paths formed by the fractures, when the permeability of the rock is negligible compared to the fractures. In a population of distributed fractures, each of this that has no intersection with any connected fracture do not contribute to generate a flow field. This algorithm also permits us to erase these elements however they are water conducting and hence, refine even more the backbone of the network. We used 100 different generations of DFN that were optimized in this study using percolation theory. In each of the networks calibrate hydrodynamic parameters as hydraulic conductivity and specific storage coefficient, for each of the five families of fractures, yielding a total of 10 parameters to estimate, at each generation. Since the effects of the distribution of fault orientation changes the value of the percolation threshold, but not the universal laws of classical
Management of mandibular angle fractures using a 1.7 mm 3-dimensional strut plate
Pandey, Varnika; Bhutia, Ongkila; Nagori, Shakil Ahmed; Seith, Ashu; Roychoudhury, Ajoy
2015-01-01
Aim We report our experience with the use of 1.7 mm 3-dimentional (3D) strut plate for the management of mandibular angle fractures. Methods This prospective study enrolled 15 patients in whom mandibular angle fractures were treated with 1.7 mm 3D plate using trans-buccal trochar. Patients were evaluated at 72 h, 2 weeks, 6 weeks and 12 weeks for fracture stability, occlusion, soft-tissue swelling, infection and post-operative inferior alveolar nerve damage. Other complications like wound dehiscence, non-union, mal-union and hardware failure were also assessed. Results In the immediate post-operative period, fracture instability was seen in 1 (6.7%) patient which resolved by 2 weeks. Mild occlusal discrepancy was also noted in 1 (6.7%) patient. Wound dehiscence was seen in 5 (33.3%) patients and all resolved by local measures. 1 (6.7%) patient developed post-operative nerve paraesthesia. Immediate post-operative radiographic evaluation demonstrated optimal reduction in all cases with no inferior border gaping. No case of infection, hardware failure, non-union and mal-union was noted. Conclusion Within the limitations of the study, 1.7 mm 3D strut plate was found to be effective for management of non-communited mandibular angle fractures. PMID:26937367
He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping
2016-01-01
Abstract Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture. A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups. There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture. The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448
He, Jiliang; Tan, Guoqing; Zhou, Dongsheng; Sun, Liang; Li, Qinghu; Yang, Yongliang; Liu, Ping
2016-01-01
Percutaneous screw insertion for minimally displaced or reducible acetabular fracture using x-ray fluoroscopy and computer-assisted navigation system has been advocated by some authors. The purpose of this study was to compare intraoperative conditions and clinical results between isocentric C-arm 3-dimensional (Iso-C 3D) fluoroscopy and conventional fluoroscopy for percutaneous retrograde screwing of acetabular anterior column fracture.A prospective cohort study was conducted. A total of 22 patients were assigned to 2 different groups: 10 patients in the Iso-C 3D navigation group and 12 patients in the conventional group. The operative time, fluoroscopic time, time of screw insertion, blood loss, and accuracy were analyzed between the 2 groups.There were significant differences in operative time, screw insertion time, fluoroscopy time, and mean blood loss between the 2 groups. Totally 2 of 12 (16.7%) screws were misplaced in the conventional fluoroscopy group, and all 10 screws were in safe zones in the navigation group. Percutaneous screw fixation using the Iso-C 3D computer-assisted navigation system significantly reduced the intraoperative fluoroscopy time and blood loss in percutaneous screwing for acetabular anterior column fracture.The Iso-C 3D computer-assisted navigation system provided a reliable and effective method for percutaneous screw insertion in acetabular anterior column fractures compared to conventional fluoroscopy. PMID:26765448
Huang, Hai; Plummer, Mitchell; Podgorney, Robert
2013-02-01
Advancement of EGS requires improved prediction of fracture development and growth during reservoir stimulation and long-term operation. This, in turn, requires better understanding of the dynamics of the strongly coupled thermo-hydro-mechanical (THM) processes within fractured rocks. We have developed a physically based rock deformation and fracture propagation simulator by using a quasi-static discrete element model (DEM) to model mechanical rock deformation and fracture propagation induced by thermal stress and fluid pressure changes. We also developed a network model to simulate fluid flow and heat transport in both fractures and porous rock. In this paper, we describe results of simulations in which the DEM model and network flow & heat transport model are coupled together to provide realistic simulation of the changes of apertures and permeability of fractures and fracture networks induced by thermal cooling and fluid pressure changes within fractures. Various processes, such as Stokes flow in low velocity pores, convection-dominated heat transport in fractures, heat exchange between fluid-filled fractures and solid rock, heat conduction through low-permeability matrices and associated mechanical deformations are all incorporated into the coupled model. The effects of confining stresses, developing thermal stress and injection pressure on the permeability evolution of fracture and fracture networks are systematically investigated. Results are summarized in terms of implications for the development and evolution of fracture distribution during hydrofracturing and thermal stimulation for EGS.
An implicit finite element method for discrete dynamic fracture
Jobie M. Gerken
1999-12-01
A method for modeling the discrete fracture of two-dimensional linear elastic structures with a distribution of small cracks subject to dynamic conditions has been developed. The foundation for this numerical model is a plane element formulated from the Hu-Washizu energy principle. The distribution of small cracks is incorporated into the numerical model by including a small crack at each element interface. The additional strain field in an element adjacent to this crack is treated as an externally applied strain field in the Hu-Washizu energy principle. The resulting stiffness matrix is that of a standard plane element. The resulting load vector is that of a standard plane element with an additional term that includes the externally applied strain field. Except for the crack strain field equations, all terms of the stiffness matrix and load vector are integrated symbolically in Maple V so that fully integrated plane stress and plane strain elements are constructed. The crack strain field equations are integrated numerically. The modeling of dynamic behavior of simple structures was demonstrated within acceptable engineering accuracy. In the model of axial and transverse vibration of a beam and the breathing mode of vibration of a thin ring, the dynamic characteristics were shown to be within expected limits. The models dominated by tensile forces (the axially loaded beam and the pressurized ring) were within 0.5% of the theoretical values while the shear dominated model (the transversely loaded beam) is within 5% of the calculated theoretical value. The constant strain field of the tensile problems can be modeled exactly by the numerical model. The numerical results should therefore, be exact. The discrepancies can be accounted for by errors in the calculation of frequency from the numerical results. The linear strain field of the transverse model must be modeled by a series of constant strain elements. This is an approximation to the true strain field, so some
Discrete fracture simulations of the hydrogeology at Koongarra, Northern Territory, Australia
Smoot, J.L.
1992-04-01
The US Department of Energy is studying the Alligator Rivers Natural Analogue Project site at Koongarra, Northern Territory, Australia to investigate and simulate radionuclide migration in fractured rocks. Discrete fracture simulations were conducted within a cubic volume (180-m edge length) of fractured Cahill Formation schist oriented with one major axis parallel to the trend of the Koongarra Fault. Five hundred fractures are simulated within this domain. The fractures have a mean orientation parallel to the idealized plane of the Koongarra Fault dipping 55{degrees} SE. Simple flow modeling of this fracture network was conducted by assigning constant head boundaries to upgradient and downgradient vertical faces of the cube, which trend parallel to the fault. No-flow boundaries were assigned to all other faces. The fracture network allows hydraulic communication across the block, in spite of relatively low fracture density across the block.
A new computer code for discrete fracture network modelling
NASA Astrophysics Data System (ADS)
Xu, Chaoshui; Dowd, Peter
2010-03-01
The authors describe a comprehensive software package for two- and three-dimensional stochastic rock fracture simulation using marked point processes. Fracture locations can be modelled by a Poisson, a non-homogeneous, a cluster or a Cox point process; fracture geometries and properties are modelled by their respective probability distributions. Virtual sampling tools such as plane, window and scanline sampling are included in the software together with a comprehensive set of statistical tools including histogram analysis, probability plots, rose diagrams and hemispherical projections. The paper describes in detail the theoretical basis of the implementation and provides a case study in rock fracture modelling to demonstrate the application of the software.
NASA Astrophysics Data System (ADS)
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.
2016-08-01
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer-scale field-scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling within large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.
Makedonska, Nataliia; Hyman, Jeffrey D.; Karra, Satish; Painter, Scott L.; Gable, Carl W.; Viswanathan, Hari S.
2016-06-17
The apertures of natural fractures in fractured rock are highly heterogeneous. However, in-fracture aperture variability is often neglected in flow and transport modeling and individual fractures are assumed to have uniform aperture distribution. The relative importance of in-fracture variability in flow and transport modeling within kilometer18 scale field–scale fracture networks has been under a matter of debate for a long time because the flow in each single fracture is controlled not only by in-fracture variability but also by boundary conditions. Computational limitations have previously prohibited researchers from investigating the relative importance of in-fracture variability in flow and transport modeling withinmore » large-scale fracture networks. We address this question by incorporating internal heterogeneity of individual fractures into 23 flow simulations within kilometer scale three-dimensional fracture networks, where fracture intensity, P32 (ratio between total fracture area and domain volume) is between 0.027 and 0.031 [1/m]. A recently developed discrete fracture network (DFN) simulation capability, dfnWorks, is used to generate DFNs that include in-fracture aperture variability represented by a stationary log-normal stochastic field with various correlation lengths and variances. The Lagrangian transport parameters, non-reacting travel time and cumulative retention, are calculated along particles streamlines. It is observed that due to local flow channeling early particle travel times are more sensitive to in-fracture variability than the tails of travel time distributions, where no significant effect of the in-fracture transmissivity variations and spatial correlation length is observed.« less
Zhou, Q.; Salve, R.; Liu, H.-H.; Wang, J.S.Y.; Hudson, D.
2006-01-01
A mesoscale (21??m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3??m ?? 4??m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten ?? parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum
Towards improved 3D cross-borehole electrical resistivity imaging of discrete fracture networks
NASA Astrophysics Data System (ADS)
Robinson, J.; Slater, L. D.; Johnson, T. J.; Ntarlagiannis, D.; Lacombe, P.; Johnson, C. D.; Tiedeman, C. R.; Goode, D.; Day-Lewis, F. D.; Shapiro, A. M.; Lane, J. W.
2012-12-01
There is a need to better characterize discrete fractures in contaminated bedrock aquifers to determine the migration of injected remediation amendments away from boreholes. A synthetic cross-borehole electrical resistivity study was conducted assuming a discrete fracture model of an existing contaminated site with known fracture locations. Four boreholes and two discrete fracture zones, assumed to be the dominant electrical and hydraulically conductive pathways, were explicitly modeled within an unstructured tetrahedral finite-element mesh. To simulate field conditions, 5% random Gaussian noise was added to all synthetic datasets. We first evaluated different regularization constraints starting with an uninformed smoothness-constrained inversion, to which a priori information was incrementally added. We found major improvements when (1) smoothness regularization constraints were relaxed (or disconnected) along boreholes and fractures, (2) a homogeneous conductivity was assumed along boreholes, and (3) borehole conductivity constraints, which could be determined from a fluid specific-conductance log, were applied. We also evaluated the effect of including borehole packers on the fracture-zone model recovery. We found the estimated fracture-zone conductivities with the inclusion of packers were comparable to similar trials excluding the use of packers regardless of electrical potential changes. The misplacement of fracture regularization disconnects easily can be misinterpreted as actual fracture locations. Conductivities within misplaced disconnects were near the starting model value and removing smoothing between boreholes and assumed fracture locations helped in identifying incorrectly located fracture regularization disconnects. Model sensitivity structure improved when regularization disconnects were (1) applied along the boreholes and fracture zones, and (2) fracture-zone regularization disconnects were placed where actual fractures existed. A field study
Combined Finite-Discrete Element Method for Simulation of Hydraulic Fracturing
NASA Astrophysics Data System (ADS)
Yan, Chengzeng; Zheng, Hong; Sun, Guanhua; Ge, Xiurun
2016-04-01
Hydraulic fracturing is widely used in the exploitation of unconventional gas (such as shale gas).Thus, the study of hydraulic fracturing is of particular importance for petroleum industry. The combined finite-discrete element method (FDEM) proposed by Munjiza is an innovative numerical technique to capture progressive damage and failure processes in rock. However, it cannot model the fracturing process of rock driven by hydraulic pressure. In this study, we present a coupled hydro-mechanical model based on FDEM for the simulation of hydraulic fracturing in complex fracture geometries, where an algorithm for updating hydraulic fracture network is proposed. The algorithm can carry out connectivity searches for arbitrarily complex fracture networks. Then, we develop a new combined finite-discrete element method numerical code (Y-flow) for the simulation of hydraulic fracturing. Finally, several verification examples are given, and the simulation results agree well with the analytical or experimental results, indicating that the newly developed numerical code can capture hydraulic fracturing process correctly and effectively.
Incorporating Discrete Irregular Fracture Zone Networks into 3D Paleohydrogeologic Simulations
NASA Astrophysics Data System (ADS)
Normani, S. D.
2015-12-01
Dual continuum computational models which include both porous media and discrete fracture zones are valuable tools in assessing groundwater migration and pathways in fractured rock systems. Fracture generation models can produce stochastic realizations of fracture networks which honor geological structures and fracture propagation behaviors. Surface lineament traces can be propagated to depth based on fracture zone statistics to produce representations of geological structures in rock. The generated discrete, complex and irregular fracture zone networks, represented as a triangulated mesh, are embedded using orthogonal quadrilateral elements within a three-dimensional hexahedral finite element mesh. A detailed coupled density-dependent paleohydrogeologic groundwater analysis of a hypothetical 104 km2 portion of the Canadian Shield has been conducted using the discrete-fracture dual continuum finite element model FRAC3DVS to investigate the characterization of large-scale fracture zone networks on groundwater and tracer movement during a 120,000 year paleoclimate cycle. Permeability reduction due to permafrost was also applied. Time series data for the depth of permafrost, along with ice thickness and lake depth, were provided by the University of Toronto (UofT) Glacial Systems Model. The crystalline rock between fracture zones was assigned properties characteristic of those reported for the Canadian Shield. Total dissolved solids concentrations of 300 g/L are encountered at depth. Surface water features and a Digital Elevation Model (DEM) were used in a GIS framework to define the watershed boundaries at surface water divides and to populate the finite element mesh. This work will illustrate the long-term evolution and stability of the geosphere and groundwater systems to external perturbations caused by glaciation through the use of performance measures such as Mean Life Expectancy and the migration of a unit tracer to depth over a paleoclimate cycle.
NASA Astrophysics Data System (ADS)
Zhang, Qi-Hua
2015-10-01
Finite element generation of complicated fracture networks is the core issue and source of technical difficulty in three-dimensional (3-D) discrete fracture network (DFN) flow models. Due to the randomness and uncertainty in the configuration of a DFN, the intersection lines (traces) are arbitrarily distributed in each face (fracture and other surfaces). Hence, subdivision of the fractures is an issue relating to subdivision of two-dimensional (2-D) domains with arbitrarily-distributed constraints. When the DFN configuration is very complicated, the well-known approaches (e.g. Voronoi Delaunay-based methods and advancing-front techniques) cannot operate properly. This paper proposes an algorithm to implement end-to-end connection between traces to subdivide 2-D domains into closed loops. The compositions of the vertices in the common edges between adjacent loops (which may belong to a single fracture or two connected fractures) are thus ensured to be topologically identical. The paper then proposes an approach for triangulating arbitrary loops which does not add any nodes to ensure consistency of the meshes at the common edges. In addition, several techniques relating to tolerance control and improving code robustness are discussed. Finally, the equivalent permeability of the rock mass is calculated for some very complicated DFNs (the DFN may contain 1272 fractures, 633 connected fractures, and 16,270 closed loops). The results are compared with other approaches to demonstrate the veracity and efficiency of the approach proposed in this paper.
Discrete Dual Porosity Modeling of Electrical Current Flow in Fractured Media
NASA Astrophysics Data System (ADS)
Roubinet, D.; Irving, J.
2013-12-01
The study of fractured rocks is highly important in a variety of research fields and applications such as hydrogeology, geothermal energy, hydrocarbon extraction, and the long-term storage of toxic waste. Fractured media are characterized by a large contrast in permeability between the fractures and the rock matrix. For hydrocarbon extraction, the presence of highly conductive fractures is an advantage as they allow for quick and easy access to the resource. For toxic waste storage, however, the fractures represent a significant drawback as there is an increased risk of leakage and migration of pollutants deep into the subsurface. In both cases, the identification of fracture network characteristics is a critical, challenging, and required step. A number of previous studies have indicated that the presence of fractures in geological materials can have a significant impact on geophysical electrical resistivity measurements. It thus appears that, in some cases, geoelectrical surveys might be used to obtain useful information regarding fracture network characteristics. However, existing geoelectrical modeling tools and inversion methods are not properly adapted to deal with the specific challenges of fractured media. This prevents us from fully exploring the potential of the method to characterize fracture network properties. We thus require, as a first step, the development of accurate and efficient numerical modeling tools specifically designed for fractured domains. Building on the discrete fracture network (DFN) approach that has been widely used for modeling groundwater flow in fractured rocks, we have developed a discrete dual-porosity model for electrical current flow in fractured media. Our novel approach combines an explicit representation of the fractures with fracture-matrix electrical flow exchange at the block-scale. Tests in two dimensions show the ability of our method to deal with highly heterogeneous fracture networks in a highly computationally
NASA Astrophysics Data System (ADS)
Ryerson, F. J.; Ezzedine, S. M.; Glascoe, L. G.; Antoun, T. H.
2011-12-01
Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Data collected are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable probabilistic assessment of flow, transport and geomechanical phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, we investigate the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport and geomechanics. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory. (Prepared by LLNL under Contract DE-AC52-07NA27344)
Dershowitz, W.S.; La Pointe, P.R.; Einstein, H.H.; Ivanova, V.
1998-01-01
This report describes progress on the project, {open_quotes}Fractured Reservoir Discrete Feature Network Technologies{close_quotes} during the period March 7, 1996 to February 28, 1997. The report presents summaries of technology development for the following research areas: (1) development of hierarchical fracture models, (2) fractured reservoir compartmentalization and tributary volume, (3) fractured reservoir data analysis, and (4) integration of fractured reservoir data and production technologies. In addition, the report provides information on project status, publications submitted, data collection activities, and technology transfer through the world wide web (WWW). Research on hierarchical fracture models included geological, mathematical, and computer code development. The project built a foundation of quantitative, geological and geometrical information about the regional geology of the Permian Basin, including detailed information on the lithology, stratigraphy, and fracturing of Permian rocks in the project study area (Tracts 17 and 49 in the Yates field). Based on the accumulated knowledge of regional and local geology, project team members started the interpretation of fracture genesis mechanisms and the conceptual modeling of the fracture system in the study area. Research on fractured reservoir compartmentalization included basic research, technology development, and application of compartmentalized reservoir analyses for the project study site. Procedures were developed to analyze compartmentalization, tributary drainage volume, and reservoir matrix block size. These algorithms were implemented as a Windows 95 compartmentalization code, FraCluster.
Prediction of Fracture Behavior in Rock and Rock-like Materials Using Discrete Element Models
NASA Astrophysics Data System (ADS)
Katsaga, T.; Young, P.
2009-05-01
The study of fracture initiation and propagation in heterogeneous materials such as rock and rock-like materials are of principal interest in the field of rock mechanics and rock engineering. It is crucial to study and investigate failure prediction and safety measures in civil and mining structures. Our work offers a practical approach to predict fracture behaviour using discrete element models. In this approach, the microstructures of materials are presented through the combination of clusters of bonded particles with different inter-cluster particle and bond properties, and intra-cluster bond properties. The geometry of clusters is transferred from information available from thin sections, computed tomography (CT) images and other visual presentation of the modeled material using customized AutoCAD built-in dialog- based Visual Basic Application. Exact microstructures of the tested sample, including fractures, faults, inclusions and void spaces can be duplicated in the discrete element models. Although the microstructural fabrics of rocks and rock-like structures may have different scale, fracture formation and propagation through these materials are alike and will follow similar mechanics. Synthetic material provides an excellent condition for validating the modelling approaches, as fracture behaviours are known with the well-defined composite's properties. Calibration of the macro-properties of matrix material and inclusions (aggregates), were followed with the overall mechanical material responses calibration by adjusting the interfacial properties. The discrete element model predicted similar fracture propagation features and path as that of the real sample material. The path of the fractures and matrix-inclusion interaction was compared using computed tomography images. Initiation and fracture formation in the model and real material were compared using Acoustic Emission data. Analysing the temporal and spatial evolution of AE events, collected during the
Shouchun Deng; Robert Podgorney; Hai Huang
2011-02-01
Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be
Anna, L.O.
1998-09-01
A three-dimensional discrete fracture model was completed to investigate the potential effects of fractures on the flow of water at Yucca Mountain, Nye County, Nevada. A fracture network of the Exploratory Studies Facility starter tunnel area was simulated and calibrated with field data. Two modeled volumes were used to simulate three-dimensional fracture networks of the Tiva Canyon tuff. One volume had a width and length of 150 meters, and the other had a width and length of 200 meters; both volumes were 60 meters thick. The analysis shows that the fracture system in the Exploratory Studies Facility starter tunnel area has numerous connected fractures that have relatively large permeabilities. However, pathway analysis between three radial boreholes indicated there were few pathways and little connection, which is consistent with results of cross-boreholes pressure testing. Pathway analysis also showed that at the scales used there was only one pathway connecting one end of the flow box to the opposite end. The usual vertical pathway was along one large fracture, whereas in four horizontal directions the pathway was from multiple fracture connections. As a result, the fracture network can be considered sparse. The fracture network was refined by eliminating nonconductive fractures determined from field-derived permeabilities. Small fractures were truncated from the simulated network without any effect on the overall connectivity. Fractures as long as 1.25 meters were eliminated (a large percentage of the total number of fractures) from the network without altering the number of pathways. Five directional permeabilities were computed for the 150- and 200-meter-scale flow box areas. Permeabilities for the 150-meter scale vary by almost two orders of magnitude, with the principal permeability direction being easterly. At the 200-meter scale, however, the flow box permeabilities only vary by a factor of four, with the principal permeability direction being vertical.
Discrete fracture patterns of virus shells reveal mechanical building blocks.
Ivanovska, Irena L; Miranda, Roberto; Carrascosa, Jose L; Wuite, Gijs J L; Schmidt, Christoph F
2011-08-01
Viral shells are self-assembled protein nanocontainers with remarkable material properties. They combine simplicity of construction with toughness and complex functionality. These properties make them interesting for bionanotechnology. To date we know little about how virus structure determines assembly pathways and shell mechanics. We have here used atomic force microscopy to study structural failure of the shells of the bacteriophage Φ29. We observed rigidity patterns following the symmetry of the capsid proteins. Under prolonged force exertion, we observed fracture along well-defined lines of the 2D crystal lattice. The mechanically most stable building block of the shells was a trimer. Our approach of "reverse engineering" the virus shells thus made it possible to identify stable structural intermediates. Such stable intermediates point to a hierarchy of interactions among equal building blocks correlated with distinct next-neighbor interactions. The results also demonstrate that concepts from macroscopic materials science, such as fracture, can be usefully employed in molecular engineering. PMID:21768340
Hyman, Jeffrey De'Haven; Aldrich, Garrett Allen; Viswanathan, Hari S.; Makedonska, Nataliia; Karra, Satish
2016-08-25
We characterize how different fracture size-transmissivity relationships influence flow and transport simulations through sparse three-dimensional discrete fracture networks. Although it is generally accepted that there is a positive correlation between a fracture's size and its transmissivity/aperture, the functional form of that relationship remains a matter of debate. Relationships that assume perfect correlation, semicorrelation, and noncorrelation between the two have been proposed. To study the impact that adopting one of these relationships has on transport properties, we generate multiple sparse fracture networks composed of circular fractures whose radii follow a truncated power law distribution. The distribution of transmissivities are selected somore » that the mean transmissivity of the fracture networks are the same and the distributions of aperture and transmissivity in models that include a stochastic term are also the same. We observe that adopting a correlation between a fracture size and its transmissivity leads to earlier breakthrough times and higher effective permeability when compared to networks where no correlation is used. While fracture network geometry plays the principal role in determining where transport occurs within the network, the relationship between size and transmissivity controls the flow speed. Lastly, these observations indicate DFN modelers should be aware that breakthrough times and effective permeabilities can be strongly influenced by such a relationship in addition to fracture and network statistics.« less
Discrete fracture modeling of hydro-mechanical damage processes in geological systems
NASA Astrophysics Data System (ADS)
Kim, K.; Rutqvist, J.; Houseworth, J. E.; Birkholzer, J. T.
2014-12-01
This study presents a modeling approach for investigating coupled thermal-hydrological-mechanical (THM) behavior, including fracture development, within geomaterials and structures. In the model, the coupling procedure consists of an effective linkage between two codes: TOUGH2, a simulator of subsurface multiphase flow and mass transport based on the finite volume approach; and an implementation of the rigid-body-spring network (RBSN) method, a discrete (lattice) modeling approach to represent geomechanical behavior. One main advantage of linking these two codes is that they share the same geometrical mesh structure based on the Voronoi discretization, so that a straightforward representation of discrete fracture networks (DFN) is available for fluid flow processes. The capabilities of the TOUGH-RBSN model are demonstrated through simulations of hydraulic fracturing, where fluid pressure-induced fracturing and damage-assisted flow are well represented. The TOUGH-RBSN modeling methodology has been extended to enable treatment of geomaterials exhibiting anisotropic characteristics. In the RBSN approach, elastic spring coefficients and strength parameters are systematically formulated based on the principal bedding direction, which facilitate a straightforward representation of anisotropy. Uniaxial compression tests are simulated for a transversely isotropic material to validate the new modeling scheme. The model is also used to simulate excavation fracture damage for the HG-A microtunnel in the Opalinus Clay rock, located at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. The Opalinus Clay has transversely isotropic material properties caused by natural features such as bedding, foliation, and flow structures. Preferential fracturing and tunnel breakouts were observed following excavation, which are believed to be strongly influenced by the mechanical anisotropy of the rock material. The simulation results are qualitatively
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.
2010-12-01
Fractures and fracture networks are the principle pathways for migration of water, heat and mass in enhanced geothermal systems, oil and gas reservoirs, CO2 leakage from saline aquifers, and radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples among others. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distributions function for predictive modeling and simulation in a stochastic framework such as stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, for probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions that characterize discrete fracture networks on the flow, heat and mass transport. Numerical results of first, second and third moments, normalized to a base case scenario, are presented and compared to theoretical results extended from percolation theory.
Colloid facilitated transport of lanthanides through discrete fractures in chalk
NASA Astrophysics Data System (ADS)
Tran, Emily; Klein Ben-David, Ofra; Teutsch, Nadya; Weisbrod, Noam
2015-04-01
Geological disposal of high-level radioactive waste is the internationally agreed-upon, long term solution for the disposal of long lived radionuclides and spent fuel. Eventually, corrosion of the waste canisters may lead to leakage of their hazardous contents, and the radionuclides can ultimately make their way into groundwater and pose a threat to the biosphere. Engineered bentonite barriers placed around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their storage location to the groundwater. However, colloidal-sized mobile bentonite particles eroding from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. In addition, the presence of organic matter in groundwater has been shown to additionally facilitate the uptake of radionuclides by the clay colloids. This study aims to evaluate the transport behaviors of radionuclides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative of the Negev desert, Israel. Lanthanides are considered an acceptable substitute to actinides for research on radionuclide transportation due to their similar chemical behavior. In this study, the migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide). Tracer solutions containing known concentrations of Ce, bentonite colloids, humic acid and bromide were prepared in a matrix solution containing salt concentrations representative of that of the average rain water found in the Negev. These solutions were then injected into a flow system constructed around a naturally fractured chalk core. Samples were analyzed for Ce and Br using ICP-MS, and colloid concentrations were determined using spectrophotographic analysis. Breakthrough curves comparing the rates of transportation of each tracer were obtained, allowing for comparison of
Development of discrete flow paths in unsaturated fractures at Yucca Mountain.
Bodvarsson, G S; Wu, Yu-Shu; Zhang, Keni
2003-01-01
We have carried out numerical modeling studies to investigate the development of discrete-fracture flow paths and flow-focusing phenomena in the unsaturated rock of the potential repository horizon at Yucca Mountain, Nevada. These studies are based on two- and three-dimensional (2-D and 3-D) numerical models using site-specific parameters. The 2-D and 3-D models use high-resolution spatial discretization to explicitly include effects of discrete fractures with stochastically developed fracture permeabilities and a continuum approach. The permeability field is generated based on air permeability measurements at various scales. For most of the cases considered, uniform infiltration with different average rates (1-500 mm/year) is prescribed at the top of the model, while variability in outflow at the bottom of the model is used to evaluate the degree of flow focusing. In addition, scenarios involving nonuniform infiltration at the top boundary, different permeability correlation lengths and different flow-allocation schemes were analyzed. The modeling results obtained from all of the cases showed a remarkably similar flow-focusing pattern at the repository horizon. Furthermore, tracer transport simulation results also revealed additional features of focused flow and transport through the fracture network. PMID:12714283
NASA Astrophysics Data System (ADS)
Ezzedine, S. M.
2009-12-01
Fractures and fracture networks are the principal pathways for transport of water and contaminants in groundwater systems, enhanced geothermal system fluids, migration of oil and gas, carbon dioxide leakage from carbon sequestration sites, and of radioactive and toxic industrial wastes from underground storage repositories. A major issue to overcome when characterizing a fractured reservoir is that of data limitation due to accessibility and affordability. Moreover, the ability to map discontinuities in the rock with available geological and geophysical tools tends to decrease particularly as the scale of the discontinuity goes down. Geological characterization data include measurements of fracture density, orientation, extent, and aperture, and are based on analysis of outcrops, borehole optical and acoustic televiewer logs, aerial photographs, and core samples, among other techniques. All of these measurements are taken at the field scale through a very sparse limited number of deep boreholes. These types of data are often reduced to probability distribution functions for predictive modeling and simulation in a stochastic framework such as a stochastic discrete fracture network. Stochastic discrete fracture network models enable, through Monte Carlo realizations and simulations, probabilistic assessment of flow and transport phenomena that are not adequately captured using continuum models. Despite the fundamental uncertainties inherited within the probabilistic reduction of the sparse data collected, very little work has been conducted on quantifying uncertainty on the reduced probabilistic distribution functions. In the current study, using nested Monte Carlo simulations, we present the impact of parameter uncertainties of the distribution functions of fracture density, orientation, aperture and size on the flow and transport using topological measures such as fracture connectivity, physical characteristics such as effective hydraulic conductivity tensors, and
The Effect of Loading Rate on Hydraulic Fracturing in Synthetic Granite - a Discrete Element Study
NASA Astrophysics Data System (ADS)
Tomac, I.; Gutierrez, M.
2015-12-01
Hydraulic fracture initiation and propagation from a borehole in hard synthetic rock is modeled using the two dimensional Discrete Element Method (DEM). DEM uses previously established procedure for modeling the strength and deformation parameters of quasi-brittle rocks with the Bonded Particle Model (Itasca, 2004). A series of simulations of laboratory tests on granite in DEM serve as a reference for synthetic rock behavior. Fracturing is enabled by breaking parallel bonds between DEM particles as a result of the local stress state. Subsequent bond breakage induces fracture propagation during a time-stepping procedure. Hydraulic fracturing occurs when pressurized fluid induces hoop stresses around the wellbore which cause rock fracturing and serves for geo-reservoir permeability enhancement in oil, gas and geothermal industries. In DEM, a network of fluid pipes and reservoirs is used for mathematical calculation of fluid flow through narrow channels between DEM particles, where the hydro-mechanical coupling is fully enabled. The fluid flow calculation is superimposed with DEM stress-strain calculation at each time step. As a result, the fluid pressures during borehole pressurization in hydraulic fracturing, as well as, during the fracture propagation from the borehole, can be simulated. The objective of this study is to investigate numerically a hypothesis that fluid pressurization rate, or the fluid flow rate, influences upon character, shape and velocity of fracture propagation in rock. The second objective is to better understand and define constraints which are important for successful fracture propagation in quasi-brittle rock from the perspective of flow rate, fluid density, viscosity and compressibility relative to the rock physical properties. Results from this study indicate that not only too high fluid flow rates cause fracture arrest and multiple fracture branching from the borehole, but also that the relative compressibility of fracturing fluid and
Zhou, Jing; Huang, Hai; Deo, Milind
2015-10-01
The interaction between hydraulic fractures (HF) and natural fractures (NF) will lead to complex fracture networks due to the branching and merging of natural and hydraulic fractures in unconventional reservoirs. In this paper, a newly developed hydraulic fracturing simulator based on discrete element method is used to predict the generation of complex fracture network in the presence of pre-existing natural fractures. By coupling geomechanics and reservoir flow within a dual lattice system, this simulator can effectively capture the poro-elastic effects and fluid leakoff into the formation. When HFs are intercepting single or multiple NFs, complex mechanisms such as direct crossing, arresting, dilating and branching can be simulated. Based on the model, the effects of injected fluid rate and viscosity, the orientation and permeability of NFs and stress anisotropy on the HF-NF interaction process are investigated. Combined impacts from multiple parameters are also examined in the paper. The numerical results show that large values of stress anisotropy, intercepting angle, injection rate and viscosity will impede the opening of NFs.
Identification of Fracture Toughness for Discrete Damage Mechanics Analysis of Glass-Epoxy Laminates
NASA Astrophysics Data System (ADS)
Barbero, E. J.; Cosso, F. A.; Martinez, X.
2014-08-01
A methodology for determination of the intralaminar fracture toughness is presented, based on fitting discrete damage mechanics (DDM) model predictions to available experimental data. DDM is constitutive model that, when incorporated into commercial finite element software via user material subroutines, is able to predict intralaminar transverse and shear damage initiation and evolution in terms of the fracture toughness of the composite. The applicability of the DDM model is studied by comparison to available experimental data for Glass-Epoxy laminates. Sensitivity of the DDM model to h- and p-refinement is studied. Also, the effect of in-situ correction of strength is highlighted.
NASA Astrophysics Data System (ADS)
Makedonska, N.; Karra, S.; Painter, S. L.; Viswanathan, H.; Gable, C. W.
2014-12-01
Natural gas from unconventional fossil energy sources such as shale and tight gasformations has a profound impact on US energy independence. The current state ofproduction of methane and other hydrocarbons from low permeability shale involvesprocesses such as hydraulic fracturing of rock, multiphase flow, and recovery of the gasvia these fractures. Although hydraulic fracturing has been used for the past couple ofdecades, little is known about the underlying mechanisms behind the production curvesthat are seen in the field, such as, reasons for 50-60% decline after the first year in typicalproduction curves.Numerical experiments on a realistic fractured shale system are presented toidentify the effect of complex flow of gas in fractures and matrix diffusion on theproduction curve. For characterizing flow, including the characteristics and geometriesfor the fracture networks, we use a methodology that incorporates a recently developeddiscrete fracture network meshing approach [1], which is combined with the highlyparallel PFLOTRAN subsurface flow and reactive transport code [2] and a new particletracking capability [3]. The results of this reservoir-scale methodology for analyzing thedecline in gas production rates indicate dominant flow in fractures in the initial highproduction rate. Increase in matrix diffusivity improves production recovery after theinitial production of gas from fractures. Moreover, it is observed that increasing aperturevariability within a single fracture has little effect on the production compared tovariations of the mean fracture aperture from fracture to fracture in a fracture network. [1] Hyman, J.D., Gable C.W., Painter S.L., and Makedonska N., ConformingDelaunay Triangulation of Stochastically Generated Three Dimensional DiscreteFracture Networks: a Feature Rejection Algorithm f or Meshing Strategy, SIAM J.Sci. Comput, 2014 (in press). [2] Lichtner, P.C., Hammond G.E., Lu C., Karra S., Bisht G., Mills R.T., and KumarJ., PFLOTRAN User
Shale Fracture Analysis using the Combined Finite-Discrete Element Method
NASA Astrophysics Data System (ADS)
Carey, J. W.; Lei, Z.; Rougier, E.; Knight, E. E.; Viswanathan, H.
2014-12-01
Hydraulic fracturing (hydrofrac) is a successful method used to extract oil and gas from highly carbonate rocks like shale. However, challenges exist for industry experts estimate that for a single $10 million dollar lateral wellbore fracking operation, only 10% of the hydrocarbons contained in the rock are extracted. To better understand how to improve hydrofrac recovery efficiencies and to lower its costs, LANL recently funded the Laboratory Directed Research and Development (LDRD) project: "Discovery Science of Hydraulic Fracturing: Innovative Working Fluids and Their Interactions with Rocks, Fractures, and Hydrocarbons". Under the support of this project, the LDRD modeling team is working with the experimental team to understand fracture initiation and propagation in shale rocks. LANL's hybrid hydro-mechanical (HM) tool, the Hybrid Optimization Software Suite (HOSS), is being used to simulate the complex fracture and fragment processes under a variety of different boundary conditions. HOSS is based on the combined finite-discrete element method (FDEM) and has been proven to be a superior computational tool for multi-fracturing problems. In this work, the comparison of HOSS simulation results to triaxial core flooding experiments will be presented.
Discrete Modeling of Early-Life Thermal Fracture in Ceramic Nuclear Fuel
Spencer, Benjamin W.; Huang, Hai; Dolbow, John E.; Hales, Jason D.
2015-03-01
Fracturing of ceramic fuel pellets heavily influences performance of light water reactor (LWR) fuel. Early in the life of fuel, starting with the initial power ramp, large thermal gradients cause high tensile hoop and axial stresses in the outer region of the fuel pellets, resulting in the formation of radial and axial cracks. Circumferential cracks form due to thermal gradients that occur when the power is ramped down. These thermal cracks cause the fuel to expand radially, closing the pellet/cladding gap and enhancing the thermal conductance across that gap, while decreasing the effective conductivity of the fuel in directions normal to the cracking. At lower length scales, formation of microcracks is an important contributor to the decrease in bulk thermal conductivity that occurs over the life of the fuel as the burnup increases. Because of the important effects that fracture has on fuel performance, a realistic, physically based fracture modeling capability is essential to predict fuel behavior in a wide variety of normal and abnormal conditions. Modeling fracture within the context of the finite element method, which is based on continuous interpolations of solution variables, has always been challenging because fracture is an inherently discontinuous phenomenon. Work is underway at Idaho National Laboratory to apply two modeling techniques model fracture as a discrete displacement discontinuity to nuclear fuel: The extended finite element method (XFEM), and discrete element method (DEM). XFEM is based on the standard finite element method, but with enhancements to represent discontinuous behavior. DEM represents a solid as a network of particles connected by bonds, which can arbitrarily fail if a fracture criterion is reached. This paper presents initial results applying the aforementioned techniques to model fuel fracturing. This work has initially focused on early life behavior of ceramic LWR fuel. A coupled thermal-mechanical XFEM method that includes
3D Discrete Element Model with 1 Million Particles: an Example of Hydro-fracturing
NASA Astrophysics Data System (ADS)
Liu, C.; Pollard, D. D.
2013-12-01
The Discrete Element Method (DEM) permits large relative motion and breakage of elements, and does not require re-meshing, for example as would the Finite Element Method. DEM has a wide range of applications in the fields of solid-earth geophysics, geomechanics, mining engineering, and structural geology. However, due to the computational cost, particle numbers of discrete element models are generally less than a few tens of thousands, which limits the applications. A new 3D DEM system 'MatDEM' can complete dynamic simulations of one million particles. The conversion formulas between particle parameters and model mechanical properties were derived, and the conversion of energy in DEM can be simulated. In a recent paper (Liu et al., 2013, JGR), the analytical solutions of elastic properties and failure modes of a 2D close-packed discrete element model were proposed. Based on these theoretical results, it is easy to create materials using DEM, which have similar mechanical properties to rock. Given the mechanical properties and state of stress, geologists and engineers can investigate the characteristics of rock deformation and failure under different conditions. MatDEM provides an alternative way to study the micro-macro relationships of rock and soil, and the evolution of geologic structures. As an example, MatDEM was used to investigate the generation and development of fluid driven fractures around a micro pore. The simulation result of fractures of an anisotropic 3D model, which includes 1 million particles, is demonstrated. Via parallel computing technology, MatDEM may handle tens of millions of particles in near future. Left: Fluid pressure is applied in the pore to generate fractures. Right: Simulation results (black segments represent fractures).
Discrete fracture hydromechanical model for the disturbed rock zone in a clay rock
NASA Astrophysics Data System (ADS)
Asahina, D.; Houseworth, J. E.; Birkholzer, J. T.
2013-12-01
We have developed a coupled thermal-hydrological-mechanical (THM) fracture damage model, TOUGH-RBSN, to investigate the behavior of fracture generation and evolution in rock in the presence of perturbations to THM conditions. This model combines the capabilities of the TOUGH2 simulator to represent thermal-hydrological processes with a rigid-body-spring-network (RBSN) model, a type of discrete modeling, to treat geomechanical and fracture-damage processes. In particular, the development and evolution of fractures in the excavation damaged zone (EDZ) of a clay rock, with application to high-level nuclear waste disposal, is a focus for this model development. Previously, the TOUGH-RBSN approach has been used to model fracture damage under tensile conditions as a result of desiccation shrinkage. The next phase of model testing will be application to the HG-A test being conducted at the Mont Terri underground research laboratory (URL) near Saint-Ursanne, Switzerland. This test is being conducted in a 13-m long, 1-m diameter microtunnel in the Opalinus clay rock in which a test section at the far end of the microtunnel is isolated using a packer. The test is specifically targeted to observe how fluids injected into the test section penetrate into the rock, with particular emphasis on the EDZ. The HG-A microtunnel was excavated in 2005 and subsequent mapping of the tunnel surface shows preferential fracturing and tunnel breakouts along zones where bedding planes are tangential to the tunnel wall and where faults intercept the tunnel. It appears that the EDZ fracture damage can be attributed to both tensile and shear fracturing mechanisms. A series of injection tests with water and gas have been performed which also show preferential invasion of the fluid pressure along the observed damage zones, as well as fracture self-sealing over time. The TOUGH-RBSN approach has been successfully applied to modeling fracture driven by predominately tensile loading, whereas only
Nitao, J.J.; Buscheck, T.A.
1995-11-09
An in situ heater test was performed at G-Tunnel, Nevada Nuclear Test Site, to investigate the thermal-hydrological response of unsaturated, fractured volcanic tuff under conditions similar to those at Yucca Mountain. The NUFT flow and transport code was used to model the test using discrete-fracture and equivalent-continuum approaches. Nonequilibrium fracture flow and thermal buoyant gas-phase convection were found to be the likely causes for observed lack of condensate imbibition into the matrix. The potential repository at Yucca Mountain was also modeled. Disequilibrium fracture flow is predicted to occur for less than a hundred years after emplacement followed by a period of fracture-matrix equilibrium, during which the equivalent-continuum and discrete-fracture models give almost identical results.
Particle tracking approach for transport in three-dimensional discrete fracture networks
Makedonska, Nataliia; Painter, Scott L; Bui, Quan M; Gable, Carl; Karra, Satish
2015-01-01
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. We demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Particle tracking approach for transport in three-dimensional discrete fracture networks
Makedonska, Nataliia; Painter, Scott L; Bui, Quan M; Gable, Carl; Karra, Satish
2015-01-01
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. We demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.
NASA Astrophysics Data System (ADS)
Ţene, Matei; Al Kobaisi, Mohammed Saad; Hajibeygi, Hadi
2016-09-01
This paper introduces an Algebraic MultiScale method for simulation of flow in heterogeneous porous media with embedded discrete Fractures (F-AMS). First, multiscale coarse grids are independently constructed for both porous matrix and fracture networks. Then, a map between coarse- and fine-scale is obtained by algebraically computing basis functions with local support. In order to extend the localization assumption to the fractured media, four types of basis functions are investigated: (1) Decoupled-AMS, in which the two media are completely decoupled, (2) Frac-AMS and (3) Rock-AMS, which take into account only one-way transmissibilities, and (4) Coupled-AMS, in which the matrix and fracture interpolators are fully coupled. In order to ensure scalability, the F-AMS framework permits full flexibility in terms of the resolution of the fracture coarse grids. Numerical results are presented for two- and three-dimensional heterogeneous test cases. During these experiments, the performance of F-AMS, paired with ILU(0) as second-stage smoother in a convergent iterative procedure, is studied by monitoring CPU times and convergence rates. Finally, in order to investigate the scalability of the method, an extensive benchmark study is conducted, where a commercial algebraic multigrid solver is used as reference. The results show that, given an appropriate coarsening strategy, F-AMS is insensitive to severe fracture and matrix conductivity contrasts, as well as the length of the fracture networks. Its unique feature is that a fine-scale mass conservative flux field can be reconstructed after any iteration, providing efficient approximate solutions in time-dependent simulations.
Discrete fracture network modelling of Groß Schönebeck stimulation treatment
NASA Astrophysics Data System (ADS)
Urpi, L.; Zimmermann, G.; Blöcher, G.; van Wees, J. D. A. M.; Wassing, B.
2012-04-01
Microseismic events associated to geothermal reservoir are recorded before, during and after the establishment of an Enhanced Geothermal System (EGS). Differentiating recorded seismicity between natural and induced can be ambiguous, but reservoir response to stimulations treatment can be modelled and give useful insights in designing treatment. Our model reproduces the stimulation treatment done at Groß Schönebeck reservoir. The stimulation target was the volcanic layer of the Rotliegend formation at 4km depth. The treatment increased by a factor 22 the productivity index (volume of fluid produced per unit of time per drawdown) of the reservoir, while recorded seismicity was lower than expected (<100 events recorded, max magnitude mL=-1). The microevents signal properties are compatible with shearing events and their locations along a plane give us little information on the processes occurring during the water injection. Bottom hole injection pressure was over the minimum stress, therefore we expect fracture opening due to both tensile and shearing opening. The interaction between a primary fracture initiating from the wellbore due to the injection and the secondary discrete fracture network (DFN) has been modelled with a hydraulic fracturing simulator. The DFN has been populated on the basis of available borehole data and lithological properties determined from rock sample analysis. Heat transfer has been computed since the temperature difference between injected fluid and reservoir rocks is over 100°C, inducing thermoelastic stresses around the the fractures. The model shows the importance of the natural fracture network, perturbing the reservoir state at distance in direction parallel to the minimum stress. Results are compared with commercial tensile and shear fracture models, which are compatible in term of predicting increased productivity of the well. We justify the absence of larger magnitude events after shut-in with the low natural seismicity and the
Fracture and impulse based finite-discrete element modeling of fragmentation
NASA Astrophysics Data System (ADS)
Paluszny, A.; Tang, X. H.; Zimmerman, R. W.
2013-11-01
A numerical method for fragmentation is presented that combines the finite element method with the impulse-based discrete element method (impulse-based FDEM). In contrast to existing methods, fragments are not represented as a conglomeration of spheres; instead, their shapes are represented using solid modeling techniques, and are the result of multiple fracture growth. Fracture growth within each three-dimensional fragment is controlled by stress intensity factors computed using the finite element method and the reduced virtual integration technique. Non-convex fragment interaction and movement is modeled using impulse dynamics, rather than a penalty-based method. Collisions leading to fracture are handled individually by propagating pre-existing internal flaws and cracks. The method utilizes decoupled geometry and mesh representation, and local failure and propagation criteria. Fractures that reach volume boundaries lead to further fragmentation. The approach is demonstrated by the fragmentation of a sphere, which exhibits a velocity-dependent fragment size distribution. The distribution is characterized by a two-parameter Weibull distribution, an emergent property of the simulation. Results are in good agreement with experimental data.
Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal
Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre
2008-07-01
A software package called DFNModeler has been developed to assess the potential risks associated with carbon sequestration in coal. Natural fractures provide the principal conduits for fluid flow in coal-bearing strata, and these fractures present the most tangible risks for the leakage of injected carbon dioxide. The objectives of this study were to develop discrete fracture network (DFN) modeling tools for risk assessment and to use these tools to assess risks in the Black Warrior Basin of Alabama, where coal-bearing strata have high potential for carbon sequestration and enhanced coalbed methane recovery. DFNModeler provides a user-friendly interface for the construction, visualization, and analysis of DFN models. DFNModeler employs an OpenGL graphics engine that enables real-time manipulation of DFN models. Analytical capabilities in DFNModeler include display of structural and hydrologic parameters, compartmentalization analysis, and fluid pathways analysis. DFN models can be exported to third-party software packages for flow modeling. DFN models were constructed to simulate fracturing in coal-bearing strata of the upper Pottsville Formation in the Black Warrior Basin. Outcrops and wireline cores were used to characterize fracture systems, which include joint systems, cleat systems, and fault-related shear fractures. DFN models were constructed to simulate jointing, cleating, faulting, and hydraulic fracturing. Analysis of DFN models indicates that strata-bound jointing compartmentalizes the Pottsville hydrologic system and helps protect shallow aquifers from injection operations at reservoir depth. Analysis of fault zones, however, suggests that faulting can facilitate cross-formational flow. For this reason, faults should be avoided when siting injection wells. DFN-based flow models constructed in TOUGH2 indicate that fracture aperture and connectivity are critical variables affecting the leakage of injected CO{sub 2} from coal. Highly transmissive joints
Senapati, Rajeev; Zhang Jianmei
2010-02-22
Advanced ceramic materials have been extensively applied in aerospace, automobile and other industries. However, the reliability of the advanced ceramics is a major concern because of the brittle nature of the materials. In this paper, combination of nondestructive testing and numerical modeling Discrete Element Method is proposed to identify the fracture origin in ceramics. The nondestructive testing--laser scattering technology is first performed on the ceramic components to reveal the machining-induced damage such as cracks and the material-inherent flaws such as voids, then followed by the four point bending test. Discrete Element software package PFC{sup 2D} is used to simulate the four point bending test and try to identify where the fractures start. The numerical representation of the ceramic materials is done by generating a densely packed particle system using the specimen genesis procedure and then applying the suitable microparameters to the particle system. Simulation of four point bending test is performed on materials having no defects, materials having manufacturing-induced defects like cracks, and materials having material-inherent flaws like voids. The initiation and propagation of defects is modeled and the mean contact force on the loading ball is also plotted. The simulation prediction results are well in accordance with the nondestructive testing results.
NASA Astrophysics Data System (ADS)
Zhang, Na; Yao, Jun; Huang, Zhaoqin; Wang, Yueying
2013-06-01
Numerical simulation in naturally fractured media is challenging because of the coexistence of porous media and fractures on multiple scales that need to be coupled. We present a new approach to reservoir simulation that gives accurate resolution of both large-scale and fine-scale flow patterns. Multiscale methods are suitable for this type of modeling, because it enables capturing the large scale behavior of the solution without solving all the small features. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, we use a multiscale finite element method (MsFEM) for two-phase flow in fractured media using the discrete-fracture model. By combining MsFEM with the discrete-fracture model, we aim towards a numerical scheme that facilitates fractured reservoir simulation without upscaling. MsFEM uses a standard Darcy model to approximate the pressure and saturation on a coarse grid, whereas fine scale effects are captured through basis functions constructed by solving local flow problems using the discrete-fracture model. The accuracy and the robustness of MsFEM are shown through several examples. In the first example, we consider several small fractures in a matrix and then compare the results solved by the finite element method. Then, we use the MsFEM in more complex models. The results indicate that the MsFEM is a promising path toward direct simulation of highly resolution geomodels.
DFNWorks. A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.
2015-08-10
DFNWorks is a parallalized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using dfnGen, which combines fram (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs on the basis of site specific data with the LaGriT meshing toolbox to create a high-quality computational mesh representation, specifically a conforming Delaunay triangulation suitable for high performance computingmore » finite volume solvers, of the DFN in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code pflotran. A Lagrangian approach to simulating transport through the DFN is adopted within dfnTrans, which is an extension of the walkabout particle tracking method to determine pathlines through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO_{2} sequestration are also included.
DFNWORKS: A discrete fracture network framework for modeling subsurface flow and transport
NASA Astrophysics Data System (ADS)
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LAGRIT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in an intrinsically parallel fashion. Flow through the network is simulated in DFNFLOW, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.
DFNWorks. A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.
2015-08-10
DFNWorks is a parallalized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using dfnGen, which combines fram (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs on the basis of site specific data with the LaGriT meshing toolbox to create a high-quality computational mesh representation, specifically a conforming Delaunay triangulation suitable for high performance computing finite volume solvers, of the DFN in an intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code pflotran. A Lagrangian approach to simulating transport through the DFN is adopted within dfnTrans, which is an extension of the walkabout particle tracking method to determine pathlines through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.
dfnWorks: A discrete fracture network framework for modeling subsurface flow and transport
Hyman, Jeffrey D.; Karra, Satish; Makedonska, Nataliia; Gable, Carl W.; Painter, Scott L.; Viswanathan, Hari S.
2015-11-01
DFNWORKS is a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport. Developed at Los Alamos National Laboratory over the past five years, it has been used to study flow and transport in fractured media at scales ranging from millimeters to kilometers. The networks are created and meshed using DFNGEN, which combines FRAM (the feature rejection algorithm for meshing) methodology to stochastically generate three-dimensional DFNs with the LaGriT meshing toolbox to create a high-quality computational mesh representation. The representation produces a conforming Delaunay triangulation suitable for high performance computing finite volume solvers in anmore » intrinsically parallel fashion. Flow through the network is simulated in dfnFlow, which utilizes the massively parallel subsurface flow and reactive transport finite volume code PFLOTRAN. A Lagrangian approach to simulating transport through the DFN is adopted within DFNTRANS to determine pathlines and solute transport through the DFN. Example applications of this suite in the areas of nuclear waste repository science, hydraulic fracturing and CO2 sequestration are also included.« less
Birkholzer, J.; Karasaki, K.
1996-07-01
Fracture network simulators have extensively been used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful fracture network simulator with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The fracture network simulator used in TRIPOLY features a mixed Lagrangian-Eulerian solution scheme for the transport in fractures, combined with an adaptive gridding technique to account for sharp concentration fronts. The fracture-matrix interaction is calculated with an efficient method which has been successfully used in the past for dual-porosity models. Discrete fractures and matrix blocks are treated as two different systems, and the interaction is modeled by introducing sink/source terms in both systems. It is assumed that diffusive transport in the matrix can be approximated as a one-dimensional process, perpendicular to the adjacent fracture surfaces. A direct solution scheme is employed to solve the coupled fracture and matrix equations. The newly developed combination of the fracture network simulator and the fracture-matrix interaction module allows for detailed studies of spreading processes in fractured porous rock. The authors present a sample application which demonstrate the codes ability of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size and shape.
NASA Astrophysics Data System (ADS)
Zeeb, Conny; Frühwirt, Thomas; Konietzky, Heinz
2015-04-01
Key to a successful exploitation of deep geothermal reservoirs in a petrothermal environment is the hydraulic stimulation of the host rock to increase permeability. The presented research investigates the fracture propagation and interaction during hydraulic stimulation of multiple fractures in a highly anisotropic stress field. The presented work was conducted within the framework of the OPTIRISS project, which is a cooperation of industry partners and universities in Thuringia and Saxony (Federal States of Germany) and was funded by the European Fond for Regional Development. One objective was the design optimization of the subsurface geothermal heat exchanger (SGHE) by means of numerical simulations. The presented simulations were conducted applying 3DEC (Itasca™), a software tool based on the discrete element method. The simulation results indicate that the main direction of fracture propagation is towards lower stresses and thus towards the biosphere. Therefore, barriers might be necessary to limit fracture propagation to the designated geological formation. Moreover, the hydraulic stimulation significantly alters the stresses in the vicinity of newly created fractures. Especially the change of the minimum stress component affects the hydraulic stimulation of subsequent fractures, which are deflected away from the previously stimulated fractures. This fracture deflection can render it impossible to connect all fractures with a second borehole for the later production. The results of continuative simulations indicate that a fracture deflection cannot be avoided completely. Therefore, the stage alignment was modified to minimize fracture deflection by varying (1) the pauses between stages, (2) the spacing's between adjacent stages, and (3) the angle between stimulation borehole and minimum stress component. An optimum SGHE design, which implies that all stimulated fractures are connected to the production borehole, can be achieved by aligning the stimulation
Anna, L.O.
1998-09-01
Discrete-fracture modeling is part of site characterization for evaluating Yucca Mountain, Nye County, Nevada, as a potential high-level radioactive-waste repository site. Because most of the water and gas flow may be in fractures in low-porosity units, conventional equivalent-continuum models do not adequately represent the flow system. Discrete-fracture modeling offers an alternative to the equivalent-continuum method. This report describes how discrete-fracture networks can be constructed and used to answer concerns about the flow system at Yucca Mountain, including quantifying fracture connectivity, deriving directional-permeability distributions for one-and two-phase flow, determining parameters of anisotropy at different scales, and determining at what scale the rock functions as an equivalent continuum. A three-dimensional discrete-fracture model was developed to investigate the effects of fractures on flow of water and gas in the Topopah Spring tuff of Miocene age in the Exploratory Studies Facility at Yucca Mountain. Fracture data, used as model input, were taken exclusively from detailed line surveys in the Exploratory Studies Facility and converted into input parameters for simulation. A simulated fracture network was calibrated to field data. The simulated discrete fracture network was modified by eliminating nonconductive fractures determined from field-derived permeabilities. Small fractures also were removed from the simulated network without affecting the overall connectivity. Fractures, as much as 1.50 meters in length, were eliminated (a large percentage of the total number of fractures) from the network without altering the number of connected pathways. The analysis indicates that the fracture system in the Exploratory Studies Facility has numerous connected fractures that have relatively large permeabilities, but there are relatively few connected pathways across the simulated region. The fracture network was, therefore, sparse.
NASA Astrophysics Data System (ADS)
Keralavarma, Shyam Mohan
behavior of a large number of nano and micro scale defects such as dislocations, vacancies and grain boundaries. Continuum models relate macroscopically observable quantities such as stress and strain by coarse graining the discrete defect microstructure. While continuum models provide a good approximation for the effective behavior of bulk materials, several deviations have been observed in experiments at small scales such as an intrinsic size dependence of the material strength. Discrete dislocation dynamics (DD) is a mesoscale method for obtaining the mechanical response of a material by direct simulation of the motion and interactions of dislocations. The model incorporates an intrinsic length scale in the dislocation Burgers vector and potentially allows for size dependent mechanical behavior to emerge naturally from the dynamics of the dislocation ensemble. In the second part of this dissertation, a simplified twodimensional DD model is employed to study several phenomena of practical interest such as strain hardening under homogeneous deformation, growth of microvoids in a crystalline matrix and creep of single crystals at elevated temperatures. These studies have been enabled by several recent enhancements to the existing two-dimensional DD framework described in Chapter V. The main contributions from this research are: (i) development of a fully anisotropic continuum model of void growth for use in ductile fracture simulations and (ii) enhancing the capabilities of an existing two-dimensional DD framework for large scale simulations in complex domains and at elevated temperatures.
NASA Astrophysics Data System (ADS)
Griffith, W. A.; Ghaffari, H.; Barber, T. J.; Borjas, C.
2015-12-01
The motions of Earth's tectonic plates are typically measured in millimeters to tens of centimeters per year, seemingly confirming the generally-held view that tectonic processes are slow, and have been throughout Earth's history. In line with this perspective, the vast majority of laboratory rock mechanics research focused on failure in the brittle regime has been limited to experiments utilizing slow loading rates. On the other hand, many natural processes that pose significant risk for humans (e.g., earthquakes and extraterrestrial impacts), as well as risks associated with human activities (blow-outs, explosions, mining and mine failures, projectile penetration), occur at rates that are hundreds to thousands of times faster than those typically simulated in the laboratory. Little experimental data exists to confirm or calibrate theoretical models explaining the connection between these dramatic events and the pulverized rocks found in fault zones, impacts, or explosions; however the experimental data that does exist is thought-provoking: At the earth's surface, the process of brittle fracture passes through a critical transition in rocks at high strain rates (101-103s-1) between regimes of discrete fracture and distributed fragmentation, accompanied by a dramatic increase in strength. Previous experimental works on this topic have focused on key thresholds (e.g., peak stress, peak strain, average strain rate) that define this transition, but more recent work suggests that this transition is more fundamentally dependent on characteristics (e.g., shape) of the loading pulse and related microcrack dynamics, perhaps explaining why for different lithologies different thresholds more effectively define the pulverization transition. In this presentation we summarize some of our work focused on this transition, including the evolution of individual defects at the microscopic, microsecond scale and the energy budget associated with the brittle fragmentation process as a
NASA Astrophysics Data System (ADS)
Steefel, C. I.; Lichtner, P. C.
1998-08-01
A numerical multicomponent reactive transport model described fully in Steefel and Lichtner (1998)[Steefel, C.I., Lichtner, P.C., 1998. Multicomponent reactive transport in discrete fractures, I. Controls on reaction front geometry. J. Hydrol. (in press)] is used to simulate the infiltration of hyperalkaline groundwater along discrete fractures at Maqarin, Jordan, a site considered as a natural analogue to cement-bearing nuclear waste repositories. In the Eastern Springs area at Maqarin, two prominent sets of sub-parallel fractures trending NW-SE are approximately perpendicular to the local water table contours, with the slope of the water table indicating north-westward flow. Extensive mineralogic investigations [Alexander W.R. (Ed.), 1992. A natural analogue study of cement-buffered, hyperalkaline groundwaters and their interaction with a sedimentary host rock. NAgrA Technical Report (NTB 91-10), Wettingen, Switzerland; Milodowski, A.E., Hyslop, E.K., Pearce, J.M., Wetton, P.D., Kemp, S.J., Longworth, G., Hodginson, E., and Hughes, C.R., 1998. Mineralogy and geochemistry of the western springs area. In: Smellie, J.A.T. (ed.), 1998: Maqarin Natural Analogue Study: Phase III. SKB Technical Report TR98-04, Stockholm, Sweden] indicate that the width of intense rock alteration zone bordering the fractures changes from about 4 mm at one locality (the M1 sampling site) to approximately 1 mm 100 m to the north-west in the flow direction (the M2 site), suggesting a lessening of alteration intensity in that direction. Using this information, the dimensionless parameter δ v/φ D' (φ=porosity, D'=effective diffusion coefficient in rock matrix, δ=fracture aperture, and v=fluid velocity in the fracture) and measurements of the local hydraulic head gradient and effective diffusion coefficient in the rock matrix, a mean fracture aperture of 0.194 mm is calculated assuming the cubic law applies. This information, in combination with measured groundwater compositions at the
NASA Astrophysics Data System (ADS)
Makedonska, N.; Painter, S. L.; Hyman, J.; Karra, S.; Gable, C. W.; Viswanathan, H. S.
2015-12-01
Aperture variability within individual fractures is usually neglected in modeling flow and transport through fractured media. Typically, individual fractures are assumed to be homogeneous. However, in reality, individual fractures are heterogeneous, which may affect flow and transport in fractured media. The relative importance of including in-fracture variability in flow and transport modeling has been under debate for a long time. Previous studies have shown flow channeling on an individual fracture with internal variability, where the fracture is considered isolated from the rest of the fracture network. Although these studies yield some clear insights into the process, the boundary conditions are impractical for field-scale networks, where the realistic boundary conditions are determined by fracture connections in the network. Therefore, flow in a single fracture is controlled not only by in-fracture variability but also by boundary conditions. In order to address the question of the importance of in-fracture variability, the internal heterogeneity of every individual fracture is incorporated into a three-dimensional fracture network, represented by a composition of intersecting fractures. The new DFN simulation capability, dfnWorks, is used to generate a kilometer scale DFNs similar to the Forsmark, Sweden site. In our DFN model, the in-fracture aperture variability is scattered over each cell of the computational mesh along the fracture, representing by a stationary Gaussian random field with various correlation lengths. The Lagrangian particle tracking is conducted in multiple DFN realizations and the flow-dependent Lagrangian parameters, non-reacting travel time, τ, and cumulative reactivity parameter, β, are obtained along particles streamlines. It is shown that early particle travel times are more sensitive to in-fracture aperture variability than tails of travel time distributions, where no significant effect of the aperture variations and spatial
NASA Astrophysics Data System (ADS)
Leonardi, Christopher R.; McCullough, Jon W. S.; Jones, Bruce D.; Williams, John R.
2016-04-01
This paper describes the development of a computational framework that can be used to describe the electromagnetic excitation of rigid, spherical particles in suspension. In this model the mechanical interaction and kinematic behaviour of the particles is modelled using the discrete element method, while the surrounding fluid mechanics is modelled using the lattice Boltzmann method. Electromagnetic effects are applied to the particles as an additional set of discrete element forces, and the implementation of these effects was validated by comparison to the theoretical equations of point charges for Coulomb's law and the Lorentz force equation. Oscillating single and multiple particle tests are used to investigate the sensitivity of particle excitation to variations in particle charge, field strength, and frequency. The further capabilities of the model are then demonstrated by a numerical illustration, in which a hydraulic fracture fluid is excited and monitored within a hydraulic fracture. This modelling explores the feasibility of using particle vibrations within the fracture fluid to aid in the monitoring of fracture propagation in unconventional gas reservoirs.
NASA Astrophysics Data System (ADS)
Profit, Matthew; Dutko, Martin; Yu, Jianguo; Cole, Sarah; Angus, Doug; Baird, Alan
2016-04-01
This paper presents a novel approach to predict the propagation of hydraulic fractures in tight shale reservoirs. Many hydraulic fracture modelling schemes assume that the fracture direction is pre-seeded in the problem domain discretisation. This is a severe limitation as the reservoir often contains large numbers of pre-existing fractures that strongly influence the direction of the propagating fracture. To circumvent these shortcomings, a new fracture modelling treatment is proposed where the introduction of discrete fracture surfaces is based on new and dynamically updated geometrical entities rather than the topology of the underlying spatial discretisation. Hydraulic fracturing is an inherently coupled engineering problem with interactions between fluid flow and fracturing when the stress state of the reservoir rock attains a failure criterion. This work follows a staggered hydro-mechanical coupled finite/discrete element approach to capture the key interplay between fluid pressure and fracture growth. In field practice, the fracture growth is hidden from the design engineer and microseismicity is often used to infer hydraulic fracture lengths and directions. Microseismic output can also be computed from changes of the effective stress in the geomechanical model and compared against field microseismicity. A number of hydraulic fracture numerical examples are presented to illustrate the new technology.
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less
Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish
2015-09-16
The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.
NASA Astrophysics Data System (ADS)
Seok, E.; Gale, J.
2012-12-01
Fractured crystalline rocks, that have low matrix permeability, are characterized by strong spatial variability in permeability and porosity. However, most 3-D flow and transport models are constructed by developing a model mesh at the surface and then projecting this mesh as a series of layers to the assigned bottom of the model. The input parameters, especially permeability, are often assigned to individual layers as average properties within specific zones. These average properties vary from layer to layer based on the mapped hydrogeological variations but rarely embed the underlying spatial variability of the key parameters of permeability and porosity. To compare the impact on simulated flow in a discrete fracture of assigning average versus spatially varying permeability values, a one cubic metre of granitic rock with a single natural fracture was instrumented, loaded in a structural loading frame and a series of flow tests were completed at different normal loads. Water injection tests were completed in seventeen boreholes, both individually and in groups, that were drilled into this fracture plane providing a series of local permeability measurements and hydraulic heads distributed over the fracture plane as a function of normal stress. The fracture apertures were measured where the fracture intersected the four side of the granitic rock sample. The 3-D finite element model that gave a good match between the measured and computed flowrates used input parameters that were generated using the individual borehole measurements as constraints, such that the small scale variability, provided by the apertures measured around the outside of the block, was superimposed on the large scale variability. This laboratory and numerical model study demonstrated that flow models will provide a more representative measure of flow, and hence transport, if the input parameters properly reflect the small and large scale spatial variability in the key flow properties.
NASA Astrophysics Data System (ADS)
Cil, Mehmet B.; Alshibli, Khalid A.
2015-02-01
The constitutive behavior and deformation characteristics of uncemented granular materials are to a large extent derived from the fabric or geometry of the particle structure and the interparticle friction resulting from normal forces acting on particles or groups of particles. Granular materials consist of discrete particles with a fabric (microstructure) that changes under loading. Synchrotron micro-computed tomography (SMT) has emerged as a powerful non-destructive 3D scanning technique to study geomaterials. In this paper, SMT was used to acquire in situ scans of the oedometry test of a column of three silica sand particles. The sand is known as ASTM 20-30 Ottawa sand, and has a grain size between US sieves #20 (0.841 mm) and #30 (0.595 mm). The characteristics and evolution of particle fracture in sand were examined using SMT images, and a 3D discrete element method (DEM) was used to model the fracture behavior of sand particles. It adopts the bonded particle model to generate a crushable agglomerate that consists of a large number of small spherical sub-particles. The agglomerate shape matches the 3D physical shape of the tested sand particles by mapping the particle morphology from the SMT images. The paper investigates and discusses the influence of agglomerate packing (i.e., the number and size distribution of spherical sub-particles that constitute the agglomerate) and agglomerate shape on the fracture behavior of crushable particles.
Fu, P; Johnson, S M; Hao, Y; Carrigan, C R
2011-01-18
The primary objective of our current research is to develop a computational test bed for evaluating borehole techniques to enhance fluid flow and heat transfer in enhanced geothermal systems (EGS). Simulating processes resulting in hydraulic fracturing and/or the remobilization of existing fractures, especially the interaction between propagating fractures and existing fractures, represents a critical goal of our project. To this end, we are continuing to develop a hydraulic fracturing simulation capability within the Livermore Distinct Element Code (LDEC), a combined FEM/DEM analysis code with explicit solid-fluid mechanics coupling. LDEC simulations start from an initial fracture distribution which can be stochastically generated or upscaled from the statistics of an actual fracture distribution. During the hydraulic stimulation process, LDEC tracks the propagation of fractures and other modifications to the fracture system. The output is transferred to the Non-isothermal Unsaturated Flow and Transport (NUFT) code to capture heat transfer and flow at the reservoir scale. This approach is intended to offer flexibility in the types of analyses we can perform, including evaluating the effects of different system heterogeneities on the heat extraction rate as well as seismicity associated with geothermal operations. This paper details the basic methodology of our approach. Two numerical examples showing the capability and effectiveness of our simulator are also presented.
Discrete fracture modeling-ESF North Portal Area, Yucca Mountain Nevada
Anna, Lawrence O.
1995-01-01
Statistical parameters from three-dimensional fracture network and hydraulic parameters were developed to be used in site scale models. This approach utilizes geometric fracture models and assess their impact on flow characteristics and parameters. Laboratory and field-testing data will be integrated to calibrate the flow models and to determine sensitivities of the system.
Rain water filtering down through the soil will provide recharge of the saturated fractured rock aquifer. he computer model FRACNET has been designed to distribute areal recharge into linear fracture zones in order to complete the regional water balance. n this presentation, a te...
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.
2015-09-12
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.
Hyman, Jeffrey De'Haven; Painter, S. L.; Viswanathan, H.; Makedonska, N.; Karra, S.
2015-09-12
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident and flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large-scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high-performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approachmore » to simulate transport therein. Results show that after traveling through a pre-equilibrium region, both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than 2. Lastly, the physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures, which offer reduced resistance to flow, and in-fracture channeling, which results from the topology of the DFN.« less
Hyman, Jeffrey; Painter, Scott L; Viswanathan, Hari; Makedonska, Nataliia; Karra, Satish
2015-01-01
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident or flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt amore » Lagrangian approach to simulate transport therein. Results show that a after traveling through a pre-equilibrium region both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than two. The physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures which o er reduced resistance to flow and in-fracture channeling that results from the topology of the DFN.« less
Hyman, Jeffrey; Painter, Scott L; Viswanathan, Hari; Makedonska, Nataliia; Karra, Satish
2015-01-01
We investigate how the choice of injection mode impacts transport properties in kilometer-scale three-dimensional discrete fracture networks (DFN). The choice of injection mode, resident or flux-weighted, is designed to mimic different physical phenomena. It has been hypothesized that solute plumes injected under resident conditions evolve to behave similarly to solutes injected under flux-weighted conditions. Previously, computational limitations have prohibited the large scale simulations required to investigate this hypothesis. We investigate this hypothesis by using a high performance DFN suite, dfnWorks, to simulate flow in kilometer-scale three-dimensional DFNs based on fractured granite at the Forsmark site in Sweden, and adopt a Lagrangian approach to simulate transport therein. Results show that a after traveling through a pre-equilibrium region both injection methods exhibit linear scaling of the first moment of travel time and power law scaling of the breakthrough curve with similar exponents, slightly larger than two. The physical mechanisms behind this evolution appear to be the combination of in-network channeling of mass into larger fractures which o er reduced resistance to flow and in-fracture channeling that results from the topology of the DFN.
Stafford, P.L.
1996-05-01
Simulations of a tritium tracer experiment in fractured shale saprolite, conducted at the Oak Ridge National Laboratory, were performed using 1D and 2D equivalent porous medium (EPM) and discrete-fracture/matrix-diffusion (DFMD) models. The models successfully reproduced the general shape of the breakthrough curves in down-gradient monitoring wells which are characterized by rapid first arrival, a slow-moving center of mass, and a persistent ``tail`` of low concentration. In plan view, the plume shows a large degree of transverse spreading with the width almost as great as the length. EPM models were sensitive to dispersivity coefficient values which had to be large (relative to the 3.7m distance between the injection and monitoring wells) to fit the tail and transverse spreading. For example, to fit the tail a longitudinal dispersivity coefficient, {alpha}{sub L}, of 0.8 meters for the 2D simulations was used. To fit the transverse spreading, a transverse dispersivity coefficient, {alpha}{sub T}, of 0.8 to 0.08 meters was used indicating an {alpha}{sub L}/{alpha}{sub T} ratio between 10 and 1. Transverse spreading trends were also simulated using a 2D DFMD model using a few larger aperture fractures superimposed onto an EPM. Of the fracture networks studied, only those with truncated fractures caused transverse spreading. Simulated tritium levels in all of the cases were larger than observed values by a factor of approximately 100. Although this is partly due to input of too much tritium mass by the models it appears that dilution in the wells, which were not purged prior to sampling, is also a significant factor. The 1D and 2D EPM models were fitted to monitoring data from the first five years of the experiment and then used to predict future tritium concentrations.
The Evolution of Fracture Systems in Rocks with Veins: Insights from 3D Discrete Element Models
NASA Astrophysics Data System (ADS)
Virgo, S.; Urai, J. L.; Abe, S.
2014-12-01
Observations from natural vein systems suggest that preexisting veins can strongly influence orientation, continuity and connectivity of fractures in a rock even in cases where the orientation of the veins is incompatible with the orientation of the stress field. We present a numerical method to model cycles of fracturing and sealing in a rotating stress field to simulate such systems, for different strength ratios of host rock and vein. We study a layered model under vertical stress and uniaxial horizontal extension. This represents common conditions in sedimentary basins with layers of varying composition. The model with fractures that form during the first deformation phase is sealed and deformed again in a different direction to model the effect of a changing horizontal stress field. We find different types of fracture interaction with veins, depending on the strength contrast between veins and host rock and amount of rotation. The crack-seal and crack-jump mechanisms ensue naturally from the models as a result of the strength of the vein material relative to the host rock. Weak veins localize fracturing and reactivate, even in high misorientation to the extension direction. Connecting fractures between reactivated veins form at a higher angle to the veins than expected. In these systems, the connectivity of the fracture network is dramatically increased. Veins stronger than the host rock have less influence on the new fractures. Most fractures crosscut the veins by the step-over mechanism. Deflection occurs for favorable vein orientations but the deflection length is very short. The results are in good agreement with natural crack seal vein networks found in carbonate rocks of the Oman Mountains. We find that preexisting veins can change the fracture behavior of a rock in a way that new fractures do not necessarily align with the principle extension direction and form a highly connected network with reactivated veins that dramatically enhances lateral
NASA Astrophysics Data System (ADS)
Gable, C. W.; Hyman, J.; Karra, S.; Makedonska, N.; Painter, S. L.; Viswanathan, H. S.
2015-12-01
dfnWorks generates discrete fracture networks (DFN) of planar polygons, creates a high quality conforming Delaunay triangulation of the intersecting DFN polygons, assigns properties (aperture, permeability) using geostatistics, sets boundary and initial conditions, solves pressure/flow in single or multi-phase fluids (water, air, CO2) using the parallel PFLOTRAN or serial FEHM, and solves for transport using Lagrangian particle tracking. We outline the dfnWorks workflow and present applications from a range of fractured rock systems. dfnWorks (http://www.lanl.gov/expertise/teams/view/dfnworks) is composed of three main components, all of which are freely available. dfnGen generates a distribution of fracture polygons from site characterization data (statistics or deterministic fractures) and utilizes the FRAM (Feature Rejection Algorithm for Meshing) to guarantee the mesh generation package LaGriT (lagrit.lanl.gov) will generate a high quality conforming Delaunay triangular mesh. dfnWorks links the mesh to either PFLOTRAN (pflotran.org) or FEHM (fehm.lanl.gov) for solving flow and transport. The various physics options available in FEHM and PFLOTRAN such as single and multi-phase flow and reactive transport are all available with appropriate initial and boundary conditions and material property models. dfnTrans utilizes explicit Lagrangian particle tracking on the DFN using a velocity field reconstructed from the steady state pressure/flow field solution obtained in PFLOTRAN or FEHM. Applications are demonstrated for nuclear waste repository in fractured granite, CO2 sequestration and extraction of unconventional hydrocarbon resources.
The Combined Finite-Discrete Element Method applied to the Study of Rock Fracturing Behavior in 3D
Rougier, Esteban; Bradley, Christopher R.; Broom, Scott T.; Knight, Earl E.; Munjiza, Ante; Sussman, Aviva J.; Swift, Robert P.
2011-01-01
Since its introduction the combined finite-discrete element method (FEM/DEM), has become an excellent tool to address a wide range of problems involving fracturing and fragmentation of solids. Within the context of rock mechanics, the FEM/DEM method has been applied to many complex industrial problems such as block caving, deep mining techniques, rock blasting, seismic waves, packing problems, rock crushing problems, etc. In the real world most of the problems involving fracture and fragmentation of solids are three dimensional problems. With the aim of addressing these problems an improved 2D/3D FEM/DEM capability has been developed at Los Alamos National Laboratory (LANL). These capabilities include state of the art 3D contact detection, contact interaction, constitutive material models, and fracture models. In this paper, Split Hopkinson Pressure Bar (SHPB) Brazilian experiments are simulated using this improved 2D/3D FEM/DEM approach which is implemented in LANL's MUNROU (Munjiza-Rougier) code. The results presented in this work show excellent agreement with both the SHPB experiments and previous 2D numerical simulations performed by other FEM/DEM research groups.
NASA Astrophysics Data System (ADS)
Cvetkovic, V.; Frampton, A.; Painter, S.; Selroos, J.
2008-12-01
An important challenge in subsurface hydrology is predictive modeling of tracer transport in sparsely fractured rock. A particular issue relevant for applications is how to accurately account for retention processes that are due to exchange (diffusion-sorption) of tracers between mobile fluid in fractures and immobile fluid in the rock matrix. Typically, tracers are subject to decay processes which may involve chains and in-growth (e.g., for radionuclides and some classes of hydrocarbons). Recently, a comprehensive particle-based methodology for upscaling transport with emphasis on tracer retention has been presented and applied to stochastic 2D discrete fracture networks (Frampton and Cvetkovic 2007, WRR, 43, W10429). Furthermore, a time domain random walk method has also recently been presented that effectively accounts for different exchange mechanisms and in-growth (Painter et al. 2008, WRR, 44, W01406). Now we present further advances in coupling these novel methodologies for solving radionuclide transport, and apply them to realistic 3D fracture networks, based on comprehensive data sets obtained from site characterization of the Laxemar area in south-east Sweden. Site measurements have revealed at least five fracture sets based on statistically significant orientation data, exhibiting power-law behaviour for fracture size and inferred transmissivity distributions. A few equally probable DFN realizations are generated based on these interpretations of the field data, in which advective fluid flow is solved using boundary conditions that mimic natural conditions. Thereafter, many particles are injected and tracked through the system, providing first- passage distributions of particle residence time and of the transport resistance parameter (quantifying the hydrodynamic control of retention). These distributions are then used as a basis for implementing the particle time-domain random walk model for radionuclide transport with retention and in-growth. Also, an
Hai Huang; Ben Spencer; Jason Hales
2014-10-01
A discrete element Model (DEM) representation of coupled solid mechanics/fracturing and heat conduction processes has been developed and applied to explicitly simulate the random initiations and subsequent propagations of interacting thermal cracks in a ceramic nuclear fuel pellet during initial rise to power and during power cycles. The DEM model clearly predicts realistic early-life crack patterns including both radial cracks and circumferential cracks. Simulation results clearly demonstrate the formation of radial cracks during the initial power rise, and formation of circumferential cracks as the power is ramped down. In these simulations, additional early-life power cycles do not lead to the formation of new thermal cracks. They do, however clearly indicate changes in the apertures of thermal cracks during later power cycles due to thermal expansion and shrinkage. The number of radial cracks increases with increasing power, which is consistent with the experimental observations.
2014-01-01
Background Osteoporotic fractures cause a large health burden and substantial costs. This study estimated the expected fracture numbers and costs for the remaining lifetime of postmenopausal women in Germany. Methods A discrete event simulation (DES) model which tracks changes in fracture risk due to osteoporosis, a previous fracture or institutionalization in a nursing home was developed. Expected lifetime fracture numbers and costs per capita were estimated for postmenopausal women (aged 50 and older) at average osteoporosis risk (AOR) and for those never suffering from osteoporosis. Direct and indirect costs were modeled. Deterministic univariate and probabilistic sensitivity analyses were conducted. Results The expected fracture numbers over the remaining lifetime of a 50 year old woman with AOR for each fracture type (% attributable to osteoporosis) were: hip 0.282 (57.9%), wrist 0.229 (18.2%), clinical vertebral 0.206 (39.2%), humerus 0.147 (43.5%), pelvis 0.105 (47.5%), and other femur 0.033 (52.1%). Expected discounted fracture lifetime costs (excess cost attributable to osteoporosis) per 50 year old woman with AOR amounted to €4,479 (€1,995). Most costs were accrued in the hospital €1,743 (€751) and long-term care sectors €1,210 (€620). Univariate sensitivity analysis resulted in percentage changes between -48.4% (if fracture rates decreased by 2% per year) and +83.5% (if fracture rates increased by 2% per year) compared to base case excess costs. Costs for women with osteoporosis were about 3.3 times of those never getting osteoporosis (€7,463 vs. €2,247), and were markedly increased for women with a previous fracture. Conclusion The results of this study indicate that osteoporosis causes a substantial share of fracture costs in postmenopausal women, which strongly increase with age and previous fractures. PMID:24981316
NASA Astrophysics Data System (ADS)
Follin, Sven; Hartley, Lee; Rhén, Ingvar; Jackson, Peter; Joyce, Steven; Roberts, David; Swift, Ben
2014-03-01
The large-scale geological structure of the crystalline rock at the proposed high-level nuclear waste repository site at Forsmark, Sweden, has been classified in terms of deformation zones of elevated fracture frequency. The rock between deformation zones was divided into fracture domains according to fracture frequency. A methodology to constrain the geometric and hydraulic parameters that define a discrete fracture network (DFN) model for each fracture domain is presented. The methodology is based on flow logging and down-hole imaging in cored boreholes in combination with DFN realizations, fracture connectivity analysis and pumping test simulations. The simulations suggest that a good match could be obtained for a power law size distribution where the value of the location parameter equals the borehole radius but with different values for the shape parameter, depending on fracture domain and fracture set. Fractures around 10-100 m in size are the ones that typically form the connected network, giving inflows in the simulations. The report also addresses the issue of up-scaling of DFN properties to equivalent continuous porous medium (ECPM) bulk flow properties. Comparisons with double-packer injection tests provide confidence that the derived DFN formulation of detailed flows within individual fractures is also suited to simulating mean bulk flow properties and their spatial variability.
NASA Astrophysics Data System (ADS)
Weisbrod, N.; Tran, E. L.; Klein-BenDavid, O.; Teutsch, N.
2015-12-01
Geological disposal of high-level radioactive waste is the long term solution for the disposal of long lived radionuclides and spent fuel. However, some radionuclides might be released from these repositories into the subsurface as a result of leakage, which ultimately make their way into groundwater. Engineered bentonite barriers around nuclear waste repositories are generally considered sufficient to impede the transport of radionuclides from their source to the groundwater. However, colloidal-sized mobile bentonite particles ("carrier" colloids) originating from these barriers have come under investigation as a potential transport vector for radionuclides sorbed to them. As lanthanides are generally accepted to have the same chemical behaviors as their more toxic actinide counterparts, lanthanides are considered an acceptable substitute for research on radionuclide transportation. This study aims to evaluate the transport behaviors of lanthanides in colloid-facilitated transport through a fractured chalk matrix and under geochemical conditions representative the Negev desert, Israel. The migration of Ce both with and without colloidal particles was explored and compared to the migration of a conservative tracer (bromide) using a flow system constructed around a naturally fractured chalk core. Results suggest that mobility of Ce as a solute is negligible. In experiments conducted without bentonite colloids, the 1% of the Ce that was recovered migrated as "intrinsic" colloids in the form of carbonate precipitates. However, the total recovery of the Ce increased to 9% when it was injected into the core in the presence of bentonite colloids and 13% when both bentonite and precipitate colloids were injected. This indicates that lanthanides are essentially immobile in chalk as a solute but may be mobile as carbonate precipitates. Bentonite colloids, however, markedly increase the mobility of lanthanides through fractured chalk matrices.
NASA Astrophysics Data System (ADS)
Virgo, Simon; Abe, Steffen; Urai, Janos L.
2016-03-01
We present the results of a comparative study of loading conditions on the interactions between extension fractures and veins. We model the fracture behavior of brittle discrete element materials each containing a tabular vein body of variable orientation and strength in two different loading conditions. The first is uniaxial tension, applied with servo-controlled sidewalls. The second is a boudinage boundary condition in which a tensile triaxial stress state is induced in the brittle model volume by quasi-viscous extensional deformation in the adjacent layers. Most of the fracture- vein interactions observed in uniaxial tension also exists in boudinage boundary conditions. However, the importance of each interaction mechanism for a given configuration of relative strength and misorientation of the vein may differ according to the loading mechanism. Nucleation and internal deflection is under both boundary conditions the dominating fracture-vein interaction style in weak veins. In uniaxial tension models, strong veins tend to alter the fracture path by external deflection, while under boudinage loading these veins are more likely overcome by the fracture step over mechanism. Dynamic bifurcation of fractures was observed in uniaxial tension models but never for boudinage boundary conditions. This is because the acceleration of fracture tips in these conditions is suppressed by interaction with distributed fractures as well as viscous damping by the neighboring layers.
NASA Astrophysics Data System (ADS)
Hodgetts, David; Seers, Thomas
2015-04-01
-deterministic, outcrop constrained discrete fracture network modeling code to derive volumetric fault intensity measures (fault area per unit volume / fault volume per unit volume). Producing per-vertex measures of volumetric intensity; our method captures the spatial variability in 3D fault density across a surveyed outcrop, enabling first order controls to be probed. We demonstrate our approach on pervasively faulted exposures of a Permian aged reservoir analogue from the Vale of Eden Basin, UK.
NASA Astrophysics Data System (ADS)
Novakowski, K. S.
2015-12-01
The development of conceptual models for solute migration in discrete fracture networks has typically been based on a combination of core logs, borehole geophysics, and some form of single-well hydraulic test using discrete zones. More rarely, interwell hydraulic tests and interwell tracer experiments are utilised to directly explore potential transport pathways. The latter methods are less widely employed simply due to potentially significant increases in the cost and effort in site characterization. To date however there is a paucity of literature comparing the efficacy of the standard procedure with what should be more definitive identification of transport pathways using interwell methods. In the present study, a detailed comparison is conducted by developing conceptual models from three separate data sets, the first based on core logs, geology and single-well hydraulic tests, the second based on a large suite of pulse interference tests, and the third based on a series of radially-divergent and injection-withdrawal tracer experiments. The study was conducted in an array of five HQ-sized wells, 28-32 m in depth and arranged in a five star pattern, 10 m on a side. The wells penetrate the contact between a Cambrian-aged limestone, and underlying Precambrian gneiss. The core was logged for potentially open fractures using a ranking system, and 87 contiguous hydraulic tests were conducted using a 0.85-m packer spacing. A total of 57 pulse interference tests were conducted using two wells as injection points, and 11 tracer experiments were conducted using either sample collection or in-situ detection via a submersible fluorometer. The results showed very distinct conceptual models depending on the data set, with the model based on the single-well testing significantly over-predicting the number and connection of solute transport pathways. The results of the pulse interference tests also over predict the transport pathways, but to a lesser degree. Quantification of
NASA Astrophysics Data System (ADS)
Watanabe, N.; Wong, L.; Bloecher, G.; Cacace, M.; Kolditz, O.
2012-12-01
We present our recent development of the finite element method (FEM) for simulating coupled thermo-hydro-mechanical (THM) processes in discretely fractured porous media and an application to geothermal reservoir modeling for the research test site Gross Schoenebeck in Germany operated by the GFZ German Research Centre for Geosciences. Numerical analysis of multi-physics problems in fractured rocks is important for various geotechnical applications. In particular for enhanced geothermal reservoirs where induced fractures and possibly natural fault systems dominate the system behavior, explicit modeling of those characteristic fractures (i.e. discrete fracture models) is essential to get more detailed understanding of in-situ processes and reliable estimations of heat extraction from those deep reservoirs. However, as fractures are mechanical discontinuities, it is difficult to solve the problems using continuity based numerical methods such as the FEM. Currently, equivalent porous medium or multiple continuum model approaches are often only the way to model fractured rocks with the FEM. The authors have recently developed lower-dimensional interface elements (LIEs) for modeling mechanics-involved coupled processes with pre-existing fractures (Watanabe et al. 2012 IJNME). The method does not require any double nodes unlike conventional interface elements. Moreover, for coupled problems, the approach allows for the use of a single mesh for both mechanical and other related processes such as flow and transport. All the code developments have been carried out within the scientific open source project OpenGeoSys (www.opengeosys.net) (Kolditz et al. 2012 EES). Using both traditional and new simulation techniques, a geothermal reservoir model for the research test site Gross Schoenebeck has been developed. Unstructured meshing of the complex faulted reservoir including both rock matrix and fracture elements has been conducted using recently developed automatic
Hall, Michael C.
1963-01-01
Recent studies on the epidemiology and repair of fractures are reviewed. The type and severity of the fracture bears a relation to the age, sex and occupation of the patient. Bone tissue after fracture shows a process of inflammation and repair common to all members of the connective tissue family, but it repairs with specific tissue. Cartilage forms when the oxygen supply is outgrown. After a fracture, the vascular bed enlarges. The major blood supply to healing tissue is from medullary vessels and destruction of them will cause necrosis of the inner two-thirds of the cortex. Callus rapidly mineralizes, but full mineralization is achieved slowly; increased mineral metabolism lasts several years after fracture. PMID:13952119
... commonly happen because of car accidents, falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the bones. Overuse can cause stress fractures, which are very small cracks in the ...
A fracture is a break, usually in a bone. If the broken bone punctures the skin, it is called an open ... falls, or sports injuries. Other causes are low bone density and osteoporosis, which cause weakening of the ...
Teleportation of a 3-dimensional GHZ State
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Wang, Huai-Sheng; Li, Peng-Fei; Song, He-Shan
2012-05-01
The process of teleportation of a completely unknown 3-dimensional GHZ state is considered. Three maximally entangled 3-dimensional Bell states function as quantum channel in the scheme. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional GHZ state.
NASA Astrophysics Data System (ADS)
Bruel, D.; Baujard, C.
2005-05-01
Heat extraction from deep engineered fractured formations is currently under investigation at the Soultz sous Forêts site with the support of the European Commission. The challenge is to develop a reservoir at great depth and to circulate a fluid in order to recover heat and produce electricity. The pilot project evolved toward a three well system at 5 km in depth with temperatures close to 200 C. Massive hydraulic tests performed to develop the reservoir have shown from the recorded micro-seismic signature, that fractures can easily be re-activated. The discussion now focusses on the hydraulic significance of the shear failure mechanism, considered as the source of the accoustic emissions. To improve our understanding of these coupled hydrau-mechanical processes, a numerical model was presented [1], based on a 3D random description of fracture networks. Local flow rules along equivalent 1D channels connecting the fractures can account for (i) a normal closure versus effective stress law together with (ii) a dilatant behaviour during shearing motion when a Mohr-Coulomb failure criterion is met. The purpose of the present work is to simulate injection tests in some synthetic fracture network using power law distributions for the fracture size, and to analyse the spatio-temporal growth of the sheared zones. Assuming that this process is analogue to the triggering of the microseismicity, we then perform an evaluation of the so called SBRC reservoir characterisation method [2] stating that the spatial position of the triggering front in an homogeneous isotropic poroelastic medium with a hydraulic diffusivity Dh is at time t given by √4 π Dh t. We conclude to its validity, although it is found sensitive to the hypothesis of critically stressed pre-existing fractures. The connectivity of the sub-set of subcritically oriented fractures plays a major role in the succes of a stimulation treatment and controls an equivalent macro-cohesion behaviour at the reservoir scale
Gureghian, A.B.
1990-08-01
Analytical solutions based on the Laplace transforms are presented for the one-dimensional, transient, advective-dispersive transport of a reacting radionuclide through a discrete planar fracture with constant aperture subject to diffusion in the surrounding rock matrix where both regions of solute migration display residual concentrations. The dispersion-free solutions, which are of closed form, are also reported. The solution assumes that the ground-water flow regime is under steady-state and isothermal conditions and that the rock matrix is homogeneous, isotropic, and saturated with stagnant water. The verification of the solution was performed by means of related analytical solutions dealing with particular aspects of the transport problem under investigation on the one hand, and a numerical solution capable of handling the complete problem on the other. The integrals encountered in the general solution are evaluated by means of a composite Gauss-Legendre quadrature scheme. 9 refs., 8 figs., 32 tabs.
NASA Astrophysics Data System (ADS)
Selroos, J. O.; Appleyard, P.; Bym, T.; Follin, S.; Hartley, L.; Joyce, S.; Munier, R.
2015-12-01
In 2011 the Swedish Nuclear Fuel and Waste Management Company (SKB) applied for a license to start construction of a final repository for spent nuclear fuel at Forsmark in Northern Uppland, Sweden. The repository is to be built at approximately 500 m depth in crystalline rock. A stochastic, discrete fracture network (DFN) concept was chosen for interpreting the surface-based (incl. boreholes) data, and for assessing the safety of the repository in terms of groundwater flow and flow pathways to and from the repository. Once repository construction starts, also underground data such as tunnel pilot borehole and tunnel trace data will become available. It is deemed crucial that DFN models developed at this stage honors the mapped structures both in terms of location and geometry, and in terms of flow characteristics. The originally fully stochastic models will thus increase determinism towards the repository. Applying the adopted probabilistic framework, predictive modeling to support acceptance criteria for layout and disposal can be performed with the goal of minimizing risks associated with the repository. This presentation describes and illustrates various methodologies that have been developed to condition stochastic realizations of fracture networks around underground openings using borehole and tunnel trace data, as well as using hydraulic measurements of inflows or hydraulic interference tests. The methodologies, implemented in the numerical simulators ConnectFlow and FracMan/MAFIC, are described in some detail, and verification tests and realistic example cases are shown. Specifically, geometric and hydraulic data are obtained from numerical synthetic realities approximating Forsmark conditions, and are used to test the constraining power of the developed methodologies by conditioning unconditional DFN simulations following the same underlying fracture network statistics. Various metrics are developed to assess how well the conditional simulations compare to
3-Dimensional Topographic Models for the Classroom
NASA Technical Reports Server (NTRS)
Keller, J. W.; Roark, J. H.; Sakimoto, S. E. H.; Stockman, S.; Frey, H. V.
2003-01-01
We have recently undertaken a program to develop educational tools using 3-dimensional solid models of digital elevation data acquired by the Mars Orbital Laser Altimeter (MOLA) for Mars as well as a variety of sources for elevation data of the Earth. This work is made possible by the use of rapid prototyping technology to construct solid 3-Dimensional models of science data. We recently acquired rapid prototyping machine that builds 3-dimensional models in extruded plastic. While the machine was acquired to assist in the design and development of scientific instruments and hardware, it is also fully capable of producing models of spacecraft remote sensing data. We have demonstrated this by using Mars Orbiter Laser Altimeter (MOLA) topographic data and Earth based topographic data to produce extruded plastic topographic models which are visually appealing and instantly engage those who handle them.
Fuller, Sam M; Butz, Daniel R; Vevang, Curt B; Makhlouf, Mansour V
2014-09-01
Three-dimensional printing is being rapidly incorporated in the medical field to produce external prosthetics for improved cosmesis and fabricated molds to aid in presurgical planning. Biomedically engineered products from 3-dimensional printers are also utilized as implantable devices for knee arthroplasty, airway orthoses, and other surgical procedures. Although at first expensive and conceptually difficult to construct, 3-dimensional printing is now becoming more affordable and widely accessible. In hand surgery, like many other specialties, new or customized instruments would be desirable; however, the overall production cost restricts their development. We are presenting our step-by-step experience in creating a bone reduction clamp for finger fractures using 3-dimensional printing technology. Using free, downloadable software, a 3-dimensional model of a bone reduction clamp for hand fractures was created based on the senior author's (M.V.M.) specific design, previous experience, and preferences for fracture fixation. Once deemed satisfactory, the computer files were sent to a 3-dimensional printing company for the production of the prototypes. Multiple plastic prototypes were made and adjusted, affording a fast, low-cost working model of the proposed clamp. Once a workable design was obtained, a printing company produced the surgical clamp prototype directly from the 3-dimensional model represented in the computer files. This prototype was used in the operating room, meeting the expectations of the surgeon. Three-dimensional printing is affordable and offers the benefits of reducing production time and nurturing innovations in hand surgery. This article presents a step-by-step description of our design process using online software programs and 3-dimensional printing services. As medical technology advances, it is important that hand surgeons remain aware of available resources, are knowledgeable about how the process works, and are able to take advantage of
3-dimensional imaging at nanometer resolutions
Werner, James H.; Goodwin, Peter M.; Shreve, Andrew P.
2010-03-09
An apparatus and method for enabling precise, 3-dimensional, photoactivation localization microscopy (PALM) using selective, two-photon activation of fluorophores in a single z-slice of a sample in cooperation with time-gated imaging for reducing the background radiation from other image planes to levels suitable for single-molecule detection and spatial location, are described.
NASA Astrophysics Data System (ADS)
Jackson, C.; Hartley, L. J.; Hoch, A.; Holton, D.; Hunter, F. M.; McCarthy, R.; Marsic, N.; Gylling, B.
2006-12-01
The Swedish Nuclear Fuel and Waste Management Company (SKB) is carrying out site investigations in two different areas in Sweden with the objective of describing the in-situ conditions for a deep rock repository for spent nuclear fuel. The two candidate areas are Forsmark and Laxemar, both located on the east coast of Sweden. An important aspect of site investigations is to develop and demonstrate an understanding of groundwater flow and solute transport. Since the geology in both candidate areas is comprised of hard crystalline rocks, the groundwater flow is predominantly contained within fractures, and therefore a discrete fracture network (DFN) concept has been applied to describe and model the hydrogeological situation at the sites. Much observed field data from several different disciplines (geology, rock mechanics, geophysics, hydrogeology and hydrochemistry) has been acquired from the sites, including from several deep cored boreholes, to inform an overall description. Many aspects of the site description are brought together in constructing a regional scale hydrogeological model to integrate the concepts and data interpretations, which are then tested against a range of field observations to build confidence that the models are representative. A methodology has been developed based on assembling a regional hydrogeological model from three main components: hydraulic conductor domains (HCD) that represent deterministic large scale deformation zones; hydraulic rock domains (HRD) that use a stochastic DFN model to represent the background rock between the deformation zones; and hydraulic soil domains (HSD) that represent near-surface Quaternary deposits. The HCD are interpreted from geophysical methods, drilling and single-hole hydraulic tests. For the HRD, borehole image- and core-logs, outcrop maps, and short-interval flow-logging are integrated to parameterise a DFN model for specific hydrogeological rock domains. Geological information, statistical analysis
Biochemical Applications Of 3-Dimensional Fluorescence Spectrometry
NASA Astrophysics Data System (ADS)
Leiner, Marc J.; Wolfbeis, Otto S.
1988-06-01
We investigated the 3-dimensional fluorescence of complex mixtures of bioloquids such as human serum, serum ultrafiltrate, human urine, and human plasma low density lipoproteins. The total fluorescence of human serum can be divided into a few peaks. When comparing fluorescence topograms of sera, from normal and cancerous subjects, we found significant differences in tryptophan fluorescence. Although the total fluorescence of human urine can be resolved into 3-5 distinct peaks, some of them. do not result from single fluorescent urinary metabolites, but rather from. several species having similar spectral properties. Human plasma, low density lipoproteins possess a native fluorescence that changes when submitted to in-vitro autoxidation. The 3-dimensional fluorescence demonstrated the presence of 7 fluorophores in the lipid domain, and 6 fluorophores in the protein. dovain- The above results demonstrated that 3-dimensional fluorescence can resolve the spectral properties of complex ,lxtures much better than other methods. Moreover, other parameters than excitation and emission wavelength and intensity (for instance fluorescence lifetime, polarization, or quenchability) may be exploited to give a multidl,ensio,a1 matrix, that is unique for each sample. Consequently, 3-dimensio:Hhal fluorescence as such, or in combination with separation techniques is therefore considered to have the potential of becoming a useful new H.ethod in clinical chemistry and analytical biochemistry.
Hydroelectric structures studies using 3-dimensional methods
Harrell, T.R.; Jones, G.V.; Toner, C.K. )
1989-01-01
Deterioration and degradation of aged, hydroelectric project structures can significantly affect the operation and safety of a project. In many cases, hydroelectric headworks (in particular) have complicated geometrical configurations, loading patterns and hence, stress conditions. An accurate study of such structures can be performed using 3-dimensional computer models. 3-D computer models can be used for both stability evaluation and for finite element stress analysis. Computer aided engineering processes facilitate the use of 3-D methods in both pre-processing and post-processing of data. Two actual project examples are used to emphasize the authors' points.
Theory of relativistic Brownian motion: the (1+3) -dimensional case.
Dunkel, Jörn; Hänggi, Peter
2005-09-01
A theory for (1+3) -dimensional relativistic Brownian motion under the influence of external force fields is put forward. Starting out from a set of relativistically covariant, but multiplicative Langevin equations we describe the relativistic stochastic dynamics of a forced Brownian particle. The corresponding Fokker-Planck equations are studied in the laboratory frame coordinates. In particular, the stochastic integration prescription--i.e., the discretization rule dilemma--is elucidated (prepoint discretization rule versus midpoint discretization rule versus postpoint discretization rule). Remarkably, within our relativistic scheme we find that the postpoint rule (or the transport form) yields the only Fokker-Planck dynamics from which the relativistic Maxwell-Boltzmann statistics is recovered as the stationary solution. The relativistic velocity effects become distinctly more pronounced by going from one to three spatial dimensions. Moreover, we present numerical results for the asymptotic mean-square displacement of a free relativistic Brownian particle moving in 1+3 dimensions. PMID:16241514
3-dimensional bioprinting for tissue engineering applications.
Gu, Bon Kang; Choi, Dong Jin; Park, Sang Jun; Kim, Min Sup; Kang, Chang Mo; Kim, Chun-Ho
2016-01-01
The 3-dimensional (3D) printing technologies, referred to as additive manufacturing (AM) or rapid prototyping (RP), have acquired reputation over the past few years for art, architectural modeling, lightweight machines, and tissue engineering applications. Among these applications, tissue engineering field using 3D printing has attracted the attention from many researchers. 3D bioprinting has an advantage in the manufacture of a scaffold for tissue engineering applications, because of rapid-fabrication, high-precision, and customized-production, etc. In this review, we will introduce the principles and the current state of the 3D bioprinting methods. Focusing on some of studies that are being current application for biomedical and tissue engineering fields using printed 3D scaffolds. PMID:27114828
Honigmann, Philipp; Thieringer, Florian; Steiger, Regula; Haefeli, Mathias; Schumacher, Ralf; Henning, Julia
2016-03-01
The reconstruction of malunited distal radius fractures is often challenging. Virtual planning techniques and guides for drilling and resection have been used for several years to achieve anatomic reconstruction. These guides have the advantage of leading to better operative results and faster surgery. Here, we describe a technique using a simple implant independent 3-dimensional printed drill guide and template to simplify the surgical reconstruction of a malunited distal radius fracture. PMID:26787406
Vehmeijer, Maarten; van Eijnatten, Maureen; Liberton, Niels; Wolff, Jan
2016-08-01
Fractures of the orbital floor are often a result of traffic accidents or interpersonal violence. To date, numerous materials and methods have been used to reconstruct the orbital floor. However, simple and cost-effective 3-dimensional (3D) printing technologies for the treatment of orbital floor fractures are still sought. This study describes a simple, precise, cost-effective method of treating orbital fractures using 3D printing technologies in combination with autologous bone. Enophthalmos and diplopia developed in a 64-year-old female patient with an orbital floor fracture. A virtual 3D model of the fracture site was generated from computed tomography images of the patient. The fracture was virtually closed using spline interpolation. Furthermore, a virtual individualized mold of the defect site was created, which was manufactured using an inkjet printer. The tangible mold was subsequently used during surgery to sculpture an individualized autologous orbital floor implant. Virtual reconstruction of the orbital floor and the resulting mold enhanced the overall accuracy and efficiency of the surgical procedure. The sculptured autologous orbital floor implant showed an excellent fit in vivo. The combination of virtual planning and 3D printing offers an accurate and cost-effective treatment method for orbital floor fractures. PMID:27137437
Cardiothoracic Applications of 3-dimensional Printing.
Giannopoulos, Andreas A; Steigner, Michael L; George, Elizabeth; Barile, Maria; Hunsaker, Andetta R; Rybicki, Frank J; Mitsouras, Dimitris
2016-09-01
Medical 3-dimensional (3D) printing is emerging as a clinically relevant imaging tool in directing preoperative and intraoperative planning in many surgical specialties and will therefore likely lead to interdisciplinary collaboration between engineers, radiologists, and surgeons. Data from standard imaging modalities such as computed tomography, magnetic resonance imaging, echocardiography, and rotational angiography can be used to fabricate life-sized models of human anatomy and pathology, as well as patient-specific implants and surgical guides. Cardiovascular 3D-printed models can improve diagnosis and allow for advanced preoperative planning. The majority of applications reported involve congenital heart diseases and valvular and great vessels pathologies. Printed models are suitable for planning both surgical and minimally invasive procedures. Added value has been reported toward improving outcomes, minimizing perioperative risk, and developing new procedures such as transcatheter mitral valve replacements. Similarly, thoracic surgeons are using 3D printing to assess invasion of vital structures by tumors and to assist in diagnosis and treatment of upper and lower airway diseases. Anatomic models enable surgeons to assimilate information more quickly than image review, choose the optimal surgical approach, and achieve surgery in a shorter time. Patient-specific 3D-printed implants are beginning to appear and may have significant impact on cosmetic and life-saving procedures in the future. In summary, cardiothoracic 3D printing is rapidly evolving and may be a potential game-changer for surgeons. The imager who is equipped with the tools to apply this new imaging science to cardiothoracic care is thus ideally positioned to innovate in this new emerging imaging modality. PMID:27149367
NASA Astrophysics Data System (ADS)
Wilson, C. E.; Aydin, A.; Durlofsky, L.; Karimi-Fard, M.; Brownlow, D. T.
2008-12-01
An active quarry near Uvalde, TX which mines asphaltic limestone from the Anacacho Formation offers an ideal setting to study fluid-flow in fractured and faulted carbonate rocks. Semi-3D exposures of normal faults and fractures in addition to visual evidence of asphalt concentrations in the quarry help constrain relationships between geologic structures and the flow and transport of hydrocarbons. Furthermore, a subsurface dataset which includes thin sections and measured asphalt concentration from the surrounding region provides a basis to estimate asphalt concentrations and constrain the depositional architecture of both the previously mined portions of the quarry and the un-mined surrounding rock volume. We characterized a series of normal faults and opening mode fractures at the quarry and documented a correlation between the intensity and distribution of these structures with increased concentrations of asphalt. The three-dimensional depositional architecture of the Anacacho Formation was characterized using the subsurface thin sections. Then outcrop exposures of faults, fractured beds, and stratigraphic contacts were mapped and their three-dimensional positions were recorded with differential gps devices. These two datasets were assimilated and a quarry-scale, geologically realistic, three-dimensional Discrete Feature Network (DFN) which represents the geometries and material properties of the matrix, normal faults, and fractures within the quarry was constructed. We then performed two-point flux, control-volume finite- difference fluid-flow simulations with the DFN to investigate the 3D flow and transport of fluids. The results were compared and contrasted with available asphalt concentration estimates from the mine and the aforementioned data from the surrounding drill cores.
Incorporating 3-dimensional models in online articles
Cevidanes, Lucia H. S.; Ruellasa, Antonio C. O.; Jomier, Julien; Nguyen, Tung; Pieper, Steve; Budin, Francois; Styner, Martin; Paniagua, Beatriz
2015-01-01
Introduction The aims of this article were to introduce the capability to view and interact with 3-dimensional (3D) surface models in online publications, and to describe how to prepare surface models for such online 3D visualizations. Methods Three-dimensional image analysis methods include image acquisition, construction of surface models, registration in a common coordinate system, visualization of overlays, and quantification of changes. Cone-beam computed tomography scans were acquired as volumetric images that can be visualized as 3D projected images or used to construct polygonal meshes or surfaces of specific anatomic structures of interest. The anatomic structures of interest in the scans can be labeled with color (3D volumetric label maps), and then the scans are registered in a common coordinate system using a target region as the reference. The registered 3D volumetric label maps can be saved in .obj, .ply, .stl, or .vtk file formats and used for overlays, quantification of differences in each of the 3 planes of space, or color-coded graphic displays of 3D surface distances. Results All registered 3D surface models in this study were saved in .vtk file format and loaded in the Elsevier 3D viewer. In this study, we describe possible ways to visualize the surface models constructed from cone-beam computed tomography images using 2D and 3D figures. The 3D surface models are available in the article’s online version for viewing and downloading using the reader’s software of choice. These 3D graphic displays are represented in the print version as 2D snapshots. Overlays and color-coded distance maps can be displayed using the reader’s software of choice, allowing graphic assessment of the location and direction of changes or morphologic differences relative to the structure of reference. The interpretation of 3D overlays and quantitative color-coded maps requires basic knowledge of 3D image analysis. Conclusions When submitting manuscripts, authors can
Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It ... with other fractures of the face. Sometimes a blunt injury can ...
From 2-dimensional cephalograms to 3-dimensional computed tomography scans.
Halazonetis, Demetrios J
2005-05-01
Computed tomography is entering the orthodontic specialty as a mainstream diagnostic modality. Radiation exposure and cost have decreased significantly, and the diagnostic value is very high compared with traditional radiographic options. However, 3-dimensional data present new challenges and need a different approach from traditional viewing of static images to make the most of the available possibilities. Advances in computer hardware and software now enable interactive display of the data on personal computers, with the ability to selectively view soft or hard tissues from any angle. Transfer functions are used to apply transparency and color. Cephalometric measurements can be taken by digitizing points in 3-dimensional coordinates. Application of 3-dimensional data is expected to increase significantly soon and might eventually replace many conventional orthodontic records that are in use today. PMID:15877045
Fracture of the nose; Broken nose; Nasal fracture; Nasal bone fracture; Nasal septal fracture ... A fractured nose is the most common fracture of the face. It usually occurs after an injury and often occurs with ...
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
2015-12-01
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
Differential Cross Section Kinematics for 3-dimensional Transport Codes
NASA Technical Reports Server (NTRS)
Norbury, John W.; Dick, Frank
2008-01-01
In support of the development of 3-dimensional transport codes, this paper derives the relevant relativistic particle kinematic theory. Formulas are given for invariant, spectral and angular distributions in both the lab (spacecraft) and center of momentum frames, for collisions involving 2, 3 and n - body final states.
Controlled teleportation of a 3-dimensional bipartite quantum state
NASA Astrophysics Data System (ADS)
Cao, Hai-Jing; Chen, Zhong-Hua; Song, He-Shan
2008-07-01
A controlled teleportation scheme of an unknown 3-dimensional (3D) two-particle quantum state is proposed, where a 3D Bell state and 3D GHZ state function as the quantum channel. This teleportation scheme can be directly generalized to teleport an unknown d-dimensional bipartite quantum state.
Basilar skull fracture; Depressed skull fracture; Linear skull fracture ... Skull fractures may occur with head injuries . The skull provides good protection for the brain. However, a severe impact ...
RESEARCH PROGRAM ON FRACTURED PETROLEUM RESERVOIRS
Abbas Firoozabadi
2002-04-12
Numerical simulation of water injection in discrete fractured media with capillary pressure is a challenge. Dual-porosity models in view of their strength and simplicity can be mainly used for sugar-cube representation of fractured media. In such a representation, the transfer function between the fracture and the matrix block can be readily calculated for water-wet media. For a mixed-wet system, the evaluation of the transfer function becomes complicated due to the effect of gravity. In this work, they use a discrete-fracture model in which the fractures are discretized as one dimensional entities to account for fracture thickness by an integral form of the flow equations. This simple step greatly improves the numerical solution. Then the discrete-fracture model is implemented using a Galerkin finite element method. The robustness and the accuracy of the approach are shown through several examples. First they consider a single fracture in a rock matrix and compare the results of the discrete-fracture model with a single-porosity model. Then, they use the discrete-fracture model in more complex configurations. Numerical simulations are carried out in water-wet media as well as in mixed-wet media to study the effect of matrix and fracture capillary pressures.
Multimodality 3-Dimensional Image Integration for Congenital Cardiac Catheterization
2014-01-01
Cardiac catheterization procedures for patients with congenital and structural heart disease are becoming more complex. New imaging strategies involving integration of 3-dimensional images from rotational angiography, magnetic resonance imaging (MRI), computerized tomography (CT), and transesophageal echocardiography (TEE) are employed to facilitate these procedures. We discuss the current use of these new 3D imaging technologies and their advantages and challenges when used to guide complex diagnostic and interventional catheterization procedures in patients with congenital heart disease. PMID:25114757
Fractures in anisotropic media
NASA Astrophysics Data System (ADS)
Shao, Siyi
theory and experimental results in this report demonstrate that the presence of fractures in anisotropic material can be unambiguously interpreted if experimental measurements are made as a function of stress, which eliminates many fracture-generated discrete modes (e.g., interface waves, and leaky guided-modes). Orthogonal fracture networks that are often encountered in field exploration bring in additional challenges for seismic/acoustic data interpretation. An innovative wavefront imaging system with a bi-axial load frame was designed and implemented on orthogonally-fractured samples to determine the effect of fracture networks on elastic wave propagation. The effects of central wave guiding and extra time delays along a fracture intersection were observed in experiments and was analyzed. Interpreting data from media with intersecting fracture sets must account for fracture intersections and the non-uniformity of fracture properties caused by local tectonic conditions or other physical process such as non-uniform fluid distributions within a network and/or chemical alterations.
Fracture imaging with converted elastic waves
Nihei, K.T.; Nakagawa, S.; Myer, L.R.
2001-05-29
This paper examines the seismic signatures of discrete, finite-length fractures, and outlines an approach for elastic, prestack reverse-time imaging of discrete fractures. The results of this study highlight the importance of incorporating fracture-generated P-S converted waves into the imaging method, and presents an alternate imaging condition that can be used in elastic reverse-time imaging when a direct wave is recorded (e.g., for crosswell and VSP acquisition geometries).
The 3-dimensional cellular automata for HIV infection
NASA Astrophysics Data System (ADS)
Mo, Youbin; Ren, Bin; Yang, Wencao; Shuai, Jianwei
2014-04-01
The HIV infection dynamics is discussed in detail with a 3-dimensional cellular automata model in this paper. The model can reproduce the three-phase development, i.e., the acute period, the asymptotic period and the AIDS period, observed in the HIV-infected patients in a clinic. We show that the 3D HIV model performs a better robustness on the model parameters than the 2D cellular automata. Furthermore, we reveal that the occurrence of a perpetual source to successively generate infectious waves to spread to the whole system drives the model from the asymptotic state to the AIDS state.
NASA Technical Reports Server (NTRS)
Atluri, S. N.; Nakagaki, M.; Kathiresan, K.
1980-01-01
In this paper, efficient numerical methods for the analysis of crack-closure effects on fatigue-crack-growth-rates, in plane stress situations, and for the solution of stress-intensity factors for arbitrary shaped surface flaws in pressure vessels, are presented. For the former problem, an elastic-plastic finite element procedure valid for the case of finite deformation gradients is developed and crack growth is simulated by the translation of near-crack-tip elements with embedded plastic singularities. For the latter problem, an embedded-elastic-singularity hybrid finite element method, which leads to a direct evaluation of K-factors, is employed.
A numerical approach for pressure transient analysis of a vertical well with complex fractures
NASA Astrophysics Data System (ADS)
Wan, Yizhao; Liu, Yuewu; Liu, Wenchao; Han, Guofeng; Niu, Congcong
2016-05-01
A new well test model for a vertical fractured well is developed based on a discrete-fracture model in which the fractures are discretized as one dimensional (1-D) entities. The model overcomes the weakness of complex meshing, a large number of grids, and instability in conventional stripe-fracture models. Then, the discrete-fracture model is implemented using a hybrid element finite-element method. Triangular elements are used for matrix and line elements for the fractures. The finite element formulation is validated by comparing with the semi-analytical solution of a single vertical fractured well. The accuracy of the approach is shown through several examples with different fracture apertures, fracture conductivity, and fracture amount. Results from the discrete-fracture model agree reasonably well with the stripe-fracture model and the analytic solutions. The advantages of the discrete-fracture model are presented in mesh generation, computational improvement, and abilities to handle complex fractures like wedge-shaped fractures and fractures with branches. Analytical results show that the number of grids in the discrete-fracture model is 10 % less than stripe-fracture model, and computational efficiency increases by about 50 %. The more fractures there are, the more the computational efficiency increases.
3-Dimensional Imaging Modalities for Phenotyping Genetically Engineered Mice
Powell, K. A.; Wilson, D.
2013-01-01
A variety of 3-dimensional (3D) digital imaging modalities are available for whole-body assessment of genetically engineered mice: magnetic resonance microscopy (MRM), X-ray microcomputed tomography (microCT), optical projection tomography (OPT), episcopic and cryoimaging, and ultrasound biomicroscopy (UBM). Embryo and adult mouse phenotyping can be accomplished at microscopy or near microscopy spatial resolutions using these modalities. MRM and microCT are particularly well-suited for evaluating structural information at the organ level, whereas episcopic and OPT imaging provide structural and functional information from molecular fluorescence imaging at the cellular level. UBM can be used to monitor embryonic development longitudinally in utero. Specimens are not significantly altered during preparation, and structures can be viewed in their native orientations. Technologies for rapid automated data acquisition and high-throughput phenotyping have been developed and continually improve as this exciting field evolves. PMID:22146851
Protalign: a 3-dimensional protein alignment assessment tool.
Meads, D; Hansen, M D; Pang, A
1999-01-01
Protein fold recognition (sometimes called threading) is the prediction of a protein's 3-dimensional shape based on its similarity to a protein of known structure. Fold predictions are low resolution; that is, no effort is made to rotate the protein's component amino acid side chains into their correct spatial orientations. The goal is simply to recognize the protein family member that most closely resembles the target sequence of unknown structure and to create a sensible alignment of the target to the known structure (i.e., a structure-sequence alignment). To facilitate this type of structure prediction, we have designed a low resolution molecular graphics tool. ProtAlign introduces the ability to interact with and edit alignments directly in the 3-dimensional structure as well as in the usual 2-dimensional layout. It also contains several functions and features to help the user assess areas within the alignment. ProtAlign implements an open pipe architecture to allow other programs to access its molecular graphics capabilities. In addition, it is capable of "driving" other programs. Because amino acid side chain orientation is not relevant in fold recognition, we represent amino acid residues as abstract shapes or glyphs much like Lego (tm) blocks and we borrow techniques from comparative flow visualization using streamlines to provide clean depictions of the entire protein model. By creating a low resolution representation of protein structure, we are able to at least double the amount of information on the screen. At the same time, we create a view that is not as busy as the corresponding representations using traditional high resolution visualization methods which show detailed atomic structure. This eliminates distracting and possibly misleading visual clutter resulting from the mapping of protein alignment information onto a high resolution display of the known structure. This molecular graphics program is implemented in Open GL to facilitate porting to
Transport in fractured porous solids
NASA Astrophysics Data System (ADS)
Mattisson, Charlotte; Knackstedt, Mark A.; Senden, Tim J.
Laboratory measurements are made of the permeability and the resistivity of sintered porous media with disordered fractures over a wide range of matrix porosity. We discuss the preparation and characterisation of the samples. Approximating the topology of a rough fracture by a single discrete fracture can introduce large errors in the prediction of the permeability. We test the validity of empirical expressions relating permeability, resistivity and porosity for fractured samples. Resistivity correlations with porosity are independent of the presence of fractures. In contrast, permeability correlations show a strong dependence. Attempts to decouple the permeability of the fractured sample as a parallel sum of matrix and fracture permeability leads to large errors. The results indicate that transport in a medium with two distinct families of pathways cannot be described by a single-valued transport coefficient.
Hydraulically controlled discrete sampling from open boreholes
Harte, Philip T.
2013-01-01
Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.
Chromosome Conformation of Human Fibroblasts Grown in 3-Dimensional Spheroids
Chen, Haiming; Comment, Nicholas; Chen, Jie; Ronquist, Scott; Hero, Alfred; Ried, Thomas; Rajapakse, Indika
2015-01-01
In the study of interphase chromosome organization, genome-wide chromosome conformation capture (Hi-C) maps are often generated using 2-dimensional (2D) monolayer cultures. These 2D cells have morphological deviations from cells that exist in 3-dimensional (3D) tissues in vivo, and may not maintain the same chromosome conformation. We used Hi-C maps to test the extent of differences in chromosome conformation between human fibroblasts grown in 2D cultures and those grown in 3D spheroids. Significant differences in chromosome conformation were found between 2D cells and those grown in spheroids. Intra-chromosomal interactions were generally increased in spheroid cells, with a few exceptions, while inter-chromosomal interactions were generally decreased. Overall, chromosomes located closer to the nuclear periphery had increased intra-chromosomal contacts in spheroid cells, while those located more centrally had decreased interactions. This study highlights the necessity to conduct studies on the topography of the interphase nucleus under conditions that mimic an in vivo environment. PMID:25738643
Thermal crosstalk in 3-dimensional RRAM crossbar array
Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming
2015-01-01
High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537
Thermal crosstalk in 3-dimensional RRAM crossbar array.
Sun, Pengxiao; Lu, Nianduan; Li, Ling; Li, Yingtao; Wang, Hong; Lv, Hangbing; Liu, Qi; Long, Shibing; Liu, Su; Liu, Ming
2015-01-01
High density 3-dimensional (3D) crossbar resistive random access memory (RRAM) is one of the major focus of the new age technologies. To compete with the ultra-high density NAND and NOR memories, understanding of reliability mechanisms and scaling potential of 3D RRAM crossbar array is needed. Thermal crosstalk is one of the most critical effects that should be considered in 3D crossbar array application. The Joule heat generated inside the RRAM device will determine the switching behavior itself, and for dense memory arrays, the temperature surrounding may lead to a consequent resistance degradation of neighboring devices. In this work, thermal crosstalk effect and scaling potential under thermal effect in 3D RRAM crossbar array are systematically investigated. It is revealed that the reset process is dominated by transient thermal effect in 3D RRAM array. More importantly, thermal crosstalk phenomena could deteriorate device retention performance and even lead to data storage state failure from LRS (low resistance state) to HRS (high resistance state) of the disturbed RRAM cell. In addition, the resistance state degradation will be more serious with continuously scaling down the feature size. Possible methods for alleviating thermal crosstalk effect while further advancing the scaling potential are also provided and verified by numerical simulation. PMID:26310537
ERIC Educational Resources Information Center
Ghezzi, Patrick M.
2007-01-01
The advantages of emphasizing discrete trials "teaching" over discrete trials "training" are presented first, followed by a discussion of discrete trials as a method of teaching that emerged historically--and as a matter of necessity for difficult learners such as those with autism--from discrete trials as a method for laboratory research. The…
Video Based Sensor for Tracking 3-Dimensional Targets
NASA Technical Reports Server (NTRS)
Howard, R. T.; Book, Michael L.; Bryan, Thomas C.
2000-01-01
Video-Based Sensor for Tracking 3-Dimensional Targets The National Aeronautics and Space Administration's (NASAs) Marshall Space Flight Center (MSFC) has been developing and testing video-based sensors for automated spacecraft guidance for several years, and the next generation of video sensor will have tracking rates up to 100 Hz and will be able to track multiple reflectors and targets. The Video Guidance Sensor (VGS) developed over the past several years has performed well in testing and met the objective of being used as the terminal guidance sensor for an automated rendezvous and capture system. The first VGS was successfully tested in closed-loop 3-degree-of-freedom (3- DOF) tests in 1989 and then in 6-DOF open-loop tests in 1992 and closed-loop tests in 1993-4. Development and testing continued, and in 1995 approval was given to test the VGS in an experiment on the Space Shuttle. The VGS flew in 1997 and in 1998, performing well for both flights. During the development and testing before, during, and after the flight experiments, numerous areas for improvement were found. The VGS was developed with a sensor head and an electronics box, connected by cables. The VGS was used in conjunction with a target that had wavelength-filtered retro-reflectors in a specific pattern, The sensor head contained the laser diodes, video camera, and heaters and coolers. The electronics box contained a frame grabber, image processor, the electronics to control the components in the sensor head, the communications electronics, and the power supply. The system works by sequentially firing two different wavelengths of laser diodes at the target and processing the two images. Since the target only reflects one wavelength, it shows up well in one image and not at all in the other. Because the target's dimensions are known, the relative positions and attitudes of the target and the sensor can be computed from the spots reflected from the target. The system was designed to work from I
The 3-dimensional construction of the Rae craton, central Canada
NASA Astrophysics Data System (ADS)
Snyder, David B.; Craven, James A.; Pilkington, Mark; Hillier, Michael J.
2015-10-01
Reconstruction of the 3-dimensional tectonic assembly of early continents, first as Archean cratons and then Proterozoic shields, remains poorly understood. In this paper, all readily available geophysical and geochemical data are assembled in a 3-D model with the most accurate bedrock geology in order to understand better the geometry of major structures within the Rae craton of central Canada. Analysis of geophysical observations of gravity and seismic wave speed variations revealed several lithospheric-scale discontinuities in physical properties. Where these discontinuities project upward to correlate with mapped upper crustal geological structures, the discontinuities can be interpreted as shear zones. Radiometric dating of xenoliths provides estimates of rock types and ages at depth beneath sparse kimberlite occurrences. These ages can also be correlated to surface rocks. The 3.6-2.6 Ga Rae craton comprises at least three smaller continental terranes, which "cratonized" during a granitic bloom. Cratonization probably represents final differentiation of early crust into a relatively homogeneous, uniformly thin (35-42 km), tonalite-trondhjemite-granodiorite crust with pyroxenite layers near the Moho. The peak thermotectonic event at 1.86-1.7 Ga was associated with the Hudsonian orogeny that assembled several cratons and lesser continental blocks into the Canadian Shield using a number of southeast-dipping megathrusts. This orogeny metasomatized, mineralized, and recrystallized mantle and lower crustal rocks, apparently making them more conductive by introducing or concentrating sulfides or graphite. Little evidence exists of thin slabs similar to modern oceanic lithosphere in this Precambrian construction history whereas underthrusting and wedging of continental lithosphere is inferred from multiple dipping discontinuities.
A 3-Dimensional Anatomic Study of the Distal Biceps Tendon
Walton, Christine; Li, Zhi; Pennings, Amanda; Agur, Anne; Elmaraghy, Amr
2015-01-01
Background Complete rupture of the distal biceps tendon from its osseous attachment is most often treated with operative intervention. Knowledge of the overall tendon morphology as well as the orientation of the collagenous fibers throughout the musculotendinous junction are key to intraoperative decision making and surgical technique in both the acute and chronic setting. Unfortunately, there is little information available in the literature. Purpose To comprehensively describe the morphology of the distal biceps tendon. Study Design Descriptive laboratory study. Methods The distal biceps terminal musculature, musculotendinous junction, and tendon were digitized in 10 cadaveric specimens and data reconstructed using 3-dimensional modeling. Results The average length, width, and thickness of the external distal biceps tendon were found to be 63.0, 6.0, and 3.0 mm, respectively. A unique expansion of the tendon fibers within the distal muscle was characterized, creating a thick collagenous network along the central component between the long and short heads. Conclusion This study documents the morphologic parameters of the native distal biceps tendon. Reconstruction may be necessary, especially in chronic distal biceps tendon ruptures, if the remaining tendon morphology is significantly compromised compared with the native distal biceps tendon. Knowledge of normal anatomical distal biceps tendon parameters may also guide the selection of a substitute graft with similar morphological characteristics. Clinical Relevance A thorough description of distal biceps tendon morphology is important to guide intraoperative decision making between primary repair and reconstruction and to better select the most appropriate graft. The detailed description of the tendinous expansion into the muscle may provide insight into better graft-weaving and suture-grasping techniques to maximize proximal graft incorporation. PMID:26665092
Development and Validation of a 3-Dimensional CFB Furnace Model
NASA Astrophysics Data System (ADS)
Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti
At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents
NASA Astrophysics Data System (ADS)
Kettermann, Michael; von Hagke, Christoph; Virgo, Simon; Urai, Janos L.
2015-04-01
Brittle rocks are often affected by different generations of fractures that influence each other. We study pre-existing vertical joints followed by a faulting event. Understanding the effect of these interactions on fracture/fault geometries as well as the development of dilatancy and the formation of cavities as potential fluid pathways is crucial for reservoir quality prediction and production. Our approach combines scaled analogue and numerical modeling. Using cohesive hemihydrate powder allows us to create open fractures prior to faulting. The physical models are reproduced using the ESyS-Particle discrete element Modeling Software (DEM), and different parameters are investigated. Analogue models were carried out in a manually driven deformation box (30x28x20 cm) with a 60° dipping pre-defined basement fault and 4.5 cm of displacement. To produce open joints prior to faulting, sheets of paper were mounted in the box to a depth of 5 cm at a spacing of 2.5 cm. Powder was then sieved into the box, embedding the paper almost entirely (column height of 19 cm), and the paper was removed. We tested the influence of different angles between the strike of the basement fault and the joint set (0°, 4°, 8°, 12°, 16°, 20°, and 25°). During deformation we captured structural information by time-lapse photography that allows particle imaging velocimetry analyses (PIV) to detect localized deformation at every increment of displacement. Post-mortem photogrammetry preserves the final 3-dimensional structure of the fault zone. We observe that no faults or fractures occur parallel to basement-fault strike. Secondary fractures are mostly oriented normal to primary joints. At the final stage of the experiments we analyzed semi-quantitatively the number of connected joints, number of secondary fractures, degree of segmentation (i.e. number of joints accommodating strain), damage zone width, and the map-view area fraction of open gaps. Whereas the area fraction does not change
Unification of color postprocessing techniques for 3-dimensional computational mechanics
NASA Technical Reports Server (NTRS)
Bailey, Bruce Charles
1985-01-01
To facilitate the understanding of complex three-dimensional numerical models, advanced interactive color postprocessing techniques are introduced. These techniques are sufficiently flexible so that postprocessing difficulties arising from model size, geometric complexity, response variation, and analysis type can be adequately overcome. Finite element, finite difference, and boundary element models may be evaluated with the prototype postprocessor. Elements may be removed from parent models to be studied as independent subobjects. Discontinuous responses may be contoured including responses which become singular, and nonlinear color scales may be input by the user for the enhancement of the contouring operation. Hit testing can be performed to extract precise geometric, response, mesh, or material information from the database. In addition, stress intensity factors may be contoured along the crack front of a fracture model. Stepwise analyses can be studied, and the user can recontour responses repeatedly, as if he were paging through the response sets. As a system, these tools allow effective interpretation of complex analysis results.
Computer-assisted 3-dimensional anthropometry of the scaphoid.
Pichler, Wolfgang; Windisch, Gunther; Schaffler, Gottfried; Heidari, Nima; Dorr, Katrin; Grechenig, Wolfgang
2010-02-01
Scaphoid fracture fixation using a cannulated headless compression screw and the Matti-Russe procedure for the treatment of scaphoid nonunions are performed routinely. Surgeons performing these procedures need to be familiar with the anatomy of the scaphoid. A literature review reveals relatively few articles on this subject. The goal of this anatomical study was to measure the scaphoid using current technology and to discuss the findings with respect to the current, relevant literature.Computed tomography scans of 30 wrists were performed using a 64-slice SOMATOM Sensation CT system (resolution 0.6 mm) (Siemens Medical Solutions Inc, Malvern, Pennsylvania). Three-dimensional reconstructions from the raw data were generated by MIMICS software (Materialise, Leuven, Belgium). The scaphoid had a mean length of 26.0 mm (range, 22.3-30.7 mm), and men had a significantly longer (P<.001) scaphoid than women (27.861.6 mm vs 24.561.6 mm, respectively). The width and height were measured at 3 different levels for volume calculations, resulting in a mean volume of 3389.5 mm(3). Men had a significantly larger (P<.001) scaphoid volume than women (4057.86740.7 mm(3) vs 2846.56617.5 mm(3), respectively).We found considerable variation in the length and volume of the scaphoid in our cohort. We also demonstrated a clear correlation between scaphoid size and sex. Surgeons performing operative fixation of scaphoid fractures and corticocancellous bone grafting for nonunions need to be familiar with these anatomical variations. PMID:20192143
A 3-dimensional Analysis of the Cassiopeia A Supernova Remnant
NASA Astrophysics Data System (ADS)
Isensee, Karl
We present a multi-wavelength study of the nearby supernova remnant Cassiopeia A (Cas A). Easily resolvable supernova remnants such as Cas A provide a unique opportunity to test supernova explosion models. Additionally, we can observe key processes in the interstellar medium as the ejecta from the initial explosion encounter Cas A's powerful shocks. In order to accomplish these science goals, we used the Spitzer Space Telescope's Infrared Spectrograph to create a high resolution spectral map of select regions of Cas A, allowing us to make a Doppler reconstruction of its 3-dimensional structure structure. In the center of the remnant, we find relatively pristine ejecta that have not yet reached Cas A's reverse shock or interacted with the circumstellar environment. We observe O, Si, and S emission. These ejecta can form both sheet-like structures as well as filaments. Si and O, which come from different nucleosynthetic layers of the star, are observed to be coincident in some regions, and separated by >500 km s -1 in others. Observed ejecta traveling toward us are, on average, ˜800 km s -1 slower than the material traveling away from us. We compare our observations to recent supernova explosion models and find that no single model can simultaneously reproduce all the observed features. However, models of different supernova explosions can collectively produce the observed geometries and structures of the emission interior to Cas A's reverse shock. We use the results from the models to address the conditions during the supernova explosion, concentrating on asymmetries in the shock structure. We also predict that the back surface of Cassiopeia A will begin brightening in ∼30 years, and the front surface in ˜100 years. We then used similar observations from 3 regions on Cas A's reverse shock in order to create more 3-dimensional maps. In these regions, we observe supernova ejecta both immediately before and during the shock-ejecta interaction. We determine that the
Zhang, Boning; Herbold, Eric B.; Homel, Michael A.; Regueiro, Richard A.
2015-12-01
An adaptive particle fracture model in poly-ellipsoidal Discrete Element Method is developed. The poly-ellipsoidal particle will break into several sub-poly-ellipsoids by Hoek-Brown fracture criterion based on continuum stress and the maximum tensile stress in contacts. Also Weibull theory is introduced to consider the statistics and size effects on particle strength. Finally, high strain-rate split Hopkinson pressure bar experiment of silica sand is simulated using this newly developed model. Comparisons with experiments show that our particle fracture model can capture the mechanical behavior of this experiment very well, both in stress-strain response and particle size redistribution. The effects of density and packings o the samples are also studied in numerical examples.
3-Dimensional Marine CSEM Modeling by Employing TDFEM with Parallel Solvers
NASA Astrophysics Data System (ADS)
Wu, X.; Yang, T.
2013-12-01
In this paper, parallel fulfillment is developed for forward modeling of the 3-Dimensional controlled source electromagnetic (CSEM) by using time-domain finite element method (TDFEM). Recently, a greater attention rises on research of hydrocarbon (HC) reservoir detection mechanism in the seabed. Since China has vast ocean resources, seeking hydrocarbon reservoirs become significant in the national economy. However, traditional methods of seismic exploration shown a crucial obstacle to detect hydrocarbon reservoirs in the seabed with a complex structure, due to relatively high acquisition costs and high-risking exploration. In addition, the development of EM simulations typically requires both a deep knowledge of the computational electromagnetics (CEM) and a proper use of sophisticated techniques and tools from computer science. However, the complexity of large-scale EM simulations often requires large memory because of a large amount of data, or solution time to address problems concerning matrix solvers, function transforms, optimization, etc. The objective of this paper is to present parallelized implementation of the time-domain finite element method for analysis of three-dimensional (3D) marine controlled source electromagnetic problems. Firstly, we established a three-dimensional basic background model according to the seismic data, then electromagnetic simulation of marine CSEM was carried out by using time-domain finite element method, which works on a MPI (Message Passing Interface) platform with exact orientation to allow fast detecting of hydrocarbons targets in ocean environment. To speed up the calculation process, SuperLU of an MPI (Message Passing Interface) version called SuperLU_DIST is employed in this approach. Regarding the representation of three-dimension seabed terrain with sense of reality, the region is discretized into an unstructured mesh rather than a uniform one in order to reduce the number of unknowns. Moreover, high-order Whitney
Method and apparatus for imaging through 3-dimensional tracking of protons
NASA Technical Reports Server (NTRS)
Ryan, James M. (Inventor); Macri, John R. (Inventor); McConnell, Mark L. (Inventor)
2001-01-01
A method and apparatus for creating density images of an object through the 3-dimensional tracking of protons that have passed through the object are provided. More specifically, the 3-dimensional tracking of the protons is accomplished by gathering and analyzing images of the ionization tracks of the protons in a closely packed stack of scintillating fibers.
A compendium of fracture flow models, 1994
Diodato, D.M.
1994-11-01
The report is designed to be used as a decision-making aid for individuals who need to simulate fluid flow in fractured porous media. Fracture flow codes of varying capability in the public and private domain were identified in a survey of government, academia, and industry. The selection and use of an appropriate code requires conceptualization of the geology, physics, and chemistry (for transport) of the fracture flow problem to be solved. Conceptual models that have been invoked to describe fluid flow in fractured porous media include explicit discrete fracture, dual continuum (porosity and/or permeability), discrete fracture network, multiple interacting continua, multipermeability/multiporosity, and single equivalent continuum. The explicit discrete-fracture model is a ``near-field`` representation, the single equivalent continuum model is a ``far-field`` representation, and the dual-continuum model is intermediate to those end members. Of these, the dual-continuum model is the most widely employed. The concept of multiple interacting continua has been applied in a limited number of examples. Multipermeability/multiporosity provides a unified conceptual model. The ability to accurately describe fracture flow phenomena will continue to improve as a result of advances in fracture flow research and computing technology. This improvement will result in enhanced capability to protect the public environment, safety, and health.
Fracturing operations in a dry geothermal reservoir
Rowley, J.C.; Pettitt, R.A.; Hendron, R.H.; Sinclair, A.R.; Nicholson, R.W.
1983-01-01
Fracturing and completing deep wells in hot, nonporous crystalline basement rock challenges conventional equipment use, procedures, and techniques common in oil and gas and normal geothermal completions. Fracturing operations at the Fenton Hill, New Mexico, Hot Dry Rock (HDR) Geothermal Test Site initiated unique developments necessary to solve problems caused by an extremely harsh down-hole environment. Hydraulic fracturing experiments to connect the 2 wells have used openhole packers, hydraulic jet notching of the borehole wall, cemented-in isolation liners, and casing packers. Problems were encountered with hole drag, high fracture gradients, H/sub 2/S in vent back fluids, stress corrosion cracking of tubulars, and the complex nature of 3-dimensional fracture growth that requires large volumes of injected water. 20 references.
Principles of Discrete Time Mechanics
NASA Astrophysics Data System (ADS)
Jaroszkiewicz, George
2014-04-01
1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.
... and held together with pins and wires or plates and screws. Fractures of the distal humerus (see ... doctor. These fractures usually require surgical repair with plates and/or screw, unless they are stable. SIGNS ...
Brolin, Tyler J; Throckmorton, Thomas
2015-11-01
Olecranon fractures are common upper extremity injuries, with all but nondisplaced fractures treated surgically. There has been a recent shift in the surgical management of these fractures from tension band wiring to locking plate fixation and intramedullary nailing; however, this comes with increased implant cost. Although most patients can expect good outcomes after these various techniques, there is little information to guide a surgeon's treatment plan. This article reviews the epidemiology, classification, treatment, and outcomes of olecranon fractures. PMID:26498547
Conventional 2.0 mm miniplates versus 3-D plates in mandibular fractures
Sadhwani, Bipin S.; Anchlia, Sonal
2013-01-01
Aim: To compare and evaluate the treatment outcome and postoperative complications in mandibular fractures using 2- and 3-dimensional miniplates. Materials and Methods: This study consisted of a sample of 28 patients (40 fracture sites) divided randomly but equally (single-blind control trial study) into two groups. Each group contains 14 patients (20 similar fracture sites in each group). Group 1 was treated with open reduction and internal fixation using 3-dimensional (3-D) miniplates. Group II was treated using 2-dimensional (2-D) 2-mm miniplates. Results: Out of 14 patients treated by conventional 2-mm miniplates, 2 patients developed occlusal discrepancy, another 2 had postoperative mobility at fracture site, and 1 developed plate failure and subsequent infection, which was treated by removal of the plate under antibiotic coverage. One patient treated by 3-dimensional plates had tooth damage. Statistical Analysis: Chi-square test. Conclusion: The results of this study suggested that the treatment of mandibular fractures (symphysis, parasymphysis, and angle) with 3-dimensional plates provided 3-dimensional stability and carried low morbidity and infection rates. The only probable limitations of 3-dimensional plates were excessive implant material due to the extra vertical bars incorporated for countering the torque forces. PMID:24205475
Flow Rate- and Fracture Property Dependence of Fracture-Matrix Ensemble Relative Permeability
NASA Astrophysics Data System (ADS)
Matthai, S. K.; Lang, P.; Bazrafkan, S.
2012-12-01
The grid-block scale ensemble relative permeability, kri of fractured porous rock with appreciable matrix permeability is of decisive interest to reservoir simulation and the prediction of production, injector-producer water breakthrough, and ultimate recovery. While the dynamic behaviour of naturally fractured reservoirs (NFR) already provides many clues about (pseudo) kri on the inter-well length scale, such data are difficult to interpret because, in the subsurface, the exact fracture geometry is unknown. Here we present numerical simulation results from discrete fracture and matrix (DFM) unstructured grid hybrid FEM-FVM simulation models, predicting the shape of fracture-matrix kri curves. In contrast to our earlier work, we also simulate capillary fracture matrix transfer (CFMT) and without relying the frequently made simplifying assumption that fracture saturation reflects fracture-matrix capillary pressure equilibrium. We also employ a novel discretization of saturation which permits jump discontinuities to develop across the fracture-matrix interface. This increased physical realism permits - for the first time - to test our earlier semi-analytical model of the flow rate dependence of relative permeability, ensuing from CFMT. The sensitivity analysis presented here constrains CMFT-related flow rate dependence of kri and illustrates how it manifests itself in two geometries of layer-restricted well-developed fracture patterns mapped in the field. We have also investigated the dependence of kri on fracture aperture as computed using discrete element analysis for plausible states of in situ stress. Our results indicate that fracture-matrix ensemble relative permeability can be matched with a new semi-analytic model taking into account the fracture-matrix flux ratio, the wetted fracture-matrix interface area as a function of saturation and the breakthrough saturation. However, we also detect a scale dependence of kri requiring a more elaborate treatment.
DeCoster, T. A.; Stevens, M. A.; Albright, J. P.
1994-01-01
Fractures occur in athletes and dramatically influence performance during competitive and recreational activities. Fractures occur in athletes as the result of repetitive stress, acute sports-related trauma and trauma outside of athletics. The literature provides general guidelines for treatment as well as a variety of statistics on the epidemiology of fractures by sport and level of participation. Athletes are healthy and motivated patients, and have high expectations regarding their level of function. These qualities make them good surgical candidates. Although closed treatment methods are appropriate for most sports fractures, an aggressive approach to more complicated fractures employing current techniques may optimize their subsequent performance. PMID:7719781
NASA Astrophysics Data System (ADS)
Fitzenz, D. D.; Miller, S. A.
2001-12-01
We present preliminary results from a 3-dimensional fault interaction model, with the fault system specified by the geometry and tectonics of the San Andreas Fault (SAF) system. We use the forward model for earthquake generation on interacting faults of Fitzenz and Miller [2001] that incorporates the analytical solutions of Okada [85,92], GPS-constrained tectonic loading, creep compaction and frictional dilatancy [Sleep and Blanpied, 1994, Sleep, 1995], and undrained poro-elasticity. The model fault system is centered at the Big Bend, and includes three large strike-slip faults (each discretized into multiple subfaults); 1) a 300km, right-lateral segment of the SAF to the North, 2) a 200km-long left-lateral segment of the Garlock fault to the East, and 3) a 100km-long right-lateral segment of the SAF to the South. In the initial configuration, three shallow-dipping faults are also included that correspond to the thrust belt sub-parallel to the SAF. Tectonic loading is decomposed into basal shear drag parallel to the plate boundary with a 35mm yr-1 plate velocity, and East-West compression approximated by a vertical dislocation surface applied at the far-field boundary resulting in fault-normal compression rates in the model space about 4mm yr-1. Our aim is to study the long-term seismicity characteristics, tectonic evolution, and fault interaction of this system. We find that overpressured faults through creep compaction are a necessary consequence of the tectonic loading, specifically where high normal stress acts on long straight fault segments. The optimal orientation of thrust faults is a function of the strike-slip behavior, and therefore results in a complex stress state in the elastic body. This stress state is then used to generate new fault surfaces, and preliminary results of dynamically generated faults will also be presented. Our long-term aim is to target measurable properties in or around fault zones, (e.g. pore pressures, hydrofractures, seismicity
Discrete Feature Approach for Heterogeneous Reservoir Production Enhancement
Dershowitz, William S.; Cladouhos, Trenton
2001-09-06
This progress report describes activities during the period January 1, 1999 to June 30, 1999. Work was carried out on 21 tasks. The major activity during the reporting period was the development and preliminary application of discrete fracture network (DFN) models for Stoney Point, South Oregon Basin, and North Oregon Basins project study sites. In addition, research was carried out on analysis algorithms for discrete future orientation.
Hydrodynamics of a vertical hydraulic fracture
Narasimhan, T.N.
1987-03-24
We have developed a numerical algorithm, HUBBERT, to simulate the hydrodynamics of a propagating vertical, rectangular fracture in an elastic porous medium. Based on the IFD method, this algorithm assumes fracture geometry to be prescribed. The breakdown and the creation of the incipient fracture is carried out according to the Hubbert-Willis theory. The propagation of the fracture is based on the criterion provided by Griffith, based on energy considerations. The deformation properties of the open fracture are based on simple elasticity solutions. The fracture is assumed to have an elliptical shape to a distance equal to the fracture height, beyond which the shape is assumed to be parallel plate. A consequence of Griffith's criterion is that the fracture must propagate in discrete steps. The parametric studies carried out suggest that for a clear understanding of the hydrodynamics of the hydraulic fracture many hitherto unrecognized parameters must be better understood. Among these parameters one might mention, efficiency, aperture of the newly formed fracture, stiffness of the newly formed fracture, relation between fracture aperture and permeability, and well bore compliance. The results of the studies indicate that the patterns of pressure transients and the magnitudes of fracture length appear to conform to field observations. In particular, the discrete nature of fracture propagation as well as the relevant time scales of interest inferred from the present work seem to be corroborated by seismic monitoring in the field. The results suggest that the estimation of least principal stress can be reliably made either with shut in data or with reinjection data provided that injection rates are very small.
NASA Astrophysics Data System (ADS)
Hooker, J. N.; Eichhubl, P.; Xu, G.; Ahn, H.; Fall, A.; Hargrove, P.; Laubach, S.; Ukar, E.
2011-12-01
The Cambrian Eriboll Formation quartzarenites contain abundant fractures with varying degrees of quartz cement infill. Fractures exist that are entirely sealed; are locally sealed by bridging cements but preserve pore space among bridges; are mostly open but lined with veneers of cement; or are devoid of cement. Fracture propagation in the Eriboll Formation is highly sensitive to the presence of pre-existing fractures. Fracture reactivation occurs in opening mode as individual fractures repeatedly open and are filled or bridged by syn-kinematic cements. As well, reactivation occurs in shear as opening of one fracture orientation coincides with shear displacement along pre-existing fractures of different orientations. The tendency for pre-existing fractures to slip varies in part by the extent of cement infill, yet we observe shear and opening-mode reactivation even among sealed fractures. Paleotemperature analysis of fluid inclusions within fracture cements suggests some fractures now in outcrop formed deep in the subsurface. Fractures within the Eriboll Formation may therefore affect later fracture propagation throughout geologic time. With progressive strain, fault zones develop within fracture networks by a sequence of opening-mode fracture formation, fracture reactivation and linkage, fragmentation, cataclasis, and the formation of slip surfaces. Cataclasite within fault zones is commonly more thoroughly cemented than fractures in the damage zone or outside the fault zone. This variance of cement abundance is likely the result of (1) continued exposure of freshly broken quartz surfaces within cataclasite, promoting quartz precipitation, and (2) possibly more interconnected pathways for mass transfer within the fault zone. Enhanced cementation of cataclasite results in strengthening or diagenetic strain hardening of the evolving fault zone. Further slip is accommodated by shear localization along discrete slip surfaces. With further linkage of fault segments
Inter-trochanteric fracture repair - discharge; Subtrochanteric fracture repair - discharge; Femoral neck fracture repair - discharge; Trochanteric fracture repair - discharge; Hip pinning surgery - discharge
Morris, J; Johnson, S
2007-12-03
The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.
Synchronous Discrete Harmonic Oscillator
Antippa, Adel F.; Dubois, Daniel M.
2008-10-17
We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.
Fracture-permeability behavior of shale
Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari
2015-05-08
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition to the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.
Fracture-permeability behavior of shale
Carey, J. William; Lei, Zhou; Rougier, Esteban; Mori, Hiroko; Viswanathan, Hari
2015-05-08
The fracture-permeability behavior of Utica shale, an important play for shale gas and oil, was investigated using a triaxial coreflood device and X-ray tomography in combination with finite-discrete element modeling (FDEM). Fractures generated in both compression and in a direct-shear configuration allowed permeability to be measured across the faces of cylindrical core. Shale with bedding planes perpendicular to direct-shear loading developed complex fracture networks and peak permeability of 30 mD that fell to 5 mD under hydrostatic conditions. Shale with bedding planes parallel to shear loading developed simple fractures with peak permeability as high as 900 mD. In addition tomore » the large anisotropy in fracture permeability, the amount of deformation required to initiate fractures was greater for perpendicular layering (about 1% versus 0.4%), and in both cases activation of existing fractures are more likely sources of permeability in shale gas plays or damaged caprock in CO₂ sequestration because of the significant deformation required to form new fracture networks. FDEM numerical simulations were able to replicate the main features of the fracturing processes while showing the importance of fluid penetration into fractures as well as layering in determining fracture patterns.« less
Where Does Water Go During Hydraulic Fracturing?
O'Malley, D; Karra, S; Currier, R P; Makedonska, N; Hyman, J D; Viswanathan, H S
2016-07-01
During hydraulic fracturing millions of gallons of water are typically injected at high pressure into deep shale formations. This water can be housed in fractures, within the shale matrix, and can potentially migrate beyond the shale formation via fractures and/or faults raising environmental concerns. We describe a generic framework for producing estimates of the volume available in fractures and undamaged shale matrix where water injected into a representative shale site could reside during hydraulic fracturing, and apply it to a representative site that incorporates available field data. The amount of water that can be stored in the fractures is estimated by calculating the volume of all the fractures associated with a discrete fracture network (DFN) based on real data and using probability theory to estimate the volume of smaller fractures that are below the lower cutoff for the fracture radius in the DFN. The amount of water stored in the matrix is estimated utilizing two distinct methods-one using a two-phase model at the pore-scale and the other using a single-phase model at the continuum scale. Based on these calculations, it appears that most of the water resides in the matrix with a lesser amount in the fractures. PMID:26469857
Carlsten, B.E.; Haynes, W.B.
1996-08-01
The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.
Statistical physics models for nacre fracture simulation
NASA Astrophysics Data System (ADS)
Nukala, Phani Kumar V. V.; Šimunović, Srđan
2005-10-01
Natural biological materials such as nacre (or mother-of-pearl), exhibit phenomenal fracture strength and toughness properties despite the brittle nature of their constituents. For example, nacre’s work of fracture is three orders of magnitude greater than that of a single crystal of its constituent mineral. This study investigates the fracture properties of nacre using a simple discrete lattice model based on continuous damage random thresholds fuse network. The discrete lattice topology of the proposed model is based on nacre’s unique brick and mortar microarchitecture, and the mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix that includes the mineral bridges between the aragonite platelets. The analysis indicates that the excellent fracture properties of nacre are a result of their unique microarchitecture, repeated unfolding of protein molecules (modular damage evolution) in the organic polymer, and the presence of fiber bundle of mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in excellent agreement with the previously obtained experimental results, such as nacre’s stiffness, tensile strength, and work of fracture.
Statistical physics models for nacre fracture simulation.
Nukala, Phani Kumar V V; Simunović, Srdan
2005-10-01
Natural biological materials such as nacre (or mother-of-pearl), exhibit phenomenal fracture strength and toughness properties despite the brittle nature of their constituents. For example, nacre's work of fracture is three orders of magnitude greater than that of a single crystal of its constituent mineral. This study investigates the fracture properties of nacre using a simple discrete lattice model based on continuous damage random thresholds fuse network. The discrete lattice topology of the proposed model is based on nacre's unique brick and mortar microarchitecture, and the mechanical behavior of each of the bonds in the discrete lattice model is governed by the characteristic modular damage evolution of the organic matrix that includes the mineral bridges between the aragonite platelets. The analysis indicates that the excellent fracture properties of nacre are a result of their unique microarchitecture, repeated unfolding of protein molecules (modular damage evolution) in the organic polymer, and the presence of fiber bundle of mineral bridges between the aragonite platelets. The numerical results obtained using this simple discrete lattice model are in excellent agreement with the previously obtained experimental results, such as nacre's stiffness, tensile strength, and work of fracture. PMID:16383432
ERIC Educational Resources Information Center
Peters, James V.
2004-01-01
Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.
Discretizations of axisymmetric systems
NASA Astrophysics Data System (ADS)
Frauendiener, Jörg
2002-11-01
In this paper we discuss stability properties of various discretizations for axisymmetric systems including the so-called cartoon method which was proposed by Alcubierre et al. for the simulation of such systems on Cartesian grids. We show that within the context of the method of lines such discretizations tend to be unstable unless one takes care in the way individual singular terms are treated. Examples are given for the linear axisymmetric wave equation in flat space.
Construction of 3-Dimensional Printed Ultrasound Phantoms With Wall-less Vessels.
Nikitichev, Daniil I; Barburas, Anamaria; McPherson, Kirstie; Mari, Jean-Martial; West, Simeon J; Desjardins, Adrien E
2016-06-01
Ultrasound phantoms are invaluable as training tools for vascular access procedures. We developed ultrasound phantoms with wall-less vessels using 3-dimensional printed chambers. Agar was used as a soft tissue-mimicking material, and the wall-less vessels were created with rods that were retracted after the agar was set. The chambers had integrated luer connectors to allow for fluid injections with clinical syringes. Several variations on this design are presented, which include branched and stenotic vessels. The results show that 3-dimensional printing can be well suited to the construction of wall-less ultrasound phantoms, with designs that can be readily customized and shared electronically. PMID:27162278
3-Dimensional Terraced NAND (3D TNAND) Flash Memory-Stacked Version of Folded NAND Array
NASA Astrophysics Data System (ADS)
Kim, Yoon; Cho, Seongjae; Lee, Gil Sung; Park, Il Han; Lee, Jong Duk; Shin, Hyungcheol; Park, Byung-Gook
We propose a 3-dimensional terraced NAND flash memory. It has a vertical channel so it is possible to make a long enough channel in 1F2 size. And it has 3-dimensional structure whose channel is connected vertically along with two stairs. So we can obtain high density as in the stacked array structure, without silicon stacking process. We can make NAND flash memory with 3F2 cell size. Using SILVACO ATLAS simulation, we study terraced NAND flash memory characteristics such as program, erase, and read. Also, its fabrication method is proposed.
Magnetic topologies of coronal mass ejection events: Effects of 3-dimensional reconnection
Gosling, J.T.
1995-09-01
New magnetic loops formed in the corona following coronal mass ejection, CME, liftoffs provide strong evidence that magnetic reconnection commonly occurs within the magnetic ``legs`` of the departing CMEs. Such reconnection is inherently 3-dimensional and naturally produces CMEs having magnetic flux rope topologies. Sustained reconnection behind CMEs can produce a mixture of open and disconnected field lines threading the CMES. In contrast to the results of 2-dimensional reconnection. the disconnected field lines are attached to the outer heliosphere at both ends. A variety of solar and solar wind observations are consistent with the concept of sustained 3-dimensional reconnection within the magnetic legs of CMEs close to the Sun.
Goggin, L M; Descovich, M; McGuinness, C; Shiao, S; Pouliot, J; Park, C
2016-06-01
Accelerated partial breast irradiation is an attractive alternative to conventional whole breast radiotherapy for selected patients. Recently, CyberKnife has emerged as a possible alternative to conventional techniques for accelerated partial breast irradiation. In this retrospective study, we present a dosimetric comparison between 3-dimensional conformal radiotherapy plans and CyberKnife plans using circular (Iris) and multi-leaf collimators. Nine patients who had undergone breast-conserving surgery followed by whole breast radiation were included in this retrospective study. The CyberKnife planning target volume (PTV) was defined as the lumpectomy cavity + 10 mm + 2 mm with prescription dose of 30 Gy in 5 fractions. Two sets of 3-dimensional conformal radiotherapy plans were created, one used the same definitions as described for CyberKnife and the second used the RTOG-0413 definition of the PTV: lumpectomy cavity + 15 mm + 10 mm with prescription dose of 38.5 Gy in 10 fractions. Using both PTV definitions allowed us to compare the dose delivery capabilities of each technology and to evaluate the advantage of CyberKnife tracking. For the dosimetric comparison using the same PTV margins, CyberKnife and 3-dimensional plans resulted in similar tumor coverage and dose to critical structures, with the exception of the lung V5%, which was significantly smaller for 3-dimensional conformal radiotherapy, 6.2% when compared to 39.4% for CyberKnife-Iris and 17.9% for CyberKnife-multi-leaf collimator. When the inability of 3-dimensional conformal radiotherapy to track motion is considered, the result increased to 25.6%. Both CyberKnife-Iris and CyberKnife-multi-leaf collimator plans demonstrated significantly lower average ipsilateral breast V50% (25.5% and 24.2%, respectively) than 3-dimensional conformal radiotherapy (56.2%). The CyberKnife plans were more conformal but less homogeneous than the 3-dimensional conformal radiotherapy plans. Approximately 50% shorter
Dual permeability modeling of flow in a fractured geothermal reservoir
Miller, J.D.; Allman, D.W.
1986-01-01
A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.
Simulating conservative tracers in fractured till under realistic timescales.
Helmke, M F; Simpkins, W W; Horton, R
2005-01-01
Discrete-fracture and dual-porosity models are infrequently used to simulate solute transport through fractured unconsolidated deposits, despite their more common application in fractured rock where distinct flow regimes are hypothesized. In this study, we apply four fracture transport models--the mobile-immobile model (MIM), parallel-plate discrete-fracture model (PDFM), and stochastic and deterministic discrete-fracture models (DFMs)--to demonstrate their utility for simulating solute transport through fractured till. Model results were compared to breakthrough curves (BTCs) for the conservative tracers potassium bromide (KBr), pentafluorobenzoic acid (PFBA), and 1,4-piperazinediethanesulfonic acid (PIPES) in a large-diameter column of fractured till. Input parameters were determined from independent field and laboratory methods. Predictions of Br BTCs were not significantly different among models; however, the stochastic and deterministic DFMs were more accurate than the MIM or PDFM when predicting PFBA and PIPES BTCs. DFMs may be more applicable than the MIM for tracers with small effective diffusion coefficients (De) or for short timescales due to differences in how these models simulate diffusion or incorporate heterogeneities by their fracture networks. At large scales of investigation, the more computationally efficient MIM and PDFM may be more practical to implement than the three-dimensional DFMs, or a combination of model approaches could be employed. Regardless of the modeling approach used, fractures should be incorporated routinely into solute transport models in glaciated terrain. PMID:16324009
Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir
Miller, John D.; Allman, David W.
1986-01-21
A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.
Fracture Characterization in the Astor Pass Geothermal Field, Nevada
NASA Astrophysics Data System (ADS)
Walsh, D. C.; Reeves, D. M.; Pohll, G.; Lyles, B. F.; Cooper, C. A.
2011-12-01
The Astor Pass geothermal field, near Pyramid Lake, NV, is under study as a site of potential geothermal energy production. Three wells have been completed in the graben of this typical Basin and Range geologic setting. Lithologies include a layer of unconsolidated sediment (basin fill) underlain by various tertiary volcanic units and granodiorite and metavolcanic basement rock. Characterization of fractures within the relatively impermeable rock matrix is being conducted for the three wells. Statistical analysis of fracture orientation, densities, and spacing obtained from borehole imaging logs is used to determine stress orientation and to generate a statistically equivalent Discrete Fracture Network (DFN) model. Fractures at depth are compared to fracture data collected in nearby outcrops of the same lithologic stratigraphy. Fracture geometry and density is correlated to mechanically discrete layers within the stratigraphy to test whether variations in fracturing can be attributed to variations in Young's modulus. Correlation of fracture geometry and densities with spinner flowmeter logs and distributed temperature sensor records are made in an effort to identify potential flowing fracture zones intersecting the borehole. Mean fracture aperture is obtained from open fracture counts and reservoir-scale transmissivity values (computed from a 30 day pump test) in the absence of readily available aperture data. The goal of this thorough fracture characterization is to create a physically relevant model which may be coupled with a multipurpose fluid flow and thermal simulator for investigation of geothermal reservoir behavior, particularly at the borehole scale.
3-dimensional root phenotyping with a novel imaging and software platform
Technology Transfer Automated Retrieval System (TEKTRAN)
A novel imaging and software platform was developed for the high-throughput phenotyping of 3-dimensional root traits during seedling development. To demonstrate the platform’s capacity, plants of two rice (Oryza sativa) genotypes, Azucena and IR64, were grown in a transparent gellan gum system and ...
3-DIMENSIONAL MEASURED AND SIMULATED FLOW FOR SCOUR NEAR SPUR DIKES
Technology Transfer Automated Retrieval System (TEKTRAN)
To improve understanding of the flow and scour processes associated with spur dikes more fully, 3-dimensional flow velocities were measured using an acoustic Doppler velocimeter at a closely spaced grid over a fixed flat bed with a submerged spur dike. Some 2592 three-dimensional velocities around a...
3-dimensional orthodontics visualization system with dental study models and orthopantomograms
NASA Astrophysics Data System (ADS)
Zhang, Hua; Ong, S. H.; Foong, K. W. C.; Dhar, T.
2005-04-01
The aim of this study is to develop a system that provides 3-dimensional visualization of orthodontic treatments. Dental plaster models and corresponding orthopantomogram (dental panoramic tomogram) are first digitized and fed into the system. A semi-auto segmentation technique is applied to the plaster models to detect the dental arches, tooth interstices and gum margins, which are used to extract individual crown models. 3-dimensional representation of roots, generated by deforming generic tooth models with orthopantomogram using radial basis functions, is attached to corresponding crowns to enable visualization of complete teeth. An optional algorithm to close the gaps between deformed roots and actual crowns by using multi-quadratic radial basis functions is also presented, which is capable of generating smooth mesh representation of complete 3-dimensional teeth. User interface is carefully designed to achieve a flexible system with as much user friendliness as possible. Manual calibration and correction is possible throughout the data processing steps to compensate occasional misbehaviors of automatic procedures. By allowing the users to move and re-arrange individual teeth (with their roots) on a full dentition, this orthodontic visualization system provides an easy and accurate way of simulation and planning of orthodontic treatment. Its capability of presenting 3-dimensional root information with only study models and orthopantomogram is especially useful for patients who do not undergo CT scanning, which is not a routine procedure in most orthodontic cases.
Characterization of Students' Reasoning and Proof Abilities in 3-Dimensional Geometry
ERIC Educational Resources Information Center
Gutierrez, Angel; Pegg, John; Lawrie, Christine
2004-01-01
In this paper we report on a research aimed to identify and characterize secondary school students' reasoning and proof abilities when working with 3-dimensional geometric solids. We analyze students' answers to two problems asking them to prove certain properties of prisms. As results of this analysis, we get, on the one side, a characterization…
ERIC Educational Resources Information Center
Ince, Elif; Kirbaslar, Fatma Gulay; Yolcu, Ergun; Aslan, Ayse Esra; Kayacan, Zeynep Cigdem; Alkan Olsson, Johanna; Akbasli, Ayse Ceylan; Aytekin, Mesut; Bauer, Thomas; Charalambis, Dimitris; Gunes, Zeliha Ozsoy; Kandemir, Ceyhan; Sari, Umit; Turkoglu, Suleyman; Yaman, Yavuz; Yolcu, Ozgu
2014-01-01
The purpose of this study is to develop a 3-dimensional interactive multi-user and multi-admin IUVIRLAB featuring active learning methods and techniques for university students and to introduce the Virtual Laboratory of Istanbul University and to show effects of IUVIRLAB on students' attitudes on communication skills and IUVIRLAB. Although…
A discrete fractional random transform
NASA Astrophysics Data System (ADS)
Liu, Zhengjun; Zhao, Haifa; Liu, Shutian
2005-11-01
We propose a discrete fractional random transform based on a generalization of the discrete fractional Fourier transform with an intrinsic randomness. Such discrete fractional random transform inheres excellent mathematical properties of the fractional Fourier transform along with some fantastic features of its own. As a primary application, the discrete fractional random transform has been used for image encryption and decryption.
... to hold the fracture in the correct position. • Fiberglass casting is lighter and stronger and the exterior ... with your physician if this occurs. • When a fiberglass cast is used in conjunction with a GORE- ...
Discrete Newtonian cosmology: perturbations
NASA Astrophysics Data System (ADS)
Ellis, George F. R.; Gibbons, Gary W.
2015-03-01
In a previous paper (Gibbons and Ellis 2014 Discrete Newtonian cosmology Class. Quantum Grav. 31 025003), we showed how a finite system of discrete particles interacting with each other via Newtonian gravitational attraction would lead to precisely the same dynamical equations for homothetic motion as in the case of the pressure-free Friedmann-Lemaître-Robertson-Walker cosmological models of general relativity theory, provided the distribution of particles obeys the central configuration equation. In this paper we show that one can obtain perturbed such Newtonian solutions that give the same linearized structure growth equations as in the general relativity case. We also obtain the Dmitriev-Zel’dovich equations for subsystems in this discrete gravitational model, and show how it leads to the conclusion that voids have an apparent negative mass.
Flow upscaling in propped fracture
NASA Astrophysics Data System (ADS)
Jasinski, Lukasz; Dabrowski, Marcin
2016-04-01
Proppants in combination with hydraulic fracturing are widely used to maintain the production of oil or gas from low permeability formations (i.e. shale rocks). There are also examples of proppants use in geothermal reservoirs. Flow patterns in propped fracture control transport processes and give information about fracture/matrix exchange surface. Our main motivation is to understand flow behavior in such structures using direct numerical simulations and to find a good upscaling technique to be able to investigate models on reservoir scale. We study fracture made of two parallel plane walls, where void space between them is filled with partial monolayer of proppant. As the fracture is affected by closing pressure, the proppant grains are squeezed between two opposite fracture walls which can change the grain shapes or embed the grains into impermeable rock matrix. To take this effect into account and simplify the geometry, the grains are approximated as cylinders. Imposed macroscopic pressure gradient invokes flow in such medium. As the flow is considered in the low Reynolds number regime, a stationary velocity flow field is obtained by solving the Stokes equations in 3D by means of finite element method. Void space between the grains is accurately discretized by using tetrahedral mesh. To reduce computational effort, the Stokes equation is reduced over the fracture aperture to 2D Stokes-Brinkman equation, which is further numerically solved and compared against numerical solution in 3D. Systematic flow calculations using 2D Stokes-Brinkman equation are performed for periodic domain and no slip boundary condition on the grain surface. Results are discussed in terms of effective properties as a function of geometrical parameters of the medium, such as proppant packing fraction and proppant grain diameter to fracture aperture ratio.
Discrete breathers in crystals
NASA Astrophysics Data System (ADS)
Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.
2016-05-01
It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite
NASA Astrophysics Data System (ADS)
Arzano, Michele; Kowalski-Glikman, Jerzy
2016-09-01
We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.
ERIC Educational Resources Information Center
Sharp, Karen Tobey
This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…
Method for hydraulic fracturing cased wellbores
Schmidt, J.H.
1991-12-24
This patent describes a method of hydraulically fracturing a cased wellbore in an earth formation. It comprises determining the angle with respect to the wellbore axis and a reference point on the circumference of the wellbore which will provide for initiation of a hydraulic fracture in the formation which will turn with the largest radius of curvature into a fracture plane normal to the minimum in situ stress in the formation; perforating the wellbore casing at the angle with respect to the reference point; initiating a hydraulic fracture in the formation by pumping a liquid through the perforation and into the formation to force the initiation of a fracture in the formation at a point which develops the highest tensile stress in the formation in relation to increasing the hydraulic pressure in the wellbore; extending the fracture by pumping a relatively proppant-free quantities of proppant per unit volume of pumped fluid and in successive discrete stages of increasing proppant density to provide a propped portion of increasing proppant density to provide a propped portion of the fracture in the near wellbore region of the fracture which will prevent reclosing of the fracture in the near wellbore region.
Well test analysis in fractured media
Karasaki, K.
1986-04-01
In this study the behavior of fracture systems under well test conditions and methods for analyzing well test data from fractured media are investigated. Several analytical models are developed to be used for analyzing well test data from fractured media. Numerical tools that may be used to simulate fluid flow in fractured media are also presented. Three types of composite models for constant flux tests are investigated. Several slug test models with different geometric conditions that may be present in fractured media are also investigated. A finite element model that can simulate transient fluid flow in fracture networks is used to study the behavior of various two-dimensional fracture systems under well test conditions. A mesh generator that can be used to model mass and heat flow in a fractured-porous media is presented. This model develops an explicit solution in the porous matrix as well as in the discrete fractures. Because the model does not require the assumptions of the conventional double porosity approach, it may be used to simulate cases where double porosity models fail.
Creating 3-dimensional Models of the Photosphere using the SIR Code
NASA Astrophysics Data System (ADS)
Thonhofer, S.; Utz, D.; Jurčák, J.; Pauritsch, J.; Hanslmeier, A.; Lemmerer, B.
A high-resolution 3-dimensional model of the photospheric magnetic field is essential for the investigation of magnetic features such as sunspots, pores or smaller elements like single flux tubes seen as magnetic bright points. The SIR code is an advanced inversion code that retrieves physical quantities, e.g. magnetic field, from Stokes profiles. Based on this code, we developed a program for automated inversion of Hinode SOT/SP data and for storing these results in 3-dimensional data cubes in the form of fits files. We obtained models of the temperature, magnetic field strength, magnetic field angles and LOS-velocity in a region of the quiet sun. We will give a first discussion of those parameters in regards of small scale magnetic fields and what we can obtain and learn in the future.
Collawn, Sherry S; Mobley, James A; Banerjee, N Sanjib; Chow, Louise T
2016-04-01
Wound healing involves a number of factors that results in the production of a "closed" wound. Studies have shown, in animal models, acceleration of wound healing with the addition of adipose-derived stromal cells (ADSC). The cause for the positive effect which these cells have on wound healing has not been elucidated. We have previously shown that addition of ADSC to the dermal equivalent in 3-dimensional skin cultures accelerates reepithelialization. We now demonstrate that conditioned media (CM) from cultured ADSC produced a similar rate of healing. This result suggests that a feedback from the 3-dimensional epithelial cultures to ADSC was not necessary to effect the accelerated reepithelialization. Mass spectrometry of CM from ADSC and primary human fibroblasts revealed differences in secretomes, some of which might have roles in the accelerating wound healing. Thus, the use of CM has provided some preliminary information on a possible mode of action. PMID:26954733
Towards non-AdS holography in 3-dimensional higher spin gravity
NASA Astrophysics Data System (ADS)
Gary, Michael; Grumiller, Daniel; Rashkov, Radoslav
2012-03-01
We take the first steps towards non-AdS holography in higher spin gravity. Namely, we propose a variational principle for generic 3-dimensional higher spin gravity that accommodates asymptotic backgrounds beyond AdS, like asymptotically Schrödinger, Lifshitz or warped AdS spacetimes. As examples we study in some detail the four sl(2) embeddings of spin-4 gravity and provide associated geometries, including an asymptotic Lifshitz black hole.
Energy Sources of the Dominant Frequency Dependent 3-dimensional Atmospheric Modes
NASA Technical Reports Server (NTRS)
Schubert, S.
1985-01-01
The energy sources and sinks associated with the zonally asymmetric winter mean flow are investigated as part of an on-going study of atmospheric variability. Distinctly different horizontal structures for the long, intermediate and short time scale atmospheric variations were noted. In previous observations, the 3-dimensional structure of the fluctuations is investigated and the relative roles of barotropic and baroclinic terms are assessed.
Pediatric Thighbone (Femur) Fracture
... fractures in infants under 1 year old is child abuse. Child abuse is also a leading cause of thighbone fracture ... contact sports • Being in a motor vehicle accident • Child abuse Types of Femur Fractures (Classification) Femur fractures vary ...
Not Available
1990-01-01
This book contains papers on hydraulic fracturing. Topics covered include: An overview of recent advances in hydraulic fracturing technology; Containment of massive hydraulic fracture; and Fracturing with a high-strength proppant.
NASA Astrophysics Data System (ADS)
Zou, Yushi; Zhang, Shicheng; Ma, Xinfang; Zhou, Tong; Zeng, Bo
2016-03-01
Hydraulic fracture network (HFN) propagation in naturally fractured shale formations is investigated numerically using a 3D complex fracturing model based on the discrete element method. To account for the plastic deformation behavior of shales, the Drucker-Prager plasticity model is incorporated into the fracturing model. Parametric studies are then conducted for different Young's moduli, horizontal differential stresses, natural fracture (NF) properties, injection rates, and number and spacing of perforation clusters. Numerical results show that horizontal differential stress primarily determines the generation of a complex HFN. The plastic deformation of shale can reduce the stimulated reservoir volume; this is more obvious with Young's modulus of less than 20 GPa. In addition, a higher injection rate could largely increase the fracture complexity index (FCI). Moreover, increasing perforation cluster numbers per fracturing stage is beneficial for increasing the FCI, but it also increases the potential merging of neighboring fractures, which may lead to non-uniform development of HFN in far-wellbore regions. To achieve uniform development of HFN within a fracturing stage, the distribution of NFs should be fully considered. The results presented here may provide improved understanding of HFN generation and are favorable for optimizing fracturing treatment designs for shale formations.
Fracture process zone in granite
Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.
2000-01-01
In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.
Discreteness induced extinction
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira; da Silva, Linaena Méricy
2015-11-01
Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
Su, Yuliang; Ren, Long; Meng, Fankun; Xu, Chen; Wang, Wendong
2015-01-01
Stimulated reservoir volume (SRV) fracturing in tight oil reservoirs often induces complex fracture-network growth, which has a fundamentally different formation mechanism from traditional planar bi-winged fracturing. To reveal the mechanism of fracture network propagation, this paper employs a modified displacement discontinuity method (DDM), mechanical mechanism analysis and initiation and propagation criteria for the theoretical model of fracture network propagation and its derivation. A reasonable solution of the theoretical model for a tight oil reservoir is obtained and verified by a numerical discrete method. Through theoretical calculation and computer programming, the variation rules of formation stress fields, hydraulic fracture propagation patterns (FPP) and branch fracture propagation angles and pressures are analyzed. The results show that during the process of fracture propagation, the initial orientation of the principal stress deflects, and the stress fields at the fracture tips change dramatically in the region surrounding the fracture. Whether the ideal fracture network can be produced depends on the geological conditions and on the engineering treatments. This study has both theoretical significance and practical application value by contributing to a better understanding of fracture network propagation mechanisms in unconventional oil/gas reservoirs and to the improvement of the science and design efficiency of reservoir fracturing. PMID:25966285
A paradigm for discrete physics
Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.
1987-01-01
An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.
Efficient and robust compositional two-phase reservoir simulation in fractured media
NASA Astrophysics Data System (ADS)
Zidane, A.; Firoozabadi, A.
2015-12-01
Compositional and compressible two-phase flow in fractured media has wide applications including CO2 injection. Accurate simulations are currently based on the discrete fracture approach using the cross-flow equilibrium model. In this approach the fractures and a small part of the matrix blocks are combined to form a grid cell. The major drawback is low computational efficiency. In this work we use the discrete-fracture approach to model the fractures where the fracture entities are described explicitly in the computational domain. We use the concept of cross-flow equilibrium in the fractures (FCFE). This allows using large matrix elements in the neighborhood of the fractures. We solve the fracture transport equations implicitly to overcome the Courant-Freidricks-Levy (CFL) condition in the small fracture elements. Our implicit approach is based on calculation of the derivative of the molar concentration of component i in phase (cαi ) with respect to the total molar concentration (ci ) at constant volume V and temperature T. This contributes to significant speed up of the code. The hybrid mixed finite element method (MFE) is used to solve for the velocity in both the matrix and the fractures coupled with the discontinuous Galerkin (DG) method to solve the species transport equations in the matrix, and a finite volume (FV) discretization in the fractures. In large scale problems the proposed approach is orders of magnitude faster than the existing models.
Fracture sealing utilising microbially induced carbonate precipitation
NASA Astrophysics Data System (ADS)
Moir, H.; El Mountassir, G.; Lunn, R. J.; Gilfillan, L. J.
2011-12-01
is focussed along a gradually decreasing number of discrete tortuous channels (within the fracture plane). Experiments also show that above a certain threshold velocity, precipitation can no longer occur. As a consequence, once the number and aperture of channels within a fracture plane is sufficiently small, the fluid velocity exceeds this threshold and a steady state is achieved i.e. no further precipitation occurs. These experiments have important consequences for understanding fluid flow and contaminant migration within the crust. They imply that, for bio-mineral processes at least, after each mechanical failure of the crust, regional fracture networks may gradually reduce to form a small number of discrete stable pathways within which the velocity exceeds a given threshold value that prohibits further mineralisation.
Chua, Julianto; Mathews, Nripan; Jennings, James R; Yang, Guangwu; Wang, Qing; Mhaisalkar, Subodh G
2011-11-21
We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy. PMID:21989708
Incorporating a 3-dimensional printer into the management of early-stage cervical cancer.
Baek, Min-Hyun; Kim, Dae-Yeon; Kim, Namkug; Rhim, Chae Chun; Kim, Jong-Hyeok; Nam, Joo-Hyun
2016-08-01
We used a 3-dimensional (3D) printer to create anatomical replicas of real lesions and tested its application in cervical cancer. Our study patient decided to undergo radical hysterectomy after seeing her 3D model which was then used to plan and simulate this surgery. Using 3D printers to create patient-specific 3D tumor models may aid cervical cancer patients make treatment decisions. This technology will lead to better surgical and oncological outcomes for cervical cancer patients. J. Surg. Oncol. 2016;114:150-152. © 2016 Wiley Periodicals, Inc. PMID:27222318
MT3D: a 3 dimensional magnetotelluric modeling program (user's guide and documentation for Rev. 1)
Nutter, C.; Wannamaker, P.E.
1980-11-01
MT3D.REV1 is a non-interactive computer program written in FORTRAN to do 3-dimensional magnetotelluric modeling. A 3-D volume integral equation has been adapted to simulate the MT response of a 3D body in the earth. An integro-difference scheme has been incorporated to increase the accuracy. This is a user's guide for MT3D.REV1 on the University of Utah Research Institute's (UURI) PRIME 400 computer operating under PRIMOS IV, Rev. 17.
International "Intercomparison of 3-Dimensional (3D) Radiation Codes" (13RC)
NASA Technical Reports Server (NTRS)
Cahalan, Robert F.; Einaudi, Franco (Technical Monitor)
2000-01-01
An international "Intercomparison of 3-dimensional (3D) Radiation Codes" 13RC) has been initiated. It is endorsed by the GEWEX Radiation Panel, and funded jointly by the United States Department of Energy ARM program, and by the National Aeronautics and Space Administration Radiation Sciences program. It is a 3-phase effort that has as its goals to: (1) understand the errors and limits of 3D methods; (2) provide 'baseline' cases for future 3D code development; (3) promote sharing of 3D tools; (4) derive guidelines for 3D tool selection; and (5) improve atmospheric science education in 3D radiation.
High-speed 3-dimensional imaging in robot-assisted thoracic surgical procedures.
Kajiwara, Naohiro; Akata, Soichi; Hagiwara, Masaru; Yoshida, Koichi; Kato, Yasufumi; Kakihana, Masatoshi; Ohira, Tatsuo; Kawate, Norihiko; Ikeda, Norihiko
2014-06-01
We used a high-speed 3-dimensional (3D) image analysis system (SYNAPSE VINCENT, Fujifilm Corp, Tokyo, Japan) to determine the best positioning of robotic arms and instruments preoperatively. The da Vinci S (Intuitive Surgical Inc, Sunnyvale, CA) was easily set up accurately and rapidly for this operation. Preoperative simulation and intraoperative navigation using the SYNAPSE VINCENT for robot-assisted thoracic operations enabled efficient planning of the operation settings. The SYNAPSE VINCENT can detect the tumor location and depict surrounding tissues quickly, accurately, and safely. This system is also excellent for navigational and educational use. PMID:24882302
NASA Technical Reports Server (NTRS)
Kubrynski, Krzysztof
1991-01-01
A subcritical panel method applied to flow analysis and aerodynamic design of complex aircraft configurations is presented. The analysis method is based on linearized, compressible, subsonic flow equations and indirect Dirichlet boundary conditions. Quadratic dipol and linear source distribution on flat panels are applied. In the case of aerodynamic design, the geometry which minimizes differences between design and actual pressure distribution is found iteratively, using numerical optimization technique. Geometry modifications are modeled by surface transpiration concept. Constraints in respect to resulting geometry can be specified. A number of complex 3-dimensional design examples are presented. The software is adopted to personal computers, and as result an unexpected low cost of computations is obtained.
A 3-dimensional finite-difference method for calculating the dynamic coefficients of seals
NASA Technical Reports Server (NTRS)
Dietzen, F. J.; Nordmann, R.
1989-01-01
A method to calculate the dynamic coefficients of seals with arbitrary geometry is presented. The Navier-Stokes equations are used in conjunction with the k-e turbulence model to describe the turbulent flow. These equations are solved by a full 3-dimensional finite-difference procedure instead of the normally used perturbation analysis. The time dependence of the equations is introduced by working with a coordinate system rotating with the precession frequency of the shaft. The results of this theory are compared with coefficients calculated by a perturbation analysis and with experimental results.
NASA Astrophysics Data System (ADS)
Kotulski, Zbigniew; Szczepaski, Janusz
In the paper we propose a new method of constructing cryptosystems utilising a nonpredictability property of discrete chaotic systems. We formulate the requirements for such systems to assure their safety. We also give examples of practical realisation of chaotic cryptosystems, using a generalisation of the method presented in [7]. The proposed algorithm of encryption and decryption is based on multiple iteration of a certain dynamical chaotic system. We assume that some part of the initial condition is a plain message. As the secret key we assume the system parameter(s) and additionally another part of the initial condition.
NASA Astrophysics Data System (ADS)
Wuensche, Andrew
DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.
Breakdown of Continuum Fracture Mechanics at the Nanoscale
Shimada, Takahiro; Ouchi, Kenji; Chihara, Yuu; Kitamura, Takayuki
2015-01-01
Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively described by fracture mechanics that uses an intensity of singular stress field characteristically formed near the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of failure of materials at the nanoscale due to discreteness of atoms. Here, we demonstrate the ultimate dimensional limit of fracture mechanics at the nanoscale, where only a small number of atoms are included in a singular field of continuum stress formed near a crack tip. Surprisingly, a singular stress field of only several nanometers still governs fracture as successfully as that at the macroscale, whereas both the stress intensity factor and the energy release rate fail to describe fracture below a critically confined singular field of 2–3 nm, i.e., breakdown of fracture mechanics within the framework of the continuum theory. We further propose an energy-based theory that explicitly accounts for the discrete nature of atoms, and demonstrate that our theory not only successfully describes fracture even below the critical size but also seamlessly connects the atomic to macroscales. It thus provides a more universal fracture criterion, and novel atomistic insights into fracture. PMID:25716684
Breakdown of Continuum Fracture Mechanics at the Nanoscale
NASA Astrophysics Data System (ADS)
Shimada, Takahiro; Ouchi, Kenji; Chihara, Yuu; Kitamura, Takayuki
2015-02-01
Materials fail by the nucleation and propagation of a crack, the critical condition of which is quantitatively described by fracture mechanics that uses an intensity of singular stress field characteristically formed near the crack-tip. However, the continuum assumption basing fracture mechanics obscures the prediction of failure of materials at the nanoscale due to discreteness of atoms. Here, we demonstrate the ultimate dimensional limit of fracture mechanics at the nanoscale, where only a small number of atoms are included in a singular field of continuum stress formed near a crack tip. Surprisingly, a singular stress field of only several nanometers still governs fracture as successfully as that at the macroscale, whereas both the stress intensity factor and the energy release rate fail to describe fracture below a critically confined singular field of 2-3 nm, i.e., breakdown of fracture mechanics within the framework of the continuum theory. We further propose an energy-based theory that explicitly accounts for the discrete nature of atoms, and demonstrate that our theory not only successfully describes fracture even below the critical size but also seamlessly connects the atomic to macroscales. It thus provides a more universal fracture criterion, and novel atomistic insights into fracture.
NASA Astrophysics Data System (ADS)
Calogero, Francesco
2011-08-01
The original continuous-time ''goldfish'' dynamical system is characterized by two neat formulas, the first of which provides the N Newtonian equations of motion of this dynamical system, while the second provides the solution of the corresponding initial-value problem. Several other, more general, solvable dynamical systems ''of goldfish type'' have been identified over time, featuring, in the right-hand (''forces'') side of their Newtonian equations of motion, in addition to other contributions, a velocity-dependent term such as that appearing in the right-hand side of the first formula mentioned above. The solvable character of these models allows detailed analyses of their behavior, which in some cases is quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we introduce and discuss various discrete-time dynamical systems, which are as well solvable, which also display interesting behaviors (including isochrony and asymptotic isochrony) and which reduce to dynamical systems of goldfish type in the limit when the discrete-time independent variable l=0,1,2,... becomes the standard continuous-time independent variable t, 0≤t<∞.
NASA Astrophysics Data System (ADS)
Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan
2014-06-01
X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XµCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XµCT-equipment. The developed calibration procedure of the X-ray-µCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XµCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.
Feng, Guodong; Zhao, Yang; Tian, Xu; Gao, Zhiqiang
2014-01-01
This study aimed to establish a 3-dimensional dynamic quantitative facial motion analysis system, and then determine its accuracy and test-retest reliability. The system could automatically reconstruct the motion of the observational points. Standardized T-shaped rod and L-shaped rods were used to evaluate the static and dynamic accuracy of the system. Nineteen healthy volunteers were recruited to test the reliability of the system. The average static distance error measurement was 0.19 mm, and the average angular error was 0.29°. The measuring results decreased with the increase of distance between the cameras and objects, 80 cm of which was considered to be optimal. It took only 58 seconds to perform the full facial measurement process. The average intra-class correlation coefficient for distance measurement and angular measurement was 0.973 and 0.794 respectively. The results demonstrated that we successfully established a practical 3-dimensional dynamic quantitative analysis system that is accurate and reliable enough to meet both clinical and research needs. PMID:25390881
A customizable 3-dimensional digital atlas of the canary brain in multiple modalities.
Vellema, Michiel; Verschueren, Jacob; Van Meir, Vincent; Van der Linden, Annemie
2011-07-15
Songbirds are well known for their ability to learn their vocalizations by imitating conspecific adults. This uncommon skill has led to many studies examining the behavioral and neurobiological processes involved in vocal learning. Canaries display a variable, seasonally dependent, vocal behavior throughout their lives. This trait makes this bird species particularly valuable to study the functional relationship between the continued plasticity in the singing behavior and alterations in the anatomy and physiology of the brain. In order to optimally interpret these types of studies, a detailed understanding of the brain anatomy is essential. Because traditional 2-dimensional brain atlases are limited in the information they can provide about the anatomy of the brain, here we present a 3-dimensional MRI-based atlas of the canary brain. Using multiple imaging protocols we were able to maximize the number of detectable brain regions, including most of the areas involved in song perception, learning, and production. The brain atlas can readily be used to determine the stereotactic location of delineated brain areas at any desirable head angle. Alternatively the brain data can be used to determine the ideal orientation of the brain for stereotactic injections, electrophysiological recordings, and brain sectioning. The 3-dimensional canary brain atlas presented here is freely available and is easily adaptable to support many types of neurobiological studies, including anatomical, electrophysiological, histological, explant, and tracer studies. PMID:21565273
Realization of integral 3-dimensional image using fabricated tunable liquid lens array
NASA Astrophysics Data System (ADS)
Lee, Muyoung; Kim, Junoh; Kim, Cheol Joong; Lee, Jin Su; Won, Yong Hyub
2015-03-01
Electrowetting has been widely studied for various optical applications such as optical switch, sensor, prism, and display. In this study, vari-focal liquid lens array is developed using electrowetting principle to construct integral 3-dimensional imaging. The electrowetting principle that changes the surface tension by applying voltage has several advantages to realize active optical device such as fast response time, low electrical consumption, and no mechanical moving parts. Two immiscible liquids that are water and oil are used for forming lens. By applying a voltage to the water, the focal length of the lens could be tuned as changing contact angle of water. The fabricated electrowetting vari-focal liquid lens array has 1mm diameter spherical lens shape that has 1.6mm distance between each lens. The number of lenses on the panel is 23x23 and the focal length of the lens array is simultaneously tuned from -125 to 110 diopters depending on the applied voltage. The fabricated lens array is implemented to integral 3-dimensional imaging. A 3D object is reconstructed by fabricated liquid lens array with 23x23 elemental images that are generated by 3D max tools. When liquid lens array is tuned as convex state. From vari-focal liquid lens array implemented integral imaging system, we expect that depth enhanced integral imaging can be realized in the near future.
Morphological Control of Cells on 3-Dimensional Multi-Layer Nanotopographic Structures.
Jeong, Heon-Ho; Noh, Young-Mu; Song, Hwan-Moon; Lee, Sang-Ho; Park, Jin-Sung; Lee, Chang-Soo
2015-05-01
The extracellular matrix (ECM) environment is known to play an important role in the process of various cell regulatory mechanisms. We have investigated the ability of 3-dimensional ECM geometries to induce morphological changes in cells. Bi-layer polymeric structures with submicron scale stripe patterns were fabricated using a two-step nano-imprinting technique, and the orientation angle (θ(α)) of the upper layer was controlled by changing its alignment with respect to the orientation of the bottom layer. When cells were grown on the mono-layer stripe structure with a single orientation, they elongated along the direction of the stripe pattern. On bi-layer polymer structures, the cell morphologies gradually changed and became rounded, with an increase of θα up to 90 degrees, but the polarities of these cells were still aligned along the orientation of the upper layer. As a result, we show that the polarity and the roundness of cells can be independently regulated by adjusting the orientation of 3-dimensional hierarchical ECM topography. PMID:26505024
Particle trajectory computation on a 3-dimensional engine inlet. Final Report Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, J. J.
1986-01-01
A 3-dimensional particle trajectory computer code was developed to compute the distribution of water droplet impingement efficiency on a 3-dimensional engine inlet. The computed results provide the essential droplet impingement data required for the engine inlet anti-icing system design and analysis. The droplet trajectories are obtained by solving the trajectory equation using the fourth order Runge-Kutta and Adams predictor-corrector schemes. A compressible 3-D full potential flow code is employed to obtain a cylindrical grid definition of the flowfield on and about the engine inlet. The inlet surface is defined mathematically through a system of bi-cubic parametric patches in order to compute the droplet impingement points accurately. Analysis results of the 3-D trajectory code obtained for an axisymmetric droplet impingement problem are in good agreement with NACA experimental data. Experimental data are not yet available for the engine inlet impingement problem analyzed. Applicability of the method to solid particle impingement problems, such as engine sand ingestion, is also demonstrated.
Galland-Girodet, Sigolène; Pashtan, Itai; MacDonald, Shannon M.; Ancukiewicz, Marek; Hirsch, Ariel E.; Kachnic, Lisa A.; Specht, Michelle; Gadd, Michele; Smith, Barbara L.; Powell, Simon N.; Recht, Abram; Taghian, Alphonse G.
2014-11-01
Purpose: To present long-term outcomes of a prospective feasibility trial using either protons or 3-dimensional conformal photon-based (accelerated partial-breast irradiation [APBI]) techniques. Methods and Materials: From October 2003 to April 2006, 98 evaluable patients with stage I breast cancer were treated with APBI (32 Gy in 8 fractions given twice daily) on a prospective clinical trial: 19 with proton beam therapy (PBT) and 79 with photons or mixed photons/electrons. Median follow-up was 82.5 months (range, 2-104 months). Toxicity and patient satisfaction evaluations were performed at each visit. Results: At 7 years, the physician rating of overall cosmesis was good or excellent for 62% of PBT patients, compared with 94% for photon patients (P=.03). Skin toxicities were more common for the PBT group: telangiectasia, 69% and 16% (P=.0013); pigmentation changes, 54% and 22% (P=.02); and other late skin toxicities, 62% and 18% (P=.029) for PBT and photons, respectively. There were no significant differences between the groups in the incidences of breast pain, edema, fibrosis, fat necrosis, skin desquamation, and rib pain or fracture. Patient-reported cosmetic outcomes at 7 years were good or excellent for 92% and 96% of PBT and photon patients, respectively (P=.95). Overall patient satisfaction was 93% for the entire cohort. The 7-year local failure rate for all patients was 6%, with 3 local recurrences in the PBT group (7-year rate, 11%) and 2 in photon-treated patients (4%) (P=.22). Conclusions: Local failure rates of 3-dimensional APBI and PBT were similar in this study. However, PBT, as delivered in this study, led to higher rates of long-term telangiectasia, skin color changes, and skin toxicities. We recommend the use of multiple fields and treatment of all fields per treatment session or the use of scanning techniques to minimize skin toxicity.
Noyes, H.P. ); Starson, S. )
1991-03-01
Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.
Discrete Sibson interpolation.
Park, Sung W; Linsen, Lars; Kreylos, Oliver; Owens, John D; Hamann, Bernd
2006-01-01
Natural-neighbor interpolation methods, such as Sibson's method, are well-known schemes for multivariate data fitting and reconstruction. Despite its many desirable properties, Sibson's method is computationally expensive and difficult to implement, especially when applied to higher-dimensional data. The main reason for both problems is the method's implementation based on a Voronoi diagram of all data points. We describe a discrete approach to evaluating Sibson's interpolant on a regular grid, based solely on finding nearest neighbors and rendering and blending d-dimensional spheres. Our approach does not require us to construct an explicit Voronoi diagram, is easily implemented using commodity three-dimensional graphics hardware, leads to a significant speed increase compared to traditional approaches, and generalizes easily to higher dimensions. For large scattered data sets, we achieve two-dimensional (2D) interpolation at interactive rates and 3D interpolation (3D) with computation times of a few seconds. PMID:16509383
Discrete Pearson distributions
Bowman, K.O.; Shenton, L.R.; Kastenbaum, M.A.
1991-11-01
These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.
Immigration and Prosecutorial Discretion
Apollonio, Dorie; Lochner, Todd; Heddens, Myriah
2015-01-01
Immigration has become an increasingly salient national issue in the US, and the Department of Justice recently increased federal efforts to prosecute immigration offenses. This shift, however, relies on the cooperation of US attorneys and their assistants. Traditionally federal prosecutors have enjoyed enormous discretion and have been responsive to local concerns. To consider how the centralized goal of immigration enforcement may have influenced federal prosecutors in regional offices, we review their prosecution of immigration offenses in California using over a decade's worth of data. Our findings suggest that although centralizing forces influence immigration prosecutions, individual US attorneys' offices retain distinct characteristics. Local factors influence federal prosecutors' behavior in different ways depending on the office. Contrary to expectations, unemployment rates did not affect prosecutors' willingness to pursue immigration offenses, nor did local popular opinion about illegal immigration. PMID:26146530
Discrete stability in stochastic programming
Lepp, R.
1994-12-31
In this lecture we study stability properties of stochastic programs with recourse where the probability measure is approximated by a sequence of weakly convergent discrete measures. Such discrete approximation approach gives us a possibility to analyze explicitly the behavior of the second stage correction function. The approach is based on modern functional analytical methods of an approximation of extremum problems in function spaces, especially on the notion of the discrete convergence of vectors to an essentially bounded measurable function.
Estimating the hydraulic conductivity of two-dimensional fracture networks
NASA Astrophysics Data System (ADS)
Leung, C. T.; Zimmerman, R. W.
2010-12-01
Most oil and gas reservoirs, as well as most potential sites for nuclear waste disposal, are naturally fractured. In these sites, the network of fractures will provide the main path for fluid to flow through the rock mass. In many cases, the fracture density is so high as to make it impractical to model it with a discrete fracture network (DFN) approach. For such rock masses, it would be useful to have recourse to analytical, or semi-analytical, methods to estimate the macroscopic hydraulic conductivity of the fracture network. We have investigated single-phase fluid flow through stochastically generated two-dimensional fracture networks. The centres and orientations of the fractures are uniformly distributed, whereas their lengths follow either a lognormal distribution or a power law distribution. We have considered the case where the fractures in the network each have the same aperture, as well as the case where the aperture of each fracture is directly proportional to the fracture length. The discrete fracture network flow and transport simulator NAPSAC, developed by Serco (Didcot, UK), is used to establish the “true” macroscopic hydraulic conductivity of the network. We then attempt to match this conductivity using a simple estimation method that does not require extensive computation. For our calculations, fracture networks are represented as networks composed of conducting segments (bonds) between nodes. Each bond represents the region of a single fracture between two adjacent intersections with other fractures. We assume that the bonds are arranged on a kagome lattice, with some fraction of the bonds randomly missing. The conductance of each bond is then replaced with some effective conductance, Ceff, which we take to be the arithmetic mean of the individual conductances, averaged over each bond, rather than over each fracture. This is in contrast to the usual approximation used in effective medium theories, wherein the geometric mean is used. Our
Modeling Electric Current Flow in 3D Fractured Media
NASA Astrophysics Data System (ADS)
Demirel, S.; Roubinet, D.; Irving, J.
2014-12-01
The study of fractured rocks is extremely important in a variety of research fields and applications such as hydrogeology, hydrocarbon extraction and long-term storage of toxic waste. As fractures are highly conductive structures in comparison to the surrounding rock, their presence can be either an advantage or a drawback. For hydrocarbon extraction, fractures allow for quick and easy access to the resource whereas for toxic waste storage their presence increases the risk of leakage and migration of pollutants. In both cases, the identification of fracture network characteristics is an essential step. Recently, we have developed an approach for modeling electric current flow in 2D fractured media. This approach is based on a discrete-dual-porosity model where fractures are represented explicitly, the matrix is coarsely discretized into blocks, and current flow exchange between the fractures and matrix is analytically evaluated at the fracture-scale and integrated at the block-scale [1]. Although this approach has shown much promise and has proven its efficiency for 2D simulations, its extension to 3D remains to be addressed. To this end, we assume that fractures can be represented as two-dimensional finite planes embedded in the surrounding matrix, and we express analytically the distribution of electric potential at the fracture scale. This fracture-scale expression takes into account the electric-current-flow exchange with the surrounding matrix and flow conservation is enforced at the fracture intersections. The fracture-matrix exchange is then integrated at the matrix-block scale where the electric current flow conservation at the block boundaries is formulated with a modified finite volume method. With the objective of providing a low-computational-cost modeling approach adapted to 3D simulations in fractured media, our model is (i) validated and compared to existing modeling approaches and, (ii) used to evaluate the impact of the presence of fractures on
Radial head fracture - aftercare
Elbow fracture - radial head - aftercare ... the radius bone, just below your elbow. A fracture is a break in your bone. The most common cause of a radial head fracture is falling with an outstretched arm.
... this page: //medlineplus.gov/ency/patientinstructions/000552.htm Hand fracture - aftercare To use the sharing features on ... need to be repaired with surgery. Types of hand fractures Your fracture may be in one of ...
NASA Astrophysics Data System (ADS)
Roubinet, D.; Linde, N.; Jougnot, D.; Irving, J.
2016-05-01
Numerous field experiments suggest that the self-potential (SP) geophysical method may allow for the detection of hydraulically active fractures and provide information about fracture properties. However, a lack of suitable numerical tools for modeling streaming potentials in fractured media prevents quantitative interpretation and limits our understanding of how the SP method can be used in this regard. To address this issue, we present a highly efficient two-dimensional discrete-dual-porosity approach for solving the fluid flow and associated self-potential problems in fractured rock. Our approach is specifically designed for complex fracture networks that cannot be investigated using standard numerical methods. We then simulate SP signals associated with pumping conditions for a number of examples to show that (i) accounting for matrix fluid flow is essential for accurate SP modeling and (ii) the sensitivity of SP to hydraulically active fractures is intimately linked with fracture-matrix fluid interactions. This implies that fractures associated with strong SP amplitudes are likely to be hydraulically conductive, attracting fluid flow from the surrounding matrix.
NASA Astrophysics Data System (ADS)
Jia, Pin; Cheng, Linsong; Huang, Shijun; Wu, Yonghui
2016-06-01
This paper presents a semi-analytical model for the flow behavior of naturally fractured formations with multi-scale fracture networks. The model dynamically couples an analytical dual-porosity model with a numerical discrete fracture model. The small-scale fractures with the matrix are idealized as a dual-porosity continuum and an analytical flow solution is derived based on source functions in Laplace domain. The large-scale fractures are represented explicitly as the major fluid conduits and the flow is numerically modeled, also in Laplace domain. This approach allows us to include finer details of the fracture network characteristics while keeping the computational work manageable. For example, the large-scale fracture network may have complex geometry and varying conductivity, and the computations can be done at predetermined, discrete times, without any grids in the dual-porosity continuum. The validation of the semi-analytical model is demonstrated in comparison to the solution of ECLIPSE reservoir simulator. The simulation is fast, gridless and enables rapid model setup. On the basis of the model, we provide detailed analysis of the flow behavior of a horizontal production well in fractured reservoir with multi-scale fracture networks. The study has shown that the system may exhibit six flow regimes: large-scale fracture network linear flow, bilinear flow, small-scale fracture network linear flow, pseudosteady-state flow, interporosity flow and pseudoradial flow. During the first four flow periods, the large-scale fracture network behaves as if it only drains in the small-scale fracture network; that is, the effect of the matrix is negligibly small. The characteristics of the bilinear flow and the small-scale fracture network linear flow are predominantly determined by the dimensionless large-scale fracture conductivity. And low dimensionless fracture conductivity will generate large pressure drops in the large-scale fractures surrounding the wellbore. With
NASA Technical Reports Server (NTRS)
2005-01-01
[figure removed for brevity, see original site] Context image for PIA03084 Fractured Surface
These fractures and graben are part of Gordii Fossae, a large region that has undergone stresses which have cracked the surface.
Image information: VIS instrument. Latitude 16.6S, Longitude 234.3E. 18 meter/pixel resolution.
Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.
NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.
3-dimensional interactive space (3DIS); A new dimension in asset protection
Veitch, S. ); Veitch, J. ); West, S.J. )
1991-01-01
This paper reports on the 3DIS security system which uses standard CCTV cameras to create 3-Dimensional detection zones around valuable assets within protected areas. An intrusion into a zone changes light values and triggers an alarm that is annunciated, while images from multiple cameras are recorded. 3DIS lowers nuisance alarm rates and provides superior automated surveillance capability. Performance is improved over 2-D systems because activity around, above or below the zone does to cause an alarm. Invisible 3-D zones protect assets as small as a pin or as large as a 747 jetliner. Detection zones are created by excising subspaces from the overlapping fields of view of two or more video cameras. Hundred of zones may co-exist, operating simultaneously. Intrusion into any 3-D zone will cause a coincidental change in light values, triggering an alarm specific to that space.
Tracking Error analysis of Concentrator Photovoltaic Module Using Total 3-Dimensional Simulator
NASA Astrophysics Data System (ADS)
Ota, Yasuyuki; Nishioka, Kensuke
2011-12-01
A 3-dimensional (3D) operating simulator for concentrator photovoltaic (CPV) module using triple-junction solar cell was developed. By connecting 3D equivalent circuit simulation for triple-junction solar cell and ray-trace simulation for optics model, the operating characteristics of CPV module were calculated. A typical flat Fresnel lens and homogenizer were adapted to the optics model. The influence of tracking error on the performance of CPV module was calculated. There was the correlation between the optical efficiency and Isc. However, Pm was not correlated with these values, and was strongly dependent on FF. We can use this total simulator for the evaluation and optimization from the light incidence to operating characteristic of CPV modules.
NASA Technical Reports Server (NTRS)
UijtdeHaag, Maarten; Thomas, Robert; Rankin, James R.
2004-01-01
The report discusses the architecture and the flight test results of a 3-Dimensional Cockpit Display of Traffic and terrain Information (3D-CDTI). The presented 3D-CDTI is a perspective display format that combines existing Synthetic Vision System (SVS) research and Automatic Dependent Surveillance-Broadcast (ADS-B) technology to improve the pilot's situational awareness. The goal of the 3D-CDTI is to contribute to the development of new display concepts for NASA's Small Aircraft Transportation System research program. Papers were presented at the PLANS 2002 meeting and the ION-GPS 2002 meeting. The contents of this report are derived from the results discussed in those papers.
NASA Astrophysics Data System (ADS)
Kushner, Mark J.; Grapperhaus, Michael J.
1996-10-01
Inductively Coupled Plasma (ICP) reactors have the potential for scaling to large area substrates while maintaining azimuthal symmetry or side-to-side uniformity across the wafer. Asymmetric etch properties in these devices have been attributed to transmission line properties of the coil, internal structures (such as wafer clamps) and non-uniform gas injection or pumping. To investigate the origins of asymmetric etch properties, a 3-dimensional hybrid model has been developed. The hybrid model contains electromagnetic, electric circuit, electron energy equation, and fluid modules. Continuity and momentum equations are solved in the fluid module along with Poisson's equation. We will discuss results for ion and radical flux uniformity to the substrate while varying the transmission line characteristics of the coil, symmetry of gas inlets/pumping, and internal structures. Comparisons will be made to expermental measurements of etch rates. ^*Work supported by SRC, NSF, ARPA/AFOSR and LAM Research.
Pei, Jimin; Grishin, Nick V.
2015-01-01
SUMMARY Multiple sequence alignment (MSA) is an essential tool with many applications in bioinformatics and computational biology. Accurate MSA construction for divergent proteins remains a difficult computational task. The constantly increasing protein sequences and structures in public databases could be used to improve alignment quality. PROMALS3D is a tool for protein MSA construction enhanced with additional evolutionary and structural information from database searches. PROMALS3D automatically identifies homologs from sequence and structure databases for input proteins, derives structure-based constraints from alignments of 3-dimensional structures, and combines them with sequence-based constraints of profile-profile alignments in a consistency-based framework to construct high-quality multiple sequence alignments. PROMALS3D output is a consensus alignment enriched with sequence and structural information about input proteins and their homologs. PROMALS3D web server and package are available at http://prodata.swmed.edu/PROMALS3D. PMID:24170408
Using 3-dimensional printing to create presurgical models for endodontic surgery.
Bahcall, James K
2014-09-01
Advances in endodontic surgery--from both a technological and procedural perspective-have been significant over the last 18 years. Although these technologies and procedural enhancements have significantly improved endodontic surgical treatment outcomes, there is still an ongoing challenge of overcoming the limitations of interpreting preoperative 2-dimensional (2-D) radiographic representation of a 3-dimensional (3-D) in vivo surgical field. Cone-beam Computed Tomography (CBCT) has helped to address this issue by providing a 3-D enhancement of the 2-D radiograph. The next logical step to further improve a presurgical case 3-D assessment is to create a surgical model from the CBCT scan. The purpose of this article is to introduce 3-D printing of CBCT scans for creating presurgical models for endodontic surgery. PMID:25197746
The program FANS-3D (finite analytic numerical simulation 3-dimensional) and its applications
NASA Technical Reports Server (NTRS)
Bravo, Ramiro H.; Chen, Ching-Jen
1992-01-01
In this study, the program named FANS-3D (Finite Analytic Numerical Simulation-3 Dimensional) is presented. FANS-3D was designed to solve problems of incompressible fluid flow and combined modes of heat transfer. It solves problems with conduction and convection modes of heat transfer in laminar flow, with provisions for radiation and turbulent flows. It can solve singular or conjugate modes of heat transfer. It also solves problems in natural convection, using the Boussinesq approximation. FANS-3D was designed to solve heat transfer problems inside one, two and three dimensional geometries that can be represented by orthogonal planes in a Cartesian coordinate system. It can solve internal and external flows using appropriate boundary conditions such as symmetric, periodic and user specified.
Evaluation of the 3-Dimensional, Weight-bearing Orientation of the Normal Adult Knee
Nam, Denis; Shah, Ritesh R.; Nunley, Ryan M.; Barrack, Robert L.
2014-01-01
The purpose of this study was to use 3-dimensional, weight-bearing images corrected for rotation to establish normative data of limb alignment and joint line orientation in asymptomatic, adult knees. One hundred adults (200 lower extremities) were recruited to receive weight-bearing, simultaneous biplanar imaging of both lower extremities. Multiple radiographic parameters were measured from 3D images, corrected for limb rotation. 70.0% of knees were in neutral, 19.5% in varus, and 10.5% in valgus overall alignment. Only 31 % of knees possessed both a neutral mechanical axis and the absence of joint line obliquity. There was substantial agreement between the 2D and 3D images for overall mechanical alignment (κ=0.77), but only a moderate agreement for joint line obliquity (κ=0.58). A substantial portion of asymptomatic adults possess either a varus or valgus mechanical alignment and joint line obliquity, PMID:24315446
Zhou, Xichun; Turchi, Craig; Wang, Denong
2009-01-01
We reported here a novel, ready-to-use bioarray platform and methodology for construction of sensitive carbohydrate cluster microarrays. This technology utilizes a 3-dimensional (3-D) poly(amidoamine) starburst dendrimer monolayer assembled on glass surface, which is functionalized with terminal aminooxy and hydrazide groups for site-specific coupling of carbohydrates. A wide range of saccharides, including monosaccharides, oligosaccharides and polysaccharides of diverse structures, are applicable for the 3-D bioarray platform without prior chemical derivatization. The process of carbohydrate coupling is effectively accelerated by microwave radiation energy. The carbohydrate concentration required for microarray fabrication is substantially reduced using this technology. Importantly, this bioarray platform presents sugar chains in defined orientation and cluster configurations. It is, thus, uniquely useful for exploration of the structural and conformational diversities of glyco-epitope and their functional properties. PMID:19791771
DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold.
Tomita, Koichi; Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko
2015-03-01
Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927
DIEP Flap Breast Reconstruction Using 3-dimensional Surface Imaging and a Printed Mold
Yano, Kenji; Hata, Yuki; Nishibayashi, Akimitsu; Hosokawa, Ko
2015-01-01
Summary: Recent advances in 3-dimensional (3D) surface imaging technologies allow for digital quantification of complex breast tissue. We performed 11 unilateral breast reconstructions with deep inferior epigastric artery perforator (DIEP) flaps (5 immediate, 6 delayed) using 3D surface imaging for easier surgery planning and 3D-printed molds for shaping the breast neoparenchyma. A single- or double-pedicle flap was preoperatively planned according to the estimated tissue volume required and estimated total flap volume. The DIEP flap was then intraoperatively shaped with a 3D-printed mold that was based on a horizontally inverted shape of the contralateral breast. Cosmetic outcomes were assessed as satisfactory, as confirmed by the postoperative 3D measurements of bilateral breasts. We believe that DIEP flap reconstruction assisted with 3D surface imaging and a 3D-printed mold is a simple and quick method for rebuilding a symmetric breast. PMID:25878927
NASA Astrophysics Data System (ADS)
Metz, P. D.
A FORTRAN computer program called GROCS (GRound Coupled Systems) has been developed to study 3-dimensional underground heat flow. Features include the use of up to 30 finite elements or blocks of Earth which interact via finite difference heat flow equations and a subprogram which sets realistic time and depth dependent boundary conditions. No explicit consideration of mositure movement or freezing is given. GROCS has been used to model the thermal behavior of buried solar heat storage tanks (with and without insulation) and serpentine pipe fields for solar heat pump space conditioning systems. The program is available independently or in a form compatible with specially written TRNSYS component TYPE subroutines. The approach taken in the design of GROCS, the mathematics contained and the program architecture, are described. Then, the operation of the stand-alone version is explained. Finally, the validity of GROCS is discussed.
S2PLOT: a Straightforward Library for Advanced 3-dimensional Scientific Visualisation
NASA Astrophysics Data System (ADS)
Barnes, D. G.; Fluke, C. J.
2008-08-01
S2PLOT is a user-oriented programming library for generating and exploring 3-dimensional (3-d) scientific plots and diagrams. It provides a lightweight interface---inspired by the simple yet widely-used PGPLOT---to produce hardware-accelerated visualisations of point, line, image and volumetric data. S2PLOT provides C and FORTRAN interfaces, and supports monoscopic, stereoscopic and curved (eg. dome) display devices. PGPLOT-savvy astronomers can usually write their first S2PLOT program in less than ten minutes. In this paper, we introduce the latest S2PLOT version and highlight major new additions to the library, including volume rendering and isosurfacing of astronomical data. We describe a simple extension that enables the embedding of large-area FITS images directly into S2PLOT programs using standard World Coordinate Systems, and we introduce the Python interface to S2PLOT.
Sheth, Ujash; Theodoropoulos, John; Abouali, Jihad
2015-01-01
Recurrent anterior shoulder instability often results from large bony Bankart or Hill-Sachs lesions. Preoperative imaging is essential in guiding our surgical management of patients with these conditions. However, we are often limited to making an attempt to interpret a 3-dimensional (3D) structure using conventional 2-dimensional imaging. In cases in which complex anatomy or bony defects are encountered, this type of imaging is often inadequate. We used 3D printing to produce a solid 3D model of a glenohumeral joint from a young patient with recurrent anterior shoulder instability and complex Bankart and Hill-Sachs lesions. The 3D model from our patient was used in the preoperative planning stages of an arthroscopic Bankart repair and remplissage to determine the depth of the Hill-Sachs lesion and the degree of abduction and external rotation at which the Hill-Sachs lesion engaged. PMID:26759768
NASA Astrophysics Data System (ADS)
Xu, Yuan; Dai, Feng; Zhao, Tao; Xu, Nu-wen; Liu, Yi
2016-08-01
The cracked chevron notched Brazilian disc (CCNBD) specimen has been suggested by the International Society for Rock Mechanics to measure the mode I fracture toughness of rocks, and has been widely adopted in laboratory tests. Nevertheless, a certain discrepancy has been observed in results when compared with those derived from methods using straight through cracked specimens, which might be due to the fact that the fracture profiles of rock specimens cannot match the straight through crack front as assumed in the measuring principle. In this study, the progressive fracturing of the CCNBD specimen is numerically investigated using the discrete element method (DEM), aiming to evaluate the impact of the realistic cracking profiles on the mode I fracture toughness measurements. The obtained results validate the curved fracture fronts throughout the fracture process, as reported in the literature. The fracture toughness is subsequently determined via the proposed G-method originated from Griffith's energy theory, in which the evolution of the realistic fracture profile as well as the accumulated fracture energy is quantified by DEM simulation. A comparison between the numerical tests and the experimental results derived from both the CCNBD and the semi-circular bend (SCB) specimens verifies that the G-method incorporating realistic fracture profiles can contribute to narrowing down the gap between the fracture toughness values measured via the CCNBD and the SCB method.
Kirkby, Nicholas S.; Low, Lucinda; Wu, Junxi; Miller, Eileen; Seckl, Jonathan R.; Walker, Brian R.; Webb, David J.; Hadoke, Patrick W. F.
2015-01-01
The generation and analysis of vascular lesions in appropriate animal models is a cornerstone of research into cardiovascular disease, generating important information on the pathogenesis of lesion formation and the action of novel therapies. Use of atherosclerosis-prone mice, surgical methods of lesion induction, and dietary modification has dramatically improved understanding of the mechanisms that contribute to disease development and the potential of new treatments. Classically, analysis of lesions is performed ex vivo using 2-dimensional histological techniques. This article describes application of optical projection tomography (OPT) to 3-dimensional quantitation of arterial lesions. As this technique is non-destructive, it can be used as an adjunct to standard histological and immunohistochemical analyses. Neointimal lesions were induced by wire-insertion or ligation of the mouse femoral artery whilst atherosclerotic lesions were generated by administration of an atherogenic diet to apoE-deficient mice. Lesions were examined using OPT imaging of autofluorescent emission followed by complementary histological and immunohistochemical analysis. OPT clearly distinguished lesions from the underlying vascular wall. Lesion size was calculated in 2-dimensional sections using planimetry, enabling calculation of lesion volume and maximal cross-sectional area. Data generated using OPT were consistent with measurements obtained using histology, confirming the accuracy of the technique and its potential as a complement (rather than alternative) to traditional methods of analysis. This work demonstrates the potential of OPT for imaging atherosclerotic and neointimal lesions. It provides a rapid, much needed ex vivo technique for the routine 3-dimensional quantification of vascular remodelling. PMID:26067588
The Effectiveness of an Interactive 3-Dimensional Computer Graphics Model for Medical Education
Konishi, Takeshi; Tamura, Yoko; Moriguchi, Hiroki
2012-01-01
Background Medical students often have difficulty achieving a conceptual understanding of 3-dimensional (3D) anatomy, such as bone alignment, muscles, and complex movements, from 2-dimensional (2D) images. To this end, animated and interactive 3-dimensional computer graphics (3DCG) can provide better visual information to users. In medical fields, research on the advantages of 3DCG in medical education is relatively new. Objective To determine the educational effectiveness of interactive 3DCG. Methods We divided 100 participants (27 men, mean (SD) age 17.9 (0.6) years, and 73 women, mean (SD) age 18.1 (1.1) years) from the Health Sciences University of Mongolia (HSUM) into 3DCG (n = 50) and textbook-only (control) (n = 50) groups. The control group used a textbook and 2D images, while the 3DCG group was trained to use the interactive 3DCG shoulder model in addition to a textbook. We conducted a questionnaire survey via an encrypted satellite network between HSUM and Tokushima University. The questionnaire was scored on a 5-point Likert scale from strongly disagree (score 1) to strongly agree (score 5). Results Interactive 3DCG was effective in undergraduate medical education. Specifically, there was a significant difference in mean (SD) scores between the 3DCG and control groups in their response to questionnaire items regarding content (4.26 (0.69) vs 3.85 (0.68), P = .001) and teaching methods (4.33 (0.65) vs 3.74 (0.79), P < .001), but no significant difference in the Web category. Participants also provided meaningful comments on the advantages of interactive 3DCG. Conclusions Interactive 3DCG materials have positive effects on medical education when properly integrated into conventional education. In particular, our results suggest that interactive 3DCG is more efficient than textbooks alone in medical education and can motivate students to understand complex anatomical structures. PMID:23611759
Selection of massive bone allografts using shape-matching 3-dimensional registration
Docquier, Pierre-Louis; Cartiaux, Olivier; Cornu, Olivier; Delloye, Christian; Banse, Xavier
2010-01-01
Background and purpose Massive bone allografts are used when surgery causes large segmental defects. Shape-matching is the primary criterion for selection of an allograft. The current selection method, based on 2-dimensional template comparison, is inefficient for 3-dimensional complex bones. We have analyzed a 3-dimensional (3-D) registration method to match the anatomy of the allograft with that of the recipient. Methods 3-D CT-based registration was performed to match the shapes of both bones. We used the registration to align the allograft volume onto the recipient's bone. Hemipelvic allograft selection was tested in 10 virtual recipients with a panel of 10 potential allografts, including one from the recipient himself (trap graft). 4 observers were asked to visually inspect the superposition of allograft over the recipient, to classify the allografts into 4 categories according to the matching of anatomic zones, and to select the 3 best matching allografts. The results obtained using the registration method were compared with those from a previous study on the template method. Results Using the registration method, the observers systematically detected the trap graft. Selections of the 3 best matching allografts performed using registration and template methods were different. Selection of the 3 best matching allografts was improved by the registration method. Finally, reproducibility of the selection was improved when using the registration method. Interpretation 3-D CT registration provides more useful information than the template method but the final decision lies with the surgeon, who should select the optimal allograft according to his or her own preferences and the needs of the recipient. PMID:20175643
3 Dimensional Diagnosis Unravelling Prognosis of Multiple Impacted Teeth – A Case Report
Gopinath, Adusumilli; Reddy, Naveen Admala; Rohra, Mayur G
2013-01-01
Impaction of teeth results from the interplay between nature and nurture. Radiographs play an important role in assessment of both the location and the typing of impacted teeth. In general, periapical, occlusal, and/or panoramic radiographs are sufficient for providing the information required by the clinician. Recent advances in diagnostic imaging enables to visualize , diagnose and prognose the treatment outcome of the impacted teeth. This case report discusses the value of cone beam computerized tomography (CBCT) for evaluation of the critical parameters like bone thickness , tooth position and tooth morphology of multiple impacted teeth by 3 dimensional radiography – CBCT. In this report, we present a case of 27-year-old male patient with multiple missing teeth. Radiographs revealed multiple impacted permanent teeth, though medical and family history along with physical examination was not suggestive of any syndromes. Intraoral periapical radiograph, Orthopantomograph, Occlusal radiograph, Cone beam computed tomography were taken for the same patient to determine the exact position of multiple impacted teeth and prognose the treatment plan with the associated factors to impacted teeth. Cone beam computed tomography is an accurate modality to localize and determine the prognosing factors associated with multiple impacted teeth. Three-dimensional volumetric imaging might provide information for improved diagnosis and treatment plans, and ultimately result in more successful treatment outcomes and better care for patients. How to cite this article: Gopinath A, Reddy NA, Rohra MG. 3 Dimensional Diagnosis Unravelling Prognosis of Multiple Impacted Teeth – A Case Report. J Int Oral Health 2013; 5(4):78-83. PMID:24155625
Siler, Drew L; Faulds, James E; Mayhew, Brett
2013-04-16
Geothermal systems in the Great Basin, USA, are controlled by a variety of fault intersection and fault interaction areas. Understanding the specific geometry of the structures most conducive to broad-scale geothermal circulation is crucial to both the mitigation of the costs of geothermal exploration (especially drilling) and to the identification of geothermal systems that have no surface expression (blind systems). 3-dimensional geologic modeling is a tool that can elucidate the specific stratigraphic intervals and structural geometries that host geothermal reservoirs. Astor Pass, NV USA lies just beyond the northern extent of the dextral Pyramid Lake fault zone near the boundary between two distinct structural domains, the Walker Lane and the Basin and Range, and exhibits characteristics of each setting. Both northwest-striking, left-stepping dextral faults of the Walker Lane and kinematically linked northerly striking normal faults associated with the Basin and Range are present. Previous studies at Astor Pass identified a blind geothermal system controlled by the intersection of west-northwest and north-northwest striking dextral-normal faults. Wells drilled into the southwestern quadrant of the fault intersection yielded 94°C fluids, with geothermometers suggesting a maximum reservoir temperature of 130°C. A 3-dimensional model was constructed based on detailed geologic maps and cross-sections, 2-dimensional seismic data, and petrologic analysis of the cuttings from three wells in order to further constrain the structural setting. The model reveals the specific geometry of the fault interaction area at a level of detail beyond what geologic maps and cross-sections can provide.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Wellman, T.P.; Shapiro, A.M.; Hill, M.C.
2009-01-01
While it is widely recognized that highly permeable 'large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive 'small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be 'enhanced' or 'restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations. Copyright 2009 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Wellman, Tristan P.; Shapiro, Allen M.; Hill, Mary C.
2009-01-01
While it is widely recognized that highly permeable `large-scale' fractures dominate chemical migration in many fractured aquifers, recent studies suggest that the pervasive `small-scale' fracturing once considered of less significance can be equally important for characterizing the spatial extent and residence time associated with transport processes. A detailed examination of chemical migration through fracture-controlled aquifers is used to advance this conceptual understanding. The influence of fracture structure is evaluated by quantifying the effects to transport caused by a systematic removal of fractures from three-dimensional discrete fracture models whose attributes are derived from geologic and hydrologic conditions at multiple field sites. Results indicate that the effects to transport caused by network simplification are sensitive to the fracture network characteristics, degree of network simplification, and plume travel distance, but primarily in an indirect sense since correlation to individual attributes is limited. Transport processes can be `enhanced' or `restricted' from network simplification meaning that the elimination of fractures may increase or decrease mass migration, mean travel time, dispersion, and tailing of the concentration plume. The results demonstrate why, for instance, chemical migration may not follow the classic advection-dispersion equation where dispersion approximates the effect of the ignored geologic structure as a strictly additive process to the mean flow. The analyses further reveal that the prediction error caused by fracture network simplification is reduced by at least 50% using the median estimate from an ensemble of simplified fracture network models, and that the error from network simplification is at least 70% less than the stochastic variability from multiple realizations.
Discrete Mathematics and Curriculum Reform.
ERIC Educational Resources Information Center
Kenney, Margaret J.
1996-01-01
Defines discrete mathematics as the mathematics necessary to effect reasoned decision making in finite situations and explains how its use supports the current view of mathematics education. Discrete mathematics can be used by curriculum developers to improve the curriculum for students of all ages and abilities. (SLD)
Discrete Mathematics and Its Applications
ERIC Educational Resources Information Center
Oxley, Alan
2010-01-01
The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…
Vitruk, S.G.; Korsun, A.S.; Ushakov, P.A.
1995-09-01
The multilevel mathematical model of neutron thermal hydrodynamic processes in a passive safety core without assemblies duct walls and appropriate computer code SKETCH, consisted of thermal hydrodynamic module THEHYCO-3DT and neutron one, are described. A new effective discretization technique for energy, momentum and mass conservation equations is applied in hexagonal - z geometry. The model adequacy and applicability are presented. The results of the calculations show that the model and the computer code could be used in conceptual design of advanced reactors.
Discreteness inducing coexistence
NASA Astrophysics Data System (ADS)
dos Santos, Renato Vieira
2013-12-01
Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.
Huang, Z. )
1992-12-01
We examine an interesting scenario to solve the domain-wall problem recently suggested by Preskill, Trivedi, Wilczek, and Wise. The effective potential is calculated in the presence of the QCD axial anomaly. It is shown that some discrete symmetries such as {ital CP} and {ital Z}{sub 2} can be anomalous due to a so-called {ital K} term induced by instantons. We point out that the {ital Z}{sub 2} domain-wall problem in the two-doublet standard model can be resolved by two types of solutions: the {ital CP}-conserving one and the {ital CP}-breaking one. In the first case, there exist two {ital Z}{sub 2}-related local minima whose energy splitting is provided by the instanton effect. In the second case, there is only one unique vacuum so that the domain walls do not form at all. The consequences of this new source of {ital CP} violation are discussed and shown to be well within the experimental limits in weak interactions.
Khan, M M; Varma, M P; Cleland, J; O'Kane, H O; Webb, S W; Mulholland, H C; Adgey, A A
1981-01-01
Data concerning 17 consecutive patients with discrete subaortic stenosis are recorded. Twelve patients underwent operative resection of the obstructing lesion. Of these all except one were symptomatic and all had electrocardiographic evidence of left ventricular hypertrophy or left ventricular hypertrophy with strain. They had a peak resting systolic left ventricular outflow tract gradient of greater than 50 mmHg as predicted from the combined cuff measurement of systolic blood pressure and the echocardiographically estimated left ventricular systolic pressure and/or as determined by cardiac catheterisation. The outflow tract gradient as predicted from M-mode echocardiography and peak systolic pressure showed close correlation with that measured at cardiac catheterisation or operation. During the postoperative follow-up from one month to 11 years, of 11 patients, one patient required a further operation for recurrence of the obstruction four years after the initial operation. All patients are now asymptomatic. Five patients have not had an operation. The left ventricular outflow tract gradient as assessed at the time of cardiac catheterisation was greater than 50 mmHg. One patient has been lost to follow-up. The remaining four have been followed from four to eight years and have remained asymptomatic and the electrocardiograms have remained unchanged. Careful follow-up of all patients is essential with continuing clinical assessment, electrocardiograms, M-mode and two-dimensional echocardiograms, and if necessary cardiac catheterisation. Prophylaxis against bacterial endocarditis is also essential. Images PMID:6457617
Roig, Andres I.; Hight, Suzie K.; Minna, John D.; Shay, Jerry W.; Rusek, Adam; Story, Michael D.
2012-01-01
Purpose The DNA double-strand break (DSB) damage response induced by high energy charged particles on lung fibroblast cells embedded in a 3-dimensional (3-D) collagen tissue equivalents was investigated using antibodies to the DNA damage response proteins gamma-histone 2AX (γ-H2AX) and phosphorylated DNA-PKcs (p-DNA-PKcs). Materials and methods 3-D tissue equivalents were irradiated in positions across the linear distribution of the Bragg curve profiles of 307.7 MeV/nucleon, 556.9 MeV/nucleon, or 967.0 MeV/nucleon 56Fe ions at a dose of 0.30 Gy. Results Patterns of discrete DNA damage streaks across nuclei or saturated nuclear damage were observed, with saturated nuclear damage being more predominant as samples were positioned closer to the physical Bragg peak. Quantification of the DNA damage signal intensities at each distance for each of the examined energies revealed a biological Bragg curve profile with a pattern of DNA damage intensity similar to the physical Bragg curve for the particular energy. Deconvolution microscopy of nuclei with streaked or saturated nuclear damage pattern revealed more details of the damage, with evidence of double-strand breaks radially distributed from the main particle track as well as multiple discrete tracks within saturated damage nuclei. Conclusions These 3-D culture systems can be used as a biological substrate to better understand the interaction of heavy charged particles of different energies with tissue and could serve as a basis to model space-radiation-induced cancer initiation and progression. PMID:20201648
Fluid transport in reaction induced fractures
NASA Astrophysics Data System (ADS)
Ulven, Ole Ivar; Sun, WaiChing; Malthe-Sørenssen, Anders
2015-04-01
The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al. te{royne}, serpentinization and carbonation of peridotite by Rudge et al. te{rudge} and replacement reactions in silica-poor igneous rocks by Jamtveit et al. te{jamtveit}. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total rate of material conversion, as summarised by Kelemen et al. te{kelemen}. Ulven et al. te{ulven_1} have shown that for fluid-mediated processes the ratio between chemical reaction rate and fluid transport rate in bulk rock controls the fracture pattern formed, and Ulven et al. te{ulven_2} have shown that instantaneous fluid transport in fractures lead to a significant increase in the total rate of the volume expanding process. However, instantaneous fluid transport in fractures is clearly an overestimate, and achievable fluid transport rates in fractures have apparently not been studied in any detail. Fractures cutting through an entire domain might experience relatively fast advective reactant transport, whereas dead-end fractures will be limited to diffusion of reactants in the fluid, internal fluid mixing in the fracture or capillary flow into newly formed fractures. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing. In this work, we study the feedback between fracture formation during volume expansion and fluid transport in different fracture settings. We combine a discrete element model (DEM) describing a volume expanding process and the related fracture formation with different models that describe the fluid transport in the
Geomechanical paleostress inversion using fracture data
NASA Astrophysics Data System (ADS)
Maerten, Laurent; Maerten, Frantz; Lejri, Mostfa; Gillespie, Paul
2016-08-01
We describe a fast geomechanically-based paleostress inversion technique that uses observed fracture data to constrain stress through multiple simulations. The method assumes that the local stress field around individual fractures is heterogeneous and derives the far field tectonic stress, that we also call the far field boundary conditions. We show how such far field tectonic stress can be recovered through a mechanical stress inversion technique using local observations of natural fractures (i.e. mechanical type, orientation and location). We test the paleostress inversion against outcrop analogues of fractured carbonates from both Nash Point, U.K., where there are well exposed faults and joints and the Matelles, France, where there are well exposed faults, veins and stylolites. We demonstrate through these case studies how the method can be efficiently applied to natural examples and we highlight its advantages and limitations. We discuss how such method could be applied to subsurface problems and how it can provide complementary constraints to drive discrete fracture models for better fractured reservoir characterization and modelling.
Couple stresses and the fracture of rock.
Atkinson, Colin; Coman, Ciprian D; Aldazabal, Javier
2015-03-28
An assessment is made here of the role played by the micropolar continuum theory on the cracked Brazilian disc test used for determining rock fracture toughness. By analytically solving the corresponding mixed boundary-value problems and employing singular-perturbation arguments, we provide closed-form expressions for the energy release rate and the corresponding stress-intensity factors for both mode I and mode II loading. These theoretical results are augmented by a set of fracture toughness experiments on both sandstone and marble rocks. It is further shown that the morphology of the fracturing process in our centrally pre-cracked circular samples correlates very well with discrete element simulations. PMID:25713450
NASA Astrophysics Data System (ADS)
Gumus, Kutalmis; Erkaya, Halil
2013-04-01
In Terrestrial laser scanning (TLS) applications, it is necessary to take into consideration the conditions that affect the scanning process, especially the general characteristics of the laser scanner, geometric properties of the scanned object (shape, size, etc.), and its spatial location in the environment. Three dimensional models obtained with TLS, allow determining the geometric features and relevant magnitudes of the scanned object in an indirect way. In order to compare the spatial location and geometric accuracy of the 3-dimensional model created by Terrestrial laser scanning, it is necessary to use measurement tools that give more precise results than TLS. Geometric comparisons are performed by analyzing the differences between the distances, the angles between surfaces and the measured values taken from cross-sections between the data from the 3-dimensional model created with TLS and the values measured by other measurement devices The performance of the scanners, the size and shape of the scanned objects are tested using reference objects the sizes of which are determined with high precision. In this study, the important points to consider when choosing reference objects were highlighted. The steps up to processing the point clouds collected by scanning, regularizing these points and modeling in 3 dimensions was presented visually. In order to test the geometric correctness of the models obtained by Terrestrial laser scanners, sample objects with simple geometric shapes such as cubes, rectangular prisms and cylinders that are made of concrete were used as reference models. Three dimensional models were generated by scanning these reference models with Trimble Mensi GS 100. The dimension of the 3D model that is created from point clouds was compared with the precisely measured dimensions of the reference objects. For this purpose, horizontal and vertical cross-sections were taken from the reference objects and generated 3D models and the proximity of
Nihei, K.T.; Yi, W.; Myer, L.R.; Cook, N.G.; Schoenberg, M.
1999-03-01
The properties of guided waves which propagate between two parallel fractures are examined. Plane wave analysis is used to obtain a dispersion equation for the velocities of fracture channel waves. Analysis of this equation demonstrates that parallel fractures form an elastic waveguide that supports two symmetric and two antisymmetric dispersive Rayleigh channel waves, each with particle motions and velocities that are sensitive to the normal and tangential stiffnesses of the fractures. These fracture channel waves degenerate to shear waves when the fracture stiffnesses are large, to Rayleigh waves and Rayleigh-Lamb plate waves when the fracture stiffnesses are low, and to fracture interface waves when the fractures are either very closely spaced or widely separated. For intermediate fracture stiffnesses typical of fractured rock masses, fracture channel waves are dispersive and exhibit moderate to strong localization of guided wave energy between the fractures. The existence of these waves is examined using laboratory acoustic measurements on a fractured marble plate. This experiment confirms the distinct particle motion of the fundamental antisymmetric fracture channel wave (A{sub 0} mode) and demonstrates the ease with which a fracture channel wave can be generated and detected. {copyright} 1999 American Geophysical Union
Ni, Qihong; Wang, Haolu; Liang, Xiaowen; Zhang, Yunhe; Chen, Wei; Wang, Jian
2016-06-01
The combination of hilar cholangiocarcinoma and anatomic variation constitutes a rare and complicated condition. Precise understanding of 3-dimensional position of tumor in the intrahepatic structure in such cases is important for operation planning and navigation. We report a case of a 61-year woman presenting with hilar cholangiocarcinoma. Anatomic variation and tumor location were well depicted on preoperative multidetector computed tomography (MDCT) combined with 3-dimensional reconstruction as the right posterior segmental duct drained to left hepatic duct. The common hepatic duct, biliary confluence, right anterior segmental duct, and right anterior branch of portal vein were involved by the tumor (Bismuth IIIa). After carefully operation planning, we successfully performed a radical parenchyma-sparing anatomical surgery of hilar cholangiocarcinoma: Liver segmentectomy (segments 5 and 8) and caudate lobectomy. MDCTcombined with 3-dimensional reconstruction is a reliable non-invasive modality for preoperative evaluation of hilar cholangiocarcinoma. PMID:27376205
Modern Workflows for Fracture Rock Hydrogeology
NASA Astrophysics Data System (ADS)
Doe, T.
2015-12-01
Discrete Fracture Network (DFN) is a numerical simulation approach that represents a conducting fracture network using geologically realistic geometries and single-conductor hydraulic and transport properties. In terms of diffusion analogues, equivalent porous media derive from heat conduction in continuous media, while DFN simulation is more similar to electrical flow and diffusion in circuits with discrete pathways. DFN modeling grew out of pioneering work of David Snow in the late 1960s with additional impetus in the 1970's from the development of the development of stochastic approaches for describing of fracture geometric and hydrologic properties. Research in underground test facilities for radioactive waste disposal developed the necessary linkages between characterization technologies and simulation as well as bringing about a hybrid deterministic stochastic approach. Over the past 40 years DFN simulation and characterization methods have moved from the research environment into practical, commercial application. The key geologic, geophysical and hydrologic tools provide the required DFN inputs of conductive fracture intensity, orientation, and transmissivity. Flow logging either using downhole tool or by detailed packer testing identifies the locations of conducting features in boreholes, and image logging provides information on the geology and geometry of the conducting features. Multi-zone monitoring systems isolate the individual conductors, and with subsequent drilling and characterization perturbations help to recognize connectivity and compartmentalization in the fracture network. Tracer tests and core analysis provide critical information on the transport properties especially matrix diffusion unidentified conducting pathways. Well test analyses incorporating flow dimension boundary effects provide further constraint on the conducting geometry of the fracture network.
The discrete variational derivative method based on discrete differential forms
NASA Astrophysics Data System (ADS)
Yaguchi, Takaharu; Matsuo, Takayasu; Sugihara, Masaaki
2012-05-01
As is well known, for PDEs that enjoy a conservation or dissipation property, numerical schemes that inherit this property are often advantageous in that the schemes are fairly stable and give qualitatively better numerical solutions in practice. Lately, Furihata and Matsuo have developed the so-called “discrete variational derivative method” that automatically constructs energy preserving or dissipative finite difference schemes. Although this method was originally developed on uniform meshes, the use of non-uniform meshes is of importance for multi-dimensional problems. On the other hand, the theories of discrete differential forms have received much attention recently. These theories provide a discrete analogue of the vector calculus on general meshes. In this paper, we show that the discrete variational derivative method and the discrete differential forms by Bochev and Hyman can be combined. Applications to the Cahn-Hilliard equation and the Klein-Gordon equation on triangular meshes are provided as demonstrations. We also show that the schemes for these equations are H1-stable under some assumptions. In particular, one for the nonlinear Klein-Gordon equation is obtained by combination of the energy conservation property and the discrete Poincaré inequality, which are the temporal and spacial structures that are preserved by the above methods.
Coupled Three-Dimensional Fracture Stimulation and Prediction Model for Enhanced Geothermal Systems
NASA Astrophysics Data System (ADS)
Kumar, D.; Gutierrez, M.
2013-12-01
The paper presents development of a three-dimensional fracture stimulation and prediction model using the Boundary Element Method (BEM) for Enhanced Geothermal Systems (EGS). The BEM method results in a numerical procedure which eliminates discretization of complete reservoir domain; hence, only the fracture surface discretization is required. The Displacement Discontinuity Method which is an invariant of the BEM was used to model the fracture geometry (e.g., fracture width, length and elongation), fluid pressure and stress distribution around the fracture. The main feature of the model is that it is able to handle true three-dimensional fractures that can twist turn and not just planar or pseudo three-dimensional fracture geometries. The numerical aspects of various mechanisms involved in the hydraulic fracturing process in the EGS such as fracture deformation, fluid flow and heat flow, fracture initiation and propagation were addressed. The laminar fracture fluid flow and transient heat flow were modeled using the Finite Element Method. The non-Newtonian fluid flow behavior was assumed. Temperature-dependent fluid and rock physical properties were used. The fracture same mesh was used to model for the fracture deformation, fluid flow and heat flow processes. The fracture surface was discretized using 4-node rectangular elements. The important numerical issues of the BEM implementation for the fracture modeling such as near singular, hypersingular cases and crack tip singularity were taken into account. The processes involved in hydraulic fracturing are interdependent. The fracture aperture strongly influences the fluid flow rate inside the fracture, as the fluid velocity is proportional to its width. Thermal-induced stresses effects the fracture aperture. These fully coupled processes of fluid flow, heat flow, and fracture deformation were solved in a coupled manner using iterative method. One of the main challenges of this research was to couple the thermal
Atila, Deniz; Keskin, Dilek; Tezcaner, Ayşen
2015-11-20
Skin defects that are not able to regenerate by themselves are among the major problems faced. Tissue engineering approach holds promise for treating such defects. Development of tissue-mimicking-scaffolds that can promote healing process receives an increasing interest in recent years. In this study, 3-dimensional electrospun cellulose acetate (CA) pullulan (PULL) scaffolds were developed for the first time. PULL was intentionally used to obtain 3D structures with adjustable height. It was removed from the electrospun mesh to increase the porosity and biostability. Different ratios of the polymers were electrospun and analyzed with respect to degradation, porosity, and mechanical properties. It has been observed that fiber diameter, thickness and porosity of scaffolds increased with increased PULL content, on the other hand this resulted with higher degradation of scaffolds. Mechanical strength of scaffolds was improved after PULL removal suggesting their suitability as cell carriers. Cell culture studies were performed with the selected scaffold group (CA/PULL: 50/50) using mouse fibroblastic cell line (L929). In vitro cell culture tests showed that cells adhered, proliferated and populated CA/PULL (50/50) scaffolds showing that they are cytocompatible. Results suggest that uncrosslinked CA/PULL (50/50) electrospun scaffolds hold potential for skin tissue engineering applications. PMID:26344279
A 60GHz-Band 3-Dimensional System-in-Package Transmitter Module with Integrated Antenna
NASA Astrophysics Data System (ADS)
Suematsu, Noriharu; Yoshida, Satoshi; Tanifuji, Shoichi; Kameda, Suguru; Takagi, Tadashi; Tsubouchi, Kazuo
A low cost, ultra small Radio Frequency (RF) transceiver module with integrated antenna is one of the key technologies for short range millimeter-wave wireless communication. This paper describes a 60GHz-band transmitter module with integrated dipole antenna. The module consists of three pieces of low-cost organic resin substrate. These substrates are vertically stacked by employing Cu ball bonding 3-dimensional (3-D) system-in-package (SiP) technology and the MMIC's are mounted on each organic substrates by using Au-stud bump bonding (SBB) technique. The planer dipole antenna is fabricated on the top of the stacked organic substrate to avoid the influence of the grounding metal on the base substrate. At 63GHz, maximum actual gain of 6.0dBi is obtained for fabricated planar dipole antenna. The measured radiation patterns are agreed with the electro-magnetic (EM) simulated result, therefore the other RF portion of the 3-D front-end module, such as flip chip mounted IC's on the top surface of the module, does not affect the antenna characteristics. The results show the feasibility of millimeter-wave low cost, ultra small antenna integrated module using stacked organic substrates.
A 3-dimensional DTI MRI-based model of GBM growth and response to radiation therapy.
Hathout, Leith; Patel, Vishal; Wen, Patrick
2016-09-01
Glioblastoma (GBM) is both the most common and the most aggressive intra-axial brain tumor, with a notoriously poor prognosis. To improve this prognosis, it is necessary to understand the dynamics of GBM growth, response to treatment and recurrence. The present study presents a mathematical diffusion-proliferation model of GBM growth and response to radiation therapy based on diffusion tensor (DTI) MRI imaging. This represents an important advance because it allows 3-dimensional tumor modeling in the anatomical context of the brain. Specifically, tumor infiltration is guided by the direction of the white matter tracts along which glioma cells infiltrate. This provides the potential to model different tumor growth patterns based on location within the brain, and to simulate the tumor's response to different radiation therapy regimens. Tumor infiltration across the corpus callosum is simulated in biologically accurate time frames. The response to radiation therapy, including changes in cell density gradients and how these compare across different radiation fractionation protocols, can be rendered. Also, the model can estimate the amount of subthreshold tumor which has extended beyond the visible MR imaging margins. When combined with the ability of being able to estimate the biological parameters of invasiveness and proliferation of a particular GBM from serial MRI scans, it is shown that the model has potential to simulate realistic tumor growth, response and recurrence patterns in individual patients. To the best of our knowledge, this is the first presentation of a DTI-based GBM growth and radiation therapy treatment model. PMID:27572745
In vitro 3-dimensional tumor model for radiosensitivity of HPV positive OSCC cell lines
Zhang, Mei; Rose, Barbara; Lee, C Soon; Hong, Angela M
2015-01-01
The incidence of oropharyngeal squamous cell carcinoma (OSCC) is increasing due to the rising prevalence of human papillomavirus (HPV) positive OSCC. HPV positive OSCC is associated with better outcomes than HPV negative OSCC. Our aim was to explore the possibility that this favorable prognosis is due to the enhanced radiosensitivity of HPV positive OSCC. HPV positive OSCC cell lines were generated from the primary OSCCs of 2 patients, and corresponding HPV positive cell lines generated from nodal metastases following xenografting in nude mice. Monolayer and 3 dimensional (3D) culture techniques were used to compare the radiosensitivity of HPV positive lines with that of 2 HPV negative OSCC lines. Clonogenic and protein assays were used to measure survival post radiation. Radiation induced cell cycle changes were studied using flow cytometry. In both monolayer and 3D culture, HPV positive cells exhibited a heterogeneous appearance whereas HPV negative cells tended to be homogeneous. After irradiation, HPV positive cells had a lower survival in clonogenic assays and lower total protein levels in 3D cultures than HPV negative cells. Irradiated HPV positive cells showed a high proportion of cells in G1/S phase, increased apoptosis, an increased proliferation rate, and an inability to form 3D tumor clumps. In conclusion, HPV positive OSCC cells are more radiosensitive than HPV negative OSCC cells in vitro, supporting a more radiosensitive nature of HPV positive OSCC. PMID:26046692
EEG Control of a Virtual Helicopter in 3-Dimensional Space Using Intelligent Control Strategies
Royer, Audrey S.; Doud, Alexander J.; Rose, Minn L.
2011-01-01
Films like Firefox, Surrogates, and Avatar have explored the possibilities of using brain-computer interfaces (BCIs) to control machines and replacement bodies with only thought. Real world BCIs have made great progress toward that end. Invasive BCIs have enabled monkeys to fully explore 3-dimensional (3D) space using neuroprosthetics. However, non-invasive BCIs have not been able to demonstrate such mastery of 3D space. Here, we report our work, which demonstrates that human subjects can use a non-invasive BCI to fly a virtual helicopter to any point in a 3D world. Through use of intelligent control strategies, we have facilitated the realization of controlled flight in 3D space. We accomplished this through a reductionist approach that assigns subject-specific control signals to the crucial components of 3D flight. Subject control of the helicopter was comparable when using either the BCI or a keyboard. By using intelligent control strategies, the strengths of both the user and the BCI system were leveraged and accentuated. Intelligent control strategies in BCI systems such as those presented here may prove to be the foundation for complex BCIs capable of doing more than we ever imagined. PMID:20876032
Gálvez, Jorge A; Gralewski, Kevin; McAndrew, Christine; Rehman, Mohamed A; Chang, Benjamin; Levin, L Scott
2016-03-01
Children are not typically considered for hand transplantation for various reasons, including the difficulty of finding an appropriate donor. Matching donor-recipient hands and forearms based on size is critically important. If the donor's hands are too large, the recipient may not be able to move the fingers effectively. Conversely, if the donor's hands are too small, the appearance may not be appropriate. We present an 8-year-old child evaluated for a bilateral hand transplant following bilateral amputation. The recipient forearms and model hands were modeled from computed tomography imaging studies and replicated as anatomic models with a 3-dimensional printer. We modified the scale of the printed hand to produce 3 proportions, 80%, 100% and 120%. The transplant team used the anatomical models during evaluation of a donor for appropriate match based on size. The donor's hand size matched the 100%-scale anatomical model hand and the transplant team was activated. In addition to assisting in appropriate donor selection by the transplant team, the 100%-scale anatomical model hand was used to create molds for prosthetic hands for the donor. PMID:26810827
Real-time Interpolation for True 3-Dimensional Ultrasound Image Volumes
Ji, Songbai; Roberts, David W.; Hartov, Alex; Paulsen, Keith D.
2013-01-01
We compared trilinear interpolation to voxel nearest neighbor and distance-weighted algorithms for fast and accurate processing of true 3-dimensional ultrasound (3DUS) image volumes. In this study, the computational efficiency and interpolation accuracy of the 3 methods were compared on the basis of a simulated 3DUS image volume, 34 clinical 3DUS image volumes from 5 patients, and 2 experimental phantom image volumes. We show that trilinear interpolation improves interpolation accuracy over both the voxel nearest neighbor and distance-weighted algorithms yet achieves real-time computational performance that is comparable to the voxel nearest neighbor algrorithm (1–2 orders of magnitude faster than the distance-weighted algorithm) as well as the fastest pixel-based algorithms for processing tracked 2-dimensional ultrasound images (0.035 seconds per 2-dimesional cross-sectional image [76,800 pixels interpolated, or 0.46 ms/1000 pixels] and 1.05 seconds per full volume with a 1-mm3 voxel size [4.6 million voxels interpolated, or 0.23 ms/1000 voxels]). On the basis of these results, trilinear interpolation is recommended as a fast and accurate interpolation method for rectilinear sampling of 3DUS image acquisitions, which is required to facilitate subsequent processing and display during operating room procedures such as image-guided neurosurgery. PMID:21266563
Biphasic response of cell invasion to matrix stiffness in 3-dimensional biopolymer networks
Lang, Nadine R.; Skodzek, Kai; Hurst, Sebastian; Mainka, Astrid; Steinwachs, Julian; Schneider, Julia; Aifantis, Katerina E.; Fabry, Ben
2015-01-01
When cells come in contact with an adhesive matrix, they begin to spread and migrate with a speed that depends on the stiffness of the extracellular matrix. On a flat surface, migration speed decreases with matrix stiffness mainly due to an increased stability of focal adhesions. In a 3-dimensional (3D) environment, cell migration is thought to be additionally impaired by the steric hindrance imposed by the surrounding matrix. For porous 3D biopolymer networks such as collagen gels, however, the effect of matrix stiffness on cell migration is difficult to separate from effects of matrix pore size and adhesive ligand density, and is therefore unknown. Here we used glutaraldehyde as a crosslinker to increase the stiffness of self-assembled collagen biopolymer networks independently of collagen concentration or pore size. Breast carcinoma cells were seeded onto the surface of 3D collagen gels, and the invasion depth was measured after 3 days of culture. Cell invasion in gels with pore sizes larger than 5 μm increased with higher gel stiffness, whereas invasion in gels with smaller pores decreased with higher gel stiffness. These data show that 3D cell invasion is enhanced by higher matrix stiffness, opposite to cell behavior in 2D, as long as the pore size does not fall below a critical value where it causes excessive steric hindrance. These findings may be important for optimizing the recellularization of soft tissue implants or for the design of 3D invasion models in cancer research. PMID:25462839
Fusion of radar data to extract 3-dimensional objects LDRD final report
Fellerhoff, R.; Hensley, B.; Carande, R.; Burkhart, G.; Ledner, R.
1997-03-01
Interferometric Synthetic Aperture Radar (IFSAR) is a very promising technology for remote mapping of 3-Dimensional objects. In particular, 3-D maps of urban areas are extremely important to a wide variety of users, both civilian and military. However, 3-D maps produced by traditional optical stereo (stereogrammetry) techniques can be quite expensive to obtain, and accurate urban maps can only be obtained with a large amount of human-intensive interpretation work. IFSAR has evolved over the last decade as a mapping technology that promises to eliminate much of the human-intensive work in producing elevation maps. However, IFSAR systems have only been robustly demonstrated in non-urban areas, and have not traditionally been able to produce data with enough detail to be of general use in urban areas. Sandia Laboratories Twin Otter IFSAR was the first mapping radar system with the proper parameter set to provide sufficiently detailed information in a large number of urban areas. The goal of this LDRD was to fuse previously unused information derived from IFSAR data in urban areas that can be used to extract accurate digital elevation models (DEMs) over wide areas without intensive human interaction.
NASA Astrophysics Data System (ADS)
Zamora, A.; Gutierrez, A. E.; Velasco, A. A.
2014-12-01
2- and 3-Dimensional models obtained from the inversion of geophysical data are widely used to represent the structural composition of the Earth and to constrain independent models obtained from other geological data (e.g. core samples, seismic surveys, etc.). However, inverse modeling of gravity data presents a very unstable and ill-posed mathematical problem, given that solutions are non-unique and small changes in parameters (position and density contrast of an anomalous body) can highly impact the resulting model. Through the implementation of an interior-point method constrained optimization technique, we improve the 2-D and 3-D models of Earth structures representing known density contrasts mapping anomalous bodies in uniform regions and boundaries between layers in layered environments. The proposed techniques are applied to synthetic data and gravitational data obtained from the Rio Grande Rift and the Cooper Flat Mine region located in Sierra County, New Mexico. Specifically, we improve the 2- and 3-D Earth models by getting rid of unacceptable solutions (those that do not satisfy the required constraints or are geologically unfeasible) given the reduction of the solution space.
Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays
Galati, Domenico F.; Abuin, David S.; Tauber, Gabriel A.; Pham, Andrew T.; Pearson, Chad G.
2016-01-01
ABSTRACT Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722
Fabrication of a 3-dimensional nanostructured binary colloidal crystal within a confined channel.
Gorey, Brian; Smyth, Malcolm R; Morrin, Aoife; White, Blánaid
2014-12-15
The reproducible fabrication of nanostructured 3Dimensional (3D) binary colloidal crystal (bCC) in a defined geometric space through a simple one step process is detailed. This method allows for the potential fabrication of a bCC in a sealed μchip within a defined area or channel by capillary forces, unlike other bCC formation methods such as dip-drawing, where the substrate must be submerged in a suspension to form a bCC, or bCC monolayers, which are fabricated at the water air interface. Through simple variation in volume fraction ratio (VF(S/L)) of nano-(denoted small, S) and macro-sized (denoted large, L) polystyrene (PS) spheres and diameter size ratio (D(S/L)), the manipulation of bCC structures was also achieved. Variation of nano-sized PS sphere number within the interstitial voids formed between neighbouring macro-sized spheres enabled the reproducible fabrication of LS2 and LS6 structures, which contain 1 and 3 nano-spheres respectively in each interstitial void. It must be noted that while VF(S/L) allows for control of the final LSn structure, thickness of bCC formation in this manner is independent of VFS/L. PMID:25268825
Automated image analysis reveals the dynamic 3-dimensional organization of multi-ciliary arrays.
Galati, Domenico F; Abuin, David S; Tauber, Gabriel A; Pham, Andrew T; Pearson, Chad G
2015-01-01
Multi-ciliated cells (MCCs) use polarized fields of undulating cilia (ciliary array) to produce fluid flow that is essential for many biological processes. Cilia are positioned by microtubule scaffolds called basal bodies (BBs) that are arranged within a spatially complex 3-dimensional geometry (3D). Here, we develop a robust and automated computational image analysis routine to quantify 3D BB organization in the ciliate, Tetrahymena thermophila. Using this routine, we generate the first morphologically constrained 3D reconstructions of Tetrahymena cells and elucidate rules that govern the kinetics of MCC organization. We demonstrate the interplay between BB duplication and cell size expansion through the cell cycle. In mutant cells, we identify a potential BB surveillance mechanism that balances large gaps in BB spacing by increasing the frequency of closely spaced BBs in other regions of the cell. Finally, by taking advantage of a mutant predisposed to BB disorganization, we locate the spatial domains that are most prone to disorganization by environmental stimuli. Collectively, our analyses reveal the importance of quantitative image analysis to understand the principles that guide the 3D organization of MCCs. PMID:26700722
Casting of 3-dimensional footwear prints in snow with foam blocks.
Petraco, Nicholas; Sherman, Hal; Dumitra, Aurora; Roberts, Marcel
2016-06-01
Commercially available foam blocks are presented as an alternative material for the casting and preservation of 3-dimensional footwear impressions located in snow. The method generates highly detailed foam casts of questioned footwear impressions. These casts can be compared to the known outsole standards made from the suspects' footwear. Modification of the commercially available foam casting blocks is simple and fast. The foam block is removed and a piece of cardboard is secured to one side of the block with painter's masking tape. The prepared foam block is then placed back into its original box, marked appropriately, closed and stored until needed. When required the foam block is carefully removed from its storage box and gently placed, foam side down, over the questioned footwear impression. Next, the crime scene technician's hands are placed on top of the cardboard and pressure is gently applied by firmly pressing down onto the impression. The foam cast is removed, dried and placed back into its original container and sealed. The resulting 3D impressions can be directly compared to the outsole of known suspected item(s) of footwear. PMID:27124876
Simultaneous PET and Multispectral 3-Dimensional Fluorescence Optical Tomography Imaging System
Li, Changqing; Yang, Yongfeng; Mitchell, Gregory S.; Cherry, Simon R.
2015-01-01
Integrated PET and 3-dimensional (3D) fluorescence optical tomography (FOT) imaging has unique and attractive features for in vivo molecular imaging applications. We have designed, built, and evaluated a simultaneous PET and 3D FOT system. The design of the FOT system is compatible with many existing small-animal PET scanners. Methods The 3D FOT system comprises a novel conical mirror that is used to view the whole-body surface of a mouse with an electron-multiplying charge-coupled device camera when a collimated laser beam is projected on the mouse to stimulate fluorescence. The diffusion equation was used to model the propagation of optical photons inside the mouse body, and 3D fluorescence images were reconstructed iteratively from the fluorescence intensity measurements measured from the surface of the mouse. Insertion of the conical mirror into the gantry of a small-animal PET scanner allowed simultaneous PET and 3D FOT imaging. Results The mutual interactions between PET and 3D FOT were evaluated experimentally. PET has negligible effects on 3D FOT performance. The inserted conical mirror introduces a reduction in the sensitivity and noise-equivalent count rate of the PET system and increases the scatter fraction. PET–FOT phantom experiments were performed. An in vivo experiment using both PET and FOT was also performed. Conclusion Phantom and in vivo experiments demonstrate the feasibility of simultaneous PET and 3D FOT imaging. The first in vivo simultaneous PET–FOT results are reported. PMID:21810591
3-dimensional (orthogonal) structural complexity of time-series data using low-order moment analysis
NASA Astrophysics Data System (ADS)
Law, Victor J.; O'Neill, Feidhlim T.; Dowling, Denis P.
2012-09-01
The recording of atmospheric pressure plasmas (APP) electro-acoustic emission data has been developed as a plasma metrology tool in the last couple of years. The industrial applications include automotive and aerospace industry for surface activation of polymers prior to bonding [1, 2, and 3]. It has been shown that as the APP jets proceeds over a treatment surface, at a various fixed heights, two contrasting acoustic signatures are produced which correspond to two very different plasma-surface entropy states (blow arc ˜ 1700 ± 100 K; and; afterglow ˜ 300-400 K) [4]. The metrology challenge is now to capture deterministic data points within data clusters. For this to be achieved new real-time data cluster measurement techniques needs to be developed [5]. The cluster information must be extracted within the allotted process time period if real-time process control is to be achieved. This abstract describes a theoretical structural complexity analysis (in terms crossing points) of 2 and 3-dimentional line-graphs that contain time-series data. In addition LabVIEW implementation of the 3-dimensional data analysis is performed. It is also shown the cluster analysis technique can be transfer to other (non-acoustic) datasets.
Kapur, R; Spargo, B J; Chen, M S; Calvert, J M; Rudolph, A S
1996-01-01
A new method is described for producing biomedically relevant polymers with precisely defined micron scale surface texture in the x, y, and z planes. Patterned Si templates were fabricated using photolithography to create a relief pattern in photoresist with lateral dimensions as small as 1 micron. Electroless Ni was selectively deposited in the trenches of the patterned substrate. The Ni served as a resilient mask for transferring the patterns onto the Si substrate to depths of up to 8.5 microns by anisotropic reactive ion etching with a fluorine-based plasma. The 3-dimensional (3-D) textured silicon substrates were used as robust, reusable molds for pattern transfer onto poly (dimethyl siloxane), low density poly (ethylene), poly (L-lactide), and poly (glycolide) by either casting or injection molding. The fidelity of the pattern transfer from the silicon substrates to the polymers was 90 to 95% in all three planes for all polymers for more than 60 transfers from a single wafer, as determined by scanning electron microscopy and atomic force microscopy. Further, the 3-D textured polymers were selectively modified to coat proteins either in the trenches or on the mesas by capillary modification or selective coating techniques. These selectively patterned 3-D polymer substrates may be useful for a variety of biomaterial applications. PMID:8953387
Cerebral Degeneration in Amyotrophic Lateral Sclerosis Revealed by 3-Dimensional Texture Analysis
Maani, Rouzbeh; Yang, Yee-Hong; Emery, Derek; Kalra, Sanjay
2016-01-01
Introduction: Routine MR images do not consistently reveal pathological changes in the brain in ALS. Texture analysis, a method to quantitate voxel intensities and their patterns and interrelationships, can detect changes in images not apparent to the naked eye. Our objective was to evaluate cerebral degeneration in ALS using 3-dimensional texture analysis of MR images of the brain. Methods: In a case-control design, voxel-based texture analysis was performed on T1-weighted MR images of 20 healthy subjects and 19 patients with ALS. Four texture features, namely, autocorrelation, sum of squares variance, sum average, and sum variance were computed. Texture features were compared between the groups by statistical parametric mapping and correlated with clinical measures of disability and upper motor neuron dysfunction. Results: Texture features were different in ALS in motor regions including the precentral gyrus and corticospinal tracts. To a lesser extent, changes were also found in the thalamus, cingulate gyrus, and temporal lobe. Texture features in the precentral gyrus correlated with disease duration, and in the corticospinal tract they correlated with finger tapping speed. Conclusions: Changes in MR image textures are present in motor and non-motor regions in ALS and correlate with clinical features. Whole brain texture analysis has potential in providing biomarkers of cerebral degeneration in ALS. PMID:27064416
Barnes, David G.; Vidiassov, Michail; Ruthensteiner, Bernhard; Fluke, Christopher J.; Quayle, Michelle R.; McHenry, Colin R.
2013-01-01
With the latest release of the S2PLOT graphics library, embedding interactive, 3-dimensional (3-d) scientific figures in Adobe Portable Document Format (PDF) files is simple, and can be accomplished without commercial software. In this paper, we motivate the need for embedding 3-d figures in scholarly articles. We explain how 3-d figures can be created using the S2PLOT graphics library, exported to Product Representation Compact (PRC) format, and included as fully interactive, 3-d figures in PDF files using the movie15 LaTeX package. We present new examples of 3-d PDF figures, explain how they have been made, validate them, and comment on their advantages over traditional, static 2-dimensional (2-d) figures. With the judicious use of 3-d rather than 2-d figures, scientists can now publish, share and archive more useful, flexible and faithful representations of their study outcomes. The article you are reading does not have embedded 3-d figures. The full paper, with embedded 3-d figures, is recommended and is available as a supplementary download from PLoS ONE (File S2). PMID:24086243
NASA Astrophysics Data System (ADS)
Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing
2014-11-01
A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.
The 3-dimensional, 4-channel model of human visual sensitivity to grayscale scrambles.
Silva, Andrew E; Chubb, Charles
2014-08-01
Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the preattentive mechanisms (called here "field-capture channels") that confer this sensitivity remain obscure. The current experiments sought to characterize the specific field-capture channels that confer this sensitivity using a task in which the participant is required to detect the location of a small patch of one type of grayscale scramble in an extended background of another type. Analysis of the results supports the existence of four field-capture channels: (1) the (previously characterized) "blackshot" channel, sharply tuned to the blackest grayscales; (2) a (previously unknown) "gray-tuned" field-capture channel whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker than mid-gray then decreasing to half-height for brighter grayscales; (3) an "up-ramped" channel whose sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white; (4) a (complementary) "down-ramped" channel whose sensitivity is maximal for black, decreases linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4) are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a 3-dimensional space of histogram variations. PMID:24932891
Sansoni, Giovanna; Cattaneo, Cristina; Trebeschi, Marco; Gibelli, Daniele; Poppa, Pasquale; Porta, Davide; Maldarella, Monica; Picozzi, Massimo
2011-09-01
Analysis and detailed registration of the crime scene are of the utmost importance during investigations. However, this phase of activity is often affected by the risk of loss of evidence due to the limits of traditional scene of crime registration methods (ie, photos and videos). This technical note shows the utility of the application of a 3-dimensional optical digitizer on different crime scenes. This study aims in fact at verifying the importance and feasibility of contactless 3-dimensional reconstruction and modeling by optical digitization to achieve an optimal registration of the crime scene. PMID:21811148
Understanding hydraulic fracturing: a multi-scale problem.
Hyman, J D; Jiménez-Martínez, J; Viswanathan, H S; Carey, J W; Porter, M L; Rougier, E; Karra, S; Kang, Q; Frash, L; Chen, L; Lei, Z; O'Malley, D; Makedonska, N
2016-10-13
Despite the impact that hydraulic fracturing has had on the energy sector, the physical mechanisms that control its efficiency and environmental impacts remain poorly understood in part because the length scales involved range from nanometres to kilometres. We characterize flow and transport in shale formations across and between these scales using integrated computational, theoretical and experimental efforts/methods. At the field scale, we use discrete fracture network modelling to simulate production of a hydraulically fractured well from a fracture network that is based on the site characterization of a shale gas reservoir. At the core scale, we use triaxial fracture experiments and a finite-discrete element model to study dynamic fracture/crack propagation in low permeability shale. We use lattice Boltzmann pore-scale simulations and microfluidic experiments in both synthetic and shale rock micromodels to study pore-scale flow and transport phenomena, including multi-phase flow and fluids mixing. A mechanistic description and integration of these multiple scales is required for accurate predictions of production and the eventual optimization of hydrocarbon extraction from unconventional reservoirs. Finally, we discuss the potential of CO2 as an alternative working fluid, both in fracturing and re-stimulating activities, beyond its environmental advantages.This article is part of the themed issue 'Energy and the subsurface'. PMID:27597789
Exact discretization by Fourier transforms
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2016-08-01
A discretization of differential and integral operators of integer and non-integer orders is suggested. New type of differences, which are represented by infinite series, is proposed. A characteristic feature of the suggested differences is an implementation of the same algebraic properties that have the operator of differentiation (property of algebraic correspondence). Therefore the suggested differences are considered as an exact discretization of derivatives. These differences have a property of universality, which means that these operators do not depend on the form of differential equations and the parameters of these equations. The suggested differences operators allows us to have difference equations whose solutions are equal to the solutions of corresponding differential equations. The exact discretization of the derivatives of integer orders is given by the suggested differences of the same integer orders. Similarly, the exact discretization of the Riesz derivatives and integrals of integer and non-integer order is given by the proposed fractional differences of the same order.
Novel approach to data discretization
NASA Astrophysics Data System (ADS)
Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary
2015-09-01
Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.
Chaos in Periodic Discrete Systems
NASA Astrophysics Data System (ADS)
Shi, Yuming; Zhang, Lijuan; Yu, Panpan; Huang, Qiuling
This paper focuses on chaos in periodic discrete systems, whose state space may vary with time. Some close relationships between some chaotic dynamical behaviors of a periodic discrete system and its autonomous induced system are given. Based on these relationships, several criteria of chaos are established and some sufficient conditions for no chaos are given for periodic discrete systems. Further, it is shown that a finite-dimensional linear periodic discrete system is not chaotic in the sense of Li-Yorke or Wiggins. In particular, an interesting problem of whether nonchaotic rules may generate a chaotic system is studied, with some examples provided, one of which surprisingly shows that a composition of globally asymptotically stable maps can be chaotic. In addition, some properties of sign pattern matrices of non-negative square matrices are given for convenience of the study.
Microscopic derivation of discrete hydrodynamics.
Español, Pep; Anero, Jesús G; Zúñiga, Ignacio
2009-12-28
By using the standard theory of coarse graining based on Zwanzig's projection operator, we derive the dynamic equations for discrete hydrodynamic variables. These hydrodynamic variables are defined in terms of the Delaunay triangulation. The resulting microscopically derived equations can be understood, a posteriori, as a discretization on an arbitrary irregular grid of the Navier-Stokes equations. The microscopic derivation provides a set of discrete equations that exactly conserves mass, momentum, and energy and the dissipative part of the dynamics produces strict entropy increase. In addition, the microscopic derivation provides a practical implementation of thermal fluctuations in a way that the fluctuation-dissipation theorem is satisfied exactly. This paper points toward a close connection between coarse-graining procedures from microscopic dynamics and discretization schemes for partial differential equations. PMID:20059064
Permeability Changes in Reaction Induced Fracturing
NASA Astrophysics Data System (ADS)
Ulven, Ole Ivar; Malthe-Sørenssen, Anders; Kalia, Rajiv
2013-04-01
The process of fracture formation due to a volume increasing chemical reaction has been studied in a variety of different settings, e.g. weathering of dolerites by Røyne et al.[4], serpentinization and carbonation of peridotite by Rudge et al.[3] and replacement reactions in silica-poor igneous rocks by Jamtveit et al.[1]. It is generally assumed that fracture formation will increase the net permeability of the rock, and thus increase the reactant transport rate and subsequently the total reaction rate, as summarised by Kelemen et al.[2]. Røyne et al.[4] have shown that transport in fractures will have an effect on the fracture pattern formed. Understanding the feedback process between fracture formation and permeability changes is essential in assessing industrial scale CO2 sequestration in ultramafic rock, but little is seemingly known about how large the permeability change will be in reaction-induced fracturing under compression, and it remains an open question how sensitive a fracture pattern is to permeability changes. In this work, we study the permeability of fractures formed under compression, and we use a 2D discrete element model to study the fracture patterns and total reaction rates achieved with different permeabilities. We achieve an improved understanding of the feedback processes in reaction-driven fracturing, thus improving our ability to decide whether industrial scale CO2 sequestration in ultramafic rock is a viable option for long-term handling of CO2. References [1] Jamtveit, B, Putnis, C. V., and Malthe-Sørenssen, A., "Reaction induced fracturing during replacement processes," Contrib. Mineral Petrol. 157, 2009, pp. 127 - 133. [2] Kelemen, P., Matter, J., Streit, E. E., Rudge, J. F., Curry, W. B., and Blusztajn, J., "Rates and Mechanisms of Mineral Carbonation in Peridotite: Natural Processes and Recipes for Enhanced, in situ CO2 Capture and Storage," Annu. Rev. Earth Planet. Sci. 2011. 39:545-76. [3] Rudge, J. F., Kelemen, P. B., and
Paratrooper's Ankle Fracture: Posterior Malleolar Fracture
Young, Ki Won; Cho, Jae Ho; Kim, Hyung Seuk; Cho, Hun Ki; Lee, Kyung Tai
2015-01-01
Background We assessed the frequency and types of ankle fractures that frequently occur during parachute landings of special operation unit personnel and analyzed the causes. Methods Fifty-six members of the special force brigade of the military who had sustained ankle fractures during parachute landings between January 2005 and April 2010 were retrospectively analyzed. The injury sites and fracture sites were identified and the fracture types were categorized by the Lauge-Hansen and Weber classifications. Follow-up surveys were performed with respect to the American Orthopedic Foot and Ankle Society ankle-hindfoot score, patient satisfaction, and return to preinjury activity. Results The patients were all males with a mean age of 23.6 years. There were 28 right and 28 left ankle fractures. Twenty-two patients had simple fractures and 34 patients had comminuted fractures. The average number of injury and fractures sites per person was 2.07 (116 injuries including a syndesmosis injury and a deltoid injury) and 1.75 (98 fracture sites), respectively. Twenty-three cases (41.07%) were accompanied by posterior malleolar fractures. Fifty-five patients underwent surgery; of these, 30 had plate internal fixations. Weber type A, B, and C fractures were found in 4, 38, and 14 cases, respectively. Based on the Lauge-Hansen classification, supination-external rotation injuries were found in 20 cases, supination-adduction injuries in 22 cases, pronation-external rotation injuries in 11 cases, tibiofibular fractures in 2 cases, and simple medial malleolar fractures in 2 cases. The mean follow-up period was 23.8 months, and the average follow-up American Orthopedic Foot and Ankle Society ankle-hindfoot score was 85.42. Forty-five patients (80.36%) reported excellent or good satisfaction with the outcome. Conclusions Posterior malleolar fractures occurred in 41.07% of ankle fractures sustained in parachute landings. Because most of the ankle fractures in parachute injuries were
Origin of Permeability and Structure of Flows in Fractured Media
NASA Astrophysics Data System (ADS)
De Dreuzy, J.; Darcel, C.; Davy, P.; Erhel, J.; Le Goc, R.; Maillot, J.; Meheust, Y.; Pichot, G.; Poirriez, B.
2013-12-01
its consequence for crustal hydromechanics, Journal of Geophysical Research-Solid Earth, 115, 13. de Dreuzy, J.-R., et al. (2012a), Influence of fracture scale heterogeneity on the flow properties of three-dimensional Discrete Fracture Networks (DFN), J. Geophys. Res.-Earth Surf., 117(B11207), 21 PP. de Dreuzy, J.-R., et al. (2012b), Synthetic benchmark for modeling flow in 3D fractured media, Computers and Geosciences(0). Pichot, G., et al. (2010), A Mixed Hybrid Mortar Method for solving flow in Discrete Fracture Networks, Applicable Analysis, 89(10), 1729-1643. Pichot, G., et al. (2012), Flow simulation in 3D multi-scale fractured networks using non-matching meshes, SIAM Journal on Scientific Computing (SISC), 34(1). Figure: (a) Fracture network with a broad-range of fracture lengths. (b) Flows (log-scale) with homogeneous fractures. (c) Flows (log-scale) with heterogeneous fractures [de Dreuzy et al., 2012a]. The impact of the fracture apertures (c) is illustrated on the organization of flows.
Schmidt, Marianne; Scholz, Claus-Juergen; Polednik, Christine; Roller, Jeanette
2016-04-01
In the present study a panel of 12 head and neck cancer (HNSCC) cell lines were tested for spheroid formation. Since the size and morphology of spheroids is dependent on both cell adhesion and proliferation in the 3-dimensional (3D) context, morphology of HNSCC spheroids was related to expression of E-cadherin and the proliferation marker Ki67. In HNSCC cell lines the formation of tight regular spheroids was dependent on distinct E-cadherin expression levels in monolayer cultures, usually resulting in upregulation following aggregation into 3D structures. Cell lines expressing only low levels of E-cadherin in monolayers produced only loose cell clusters, frequently decreasing E-cadherin expression further upon aggregation. In these cell lines no epidermal growth factor receptor (EGFR) upregulation occurred and proliferation generally decreased in spheroids/aggregates independent of E-cadherin expression. In a second approach a global gene expression analysis of the larynx carcinoma cell line HLaC78 monolayer and the corresponding spheroids was performed. A global upregulation of gene expression in HLaC78 spheroids was related to genes involved in cell adhesion, cell junctions and cytochrome P450-mediated metabolism of xenobiotics. Downregulation was associated with genes controlling cell cycle, DNA-replication and DNA mismatch repair. Analyzing the expression of selected genes of each functional group in monolayer and spheroid cultures of all 12 cell lines revealed evidence for common gene expression shifts in genes controlling cell junctions, cell adhesion, cell cycle and DNA replication as well as genes involved in the cytochrome P450-mediated metabolism of xenobiotics. PMID:26797047
Effect of decompression on cystic lesions of the mandible: 3-dimensional volumetric analysis.
Song, I S; Park, H S; Seo, B M; Lee, J H; Kim, M J
2015-11-01
Decompression is effective in reducing both the size of cystic lesions on jaws and the associated morbidity of resection. However, quantitative measurement of reduced volume after decompression among different cystic diseases has not been fully investigated. We have retrospectively investigated the difference in reduction in volume among keratocystic odontogenic tumours (n=17), unicystic ameloblastomas (n=10), and dentigerous cysts (n=10) of the posterior mandible using 3-dimensional computed tomography (CT). Various other influential factors such as age, sex, the presence of impacted teeth, and the number of drains were also recorded. There was no significant difference in the speed of shrinkage among the 3 groups, but there was a significant correlation (p<0.01) between the initial detected volume of the lesion and the absolute speed of shrinkage in each type of cyst. Initial volume was also significantly associated (p<0.01) with reduction of total volume in each type of cyst. Age may correlate negatively with the rate of reduction in dentigerous cysts, which means that the older the patient is, the less the reduction. Treatment seemed to last longer as the speed of shrinkage lessened in the keratocystic tumours and dentigerous cysts (p<0.05) as multiple regression has shown. The relative speed of shrinkage of unicystic ameloblastomas seemed to be slower when an impacted tooth was involved in the lesion (p=0.019). However, the sample size was too small to make any definite statistical statement. These results suggest that the rate of reduction of volume was related to the original size of the lesion. Despite the need for a second operation and longer duration of treatment compared with excision alone, decompression is a valuable way of reducing the size of large cystic lesions, with low morbidity and recurrence rate. There was no difference in the rate of reduction according to the underlying histopathological picture. PMID:26212420
A Customized Bolus Produced Using a 3-Dimensional Printer for Radiotherapy
Kim, Shin-Wook; Shin, Hun-Joo; Kay, Chul Seung; Son, Seok Hyun
2014-01-01
Objective Boluses are used in high-energy radiotherapy in order to overcome the skin sparing effect. In practice though, commonly used flat boluses fail to make a perfect contact with the irregular surface of the patient’s skin, resulting in air gaps. Hence, we fabricated a customized bolus using a 3-dimensional (3D) printer and evaluated its feasibility for radiotherapy. Methods We designed two kinds of bolus for production on a 3D printer, one of which was the 3D printed flat bolus for the Blue water phantom and the other was a 3D printed customized bolus for the RANDO phantom. The 3D printed flat bolus was fabricated to verify its physical quality. The resulting 3D printed flat bolus was evaluated by assessing dosimetric parameters such as D1.5 cm, D5 cm, and D10 cm. The 3D printed customized bolus was then fabricated, and its quality and clinical feasibility were evaluated by visual inspection and by assessing dosimetric parameters such as Dmax, Dmin, Dmean, D90%, and V90%. Results The dosimetric parameters of the resulting 3D printed flat bolus showed that it was a useful dose escalating material, equivalent to a commercially available flat bolus. Analysis of the dosimetric parameters of the 3D printed customized bolus demonstrated that it is provided good dose escalation and good contact with the irregular surface of the RANDO phantom. Conclusions A customized bolus produced using a 3D printer could potentially replace commercially available flat boluses. PMID:25337700
An Explicit 3-Dimensional Model for Reactive Transport of Nitrogen in Tile Drained Fields
NASA Astrophysics Data System (ADS)
Hill, D. J.; Valocchi, A. J.; Hudson, R. J.
2001-12-01
Recently, there has been increased interest in nitrate contamination of groundwater in the Midwest because of its link to surface water eutrophication, especially in the Gulf of Mexico. The vast majority of this nitrate is the product of biologically mediated transformation of fertilizers containing ammonia in the vadose zone of agricultural fields. For this reason, it is imperative that mathematical models, which can serve as useful tools to evaluate both the impact of agricultural fertilizer applications and nutrient-reducing management practices, are able to specifically address transport in the vadose zone. The development of a 3-dimensional explicit numerical model to simulate the movement and transformation of nitrogen species through the subsurface on the scale of an individual farm plot will be presented. At this scale, nitrogen fate and transport is controlled by a complex coupling among hydrologic, agricultural and biogeochemical processes. The nitrogen model is a component of a larger modeling effort that focuses upon conditions typical of those found in agricultural fields in Illinois. These conditions include non-uniform, multi-dimensional, transient flow in both saturated and unsaturated zones, geometrically complex networks of tile drains, coupled surface-subsurface-tile flow, and dynamic levels of dissolved oxygen in the soil profile. The advection-dispersion-reaction equation is solved using an operator-splitting approach, which is a flexible and straightforward strategy. Advection is modeled using a total variation diminishing scheme, dispersion is modeled using an alternating direction explicit method, and reactions are modeled using rate law equations. The model's stability and accuracy will be discussed, and test problems will be presented.
NASA Astrophysics Data System (ADS)
Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.
Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.
3-Dimensional Modeling of Capacitively and Inductively Coupled Plasma Etching Systems
NASA Astrophysics Data System (ADS)
Rauf, Shahid
2008-10-01
Low temperature plasmas are widely used for thin film etching during micro and nano-electronic device fabrication. Fluid and hybrid plasma models were developed 15-20 years ago to understand the fundamentals of these plasmas and plasma etching. These models have significantly evolved since then, and are now a major tool used for new plasma hardware design and problem resolution. Plasma etching is a complex physical phenomenon, where inter-coupled plasma, electromagnetic, fluid dynamics, and thermal effects all have a major influence. The next frontier in the evolution of fluid-based plasma models is where these models are able to self-consistently treat the inter-coupling of plasma physics with fluid dynamics, electromagnetics, heat transfer and magnetostatics. We describe one such model in this paper and illustrate its use in solving engineering problems of interest for next generation plasma etcher design. Our 3-dimensional plasma model includes the full set of Maxwell equations, transport equations for all charged and neutral species in the plasma, the Navier-Stokes equation for fluid flow, and Kirchhoff's equations for the lumped external circuit. This model also includes Monte Carlo based kinetic models for secondary electrons and stochastic heating, and can take account of plasma chemistry. This modeling formalism allows us to self-consistently treat the dynamics in commercial inductively and capacitively coupled plasma etching reactors with realistic plasma chemistries, magnetic fields, and reactor geometries. We are also able to investigate the influence of the distributed electromagnetic circuit at very high frequencies (VHF) on the plasma dynamics. The model is used to assess the impact of azimuthal asymmetries in plasma reactor design (e.g., off-center pump, 3D magnetic field, slit valve, flow restrictor) on plasma characteristics at frequencies from 2 -- 180 MHz. With Jason Kenney, Ankur Agarwal, Ajit Balakrishna, Kallol Bera, and Ken Collins.
Development of a 3-dimensional dosimetry system for Leksell Gamma Knife Perfexion
NASA Astrophysics Data System (ADS)
Yoon, KyoungJun; Kwak, JungWon; Lee, DoHeui; Cho, ByungChul; Lee, SangWook; Ahn, SeungDo
2015-07-01
The purpose of our study is to develop a new, 3-dimensional dosimetry system to verify the accuracy of dose deliveries in Leksell Gamma Knife Perfexion (LGKP) (Elekta, Norcross, GA, USA). The instrument consists of a moving head phantom, an embedded thin active layer and a CCD camera system and was designed to be mounted to LGKP. As an active material concentrically located in the hemispheric head phantom, we choose Gafchromic EBT3 films and Gd2O2S:Tb phosphor sheets for dosimetric measurements. Also, to compensate for the lack of backscatter, we located a 1-cm-thick poly methyl methacrylate (PMMA) plate downstream of the active layer. The PMMA plate was transparent to scintillation light to reach the CCD with 1200 × 1200 pixels and a 5.2 µm pitch. With this system, 300 images with a 0.2-mm slice gap were acquired under each of three collimator setups, i.e. 4-mm, 8-mm, and 16-mm, respectively. The 2D projected images taken by the CCD camera were compared with the dose distributions measured by the EBT3 films under the same conditions. All 2D distributions were normalized to the maximum values derived by fitting peaks for each collimator setup. The differences in the full widths at half maximum (FWHM) of 2D profiles between CCD images and film doses were measured to be less than 0.3-mm. The scanning task for all peak regions took less than three minutes with the new instrument. So it can be utilized as a QA tool for the Gamma knife radiosurgery system instead of film dosimetry, the use of which requires much more time and many more resources.
Oxidation behavior of ammonium in a 3-dimensional biofilm-electrode reactor.
Tang, Jinjing; Guo, Jinsong; Fang, Fang; Chen, Youpeng; Lei, Lijing; Yang, Lin
2013-12-01
Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohydrogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 +/- 0.37 mg/L when the applied current density was only 0.02 mA/cm2. The oxidation of ammonium in biofilm-electrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency. PMID:24649670
Andriani, Frank; Garfield, Jackie; Fusenig, Norbert E; Garlick, Jonathan A
2004-01-20
We have developed novel 3-dimensional in vitro and in vivo tissue models that mimic premalignant disease of human stratified epithelium in order to analyze the stromal contribution of extracellular matrix and basement membrane proteins to the progression of intraepithelial neoplasia. Three-dimensional, organotypic cultures were grown either on a de-epidermalized human dermis with pre-existing basement membrane components on its surface (AlloDerm), on a Type I collagen gel that lacked basement membrane proteins or on polycarbonate membranes coated with purified extracellular matrix proteins. When tumor cells (HaCaT-II4) were mixed with normal keratinocytes (4:1/normals:HaCaT-II4), tumor cells selectively attached, persisted and proliferated at the dermal-epidermal interface in vitro and generated dysplastic tissues when transplanted to nude mice only when grown in the presence of the AlloDerm substrate. This stromal interface was permissive for tumor cell attachment due to the rapid assembly of structured basement membrane. When tumor cells were mixed with normal keratinocytes and grown on polycarbonate membranes coated with individual extracellular matrix or basement membrane components, selective attachment and significant intraepithelial expansion occurred only on laminin 1 and Type IV collagen-coated membranes. This preferential adhesion of tumor cells restricted the synthesis of laminin 5 to basal cells where it was deposited in a polarized distribution. Western blot analysis revealed that tumor cell attachment was not due to differences in the synthesis or processing of laminin 5. Thus, intraepithelial progression towards premalignant disease is dependent on the selective adhesion of cells with malignant potential to basement membrane proteins that provide a permissive template for their persistence and expansion. PMID:14648700
Desai, Ankit; Thomas, Raison; A. Baron, Tarunkumar; Shah, Rucha; Mehta, Dhoom-Singh
2015-01-01
Background The aim of the present study was to evaluate clinically and radiographically, the efficacy of immediate ridge augmentation to reconstruct the vertical and horizontal dimensions at extraction sites of periodontally hopeless tooth using an autogenous chin block graft. Material and Methods A total of 11 patients (7 male & 4 female) with localized advanced bone loss around single rooted teeth having hopeless prognosis and indicated for extraction were selected for the study. The teeth were atraumatically extracted and deficient sites were augmented using autogenous chin block graft. Parameters like clinically soft tissue height - width and also radiographic ridge height -width were measured before and 6 months after augmentation. Obtained results were tabulated and analysed statistically. Results After 6 months of immediate ridge augmentation, the mean gain in radiographic vertical height and horizontal width was 7.64 + 1.47 mm (P = 0.005) and 5.28 + 0.46 mm (P = 0.007) respectively which was found to be statistically significant (P < 0.05). Mean change of width gain of 0.40mm and height loss of 0.40mm of soft tissue parameters, from the baseline till completion of the study at 6 months was observed. Conclusions The present study showed predictable immediate ridge augmentation with autogenous chin block graft at periodontally compromised extraction site. It can provide adequate hard and soft tissue foundation for perfect 3-Dimensional prosthetic positioning of implant in severely deficient ridges. Key words:Immediate ridge augmentation, periondontally hopeless tooth, autogenous chin graft, dental implant. PMID:26644832
New Stereoacuity Test Using a 3-Dimensional Display System in Children
Kim, Jonghyun; Hong, Keehoon; Lee, Byoungho; Hwang, Jeong-Min
2015-01-01
The previously developed 3-dimensional (3D) display stereoacuity tests were validated only at distance. We developed a new stereoacuity test using a 3D display that works both at near and distance and evaluated its validity in children with and without strabismus. Sixty children (age range, 6 to 18 years) with variable ranges of stereoacuity were included. Side-by-side randot images of 4 different simple objects (star, circle, rectangle, and triangle) with a wide range of crossed horizontal disparities (3000 to 20 arcsec) were randomly displayed on a 3D monitor with MATLAB (Matworks, Inc., Natick, MA, USA) and were presented to subjects wearing shutter glasses at 0.5 m and 3 m. The 3D image was located in front of (conventional) or behind (proposed) the background image on the 3D monitor. The results with the new 3D stereotest (conventional and proposed) were compared with those of the near and distance Randot stereotests. At near, the Bland-Altman plots of the conventional and proposed 3D stereotest did not show significant difference, both of which were poorer than the Randot test. At distance, the results of the proposed 3D stereotest were similar to the Randot test, but the conventional 3D stereotest results were better than those of the other two tests. The results of the proposed 3D stereotest and Randot stereotest were identical in 83.3% at near and 88.3% at distance. More than 95% of subjects showed concordance within 2 grades between the 2 tests at both near and distance. In conclusion, the newly proposed 3D stereotest shows good concordance with the Randot stereotests in children with and without strabismus. PMID:25693034
TAF4 Inactivation Reveals the 3 Dimensional Growth Promoting Activities of Collagen 6A3
Duluc, Isabelle; Vicaire, Serge; Philipps, Muriel; Freund, Jean-Noel; Davidson, Irwin
2014-01-01
Collagen 6A3 (Col6a3), a component of extracellular matrix, is often up-regulated in tumours and is believed to play a pro-oncogenic role. However the mechanisms of its tumorigenic activity are poorly understood. We show here that Col6a3 is highly expressed in densely growing mouse embryonic fibroblasts (MEFs). In MEFs where the TAF4 subunit of general transcription factor IID (TFIID) has been inactivated, elevated Col6a3 expression prevents contact inhibition promoting their 3 dimensional growth as foci and fibrospheres. Analyses of gene expression in densely growing Taf4−/− MEFs revealed repression of the Hippo pathway and activation of Wnt signalling. The Hippo activator Kibra/Wwc1 is repressed under dense conditions in Taf4−/− MEFs, leading to nuclear accumulation of the proliferation factor YAP1 in the cells forming 3D foci. At the same time, Wnt9a is activated and the Sfrp2 antagonist of Wnt signalling is repressed. Surprisingly, treatment of Taf4−/− MEFs with all-trans retinoic acid (ATRA) restores contact inhibition suppressing 3D growth. ATRA represses Col6a3 expression independently of TAF4 expression and Col6a3 silencing is sufficient to restore contact inhibition in Taf4−/− MEFs and to suppress 3D growth by reactivating Kibra expression to induce Hippo signalling and by inducing Sfrp2 expression to antagonize Wnt signalling. All together, these results reveal a critical role for Col6a3 in regulating both Hippo and Wnt signalling to promote 3D growth, and show that the TFIID subunit TAF4 is essential to restrain the growth promoting properties of Col6a3. Our data provide new insight into the role of extra cellular matrix components in regulating cell growth. PMID:24498316
SU-E-T-104: Development of 3 Dimensional Dosimetry System for Gamma Knife
Yoon, K; Kwak, J; Cho, B; Lee, D; Ahn, S
2014-06-01
Purpose: The aim of this study was to develop a new 3 dimensional dosimetry system to verify the dosimetric accuracy of Leksell Gamma Knife-Perfexion™ (LGK) (Elekta, Norcross, GA). Methods: We designed and manufactured a lightweight dosimetry instrument to be equipped with the head frame to LGK. It consists of a head phantom, a scintillator, a CCD camera and a step motor. The 10×10 cm2 sheet of Gd2O3;Tb phosphor or Gafchromic EBT3 film was located at the center of the 16 cm diameter hemispherical PMMA, the head phantom. The additional backscatter compensating material of 1 cm thick PMMA plate was placed downstream of the phosphor sheet. The backscatter plate was transparent for scintillation lights to reach the CCD camera with 1200×1200 pixels by 5.2 um pitch. With This equipment, 300 images with 0.2 mm of slice gap were acquired under three collimator setups (4mm, 8mm and 16mm), respectively. The 2D projected doses from 3D distributions were compared with the exposured film dose. Results: As all doses normalized by the maximum dose value in 16 mm setup, the relative differences between the equipment dose and film dose were 0.2% for 4mm collimator and 0.5% for 8mm. The acquisition of 300 images by the equipment took less than 3 minutes. Conclusion: The new equipment was verified to be a good substitute to radiochromic film, with which required more time and resources. Especially, the new methods was considered to provide much convenient and faster solution in the 3D dose acquisition for LGK.
Swanson, Jordan W.; Mitchell, Brianne T.; Wink, Jason A.; Taylor, Jesse A.
2016-01-01
Background: Grading systems of the mandibular deformity in craniofacial microsomia (CFM) based on conventional radiographs have shown low interrater reproducibility among craniofacial surgeons. We sought to design and validate a classification based on 3-dimensional CT (3dCT) that correlates features of the deformity with surgical treatment. Methods: CFM mandibular deformities were classified as normal (T0), mild (hypoplastic, likely treated with orthodontics or orthognathic surgery; T1), moderate (vertically deficient ramus, likely treated with distraction osteogenesis; T2), or severe (ramus rudimentary or absent, with either adequate or inadequate mandibular body bone stock; T3 and T4, likely treated with costochondral graft or free fibular flap, respectively). The 3dCT face scans of CFM patients were randomized and then classified by craniofacial surgeons. Pairwise agreement and Fleiss' κ were used to assess interrater reliability. Results: The 3dCT images of 43 patients with CFM (aged 0.1–15.8 years) were reviewed by 15 craniofacial surgeons, representing an average 15.2 years of experience. Reviewers demonstrated fair interrater reliability with average pairwise agreement of 50.4 ± 9.9% (Fleiss' κ = 0.34). This represents significant improvement over the Pruzansky–Kaban classification (pairwise agreement, 39.2%; P = 0.0033.) Reviewers demonstrated substantial interrater reliability with average pairwise agreement of 83.0 ± 7.6% (κ = 0.64) distinguishing deformities requiring graft or flap reconstruction (T3 and T4) from others. Conclusion: The proposed classification, designed for the era of 3dCT, shows improved consensus with respect to stratifying the severity of mandibular deformity and type of operative management. PMID:27104097
Effect of Watching 3-Dimensional Television on Refractive Error in Children
Kim, Seung-Hyun; Choi, Yong-Min; Han, Ji-Yoon; Nam, Gi-Tae; You, Eun-Joo; Cho, Yoonae A.
2015-01-01
Purpose To investigate the effect of watching 3-dimensional (3D) television (TV) on refractive error in children. Methods Sixty healthy volunteers, aged 6 to 12 years, without any ocular abnormalities other than refractive error were recruited for this study. They watched 3D TV for 50 minutes at a viewing distance of 2.8 meters. The image disparity of the 3D contents was from -1 to 1 degree. Refractive errors were measured both before and immediately after watching TV and were rechecked after a 10-minute rest period. The refractive errors before and after watching TV were compared. The amount of refractive change was also compared between myopes and controls. The refractive error of the participants who showed a myopic shift immediately after watching TV were compared across each time point to assure that the myopic shift persisted after a 10-minute rest. Results The mean age of the participants was 9.23 ± 1.75 years. The baseline manifest refractive error was -1.70 ± 1.79 (-5.50 to +1.25) diopters. The refractive errors immediately after watching and after a 10-minute rest were -1.75 ± 1.85 and -1.69 ± 1.80 diopters, respectively, which were not different from the baseline values. Myopic participants (34 participants), whose spherical equivalent was worse than -0.75 diopters, also did not show any significant refractive change after watching 3D TV. A myopic shift was observed in 31 participants with a mean score of 0.29 ± 0.23 diopters, which resolved after a 10-minute rest. Conclusions Watching properly made 3D content on a 3D TV for 50 minutes with a 10-minute intermission at more than 2.8 meters of viewing distance did not affect the refractive error of children. PMID:25646061
Estimating the costs of intensity-modulated and 3-dimensional conformal radiotherapy in Ontario
Yong, J.H.E.; McGowan, T.; Redmond-Misner, R.; Beca, J.; Warde, P.; Gutierrez, E.; Hoch, J.S.
2016-01-01
Background Radiotherapy is a common treatment for many cancers, but up-to-date estimates of the costs of radiotherapy are lacking. In the present study, we estimated the unit costs of intensity-modulated radiotherapy (imrt) and 3-dimensional conformal radiotherapy (3D-crt) in Ontario. Methods An activity-based costing model was developed to estimate the costs of imrt and 3D-crt in prostate cancer. It included the costs of equipment, staff, and supporting infrastructure. The framework was subsequently adapted to estimate the costs of radiotherapy in breast cancer and head-and-neck cancer. We also tested various scenarios by varying the program maturity and the use of volumetric modulated arc therapy (vmat) alongside imrt. Results From the perspective of the health care system, treating prostate cancer with imrt and 3D-crt respectively cost $12,834 and $12,453 per patient. The cost of radiotherapy ranged from $5,270 to $14,155 and was sensitive to analytic perspective, radiation technique, and disease site. Cases of head-and-neck cancer were the most costly, being driven by treatment complexity and fractions per treatment. Although imrt was more costly than 3D-crt, its cost will likely decline over time as programs mature and vmat is incorporated. Conclusions Our costing model can be modified to estimate the costs of 3D-crt and imrt for various disease sites and settings. The results demonstrate the important role of capital costs in studies of radiotherapy cost from a health system perspective, which our model can accommodate. In addition, our study established the need for future analyses of imrt cost to consider how vmat affects time consumption. PMID:27330359
Reproducibility of 3-dimensional ultrasound readings of volume of carotid atherosclerotic plaque
Ludwig, Malte; Zielinski, Tomasz; Schremmer, Dieter; Stumpe, Klaus O
2008-01-01
Background Non-invasive 3-dimensional (3D) ultrasound (US) has emerged as the predominant approach for evaluating the progression of carotid atherosclerosis and its response to treatment. The aim of this study was to investigate the quality of a central reading procedure concerning plaque volume (PV), measured by 3D US in a multinational US trial. Methods Two data sets of 45 and 60 3D US patient images of plaques (mean PV, 71.8 and 39.8 μl, respectively) were used. PV was assessed by means of manual planimetry. The intraclass correlation coefficient (ICC) was applied to determine reader variabilities. The repeatability coefficient (RC) and the coefficient of variation (CV) were used to investigate the effect of number of slices (S) in manual planimetry and plaque size on measurement variability. Results Intra-reader variability was small as reflected by ICCs of 0.985, 0.967 and 0.969 for 3 appointed readers. The ICC value generated between the 3 readers was 0.964, indicating that inter-reader variability was small, too. Subgroup analyses showed that both intra- and inter-reader variabilities were lower for larger than for smaller plaques. Mean CVs were similar for the 5S- and 10S-methods with a RC of 4.7 μl. The RC between both methods as well as the CVs were comparatively lower for larger plaques. Conclusion By implementing standardised central 3D US reading protocols and strict quality control procedures highly reliable ultrasonic re-readings of plaque images can be achieved in large multicentre trials. PMID:18727816
Sato, Kimi; Seo, Yoshihiro; Ishizu, Tomoko; Nakajima, Hideki; Takeuchi, Masaaki; Izumo, Masaki; Suzuki, Kengo; Akashi, Yoshihiro J; Otsuji, Yutaka; Aonuma, Kazutaka
2016-08-01
The estimation of aortic valve area (AVA) by Doppler echocardiography-derived left ventricular stroke volume (LVSV) remains controversial. We hypothesized that AVA estimated from directly measured LVSV by 3-dimensional echocardiography (3DE) on the continuity equation might be more accurate in classifying aortic stenosis (AS) severity. We retrospectively enrolled 265 patients with moderate-to-severe AS with preserved ejection fraction. Indexed AVA (iAVA) was calculated using LVSV derived by 2D Doppler (iAVADop), Simpson's method (iAVASimp), and 3DE (iAVA3D). During a median follow-up period of 397 days (interquartile range 197 to 706 days), 135 patients experienced the composite end point (cardiac death 9%, aortic valve replacement 24%, and cardiovascular event 27%). Estimated iAVA3D and iAVASimp were significantly smaller than iAVADop and moderately correlated with peak aortic jet velocity. Upper septal hypertrophy was a major cause of discrepancy between iAVADop and iAVA3D methods. Based on the optimal cut-off point of iAVA for predicting peak aortic jet velocity >4.0 m/s, 141 patients (53%) were classified as severe AS and 124 patients (47%) as moderate AS by iAVADop. Indexed AVA3D classified 118 patients (45%) as severe and 147 patients (55%) as moderate AS. Of the 124 patients with moderate AS by iAVADop, 22 patients (18%) were reclassified as severe AS by iAVA3D and showed poor prognosis (hazard ratio 2.7, 95% CI 1.4 to 5.0; p = 0.001). In conclusion, 3DE might be superior in classifying patients with AS compared with Doppler method, particularly in patients with upper septal hypertrophy. PMID:27287062
Future directions in 3-dimensional imaging and neurosurgery: stereoscopy and autostereoscopy.
Christopher, Lauren A; William, Albert; Cohen-Gadol, Aaron A
2013-01-01
Recent advances in 3-dimensional (3-D) stereoscopic imaging have enabled 3-D display technologies in the operating room. We find 2 beneficial applications for the inclusion of 3-D imaging in clinical practice. The first is the real-time 3-D display in the surgical theater, which is useful for the neurosurgeon and observers. In surgery, a 3-D display can include a cutting-edge mixed-mode graphic overlay for image-guided surgery. The second application is to improve the training of residents and observers in neurosurgical techniques. This article documents the requirements of both applications for a 3-D system in the operating room and for clinical neurosurgical training, followed by a discussion of the strengths and weaknesses of the current and emerging 3-D display technologies. An important comparison between a new autostereoscopic display without glasses and current stereo display with glasses improves our understanding of the best applications for 3-D in neurosurgery. Today's multiview autostereoscopic display has 3 major benefits: It does not require glasses for viewing; it allows multiple views; and it improves the workflow for image-guided surgery registration and overlay tasks because of its depth-rendering format and tools. Two current limitations of the autostereoscopic display are that resolution is reduced and depth can be perceived as too shallow in some cases. Higher-resolution displays will be available soon, and the algorithms for depth inference from stereo can be improved. The stereoscopic and autostereoscopic systems from microscope cameras to displays were compared by the use of recorded and live content from surgery. To the best of our knowledge, this is the first report of application of autostereoscopy in neurosurgery. PMID:23254802
Predicting diffusive transport of cationic liposomes in 3-dimensional tumor spheroids
Wientjes, Michael G.; Yeung, Bertrand Z.; Lu, Ze; Wientjes, M. Guillaume; Au, Jessie L.S.
2014-01-01
Nanotechnology is widely used in cancer research. Models that predict nanoparticle transport and delivery in tumors (including subcellular compartments) would be useful tools. This study tested the hypothesis that diffusive transport of cationic liposomes in 3-dimensional (3D) systems can be predicted based on liposome-cell biointerface parameters (binding, uptake, retention) and liposome diffusivity.Liposomes comprising different amounts of cationic and fusogenic lipids (10-30 mol% DOTAP or 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine,1-20 mol% DOPE or 1,2-dioleoyl-3-trimethylammonium-propane, +25 to +44 mV zeta potential) were studied. We (a) measured liposome-cell biointerface parameters in monolayer cultures, and (b) calculated effective diffusivity based on liposome size and spheroid composition. The resulting parameters were used to simulate the liposome concentration-depth profiles in 3D spheroids. The simulated results agreed with the experimental results for liposomes comprising 10-30 mol% DOTAP and ≤10 mol% DOPE, but not for liposomes with higher DOPE content. For the latter, model modifications to account for time-dependent extracellular concentration decrease and liposomesize increase did not improve the predictions. The difference among low- and high-DOPE liposomessuggestsconcentration-dependent DOPE properties in 3D systems that were not captured in monolayers. Taken together, our earlier and present studies indicate the diffusive transport of neutral, anionic and cationic nanoparticles (polystyrene beads and liposomes, 20-135 nm diameter, -49 to +44 mV) in 3D spheroids, with the exception of liposomes comprising >10 mol% DOPE, can be predicted based on the nanoparticle-cell biointerface and nanoparticle diffusivity. Applying the model to low-DOPE liposomes showed that changes in surface charge affected the liposome localization in intratumoralsubcompartments within spheroids. PMID:24995948
Novel Radiobiological Gamma Index for Evaluation of 3-Dimensional Predicted Dose Distribution
Sumida, Iori; Yamaguchi, Hajime; Kizaki, Hisao; Aboshi, Keiko; Tsujii, Mari; Yoshikawa, Nobuhiko; Yamada, Yuji; Suzuki, Osamu; Seo, Yuji; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko
2015-07-15
Purpose: To propose a gamma index-based dose evaluation index that integrates the radiobiological parameters of tumor control (TCP) and normal tissue complication probabilities (NTCP). Methods and Materials: Fifteen prostate and head and neck (H&N) cancer patients received intensity modulated radiation therapy. Before treatment, patient-specific quality assurance was conducted via beam-by-beam analysis, and beam-specific dose error distributions were generated. The predicted 3-dimensional (3D) dose distribution was calculated by back-projection of relative dose error distribution per beam. A 3D gamma analysis of different organs (prostate: clinical [CTV] and planned target volumes [PTV], rectum, bladder, femoral heads; H&N: gross tumor volume [GTV], CTV, spinal cord, brain stem, both parotids) was performed using predicted and planned dose distributions under 2%/2 mm tolerance and physical gamma passing rate was calculated. TCP and NTCP values were calculated for voxels with physical gamma indices (PGI) >1. We propose a new radiobiological gamma index (RGI) to quantify the radiobiological effects of TCP and NTCP and calculate radiobiological gamma passing rates. Results: The mean RGI gamma passing rates for prostate cases were significantly different compared with those of PGI (P<.03–.001). The mean RGI gamma passing rates for H&N cases (except for GTV) were significantly different compared with those of PGI (P<.001). Differences in gamma passing rates between PGI and RGI were due to dose differences between the planned and predicted dose distributions. Radiobiological gamma distribution was visualized to identify areas where the dose was radiobiologically important. Conclusions: RGI was proposed to integrate radiobiological effects into PGI. This index would assist physicians and medical physicists not only in physical evaluations of treatment delivery accuracy, but also in clinical evaluations of predicted dose distribution.
Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions
NASA Technical Reports Server (NTRS)
Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.
2011-01-01
A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.
Epidemiology of fragility fractures.
Friedman, Susan M; Mendelson, Daniel Ari
2014-05-01
As the world population of older adults-in particular those over age 85-increases, the incidence of fragility fractures will also increase. It is predicted that the worldwide incidence of hip fractures will grow to 6.3 million yearly by 2050. Fractures result in significant financial and personal costs. Older adults who sustain fractures are at risk for functional decline and mortality, both as a function of fractures and their complications and of the frailty of the patients who sustain fractures. Identifying individuals at high risk provides an opportunity for both primary and secondary prevention. PMID:24721358
NASA Astrophysics Data System (ADS)
Yoon, Jeoung Seok; Zimmermann, Günter; Zang, Arno
2015-07-01
In low permeability shale reservoirs, multi-stage hydraulic fracturing is largely used to increase the productivity by enlarging the stimulated rock volume. Hydraulic fracture created alters the stress field around it, and affects the subsequent fractures by the change of the stress field, in particular, mostly increased minimum principal stress at the area of subsequent fracturing. This is called stress shadow which accumulates as the fracturing stages advance from toe to heel. Hydraulic fractures generated in such altered stress field are shorter and compact with orientation deviating significantly from the far-field maximum horizontal stress orientation. This paper presents 2D discrete element-based numerical modeling of multi-stage hydraulic fracturing in a naturally fractured reservoir and investigates stress shadowing. The stress shadowing is tested with two different injection scenarios: constant and cyclic rate injections. The results show that cyclic injection tends to lower the effect of stress shadow as well as mitigates the magnitude of the induced seismicity. Another modeling case is presented to show how the stress shadow can be utilized to optimize a hydraulic fracture network in application to Groß Schönebeck geothermal reservoir, rather than being mitigated. The modeling demonstrated that the stress shadow is successfully utilized for optimizing the geothermal heat exchanger by altering the initial in situ stress field from highly anisotropic to less or even to isotropic.
Hip fracture risk estimation based on principal component analysis of QCT atlas: a preliminary study
NASA Astrophysics Data System (ADS)
Li, Wenjun; Kornak, John; Harris, Tamara; Lu, Ying; Cheng, Xiaoguang; Lang, Thomas
2009-02-01
We aim to capture and apply 3-dimensional bone fragility features for fracture risk estimation. Using inter-subject image registration, we constructed a hip QCT atlas comprising 37 patients with hip fractures and 38 age-matched controls. In the hip atlas space, we performed principal component analysis to identify the principal components (eigen images) that showed association with hip fracture. To develop and test a hip fracture risk model based on the principal components, we randomly divided the 75 QCT scans into two groups, one serving as the training set and the other as the test set. We applied this model to estimate a fracture risk index for each test subject, and used the fracture risk indices to discriminate the fracture patients and controls. To evaluate the fracture discrimination efficacy, we performed ROC analysis and calculated the AUC (area under curve). When using the first group as the training group and the second as the test group, the AUC was 0.880, compared to conventional fracture risk estimation methods based on bone densitometry, which had AUC values ranging between 0.782 and 0.871. When using the second group as the training group, the AUC was 0.839, compared to densitometric methods with AUC values ranging between 0.767 and 0.807. Our results demonstrate that principal components derived from hip QCT atlas are associated with hip fracture. Use of such features may provide new quantitative measures of interest to osteoporosis.
Distributed Relaxation for Conservative Discretizations
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2001-01-01
A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.
Understanding Hydraulic Fracture Stimulations in Oil-Gas Developments Using Microseismicity (M<0)
NASA Astrophysics Data System (ADS)
Urbancic, T.; Baig, A. M.
2011-12-01
Microseismic monitoring is widely recognized as a powerful production optimization tool in the oil and gas industry. In particular, microseismic imaging has been shown to provide insight into the dynamic behavior of reservoirs during hydraulic fracture stimulations. In this presentation, we explore ideas and provide examples of preliminary work linking microseismicity, geology and engineering to build predictive reservoir models and to assist with their calibration and validation. Generally, microseismic imaging of hydraulic fractures focuses on mapping event locations. By simply examining the spatial and temporal variations in microseismicity, overall geometric measures such as orientation, fracture extent (height, length, and width) and fracture growth can be assessed. Examining fracture growth in the context of traditional hydraulic fracture models, estimates of fracture geometry based on microseismic data have been used to support the accepted fracture behavior. In hydraulic fracture stimulations, fractures are generally considered to develop along a single fracture azimuth or along a plane of fracturing controlled by regional stresses (i.e. along the direction of maximum principle stress), even within the context of a three-dimensional fracture network. In this study, we show how seismic moment tensors and source parameters have been used to assess the orientation of newly formed or reactivated fractures, as well as evaluate their size or time-dependent response to fluid injections. As well, using nearest-neighbor statistics, events can be grouped into behavioral domains, such as near-treatment-well and fracture extension regions, and used to outline a Discrete Fracture Network (DFN). Evaluating the spatial-temporal development of the DFN within the defined volumes can then be used to assess the fracture connectivity and enhanced permeability associated with the treatment. With moment tensor analysis, we show how petroleum engineers can also assess the
NASA Astrophysics Data System (ADS)
Hardebol, N. J.; Maier, C.; Nick, H.; Geiger, S.; Bertotti, G.; Boro, H.
2015-12-01
A fracture network arrangement is quantified across an isolated carbonate platform from outcrop and aerial imagery to address its impact on fluid flow. The network is described in terms of fracture density, orientation, and length distribution parameters. Of particular interest is the role of fracture cross connections and abutments on the effective permeability. Hence, the flow simulations explicitly account for network topology by adopting Discrete-Fracture-and-Matrix description. The interior of the Latemar carbonate platform (Dolomites, Italy) is taken as outcrop analogue for subsurface reservoirs of isolated carbonate build-ups that exhibit a fracture-dominated permeability. New is our dual strategy to describe the fracture network both as deterministic- and stochastic-based inputs for flow simulations. The fracture geometries are captured explicitly and form a multiscale data set by integration of interpretations from outcrops, airborne imagery, and lidar. The deterministic network descriptions form the basis for descriptive rules that are diagnostic of the complex natural fracture arrangement. The fracture networks exhibit a variable degree of multitier hierarchies with smaller-sized fractures abutting against larger fractures under both right and oblique angles. The influence of network topology on connectivity is quantified using Discrete-Fracture-Single phase fluid flow simulations. The simulation results show that the effective permeability for the fracture and matrix ensemble can be 50 to 400 times higher than the matrix permeability of 1.0 · 10-14 m2. The permeability enhancement is strongly controlled by the connectivity of the fracture network. Therefore, the degree of intersecting and abutting fractures should be captured from outcrops with accuracy to be of value as analogue.
Skull fractures may occur with head injuries. Although the skull is both tough and resilient and provides excellent ... or blow can result in fracture of the skull and may be accompanied by injury to the ...
Bone fracture repair - slideshow
... page: //medlineplus.gov/ency/presentations/100077.htm Bone fracture repair - series To use the sharing features on ... to slide 4 out of 4 Indications Overview Fractures of the bones are classified in a number ...
.org Forearm Fractures in Children The forearm is the part of the arm between the wrist and the elbow. It is ... two bones: the radius and the ulna. Forearm fractures are common in childhood, accounting for more than ...
... page: //medlineplus.gov/ency/patientinstructions/000554.htm Nasal fracture - aftercare To use the sharing features on this ... that gives your nose its shape. A nasal fracture occurs when the bony part of your nose ...
A nasal fracture is a break in the bone over the ridge of the nose. It usually results from a blunt ... and is one of the most common facial fracture. Symptoms of a broken nose include pain, blood ...
... neck fracture repair; Trochanteric fracture repair; Hip pinning surgery; Osteoarthritis-hip ... You may receive general anesthesia before this surgery. This means ... spinal anesthesia. With this kind of anesthesia, medicine is ...
Cheraghi-Sohi, Sudeh; Calnan, Michael
2013-11-01
There has much debate about the extent to which professional discretion has been challenged by recent organisational changes such as through the new forms of governance associated with the introduction of the principles of the New Public Management (NPM) into health systems and other public sector services. What appears to be missing from these debates is a detailed analysis of the concept of professional discretion itself. This paper attempts to fill this gap by delineating the key concepts of professional discretion evident in the literature and exploring their significance in an empirical study of the influence of the 2004 new general medical services contract (nGMS) and the introduction of the Quality and Outcomes Framework (QOF), a prescriptive pay-for-performance system designed to standardise the quality of care provision in general medical practice in the United Kingdom. The study adopted a longitudinal design using semi-structured interviews with general practitioners (GPs, N = 62) working in the English National Health Service (NHS) between 2007 and 2009. A multi-dimensional conception of discretion was used to explore how GP discretion might have been influenced by contractual changes and in particular, QOF. The findings suggest that through a complex interplay of factors, a post-QOF reduction in GP discretion was identifiable, highlighting different potential sources of constraint such as in the social, organisational and economic dimensions of discretion. The evidence also suggested the emergence of a new form of organisational medical professionalism within general practice characterised by standardisation, bureaucracy and performance management. PMID:24034951
DEM modeling of fracture propagation in veined rock
NASA Astrophysics Data System (ADS)
Virgo, S.; Abe, S.; Urai, J. L.
2012-04-01
One fundamental aspect of crack seal veins is that an existing vein can act as a heterogeneity in the rock which controls the localization of successive fracturing at unchanged mean stress orientations. Observations from crack-seal vein systems suggest that existing veins fundamentally influence the fracture behavior of a rock even in cases where the orientation of the stress field is highly incompatible with the orientation of the vein. We used a series of 3D Discrete Element Simulations to systematically investigate the influence of existing veins with varying orientation and mechanical properties on an approaching fracture. The models consist of a tabular heterogeneity within a bonded particle volume fractured under uniaxial tension. The parameters varied in the study are the orientation of the heterogeneity relative to the direction of uniaxial extension and therefore relative to the orientation of the favorable fracture plane as well as the fracture strength ratio between the matrix material, the vein material and the interface between vein and matrix material. The elastic parameters (e.g. Young's modulus) are kept homogeneous throughout the model. Thereby it is ensured that the results are not altered by stress field perturbation induced by stiffness contrasts. The model materials used were carefully tested and calibrated to ensure comparability with natural examples in terms of their fracture-mechanical properties. The simulations were repeated for several random particle packings to eliminate the effect of heterogeneities in the packing on the results. The results show a strong influence of the tabular heterogeneity on the fracture propagation for all orientations and at cohesion ratios within the range of natural systems. Besides curving and deflection of the fracture path associated with changes in fracture mode, bifurcation of fractures as well as arrest of propagation and nucleation of new fractures can be observed.
Development of automatic body condition scoring using a low-cost 3-dimensional Kinect camera.
Spoliansky, Roii; Edan, Yael; Parmet, Yisrael; Halachmi, Ilan
2016-09-01
Body condition scoring (BCS) is a farm-management tool for estimating dairy cows' energy reserves. Today, BCS is performed manually by experts. This paper presents a 3-dimensional algorithm that provides a topographical understanding of the cow's body to estimate BCS. An automatic BCS system consisting of a Kinect camera (Microsoft Corp., Redmond, WA) triggered by a passive infrared motion detector was designed and implemented. Image processing and regression algorithms were developed and included the following steps: (1) image restoration, the removal of noise; (2) object recognition and separation, identification and separation of the cows; (3) movie and image selection, selection of movies and frames that include the relevant data; (4) image rotation, alignment of the cow parallel to the x-axis; and (5) image cropping and normalization, removal of irrelevant data, setting the image size to 150×200 pixels, and normalizing image values. All steps were performed automatically, including image selection and classification. Fourteen individual features per cow, derived from the cows' topography, were automatically extracted from the movies and from the farm's herd-management records. These features appear to be measurable in a commercial farm. Manual BCS was performed by a trained expert and compared with the output of the training set. A regression model was developed, correlating the features with the manual BCS references. Data were acquired for 4 d, resulting in a database of 422 movies of 101 cows. Movies containing cows' back ends were automatically selected (389 movies). The data were divided into a training set of 81 cows and a test set of 20 cows; both sets included the identical full range of BCS classes. Accuracy tests gave a mean absolute error of 0.26, median absolute error of 0.19, and coefficient of determination of 0.75, with 100% correct classification within 1 step and 91% correct classification within a half step for BCS classes. Results indicated
Alqathami, Mamdooh; Blencowe, Anton; Yeo, Un Jin; Doran, Simon J.; Qiao, Greg; Geso, Moshi
2012-11-15
Purpose: Gold nanoparticles (AuNps), because of their high atomic number (Z), have been demonstrated to absorb low-energy X-rays preferentially, compared with tissue, and may be used to achieve localized radiation dose enhancement in tumors. The purpose of this study is to introduce the first example of a novel multicompartment radiochromic radiation dosimeter and to demonstrate its applicability for 3-dimensional (3D) dosimetry of nanoparticle-enhanced radiation therapy. Methods and Materials: A novel multicompartment phantom radiochromic dosimeter was developed. It was designed and formulated to mimic a tumor loaded with AuNps (50 nm in diameter) at a concentration of 0.5 mM, surrounded by normal tissues. The novel dosimeter is referred to as the Sensitivity Modulated Advanced Radiation Therapy (SMART) dosimeter. The dosimeters were irradiated with 100-kV and 6-MV X-ray energies. Dose enhancement produced from the interaction of X-rays with AuNps was calculated using spectrophotometric and cone-beam optical computed tomography scanning by quantitatively comparing the change in optical density and 3D datasets of the dosimetric measurements between the tissue-equivalent (TE) and TE/AuNps compartments. The interbatch and intrabatch variability and the postresponse stability of the dosimeters with AuNps were also assessed. Results: Radiation dose enhancement factors of 1.77 and 1.11 were obtained using 100-kV and 6-MV X-ray energies, respectively. The results of this study are in good agreement with previous observations; however, for the first time we provide direct experimental confirmation and 3D visualization of the radiosensitization effect of AuNps. The dosimeters with AuNps showed small (<3.5%) interbatch variability and negligible (<0.5%) intrabatch variability. Conclusions: The SMART dosimeter yields experimental insights concerning the spatial distributions and elevated dose in nanoparticle-enhanced radiation therapy, which cannot be performed using any of
Goodall, Nicola; Kisiswa, Lilian; Prashar, Ankush; Faulkner, Stuart; Tokarczuk, Paweł; Singh, Krish; Erichsen, Jonathan T; Guggenheim, Jez; Halfter, Willi; Wride, Michael A
2009-10-01
Magnetic resonance imaging (MRI) is a powerful tool for generating 3-dimensional structural and functional image data. MRI has already proven valuable in creating atlases of mouse and quail development. Here, we have exploited high resolution MRI to determine the parameters necessary to acquire images of the chick embryo eye. Using a 9.4 Tesla (400 MHz) high field ultra-shielded and refrigerated magnet (Bruker), MRI was carried out on paraformaldehyde-fixed chick embryos or heads at E4, E6, E8, and E10. Image data were processed using established and custom packages (MRICro, ImageJ, ParaVision, Bruker and mri3dX). Voxel dimensions ranged from 62.5 microm to 117.2 microm. We subsequently used the images obtained from the MRI data in order to make precise measurements of chick embryo eye surface area, volume and axial length from E4 to E10. MRI was validated for accurate sizing of ocular tissue features by direct comparison with previously published literature. Furthermore, we demonstrate the utility of high resolution MRI for making accurate measurements of morphological changes due to experimental manipulation of chick eye development, thereby facilitating a better understanding of the effects on chick embryo eye development and growth of such manipulations. Chondroitin sulphate or heparin were microinjected into the vitreous cavity of the right eyes of each of 3 embryos at E5. At E10, embryos were fixed and various eye parameters (volume, surface area, axial length and equatorial diameter) were determined using MRI and normalised with respect to the un-injected left eyes. Statistically significant alterations in eye volume (p < 0.05; increases with chondroitin sulphate and decreases with heparin) and changes in vitreous homogeneity were observed in embryos following microinjection of glycosaminoglycans. Furthermore, in the heparin-injected eyes, significant disturbances at the vitreo-retinal boundary were observed as well as retinal folding and detachment
Inouye, Joshua M; Lin, Kant Y; Perry, Jamie L; Blemker, Silvia S
2016-02-01
The convexity of the dorsal surface of the velum is critical for normal velopharyngeal (VP) function and is largely attributed to the levator veli palatini (LVP) and musculus uvulae (MU). Studies have correlated a concave or flat nasal velar surface to symptoms of VP dysfunction including hypernasality and nasal air emission. In the context of surgical repair of cleft palates, the MU has been given relatively little attention in the literature compared with the larger LVP. A greater understanding of the mechanics of the MU will provide insight into understanding the influence of a dysmorphic MU, as seen in cleft palate, as it relates to VP function. The purpose of this study was to quantify the contributions of the MU to VP closure in a computational model. We created a novel 3-dimensional (3D) finite element model of the VP mechanism from magnetic resonance imaging data collected from an individual with healthy noncleft VP anatomy. The model components included the velum, posterior pharyngeal wall (PPW), LVP, and MU. Simulations were based on the muscle and soft tissue mechanical properties from the literature. We found that, similar to previous hypotheses, the MU acts as (i) a space-occupying structure and (ii) a velar extensor. As a space-occupying structure, the MU helps to nearly triple the midline VP contact length. As a velar extensor, the MU acting alone without the LVP decreases the VP distance 62%. Furthermore, activation of the MU decreases the LVP activation required for closure almost 3-fold, from 20% (without MU) to 8% (with MU). Our study suggests that any possible salvaging and anatomical reconstruction of viable MU tissue in a cleft patient may improve VP closure due to its mechanical function. In the absence or dysfunction of MU tissue, implantation of autologous or engineered tissues at the velar midline, as a possible substitute for the MU, may produce a geometric convexity more favorable to VP closure. In the future, more complex models will
Carotid-Sparing TomoHelical 3-Dimensional Conformal Radiotherapy for Early Glottic Cancer
Hong, Chae-Seon; Oh, Dongryul; Ju, Sang Gyu; Ahn, Yong Chan; Noh, Jae Myoung; Chung, Kwangzoo; Kim, Jin Sung; Suh, Tae-Suk
2016-01-01
Purpose The purpose of this study was to investigate the dosimetric benefits and treatment efficiency of carotid-sparing TomoHelical 3-dimensional conformal radiotherapy (TH-3DCRT) for early glottic cancer. Materials and Methods Ten early-stage (T1N0M0) glottic squamous cell carcinoma patients were simulated, based on computed tomography scans. Two-field 3DCRT (2F-3DCRT), 3-field intensity-modulated radiation therapy (3F-IMRT), TomoHelical-IMRT (TH-IMRT), and TH-3DCRT plans were generated with a 67.5-Gy total prescription dose to the planning target volume (PTV) for each patient. In order to evaluate the plan quality, dosimetric characteristics were compared in terms of conformity index (CI) and homogeneity index (HI) for PTV, dose to the carotid arteries, and maximum dose to the spinal cord. Treatment planning and delivery times were compared to evaluate treatment efficiency. Results The median CI was substantially better for the 3F-IMRT (0.65), TH-IMRT (0.64), and TH-3DCRT (0.63) plans, compared to the 2F-3DCRT plan (0.32). PTV HI was slightly better for TH-3DCRT and TH-IMRT (1.05) compared to 2F-3DCRT (1.06) and 3F-IMRT (1.09). TH-3DCRT, 3F-IMRT, and TH-IMRT showed an excellent carotid sparing capability compared to 2F-3DCRT (p < 0.05). For all plans, the maximum dose to the spinal cord was < 45 Gy. The median treatment planning times for 2F-3DCRT (5.85 minutes) and TH-3DCRT (7.10 minutes) were much lower than those for 3F-IMRT (45.48 minutes) and TH-IMRT (35.30 minutes). The delivery times for 2F-3DCRT (2.06 minutes) and 3F-IMRT (2.48 minutes) were slightly lower than those for TH-IMRT (2.90 minutes) and TH-3DCRT (2.86 minutes). Conclusion TH-3DCRT showed excellent carotid-sparing capability, while offering high efficiency and maintaining good PTV coverage. PMID:25761477
Novel 3-dimensional virtual hepatectomy simulation combined with real-time deformation
Oshiro, Yukio; Yano, Hiroaki; Mitani, Jun; Kim, Sangtae; Kim, Jaejeong; Fukunaga, Kiyoshi; Ohkohchi, Nobuhiro
2015-01-01
AIM: To develop a novel 3-dimensional (3D) virtual hepatectomy simulation software, Liversim, to visualize the real-time deformation of the liver. METHODS: We developed a novel real-time virtual hepatectomy simulation software program called Liversim. The software provides 4 basic functions: viewing 3D models from arbitrary directions, changing the colors and opacities of the models, deforming the models based on user interaction, and incising the liver parenchyma and intrahepatic vessels based on user operations. From April 2010 through 2013, 99 patients underwent virtual hepatectomies that used the conventional software program SYNAPSE VINCENT preoperatively. Between April 2012 and October 2013, 11 patients received virtual hepatectomies using the novel software program Liversim; these hepatectomies were performed both preoperatively and at the same that the actual hepatectomy was performed in an operating room. The perioperative outcomes were analyzed between the patients for whom SYNAPSE VINCENT was used and those for whom Liversim was used. Furthermore, medical students and surgical residents were asked to complete questionnaires regarding the new software. RESULTS: There were no obvious discrepancies (i.e., the emergence of branches in the portal vein or hepatic vein or the depth and direction of the resection line) between our simulation and the actual surgery during the resection process. The median operating time was 304 min (range, 110 to 846) in the VINCENT group and 397 min (range, 232 to 497) in the Liversim group (P = 0.30). The median amount of intraoperative bleeding was 510 mL (range, 18 to 5120) in the VINCENT group and 470 mL (range, 130 to 1600) in the Liversim group (P = 0.44). The median postoperative stay was 12 d (range, 6 to 100) in the VINCENT group and 13 d (range, 9 to 21) in the Liversim group (P = 0.36). There were no significant differences in the preoperative outcomes between the two groups. Liversim was not found to be clinically
Acromiohumeral Distance and 3-Dimensional Scapular Position Change After Overhead Muscle Fatigue
Maenhout, Annelies; Dhooge, Famke; Van Herzeele, Maarten; Palmans, Tanneke; Cools, Ann
2015-01-01
Context: Muscle fatigue due to repetitive and prolonged overhead sports activity is considered an important factor contributing to impingement-related rotator cuff pathologic conditions in overhead athletes. The evidence on scapular and glenohumeral kinematic changes after fatigue is contradicting and prohibits conclusions about how shoulder muscle fatigue affects acromiohumeral distance. Objective: To investigate the effect of a fatigue protocol resembling overhead sports activity on acromiohumeral distance and 3-dimensional scapular position in overhead athletes. Design: Cross-sectional study. Setting: Institutional laboratory. Patients or Other Participants: A total of 29 healthy recreational overhead athletes (14 men, 15 women; age = 22.23 ± 2.82 years, height = 178.3 ± 7.8 cm, mass = 71.6 ± 9.5 kg). Intervention(s) The athletes were tested before and after a shoulder muscle-fatiguing protocol. Main Outcome Measure(s) Acromiohumeral distance was measured using ultrasound, and scapular position was determined with an electromagnetic motion-tracking system. Both measurements were performed at 3 elevation positions (0°, 45°, and 60° of abduction). We used a 3-factor mixed model for data analysis. Results: After fatigue, the acromiohumeral distance increased when the upper extremity was actively positioned at 45° (Δ = 0.78 ± 0.24 mm, P = .002) or 60° (Δ = 0.58 ± 0.23 mm, P = .02) of abduction. Scapular position changed after fatigue to a more externally rotated position at 45° (Δ = 4.97° ± 1.13°, P < .001) and 60° (Δ = 4.61° ± 1.90°, P = .001) of abduction, a more upwardly rotated position at 45° (Δ = 6.10° ± 1.30°, P < .001) and 60° (Δ = 7.20° ± 1.65°, P < .001) of abduction, and a more posteriorly tilted position at 0°, 45°, and 60° of abduction (Δ = 1.98° ± 0.41°, P < .001). Conclusions: After a fatiguing protocol, we found changes in acromiohumeral distance and scapular position that corresponded with an impingement
New Technique for Developing a Proton Range Compensator With Use of a 3-Dimensional Printer
Ju, Sang Gyu; Kim, Min Kyu; Hong, Chae-Seon; Kim, Jin Sung; Han, Youngyih; Choi, Doo Ho; Shin, Dongho; Lee, Se Byeong
2014-02-01
Purpose: A new system for manufacturing a proton range compensator (RC) was developed by using a 3-dimensional printer (3DP). The physical accuracy and dosimetric characteristics of the new RC manufactured by 3DP (RC{sub 3}DP) were compared with those of a conventional RC (RC{sub C}MM) manufactured by a computerized milling machine (CMM). Methods and Materials: An RC for brain tumor treatment with a scattered proton beam was calculated with a treatment planning system, and the resulting data were converted into a new format for 3DP using in-house software. The RC{sub 3}DP was printed with ultraviolet curable acrylic plastic, and an RC{sub C}MM was milled into polymethylmethacrylate using a CMM. The inner shape of both RCs was scanned by using a 3D scanner and compared with TPS data by applying composite analysis (CA; with 1-mm depth difference and 1 mm distance-to-agreement criteria) to verify their geometric accuracy. The position and distal penumbra of distal dose falloff at the central axis and field width of the dose profile at the midline depth of spread-out Bragg peak were measured for the 2 RCs to evaluate their dosimetric characteristics. Both RCs were imaged on a computed tomography scanner to evaluate uniformity of internal density. The manufacturing times for both RCs were compared to evaluate the production efficiency. Results: The pass rates for the CA test were 99.5% and 92.5% for RC{sub 3}DP and RC{sub C}MM, respectively. There was no significant difference in dosimetric characteristics and uniformity of internal density between the 2 RCs. The net fabrication times of RC{sub 3}DP and RC{sub C}MM were about 18 and 3 hours, respectively. Conclusions: The physical accuracy and dosimetric characteristics of RC{sub 3}DP were comparable with those of the conventional RC{sub C}MM, and significant system minimization was provided.
Trionfo, Arianna; Cavanaugh, Priscilla K; Herman, Martin J
2016-07-01
Open fractures in children are rare and are typically associated with better prognoses compared with their adult equivalents. Regardless, open fractures pose a challenge because of the risk of healing complications and infection, leading to significant morbidity even in the pediatric population. Therefore, the management of pediatric open fractures requires special consideration. This article comprehensively reviews the initial evaluation, classification, treatment, outcomes, and controversies of open fractures in children. PMID:27241379
Geometry of discrete quantum computing
NASA Astrophysics Data System (ADS)
Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung
2013-05-01
Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.
Dikken, B.J.; Niko, H.
1987-01-01
Fracturing occurs quite often in water injection wells, with sometimes unforeseen consequences on waterflood sweep efficiency. One of the causes of fracturing is often the cooling of hot formations by cold injection water. A special version of a thermal reservoir simulator for prototype applications has thus been constructed that is capable of dealing with propagating waterflood-induces hydraulic fractures. With this simulator, fracture propagation and the effect of growing fractures on the sweep efficiency are studied. Infinite fracture conductivity is assumed. The limitation to a very high leak-off fractures justifies disregarding the changes in fracture volume. Fracture growth is calculated using the concept of a critical stress intensity factor. Both poro- and thermo-elastic changes in the horizontal stresses are calculated numerically and their influence on the fracture initiation/propagation is continuously taken into account. In addition, a model of fracture wall impairment because of filter-cake build-up due to poor quality injection water is included. Results are presented for both thermal and isothermal situations. It is observed in isothermal cases that the voidage replacement ratio (volume balance during injection) determined to a great extent the length to which the fracture eventually may grow.
A tooth can be chipped or fractured during an accident or a bad fall. A tooth that is chipped or not badly fractured can usually be handled on a nonemergency basis. A tooth that is badly fractured may have exposed nerve ...
NASA Astrophysics Data System (ADS)
Jin, G.; Pashin, J. C.
2014-12-01
Ensuring safe and permanent storage of sequestered CO2in naturally fractured geological media is vital for the success of geologic storage projects. Critical needs exist to develop advanced techniques to characterize and model fluid transport in naturally fractured reservoirs and seals. We have developed a scale-independent 3-D stochastic fracture permeability characterization workflow that employs multiple discrete fracture network (DFN) realizations. The workflow deploys a multidirectional flux-based upwind weighting scheme that is capable of modeling multiphase flow in highly heterogeneous fractured media. The techniques employed herein show great promise for increasing the accuracy of capacity determinations and the prediction of pressure footprints associated with injected CO2 plumes. The proposed workflow has been conducted in a simulation study of flow transport and risk assessment of CO2 injection into a deep fractured saline formation using geological parameters from Knox Group carbonate and Red Mountain shale rocks in central Alabama. A 3-D fracture permeability map was generated from multiple realizations of DFN models. A multiphase flow model composed of supercritical CO2 and saline water was applied to simulate CO2 plume evolution during and after injection. Injection simulation reveals significant permeability anisotropy that favors development of northeast-elongate CO2 plumes. The spreading front of the CO2 plume shows strong viscous fingering effects. Post-injection simulation indicates significant lateral spreading of CO2 near the top of the fractured formations because of the buoyancy of injectate in rock matrix and strata-bound vertical fractures. Risk assessment shows that although pressure drops faster in the fractured formations than in those lacking fractures, lateral movement of CO2 along natural fractures necessitates that the injectate be confined by widespread seals with high integrity.
From Multi-Porosity to Multiple-Scale Permeability Models of Natural Fractured Media
NASA Astrophysics Data System (ADS)
De Dreuzy, J. R.; Davy, P.; Meheust, Y.; Bour, O.
2014-12-01
Classical dual-porosity models and homogenization approaches fail to represent the permeability scaling, the high flow channeling and the broad variability observed in natural fractured media. More critically, most modeling frameworks cannot restitute simultaneously the permeability increase with scale and the persistence of channeling. In fact, channeling enhances the impact of bottlenecks, reduces permeability, and increases permeability variability with scale. It is the case of percolation theory but also of more advanced large-range correlated theories including power-law scaling of some of the fracture properties including their length or their mutual distances. More generally, we show with extensive numerical studies on 3D Discrete Fracture Networks (DFNs) that hydraulic behaviors come from a number of local and global fracture characteristics. The concept of effective properties like effective permeability itself appears quite weak and should be replaced by new modeling frameworks. We propose three alternative approaches combining the specificies of fracture flow and transport of DFNs and the simplicity of continuum approaches: 1- Discrete dual porosity media for high flow localization in a subset of the fracture network. 2- Structured Interacting Continua for highly organized diffusive processes in poorly connected fracture structures. 3- Multiple-scale permeability models for hierarchically structured fractured media with 3D concurrent fracture percolating networks. These different approaches can be combined and specified with a limited number of parameters. They are also efficient in representing the potentially large hydraulic impact of minor modification of the fracture network geometry and local connectivity.
A novel approach to characterization of effective permeability for naturally fractured reservoirs
NASA Astrophysics Data System (ADS)
Jin, G.
2013-12-01
Fractured formations have been the important targets for hydrocarbon exploration, groundwater supply, geothermal heat storage exploitation, and storage for sequestrated carbon dioxide, etc. However, accurate modeling of effective permeability of fractured reservoir has been a challenging task because the presence of fracture network may significantly alter the reservoir hydrologic properties in that interconnected fractures can enhance the reservoir heterogeneity in several orders of magnitude. Previous fractured simulation models can be divided into continuum and discrete fracture network (DFN) approaches. In the continuum approaches such as dual porosity/permeability model, fractures are assumed to be infinitely long and distributed in a regular pattern which resulted in the ignorance of actual fracture geometry. The discrete fracture model considers fracture dimension and transmissivity of each individual fracture but has an inherent disadvantage of its high computation-intensive nature and extreme difficulty in domain discretization, which severely limit its practical applications to problems with hundreds of thousands of fractures. In this paper we proposed a new approach to calculate the effective permeability for fractured network which integrates the DFN method while still honoring the geometrical pattern of each individual fracture. A full permeability matrix for each fracture is expressed as a second rank tensor composed of three parts: a unit permeability matrix defined by fracture orientation, a scalar absolute permeability from fracture aperture based on cubic law, and a shape factor defined by fracture size. The equivalent element permeability of a cell in a model is the component-wise aggregations of the permeability tensors from each interconnected fracture within that cell. This process is repeated for every cell in the entire model domain once a DFN model is generated based on the actual fracture statistics from field investigations, core
Birkholzer, J.; Karasaki, K.
1996-09-01
Fracture network simulators have been extensively used in the past for obtaining a better understanding of flow and transport processes in fractured rock. However, most of these models do not account for fluid or solute exchange between the fractures and the porous matrix, although diffusion into the matrix pores can have a major impact on the spreading of contaminants. In the present paper a new finite element code TRIPOLY is introduced which combines a powerful Lagrangian-Eulerian approach for solving flow and transport in networks of discrete fractures with an efficient method to account for the diffusive interaction between the fractures and the adjacent matrix blocks. The code is capable of handling large-scale fracture-matrix systems comprising individual fractures and matrix blocks of arbitrary size, shape, and dimension.
Influence of piezometer construction on groundwater sampling in fractured rock.
Kozuskanich, J; Novakowski, K S; Anderson, B C
2012-01-01
A numerical model for groundwater flow and solute transport was employed to examine the influence of the screen and sandpack on the collection of a representative geochemical sample from a piezometer monitoring well installation in a discretely fractured bedrock aquifer. The optimization of screen and sandpack combinations was explored for the potential to reduce purging times and volumes in practice. Simulations accounted for the location of the fractures along the well screen, fracture aperture, screen length, and the pumping rate. The variability in the required purging times (t(99)-the time required to achieve 99% fractional contribution from the formation to pump discharge) can be explained by: (1) the relative hydraulic conductivities of the components of the system (fracture, sandpack, and screen), (2) the truncation of the flow field from the fracture to the screen by the upper and/or lower boundary of the sandpack of the flow field from another fracture, and (3) time-dependent drawdown. During pumping, only a portion of the sandpack may actually become hydraulically active. The optimal configuration (shortest purging time) is achieved when the ratios of the screen, sandpack, and fracture hydraulic conductivities are close to 1:1:1. More importantly, the role of the fracture hydraulic conductivity in the ratios is not as crucial to reducing t(99) as having the hydraulic conductivities of the screen and sandpack as similar as possible. This study provides a better understanding of well dynamics during pumping for the purpose of obtaining representative groundwater samples. PMID:21797851
Brand, Jefferson C
2016-01-01
No single-image magnetic resonance imaging (MRI) assessment-Goutallier classification, Fuchs classification, or cross-sectional area-is predictive of whole-muscle volume or fatty atrophy of the supraspinatus or infraspinatus. Rather, 3-dimensional MRI measurement of whole-muscle volume and fat-free muscle volume is required and is associated with shoulder strength, which is clinically relevant. Three-dimensional MRI may represent a new gold standard for assessment of the rotator cuff musculature using imaging and may help to predict the feasibility of repair of a rotator cuff tear as well as the postoperative outcome. Unfortunately, 3-dimensional MRI assessment of muscle volume is labor intensive and is not widely available for clinical use. PMID:26743416
Talus fractures: surgical principles.
Rush, Shannon M; Jennings, Meagan; Hamilton, Graham A
2009-01-01
Surgical treatment of talus fractures can challenge even the most skilled foot and ankle surgeon. Complicated fracture patterns combined with joint dislocation of variable degrees require accurate assessment, sound understanding of principles of fracture care, and broad command of internal fixation techniques needed for successful surgical care. Elimination of unnecessary soft tissue dissection, a low threshold for surgical reduction, liberal use of malleolar osteotomy to expose body fracture, and detailed attention to fracture reduction and joint alignment are critical to the success of treatment. Even with the best surgical care complications are common and seem to correlate with injury severity and open injuries. PMID:19121756
Reduced discretization error in HZETRN
Slaba, Tony C.; Blattnig, Steve R.; Tweed, John
2013-02-01
The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.
Some discrete multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Arvesú, J.; Coussement, J.; van Assche, W.
2003-04-01
In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.
Hehlgans, Stephanie; Department of Radiotherapy and Oncology, University of Frankfurt, Frankfurt am Main; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden ; Eke, Iris; Cordes, Nils; Institute of Radiopharmacy, Helmholtz Center Dresden-Rossendorf, Dresden; Department of Radiation Oncology, University Hospital and Medical Faculty Carl Gustav Carus, Dresden University of Technology, Dresden
2012-08-01
Purpose: Focal adhesion kinase (FAK), a main regulator of integrin signaling and cell migration, is frequently overexpressed and hyperphosphorylated in human head-and-neck squamous cell carcinoma (HNSCC). We have previously shown that pharmacologic FAK inhibition leads to radiosensitization of 3-dimensionally grown HNSCC cell lines. To further evaluate the role of FAK in radioresistance and as a potential cancer target, we examined FAK and FAK downstream signaling in HNSCC cell lines grown in more physiologic extracellular matrix-based 3-dimensional cell cultures. Methods and Materials: Seven HNSCC cell lines were grown in 3-dimensional extracellular matrix and the clonogenic radiation survival, expression, and phosphorylation of FAK, paxillin, Akt1, extracellular signal-regulated kinase (ERK)1/2, and MEK1/2 were analyzed after siRNA-mediated knockdown of FAK, Akt1, MEK1, FAK+Akt1, or FAK+MEK1 compared with controls or stable overexpression of FAK. The role of MEK1/2 for clonogenic survival and signaling was investigated using the MEK inhibitor U0126 with or without irradiation. Results: FAK knockdown moderately or significantly enhanced the cellular radiosensitivity of 3-dimensionally grown HNSCC cells. The FAK downstream targets paxillin, Akt1, and ERK1/2 were substantially dephosphorylated under FAK depletion. FAK overexpression, in contrast, increased radiation survival and paxillin, Akt1, and ERK1/2 phosphorylation. The degree of radiosensitization upon Akt1, ERK1/2, or MEK1 depletion or U0126 was superimposable to FAK knockdown. Combination knockdown conditions (ie, Akt1/FAK, MEK1/FAK, or U0126/FAK) failed to provide additional radiosensitization. Conclusions: Our data provide further evidence for FAK as important determinant of radiation survival, which acts in the same signaling axis as Akt1 and ERK1/2. These data strongly support our hypothesis that FAK is a relevant molecular target for HNSCC radiotherapy.
Werner, Heron; Rolo, Liliam Cristine; Araujo Júnior, Edward; Dos Santos, Jorge Roberto Lopes
2014-03-01
Technological innovations accompanying advances in medicine have given rise to the possibility of obtaining better-defined fetal images that assist in medical diagnosis and contribute toward genetic counseling offered to parents during the prenatal period. In this article, we show our innovative experience of diagnosing fetal malformations through correlating 3-dimensional ultrasonography, magnetic resonance imaging, and computed tomography, which are accurate techniques for fetal assessment, with a fetal image reconstruction technique to create physical fetal models. PMID:24901782
Water uptake by a maize root system - An explicit numerical 3-dimensional simulation.
NASA Astrophysics Data System (ADS)
Leitner, Daniel; Schnepf, Andrea; Klepsch, Sabine; Roose, Tiina
2010-05-01
Water is one of the most important resources for plant growth and function. An accurate modelling of the unsaturated flow is not only substantial to predict water uptake but also important to describe nutrient movement regarding water saturation and transport. In this work we present a model for water uptake. The model includes the simultaneous flow of water inside the soil and inside the root network. Water saturation in the soil volume is described by the Richards equation. Water flow inside the roots' xylem is calculated using the Poiseuille law for water flow in a cylindrical tube. The water saturation in the soil as well as water uptake of the root system is calculated numerically in three dimensions. We study water uptake of a maize plant in a confined pot under different supply scenarios. The main improvement of our approach is that the root surfaces act as spatial boundaries of the soil volume. Therefore water influx into the root is described by a surface flux instead of a volume flux, which is commonly given by an effective sink term. For the numerical computation we use the following software: The 3-dimensional maize root architecture is created by a root growth model based on L-Systems (Leitner et al 2009). A mesh of the surrounding soil volume is created using the meshing software DistMesh (Persson & Strang 2004). Using this mesh the partial differential equations are solved with the finite element method using Comsol Multiphysics 3.5a. Modelling results are related to accepted water uptake models from literature (Clausnitzer & Hopmans 1994, Roose & Fowler 2004, Javaux et al 2007). This new approach has several advantages. By considering the individual roots it is possible to analyse the influence of overlapping depletion zones due to inter root competition. Furthermore, such simulations can be used to estimate the influence of simplifying assumptions that are made in the development of effective models. The model can be easily combined with a nutrient
Epidemiology of clavicle fractures.
Postacchini, Franco; Gumina, Stefano; De Santis, Pierfrancesco; Albo, Francesco
2002-01-01
An epidemiologic study of 535 isolated clavicle fractures treated in a hospital of a large metropolis during an 11-year period was performed. Data regarding patient's age and sex, side involved, mechanism of injury, and season in which the fracture occurred were obtained from the clinical records. Radiographic classification was performed with the Allman system. Clavicle fractures represented 2.6% of all fractures and 44% of those in the shoulder girdle. Most patients were men (68%), and the left side was involved in 61% of cases. Fractures of the middle third of the clavicle, which were the most common (81%), were displaced in 48% of cases and comminuted in 19%. Fractures of the medial third were the least common (2%). The prevalence of midclavicular fractures was found to decrease progressively with age, starting from the first decade of life when they represented 88.2% of all clavicle fractures and were undisplaced in 55.5% of cases. In adults, the incidence of displaced fractures, independent of location, was higher than that of undisplaced fractures. Traffic accidents were the most common cause of the injury. In the period under study, the incidence of fractures showed no significant change over time and no seasonal variation. PMID:12378163
Mechanics of Hydraulic Fractures
NASA Astrophysics Data System (ADS)
Detournay, Emmanuel
2016-01-01
Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.
Permeability testing of fractures in climax stock granite at the Nevada Test Site
Murray, W.A.
1980-12-31
Permeability tests conducted in the Climax stock granitic rock mass indicate that the bulk rock permeability can be highly variable. If moderately to highly fractured zones are encountered, the permeability values may lie in the range of 10{sup -4} to 10{sup -1} darcies. If, on the other hand, only intact rock or healed fractures are encountered, the permeability is found to be less than 10{sup -9} darcies. In order to assess the thermomechanical effect on fracture permeability, discrete fractures will be packed off and tested periodically throughout the thermal cycle caused by the emplacement of spent nuclear fuel in the Climax stock.
Veronesi, Federico; Corsi, Cristiana; Sugeng, Lissa; Caiani, Enrico G; Weinert, Lynn; Mor-Avi, Victor; Cerutti, Sergio; Lamberti, Claudio; Lang, Roberto M
2008-04-01
Mitral regurgitation (MR) in dilated cardiomyopathy (DCM-MR) and MR in ischemic cardiomyopathy (ISC-MR) usually occurs as a result of mitral annulus (MA) dilatation and papillary muscle displacement secondary to global left ventricle remodelling. We propose a method to determine MA area and motion throughout the cardiac cycle and to define papillary muscle position in 3-dimensional space using real-time 3-dimensional echocardiography. Real-time 3-dimensional echocardiography was performed in 24 healthy individuals, and in 30 patients with DCM-MR (n = 15) or ISC-MR (n = 15). Significant intergroup differences were noted in MA surface area (control: 6.4 +/- 1.7 cm(2); DCM-MR: 11.1 +/- 2.6 cm(2); ISC-MR: 9.0 +/- 2.0 cm(2)) and in peak MA motion (control: 8.7 +/- 3.0 mm; DCM-MR: 3.4 +/- 1.7 mm; ISC-MR: 4.9 +/- 1.5 mm). In patients with DCM-MR, papillary muscle symmetry was preserved, whereas in patients with ISC-MR, papillary tethering lengths were unequal as a result of wall-motion abnormalities. Our methodology for dynamic volumetric measurements of the mitral apparatus allows better understanding of MR mechanisms. PMID:17681731
Discrete implementations of scale transform
NASA Astrophysics Data System (ADS)
Djurdjanovic, Dragan; Williams, William J.; Koh, Christopher K.
1999-11-01
Scale as a physical quantity is a recently developed concept. The scale transform can be viewed as a special case of the more general Mellin transform and its mathematical properties are very applicable in the analysis and interpretation of the signals subject to scale changes. A number of single-dimensional applications of scale concept have been made in speech analysis, processing of biological signals, machine vibration analysis and other areas. Recently, the scale transform was also applied in multi-dimensional signal processing and used for image filtering and denoising. Discrete implementation of the scale transform can be carried out using logarithmic sampling and the well-known fast Fourier transform. Nevertheless, in the case of the uniformly sampled signals, this implementation involves resampling. An algorithm not involving resampling of the uniformly sampled signals has been derived too. In this paper, a modification of the later algorithm for discrete implementation of the direct scale transform is presented. In addition, similar concept was used to improve a recently introduced discrete implementation of the inverse scale transform. Estimation of the absolute discretization errors showed that the modified algorithms have a desirable property of yielding a smaller region of possible error magnitudes. Experimental results are obtained using artificial signals as well as signals evoked from the temporomandibular joint. In addition, discrete implementations for the separable two-dimensional direct and inverse scale transforms are derived. Experiments with image restoration and scaling through two-dimensional scale domain using the novel implementation of the separable two-dimensional scale transform pair are presented.
Geomechanical Fracturing with Flow and Heat
Energy Science and Technology Software Center (ESTSC)
2009-01-01
The GeoFracFH model is a particle-based discrete element model (DEM) that has been coupled with fluid flow and heat conduction/convection. In this model, the rock matrix material is represented by a network of DEM particles connected by mechanical bonds (elastic beams in this case, see Figure 1, gray particles connected by beams). During the simulation process, the mechanical bonds that have been stretched or bent beyond a critical strain (both tensile and shear failures aremore » simulated) are broken and removed from the network in a progressive manner. Bonds can be removed from the network with rates or probabilities that depend on their stress or strain, or the properties of the discrete elements and bonds can be varied continuously to represent phenomena such as creep, strain hardening, and chemical degradation. The coupling of a DEM geomechanical model with models for Darcy flow and heat transport is also illustrated in Figure 1. Darcy flow and heat transport equations are solved on an underlying fixed finite difference grid with evolving porosity and permeability for each grid cell that depends on the local structure of the discrete element network (such as the DEM particle density). The fluid pressure gradient exerts forces on individual elements of the DEM network, which then deforms and fractures the rock matrix. The deformation/fracturing in turn changes the permeability which again changes the evolution of fluid pressure, coupling the two phenomena. The intimate coupling between fracturing, fluid flow, and thermal transport makes the GeoFracFH model, rather than conventional continuum mechanical models, necessary for coupled hydro-thermal-mechanical problems in the subsurface.« less
Numerical modelling of fracture in human arteries.
Ferrara, A; Pandolfi, A
2008-10-01
We present 3D finite element models of atherosclerotic arteries, used to investigate the influence of the geometry and tissue properties on the plaque rupture caused by overexpansion. We adopted a geometry reconstructed from a contiguous set of in vitro magnetic resonance images of a damaged artery. The artery wall is divided in three layers (adventitia, media and intima) and is discretized into tetrahedral finite elements. The artery material is described with a hyperelastic two-fiber anisotropic model proposed by Holzapfel et al. 2000. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elasticity 61(1):1-48, while the plaque is assumed to be transversely isotropic. Cracks induced by mechanical actions are represented through cohesive surfaces, and are allowed to develop along solid elements boundaries only. Fractures are explicitly introduced in the discretized model at the locations where the tensile strength of the material is reached. PMID:19230149
Reactive transport in 3D models of irregularly fractured rock masses
NASA Astrophysics Data System (ADS)
Driesner, T.; Mindel, J. E.
2014-12-01
Reactive transport through irregularly fractured rock masses is a key phenomenon in ore-forming hydrothermal systems, geothermal systems, and many other geological processes and will affect the mechanical properties and hydraulic apertures of fractures. Realistic representations of such systems have so far been hampered by technical limitations of most hydrothermal reactive transport codes, namely the ability to represent discrete fracture networks in a porous rock matrix. We present the first three-dimensional simulation results obtained from coupling a combined finite element - finite volume scheme of the revised CSMP++ flow simulation platform (1) with the GEMIPM3K (2) chemical equilibration code. In these, we represented fracture zones as thin, porous zones of higher permeability. The simulations demonstrate the effects of fracture zone orientation relative to the pressure field and fracture zone intersections on the differential advance of reaction fronts. We outline our numerical approaches for testing and comparing the effect of various ways of representing fractures and fracture zones in irregular meshes, namely the possibility of using layers of prism elements to represent fractures of finite thickness with internally varying properties and the possibility to represent thin fractures as lower dimensional (=2D) elements. We intend to make use of the "split node" capabilities of CSMP++ (3) to maintain sharp interfaces at material boundaries in order to be able to study the transient influence of reactive flow on fracture and matrix permeability in irregularly fractured rock masses.
Schaefer, Charles E; White, Erin B; Lavorgna, Graig M; Annable, Michael D
2016-01-01
Partitioning tracer testing was performed in discrete intervals within a fractured bedrock tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) source area to assess the fracture flow field and DNAPL architecture. Results confirmed that the partitioning tracer testing was able to identify and quantify low levels of residual DNAPL along flow paths in hydraulically conductive fractures. DNAPL fracture saturations (Sn) ranged from undetectable to 0.007 (DNAPL volume/fracture volume). A comparison of the fracture flow field to the DNAPL distribution indicated that the highest value of Sn was observed in the least transmissive fracture (or fracture zone). Application of a simple ambient dissolution model showed that the DNAPL present in this low transmissivity zone would persist longer than the DNAPL present in more transmissive fractures and would persist for 200 years (in the absence of any degradation reactions). Assessment of PCE mass distribution between the rock matrix and fractures showed that, due to the presence of DNAPL, the rock matrix accounted for less than 10% of the total PCE mass. The evaluation of PCE concentration profiles in the rock matrix and the estimated diffusional flux from the rock matrix suggest that the elevated PCE groundwater concentrations observed in the fractures likely are due to the presence of the residual DNAPL sources and that removal of the residual DNAPL sources within the fractures would result in a significant decrease in dissolved PCE concentrations in the source area. PMID:26619000
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density. PMID:22181492
Modeling of Interaction of Hydraulic Fractures in Complex Fracture Networks
NASA Astrophysics Data System (ADS)
Kresse, O. 2; Wu, R.; Weng, X.; Gu, H.; Cohen, C.
2011-12-01
A recently developed unconventional fracture model (UFM) is able to simulate complex fracture network propagation in a formation with pre-existing natural fractures. Multiple fracture branches can propagate at the same time and intersect/cross each other. Each open fracture exerts additional stresses on the surrounding rock and adjacent fractures, which is often referred to as "stress shadow" effect. The stress shadow can cause significant restriction of fracture width, leading to greater risk of proppant screenout. It can also alter the fracture propagation path and drastically affect fracture network patterns. It is hence critical to properly model the fracture interaction in a complex fracture model. A method for computing the stress shadow in a complex hydraulic fracture network is presented. The method is based on an enhanced 2D Displacement Discontinuity Method (DDM) with correction for finite fracture height. The computed stress field is compared to 3D numerical simulation in a few simple examples and shows the method provides a good approximation for the 3D fracture problem. This stress shadow calculation is incorporated in the UFM. The results for simple cases of two fractures are presented that show the fractures can either attract or expel each other depending on their initial relative positions, and compares favorably with an independent 2D non-planar hydraulic fracture model. Additional examples of both planar and complex fractures propagating from multiple perforation clusters are presented, showing that fracture interaction controls the fracture dimension and propagation pattern. In a formation with no or small stress anisotropy, fracture interaction can lead to dramatic divergence of the fractures as they tend to repel each other. However, when stress anisotropy is large, the fracture propagation direction is dominated by the stress field and fracture turning due to fracture interaction is limited. However, stress shadowing still has a strong effect
Fracture corridors in carbonates
NASA Astrophysics Data System (ADS)
Chatelée, Sébastien; Lamarche, Juliette; Gauthier, Bertrand D. M.
2015-04-01
Among fractures, Fracture Corridors (FC) are anomalous structures made of highly persistent fracture clusters having a strong effect on multi-phase fluid flow in the subsurface. While mechanical and geological conditions for diffuse fracture systems are well constrained, FC genetic conditions remain a matter of questioning. FC can be localized in larger structures such as folds and fault zones but recent studies suggest that a large amount of fractures and FC also arise as distributed in the host rock and formed in tabular layers during burial with early rock mechanical differentiation. In addition, while the mechanical stratigraphy is of prime importance for fracture stratigraphy, it is still unknown which factor prevails on FC genesis among the local versus regional stress-state, the host rock mechanical stratigraphy or the sedimentary facies. We present a study of fractures in a 400×300 m wide quarry (Calvisson, SE France) dug in homogeneous marly limestones of Hauterivian age. The quarry exhibits diffuse fractures as well as 16 FC. The aim of this study is to reveal the genetics factor for FC development, their global geometry and internal morphologic variations, but also to clear the impact of fracture corridors on diffuse fracture. For that, we measured >2500 fractures (strike, dip, spacing, filling, aperture, etc.) and studied microstructures in 80 thin sections. We calculated fracture density and acquired LiDAR data with >90 million points with a resolution of 4 to 15mm. Diffuse fractures are organized as two perpendicular sets, a main set NE-SW-trending and minor set NW-SE-trending. The FC have the same trend, but the NW-SE trend prevail on the NE-SW one. The LiDAR acquisition allows to visualize the 3D lateral continuity with corridors with a minimal extension of 30m. We distinguish 4 internal morphologic types in FC, depending on fracture morphology, occurrence of breccia and number of zones. The types may occur in a single FC with a lateral transition
CHARACTERIZATION OF IN-SITU STRESS AND PERMEABILITY IN FRACTURED RESERVOIRS
Daniel R. Burns; M. Nafi Toksoz
2004-07-19
Expanded details and additional results are presented on two methods for estimating fracture orientation and density in subsurface reservoirs from scattered seismic wavefield signals. In the first, fracture density is estimated from the wavenumber spectra of the integrated amplitudes of the scattered waves as a function of offset in pre-stack data. Spectral peaks correctly identified the 50m, 35m, and 25m fracture spacings from numerical model data using a 40Hz source wavelet. The second method, referred to as the Transfer Function-Scattering Index Method, is based upon observations from 3D finite difference modeling that regularly spaced, discrete vertical fractures impart a ringing coda-type signature to any seismic energy that is transmitted through or reflected off of them. This coda energy is greatest when the acquisition direction is parallel to the fractures, the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function, which quantifies the change in an apparent source wavelet propagating through a fractured interval. The transfer function for an interval with low scattering will be more spike-like and temporally compact. The transfer function for an interval with high scattering will ring and be less temporally compact. A Scattering Index is developed based on a time lag weighting of the transfer function. When a 3D survey is acquired with a full range of azimuths, the Scattering Index allows the identification of subsurface areas with high fracturing and the orientation (or strike) of those fractures. The method was calibrated with model data and then applied to field data from a fractured reservoir giving results that agree with known field measurements. As an aid to understanding the scattered wavefield seen in finite difference models, a series of simple point scatterers was used to create synthetic seismic shot records collected over
Reaction induced fracturing during replacement processes
NASA Astrophysics Data System (ADS)
Jamtveit, Bjørn; Putnis, Christine V.; Malthe-Sørenssen, Anders
2009-01-01
Replacement processes are common transformation mechanisms in minerals and rocks at a variety of conditions and scales. The underlying mechanisms are, in general, poorly understood, but both mechanical and chemical processes are thought to be important. Replacement of leucite (KAlSi2O6) by analcime (NaAlSi2O6 .H2O) is common in silica-poor igneous rocks. A 10% increase in volume is associated with the replacement process, and this generates stresses that eventually cause fracturing of the reacting leucite. Experimentally reacted leucite samples display characteristic fracturing patterns that include both spalling of concentric ‘onion-skin’-like layers near the reacting interface and the formation of cross-cutting, often hierarchically arranged, sets of fractures that divide the remaining leucite into progressively smaller domains. These structures may explain the ‘patchy’ alteration patterns observed in natural leucite samples and similar, so-called, mesh-textures associated with the serpentinization of olivine grains during hydration of mafic or ultramafic rocks. They are also strikingly similar to larger scale patterns formed during spheroidal weathering processes. A simple discrete element model illustrates the mechanics that control the formation of such systems, and shows how these replacement processes may be accelerated due to the generation of new reactive surface area by hierarchical fracturing processes.
Hulkko, A; Orava, S
1987-06-01
During the 14-year period of 1971-1985, 368 stress fractures in 324 athletes were treated. The series contained 268 fractures in males and 100 fractures in females; 32 fractures occurred in children (less than 16 years), 117 in adolescents (16-19 years), and 219 in adults. Forty-six fractures were incurred by athletes at an international level, 274 by athletes at a national or district level and 48 by recreational athletes. Of the total cases, 72% occurred to runners and a further 12% to athletes in other sports after running exercises. The distribution of the stress fractures by site was: tibia 182, metatarsal bones 73, fibula 44, big toe sesamoid bones 15, femoral shaft 14, femoral neck 9, tarsal navicular 9, pelvis 7, olecranon 5 and other bones 10. Of the total fractures, 342 were treated conservatively and 26 fractures required surgical treatment. The operative indication was dislocation in 5 cases and delayed union/nonunion in 21 cases. The sites most often affected by delayed union were: anterior midtibia, sesamoid bones of the big toe, base of the fifth metatarsal, olecranon, and tarsal navicular. The athletes at an international level experienced the greatest risk of multiple separate fractures, protracted healing, or fractures requiring surgery. PMID:3623785
Fracture Flow Channel Imaging Using Cross-Polarized GPR Signals
NASA Astrophysics Data System (ADS)
Tsoflias, G. P.; Perll, C.; Baker, M.; Becker, M.
2014-12-01
Fractures control the flow of fluids in rocks with important implications for groundwater resources, contaminant transport, geothermal resources, sequestration of carbon dioxide, and the development of unconventional hydrocarbon resources. Ground penetrating radar (GPR) can be used to image fractured rock and monitor the flow of fluids in the subsurface. Conventional GPR imaging uses single-polarization, co-polarized signals. Changes in reflected signal amplitude result from changes in fracture aperture and changes in fluid electrical properties introduced by tracers or contaminants. Recent research has also shown changes in radar reflected signal phase resulting from changes in fluid electrical conductivity. However, the radar response is dependent on the polarization of EM waves. This study investigates the use of cross-polarized GPR signals for imaging flow channeling at a discrete horizontal fracture. Numerical modeling demonstrated that cross-polarized GPR data are able to image fracture channels when the axis of the channel is oriented obliquely to the EM wavefield orientation. Summation of the cross-polarized and co-polarized components results in an accurate representation of the total scattered energy from the channel. Multipolarization, time-lapse 3D GPR field data were used investigate GPR imaging of flow channeling in a discrete subhorizontal fracture. The GPR surveys were conducted during background fresh fracture water conditions and during six varying orientation dipole flow saline tracer tests. The cross-polarized data revealed flow channeling which is in agreement with the co-polarized GPR data and with independent hydraulic tests. In addition, the cross-polarized components showed changes in flow channeling as a result of changing dipole flow orientation and position. This study demonstrates that cross-polarized GPR signals can be used to enhance imaging of flow in fractured rock.
Macroscopic properties of fractured porous media
NASA Astrophysics Data System (ADS)
Jean Francois, T.; Adler, P.; Bogdanov, I.; Mourzenko, V.
2006-12-01
There are two basic problems to be addressed. The first one is to solve precisely the partial differential equations which govern the phenomena which occur in these media and which are of interest in a large number of applications. The second one is to define a methodology in order to be able to estimate the macroscopic properties of real media by using quantities which are easily measurable on the field. Two major steps are needed for the numerical solution (1). First, an unstructured tetrahedral mesh of the fractures and of the porous matrix located in between is constructed; second, the governing partial equations are discretized and solved, in a finite volume formulation. A brief overview of the various problems which have been addressed so far, will be given: single and two phase flows, unsteady flows around a well, dispersion of an active and a passive solute, mechanical properties. This set of codes enabled us to cope with the second basic problem. Our approach is based on the systematic use of the excluded volume of fractures (which will be defined). The number of fractures per unit volume can be replaced by the number ρ ' of fractures per excluded volume. When numerical results such as the percolation threshold, the macroscopic permeability are plotted as functions of ρ ' they become independent of the shapes of the fractures which is a decisive simplification. Then, we show how ρ ' can be estimated from measurements performed along lines (2), planes, and galleries. It is interesting to notice that many stereological relations are actually independent of the size and shapes of fractures provided that they are convex (3); such a property adds a lot of generality to our methodology. Some tentative applications of the methodology are given and they show that the estimations are always in good agreement with the data. References (1) I.I. Bogdanov, V.V. Mourzenko, J.-F. Thovert, P.M. Adler, Effective permeability of fractured porous media in steady
The multiscale restriction smoothed basis method for fractured porous media (F-MsRSB)
NASA Astrophysics Data System (ADS)
Shah, Swej; Møyner, Olav; Tene, Matei; Lie, Knut-Andreas; Hajibeygi, Hadi
2016-08-01
A novel multiscale method for multiphase flow in heterogeneous fractured porous media is devised. The discrete fine-scale system is described using an embedded fracture modeling approach, in which the heterogeneous rock (matrix) and highly-conductive fractures are represented on independent grids. Given this fine-scale discrete system, the method first partitions the fine-scale volumetric grid representing the matrix and the lower-dimensional grids representing fractures into independent coarse grids. Then, basis functions for matrix and fractures are constructed by restricted smoothing, which gives a flexible and robust treatment of complex geometrical features and heterogeneous coefficients. From the basis functions one constructs a prolongation operator that maps between the coarse- and fine-scale systems. The resulting method allows for general coupling of matrix and fracture basis functions, giving efficient treatment of a large variety of fracture conductivities. In addition, basis functions can be adaptively updated using efficient global smoothing strategies to account for multiphase flow effects. The method is conservative and because it is described and implemented in algebraic form, it is straightforward to employ it to both rectilinear and unstructured grids. Through a series of challenging test cases for single and multiphase flow, in which synthetic and realistic fracture maps are combined with heterogeneous petrophysical matrix properties, we validate the method and conclude that it is an efficient and accurate approach for simulating flow in complex, large-scale, fractured media.
Dark energy from discrete spacetime.
Trout, Aaron D
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
Class of discrete Gabor expansion
NASA Astrophysics Data System (ADS)
Li, Shidong; Healy, Dennis M., Jr.
1994-03-01
We present a new approach to studying a discrete Gabor expansion (DGE). We show that, in general, DGE is not the usual biorthogonal decomposition, but belongs to a larger and looser decomposition scheme which we call pseudo frame decomposition. It includes the DGE scheme proposed as a special case. The standard dual frame decomposition is also a special case. We derive algorithms using techniques for Gabor sequences to compute 'biorthogonal' sequences through proper matrix representation. Our algorithms involve solutions to a linear system to obtain the 'biorthogonal' windows. This approach provides a much broader mathematical view of the DGE, and therefore, establishes a wider mathematical foundation towards the theory of DGE. The general algorithm derived also provides a whole class of discrete Gabor expansions, among which 'good' ones can be generated. Simulation results are also provided.
Systoles in discrete dynamical systems
NASA Astrophysics Data System (ADS)
Fernandes, Sara; Grácio, Clara; Ramos, Carlos Correia
2013-01-01
The fruitful relationship between Geometry and Graph Theory has been explored by several authors benefiting also the Theory of discrete dynamical systems seen as Markov chains in graphs. In this work we will further explore the relation between these areas, giving a geometrical interpretation of notions from dynamical systems. In particular, we relate the topological entropy with the systole, here defined in the context of discrete dynamical systems. We show that for continuous interval maps the systole is trivial; however, for the class of interval maps with one discontinuity point the systole acquires relevance from the point of view of the dynamical behavior. Moreover, we define the geodesic length spectrum associated to a Markov interval map and we compute the referred spectrum in several examples.
Dark Energy from Discrete Spacetime
Trout, Aaron D.
2013-01-01
Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502
A FORTRAN Program for Discrete Discriminant Analysis
ERIC Educational Resources Information Center
Boone, James O.; Brewer, James K.
1976-01-01
A Fortran program is presented for discriminant analysis of discrete variables. The program assumes discrete, nominal data with no distributional, variance-covariance assumptions. The program handles a maximum of fifty predictor variables and twelve outcome groups. (Author/JKS)
Efficient genetic algorithms using discretization scheduling.
McLay, Laura A; Goldberg, David E
2005-01-01
In many applications of genetic algorithms, there is a tradeoff between speed and accuracy in fitness evaluations when evaluations use numerical methods with varying discretization. In these types of applications, the cost and accuracy vary from discretization errors when implicit or explicit quadrature is used to estimate the function evaluations. This paper examines discretization scheduling, or how to vary the discretization within the genetic algorithm in order to use the least amount of computation time for a solution of a desired quality. The effectiveness of discretization scheduling can be determined by comparing its computation time to the computation time of a GA using a constant discretization. There are three ingredients for the discretization scheduling: population sizing, estimated time for each function evaluation and predicted convergence time analysis. Idealized one- and two-dimensional experiments and an inverse groundwater application illustrate the computational savings to be achieved from using discretization scheduling. PMID:16156928
Anomalies and Discrete Chiral Symmetries
Creutz, M.
2009-09-07
The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.
Discrete vortex representation of magnetohydrodynamics
Kinney, R.; Tajima, T.; Petviashvili, N.; McWilliams, J.C.
1993-02-01
We present an alternative approach to statistical analysis of an intermittent ideal MHD fluid in two dimensions, based on the hydrodynamical discrete vortex model applied to the Elsasser variables. The model contains negative temperature states which predict the formation of magnetic islands, but also includes a natural limit under which the equilibrium states revert to the familiar twin-vortex states predicted by hydrodynamical turbulence theories. Numerical dynamical calculations yield equilibrium spectra in agreement with the theoretical predictions.
Discrete-contact nanowire photovoltaics
NASA Astrophysics Data System (ADS)
Chitambar, Michelle J.; Wen, Wen; Maldonado, Stephen
2013-11-01
A series of finite-element simulations have been performed to assess the operational characteristics of a new semiconductor nanowire solar cell design operating under high-level injection conditions. Specifically, the steady-state current-voltage behavior of a cylindrical silicon (Si) nanowire with a series of discrete, ohmic-selective contacts under intense sunlight illumination was investigated. The scope of the analysis was limited to only the factors that impact the net internal quantum yield for solar to electricity conversion. No evaluations were performed with regards to optical light trapping in the modeled structures. Several aspects in a discrete-contact nanowire device that could impact operation were explored, including the size and density of ohmic-selective contacts, the size of the nanowire, the electronic quality and conductivity of the nanowire, the surface defect density of the nanowire, and the type of ohmic selectivity employed at each contact. The analysis showed that there were ranges of values for each parameter that supported good to excellent photoresponses, with certain combinations of experimentally attainable material properties yielding internal energy conversion efficiencies at the thermodynamic limit for a single junction cell. The merits of the discrete-contact nanowire cell were contrasted with "conventional" nanowire photovoltaic cells featuring a uniform conformal contact and also with planar point-contact solar cells. The unique capacity of the discrete-contact nanowire solar cell design to operate at useful energy conversion efficiencies with low quality semiconductor nanowires (i.e., possessing short charge-carrier lifetimes) with only light doping is discussed. This work thus defines the impetus for future experimental work aimed at developing this photovoltaic architecture.
Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.
2015-02-02
There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured
A Simulation Trainer for Complex Articular Fracture Surgery
Yehyawi, Tameem M.; Thomas, Thaddeus P.; Ohrt, Gary T.; Marsh, J. Lawrence; Karam, Matthew D.; Brown, Thomas D.; Anderson, Donald D.
2013-01-01
Background: The purposes of this study were (1) to develop a physical model to improve articular fracture reduction skills, (2) to develop objective assessment methods to evaluate these skills, and (3) to assess the construct validity of the simulation. Methods: A surgical simulation was staged utilizing surrogate tibial plafond fractures. Multiple three-segment radio-opacified polyurethane foam fracture models were produced from the same mold, ensuring uniform surgical complexity between trials. Using fluoroscopic guidance, five senior and seven junior orthopaedic residents reduced the fracture through a limited anterior window. The residents were assessed on the basis of time to completion, hand movements (tracked with use of a motion capture system), and quality of the obtained reduction. Results: All but three of the residents successfully reduced and fixed the fracture fragments (one senior resident and two junior residents completed the reduction but were unsuccessful in fixating all fragments). Senior residents had an average time to completion of 13.43 minutes, an average gross articular step-off of 3.00 mm, discrete hand motions of 540 actions, and a cumulative hand motion distance of 79 m. Junior residents had an average time to completion of 14.75 minutes, an average gross articular step-off of 3.09 mm, discrete hand motions of 511 actions, and a cumulative hand motion distance of 390 m. Conclusions: The large difference in cumulative hand motion distance, despite comparable numbers of discrete hand motion events, indicates that senior residents were more precise in their hand motions. The present experiment establishes the basic construct validity of the simulation trainer. Further studies are required to demonstrate that this laboratory-based model for articular fracture reduction training, along with an objective assessment of performance, can be used to improve resident surgical skills. PMID:23824397
Symmetric Discrete Orthonormal Stockwell Transform
NASA Astrophysics Data System (ADS)
Wang, Yanwei; Orchard, Jeff
2008-09-01
The Stockwell Transform (ST) is a time-frequency signal decomposition that is gaining in popularity, likely because of its direct relation with the Fourier Transform (FT). A discrete and non-redundant version of the ST, denoted the Discrete Orthonormal Stockwell Transform (DOST), has made the use of the ST more feasible. However, the matrix multiplication required by the DOST can still be a formidable computation, especially for high-dimensional data. Moreover, the symmetric property of the ST and FT is not present in the DOST. In this paper, we investigate a new Symmetric Discrete Orthonormal Stockwell Transform (SDOST) that still keeps the non-redundant multiresolution features of the DOST, while maintaining a symmetry property similar to that of the FT. First, we give a brief introduction for the ST and the DOST. Then we analyze the DOST coefficients and modify the transform to get a symmetric version. A small experiment shows that the SDOST has kept the abilities of the DOST and demonstrates the advantage of symmetry when applying the SDOST.
Interference in discrete Wigner functions
Cormick, Cecilia; Paz, Juan Pablo
2006-12-15
We analyze some features of the class of discrete Wigner functions that was recently introduced by Gibbons et al. [Phys. Rev. A 70, 062101 (2004)] to represent quantum states of systems with power-of-prime dimensional Hilbert spaces. We consider ''cat'' states obtained as coherent superpositions of states with positive Wigner function; for such states we show that the oscillations of the discrete Wigner function typically spread over the entire discrete phase space (including the regions where the two interfering states are localized). This is a generic property, which is in sharp contrast with the usual attributes of Wigner functions that make them useful candidates to display the existence of quantum coherence through oscillations. However, it is possible to find subsets of cat states with a natural phase-space representation, in which the oscillatory regions remain localized. We show that this can be done for interesting families of stabilizer states used in quantum error-correcting codes, and illustrate this by analyzing the phase-space representation of the five-qubit error-correcting code.
[Trochanteric femoral fractures].
Douša, P; Čech, O; Weissinger, M; Džupa, V
2013-01-01
At the present time proximal femoral fractures account for 30% of all fractures referred to hospitals for treatment. Our population is ageing, the proportion of patients with post-menopausal or senile osteoporosis is increasing and therefore the number of proximal femoral fractures requiring urgent treatment is growing too. In the age category of 50 years and older, the incidence of these fractures has increased exponentially. Our department serves as a trauma centre for half of Prague and part of the Central Bohemia Region with a population of 1 150 000. Prague in particular has a high number of elderly citizens. Our experience is based on extensive clinical data obtained from the Register of Proximal Femoral Fractures established in 1997. During 14 years, 4280 patients, 3112 women and 1168 men, were admitted to our department for treatment of proximal femoral fractures. All patients were followed up until healing or development of complications. In the group under study, 82% were patients older than 70 years; 72% of those requiring surgery were in their seventies and eighties. Men were significantly younger than women (p<0.001) and represented 30% of the group. The fractures were 2.3-times more frequent in women than in men. In the category under 60 years, men significantly outnumbered women (p<0.001). The patients with pertrochanteric fractures were, on the average, eight years older than the patients with intertrochanteric fractures, which is a significant difference (p<0.001). The mortality rate within a year of injury was about 30%. Trochanteric fractures accounted for 54.7% and femoral neck fractures for 45.3% of all fractures. The inter-annual increase was 5.9%, with more trochanteric than femoral neck fractures. There was a non-significant decrease in intertrochanteric (AO 31-A3) fractures. On the other hand, the number of pertrochanteric (AO 31-A1+2) fractures increased significantly (p<0.001). A total of 1 394 fractures were treated with a proximal
Growth, children, and fractures.
Jones, Graeme
2004-09-01
Fractures in childhood have long been considered an unavoidable consequence of growth. Studies in recent years have documented the epidemiology of these very common fractures and have also documented considerable variation by fracture type and from country to country. There have also been a number of studies aimed at identifying risk factors particularly for the most common distal forearm fracture. These studies have consistently associated bone mineral density with these fractures. Other possible risk factors include obesity, physical inactivity, sports, cola beverages, calcium intake, risk taking, and coordination. While prospective studies are required to confirm these risk factors, accumulating evidence now suggests that a substantial proportion of fractures in children are preventable. PMID:16036086
Interactions Between Fluid and Fractures During Well Tests in Fractured Rock
NASA Astrophysics Data System (ADS)
Murdoch, L. C.; Schweisinger, T.; Hisz, D.; Slack, T.; Germanovich, L.
2007-12-01
Deformation during hydraulic well tests causes basic aquifer properties to change, and the displacement signal can be interpreted to improve characterization of fractured aquifers. These conclusions are based on results and analyses of hydromechanical well tests, which involve measuring and interpreting displacements of rock along with the transient pressure signal resulting from hydraulic well tests. We used a precision extensometer between packers to measure axial displacements during slug and pumping tests in fractured biotite gneiss. The field data from several 100 tests show that fractures typically open or close with an apparent normal compliance of 1 to 5 microns of displacement per m of head change in the wellbore, although some fractures were stiffer than this. The displacement is a hysteretic function of the well bore pressure; that is, displacements are smaller earlier in the test than they are at the same pressure late in the test. This hysteretic behavior can be predicted using a discrete fracture model that considers coupled fluid flow and elastic deformation. Both field and theoretical data indicate that during well tests the apparent compliance of a formation can increase by a factor of 10 or more. Compliance is proportional to storativity, so a 10-fold increase in compliance means that the storativity increases by a factor of 10. During slug tests, the fracture continues to open while the wellbore pressure falls early in the test, which produces the peculiar result of a negative storativity. These changes in S stabilize and approach the value determined by interpreting typical hydraulic well tests at late times when relatively isolated fractures are tested. However, a different result occurs when the primary fracture being tested is cross-cut by other fractures roughly parallel to the borehole. The cross-cutting fractures cause water to leak out of the primary fracture, changing the pressure distribution within it, and reducing the resulting
Observability of discretized partial differential equations
NASA Technical Reports Server (NTRS)
Cohn, Stephen E.; Dee, Dick P.
1988-01-01
It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.
Fracture tooth fragment reattachment
Maitin, Nitin; Maitin, Shipra Nangalia; Rastogi, Khushboo; Bhushan, Rajarshi
2013-01-01
Coronal fractures of the anterior teeth are a common form of dental trauma and its sequelae may impair the establishment and accomplishment of an adequate treatment plan. Among the various treatment options, reattachment of a crown fragment is a conservative treatment that should be considered for crown fractures of anterior teeth. This clinical case reports the management of two coronal tooth fracture cases that were successfully treated using tooth fragment reattachment using glass-fibre-reinforced composite post. PMID:23853012
NASA Astrophysics Data System (ADS)
Guo, Jingjing; Wang, Haitao; Zhang, Liehui
2015-08-01
Horizontal drilling and multi-stage hydraulic fracturing have been common and efficient practices in exploitation of tight reservoirs. Establishing corresponding mathematical models and analyzing transient pressure behaviors of this type of well-reservoir configuration can provide a better understanding of fluid flow patterns in formation as well as estimations of important parameters. Most current models proposed for fractured horizontal wells in tight reservoirs do not incorporate either reservoir permeability loss during the production, which is believed to be non-ignorable or finite conductivity of hydraulic fractures. A coupling model for a multi-fractured horizontal well (MFHW) in tight reservoirs is presented in this article, in which finite conductivity of hydraulic fractures and stress-dependant reservoir permeability are taken into account simultaneously. A semi-analytical solution is obtained in the Laplace domain by using source function theory, Laplace transformation, perturbation technique, discretization of fractures, and superposition principle. Analysis of transient pressure responses indicates that several characteristic flow periods of fractured horizontal wells in tight reservoirs can be identified, including linear flow in fracture, bi-linear flow, linear flow in reservoir, pseudo-radial flow around fractures, and pseudo-radial flow around the horizontal wellbore and fractures. Parametric analysis shows that fracture conductivity, fracture spacing, fracture length, permeability modulus, and skin effect can significantly influence the transient pressure responses of fractured horizontal wells in tight reservoirs. The model presented in this article can be applied to obtain important parameters pertinent to reservoir or fractures by type curve matching, and it can also provide useful information for optimizing fracture parameters. Finally, the model presented in this article can also be easily extended to dual-porosity cases.
Analysis of compressive fracture in rock using statistical techniques
Blair, S.C.
1994-12-01
Fracture of rock in compression is analyzed using a field-theory model, and the processes of crack coalescence and fracture formation and the effect of grain-scale heterogeneities on macroscopic behavior of rock are studied. The model is based on observations of fracture in laboratory compression tests, and incorporates assumptions developed using fracture mechanics analysis of rock fracture. The model represents grains as discrete sites, and uses superposition of continuum and crack-interaction stresses to create cracks at these sites. The sites are also used to introduce local heterogeneity. Clusters of cracked sites can be analyzed using percolation theory. Stress-strain curves for simulated uniaxial tests were analyzed by studying the location of cracked sites, and partitioning of strain energy for selected intervals. Results show that the model implicitly predicts both development of shear-type fracture surfaces and a strength-vs-size relation that are similar to those observed for real rocks. Results of a parameter-sensitivity analysis indicate that heterogeneity in the local stresses, attributed to the shape and loading of individual grains, has a first-order effect on strength, and that increasing local stress heterogeneity lowers compressive strength following an inverse power law. Peak strength decreased with increasing lattice size and decreasing mean site strength, and was independent of site-strength distribution. A model for rock fracture based on a nearest-neighbor algorithm for stress redistribution is also presented and used to simulate laboratory compression tests, with promising results.
Remote Sensing Applications for Antrim Shale Fracture Characterization, Michigan Basin
NASA Technical Reports Server (NTRS)
Kuuskraa, Vello
1997-01-01
Advanced Research International (ARI) sent seven staff members to the 1997 International Coalbed Methane Symposium, held in Tuscaloosa, Alabama from May 12-17. ARI gave a short course on risk reduction strategies, including remote fracture detection, for coalbed methane exploration and development that was attended by about 25 coalbed methane industry professionals; and presented a paper entitled 'Optimizing coalbed methane cavity completion operations with the application of a new discrete element model.' We met with many potential clients and discussed our fracture detection services. China has vast coalbed methane resources, but is still highly dependent on coal-and wood-burning. This workshop, sponsored by the United Nations, was intended to help China develop its less-polluting energy reserves. ARI is successfully finding new applications for its fracture detection services. Coalbed methane exploration became an important market in this quarter, with the inception of a joint industry/government collaboration between ARI, Texaco and DOE to use remote fracture detection to identify areas with good potential for coalbed methane production in the Ferron Coal Trend of central Utah. Geothermal energy exploration is another emerging market for ARI, where fracture detection is applied to identify pathways for groundwater recharge, movement, and the locations of potential geothermal reservoirs. Ari continued work on two industry/government collaborations to demonstrate fracture detection to potential clients. Also completed the technical content layout for multimedia CD-ROM that describes our remote fracture detection services.
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
Pathological fractures in children
De Mattos, C. B. R.; Binitie, O.; Dormans, J. P.
2012-01-01
Pathological fractures in children can occur as a result of a variety of conditions, ranging from metabolic diseases and infection to tumours. Fractures through benign and malignant bone tumours should be recognised and managed appropriately by the treating orthopaedic surgeon. The most common benign bone tumours that cause pathological fractures in children are unicameral bone cysts, aneurysmal bone cysts, non-ossifying fibromas and fibrous dysplasia. Although pathological fractures through a primary bone malignancy are rare, these should be recognised quickly in order to achieve better outcomes. A thorough history, physical examination and review of plain radiographs are crucial to determine the cause and guide treatment. In most benign cases the fracture will heal and the lesion can be addressed at the time of the fracture, or after the fracture is healed. A step-wise and multidisciplinary approach is necessary in caring for paediatric patients with malignancies. Pathological fractures do not have to be treated by amputation; these fractures can heal and limb salvage can be performed when indicated. PMID:23610658
Fracture detection logging tool
Benzing, William M.
1992-06-09
A method and apparatus by which fractured rock formations are identified and their orientation may be determined includes two orthogonal motion sensors which are used in conjunction with a downhole orbital vibrator. The downhole vibrator includes a device for orienting the sensors. The output of the sensors is displayed as a lissajou figure. The shape of the figure changes when a subsurface fracture is encountered in the borehole. The apparatus and method identifies fractures rock formations and enables the azimuthal orientation of the fractures to be determined.
Capitellar and Trochlear Fractures.
Carroll, Michael J; Athwal, George S; King, Graham J W; Faber, Kenneth J
2015-11-01
Fractures of the capitellum and trochlea account for a small proportion of elbow trauma. Clinicians need to be vigilant in their assessment as they are commonly associated with other injuries about the elbow. To optimize outcomes, the goals of management include a stable, anatomic reduction and early range of motion. Closed reduction of noncomminuted fractures may be successful but requires close follow-up. Open reduction and internal fixation is the preferred management of displaced capitellum-trochlear fractures. Elbow stiffness is the most commonly reported complication in operatively treated fractures. Arthroscopic-assisted reduction and internal fixation and arthroplasty are evolving management options. PMID:26498550
Pterygoid Plate Fractures: Not Limited to Le Fort Fractures.
Garg, Ravi K; Alsheik, Nila H; Afifi, Ahmed M; Gentry, Lindell R
2015-09-01
Pterygoid plate fractures are often described in the setting of Le Fort fractures. The goal of this study was to define other craniofacial fracture patterns causing injury to the pterygoid plates. A retrospective review of computed tomography (CT) scans obtained on craniofacial trauma patients over a 5-year period revealed 209 patients with pterygoid plate fractures. Pterygoid plate fractures in 78 patients (37.3%) were unrelated to Le Fort fractures. Common causes included sphenotemporal buttress fractures in 26 patients (33.3%), temporal bone fractures in 18 patients (23.1%), zygomaticomaxillary complex fractures in 17 patients (21.8%), and displaced mandible fractures in 14 patients (17.9%). These findings indicate that approximately one third of pterygoid plate fractures do not result from Le Fort pattern injuries and that the craniofacial surgeon should have a broad differential for causes of pterygoid plate fractures when reviewing trauma imaging. PMID:26147022
FERRARIO, VIRGILIO F.; SFORZA, CHIARELLA; SCHMITZ, JOHANNES H.; CIUSA, VERONICA; COLOMBO, ANNA
2000-01-01
A 3-dimensional computerised system with landmark representation of the soft-tissue facial surface allows noninvasive and fast quantitative study of facial growth. The aims of the present investigation were (1) to provide reference data for selected dimensions of lips (linear distances and ratios, vermilion area, volume); (2) to quantify the relevant growth changes; and (3) to evaluate sex differences in growth patterns. The 3-dimensional coordinates of 6 soft-tissue landmarks on the lips were obtained by an optoelectronic instrument in a mixed longitudinal and cross-sectional study (2023 examinations in 1348 healthy subjects between 6 y of age and young adulthood). From the landmarks, several linear distances (mouth width, total vermilion height, total lip height, upper lip height), the vermilion height-to-mouth width ratio, some areas (vermilion of the upper lip, vermilion of the lower lip, total vermilion) and volumes (upper lip volume, lower lip volume, total lip volume) were calculated and averaged for age and sex. Male values were compared with female values by means of Student's t test. Within each age group all lip dimensions (distances, areas, volumes) were significantly larger in boys than in girls (P < 0.05), with some exceptions in the first age groups and coinciding with the earlier female growth spurt, whereas the vermilion height-to-mouth width ratio did not show a corresponding sexual dimorphism. Linear distances in girls had almost reached adult dimensions in the 13–14 y age group, while in boys a large increase was still to occur. The attainment of adult dimensions was faster in the upper than in the lower lip, especially in girls. The method used in the present investigation allowed the noninvasive evaluation of a large sample of nonpatient subjects, leading to the definition of 3-dimensional normative data. Data collected in the present study could represent a data base for the quantitative description of human lip morphology from childhood to
Liu, Yu
2016-05-11
I developed a novel time-dependent density functional theory (TDDFT) and applied it to complicated 3-dimensional systems for the first time. Superior to conventional TDDFT, the diffusion coefficient is modeled as a function of density profile, which is self-determined by the entropy scaling rule instead using an input parameter. The theory was employed to mimic gas diffusion in a nanoporous material. The TDDFT prediction on the transport diffusivity was reasonable compared to simulations. Moreover, the time-dependent density profiles gave an insight into the microscopic mechanism of the diffusion process. PMID:27121986
Ahn, J S; Kihm, H W; Kihm, J E; Kim, D S; Lee, K G
2009-02-16
We have measured local electric field polarization vectors in 3-dimensional space on the nanoscale. A radial polarized light is generated by using a radial polarization converter and focused by an objective lens. Gold nanoparticle functionalized tips are used to scatter the focused field into the far-field region. Two different methods, rotational analyzer ellipsometry and Stokes parameters, are used in determining the polarization state of the scattered light. Two methods give consistent results with each other. Three dimensional local polarization vectors could be reconstructed by applying back transformation of the fully characterized polarizability tensor of the tip. PMID:19219131
Analytical solutions for reactive transport of N-member radionuclide chains in a single fracture.
Sun, Yunwei; Buscheck, Thomas A
2003-01-01
Several numerical codes have been used to simulate radionuclide transport in fractured rock systems. The validation of such numerical codes can be accomplished by comparison of numerical simulations against appropriate analytical solutions. In this paper, we present analytical solutions for the reactive transport of N-member radionuclide chains (i.e., multiple species of radionuclides and their daughter species) through a discrete fracture in a porous rock matrix applying a system decomposition approach. We consider the transport of N-member radionuclide chains in a single-fracture-matrix system as a starting point to simulate more realistic and complex systems. The processes considered are advection along the fracture, lateral diffusion in the matrix, radioactive decay of multiple radionuclides, and adsorption in both the fracture and matrix. Different retardation factors can be specified for the fracture and matrix. However, all species are assumed to share the same retardation factors for the fracture and matrix, respectively. Although a daughter species may penetrate farther along the fracture than its parent species when a constant-concentration boundary condition is applied, our results indicate that all species retain the same transport speed in the fracture if a pulse of the first species is released into the fracture. This solution scheme provides a way to validate numerical computer codes of radionuclide transport in fractured rock, such as those being used to assess the performance of a potential nuclear-waste repository at Yucca Mountain. PMID:12714317
Kojima, Kodi Edson; Ferreira, Ramon Venzon
2015-01-01
The long-bone fractures occur most frequently in the tibial shaft. Adequate treatment of such fractures avoids consolidation failure, skewed consolidation and reoperation. To classify these fractures, the AO/OTA classification method is still used, but it is worthwhile getting to know the Ellis classification method, which also includes assessment of soft-tissue injuries. There is often an association with compartmental syndrome, and early diagnosis can be achieved through evaluating clinical parameters and constant clinical monitoring. Once the diagnosis has been made, fasciotomy should be performed. It is always difficult to assess consolidation, but the RUST method may help in this. Radiography is assessed in two projections, and points are scored for the presence of the fracture line and a visible bone callus. Today, the dogma of six hours for cleaning the exposed fracture is under discussion. It is considered that an early start to intravenous antibiotic therapy and the lesion severity are very important. The question of early or late closure of the lesion in an exposed fracture has gone through several phases: sometimes early closure has been indicated and sometimes late closure. Currently, whenever possible, early closure of the lesion is recommended, since this diminishes the risk of infection. Milling of the canal when the intramedullary nail is introduced is still a controversial subject. Despite strong personal positions in favor of milling, studies have shown that there may be some advantage in relation to closed fractures, but not in exposed fractures. PMID:27026999
A rib fracture is a crack or break in one or more of your rib bones. Your ribs are the round, flat bones in your chest ... A rib fracture can be very painful because your ribs move when you breathe, cough, and move your upper ...
Driven discrete time quantum walks
NASA Astrophysics Data System (ADS)
Hamilton, Craig S.; Barkhofen, Sonja; Sansoni, Linda; Jex, Igor; Silberhorn, Christine
2016-07-01
We introduce the driven discrete time quantum walk (QW), where walkers are added during the walk instead of only at the beginning. This leads to interference in walker number and very different dynamics when compared to the original QW. These dynamics have two regimes, which we illustrate using the one-dimensional line. Then, we explore a search application which has certain advantages over current search protocols, namely that it does not require a complicated initial state nor a specific measurement time to observe the marked state. Finally, we describe a potential experimental implementation using existing technology.
Akay, Canan; Yaluğ, Suat
2015-01-01
Background The objective of this study was to investigate the stress distribution in the bone around zygomatic and dental implants for 3 different implant-retained obturator prostheses designs in a Aramany class IV maxillary defect using 3-dimensional finite element analysis (FEA). Material\\Methods A 3-dimensional finite element model of an Aramany class IV defect was created. Three different implant-retained obturator prostheses were modeled: model 1 with 1 zygomatic implant and 1 dental implant, model 2 with 1 zygomatic implant and 2 dental implants, and model 3 with 2 zygomatic implants. Locator attachments were used as a superstructure. A 150-N load was applied 3 different ways. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis are expressed in MPa. Results In all loading conditions, model 3 (when compared models 1 and 2) showed the lowest maximum principal stress value. Model 3 is the most appropirate reconstruction in Aramany class IV maxillary defects. Two zygomatic implants can reduce the stresses in model 3. The distribution of stresses on prostheses were more rational with the help of zygoma implants, which can distribute the stresses on each part of the maxilla. Conclusions Aramany class IV obturator prosthesis placement of 2 zygomatic implants in each side of the maxilla is more advantageous than placement of dental implants. In the non-defective side, increasing the number of dental implants is not as suitable as zygomatic implants. PMID:25714086
NASA Technical Reports Server (NTRS)
Zhang, Ming
2005-01-01
The primary goal of this project was to perform theoretical calculations of propagation of cosmic rays and energetic particles in 3-dimensional heliospheric magnetic fields. We used Markov stochastic process simulation to achieve to this goal. We developed computation software that can be used to study particle propagation in, as two examples of heliospheric magnetic fields that have to be treated in 3 dimensions, a heliospheric magnetic field suggested by Fisk (1996) and a global heliosphere including the region beyond the termination shock. The results from our model calculations were compared with particle measurements from Ulysses, Earth-based spacecraft such as IMP-8, WIND and ACE, Voyagers and Pioneers in outer heliosphere for tests of the magnetic field models. We particularly looked for features of particle variations that can allow us to significantly distinguish the Fisk magnetic field from the conventional Parker spiral field. The computer code will eventually lead to a new generation of integrated software for solving complicated problems of particle acceleration, propagation and modulation in realistic 3-dimensional heliosphere of realistic magnetic fields and the solar wind with a single computation approach.
NASA Technical Reports Server (NTRS)
Gosling, J. T.; Birn, J.; McComas, D. J.; Phillips, J. L.; Hesse, M.
1995-01-01
Measurements of suprathermal electron fluxes in the solar wind at energies greater than approximatley 80 eV indicate that magnetic field lines within coronal mass ejections. CMEs, near and beyond 1 AU are normally connected to the Sun at both ends. However, a preliminary reexamination of events previously identified as CMEs in the ISEE 3 data reveals that about 1/4 of all such events contain limited regions where field lines appear to be either connected to the Sun at only one end or connected to the outer heliosphere at both ends. Similar intervals of open and disconnected field lines within CMEs have been identified in the Ulysses observations. We believe that these anomalous field topologies within CMEs are most naturally interpreted in terms of 3-dimensional reconnection behind CMEs close to the Sun. Such reconnection also provides a natural explanation both for the flux rope topology of many CMEs as well as the coronal loops formed during long-duration solar soft X ray events. Although detailed numerical simulations of 3-dimensional reconnection behind CMEs are not yet available, such simulations have been done for the qualitatively similar geometry that prevails within the geomagnetic tail. Those simulations of plasmoid formation in the geomagnetic tail do produce the mixture of field topologies within plasmoids discussed here for CMEs.
NASA Technical Reports Server (NTRS)
Kobayashi, A. S.; Ramulu, M.
1985-01-01
Dynamic fracture and crack propagation concepts for ductile materials are reviewed. The equations for calculating dynamic stress integrity and the dynamic energy release rate in order to study dynamic crack propagation are provided. The stress intensity factor versus crack velocity relation is investigated. The uses of optical experimental techniques and finite element methods for fracture analyses are described. The fracture criteria for a rapidly propagating crack under mixed mode conditions are discussed; crack extension and fracture criteria under combined tension and shear loading are based on maximum circumferential stress or energy criteria such as strain energy density. The development and use of a Dugdale model and finite element models to represent crack and fracture dynamics are examined.
Transphyseal Distal Humerus Fracture.
Abzug, Joshua; Ho, Christine Ann; Ritzman, Todd F; Brighton, Brian
2016-01-01
Transphyseal distal humerus fractures typically occur in children younger than 3 years secondary to birth trauma, nonaccidental trauma, or a fall from a small height. Prompt and accurate diagnosis of a transphyseal distal humerus fracture is crucial for a successful outcome. Recognizing that the forearm is not aligned with the humerus on plain radiographs may aid in the diagnosis of a transphyseal distal humerus fracture. Surgical management is most commonly performed with the aid of an arthrogram. Closed reduction and percutaneous pinning techniques similar to those used for supracondylar humerus fractures are employed. Cubitus varus caused by a malunion, osteonecrosis of the medial condyle, or growth arrest is the most common complication encountered in the treatment of transphyseal distal humerus fractures. A corrective lateral closing wedge osteotomy can be performed to restore a nearly normal carrying angle. PMID:27049206
Apparent capitellar fractures.
Ring, David
2007-11-01
Isolated capitellar fractures are rare but are identified as such, even when they are more complex, because the displaced capitellar fracture is usually the most obvious and identifiable radiographic finding and because teaching has traditionally underemphasized the involvement of the trochlea in such fractures. The author prefers the term 'apparent capitellar fractures' and draws on his experience to explain why he favors three-dimensional CT for depicting fracture detail. This article discusses treatment options, emphasizing open reduction and internal fixation to restore the native elbow. Operative techniques, including extensile lateral exposure and olecranon osteotomy; fixation techniques; and elbow arthroplasty, are described. Complications, such as ulnar neuropathy and infection, are also covered. PMID:18054674
Discreteness effects in population dynamics
NASA Astrophysics Data System (ADS)
Guevara Hidalgo, Esteban; Lecomte, Vivien
2016-05-01
We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.
NASA Astrophysics Data System (ADS)
Ivanova, Violeta M.; Sousa, Rita; Murrihy, Brian; Einstein, Herbert H.
2014-06-01
This paper presents results from research conducted at MIT during 2010-2012 on modeling of natural rock fracture systems with the GEOFRAC three-dimensional stochastic model. Following a background summary of discrete fracture network models and a brief introduction of GEOFRAC, the paper provides a thorough description of the newly developed mathematical and computer algorithms for fracture intensity, aperture, and intersection representation, which have been implemented in MATLAB. The new methods optimize, in particular, the representation of fracture intensity in terms of cumulative fracture area per unit volume, P32, via the Poisson-Voronoi Tessellation of planes into polygonal fracture shapes. In addition, fracture apertures now can be represented probabilistically or deterministically whereas the newly implemented intersection algorithms allow for computing discrete pathways of interconnected fractures. In conclusion, results from a statistical parametric study, which was conducted with the enhanced GEOFRAC model and the new MATLAB-based Monte Carlo simulation program FRACSIM, demonstrate how fracture intensity, size, and orientations influence fracture connectivity.
Site characterization in densely fractured dolomite: Comparison of methods
Muldoon, M.; Bradbury, K.R.
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of ???10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head - and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. Copyright ?? 2005 National Ground Water Association.
Site characterization in densely fractured dolomite: comparison of methods.
Muldoon, Maureen; Bradbury, Ken R
2005-01-01
One of the challenges in characterizing fractured-rock aquifers is determining whether the equivalent porous medium approximation is valid at the problem scale. Detailed hydrogeologic characterization completed at a small study site in a densely fractured dolomite has yielded an extensive data set that was used to evaluate the utility of the continuum and discrete-fracture approaches to aquifer characterization. There are two near-vertical sets of fractures at the site; near-horizontal bedding-plane partings constitute a third fracture set. Eighteen boreholes, including five coreholes, were drilled to a depth of approximately 10.6 m. Borehole geophysical logs revealed several laterally extensive horizontal fractures and dissolution zones. Flowmeter and short-interval packer testing identified which of these features were hydraulically important. A monitoring system, consisting of short-interval piezometers and multilevel samplers, was designed to monitor four horizontal fractures and two dissolution zones. The resulting network consisted of >70 sampling points and allowed detailed monitoring of head distributions in three dimensions. Comparison of distributions of hydraulic head and hydraulic conductivity determined by these two approaches suggests that even in a densely fractured-carbonate aquifer, a characterization approach using traditional long-interval monitoring wells is inadequate to characterize ground water movement for the purposes of regulatory monitoring or site remediation. In addition, traditional multiwell pumping tests yield an average or bulk hydraulic conductivity that is not adequate for predicting rapid ground water travel times through the fracture network, and the pumping test response does not appear to be an adequate tool for assessing whether the porous medium approximation is valid. PMID:16324008
Shapiro, A.M.; Andersson, J.
1985-01-01
An efficient method for simulating steady-state flow in three-dimensional fracture networks is formulated with the use of the boundary-element method. The host rock is considered to be impervious, and the fractures can be of any orientation and areal extent. The fractures are treated as surfaces where fluid movement is essentially two-dimensional. Fracture intersections are regarded as one-dimensional fluid conduits. Hence, the three-dimensional geometric characteristics of the fracture geometry is retained in solutions of coupled sets of one- and two-dimentional equations. Use of the boundary-element method to evaluate the fluid responses in the fractures precludes the need to internally discretize the areal extent of the fractures. ?? 1985.
Continuous time random walk analysis of solute transport in fractured porous media
Cortis, Andrea; Cortis, Andrea; Birkholzer, Jens
2008-06-01
The objective of this work is to discuss solute transport phenomena in fractured porous media, where the macroscopic transport of contaminants in the highly permeable interconnected fractures can be strongly affected by solute exchange with the porous rock matrix. We are interested in a wide range of rock types, with matrix hydraulic conductivities varying from almost impermeable (e.g., granites) to somewhat permeable (e.g., porous sandstones). In the first case, molecular diffusion is the only transport process causing the transfer of contaminants between the fractures and the matrix blocks. In the second case, additional solute transfer occurs as a result of a combination of advective and dispersive transport mechanisms, with considerable impact on the macroscopic transport behavior. We start our study by conducting numerical tracer experiments employing a discrete (microscopic) representation of fractures and matrix. Using the discrete simulations as a surrogate for the 'correct' transport behavior, we then evaluate the accuracy of macroscopic (continuum) approaches in comparison with the discrete results. However, instead of using dual-continuum models, which are quite often used to account for this type of heterogeneity, we develop a macroscopic model based on the Continuous Time Random Walk (CTRW) framework, which characterizes the interaction between the fractured and porous rock domains by using a probability distribution function of residence times. A parametric study of how CTRW parameters evolve is presented, describing transport as a function of the hydraulic conductivity ratio between fractured and porous domains.
Geomechanically Coupled Simulation of Flow in Fractured Reservoirs
NASA Astrophysics Data System (ADS)
Barton, C.; Moos, D.; Hartley, L.; Baxter, S.; Foulquier, L.; Holl, H.; Hogarth, R.
2012-12-01
Capturing the necessary and sufficient detail of reservoir hydraulics to accurately evaluate reservoir behavior remains a significant challenge to the exploitation and management of fracture-dominated geothermal reservoirs. In these low matrix permeability reservoirs, stimulation response is controlled largely by the properties of natural and induced fracture networks, which are in turn controlled by the in situ stresses, the fracture distribution and connectivity and the hydraulic behavior of the fractures. This complex interaction of fracture flow systems with the present-day stress field compounds the problem of developing an effective and efficient simulation to characterize, model and predict fractured reservoir performance. We discuss here a case study of the integration of geological, geophysical, geomechanical, and reservoir engineering data to characterize the in situ stresses, the natural fracture network and the controls on fracture permeability in geothermal reservoirs. A 3D geomechanical reservoir model includes constraints on stress magnitudes and orientations, and constraints on mechanical rock properties and the fractures themselves. Such a model is essential to understanding reservoir response to stimulation and production in low matrix permeability, fracture-dominated reservoirs. The geomechanical model for this study was developed using petrophysical, drilling, and wellbore image data along with direct well test measurements and was mapped to a 3D structural grid to facilitate coupled simulation of the fractured reservoir. Wellbore image and stimulation test data were used along with microseismic data acquired during the test to determine the reservoir fracture architecture and to provide control points for a realistic inter-connected discrete fracture network. As most fractures are stress-sensitive, their hydraulic conductivities will change with changes in bottomhole flowing and reservoir pressures, causing variations in production profiles
Single-Molecule Imaging of DNA Pairing by RecA Reveals a 3-Dimensional Homology Search
Forget, Anthony L.; Kowalczykowski, Stephen C.
2011-01-01
DNA breaks can be repaired with high-fidelity by homologous recombination. A ubiquitous protein that is essential for this DNA template-directed repair is RecA1. After resection of broken DNA to produce single-stranded DNA (ssDNA), RecA assembles on this ssDNA into a filament with the unique capacity to search and find DNA sequences in double-stranded DNA (dsDNA) that are homologous to the ssDNA. This homology search is vital to recombinational DNA repair, and results in homologous pairing and exchange of DNA strands. Homologous pairing involves DNA sequence-specific target location by the RecA-ssDNA complex. Despite decades of study, the mechanism of this enigmatic search process remains unknown. RecA is a DNA-dependent ATPase, but ATP hydrolysis is not required for DNA pairing and strand exchange2,3, eliminating active search processes. Using dual optical trapping to manipulate DNA, and single-molecule fluorescence microscopy to image DNA pairing, we demonstrate that both the three-dimensional conformational state of the dsDNA target and the length of the homologous RecA-ssDNA filament play important roles in the homology search. We discovered that as the end-to-end distance of the target dsDNA molecule is increased, constraining its available 3-dimensional conformations, the rate of homologous pairing decreases. Conversely, when the length of the ssDNA in the nucleoprotein filament is increased, homology is found faster. We propose a model for the DNA homology search process termed “intersegmental contact sampling”, wherein the intrinsic multivalent nature of the RecA nucleoprotein filament is employed to search DNA sequence space within 3-dimensional domains of DNA, exploiting multiple weak contacts to rapidly search for homology. Our findings highlight the importance of the 3-dimensional conformational dynamics of DNA, reveal a previously unknown facet of the homology search, and provide insight into the mechanism of DNA target location by this member of a
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
MacMinn, Chris; Auton, Lucy
2016-04-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.
Periodic Hydraulic Testing for Discerning Fracture Network Connections
NASA Astrophysics Data System (ADS)
Becker, M.; Le Borgne, T.; Bour, O.; Guihéneuf, N.; Cole, M.
2015-12-01
Discrete fracture network (DFN) models often predict highly variable hydraulic connections between injection and pumping wells used for enhanced oil recovery, geothermal energy extraction, and groundwater remediation. Such connections can be difficult to verify in fractured rock systems because standard pumping or pulse interference tests interrogate too large a volume to pinpoint specific connections. Three field examples are presented in which periodic hydraulic tests were used to obtain information about hydraulic connectivity in fractured bedrock. The first site, a sandstone in New York State, involves only a single fracture at a scale of about 10 m. The second site, a granite in Brittany, France, involves a fracture network at about the same scale. The third site, a granite/schist in the U.S. State of New Hampshire, involves a complex network at scale of 30-60 m. In each case periodic testing provided an enhanced view of hydraulic connectivity over previous constant rate tests. Periodic testing is particularly adept at measuring hydraulic diffusivity, which is a more effective parameter than permeability for identify the complexity of flow pathways between measurement locations. Periodic tests were also conducted at multiple frequencies which provides a range in the radius of hydraulic penetration away from the oscillating well. By varying the radius of penetration, we attempt to interrogate the structure of the fracture network. Periodic tests, therefore, may be uniquely suited for verifying and/or calibrating DFN models.
Generation of spatially correlated fracture models for seismic simulations
NASA Astrophysics Data System (ADS)
Shekhar, Ravi; Gibson, Richard L., Jr.
2011-04-01
The critical geometrical parameters that quantify the spatial distribution of natural fractures are the orientation, length and position of fractures. Knowledge of their spatial distribution is important as they control the movement of subsurface fluids and also influence seismic waves propagating in the subsurface. However, generating realistic models of all of these geometrical parameters to use in forward seismic modelling or inversion applications can become very difficult, especially when constraints are available only at a few sparse well locations. Hence, this provides strong motivation for applying seismic data to estimate these quantities in field settings, and reliable seismic modelling provides important constraints for interpretation and inversion. The Discrete Fracture Network (DFN) approach has been used frequently to generate models with stochastic distributions of fractures based on sparse well and seismic data. However, most of these studies lack any constraint from physical models of the behaviour of fractured media. In this paper, we implement and extend an alternative modelling technique to generate several realizations of a fracture model beginning with theoretical results for the strain energy of a fractured material and propose ways to better incorporate geological field observations. The method utilizes an elastic energy function that sums the interactions of all pairs of fractures present in the model. The energy for each pair depends on the distance between the two fractures, their orientations, lengths and some material properties. This energy function also serves as an objective function for a simulated annealing (SA) algorithm used to obtain multiple realizations of correlated fracture networks. We improve earlier versions of this technique by incorporating periodic boundary conditions, including criteria to limit the maximum range of pair-wise calculations and suggesting methods to constrain models to match field data. Assuming that
Modeling interfacial fracture in Sierra.
Brown, Arthur A.; Ohashi, Yuki; Lu, Wei-Yang; Nelson, Stacy A. C.; Foulk, James W.,; Reedy, Earl David,; Austin, Kevin N.; Margolis, Stephen B.
2013-09-01
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.
Fractional dynamics of tracer transport in fractured media from local to regional scales
NASA Astrophysics Data System (ADS)
Zhang, Yong; Reeves, Donald M.; Pohlmann, Karl; Chapman, Jenny B.; Russell, Charles E.
2013-06-01
Tracer transport through fractured media exhibits concurrent direction-dependent super-diffusive spreading along high-permeability fractures and sub-diffusion caused by mass transfer between fractures and the rock matrix. The resultant complex dynamics challenge the applicability of conventional physical models based on Fick's law. This study proposes a multi-scaling tempered fractional-derivative (TFD) model to explore fractional dynamics for tracer transport in fractured media. Applications show that the TFD model can capture anomalous transport observed in small-scale single fractures, intermediate-scale fractured aquifers, and two-dimensional large-scale discrete fracture networks. Tracer transport in fractured media from local (0.255-meter long) to regional (400-meter long) scales therefore can be quantified by a general fractional-derivative model. Fractional dynamics in fractured media can be scale dependent, owning to 1) the finite length of fractures that constrains the large displacement of tracers, and 2) the increasing mass exchange capacity along the travel path that enhances sub-diffusion.
A case study of fluid flow in fractured rock mass based on 2-D DFN modeling
NASA Astrophysics Data System (ADS)
Han, Jisu; Noh, Young-Hwan; Um, Jeong-Gi; Choi, Yosoon
2014-05-01
A two dimensional steady-state fluid flow through fractured rock mass of an abandoned copper mine in Korea is addressed based on discrete fracture network modeling. An injection well and three observation wells were installed at the field site to monitor the variations of total heads induced by injection of fresh water. A series of packer tests were performed to estimate the rock mass permeability. First, the two dimensional stochastic fracture network model was built and validated for a granitic rock mass using the geometrical and statistical data obtained from surface exposures and borehole logs. This validated fracture network model was combined with the fracture data observed on boreholes to generate a stochastic-deterministic fracture network system. Estimated apertures for each of the fracture sets using permeability data obtained from borehole packer tests were discussed next. Finally, a systematic procedure for fluid flow modeling in fractured rock mass in two dimensional domain was presented to estimate the conductance, flow quantity and nodal head in 2-D conceptual linear pipe channel network. The results obtained in this study clearly show that fracture geometry parameters (orientation, density and size) play an important role in the hydraulic behavior of fractured rock masses.
A Fundamental Approach to the Simulation of Flow and Dispersion in Fractured Media
Miller, J.D.
1983-12-15
Fracture systems may be generalized in terms of number and orientation of sets of parallel fractures and the distribution of length, width, thickness and separation. Borehole measurements may be used to particularize these parameters for a specific site. Global flow and dispersion in an aquifer occur in the interconnected fractures and may be related to specific fracture elements. A fluid dynamics code named SALE has been used to solve the Navier-Stokes equations for laminar flow in these elemental geometries. A marker particle calculation has been added to characterize longitudinal dispersion due to the velocity profile across the fracture and lateral dispersion due to flow disturbances at junctions. Local flow and dispersion in the matrix occur in the finer fracture structure and are evaluated using porous media approaches. These results or models are integrated in a 2D isothermal reservoir simulator named FRACSL. Discrete fractures are superimposed on the edges or diagnoals of rectangular grid elements. Water may flow from node to node through the matrix or through the fracture. The heads are found by iterating for the distribution which conserves the appropriate local mass. Marker particles are used to monitor the tracer dispersion due to motion in the fractures, in the matrix and between the two. Results are given showing flow and dispersion in an orthogonal junction and in a sample fractured reservoir.
Surface Roughness Effects on Fluid Transport Through a Natural Rock Fracture
Crandall, D.M.; Ahmadi, Goodarz; Smith, D.H.
2008-04-01
Fluid flow through rock fractures can be orders of magnitude faster than through the adjacent low-permeability rock. Understanding how fluid moves through these pathways is important for the prediction of sequestered CO2 transport in geologic reservoirs. Reservoir-scale, discrete-fracture simulators use simplified models of flow through fractures to determine transport properties in complex fracture networks. A high level of approximation is required in these reservoir-scale simulations due to the number of fractures within the domain of interest and because of the limited amount of information that can be obtained from geophysical well-logs (Long et al. (1996)). For this study, flow simulations through a CT-scanned fracture were performed to evaluate different fluid transport parameters that are important in geological flow analysis. The ‘roughness’ of the fracture was varied to determine the effect of the bumpy fracture walls on the fluid flow. The permeability and effective aperture were determined for flow under a constant pressure head. The fracture roughness is shown to dramatically reduce the flow through the fracture, and various relations are described.
Review: Mathematical expressions for estimating equivalent permeability of rock fracture networks
NASA Astrophysics Data System (ADS)
Liu, Richeng; Li, Bo; Jiang, Yujing; Huang, Na
2016-06-01
Fracture networks play a more significant role in conducting fluid flow and solute transport in fractured rock masses, comparing with that of the rock matrix. Accurate estimation of the permeability of fracture networks would help researchers and engineers better assess the performance of projects associated with fluid flow in fractured rock masses. This study provides a review of previous works that have focused on the estimation of equivalent permeability of two-dimensional (2-D) discrete fracture networks (DFNs) considering the influences of geometric properties of fractured rock masses. Mathematical expressions for the effects of nine important parameters that significantly impact on the equivalent permeability of DFNs are summarized, including (1) fracture-length distribution, (2) aperture distribution, (3) fracture surface roughness, (4) fracture dead-end, (5) number of intersections, (6) hydraulic gradient, (7) boundary stress, (8) anisotropy, and (9) scale. Recent developments of 3-D fracture networks are briefly reviewed to underline the importance of utilizing 3-D models in future research.
Fracture mechanics: 26. volume
Reuter, W.G.; Underwood, J.H.; Newman, J.C. Jr.
1995-12-31
The original objective of these symposia was to promote technical interchange between researchers from the US and worldwide in the field of fracture. This objective was recently expanded to promote technical interchange between researchers in the field of fatigue and fracture. The symposium began with the Swedlow Memorial Lecture entitled ``Patterns and Perspectives in Applied Fracture Mechanics.`` The remaining 42 papers are divided into the following topical sections: Constraint crack initiation; Constraint crack growth; Weldments; Engineered materials; Subcritical crack growth; Dynamic loading; and Applications. Papers within the scope of the Energy Data Base have been processed separately.
Observers for discrete-time nonlinear systems
NASA Astrophysics Data System (ADS)
Grossman, Walter D.
Observer synthesis for discrete-time nonlinear systems with special applications to parameter estimation is analyzed. Two new types of observers are developed. The first new observer is an adaptation of the Friedland continuous-time parameter estimator to discrete-time systems. The second observer is an adaptation of the continuous-time Gauthier observer to discrete-time systems. By adapting these observers to discrete-time continuous-time parameter estimation problems which were formerly intractable become tractable. In addition to the two newly developed observers, two observers already described in the literature are analyzed and deficiencies with respect to noise rejection are demonstrated. Improved versions of these observers are proposed and their performance demonstrated. The issues of discrete-time observability, discrete-time system inversion, and optimal probing are also addressed.
Nano-iron Tracer Test for Characterizing Preferential Flow Path in Fractured Rock
NASA Astrophysics Data System (ADS)
Chia, Y.; Chuang, P. Y.
2015-12-01
Deterministic description of the discrete features interpreted from site characterization is desirable for developing a discrete fracture network conceptual model. It is often difficult, however, to delineate preferential flow path through a network of discrete fractures in the field. A preliminary cross-borehole nano-iron tracer test was conducted to characterize the preferential flow path in fractured shale bedrock at a hydrogeological research station. Prior to the test, heat-pulse flowmeter measurements were performed to detect permeable fracture zones at both the injection well and the observation well. While a few fracture zones are found permeable, most are not really permeable. Chemical reduction method was used to synthesize nano zero-valent iron particles with a diameter of 50~150 nm. The conductivity of nano-iron solution is about 3100 μs/cm. The recorded fluid conductivity shows the arrival of nano-iron solution in the observation well 11.5 minutes after it was released from the injection well. The magnetism of zero-valent iron enables it to be absorbed on magnet array designed to locate the depth of incoming tracer. We found nearly all of absorbed iron on the magnet array in the observation well were distributed near the most permeable fracture zone. The test results revealed a preferential flow path through a permeable fracture zone between the injection well and the observation well. The estimated hydraulic conductivity of the connected fracture is 2.2 × 10-3 m/s. This preliminary study indicated that nano-iron tracer test has the potential to characterize preferential flow path in fractured rock.
Detwiler, Russell
2014-06-30
Matrix diffusion and adsorption within a rock matrix are widely regarded as important mechanisms for retarding the transport of radionuclides and other solutes in fractured rock (e.g., Neretnieks, 1980; Tang et al., 1981; Maloszewski and Zuber, 1985; Novakowski and Lapcevic, 1994; Jardine et al., 1999; Zhou and Xie, 2003; Reimus et al., 2003a,b). When remediation options are being evaluated for old sources of contamination, where a large fraction of contaminants reside within the rock matrix, slow diffusion out of the matrix greatly increases the difficulty and timeframe of remediation. Estimating the rates of solute exchange between fractures and the adjacent rock matrix is a critical factor in quantifying immobilization and/or remobilization of DOE-relevant contaminants within the subsurface. In principle, the most rigorous approach to modeling solute transport with fracture-matrix interaction would be based on local-scale coupled advection-diffusion/dispersion equations for the rock matrix and in discrete fractures that comprise the fracture network (Discrete Fracture Network and Matrix approach, hereinafter referred to as DFNM approach), fully resolving aperture variability in fractures and matrix property heterogeneity. However, such approaches are computationally demanding, and thus, many predictive models rely upon simplified models. These models typically idealize fracture rock masses as a single fracture or system of parallel fractures interacting with slabs of porous matrix or as a mobile-immobile or multi-rate mass transfer system. These idealizations provide tractable approaches for interpreting tracer tests and predicting contaminant mobility, but rely upon a fitted effective matrix diffusivity or mass-transfer coefficients. However, because these fitted parameters are based upon simplified conceptual models, their effectiveness at predicting long-term transport processes remains uncertain. Evidence of scale dependence of effective matrix diffusion
A New Physics-Based Modeling of Multiple Non-Planar Hydraulic Fractures Propagation
Zhou, Jing; Huang, Hai; Deo, Milind; Jiang, Shu
2015-10-01
Because of the low permeability in shale plays, closely spaced hydraulic fractures and multilateral horizontal wells are generally required to improve production. Therefore, understanding the potential fracture interaction and stress evolution is critical in optimizing fracture/well design and completion strategy in multi-stage horizontal wells. In this paper, a novel fully coupled reservoir flow and geomechanics model based on the dual-lattice system is developed to simulate multiple non-planar fractures propagation. The numerical model from Discrete Element Method (DEM) is used to simulate the mechanics of fracture propagations and interactions, while a conjugate irregular lattice network is generated to represent fluid flow in both fractures and formation. The fluid flow in the formation is controlled by Darcy’s law, but within fractures it is simulated by using cubic law for laminar flow through parallel plates. Initiation, growth and coalescence of the microcracks will lead to the generation of macroscopic fractures, which is explicitly mimicked by failure and removal of bonds between particles from the discrete element network. We investigate the fracture propagation path in both homogeneous and heterogeneous reservoirs using the simulator developed. Stress shadow caused by the transverse fracture will change the orientation of principal stress in the fracture neighborhood, which may inhibit or alter the growth direction of nearby fracture clusters. However, the initial in-situ stress anisotropy often helps overcome this phenomenon. Under large in-situ stress anisotropy, the hydraulic fractures are more likely to propagate in a direction that is perpendicular to the minimum horizontal stress. Under small in-situ stress anisotropy, there is a greater chance for fractures from nearby clusters to merge with each other. Then, we examine the differences in fracture geometry caused by fracturing in cemented or uncemented wellbore. Moreover, the impact of
Harris, D.B.; Sherwood, R.J.; Jarpe, S.P.; Harben, P.E.
1991-09-01
Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.
NASA Astrophysics Data System (ADS)
Peppers, M.; Burberry, C. M.
2014-12-01
Identifying natural fracture patterns in an area gives a detailed look into the local tectonic history. Comparing those fractures to the mechanical properties of the rocks provides key insights into predicting fractures in the subsurface. The Ozark Dome is an ideal study area for fracture research due to multiple fracturing events resulting from the multi-stage deformation Ouachita Orogeny during the late Paleozoic. This study used field observations of lithology and fracture attributes over ~10 outcrops in the Mississppian-Pennsylvanian (360-298 ma) carbonate sequence of the Ozark Plateau. Outcrops were chosen having excellent lithological exposure up the sequence from the Boone to Atoka formations and with 3D representations of the fracture patterns. In all, the area investigated covered nearly 60 square miles. Fracture attributes collected included fracture intensity, length, and abutting relationships; and rock hardness data collected from a Schmidt Hammer. Data was analyzed using programs such as Stereonet and MOVE structural software that generated rose diagrams, structural cross sections, and products. Initial results indicate 4 main fracture orientations that resulted from at least 3 discrete phases of deformation during the Miss-Penn. Initial results also indicate that the present-day mechanical stratigraphy is not the same one that existed during the deformation phases. Work done at the Tiger Blvd. outcrops showed at least 2 distinct mechanical units. Fractures observed at the outcrop did not respect mechanical bed boundaries, and showed no relationship to the differences in mechanical properties observed. This study will aid in the interpretation of fractures in regards to mechanical stratigraphy, which allows for a better understanding of subsurface fracture prediction in carbonate sequences worldwide. Finally, the fracture work here will also help in elucidating the tectonic history of the field area during the Mississippian and Pennsylvanian.
A fractured rock geophysical toolbox method selection tool
Day-Lewis, F. D.; Johnson, C.D.; Slater, L.D.; Robinson, J.L.; Williams, J.H.; Boyden, C.L.; Werkema, D.D.; Lane, J.W.
2016-01-01
Geophysical technologies have the potential to improve site characterization and monitoring in fractured rock, but the appropriate and effective application of geophysics at a particular site strongly depends on project goals (e.g., identifying discrete fractures) and site characteristics (e.g., lithology). No method works at every site or for every goal. New approaches are needed to identify a set of geophysical methods appropriate to specific project goals and site conditions while considering budget constraints. To this end, we present the Excel-based Fractured-Rock Geophysical Toolbox Method Selection Tool (FRGT-MST). We envision the FRGT-MST (1) equipping remediation professionals with a tool to understand what is likely to be realistic and cost-effective when contracting geophysical services, and (2) reducing applications of geophysics with unrealistic objectives or where methods are likely to fail.
Multigrid methods for isogeometric discretization.
Gahalaut, K P S; Kraus, J K; Tomar, S K
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels [Formula: see text], whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order [Formula: see text], and for [Formula: see text] and [Formula: see text] smoothness. PMID:24511168
Discrete modelling of drapery systems
NASA Astrophysics Data System (ADS)
Thoeni, Klaus; Giacomini, Anna
2016-04-01
Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R
Multigrid methods for isogeometric discretization
Gahalaut, K.P.S.; Kraus, J.K.; Tomar, S.K.
2013-01-01
We present (geometric) multigrid methods for isogeometric discretization of scalar second order elliptic problems. The smoothing property of the relaxation method, and the approximation property of the intergrid transfer operators are analyzed. These properties, when used in the framework of classical multigrid theory, imply uniform convergence of two-grid and multigrid methods. Supporting numerical results are provided for the smoothing property, the approximation property, convergence factor and iterations count for V-, W- and F-cycles, and the linear dependence of V-cycle convergence on the smoothing steps. For two dimensions, numerical results include the problems with variable coefficients, simple multi-patch geometry, a quarter annulus, and the dependence of convergence behavior on refinement levels ℓ, whereas for three dimensions, only the constant coefficient problem in a unit cube is considered. The numerical results are complete up to polynomial order p=4, and for C0 and Cp-1 smoothness. PMID:24511168
Classicality in discrete Wigner functions
Cormick, Cecilia; Galvao, Ernesto F.; Gottesman, Daniel; Paz, Juan Pablo; Pittenger, Arthur O.
2006-01-15
Gibbons et al., [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by Galvao, [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W in the class form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism.
Determinant Expressions for Discrete Integrable Maps
NASA Astrophysics Data System (ADS)
Sogo, Kiyoshi
2006-08-01
Explicit formulas for several discrete integrable maps with periodic boundary condition are obtained, which give the sequential time developments in a form of the quotient of successive determinants of tri-diagonal matrices. We can expect that such formulas make the corresponding numerical simulations simple and stable. The cases of discrete Lotka-Volterra and discrete KdV equations are demonstrated by using the common algorithm computing determinants of tri-diagonal matrices.
NASA Technical Reports Server (NTRS)
Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Hamlin, Timothy; Boccippio, Dennis J.; Goodman, Steven J.; Christian, Hugh J.
1999-01-01
3-dimensional lightning mapping observations were obtained in central Oklahoma during June 1998, using New Mexico Tech's Lightning Mapping Array (LMA). The results have been compared with observations of the discharges from space obtained by NASA's Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) spacecraft. Excellent spatial and temporal correlations were obtained between the two sets of observations. All discharges seen by LIS were mapped by the LMA. Most of the detected optical events were associated with lightning channels that extended into the upper part of the storm. Cloud-to-ground discharges that were confined to mid- and lower-altitudes tended to be detected by LIS at the time of late-stage return strokes. Extensive illumination tended to occur in impulsive bursts toward the end or part way through intracloud discharges and appeared to be produced by energetic K-changes that typically occur at these times.
Güntürkün, Onur; Verhoye, Marleen; De Groof, Geert; Van der Linden, Annemie
2013-01-01
Pigeons are classic animal models for learning, memory, and cognition. The majority of the current understanding about avian neurobiology outside of the domain of the song system has been established using pigeons. Since MRI represents an increasingly relevant tool for comparative neuroscience, a 3-dimensional MRI-based atlas of the pigeon brain becomes essential. Using multiple imaging protocols, we delineated diverse ascending sensory and descending motor systems as well as the hippocampal formation. This pigeon brain atlas can easily be used to determine the stereotactic location of identified neural structures at any angle of the head. In addition, the atlas is useful to find the optimal angle of sectioning for slice experiments, stereotactic injections and electrophysiological recordings. This pigeon brain atlas is freely available for the scientific community. PMID:22367250
Fine designing 3-dimensional ZnO nanowalls with TiO2 nanoparticles for DSSC application
NASA Astrophysics Data System (ADS)
Polkoo, Sajad Saghaye; Saievar-Iranizad, Esmaiel; Bayatloo, Elham
2015-06-01
In this research, we report a low-cost low-temperature hydrothermal technique for covering 3-dimensional (3-D) electrodeposited ZnO nanowall with thin layer of aggregated TiO2 nanoparticles on FTO substrate for dye-sensitized solar cell application, in a way that morphology and crystal structure of ZnO nanowalls were preserved. Comparing photovoltaic characteristics of devices with and without TiO2-coating layer, it was revealed that the 3-D ZnO/TiO2-nanostructured photoanode resulted in a 35 % cell performance improved mostly because of enhancement of short-circuit current density ( J sc) and open-circuit voltage ( V oc). The XRD pattern showed that 3-D ZnO nanowalls and TiO2 compose of wurtzite and anatase phases, respectively.
2013-01-01
Previous studies demonstrated that while the mandible assumes its resting position in space, antagonistic muscles should assume minimal muscle activity within a spatial range. This zone of mandibular rest has been mapped using physiologic parameters of muscle activity and incisal spatial kinematics. This case study expands on previous research by monitoring incisal and posterior jaw position and includes lateral pterygoid muscle activity, thus allowing for determining the spatial range including additional relevant coordinates and muscle activity. Four positions were evaluated: a maximum physiologic open position, a maximum physiologic closed position, physiologic rest position, and maximum physiologic protrusion position. Within the physiologic zone of rest formed by these 4 positions, the vertical and anterior borders of the envelope of function may be documented for the incisal and posterior mandible in true 3-dimensional fashion to assist the clinician in determining a physiologic interocclusal freeway space and vertical dimension of occlusion. Advantages and limitations are discussed. PMID:24194764
Mechanical Coal-Face Fracturer
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1984-01-01
Radial points on proposed drill bit take advantage of natural fracture planes of coal. Radial fracture points retracted during drilling and impacted by piston to fracture coal once drilling halts. Group of bits attached to array of pneumatic drivers to fracture large areas of coal face.
La Pointe, Paul R.; Hermanson, Jan
2002-09-09
The goal of this project is to improve the recovery of oil from the Circle Ridge Oilfield, located on the Wind River Reservation in Wyoming, through an innovative integration of matrix characterization, structural reconstruction, and the characterization of the fracturing in the reservoir through the use of discrete fracture network models.
NASA Astrophysics Data System (ADS)
Garay, M. J.; Diner, D. J.; Martonchik, J. V.; Davis, A. B.
2011-12-01
Knowledge of the detailed 3-dimensional structure of clouds and atmospheric aerosols is vital for correctly modeling their radiative effects and interpreting optical remote sensing measurements of scattered sunlight. We will describe a set of new observations made by the Multiangle SpectroPolarimetric Imager (MSPI) from the ground and from the NASA ER-2 aircraft. MSPI is being developed and tested at JPL as a payload for the preliminary Aerosol-Cloud-Ecosystems (PACE) satellite mission, which is expected to fly near the end of the decade. MSPI builds upon experience gained from the Multi-angle Imaging SpectroRadiometer (MISR) currently orbiting on NASA's Terra satellite. Ground-MSPI and Air-MSPI are two prototype cameras operating in the ultraviolet (UV) to the visible/near-infrared (VNIR) range mounted on gimbals that acquire imagery in a pushbroom fashion, including polarization in selected spectral bands with demonstrated high polarimetric accuracy (0.5% uncertainty in degree of linear polarization). The spatial resolution of Ground-MSPI is 1 m for objects at a distance of 3 km. From the operational altitude of the ER-2, Air-MSPI has a ground resolution of approximately 10 m at nadir. This resolution, coupled with good calibration and high polarimetric performance means that MSPI can be used to derive radiatively important parameters of aerosols and clouds using intensity and polarization information together. As part of the effort for developing retrieval algorithms for the instrument, we have employed an extremely flexible 3-dimensional vector radiative transfer code. We will show example imagery from both MSPI cameras and describe how these scenes are modeled using this code. We will also discuss some of the important unknowns and limitations of this observational approach.
NASA Astrophysics Data System (ADS)
Kobayashi, H.; Yang, W.; Ichii, K.
2015-12-01
Global simulation of canopy scale sun-induced chlorophyll fluorescence with a 3 dimensional radiative transfer modelHideki Kobayashi, Wei Yang, and Kazuhito IchiiDepartment of Environmental Geochemical Cycle Research, Japan Agency for Marine-Earth Science and Technology3173-25, Showa-machi, Kanazawa-ku, Yokohama, Japan.Plant canopy scale sun-induced chlorophyll fluorescence (SIF) can be observed from satellites, such as Greenhouse gases Observation Satellite (GOSAT), Orbiting Carbon Observatory-2 (OCO-2), and Global Ozone Monitoring Experiment-2 (GOME-2), using Fraunhofer lines in the near infrared spectral domain [1]. SIF is used to infer photosynthetic capacity of plant canopy [2]. However, it is not well understoond how the leaf-level SIF emission contributes to the top of canopy directional SIF because SIFs observed by the satellites use the near infrared spectral domain where the multiple scatterings among leaves are not negligible. It is necessary to quantify the fraction of emission for each satellite observation angle. Absorbed photosynthetically active radiation of sunlit leaves are 100 times higher than that of shaded leaves. Thus, contribution of sunlit and shaded leaves to canopy scale directional SIF emission should also be quantified. Here, we show the results of global simulation of SIF using a 3 dimensional radiative transfer simulation with MODIS atmospheric (aerosol optical thickness) and land (land cover and leaf area index) products and a forest landscape data sets prepared for each land cover category. The results are compared with satellite-based SIF (e.g. GOME-2) and the gross primary production empirically estimated by FLUXNET and remote sensing data.
A discrete event method for wave simulation
Nutaro, James J
2006-01-01
This article describes a discrete event interpretation of the finite difference time domain (FDTD) and digital wave guide network (DWN) wave simulation schemes. The discrete event method is formalized using the discrete event system specification (DEVS). The scheme is shown to have errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.
Scalar discrete nonlinear multipoint boundary value problems
NASA Astrophysics Data System (ADS)
Rodriguez, Jesus; Taylor, Padraic
2007-06-01
In this paper we provide sufficient conditions for the existence of solutions to scalar discrete nonlinear multipoint boundary value problems. By allowing more general boundary conditions and by imposing less restrictions on the nonlinearities, we obtain results that extend previous work in the area of discrete boundary value problems [Debra L. Etheridge, Jesus Rodriguez, Periodic solutions of nonlinear discrete-time systems, Appl. Anal. 62 (1996) 119-137; Debra L. Etheridge, Jesus Rodriguez, Scalar discrete nonlinear two-point boundary value problems, J. Difference Equ. Appl. 4 (1998) 127-144].
Effect of matrix resin on the impact fracture characteristics of graphite-epoxy laminates
NASA Technical Reports Server (NTRS)
Hertzberg, P. E.; Smith, B. W.; Miller, A. G.
1982-01-01
The effect of resin chemistry on basic impact energy absorbent mechanisms exibited by graphite-epoxy composites was investigated. Impact fracture modes and microscopic resin deformation characteristics were examined for 26 NASA-impacted graphite epoxy laminates with different resin chemistries. Discrete specimen fracture modes were identified through cross sectional examination after impact, and subsequently compared with measured glass transition temperatures, cure cycles, and residual impact capabilities. Microscopic resin deformation mechanisms and their overall relationship to impact loading conditions, voids, and resin content were also characterized through scanning electron microscopic examination of separated fracture surfaces.
NASA Astrophysics Data System (ADS)
Robinson, Bruce A.; Tester, Jefferson W.
1984-11-01
A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir using tracer-determined residence time distribution curves is outlined. Emphasis is placed on comparison of the statistical quantities obtained from the tracer curves of different reservoirs or of the same reservoir under different conditions. In this way, model-independent information may be used unambiguously to construct empirical reservoir performance correlations. Downhole measurements of the tracer response exiting from discrete fracture zones permit further characterization of reservoir fluid flow behavior. Tracer experiments conducted in prototype hot dry rock geothermal reservoirs in fractured rock are examined using these statistically based data analysis methods.
Femur fracture repair - discharge
... McCormack RG, Lopez CA. Commonly encountered fractures in sports medicine. In: Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine. 4th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap ...
Metatarsal stress fractures - aftercare
... McCormack RG, Lopez CA. Commonly encountered fractures in sports medicine. In: Miller MD, Thompson SR, eds. DeLee and Drez's Orthopaedic Sports Medicine . 4th ed. Philadelphia, PA: Saunders Elsevier; 2014:chap. ...
Clavicle Fracture (Broken Collarbone)
... place and the fragments are severely out of alignment. A large bump over the fracture site may ... bone fragments are ﬁrst repositioned into their normal alignment, and then held in place with special screws ...
Sprains, Strains and Fractures
... are useful for finding soft issue injuries (including torn ligaments) and stress fractures. Treatment will depend on ... weeks. Professional athletes may undergo surgery to repair torn ligaments. Oral anti-inflammatory medication, such as ibuprofen, ...
... broken or ligaments that support the midfoot are torn. The severity of the injury can vary from ... bones are broken (fractured) or the ligaments are torn (ruptured). Injuries can vary, from a simple injury ...
... page: //medlineplus.gov/ency/patientinstructions/000548.htm Ankle fracture - aftercare To use the sharing features on this ... Sit with your foot elevated higher than your knee at least 4 times a day Apply an ...
Fractures in medieval Scotland.
MacLennan, W J
2001-04-01
The prevalence of fractures in medieval Scotland is assessed, particular attention being given to excavations of cemeteries beside three Carmelite cemeteries, at Aberdeen, Perth and Linlithgow, and another one at Whithorn Abbey. In the friaries the prevalence of fractures was 7.6% and in Whithorn it was 5.0%. These figures are comparable with an estimated prevalence of 7.2% for individuals between 0 and 65 years in present day Scotland. Males were more at risk of fractures than females, but a small group from both genders had been struck on the head by weapons. A study from a rural cemetery in England indicates that both male and female peasants had a much higher risk of fractures than their urban counterparts. PMID:11394343
Suspensions in hydraulic fracturing
Shah, S.N.
1996-12-31
Suspensions or slurries are widely used in well stimulation and hydraulic fracturing processes to enhance the production of oil and gas from the underground hydrocarbon-bearing formation. The success of these processes depends significantly upon having a thorough understanding of the behavior of suspensions used. Therefore, the characterization of suspensions under realistic conditions, for their rheological and hydraulic properties, is very important. This chapter deals with the state-of-the-art hydraulic fracturing suspension technology. Specifically it deals with various types of suspensions used in well stimulation and fracturing processes, their rheological characterization and hydraulic properties, behavior of suspensions in horizontal wells, review of proppant settling velocity and proppant transport in the fracture, and presently available measurement techniques for suspensions and their merits. Future industry needs for better understanding of the complex behavior of suspensions are also addressed. 74 refs., 21 figs., 1 tab.
NASA Technical Reports Server (NTRS)
Kobayashi, A. S.; Ramulu, M.; Dadkhah, M. S.; Yang, K.-H.; Kang, B. S. J.
1986-01-01
Dynamic fracture toughness versus crack velocity relations of Homalite-100, polycarbonate, hardened 4340 steel and reaction bonded silicon nitride are reviewed and discrepancies with published data and their probable causes are discussed. Data scatter in published data are attributed in part to the observed fluctuations in crack velocities. The results reaffirmed our previous conclusion that the dynamic fracture toughness versus crack velocity relation is specimen dependent and that the dynamic arrest stress intensity factor is not a unique material property.
Relative permeability through fractures
Diomampo, Gracel, P.
2001-08-01
The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.
Hybrid fracture and the transition from extension fracture to shear fracture.
Ramsey, Jonathan M; Chester, Frederick M
2004-03-01
Fracture is a fundamental mechanism of material failure. Two basic types of brittle fractures are commonly observed in rock deformation experiments--extension (opening mode) fractures and shear fractures. For nearly half a century it has been hypothesized that extension and shear fractures represent end-members of a continuous spectrum of brittle fracture types. However, observations of transitional fractures that display both opening and shear modes (hybrids) in naturally deformed rock have often remained ambiguous, and a clear demonstration of hybrid fracture formation has not been provided by experiments. Here we present the results of triaxial extension experiments on Carrara marble that show a continuous transition from extension fracture to shear fracture with an increase in compressive stress. Hybrid fractures form under mixed tensile and compressive stress states at acute angles to the maximum principal compressive stress. Fracture angles are greater than those observed for extension fractures and less than those observed for shear fractures. Fracture surfaces also display a progressive change from an extension to shear fracture morphology. PMID:14999279
FRACTURING FLUID CHARACTERIZATION FACILITY
Subhash Shah
2000-08-01
Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.
Treatment of Thoracolumbar Fracture
Kim, Byung-Guk; Shin, Dong-Eun
2015-01-01
The most common fractures of the spine are associated with the thoracolumbar junction. The goals of treatment of thoracolumbar fracture are leading to early mobilization and rehabilitation by restoring mechanical stability of fracture and inducing neurologic recovery, thereby enabling patients to return to the workplace. However, it is still debatable about the treatment methods. Neurologic injury should be identified by thorough physical examination for motor and sensory nerve system in order to determine the appropriate treatment. The mechanical stability of fracture also should be evaluated by plain radiographs and computed tomography. In some cases, magnetic resonance imaging is required to evaluate soft tissue injury involving neurologic structure or posterior ligament complex. Based on these physical examinations and imaging studies, fracture stability is evaluated and it is determined whether to use the conservative or operative treatment. The development of instruments have led to more interests on the operative treatment which saves mobile segments without fusion and on instrumentation through minimal invasive approach in recent years. It is still controversial for the use of these treatments because there have not been verified evidences yet. However, the morbidity of patients can be decreased and good clinical and radiologic outcomes can be achieved if the recent operative treatments are used carefully considering the fracture pattern and the injury severity. PMID:25705347
NASA Astrophysics Data System (ADS)
Nœtinger, B.
2015-02-01
Modeling natural Discrete Fracture Networks (DFN) receives more and more attention in applied geosciences, from oil and gas industry, to geothermal recovery and aquifer management. The fractures may be either natural, or artificial in case of well stimulation. Accounting for the flow inside the fracture network, and accounting for the transfers between the matrix and the fractures, with the same level of accuracy is an important issue for calibrating the well architecture and for setting up optimal resources recovery strategies. Recently, we proposed an original method allowing to model transient pressure diffusion in the fracture network only [1]. The matrix was assumed to be impervious. A systematic approximation scheme was built, allowing to model the initial DFN by a set of N unknowns located at each identified intersection between fractures. The higher N, the higher the accuracy of the model. The main assumption was using a quasi steady state hypothesis, that states that the characteristic diffusion time over one single fracture is negligible compared with the characteristic time of the macroscopic problem, e.g. change of boundary conditions. In that context, the lowest order approximation N = 1 has the form of solving a transient problem in a resistor/capacitor network, a so-called pipe network. Its topology is the same as the network of geometrical intersections between fractures. In this paper, we generalize this approach in order to account for fluxes from matrix to fractures. The quasi steady state hypothesis at the fracture level is still kept. Then, we show that in the case of well separated time scales between matrix and fractures, the preceding model needs only to be slightly modified in order to incorporate these fluxes. The additional knowledge of the so-called matrix to fracture transfer function allows to modify the mass matrix that becomes a time convolution operator. This is reminiscent of existing space averaged transient dual porosity models.
Thompson, B.D.; Young, R.P.; Lockner, D.A.
2006-01-01
New observations of fracture nucleation are presented from three triaxial compression experiments on intact samples of Westerly granite, using Acoustic Emission (AE) monitoring. By conducting the tests under different loading conditions, the fracture process is demonstrated for quasi-static fracture (under AE Feedback load), a slowly developing unstable fracture (loaded at a 'slow' constant strain rate of 2.5 ?? 10-6/s) and an unstable fracture that develops near instantaneously (loaded at a 'fast' constant strain rate of 5 ?? 10-5/s). By recording a continuous ultrasonic waveform during the critical period of fracture, the entire AE catalogue can be captured and the exact time of fracture defined. Under constant strain loading, three stages are observed: (1) An initial nucleation or stable growth phase at a rate of ??? 1.3 mm/s, (2) a sudden increase to a constant or slowly accelerating propagation speed of ??? 18 mm/s, and (3) unstable, accelerating propagation. In the ??? 100 ms before rupture, the high level of AE activity (as seen on the continuous record) prevented the location of discrete AE events. A lower bound estimate of the average propagation velocity (using the time-to-rupture and the existing fracture length) suggests values of a few m/s. However from a low gain acoustic record, we infer that in the final few ms, the fracture propagation speed increased to 175 m/s. These results demonstrate similarities between fracture nucleation in intact rock and the nucleation of dynamic instabilities in stick slip experiments. It is suggested that the ability to constrain the size of an evolving fracture provides a crucial tool in further understanding the controls on fracture nucleation. ?? Birkha??user Verlag, Basel, 2006.
Measurement of Bone: Diagnosis of SCI-Induced Osteoporosis and Fracture Risk Prediction
Morse, Leslie R.
2015-01-01
Background: Spinal cord injury (SCI) is associated with a rapid loss of bone mass, resulting in severe osteoporosis and a 5- to 23-fold increase in fracture risk. Despite the seriousness of fractures in SCI, there are multiple barriers to osteoporosis diagnosis and wide variations in treatment practices for SCI-induced osteoporosis. Methods: We review the biological and structural changes that are known to occur in bone after SCI in the context of promoting future research to prevent or reduce risk of fracture in this population. We also review the most commonly used methods for assessing bone after SCI and discuss the strengths, limitations, and clinical applications of each method. Conclusions: Although dual-energy x-ray absorptiometry assessments of bone mineral density may be used clinically to detect changes in bone after SCI, 3-dimensional methods such as quantitative CT analysis are recommended for research applications and are explained in detail. PMID:26689691
Inverse modeling of flow tomography experiments in fractured media
NASA Astrophysics Data System (ADS)
Klepikova, Maria; Le Borgne, Tanguy; Bour, Olivier; de Dreuzy, Jean-Raynald
2014-05-01
Inverse modeling of fracture hydraulic properties and connectivity is a very challenging objective due to the strong heterogeneity of the medium at multiple scales and the scarcity of data. Cross-borehole flowmeter tests, which consist of measuring changes in vertical borehole flows when pumping a neighboring borehole, were shown to be an efficient technique to provide information on the properties of the flow zones that connect borehole pairs (Paillet, 1998, Le Borgne et al., 2007). The interpretation of such experiments may, however, be quite uncertain when multiple connections exist. We propose the flow tomography approach (i.e., sequential cross-borehole flowmeter tests) to characterize the connectivity and transmissivity of preferential permeable flow paths in fractured aquifers (Klepikova et al., 2013). An inverse model approach is developed to estimate log-transformed transmissivity values of hydraulically active fractures between the pumping and observation wells by inverting cross-borehole flow and water level data. Here a simplified discrete fracture network approach that highlights main connectivity structures is used. This conceptual model attempts to reproduce fracture network connectivity without taking fracture geometry (length, orientation, dip) into account. We demonstrate that successively exchanging the roles of pumping and observation boreholes improves the quality of available information and reduces the under-determination of the problem. The inverse method is validated for several synthetic flow scenarios. It is shown to provide a good estimation of connectivity patterns and transmissivities of main flow paths. It also allows the estimation of the transmissivity of fractures that connect the flow paths but do not cross the boreholes, although the associated uncertainty may be high for some geometries. The results of this investigation encourage the application of flow tomography to natural fractured aquifers.
Characterization of In-Situ Stress and Permeability in Fractured Reservoirs
Daniel R. Burns; M. Nafi Toksoz
2006-06-30
Fracture orientation and spacing are important parameters in reservoir development. This project resulted in the development and testing of a new method for estimating fracture orientation and two new methods for estimating fracture spacing from seismic data. The methods developed were successfully applied to field data from fractured carbonate reservoirs. Specific results include: the development a new method for estimating fracture orientation from scattered energy in seismic data; the development of two new methods for estimating fracture spacing from scattered energy in seismic data; the successful testing of these methods on numerical model data and field data from two fractured carbonate reservoirs; and the validation of fracture orientation results with borehole data from the two fields. Researchers developed a new method for determining the reflection and scattering characteristics of seismic energy from subsurface fractured formations. The method is based upon observations made from 3D finite difference modeling of the reflected and scattered seismic energy over discrete systems of vertical fractures. Regularly spaced, discrete vertical fractures impart a ringing coda type signature to seismic energy that is transmitted through or reflected off of them. This signature varies in amplitude and coherence as a function of several parameters including: (1) the difference in angle between the orientation of the fractures and the acquisition direction, (2) the fracture spacing, (3) the wavelength of the illuminating seismic energy, and (4) the compliance, or stiffness, of the fractures. This coda energy is the most coherent when the acquisition direction is parallel to the strike of the fractures. It has the largest amplitude when the seismic wavelengths are tuned to the fracture spacing, and when the fractures have low stiffness. The method uses surface seismic reflection traces to derive a transfer function that quantifies the change in the apparent source
Chatani, K. )
1992-08-01
This report summarizes the calculational results from analyses of a Clinch River Breeder Reactor (CRBR) prototypic coolant pipe chaseway neutron streaming experiment Comparisons of calculated and measured results are presented, major emphasis being placed on results at bends in the chaseway. Calculations were performed with three three-dimensional radiation transport codes: the discrete ordinates code TORT and the Monte Carlo code MORSE, both developed by the Oak Ridge National Laboratory (ORNL), and the discrete ordinates code ENSEMBLE, developed by Japan. The calculated results from the three codes are compared (1) with previously-calculated DOT3.5 two-dimensional results, (2) among themselves, and (3) with measured results. Calculations with TORT used both the weighted-difference and nodal methods. Only the weighted-difference method was used in ENSEMBLE. When the calculated results were compared to measured results, it was found that calculation-to-experiment (C/E) ratios were good in the regions of the chaseway where two-dimensional modeling might be difficult and where there were no significant discrete ordinates ray effects. Excellent agreement was observed for responses dominated by thermal neutron contributions. MORSE-calculated results and comparisons are described also, and detailed results are presented in an appendix.
Milind Deo; Chung-Kan Huang; Huabing Wang
2008-08-31
Black-oil, compositional and thermal simulators have been developed to address different physical processes in reservoir simulation. A number of different types of discretization methods have also been proposed to address issues related to representing the complex reservoir geometry. These methods are more significant for fractured reservoirs where the geometry can be particularly challenging. In this project, a general modular framework for reservoir simulation was developed, wherein the physical models were efficiently decoupled from the discretization methods. This made it possible to couple any discretization method with different physical models. Oil characterization methods are becoming increasingly sophisticated, and it is possible to construct geologically constrained models of faulted/fractured reservoirs. Discrete Fracture Network (DFN) simulation provides the option of performing multiphase calculations on spatially explicit, geologically feasible fracture sets. Multiphase DFN simulations of and sensitivity studies on a wide variety of fracture networks created using fracture creation/simulation programs was undertaken in the first part of this project. This involved creating interfaces to seamlessly convert the fracture characterization information into simulator input, grid the complex geometry, perform the simulations, and analyze and visualize results. Benchmarking and comparison with conventional simulators was also a component of this work. After demonstration of the fact that multiphase simulations can be carried out on complex fracture networks, quantitative effects of the heterogeneity of fracture properties were evaluated. Reservoirs are populated with fractures of several different scales and properties. A multiscale fracture modeling study was undertaken and the effects of heterogeneity and storage on water displacement dynamics in fractured basements were investigated. In gravity-dominated systems, more oil could be recovered at a given pore
NASA Astrophysics Data System (ADS)
Ahmed, R.; Edwards, M. G.; Lamine, S.; Huisman, B. A. H.; Pal, M.
2015-03-01
A cell-centered control-volume distributed multi-point flux approximation (CVD-MPFA) finite-volume formulation is presented for discrete fracture-matrix simulations. The grid is aligned with the fractures and barriers which are then modeled as lower-dimensional interfaces located between the matrix cells in the physical domain. The nD pressure equation is solved in the matrix domain coupled with an (n - 1)D pressure equation solved in the fractures. The CVD-MPFA formulation naturally handles fractures with anisotropic permeabilities on unstructured grids. Matrix-fracture fluxes are expressed in terms of matrix and fracture pressures, and must be added to the lower-dimensional flow equation (called the transfer function). An additional transmission condition is used between matrix cells adjacent to low permeable fractures to link the velocity and pressure jump across the fractures. Numerical tests serve to assess the convergence and accuracy of the lower-dimensional fracture model for highly anisotropic fractures having different apertures and permeability tensors. A transport equation for tracer flow is coupled via the Darcy flux for single and intersecting fractures. The lower-dimensional approach for intersecting fractures avoids the more restrictive CFL condition corresponding to the equi-dimensional approximation with explicit time discretization. Lower-dimensional fracture model results are compared with hybrid-grid and equi-dimensional model results. Fractures and barriers are efficiently modeled by lower-dimensional interf